WO2017047894A1 - 좌굴 유도형 차량용 크래쉬 박스 및 이를 갖는 차량용 백빔 - Google Patents

좌굴 유도형 차량용 크래쉬 박스 및 이를 갖는 차량용 백빔 Download PDF

Info

Publication number
WO2017047894A1
WO2017047894A1 PCT/KR2016/003585 KR2016003585W WO2017047894A1 WO 2017047894 A1 WO2017047894 A1 WO 2017047894A1 KR 2016003585 W KR2016003585 W KR 2016003585W WO 2017047894 A1 WO2017047894 A1 WO 2017047894A1
Authority
WO
WIPO (PCT)
Prior art keywords
buckling
box body
back beam
vehicle
body portion
Prior art date
Application number
PCT/KR2016/003585
Other languages
English (en)
French (fr)
Inventor
김동원
최현진
강용한
김희준
송강현
조상규
변계웅
Original Assignee
(주)엘지하우시스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)엘지하우시스 filed Critical (주)엘지하우시스
Priority to US15/760,059 priority Critical patent/US10625695B2/en
Priority to EP16846716.5A priority patent/EP3351433B1/en
Publication of WO2017047894A1 publication Critical patent/WO2017047894A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R19/00Wheel guards; Radiator guards, e.g. grilles; Obstruction removers; Fittings damping bouncing force in collisions
    • B60R19/02Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects
    • B60R19/24Arrangements for mounting bumpers on vehicles
    • B60R19/26Arrangements for mounting bumpers on vehicles comprising yieldable mounting means
    • B60R19/34Arrangements for mounting bumpers on vehicles comprising yieldable mounting means destroyed upon impact, e.g. one-shot type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R19/00Wheel guards; Radiator guards, e.g. grilles; Obstruction removers; Fittings damping bouncing force in collisions
    • B60R19/02Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects
    • B60R19/18Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects characterised by the cross-section; Means within the bumper to absorb impact
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • F16F7/003One-shot shock absorbers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • F16F7/12Vibration-dampers; Shock-absorbers using plastic deformation of members
    • F16F7/128Vibration-dampers; Shock-absorbers using plastic deformation of members characterised by the members, e.g. a flat strap, yielding through stretching, pulling apart

