WO2017049514A1 - 移动式空气净化系统 - Google Patents

移动式空气净化系统 Download PDF

Info

Publication number
WO2017049514A1
WO2017049514A1 PCT/CN2015/090483 CN2015090483W WO2017049514A1 WO 2017049514 A1 WO2017049514 A1 WO 2017049514A1 CN 2015090483 W CN2015090483 W CN 2015090483W WO 2017049514 A1 WO2017049514 A1 WO 2017049514A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
microprocessor
sensor
monitoring device
environment
Prior art date
Application number
PCT/CN2015/090483
Other languages
English (en)
French (fr)
Inventor
钟志威
覃国秘
谭和华
罗辉
李光煌
Original Assignee
深圳市赛亿科技开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市赛亿科技开发有限公司 filed Critical 深圳市赛亿科技开发有限公司
Priority to CN201580014658.0A priority Critical patent/CN107003015B/zh
Priority to PCT/CN2015/090483 priority patent/WO2017049514A1/zh
Publication of WO2017049514A1 publication Critical patent/WO2017049514A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to the field of Internet of Things application technologies, and in particular, to a mobile air purification system.
  • Air quality is an important aspect of ensuring environmental quality.
  • the air pollution in the environment is becoming more and more serious.
  • Air purifiers have become an indispensable equipment in the working environment and the home environment.
  • the degree of intelligence is also increasing, but the direction of intelligent improvement is limited to the change of the control mode, for example, the mode of manual operation of the panel changes to the application through the intelligent portable terminal.
  • the interface is wirelessly controlled.
  • a mobile air purification system comprising:
  • An air monitoring device that monitors the environment to output air quality parameters and detects whether there is a corresponding area in the environment to obtain a corresponding detection result
  • An air purifier comprising an air purifying portion and a walking portion disposed at a bottom of the air purifying portion;
  • the walking portion obtains an air quality parameter and performs positioning by wireless connection with the air monitoring device, and drives the air purifying portion to move according to the position and air quality and the detection result parameter obtained by the positioning, and when the movement stops Air purification is performed in the area where it is located.
  • the number of the air monitoring devices is two or more, and two or more of the air monitoring devices are distributed in the environment.
  • the air monitoring device has a WiFi module built in, the WiFi module for wirelessly connecting to the air purifier.
  • the walking portion includes a control circuit board, and the control circuit board is provided with a signal strength monitoring component;
  • the signal strength monitoring component is configured to obtain a WiFi signal strength corresponding to each air monitoring device in the wireless connection.
  • control circuit board is further provided with a microprocessor electrically coupled to the signal strength monitoring component;
  • the microprocessor is configured to perform positioning according to the WiFi signal strength output by the signal strength monitoring component and the fixed position of the air monitoring device, and generate a moving route according to the position and air quality parameters obtained by the positioning.
  • the two or more air monitoring devices divide the environment into two or more regions, and the air monitoring device is provided with an infrared sensor for detecting a corresponding region. Whether it is a human area, and transmits the detection result to the microprocessor through a wireless connection;
  • the microprocessor generates a movement route based on the positioned position, the air quality parameter, and the detection result.
  • the walking portion further includes a wheel mounted at a bottom of the air purifying portion, a servo motor driving the wheel, and a sensor mounted according to the air purifying portion housing;
  • the sensor is configured to detect an obstacle during movement to obtain an echo interval
  • the microprocessor obtains an echo interval by connecting with an electrical signal of the sensor, calculates a distance from the obstacle according to the echo interval and a predicted wave velocity, and adjusts the shift accordingly Moving route.
  • the servo motor is electrically coupled to the microprocessor to output a frequency of rotation in the servo motor to the microprocessor;
  • the microprocessor calculates the moving speed of the air purifier in which it is based on the frequency and the gear information of the servo motor.
  • the microprocessor obtains a motion state of the obstacle according to a distance and a moving speed with respect to the obstacle, and adjusts the moving route according to the distance and the motion state.
  • the senor includes an ultrasonic sensor and an infrared sensor, each of which is plural in number and disposed on a front side and a side surface of the air purifying portion, respectively.
  • a plurality of the ultrasonic sensors and a plurality of infrared sensors are spaced apart from a portion of the front and side surfaces of the air purifying portion that is connected to the front surface.
  • the microprocessor calculates a plurality of distances corresponding to the ultrasonic sensor and the infrared sensor respectively;
  • the microprocessor performs data fusion according to a distance corresponding to the ultrasonic sensor and the infrared sensor respectively to obtain a distance from the obstacle.
  • the mobile air purification system includes an air monitoring device and an air purifier, and the air monitoring device monitors the environment to output air quality parameters to the air purifier, and the air purifier includes an air purifying unit and is disposed in the air purifying unit.
  • the walking portion obtains the air quality parameter output by the air monitoring device and performs positioning according to the air quality parameter, and the position and air quality parameter obtained by the positioning drive the air purifying portion to move until the stop, so that when the movement stops
  • the area performs air purification, so that the configuration of the purification resources in the environment is realized with the change of air quality, realizing the intelligent configuration of the purification resources, and thus avoiding the waste of the purification resources in the environment.
  • Figure 1 is a topological view of a mobile air purification system in one embodiment
  • Figure 2 is a schematic view showing the structure of an air cleaner in an embodiment
  • Figure 3 is a schematic illustration of the sensor layout of an air purifier in one embodiment.
  • FIG. 1 shows a schematic diagram of a mobile air purification system in one embodiment.
  • the mobile air purification system includes an air monitoring device 10 and an air cleaner 30.
  • the mobile air purification system is placed in any environment where air purification is required, such as an office, a room, etc. in which people are located.
  • the air monitoring device 10 is fixed at a certain position in the environment to monitor the environment in a fixed position, output air quality parameters, and detect whether there is a corresponding area in the environment to obtain a corresponding detection result.
  • the air cleaner 30 is provided with a function of wirelessly connecting to the air monitoring device 10 to realize its interaction with the air monitoring device 10.
  • the air cleaner 30 includes an air purifying portion 310 and a running portion 330.
  • the air purifying portion 310 is configured to perform a function related to air purification;
  • the running portion 330 is disposed at the bottom of the air purifying portion 310, and
  • the traveling portion 330 is configured to obtain air quality parameters and detection results through wireless connection with the air monitoring device 10, and according to Air quality parameters and detection results perform specific implementations that control the movement process.
  • the implementation of the movement will first need to determine the current location of the air purifier 30 and the target location of the movement. Therefore, positioning and determination of the target position are required, whereby a specific movement process can be performed.
  • the current location of the air purifier 30 will be obtained by positioning, and the moving target location is related to the air quality parameter, ie the air quality parameter indicates the area in the environment where air purification needs to be performed.
  • the walking portion 330 In addition to obtaining the air quality parameter through the wireless connection with the air monitoring device 10, the walking portion 330 will also be positioned based on its wireless connection with the air monitoring device 10, driving the air based on the position and air quality parameters and the detection results obtained by the positioning.
  • the purification unit 310 moves and performs air purification in the area where the movement is stopped.
  • the movement of the air purifier 30 by the walking portion 330 enables the air purification performed in the environment to be adapted to the air quality parameters and the detection results, thereby realizing the optimal configuration of the purification resources. Avoid waste of purification resources, especially for a large area environment, it is no longer necessary to set up multiple air purifiers, but only need to adaptively move to a certain area to perform air purification, and the adaptive moderateness is very high.
  • the air purifying portion 310 includes a casing and a plurality of components built in the casing, which are used to implement an air purifying function.
  • the components may be a fan, a strainer, a water tank, a negative ion generator, etc., and an exhaust vent is opened on the outer casing, the air is circulated by a fan, and the negative ion generator releases negative ions to make PM2.5 particles in the air and Bacteria, viruses, etc. are adsorbed and oxidized to achieve the effect of purifying the air.
  • the number of air monitoring devices 10 is two or more, and more than two air monitoring devices 10 are distributed in the environment.
  • the position of the air monitoring device 10 is fixed at a predetermined position. Therefore, for the positioning of the air cleaner 30, the fixed position of the air monitoring device 10 is the positioning of the air purifier 30. Important data needed. Based on this, in order to ensure the accuracy of positioning, more than two air monitoring devices 10 will be installed in the environment, and as the environment expands, the number thereof may also increase.
  • the air monitoring device 10 has a built-in WiFi module (not shown) for wirelessly connecting with the air cleaner 30.
  • the walking portion 330 includes a control circuit board (not shown), and the signal strength monitoring component is disposed on the control circuit board.
  • the signal strength monitoring component is configured to obtain a WiFi signal strength corresponding to each air monitoring device in the wireless connection.
  • the air monitoring device 10 acts as a base station and wirelessly connects with the air purifier 30, and the wireless signal connection corresponding to the WiFi signal strength corresponding to the WiFi signal transmitted by each air monitoring device 10 is known.
  • control circuit board is further provided with a microprocessor electrically connected to the signal strength monitoring component, and the microprocessor is configured to perform positioning according to the strength of the WiFi signal output by the signal strength monitoring component and the fixed position of the air monitoring device, and according to Positioning the resulting position and air quality parameters generates a moving route.
  • the distance between the air purifier 30 and each air monitoring device 10 is calculated according to the WiFi signal strength, and the distance between each two air monitoring devices 10 is obtained according to the fixed position corresponding to each air monitoring device 10. Further by the distance between each two air monitoring devices 10 The position of the air cleaner 30 is positioned.
  • the target position related to the air quality parameter is determined, and the position obtained by the positioning and the target position related to the air quality parameter are generated corresponding to the moving route, for example, the positioned position and the target position are built in.
  • the movement route can be obtained by comparison in the electronic map to drive the air purifier 30 to accurately move to the area where air purification is currently required, thereby improving the efficiency and accuracy of air purification.
  • two or more air monitoring devices 10 divide the environment into two or more regions, and the air monitoring device 10 is provided with an infrared sensor (not shown) for detecting corresponding Whether the area is a human area and transmits the detection result to the microprocessor via a wireless connection.
  • the detection result output by the infrared sensor includes a detection result determined to be a human area and a detection result determined to be an unmanned area.