Definitions

  • the present invention relates to a buckling induction vehicle crash box, and more particularly, to induce a buckling during external impact to increase the rate of absorption of impact energy in the crash box itself, and to reduce the impact energy transmitted to the vehicle body to safely protect the vehicle body.
  • Buckling-induced vehicle crash box capable of and a vehicle back beam having the same.
  • bumpers are installed at the front and rear of the vehicle to absorb the impact energy applied to the vehicle in the event of a collision or collision to promote the safety of the occupants.
  • the conventional bumper consists of a bumper beam, an absorber, and a bumper cover.
  • the bumper beam is welded to the end of the bumper stay coupled to the vehicle body.
  • the absorber is attached to the outer surface of the bumper beam to absorb the impact energy applied to the vehicle body.
  • the bumper cover is installed on the vehicle body to surround the absorber and is exposed to the outside of the vehicle.
  • a crash box is fixed to the front of the side member coupled to the body frame so as to minimize the damage of the vehicle by absorbing the impact during low-speed collision.
  • the wall itself has a thickness of 6 mm to 10 mm, and a linear reinforcement is formed on the outer surface of the box.
  • the impact energy absorption rate is low on the crash box side, the impact energy remaining after the impact is absorbed into the body member, thereby damaging the vehicle body.
  • An object of the present invention is to provide a buckling induction-type vehicle crash box that can improve the impact energy absorption rate in the box body itself, so that buckling is sequentially made in the longitudinal direction when an external impact occurs.
  • Another object of the present invention is to form a serrated main reinforcing members along the longitudinal direction and the auxiliary reinforcing members along the width direction to form a grid on the wall surface of the box body portion, when the buckling is generated sequentially, the external force
  • the present invention provides a buckling-induced vehicle crash box capable of gradually increasing a resistive load against the main body, and preventing the main reinforcement members and the sub reinforcement members from being entangled with each other to efficiently absorb impact energy and prevent them from being transferred to the vehicle body. .
  • the present invention provides a buckling inductive vehicle crash box.
  • the buckling inductive vehicle crash box is disposed at both ends of the back beam, the box body portion; And a reinforcing part protruding integrally with an outer surface of the box body part and inducing a buckling along the longitudinal direction of the box body part by an external impact and forming a lattice shape to absorb energy due to the impact.
  • the box body portion is preferably formed of a rectangular wall to form a rectangular hollow.
  • the thickness of the wall along the longitudinal direction of the said back beam forms the same thickness mutually.
  • the thickness of the said wall forms 3 mm-7 mm.
  • the reinforcement portion a plurality of main reinforcement member is formed repeatedly formed in the buckling induction projections for inducing buckling along the longitudinal direction of the box body portion, the interval along the width direction, along the width direction of the box body portion, It is preferable to have a plurality of auxiliary reinforcing members spaced along the longitudinal direction and formed to intersect with the plurality of main reinforcing members.
  • the buckling induction protrusions are preferably formed in a sawtooth or pleat shape.
  • the plurality of auxiliary reinforcing members connect a lower end and an upper end of each of the buckling guide protrusions.
  • each of the buckling guide protrusions is formed in a right-angled triangular cross section and is repeatedly connected to each other.
  • the inclined surface of each of the buckling guide protrusions is preferably formed to be inclined downward along the other end of the box body portion.
  • the reinforcement part is formed on a wall of the box body part perpendicular to the longitudinal direction of the back beam.
  • the present invention provides a vehicle back beam comprising the buckling inductive vehicle crash box.
  • the impact energy absorption rate can be improved in the box body portion itself.
  • the present invention is formed on the wall surface of the box body portion of the main reinforcing members of the sawtooth shape along the longitudinal direction, and the auxiliary reinforcing members to form a lattice shape with each other in the width direction, when buckling is sequentially generated, The resistance load is gradually increased, and the main reinforcement members and the auxiliary reinforcement members are entangled with each other and compressed to efficiently absorb impact energy and prevent the transfer to the vehicle body.
  • FIG. 1 is a perspective view showing a crash box for a buckling induction vehicle of the present invention.
  • FIG. 2 is a cross-sectional view showing a crash box for a buckling induction vehicle of the present invention.
  • FIG. 3 is a view showing a buckling induction projection according to the present invention.
  • 4 to 6 are views showing a comparative example of the crash box.
  • FIGS. 7 to 9 are diagrams showing an embodiment of a crash box.
  • FIG. 10 is a graph for analyzing load results according to a comparative example and an example.
  • 11 is a view showing the actual state after the collision of the comparative example.
  • 13 is a view showing the actual state after the collision of the embodiment.
  • FIG. 1 is a perspective view showing a crash box for a buckling induction vehicle of the present invention
  • Figures 2 and 3 are cross-sectional views showing a crash box for a buckling induction vehicle of the present invention.
  • the vehicle back beam 1 of the present invention is preferably a rear back beam disposed at the rear end of the vehicle body 2.
  • the buckling inductive vehicle crash box 3 of the present invention is constituted by a pair, and is provided at both ends of the back beam 1.
  • the pair of buckling induction type vehicle crash boxes 3 are connected to the vehicle body 2.
  • the pair of buckling inductive vehicle crash boxes 3 have the same configuration.
  • the buckling induction-type vehicle crash box 3 of the present invention installed at both ends of the back beam 1 is largely composed of a box body part 100 and a reinforcement part 200.
  • the box body 100 is formed by connecting four walls 110, 120, 130, and 140 to form a hollow hollow 101.
  • the box body 100 is manufactured by mold molding.
  • the thicknesses of the four walls 110, 120, 130, and 140 of the box body part 100 may be different from each other.
  • the thicknesses of the two walls 130 and 140 facing each other among the four walls 110, 120, 130 and 140 may be the same, and the thicknesses of the remaining two walls 110 and 120 may be different from each other.
  • first and second walls 110 and 120 walls arranged at intervals along the longitudinal direction of the back beam 1 are called first and second walls 110 and 120, and both sides of the first and second walls 110 and 120 are referred to.
  • the connecting walls are called third and fourth walls 130 and 140.
  • the first wall 110 has a thickness of 7 mm
  • the second wall 120 has a thickness of 3 mm
  • the third and fourth walls 130 and 140 may have the same 6 mm.
  • the wall thickness of the box body portion 100 according to the present invention forms a range of 3 mm to 7 mm.
  • the wall thickness of the crash box 3 'of the present invention corresponding to the embodiment has a ratio of 20 to 50 percent compared to the comparative example, while the wall thickness of the crash box 3 corresponding to the comparative example described later is 6 mm to 10 mm. It can be formed thin.
  • the reinforcement part 200 according to the present invention is integrally formed with an outer surface portion of the box body part 100.
  • the reinforcement part 200 includes a plurality of main reinforcement members 210 and a plurality of auxiliary reinforcement members 220.
  • the plurality of main reinforcing members 210 are protruded along the longitudinal direction of the box body portion 100 from the outer surface portion of the box body portion 100, and are spaced along the width direction of the box body portion 100. Is formed to protrude.
  • the plurality of main reinforcing members 210 are formed to be symmetrical with each other on the first and second walls 110 and 120 described above.
  • the plurality of main reinforcing members 210 formed on the first and second walls 110 and 120 have a thickness of 3 mm compared to the main reinforcing members 210 formed on the first wall 110 having a thickness of 7 mm.