  • the microprocessor will receive the detection result output by the air monitoring device 10, which generates a movement route based on the positioned device, the air quality parameter, and the detection result.
  • the target position for moving is determined by the air quality parameter and the detection result.
  • An area where the air quality parameter is below the limit and is a human area is used as the area for preferential air purification; in the case where the detection result is the same as the human area, the lower the air quality parameter, the higher the preferred level of air purification.
  • the priority determination of the unmanned area is performed after the purification of the human area is completed, so that the area in which the air purification is sequentially performed is selected according to the priority.
  • the position in the area selected for air purification is the target position for moving.
  • the running portion 330 includes a wheel mounted at the bottom of the air purifying portion 310, a servo motor that drives the wheel, and a sensor that is mounted according to the outer casing of the air purifying portion 310.
  • the senor is used to detect an obstacle during the movement to obtain an echo interval.
  • the microprocessor obtains the echo interval by connecting with the electrical signal of the sensor, calculates the distance of the relative obstacle according to the echo interval and the predicted wave velocity, and adjusts the moving route accordingly.
  • the predicted wave speed corresponds to the type of the sensor.
  • the air purifying unit 310 is provided with a self-avoidance function by the cooperation of the sensor and the microprocessor, so that if there is an obstacle in the moving direction during the movement, the corresponding movement route is adjusted, thereby ensuring smooth movement of the air purifying unit 310. Sex.
  • the servo motor and the microprocessor electrical signals Connected to output the frequency of rotation in the servo motor to the microprocessor.
  • the microprocessor calculates the moving speed of the air purifier according to the frequency and the gear information of the servo motor.
  • the gear information includes a radius of the gear and a radius of the servo motor driving the wheel.
  • the servo motor is coupled to a pinion and drives the wheel by a large gear on the shaft that drives the wheels of the air cleaner 30.
  • the rotational speed of the servo motor is obtained by the obtained frequency of rotation, whereby the rotational speed w1 of the pinion gear connected to the servo motor is obtained.
  • the microprocessor obtains the motion state of the obstacle according to the distance of the relative obstacle and the moving speed of the air purifier, and adjusts the movement route according to the distance and the motion state.
  • the state of motion includes the speed and direction corresponding to the movement of the obstacle.
  • the factors of the motion state should also be considered to ensure the accurate avoidance of the obstacle.
  • the distance of the relative obstacle obtained by the two adjacent detections and the moving speed of the air purifier in the air are used to know whether the obstacle moves and the obstacle moves. Corresponding speed and direction.
  • the sensor provided in the air cleaner 30 includes two types of ultrasonic sensors and infrared sensors, each of which is provided in plurality, and is disposed on the front side and the side of the air purifying portion 330, respectively.
  • the sensor is used to detect an obstacle in front of the moving air purifier 30. Therefore, it is necessarily placed on the front side and the side of the air purifying portion 330, and the number of ultrasonic sensors is plural, and the number of infrared sensors is also plural. Ensure the accuracy of obstacle detection.
  • a plurality of ultrasonic sensors and a plurality of infrared sensors are spaced apart from each other in a front surface and a side surface of the air purifying portion 330 which are connected to the front surface, as shown in FIG.
  • the front and side corners of the air purifying portion 330 are provided with ultrasonic sensors that detect more accurately to accurately detect the distance between the corner and the obstacle when in close contact with the obstacle. Then avoid it accurately and avoid collision between the corner and the obstacle.
  • the microprocessor operates on multiple distances, respectively, with ultrasonic sensing.
  • the device corresponds to the infrared sensor.
  • the microprocessor performs data fusion according to the distance corresponding to the ultrasonic sensor and the infrared sensor respectively to obtain a distance from the obstacle.
  • the microprocessor obtains data of any ultrasonic sensor or any of the infrared sensors, that is, Echo interval and wave speed, and data fusion is required for this.
  • the data outputted by the sensor is divided into multiple groups to perform data fusion in each group, that is, the distance corresponding to the ultrasonic sensor to detect obstacles and the infrared sensor detection are respectively obtained from the data of the group.
  • the distance corresponding to the obstacle can be used to know the orientation of the obstacle relative to the air cleaner.
  • a corresponding set of data is selected according to the orientation of the obstacle relative to the air purifier, and the fusion is performed according to the error of the ultrasonic sensor and the infrared sensor.
  • the detailed process of the fusion is: detecting the distance x corresponding to the obstacle by the ultrasonic sensor corresponding to the data of the group and the distance y corresponding to the obstacle detected by the infrared sensor, and performing x and y calculation according to the range of the distance to obtain The final distance L.
  • x is in the range of 0.6 m to 0.8 m
  • the value of a is 0.5 to 1.
  • a is proportional to x; when y is in the range of 0.4 m to 0.6 m, the value of b varies from 0.5 to 1, and y is negatively proportional to b; when x>0.6
  • y ⁇ 0.6 the values of a and b are both 0.5.
  • the detection effect of the ultrasonic sensor is less than 0.8 m, that is, the error decreases with the increase of the distance within the range, and the linear sensor has a linear relationship; while the infrared sensor has an attenuation when the detection range is greater than 0.4 m.
  • the value of the error increases with the increase of the distance, and also has a linear relationship.
  • the data fusion process can effectively reduce the attenuation to compensate for the inaccurate detection of the ultrasonic sensor at close range and the infrared sensor at a long distance. The problem of detecting an inaccurate one.