  • the main reinforcing members 210 formed on the second wall 120 may be formed thicker.
  • the plurality of main reinforcing members 210 are repeatedly formed buckling induction projections 211 forming a sawtooth or pleats in the longitudinal direction.
  • the buckling induction protrusions 211 have a cross section that has a right triangle shape.
  • each of the buckling guide protrusions 211 is surrounded by the inclined surface 211c connecting the straight surface 211b and the bottom surface 211a, including the bottom surface 211a and the straight surface 211b perpendicular to each other. It can be wrapped and formed.
  • a straight surface 211b of the buckling guide protrusion 211 connected to the back beam 1 is disposed on the rear surface of the back beam 1. It is connected so as to be in close contact.
  • the inclined surfaces 211c of the buckling guide protrusions 211 are arranged to be repeatedly inclined downward from the back beam 1 toward the vehicle body 2 side.
  • auxiliary reinforcing members 220 protrude along the width direction of the box body part 100 on the outer surface of the first and second walls 110 and 120 of the box body part 100, and the box body part ( It is formed at intervals along the length direction of 100).
  • each of the plurality of auxiliary reinforcement members 220 is formed to protrude so as to connect the connection portions between the above-described main reinforcement members 210.
  • the plurality of auxiliary reinforcing members 220 connects the lower end and the upper end of each of the buckling guide protrusions 211.
  • the auxiliary reinforcing members 220 support the main reinforcing members 210 to absorb shock energy due to the impact while the buckling occurs.
  • an inner buckling guide protrusion may be further formed on the inner side surfaces of the first and second walls 110 and 120 of the crash box 3 described above.
  • the inner buckling induction protrusion may be formed in the form of a groove forming the same shape as that of the buckling induction protrusion 211 at the inner side portions of the first and second walls 110 and 120.
  • the cross sections of the first and second walls 110 and 120 may have a sawtooth cross section.
  • the buckling may be induced more easily through the sawtooth-shaped cross section formed between the buckling induction protrusion 211 and the inner buckling induction protrusion.
  • FIGS. 4 to 6 are views showing a comparative example of the crash box
  • Figures 7 to 9 are views showing an embodiment of the crash box.
  • reinforcing members 200 ′ having a lattice shape are protruded from four sides of the box body 100 ′ of the comparative example of the crash box 3 ′.
  • the upper end of the crash box 3 'having such a condition is connected to both ends of the back beam 1, and the lower end of the crash box 3' is connected to the vehicle body.
  • the first wall of the box body 100 'according to the comparative example is 10 mm
  • the second wall is 6 mm
  • the third and fourth walls are 9 mm.
  • 5 and 6 illustrate simulation results when an external shock is applied to one end of the back beam.
  • the crash box 3 ′ on the side of the external impact is pushed out of the back beam 1 along the direction of the arrow, and the deformation occurs.
  • the crash box 3 ′ on the side to which the external impact is not applied does not have compression deformation, but shows a result of being inclined and pushed along the arrow direction toward the outside of the back beam 1.
  • the outer surface portions of the first and second walls 110 and 120 of the box body portion 100 have a lattice shape and a reinforcement portion 200 is formed to induce sequential buckling when an external impact occurs.
  • the upper end of the crash box 3 according to the embodiment having such a condition is connected to both ends of the back beam 1, and the lower end of the crash box 3 is connected to the vehicle body 2.
  • the crash box 3 on the side to which the external impact is applied is compressively deformed while sequential buckling is induced by a plurality of buckling guide protrusions 211 in an ecology that does not protrude out of the back beam 1. This shows the generated state.
  • the crash box 3 on the side to which the external impact is not applied does not cause compressive deformation and also shows a result of not tilting to the outside of the back beam 1. That is, the amount of jungle may appear less than the comparative example.
  • a plurality of buckling induction members 211 are formed in each of the main reinforcement members 210. It is formed in a sawtooth or corrugated shape, leading to sequential buckling.
  • the wall thickness of the box body portion 100 of the embodiment is formed thinner than the wall thickness of the comparative example, so that buckling occurs easily.
  • the main reinforcing members 210 are supported by the auxiliary reinforcing members 220 connecting the main reinforcing members 210 along the width direction of the box body 100. To prevent it from collapsing and at the same time efficiently absorbing impact energy.
  • the main reinforcing members 210 and the auxiliary reinforcing members 220 are intertwined and compressed, thereby maximizing impact energy absorption.
  • FIGS. 10 to 13 the result of the sliding distance according to the impact force over time at the time of collision is referred to FIGS. 10 to 13.
  • FIG. 10 is a graph for analyzing load results according to a comparative example and an example.
  • Figure 11 is a photograph showing the actual state after the collision of the comparative example
  • Figure 11 is a graph showing the impact force over time during the collision of the comparative example.
  • Figure 13 is a photograph showing the actual state after the crash of the embodiment
  • Figure 14 is a graph showing the load over time in the crash of the embodiment.
  • the above-mentioned load is a reaction force for the qorqlad to absorb energy when the back beam impinges on the outer wall.
  • the region A is a section in which the back beams endure without large deformation.
  • the initial load section It is called the initial load section, and if the rigidity of the beam is weak, cracks occur immediately after the collision, and thus the initial load is low.
  • the region B is a section in which the resistance is weakened while a predetermined portion of the back beam collapses. That is, it is a section where buckling occurs.
  • the C region shows the amount of energy that the remaining energy enters the vehicle body after the buckling is completed.
  • region B which is the section in which buckling occurs, shown in Figs. 11 and 12 (Comparative Example), the amount of load that is dropped is lower than that of the falling weight of the region B shown in Figs. 13 and 14 (Example). It can be seen that a large state is achieved.
  • the load in the section where the buckling is generated compared to the comparative example shows a relatively small amount compared to the comparative example, it is possible to efficiently minimize the amount of remaining energy absorbed by the vehicle.
  • both results show that the back beam 1 collides with the outer wall and the crash boxes 3 'and 3 are pushed.
  • the comparative example shows 97 mm and the embodiment shows 85 mm.
  • the rolling amount in the Example shows a result of 12 mm reduction compared with the comparative example.
  • the amount of sliding means that the moving distance is reduced to 12 mm after the vehicle 1 hits the outer wall.
  • the remaining distance between the rear fog lamp and the outer wall of the vehicle is increased by 12 mm, compared to the comparative example, the possibility of the rear fog lamp colliding with the outer wall may be reduced, thereby ensuring more commercial value.
  • the impact force transmitted to the vehicle body may be low. .
  • the embodiment of the present invention shows that the impact energy is efficiently absorbed and the distance pushed to the outside of the back beam is shorter than that of the comparative example.
  • the length of the box body 100 that is pushed outward may be less than that of the comparative example.
  • the embodiment according to the present invention may be sequentially buckled along the longitudinal direction when an external shock occurs, thereby improving the impact energy absorption rate in the box body itself.
  • the embodiment according to the present invention is formed in the wall surface of the box body portion of the saw-shaped main reinforcing members and the auxiliary reinforcing members to form a lattice shape with each other in the longitudinal direction, when buckling is generated sequentially
  • the resistance load against the external force may be gradually increased, and the main reinforcement members and the auxiliary reinforcement members may be entangled with each other and compressed to efficiently absorb impact energy and prevent the transfer to the vehicle body.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Vibration Dampers (AREA)