Abstract

一种移动式空气净化系统,包括:空气监测装置(10),监测所在环境以输出空气质量参数,并探测所在环境中对应区域是否有人,以得到相应探测结果;空气净化器(30),包括空气净化部(310)和设置在空气净化部(310)底部的行走部(330);其中行走部(330)通过与空气监测装置(10)的无线连接得到空气质量参数并进行定位,根据定位得到的位置和空气质量参数、探测结果驱使空气净化部(310)移动,并在移动停止时于所在的区域执行空气净化。

Description

移动式空气净化系统 技术领域
本发明涉及物联网应用技术领域,特别涉及一种移动式空气净化系统。
背景技术
随着人们对自身所在环境品质的要求愈加提高,常常在自身所在的工作环境和家庭环境中设置各种设备,以提高环境中空气质量等各种方面的品质。
空气质量作为保障环境品质的一个重要方面,加之环境中空气的污染日趋严重,空气净化器已经变成了工作环境和家庭环境中不可或缺的设备。现有的空气净化器随着使用的增多,其智能化程度也在不断提高,但智能化的改进方向仅限于操控方式的改变,例如,由手动操作面板的方式变化为通过智能便携终端的应用界面进行无线操控。
然而,对于置于任一环境的空气净化器而言,仅能够在对其搬动时进行环境中所在位置的变换,以随之变换进行空气净化的区域,通过人工手动的方式进行环境中空气净化器的配置,而并无法随着环境中的空气质量变化而智能进行净化资源的配置。
发明内容
基于此,有必要提供一种移动式空气净化系统,该移动式空气净化系统能够随着环境中的空气质量变化而智能进行净化资源的配置。
为解决上述技术问题,将采用如下技术方案:
一种移动式空气净化系统,包括:
空气监测装置,其监测所在环境以输出空气质量参数,并探测所在环境中对应区域是否有人,以得到相应探测结果;
空气净化器,其包括空气净化部和设置在所述空气净化部底部的行走部;
其中,所述行走部通过与所述空气监测装置的无线连接得到空气质量参数并进行定位,根据定位得到的位置和空气质量、探测结果参数驱使所述空气净化部移动,并在移动停止时于所在的区域执行空气净化。
在其中一个实施例中,所述空气监测装置的数量为两个以上,两个以上的所述空气监测装置分布于所述环境中。
在其中一个实施例中,所述空气监测装置内置WiFi模块,所述WiFi模块用于与所述空气净化器无线连接。
在其中一个实施例中,所述行走部包括控制电路板,所述控制电路板上设置有信号强度监测组件;
所述信号强度监测组件用于获取无线连接中每一空气监测装置对应的WiFi信号强度。
在其中一个实施例中,所述控制电路板还设置有与所述信号强度监测组件电信号连接的微处理器;
所述微处理器用于根据所述信号强度监测组件输出的WiFi信号强度和所述空气监测装置的固定位置进行定位,并根据定位得到的位置和空气质量参数生成移动路线。
在其中一个实施例中,所述两个以上的空气监测装置将所述环境划分为两个以上的区域,所述空气监测装置中设置有红外传感器,所述红外传感器用于探测对应的区域中是否为有人区域,并将探测结果通过无线连接传输至所述微处理器;
所述微处理器根据定位的位置、空气质量参数和所述探测结果生成移动路线。
在其中一个实施例中,所述行走部还包括装设在所述空气净化部底部的轮子、驱动所述轮子的伺服电机和根据所述空气净化部外壳装设的传感器;
所述传感器用于在移动中进行障碍物的探测,以得到回波间隔;
所述微处理器通过与所述传感器的电信号连接得到回波间隔,根据所述回波间隔和预知的波速运算得到相对所述障碍物的距离,并相应调整所述移 动路线。
在其中一个实施例中,所述伺服电机与所述微处理器电信号连接,以向所述微处理器输出所述伺服电机中转动的频率;
所述微处理器根据所述频率和所述伺服电机的齿轮信息运算得到所在空气净化器的移动速度。
在其中一个实施例中,所述微处理器根据相对所述障碍物的距离和移动速度得到障碍物的运动状态,根据所述距离和运动状态调整所述移动路线。
在其中一个实施例中,所述传感器包括超声波传感器和红外传感器,其数量均为多个,并分别布设在所述空气净化部的正面和侧面。
在其中一个实施例中,多个所述超声波传感器和多个红外传感器间隔装设在所述空气净化部的正面和侧面中与所述正面连接的部分。
在其中一个实施例中,所述微处理器运算得到的距离为多个,分别与所述超声波传感器和红外传感器相对应;
所述微处理器根据所述超声波传感器和红外传感器分别对应的距离进行数据融合,以得到相对所述障碍物的距离。
由上述技术方案可知,移动式空气净化系统包括空气监测装置和空气净化器,空气监测装置监测所在环境以向空气净化器输出空气质量参数,空气净化器包括了空气净化部和设置在空气净化部底部的行走部,行走部得到空气监测装置所输出的空气质量参数并依据该空气质量参数进行定位,由定位得到的位置和空气质量参数驱使空气净化部移动直至停止,从而在移动停止时所在的区域执行空气净化,使得环境中净化资源的配置是随着空气质量的变化实现的,实现了净化资源的智能配置,进而也避免了环境中净化资源的浪费。
附图说明
图1是一个实施例中移动式空气净化系统的拓扑图;
图2是一个实施例中空气净化器的结构示意简图;
图3是一个实施例中空气净化器的传感器布设简图。
具体实施方式
体现本发明特征与优点的典型实施方式将在以下的说明中详细叙述。应理解的是本发明能够在不同的实施方式上具有各种的变化,其皆不脱离本发明的范围,且其中的说明及图示在本质上是当作说明之用,而非用以限制本发明。
图1示出了一个实施例中移动式空气净化系统的示意图。该移动式空气净化系统包括空气监测装置10和空气净化器30。
该移动式空气净化系统置于需进行空气净化的任一环境中,例如,人们所在的办公室、房间等。其中,空气监测装置10将固定于该环境中的某一位置,以在固定的位置监测所在环境,输出空气质量参数,并探测所在环境中对应区域是否有人,以得到相应探测结果。
空气净化器30除了用以净化环境中空气的功能之外,还具备了与空气监测装置10进行无线接连的功能,以实现其与空气监测装置10之间的交互。
具体的,如图2所示,空气净化器30包括空气净化部310和行走部330。空气净化部310用于执行与空气净化相关的功能;行走部330设置在空气净化部310底部,该行走部330用于通过与空气监测装置10的无线连接得到空气质量参数和探测结果,并根据空气质量参数和探测结果执行控制移动过程的具体实现。
进一步的,移动的实现将首先需要确定空气净化器30当前所在的位置以及移动的目标位置,因此,需进行定位以及确定目标位置,由此方可执行具体的移动过程。
空气净化器30当前所在的位置将通过定位得到,而移动的目标位置与空气质量参数相关,即空气质量参数指示了环境中需要执行空气净化的区域。
行走部330除了通过与空气监测装置10的无线连接来得到空气质量参数之外,还将基于其与空气监测装置10的无线连接进行定位,根据定位得到的位置和空气质量参数、探测结果驱使空气净化部310移动,并在移动停止时于所在的区域执行空气净化。
通过行走部330所实现的空气净化器30移动,将使得环境中进行的空气净化是与其空气质量参数、探测结果相适应的,实现了净化资源的优化配置, 避免净化资源的浪费,特别是对于较大面积的环境而言,不再需要设置多个空气净化器,而只需要自适应地移动至一定区域执行空气净化即可,自适应适度非常高。
需要说明的是,空气净化部310包括了外壳以及内置于外壳中的多个部件,这些部件将用于实现空气净化功能。例如,这些部件可分别是风机、滤网、水箱、负离子发生器等,并且外壳上开设有排风口,通过风机使空气循环起来,负离子发生器释放负离子,使空气中的PM2.5颗粒和细菌、病毒等被吸附和氧化,从而达到净化空气的效果。
在一个实施例中,空气监测装置10的数量为两个以上,两个以上的空气监测装置10分布于环境中。
该环境中,空气监测装置10的位置是装设在一预定位置固定不动的,因此,对于空气净化器30的定位而言,空气监测装置10的固定位置即为空气净化器30进行定位所需要的重要数据。基于此,为保证定位的准确性,将在环境中装设了两个以上的空气监测装置10,并且随着环境的扩大,其数量也可随之不断增加。
进一步的,在本实施例中,空气监测装置10内置WiFi模块(图未示),该WiFi模块用于与空气净化器30无线连接。
与之相对应的,行走部330包括控制电路板(图未示),控制电路板上设置有信号强度监测组件。该信号强度监测组件用于获取无线连接中每一空气监测装置对应的WiFi信号强度。
也就是说,空气监测装置10作为基站,与空气净化器30进行无线连接,通过此无线连接获知每一空气监测装置10发射WiFi信号所对应的WiFi信号强度。
进一步的,控制电路板中还设置有与信号强度监测组件电信号连接的微处理器,该微处理器用于根据信号强度监测组件输出的WiFi信号强度和空气监测装置的固定位置进行定位,并根据定位得到的位置和空气质量参数生成移动路线。
具体的,将根据WiFi信号强度来运算空气净化器30相对各空气监测装置10之间的距离,并根据各空气监测装置10所对应的固定位置得到每两个空气监测装置10之间的距离,进而由每两个空气监测装置10之间的距离对 空气净化器30的位置进行定位。
在得到定位的位置之后,将确定与空气质量参数相关的目标位置,由定位得到的位置和与空气质量参数相关的目标位置生成相应的移动路线,例如,将定位的位置和目标位置在内置的电子地图中进行对比即可得到该移动路线,以将于驱使空气净化器30准确移动至当前需要进行空气净化的区域,提高空气净化的效率和精准性。
进一步的,在本实施例中,两个以上的空气监测装置10将环境划分为两个以上的区域,空气监测装置10中设置有红外传感器(图未示),该红外传感器用于探测对应的区域中是否为有人区域,并将探测结果通过无线连接传输至微处理器。
红外传感器所输出的探测结果包括判定为有人区域的探测结果和判定为无人区域的探测结果。
空气净化器30中,微处理器将接收到空气监测装置10输出的探测结果,其根据定位的装置、空气质量参数和探测结果生成移动路线。
在此过程中,由空气质量参数和探测结果确定进行移动的目标位置。将空气质量参数低于限值且为有人区域的区域作为优先进行空气净化的区域;在探测结果同为有人区域的情况下,则空气质量参数越低,进行空气净化的优选级越高。在完成有人区域的净化之后才对无人区域进行优先级判断,以按照优先级选定依次进行空气净化的区域。