Abstract

본 발명은 좌굴 유도형 차량용 크래쉬 박스를 제공한다. 상기 좌굴 유도형 차량용 크래쉬 박스는 백빔의 양단에 배치되며, 박스 몸체부; 및 상기 박스 몸체부의 외면부에 일체로 돌출 형성되며, 외부 충격에 의해 상기 박스 몸체부의 길이 방향을 따라 좌굴을 유도함과 아울러, 상기 충격으로 인한 에너지를 흡수하는 격자 형상을 이루는 보강부를 포함한다.

Description

좌굴 유도형 차량용 크래쉬 박스 및 이를 갖는 차량용 백빔
본 발명은 좌굴 유도형 차량용 크래쉬 박스에 관한 것으로서, 보다 상세하게는 외부 충격시 좌굴을 유도하여 크래쉬 박스 자체에서의 충격 에너지 흡수율을 상승시킴과 아울러, 차체로 전달되는 충격 에너지를 줄여 차체를 안전하게 보호할 수 있는 좌굴 유도형 차량용 크래쉬 박스 및 이를 갖는 차량용 백빔에 관한 것이다.
일반적으로 차량의 앞뒤에는 충돌 또는 추돌 사고시 자체에 가해지는 충격 에너지를 흡수하여 탑승자의 안전을 도모할 수 있도록 범퍼가 설치된다.
종래의 범퍼는 범퍼빔과, 업소버와, 범퍼커버로 구성된다.
상기 범퍼빔은 차체에 결합되는 범퍼 스테이의 끝부분에 용접되어 결합된다.
상기 업소버는 범퍼빔의 외측면에 부착되어 차체에 가해지는 충격에너지를 흡수한다.
상기 범퍼커버는 상기 업소버가 감싸지도록 차체에 설치되어 차량의 외측에 노출된다.
한편, 상기 범퍼와 차체 프레임 사이에는 저속 충돌시 충격을 흡수하여 차량의 손상을 최소화할 수 있도록 차체프레임에 결합되는 사이드멤버의 전면에 고정되는 크래쉬 박스가 설치된다.
종래의 크래쉬 박스는 벽체 자체의 두께가 6mm 내지 10mm의 두께를 이루어 형성됨과 아울러, 직선 보강재가 박스 외면에 형성된다.
이의 구조에 따라, 외력에 대한 저항력이 증가하여 외부 충격이 발생되는 경우 초기 하중이 높은 반변에, 좌굴이 용이하게 발생되지 않아, 파단괴고, 충격 하중이 급격히 하락하여 충격 에너지 흡수율이 낮은 문제점이 있다.
이와 아울러, 크래쉬 박스 측에서 충격 에너지 흡수율이 낮음에 따라, 충둘 후 잔류되는 충격 에너지는 차체 멤버로 흡수되어 차체를 손상시키는 문제점이 있다.
본 발명과 관련된 선행문헌으로는 대한민국 공개특허 공개번호 제10-2011-0072902호(공개일 : 2011.06.29)가 있다.
본 발명의 목적은, 외부 충격이 발생되는 경우 길이 방향을 따라 좌굴이 순차적으로 이루어지도록 하여, 박스 몸체부 자체에서 충격 에너지 흡수율을 향상시킬 수 있는 좌굴 유도형 차량용 크래쉬 박스를 제공함에 있다.
본 발명의 다른 목적은, 박스 몸체부의 벽면에 길이 방향을 따라 톱니 형상의 주 보강 부재들과, 폭 방향을 따라 보조 보강 부재들을 서로 격자 형상을 이루도록 형성하여, 좌굴이 순차적으로 발생되는 경우, 외력에 대한 저항 하중을 서서히 증가시키도록 하고, 주 보강 부재들과 보조 보강 부재들이 서로 얽혀 압축되어 충격 에너지를 효율적으로 흡수하여 차체로 전달되는 것을 방지할 수 있는 좌굴 유도형 차량용 크래쉬 박스를 제공함에 있다.
바람직한 양태에 있어서, 본 발명은 좌굴 유도형 차량용 크래쉬 박스를 제공한다.
상기 좌굴 유도형 차량용 크래쉬 박스는 백빔의 양단에 배치되며, 박스 몸체부; 및 상기 박스 몸체부의 외면부에 일체로 돌출 형성되며, 외부 충격에 의해 상기 박스 몸체부의 길이 방향을 따라 좌굴을 유도함과 아울러, 상기 충격으로 인한 에너지를 흡수하는 격자 형상을 이루는 보강부를 포함한다.
상기 박스 몸체부는 사각 형상의 중공을 이루도록 사각 형상의 벽체로 형성되는 것이 바람직하다.
상기 백빔의 길이 방향을 따르는 벽체의 두께는 서로 동일한 두께를 형성하는 것이 바람직하다.
상기 벽체의 두께는, 3mm 내지 7mm를 이루는 것이 바람직하다.
상기 보강부는, 상기 박스 몸체부의 길이 방향을 따라 좌굴을 유도하는 좌굴 유도 돌기들이 반복적으로 형성되고, 폭 방향을 따라 간격을 이루어 형성되는 다수의 주 보강 부재와, 상기 박스 몸체부의 폭 방향을 따르고, 길이 방향을 따라 간격을 이루며, 상기 다수의 주 보강 부재와 교차되도록 형성되는 다수의 보조 보강 부재를 구비하는 것이 바람직하다.
상기 좌굴 유도 돌기들은, 톱니 또는 주름 형상으로 형성되는 것이 바람직하다.
상기 다수의 보조 보강 부재는, 상기 좌굴 유도 돌기들 각각의 하단과 상단을 연결하는 것이 바람직하다.
상기 박스 몸체부의 일단은, 상기 백빔에 연결되고, 상기 박스 몸체부의 타단은, 상기 백빔과 마주보는 차체에 연결되고, 상기 좌굴 유도 돌기들 각각은, 단면이 직각 삼각형 형상으로 형성되어 서로 반복적으로 연결되고, 상기 좌굴 유도 돌기들 각각의 경사면은, 상기 박스 몸체부의 타단을 따라 하향 경사지도록 형성되는 것이 바람직하다.
상기 보강부는, 상기 백빔의 길이 방향과 직교를 이루는 상기 박스 몸체부의 벽체에 형성되는 것이 바람직하다.
다른 양태에 있어서, 본 발명은 상기 좌굴 유도형 차량용 크래쉬 박스를 포함하는 차량용 백빔을 제공한다.
본 발명은, 외부 충격이 발생되는 경우 길이 방향을 따라 좌굴이 순차적으로 이루어지도록 하여, 박스 몸체부 자체에서 충격 에너지 흡수율을 향상시킬 수 있는 효과를 갖는다.
또한, 본 발명은 박스 몸체부의 벽면에 길이 방향을 따라 톱니 형상의 주 보강 부재들과, 폭 방향을 따라 보조 보강 부재들을 서로 격자 형상을 이루도록 형성하여, 좌굴이 순차적으로 발생되는 경우, 외력에 대한 저항 하중을 서서히 증가시키도록 하고, 주 보강 부재들과 보조 보강 부재들이 서로 얽혀 압축되어 충격 에너지를 효율적으로 흡수하여 차체로 전달되는 것을 방지할 수 있는 효과를 갖는다.
도 1은 본 발명의 좌굴 유도형 차량용 크래쉬 박스를 보여주는 사시도이다.
도 2는 본 발명의 좌굴 유도형 차량용 크래쉬 박스를 보여주는 단면도이다.
도 3은 본 발명에 따르는 좌굴 유도 돌기를 보여주는 도면이다.
도 4 내지 도 6은 크래쉬 박스의 비교예를 보여주는 도면들이다.
도 7 내지 도 9는 크래쉬 박스의 실시예를 보여주는 도면들이다.
도 10은 비교예와 실시예에 따르는 하중 결과를 해석하기 위한 그래프이다.
도 11은 비교예의 충돌 후 실제 상태를 보여주는 도면이다.
도 12는 비교예의 충돌시 시간에 따르는 충격력을 보여주는 그래프이다.
도 13은 실시예의 충돌 후 실제 상태를 보여주는 도면이다.
도 14는 실시예의 충돌시 시간에 따르는 충격력을 보여주는 그래프이다.
이하, 첨부된 도면을 참조하여 본 발명의 좌굴 유도형 차량용 크래쉬 박스를 설명한다.
도 1은 본 발명의 좌굴 유도형 차량용 크래쉬 박스를 보여주는 사시도이고, 도 2 및 도 3은 본 발명의 좌굴 유도형 차량용 크래쉬 박스를 보여주는 단면도들이다.
도 1 및 도 2, 도 3을 참조 하여, 본 발명의 좌굴 유도형 차량용 크래쉬 박스 및 이를 갖는 차량용 백빔의 구성을 설명한다.
본 발명의 차량용 백빔(1)은 차체(2)의 후단에 배치되는 리어 백빔인 것이 좋다.