而选定进行空气净化的区域中的位置即为进行移动的目标位置。
在一个实施例中,行走部330包括装设在空气净化部310底部的轮子、驱动轮子的伺服电机和根据空气净化部310外壳装设的传感器。
其中,传感器用于在移动中进行障碍物的探测,以得到回波间隔。
微处理器通过与传感器的电信号连接得到回波间隔,根据回波间隔和预知的波速运算得到相对障碍物的距离,并相应调整移动路线。其中,所述预知的波速与所属传感器类型对应。
通过传感器和微处理器的配合,使得空气净化部310具备自行避让功能,以在移动过程中如若在移动方向上存在障碍物,则进行相应的移动路线调整,进而保证空气净化部310移动的顺畅性。
进一步的,空气净化器30的行走部330中,伺服电机与微处理器电信号 连接,以向微处理器输出伺服电机中转动的频率。而微处理器则根据频率和伺服电机的齿轮信息运算得到所在空气净化器的移动速度。
其中,齿轮信息包括齿轮的半径以及该伺服电机驱动轮子的半径。
例如,伺服电机连接一小齿轮,并通过驱动空气净化器30的轮子相连的轴上的大齿轮来驱动轮子。通过得到的转动的频率得到该伺服电机的转速,由此将得到与该伺服电机相连的小齿轮的转速w1。根据齿轮信息得到小齿轮的半径为r1,大齿轮的半径为r2,则运算得出大齿轮的转速w2=w1*r1/r2,并相应得到大齿轮的频率为f=1/w2,设驱动轮子的半径为R,则空气净化器30的移动速度为v=2πR*f。
进一步的,在本实施例中,微处理器根据相对障碍物的距离和所在空气净化器的移动速度得到障碍物的运动状态,根据该距离和运动状态调整移动路线。
运动状态包括障碍物移动所对应的速度和方向。对于移动线路的调整,除了考虑空气净化器30相对障碍物的距离之外,还应当考虑运动状态的因素,以保证障碍物的准确避让。
具体的,对于微处理器中运动状态的运算,具体为:通过相邻的两次探测得到的相对障碍物的距离以及所在空气净化器的移动速度获知该障碍物是否移动以及该障碍物移动所对应的速度和方向。
在一个实施例中,空气净化器30中设置的传感器包括超声波传感器和红外传感器两种,其数量均为多个,并分别布设在空气净化部330的正面和侧面。
该传感器用于为移动的空气净化器30探测前方障碍物,因此,其必然置于空气净化部330的正面和侧面,并且超声波传感器的数量为多个,红外传感器的数量也为多个,以保证障碍物探测的准确性。
具体的,多个超声波传感器和多个红外传感器间隔装设在空气净化部330的正面和侧面中与正面连接的部分,如图3所示。
在优选的实施例中,空气净化部330中正面和侧面相接的转角装设有探测较准确的超声波传感器,以在与障碍物近距离接触时准确探测到转角与障碍物之间的距离,进而准确避让,避免转角与障碍物发生碰撞。
在一个实施例中,微处理器运算得到的距离为多个,分别与超声波传感 器和红外传感器相对应。微处理器根据超声波传感器和红外传感器分别对应的距离进行数据融合,以得到相对障碍物的距离。
如前所述的,由于设置了多个超声波传感器和多个红外传感器,并且均分别进行了障碍物的探测,因此,微处理器分别得到任一超声波传感器或任一红外传感器输出的数据,即回波间隔和波速,并需要对此进行数据融合。
具体的,根据装设的传感器数目,将对传感器输出的数据分成多组,以在每一组中进行数据融合,即分别由该组数据得到超声波传感器探测障碍物所对应的距离和红外传感器探测障碍物所对应的距离,进而即可获知该障碍物相对空气净化器的方位。
根据障碍物相对空气净化器的方位选定相应的一组数据,并根据超声波传感器和红外传感器的误差进行融合。
融合的详细过程为:由该组数据所对应的超声波传感器探测障碍物所对应的距离x和红外传感器探测障碍物所对应的距离y,根据该距离所处的范围进行x和y的运算以得到最终的距离L。
若处于0.8米~7米的范围内,则L=x;若处于0.4米~0.8米的范围内,则L=a*x+b*y。
其中,a≥0,b≥0,a+b=1,a和b的取值由x和y的值决定,当x在0.6米~0.8米的范围时,a的取值在0.5~1的范围内变化,a与x成正比关系;当y在0.4米~0.6米的范围时,b的值在0.5~1的范围内变化,y与b成负比例关系;当出现x>0.6而y<0.6时,a和b的值均取0.5。
基于超声波传感器在0.8米以内的探测效果误差较大,即在此范围内误差随着距离的增大而减小,并成线性关系;而红外传感器在探测范围大于0.4米以上时会出现衰减,该误差的值会随着距离的增大而增大,并也成线性关系,通过数据融合过程能够有效地减小衰减,以弥补超声波传感器在近距离上探测不够准确和红外传感器在远距离上探测不够准确的问题。
虽然已参照几个典型实施方式描述了本发明,但应当理解,所用的术语是说明和示例性、而非限制性的术语。由于本发明能够以多种形式具体实施而不脱离发明的精神或实质,所以应当理解,上述实施方式不限于任何前述的细节,而应在随附权利要求所限定的精神和范围内广泛地解释,因此落入 权利要求或其等效范围内的全部变化和改型都应为随附权利要求所涵盖。