본 발명의 좌굴 유도형 차량용 크래쉬 박스(3)는 한 쌍으로 구성되고, 상기 백빔(1)의 양단에 설치된다.
그리고, 상기 한 쌍의 좌굴 유도형 차량용 크래쉬 박스(3)는 차체(2)에 연결된다.
상기 한 쌍의 좌굴 유도형 차량용 크래쉬 박스(3)는 서로 동일한 구성을 갖는다.
이와 같이 백빔(1)의 양단에 설치되는 본 발명의 좌굴 유도형 차량용 크래쉬 박스(3)는 크게 박스 몸체부(100)와, 보강부(200)로 구성된다.
상기 박스 몸체부(100)는 사각 형상의 중공(101)을 형성하도록 4개의 벽체(110,120,130,140)가 연결되어 형성된다. 상기 박스 몸체부(100)는 몰드 성형으로 제조된다.
상기 박스 몸체부(100)의 4개의 벽체(110,120,130,140)의 두께는 서로 다르게 형성될 수 있다.
바람직하게, 상기 4개의 벽체(110,120,130,140) 중, 서로 마주보는 2개의 벽체(130,140)의 두께는 동일하고, 나머지 2개의 벽체(110,120)의 두께는 서로 다를 수 있다.
여기서, 상기 4개의 벽체(110,120,130,140) 중, 백빔(1)의 길이 방향을 따라 간격을 이루어 배치되는 벽체를 제 1,2벽체(110,120)라 하고, 상기 제 1,2벽체(110,120)의 양측을 잇는 벽체를 제 3,4벽체(130,140)라 한다.
바람직하게, 상기 제 1벽체(110)의 두께는 7mm이고, 제 2벽체(120)의 두께는 3mm이고, 제 3,4벽체(130,140)는 서로 동일한 6mm로 형성될 수 있다.
즉, 본 발명에 따르는 박스 몸체부(100)의 벽체 두께는, 3mm 내지 7mm 범위를 이룬다.
후술되는 비교예에 해당되는 크레쉬 박스(3)의 벽체 두께가 6mm 내지 10mm 인 것에 비해, 실시예에 해당되는 본 발명의 크래쉬 박스(3')의 벽체 두께는 비교예 대비 20 내지 50 퍼센트의 비율로 얇게 형성될 수 있다.
한편, 도 1 및 도 2를 참조 하면, 본 발명에 따르는 보강부(200)는 상기 박스 몸체부(100)의 외면부에 일체로 형성된다.
상기 보강부(200)는 다수의 주 보강 부재(210)와, 다수의 보조 보강 부재(220)로 구성된다.
상기 다수의 주 보강 부재(210)는 박스 몸체부(100)의 외면부에서, 박스 몸체부(100)의 길이 방향을 따라 돌출 형성되며, 박스 몸체부(100)의 폭 방향을 따라 간격을 이루어 돌출 형성된다.
상기 다수의 주 보강 부재(210)는, 상술한 제 1,2벽체(110,120)에 서로 대칭을 이루도록 형성된다.
물론, 제 1,2벽체(110,120)에 형성되는 다수의 주 보강 부재(210)는 7mm의 두께를 이루는 제 1벽체(110)에 형성되는 주 보강 부재들(210)에 비해, 3mm의 두께를 이루는 제 2벽체(120)에 형성되는 주 보강 부재들(210)이 더 두껍게 형성될 수도 있다.
여기서, 상기 다수의 주 보강 부재(210)는 길이 방향을 따라 톱니 또는 주름 형상을 이루는 좌굴 유도 돌기들(211)이 반복적으로 형성된다.
상기 좌굴 유도 돌기들(211)은 그 단면이 직각삼각형 형상이 반복적으로 이루는 형상이 바람직하다.
따라서, 상기 좌굴 유도 돌기들(211) 각각은, 서로 직각을 이루는 저면(211a) 및 직선면(211b)을 비롯하여, 상기 직선면(211b)과 상기 저면(211a)을 잇는 경사면(211c)으로 에워싸여 형성될 수 있다.
도 1 및 도 2에 도시되는 바와 같이, 각 좌굴 유도 돌기들(211) 중, 백빔(1)과 연결되는 좌굴 유도 돌기(211)의 직선면(211b)은, 상기 백빔(1)의 후면에 밀착되도록 연결된다.
그리고, 각 좌굴 유도 돌기들(211)의 경사면(211c)은, 백빔(1)으로부터 차체(2) 측을 향해 반복적으로 하향 경사지도록 배치된다.
이는, 백빔(1)에 외부 충격이 가해지는 경우, 박스 몸체부(100)가 순차적으로 압축되도록, 즉 좌굴이 순차적으로 이루어지도록 유도할 수 있다.
그리고, 상기 다수의 보조 보강 부재(220)는 박스 몸체부(100)의 제 1,2벽체(110,120)의 외면부에 박스 몸체부(100)의 폭 방향을 따라 돌출 형성되며, 박스 몸체부(100)의 길이 방향을 따라 간격을 이루어 형성된다.
바람직하게, 상기 다수의 보조 보강 부재(220) 각각은, 상술한 주 보강 부재들(210) 간의 연결 부분을 잇도록 돌출 형성된다.
따라서, 상기 다수의 보조 보강 부재(220)는 상기 좌굴 유도 돌기들(211) 각각의 하단과 상단을 연결한다.
상기 보조 보강 부재들(220)은, 좌굴이 발생되는 동안에, 주 보강 부재들(210)을 지지하여 충격으로 인한 충격 에너지를 흡수한다.
좌굴 발생시, 보강부(200)로 인한 충격 흡수에 대한 설명은 후술하기로 한다.
더하여, 상술한 크래쉬 박스(3)의 제 1,2벽체(110,120)의 내측면부에는 내측 좌굴 유도 돌기(미도시)가 더 형성될 수 있다.
상기 내측 좌굴 유도 돌기는, 제 1,2벽체(110,120)의 내측면부에서 상기 좌굴 유도 돌기(211)의 형상과 동일한 형상을 이루는 홈의 형태로 형성될 수도 있다.
따라서, 제 1,2벽체(110,120)의 단면은 톱니 형상의 단면을 이룰 수도 있다.
이에 따라, 백빔(1)이 외벽에 충돌하여 충격력이 발생되는 경우, 좌굴 유도 돌기(211)와, 내측 좌굴 유도 돌기 사이를 형성하는 톱니 형상의 단면을 통해 좌굴이 더 용이하게 유도될 수도 있다.
도 4 내지 도 6은 크래쉬 박스의 비교예를 보여주는 도면들이고, 도 7 내지 도 9는 크래쉬 박스의 실시예를 보여주는 도면들이다.
도 4를 참조 하면, 크래쉬 박스(3')의 비교예의 박스 몸체부(100')의 사방 외면부에는 격자 형상을 이루는 보강 부재들(200')이 돌출 형성된다.
이와 같은 조건을 갖는 크래쉬 박스(3')의 상단은 백빔(1)의 양단에 연결되고, 크래쉬 박스(3')의 하단은 차체에 연결된다.
또한, 비교예에 따르는 박스 몸체부(100')의 제 1벽체는 10mm, 제 2벽체는, 6mm, 제 3,4벽체는 9mm를 이룬다.
도 5 및 도 6은 백빔의 일단에 외부 충격이 가해지는 경우 시뮬레이션 결과를 보여주는 도면들이다.
도 5를 참조 하면, 외부 충격이 가해진 측의 크래쉬 박스(3')는 화살표 방향을 따라 백빔(1)의 외측으로 돌출되면서 밀려 변형이 발생되는 결과를 보여준다.
또한, 도 6을 참조 하면, 외부 충격이 가해지지 않은 측의 크래쉬 박스(3')는 압축 변형이 발생되지는 않았으나, 백빔(1)의 외측을 향하는 화살표 방향을 따라 기울어져 밀리는 결과를 보여준다.
반면, 도 7을 참조 하면, 크래쉬 박스(3)의 실시예를 보여준다.
이는, 상술한 바와 같이, 박스 몸체부(100)의 제 1,2벽체(110,120)의 외면부에는, 격자 형상을 이루며, 외부 충격 발생시 순차적인 좌굴을 유도하는 보강부(200)가 형성된다.
상기 보강부(200')의 구성은 도 1 및 도 2를 참조하여 설명한 바와 동일하기 때문에, 구성 설명을 생략한다.
이와 같은 조건을 갖는 실시예에 따르는 크래쉬 박스(3)의 상단은 백빔(1)의 양단에 연결되고, 크래쉬 박스(3)의 하단은 차체(2)에 연결된다.