Claims (12)

  1. 一种移动式空气净化系统,其特征在于,包括:
    空气监测装置,其监测所在环境以输出空气质量参数,并探测所在环境中对应区域是否有人,以得到相应探测结果;
    空气净化器,其包括空气净化部和设置在所述空气净化部底部的行走部;
    其中,所述行走部通过与所述空气监测装置的无线连接得到空气质量参数并进行定位,根据定位得到的位置和空气质量参数、探测结果驱使所述空气净化部移动,并在移动停止时于所在的区域执行空气净化。
  2. 根据权利要求1所述的系统,其特征在于,所述空气监测装置的数量为两个以上,两个以上的所述空气监测装置分布于所述环境中。
  3. 根据权利要求2所述的系统,其特征在于,所述空气监测装置内置WiFi模块,所述WiFi模块用于与所述空气净化器无线连接。
  4. 根据权利要求3所述的系统,其特征在于,所述行走部包括控制电路板,所述控制电路板上设置有信号强度监测组件;
    所述信号强度监测组件用于获取无线连接中每一空气监测装置对应的WiFi信号强度。
  5. 根据权利要求4所述的系统,其特征在于,所述控制电路板还设置有与所述信号强度监测组件电信号连接的微处理器;
    所述微处理器用于根据所述信号强度监测组件输出的WiFi信号强度和所述空气监测装置的固定位置进行定位,并根据定位得到的位置和空气质量参数生成移动路线。
  6. 根据权利要求5所述的系统,其特征在于,所述两个以上的空气监测装置将所述环境划分为两个以上的区域,所述空气监测装置中设置有红外传感器,所述红外传感器用于探测对应的区域中是否为有人区域,并将探测结果通过无线连接传输至所述微处理器;
    所述微处理器根据定位的位置、空气质量参数和所述探测结果生成移动路线。
  7. 根据权利要求5所述的系统,其特征在于,所述行走部还包括装设在所述空气净化部底部的轮子、驱动所述轮子的伺服电机和根据所述空气净化部外壳装设的传感器;
    所述传感器用于在移动中进行障碍物的探测,以得到回波间隔和波速;
    所述微处理器通过与所述传感器的电信号连接得到回波间隔,根据所述回波间隔和预知的波速运算得到相对所述障碍物的距离,并相应调整所述移动路线。
  8. 根据权利要求7所述的系统,其特征在于,所述伺服电机与所述微处理器电信号连接,以向所述微处理器输出所述伺服电机中转动的频率;
    所述微处理器根据所述频率和所述伺服电机的齿轮信息运算得到所述空气净化器的移动速度。
  9. 根据权利要求8所述的系统,其特征在于,所述微处理器根据相对所述障碍物的距离和移动速度得到障碍物的运动状态,根据所述距离和运动状态调整所述移动路线。
  10. 根据权利要求7所述的系统,其特征在于,所述传感器包括超声波传感器和红外传感器,其数量均为多个,并分别布设在所述空气净化部的正面和侧面。
  11. 根据权利要求10所述的系统,其特征在于,多个所述超声波传感器和多个红外传感器间隔装设在所述空气净化部的正面和侧面中与所述正面连接的部分。
  12. 根据权利要求11所述的系统,其特征在于,所述微处理器运算得到的距离为多个,分别与所述超声波传感器和红外传感器相对应;
    所述微处理器根据所述超声波传感器和红外传感器分别对应的距离进行数据融合,以得到相对所述障碍物的距离。
PCT/CN2015/090483 2015-09-24 2015-09-24 移动式空气净化系统 WO2017049514A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580014658.0A CN107003015B (zh) 2015-09-24 2015-09-24 移动式空气净化系统
PCT/CN2015/090483 WO2017049514A1 (zh) 2015-09-24 2015-09-24 移动式空气净化系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/090483 WO2017049514A1 (zh) 2015-09-24 2015-09-24 移动式空气净化系统

Publications (1)

Publication Number Publication Date
WO2017049514A1 true WO2017049514A1 (zh) 2017-03-30

Family

ID=58385576

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/090483 WO2017049514A1 (zh) 2015-09-24 2015-09-24 移动式空气净化系统

Country Status (2)

Country Link
CN (1) CN107003015B (zh)
WO (1) WO2017049514A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109469952A (zh) * 2018-10-22 2019-03-15 刘慧旋 一种基于扫地机器人的空气净化器智能家居系统
CN113552817A (zh) * 2021-07-27 2021-10-26 珠海格力电器股份有限公司 一种可移动的空气检测装置、检测方法及空气检测仪
CN115200144A (zh) * 2022-07-20 2022-10-18 珠海格力电器股份有限公司 用于异物清理的空气净化器及方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108548241B (zh) * 2018-07-20 2024-01-16 江南大学 一种可移动的室内空气净化仪
CN109200700A (zh) * 2018-09-04 2019-01-15 天津大学 一种具有区域型调整的空气净化器
CN109114779A (zh) * 2018-09-04 2019-01-01 天津大学 一种空气净化器区域调整方法
CN111174383B (zh) * 2018-10-24 2022-04-19 青岛海尔空调器有限总公司 空调集群的控制方法、装置、空调集群及智能家居系统
CN109469970A (zh) * 2018-10-29 2019-03-15 珠海格力电器股份有限公司 一种控制空调的方法、装置、空调及存储介质
TWI722793B (zh) * 2020-02-07 2021-03-21 研能科技股份有限公司 移動式氣體偵測清淨裝置
CN113252517A (zh) * 2020-02-07 2021-08-13 研能科技股份有限公司 移动式气体检测清净装置
CN111678244A (zh) * 2020-06-15 2020-09-18 珠海格力电器股份有限公司 一种空气净化方法、装置、设备、系统及可读存储介质
CN113834182B (zh) * 2021-11-26 2022-02-08 深圳市嘉达美智能家居有限公司 一种智能家居设备控制方法
TWI823358B (zh) * 2022-04-24 2023-11-21 群邁通訊股份有限公司 空氣淨化系統

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102423496A (zh) * 2011-11-28 2012-04-25 中国人民解放军防化学院 一种移动式室内消毒剂蒸气消毒系统
CN104633877A (zh) * 2015-01-29 2015-05-20 福建省华企科技有限公司 智能空气净化器及其空气净化方法
KR20150097052A (ko) * 2014-02-17 2015-08-26 박기원 무선 습도 조절 가습기 로봇 시스템

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201004086Y (zh) * 2006-09-14 2008-01-09 喻礼琼 一种全自动吸尘器的多传感器障碍物检测装置
CN101628414A (zh) * 2009-08-17 2010-01-20 塔米智能科技(北京)有限公司 一种机器人运动的方法
CN103322651B (zh) * 2013-05-23 2015-08-26 宁波欧莱科机电制造有限公司 组合式空气净化器
CN104676767A (zh) * 2015-01-09 2015-06-03 青岛中家院工业设计有限公司 可自动净化空气的移动净化系统及其净化方法
CN204574285U (zh) * 2015-03-02 2015-08-19 深圳市康弘环保技术有限公司 一种智能传呼空气净化器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102423496A (zh) * 2011-11-28 2012-04-25 中国人民解放军防化学院 一种移动式室内消毒剂蒸气消毒系统
KR20150097052A (ko) * 2014-02-17 2015-08-26 박기원 무선 습도 조절 가습기 로봇 시스템
CN104633877A (zh) * 2015-01-29 2015-05-20 福建省华企科技有限公司 智能空气净化器及其空气净化方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109469952A (zh) * 2018-10-22 2019-03-15 刘慧旋 一种基于扫地机器人的空气净化器智能家居系统
CN113552817A (zh) * 2021-07-27 2021-10-26 珠海格力电器股份有限公司 一种可移动的空气检测装置、检测方法及空气检测仪
CN113552817B (zh) * 2021-07-27 2022-12-09 珠海格力电器股份有限公司 一种可移动的空气检测装置、检测方法及空气检测仪
CN115200144A (zh) * 2022-07-20 2022-10-18 珠海格力电器股份有限公司 用于异物清理的空气净化器及方法
CN115200144B (zh) * 2022-07-20 2023-10-27 珠海格力电器股份有限公司 用于异物清理的空气净化器及方法

Also Published As

Publication number Publication date
CN107003015A (zh) 2017-08-01
CN107003015B (zh) 2019-10-11

Similar Documents

Publication Publication Date Title
WO2017049514A1 (zh) 移动式空气净化系统
KR101659037B1 (ko) 로봇 청소기, 이를 포함하는 원격 제어 시스템 및 이의 제어 방법
EP3087894B2 (en) Moving robot and controlling method thereof
KR100420171B1 (ko) 로봇 청소기와 그 시스템 및 제어방법
KR102404258B1 (ko) 로봇충전복귀장치 및 그 복귀방법
KR100486737B1 (ko) 청소로봇의 청소궤적 생성·추종방법 및 장치
EP1640670A2 (en) Air conditioning system with a mobile device and control method therefor
EP3133459A1 (en) Local obstacle avoidance walking method of self-moving robot
SE523915C2 (sv) Rengöringsrobotsystem med extern laddningsanordning och metod för dockning av laddningsanordning.
CN105388896A (zh) 基于can总线的分布式清洁机器人控制系统及控制方法
JP2006247368A (ja) ロボット掃除機
JP2006110322A (ja) ロボット掃除機の座標補正方法及びこれを用いたロボット掃除機システム
CN204009577U (zh) 智能小车复合式避障系统
JP3206660U (ja) 充電ステーション及び充電システム
KR20080001001A (ko) 로봇 청소기 시스템 및 그 제어 방법
KR102168445B1 (ko) 이동 로봇 및 그 제어방법
CN203823927U (zh) 智能空气净化器
KR20160089835A (ko) 로봇 청소기 및 로봇 청소기의 제어 방법
JP4655912B2 (ja) 自律走行ロボットシステム
CN105182978A (zh) 清扫装置、清扫系统和清扫方法
KR102366328B1 (ko) 충전 스테이션과의 통신으로 충전 안전성을 구현한 이동 로봇, 이동 로봇의 자동 충전 시스템 및 이동 로봇의 제어 방법
CN210061107U (zh) 一种机器人移动底盘
KR102366329B1 (ko) IoT 기반 공간 지능 기능이 구현되는 이동 로봇 및 이동 로봇의 제어 방법
KR20170077647A (ko) 공기 정화 로봇 및 이의 구동 방법
KR20150068824A (ko) 로봇 청소기 및 이의 제어 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15904401

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15904401

Country of ref document: EP

Kind code of ref document: A1