도 8 및 도 9는 백빔의 일단에 외부 충격이 가해지는 경우 시뮬레이션 결과를 보여주는 도면들이다.
도 8을 참조 하면, 외부 충격이 가해진 측의 크래쉬 박스(3)는 백빔(1)의 외측으로 돌출되지 않은 생태에서, 다수의 좌굴 유도 돌기들(211)에 의해 순차적인 좌굴이 유도되면서 압축 변형이 발생된 상태를 보여준다.
또한, 도 9를 참조 하면, 외부 충격이 가해지지 않은 측의 크래쉬 박스(3)는 압축 변형이 발생되지는 않았고, 또한, 백빔(1)의 외측으로 기울어 지지 않은 결과를 보여준다. 즉 밀림의 양이 비교예보다 적게 나타날 수 있다.
상기 좌굴 유도 과정을 설명한다.
도 7 내지 도 9를 참조 하면, 백빔(1)의 일측에 외부 충격이 가해지면, 해당 위치에 배치되는 크래쉬 박스(3)는 충격을 전달 받는다.
실시예에 따르는 크래쉬 박스(3)의 외면에 길이 방향을 따라 형성되는 주 보강 부재들(210)은 상기 충격을 전달 받으면서, 순차적으로 좌굴을 유도한다.
즉, 주 보강 부재들(210) 각각에는 다수의 좌굴 유도 부재들(211)이 형성된다. 이는 톱니 또는 주름 형상으로 형성되어, 순차적인 좌굴을 유도한다.
따라서, 외부 충격에 대한 저항 하중이 점진적으로 증가된다.
더하여, 실시예의 박스 몸체부(100)의 벽체 두께는 비교예의 벽체 두께보다 더 얇게 형성되어, 좌굴 발생이 용이하게 이루어지도록 한다.
상기와 같이 좌굴이 순차적으로 발생되는 동안에, 주 보강 부재들(210)을 박스 몸체부(100)의 폭 방향을 따라 연결하는 보조 보강 부재들(220)에 의해 주 보강 부재들(210)을 지지하여 무너지는 것을 방지하고, 동시에 충격 에너지를 효율적으로 흡수한다.
이에 따라, 도 8에 도시되는 바와 같이, 좌굴이 발생되면서 주 보강 부재들(210)과 보조 보강 부재들(220)이 서로 얽혀 압축됨에 따라, 충격 에너지 흡수를 극대화할 수 있다.
더하여, 충돌시 시간에 따르는 충격력에 따르는 밀림 거리 결과는 도 10 내지 도 13을 참조 한다.
도 10은 비교예와 실시예에 따르는 하중 결과를 해석하기 위한 그래프이다.
또환, 도 11은 비교예의 충돌 후 실제 상태를 보여주는 사진이고, 도 11은 비교예의 충돌시 시간에 따르는 충격력을 보여주는 그래프이다.
더하여, 도 13은 실시예의 충돌 후 실제 상태를 보여주는 사진이고, 도 14는 실시예의 충돌시 시간에 따르는 하중을 보여주는 그래프이다.
여기서, 상기에 언급되는 하중은, 백빔이 외벽에 충돌하는 경우, qorqlad이 에너지를 흡수하기 위한 반력(Reaction force)이다.
즉, 충돌 에너지를 흡수하기 위한 저항값이다.
여기서, 도 10을 참조 하면, A,B,C영역을 설명한다.
상기 A 영역은, 백빔이 큰 변형 없이 버티는 구간이다.
초기 하중 구간이라고 하고, 빔의 강성이 약하면 충돌 후 바로 크랙이 발생하여 초기하중이 낮게 되는 특성이 있다.
상기 B영역은, 백빔의 소정 부분이 무너지면서 저항력이 약해지는 구간이다. 즉, 좌굴이 일어나는 구간이다.
좌굴이 이상적으로 일어날 수록, 떨어지는 하중량이 적은 특성이 있다.
따라서, 이상적 좌굴로 인해, 떨어지는 하중값을 줄여 차량으로 흡수되는 잔존 에너지 량을 최소화할 수 있다.
상기 C영역은, 좌굴이 다 이루어 진 후 잔존 에너지가 차체로 들어오는 에너지량을 보여준다.
상기A, B영역에서 많은 에너지양을 흡수할수록, 차량으로 흡수되는 에너지가 줄어드는 특성이 있다.
도 12 및 도 14를 참조 하면, 백빔(1)의 일측에 충격이 가해져 크래쉬 박스(3',3)가 좌굴되는 경우, 실시예의 경우가 비교예에 배하여 발생되는 충격 에너지가 낮게 보임을 알 수 있다.
도 11 및 도 12(비교예)에 도시되는, 좌굴이 발생되는 구간인, B영역에서, 하락되는 하중량이, 도 13 및 도 14(실시예)에 도시되는 B영역의 하락되는 하중량에 비해 큰 상태를 이루는 것을 알 수 있다.
즉, 본 발명의 실시예는, 비교예에 비해 좌굴이 발생되는 구간에서의 하중량이 비교예에 배해 상대적으로 적은 량을 보임으로 인해, 차량으로 흡수되는 잔존 에너지량을 효율적으로 최소화할 수 있다.
더하여, 백빔(1)이 외벽에 충돌하여 각 크래쉬 박스(3',3)의 밀리는 양 결과를 보면, 비교예는 97mm를 보이고, 실시예는 85mm를 보인다.
따라서, 실시예에서의 밀림량은 비교예에 비해, 12mm가 줄어든 결과를 보인다.
여기서, 상기 밀림량은 차량(1)이 외벽에 충돌한 이후 이동거리가 12mm로 줄어든 의미이다.
예컨대, 차량의 리어 포그 램프와 외벽과의 남은 거리가 12mm 증가한 것으로서, 실시예의 경우, 비교예에 비하여 상기 리어포그 램프가 외벽에 충돌할 확률이 줄어들어 상품성을 보다 확보할 수 있다.
결과적으로 실시예는, 비교예에 비해, 크래쉬 박스의 좌굴이 순차적으로 이루어지기고, 주 보강 부재들 및 보조 보강 부재들이 서로 압축되면서 충격 에너지를 흡수하기 때문에, 차체로 전달되는 충격력이 낮을 수 있다.
이에 따라, 본 발명의 실시예는 충격 에너지를 효율적으로 흡수하며, 백빔의 외측으로 밀리는 거리가 비교예에 비해 짧게 형성되는 것을 보이고 있다.
따라서, 좌굴 발생시 박스 몸체부(100)가 외측으로 밀리는 길이가 비교예에 비해 적을 수 있다.
결과적으로, 상기와 같이 크래쉬 박스(3) 자체에서 충격 에너지 흡수를 극대화함에 따라, 차체로 전달되는 충격 에너지량을 줄여 차체를 보호할 수 있다.
이상, 상기의 구성 및 작용에 따라 본 발명에 따르는 실시예는 외부 충격이 발생되는 경우 길이 방향을 따라 좌굴이 순차적으로 이루어지도록 하여, 박스 몸체부 자체에서 충격 에너지 흡수율을 향상시킬 수 있다.
또한, 본 발명에 따르는 실시예는 박스 몸체부의 벽면에 길이 방향을 따라 톱니 형상의 주 보강 부재들과, 폭 방향을 따라 보조 보강 부재들을 서로 격자 형상을 이루도록 형성하여, 좌굴이 순차적으로 발생되는 경우, 외력에 대한 저항 하중을 서서히 증가시키도록 하고, 주 보강 부재들과 보조 보강 부재들이 서로 얽혀 압축되어 충격 에너지를 효율적으로 흡수하여 차체로 전달되는 것을 방지할 수 있다.
이상, 본 발명의 좌굴 유도형 차량용 크래쉬 박스 및 이를 갖는 차량용 백빔에 관한 구체적인 실시예에 관하여 설명하였으나, 본 발명의 범위에서 벗어나지 않는 한도 내에서는 여러 가지 실시 변형이 가능함은 자명하다.
그러므로 본 발명의 범위에는 설명된 실시예에 국한되어 전해져서는 안 되며, 후술하는 특허청구범위뿐만 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 한다.
즉, 전술된 실시예는 모든 면에서 예시적인 것이며, 한정적인 것이 아닌 것으로 이해되어야 하며, 본 발명의 범위는 상세한 설명보다는 후술될 특허청구범위에 의하여 나타내어지며, 그 특허청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.

Claims (7)

  1. 백빔의 양단에 배치되며, 박스 몸체부; 및
    상기 박스 몸체부의 외면부에 일체로 돌출 형성되며, 외부 충격에 의해 상기 박스 몸체부의 길이 방향을 따라 좌굴을 유도함과 아울러, 상기 충격으로 인한 에너지를 흡수하는 격자 형상을 이루는 보강부를 포함하는 것을 특징으로 하는 좌굴 유도형 차량용 크래쉬 박스.
  2. 제 1항에 있어서,
    상기 보강부는,
    상기 박스 몸체부의 길이 방향을 따라 좌굴을 유도하는 좌굴 유도 돌기들이 반복적으로 형성되고, 폭 방향을 따라 간격을 이루어 형성되는 다수의 주 보강 부재와,
    상기 박스 몸체부의 폭 방향을 따르고, 길이 방향을 따라 간격을 이루며, 상기 다수의 주 보강 부재와 교차되도록 형성되는 다수의 보조 보강 부재를 구비하는 것을 특징으로 하는 좌굴 유도형 차량용 크래쉬 박스.
  3. 제 2항에 있어서,
    상기 좌굴 유도 돌기들은,
    톱니 또는 주름 형상으로 형성되는 것을 특징으로 하는 좌굴 유도형 차량용 크래쉬 박스.
  4. 제 3항에 있어서,
    상기 다수의 보조 보강 부재는,
    상기 좌굴 유도 돌기들 각각의 하단과 상단을 연결하는 것을 특징으로 하는 좌굴 유도형 차량용 크래쉬 박스.
  5. 제 3항에 있어서,
    상기 박스 몸체부의 일단은, 상기 백빔에 연결되고,
    상기 박스 몸체부의 타단은, 상기 백빔과 마주보는 차체에 연결되고,
    상기 좌굴 유도 돌기들 각각은, 단면이 직각 삼각형 형상으로 형성되어 서로 반복적으로 연결되고,
    상기 좌굴 유도 돌기들 각각의 경사면은, 상기 박스 몸체부의 타단을 따라 하향 경사지도록 형성되는 것을 특징으로 하는 좌굴 유도형 차량용 크래쉬 박스.
  6. 제 1항에 있어서,
    상기 보강부는,
    상기 백빔의 길이 방향과 직교를 이루는 상기 박스 몸체부의 벽체에 형성되는 것을 특징으로 하는 좌굴 유도형 차량용 크래쉬 박스.
  7. 제 1항 내지 제 6항 중 어느 한 항의 좌굴 유도형 차량용 크래쉬 박스를 포함하는 것을 특징으로 하는 차량용 백빔.
PCT/KR2016/003585 2015-09-14 2016-04-06 좌굴 유도형 차량용 크래쉬 박스 및 이를 갖는 차량용 백빔 WO2017047894A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/760,059 US10625695B2 (en) 2015-09-14 2016-04-06 Buckling inducing-type vehicle crash boxes and vehicle back beam having same
EP16846716.5A EP3351433B1 (en) 2015-09-14 2016-04-06 Buckling inducing-type vehicle crash boxes and vehicle back beam having same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150129808A KR101683395B1 (ko) 2015-09-14 2015-09-14 좌굴 유도형 차량용 크래쉬 박스 및 이를 갖는 차량용 백빔
KR10-2015-0129808 2015-09-14

Publications (1)

Publication Number Publication Date
WO2017047894A1 true WO2017047894A1 (ko) 2017-03-23

Family

ID=57573103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/003585 WO2017047894A1 (ko) 2015-09-14 2016-04-06 좌굴 유도형 차량용 크래쉬 박스 및 이를 갖는 차량용 백빔

Country Status (4)

Country Link
US (1) US10625695B2 (ko)
EP (1) EP3351433B1 (ko)
KR (1) KR101683395B1 (ko)
WO (1) WO2017047894A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101836709B1 (ko) 2016-10-04 2018-03-09 현대자동차주식회사 차량용 크래쉬 박스
JP6672387B2 (ja) * 2018-06-27 2020-03-25 本田技研工業株式会社 車体前部構造
TR201821045A2 (tr) * 2018-12-28 2020-07-21 Coskunoez Kalip Makina Sanayi Ve Ticaret Anonim Sirketi Burulma davranişini yönlendi̇ren darbe sönümleyi̇ci̇ çarpişma kutusu

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100813158B1 (ko) * 2007-03-07 2008-03-17 성준엽 차량용 크래쉬박스
JP2009061845A (ja) * 2007-09-05 2009-03-26 Honda Motor Co Ltd 車両用クラッシュボックス構造
KR20100035274A (ko) * 2008-09-26 2010-04-05 지엠대우오토앤테크놀로지주식회사 충격 흡수를 위한 자동차용 범퍼 시스템
KR101106330B1 (ko) * 2010-09-09 2012-01-18 호남석유화학 주식회사 자동차용 크래쉬 박스
KR20130049338A (ko) * 2011-11-04 2013-05-14 한화엘앤씨 주식회사 경량 및 충격완화 성능 향상을 위한 경사리브를 구비한 크래쉬박스
KR20130126355A (ko) * 2012-05-11 2013-11-20 현대자동차주식회사 차량용 범퍼 조립체

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10128114B4 (de) * 2001-03-28 2006-12-28 Wagon Automotive Gmbh Aufpralldämpfer
JP4244121B2 (ja) * 2002-06-28 2009-03-25 本田技研工業株式会社 衝撃吸収装置
DE502006004531D1 (de) * 2006-10-19 2009-09-24 Voith Turbo Scharfenberg Gmbh Energieverzehrvorrichtung für mehrgliedrige Fahrzeuge
JP2008222097A (ja) * 2007-03-14 2008-09-25 Mazda Motor Corp 自動車の車体構造
US7677617B2 (en) * 2008-07-24 2010-03-16 Gm Global Technology Operations, Inc. Efficient joint for vehicle energy-absorbing device
WO2010015711A1 (de) * 2008-08-07 2010-02-11 Basf Se Struktur zum absorbieren von energie
JP5837446B2 (ja) * 2012-03-14 2015-12-24 アイシン精機株式会社 クラッシュボックス及びバンパー装置
JP5949597B2 (ja) * 2012-07-31 2016-07-06 株式会社デンソー 回転電機
JP5924308B2 (ja) * 2013-06-03 2016-05-25 トヨタ自動車株式会社 車体前部構造
JP5791676B2 (ja) * 2013-09-10 2015-10-07 富士重工業株式会社 衝撃吸収装置
FR3015941B1 (fr) 2013-12-26 2017-04-07 Plastic Omnium Cie Augmentation de la compressibilite d'une poutre de pare-choc
KR101752953B1 (ko) 2014-05-09 2017-07-03 (주)엘지하우시스 차량용 범퍼 백빔 조립체
CA2956058C (en) * 2014-09-05 2019-01-29 Nippon Steel & Sumitomo Metal Corporation Automobile member
KR101629100B1 (ko) * 2014-11-26 2016-06-09 롯데케미칼 주식회사 자동차용 범퍼 시스템
JP6365514B2 (ja) * 2015-11-20 2018-08-01 マツダ株式会社 車両の衝撃吸収構造

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100813158B1 (ko) * 2007-03-07 2008-03-17 성준엽 차량용 크래쉬박스
JP2009061845A (ja) * 2007-09-05 2009-03-26 Honda Motor Co Ltd 車両用クラッシュボックス構造
KR20100035274A (ko) * 2008-09-26 2010-04-05 지엠대우오토앤테크놀로지주식회사 충격 흡수를 위한 자동차용 범퍼 시스템
KR101106330B1 (ko) * 2010-09-09 2012-01-18 호남석유화학 주식회사 자동차용 크래쉬 박스
KR20130049338A (ko) * 2011-11-04 2013-05-14 한화엘앤씨 주식회사 경량 및 충격완화 성능 향상을 위한 경사리브를 구비한 크래쉬박스
KR20130126355A (ko) * 2012-05-11 2013-11-20 현대자동차주식회사 차량용 범퍼 조립체

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3351433A4 *

Also Published As

Publication number Publication date
US10625695B2 (en) 2020-04-21
EP3351433A4 (en) 2018-07-25
KR101683395B1 (ko) 2016-12-07
EP3351433A1 (en) 2018-07-25
EP3351433B1 (en) 2019-08-07
US20180257588A1 (en) 2018-09-13

Similar Documents

Publication Publication Date Title
WO2017047894A1 (ko) 좌굴 유도형 차량용 크래쉬 박스 및 이를 갖는 차량용 백빔
WO2014115970A1 (ko) 보강부를 갖는 주행 장치용 백빔
WO2012033370A9 (ko) 자동차용 크래쉬 박스
WO2014133242A1 (ko) 보행자 보호를 위한 화약식 후드 리프팅 모듈 및 이를 이용한 자동차
EP2511160A1 (en) Front unit for a vehicle with shock absorbers and flexible belt
JP2008013124A (ja) 対人保護用エネルギー吸収部材
WO2020040429A1 (ko) 보강주름이 형성된 자동차 도어의 충격흡수용 안전바
WO2018043867A1 (ko) 충격 흡수형 단부시설물
WO2021060660A1 (ko) 차량용 사이드 실
WO2022092626A1 (ko) 자동차 범퍼 빔
JP6769388B2 (ja) 車両前部構造
WO2021096333A1 (ko) 배터리 케이스 및 이를 포함하는 자동차
WO2023277440A1 (ko) 차량용 사이드 실
WO2023085689A1 (ko) 차량용 사이드실
WO2022098006A1 (ko) 배터리 케이스
KR100282275B1 (ko) 자동차 사이드실 보강구조
KR200211013Y1 (ko) 철재 교량난간용 신축이음구조
WO2023277567A1 (ko) 차량용 사이드 실
KR101124956B1 (ko) 차량용 범퍼
KR100233500B1 (ko) 승용차의 측면충돌 보강구조
WO2013024949A1 (ko) 차량용 시트트랙
KR200148110Y1 (ko) 차량도어용 임펙트멤버 완충장치
KR100226671B1 (ko) 자동차의 프론트필러 밀림방지구조
KR100402351B1 (ko) 가변부를 구비한 방호책
KR100412889B1 (ko) 차량의 전방차체 결합구조

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16846716

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15760059

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016846716

Country of ref document: EP