WO2017046846A1 - Temperature control device for rolled material - Google Patents

Temperature control device for rolled material Download PDF

Info

Publication number
WO2017046846A1
WO2017046846A1 PCT/JP2015/076013 JP2015076013W WO2017046846A1 WO 2017046846 A1 WO2017046846 A1 WO 2017046846A1 JP 2015076013 W JP2015076013 W JP 2015076013W WO 2017046846 A1 WO2017046846 A1 WO 2017046846A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
rolled material
value
feedback
thermometer
Prior art date
Application number
PCT/JP2015/076013
Other languages
French (fr)
Japanese (ja)
Inventor
鈴木 敦
Original Assignee
東芝三菱電機産業システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝三菱電機産業システム株式会社 filed Critical 東芝三菱電機産業システム株式会社
Priority to CN201580080687.7A priority Critical patent/CN107614135B/en
Priority to PCT/JP2015/076013 priority patent/WO2017046846A1/en
Priority to JP2017540359A priority patent/JP6477900B2/en
Priority to KR1020177035401A priority patent/KR102058786B1/en
Priority to TW104140710A priority patent/TWI590881B/en
Publication of WO2017046846A1 publication Critical patent/WO2017046846A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/74Temperature control, e.g. by cooling or heating the rolls or the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B38/00Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product
    • B21B38/006Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product for measuring temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2261/00Product parameters
    • B21B2261/20Temperature

Definitions

  • This invention relates to a temperature control device for rolled material.
  • Patent Document 1 discloses a temperature control device for rolled material.
  • the said temperature control apparatus controls the temperature of a rolling material using a control model.
  • the temperature control device corrects the control model online when the actual control amount is stable. As a result, the influence of the model error value is suppressed.
  • An object of the present invention is to provide a rolled material temperature control device capable of suppressing the influence of a model error value in a short time.
  • the temperature control device for a rolled material provides a rolling material cooled by a cooling device provided between a rolling mill and a winder in a hot rolling line between the cooling device and the winder.
  • the rolling material cooled by the cooling device calculates a predicted value of the temperature of the rolled material when it reaches the thermometer, and the predicted value is the feedback value
  • the first feedback part that feeds back as a part of the time, and the dead time corresponding to the predicted value of the temperature of the rolled material calculated by the first feedback part using the dead time model A value obtained by calculating a value obtained by delaying the phase, and a value obtained by delaying the phase by a dead time with respect to a measured value of the temperature of the rolled material by the
  • a rolled material cooled by a cooling device provided between a plurality of stands of a finish rolling mill of a hot rolling line is provided on the outlet side of the finishing mill.
  • a controller that calculates a control amount for the cooling device by using a deviation between a target value of the temperature of the rolled material and a feedback value when reaching the thermometer, and waste based on the control amount calculated by the controller Calculate a predicted value of the temperature of the rolled material when the rolled material cooled by the cooling device using the temperature model not including time reaches the thermometer, and the predicted value as a part of the feedback value
  • the first feedback part that feeds back, and the dead time corresponding to the predicted value of the temperature of the rolled material calculated by the first feedback part using the dead time model A value obtained by calculating a value obtained by delaying the phase, and a value obtained by delaying the phase by a dead time with respect to a measured value of the temperature of the rolled material by the thermometer and a predicted value of
  • the temperature control device for a rolled material is characterized in that a rolled material cooled by a plurality of cooling devices respectively provided between stands adjacent to a plurality of stands of a finish rolling mill of a hot rolling line is the finish.
  • a plurality of controllers that calculate a control amount for each of the plurality of cooling devices by inputting a deviation between a target value and a feedback value of the temperature of the rolled material when reaching a thermometer provided on the exit side of the rolling mill And when the rolled material cooled by the plurality of cooling devices reaches the thermometer using a temperature model that does not include a dead time based on the control amount calculated by each of the plurality of controllers.
  • a plurality of first feedback units for calculating a predicted value of the temperature of the material and feeding back the predicted value as part of a feedback value corresponding to each of the plurality of controllers; Using the dead time model corresponding to each of the plurality of cooling devices, the dead time corresponding to each of the plurality of cooling devices with respect to the predicted value of the temperature of the rolled material calculated by each of the plurality of first feedback units.
  • a value obtained by delaying the phase by the amount of time is calculated, and the plurality of measured values of the temperature of the rolled material by the thermometer and the predicted value of the temperature of the rolled material calculated by each of the plurality of first feedback units are calculated.
  • the deviation from the value delayed in phase by the amount of dead time corresponding to each of the cooling devices is calculated, and the value obtained by passing the low-pass filter with respect to the deviation is a feedback value corresponding to each of the plurality of controllers. And a plurality of second feedback units that feed back as other units.
  • the model error value is fed back to the controller in a low frequency region where it is difficult to become unstable. For this reason, in the low frequency region, a steady deviation between the measured value of the temperature of the rolled material and the target value of the temperature of the rolled material can be eliminated. As a result, the influence of the model error value can be suppressed in a short time.
  • FIG. FIG. 1 is a configuration diagram of a hot rolling line to which a rolled material temperature control apparatus according to Embodiment 1 of the present invention is applied.
  • the heating furnace 1 is provided on the entry side of the hot rolling line.
  • the rough rolling mill 2 is provided on the exit side of the heating furnace 1.
  • the induction heating device 3 is provided on the exit side of the rough rolling mill 2.
  • the finish rolling mill 4 is provided on the exit side of the induction heating device 3.
  • the finish rolling mill 4 includes a plurality of stands 4a.
  • the finish rolling mill 4 includes 5 to 7 stands 4a.
  • the finishing mill 4 of FIG. 1 includes six stands 4a.
  • the cooling device 5 is provided on the exit side of the finishing mill 4.
  • the winder 6 is provided on the exit side of the cooling device 5.
  • the rolled material 7 is charged into the heating furnace 1. Thereafter, the rolled material 7 is heated by the heating furnace 1. Thereafter, the rolled material 7 is extracted from the heating furnace 1. Thereafter, the rolled material 7 is rolled by the rough rolling machine 2. Thereafter, the end of the rolled material 7 is heated by the induction heating device 3. Thereafter, the rolled material 7 is rolled by each stand 4a of the finish rolling mill 4. Thereafter, the rolled material 7 is cooled by the cooling device 5. Thereafter, the rolled material 7 is wound up by a winder 6.
  • FIG. 2 is a configuration diagram of a main part of a hot rolling line to which the temperature control device for rolled material according to Embodiment 1 of the present invention is applied.
  • the speed detector 8 is provided corresponding to the most stand 4a in the finishing mill 4.
  • the finishing thermometer 9 is provided between the most stand 4 a and the cooling device 5 in the finishing mill 4.
  • the finishing thermometer 9 is provided on the exit side of the most exit side stand 4 a in the finishing mill 4.
  • the winding thermometer 10 is provided between the cooling device 5 and the winder 6.
  • the winding thermometer 10 is provided on the entry side of the winding machine 6.
  • the cooling device 5 includes a first water injection facility 5a and a second water injection facility 5b.
  • the first water injection facility 5 a is disposed on the entry side of the cooling device 5.
  • the second water injection facility 5b is disposed on the outlet side of the cooling device 5.
  • the input unit of the temperature control device 11 is connected to the output unit of the speed detector 8, the output unit of the finishing thermometer 9, and the output unit of the winding thermometer 10.
  • the output unit of the temperature control device 11 is connected to the input unit of the first water injection facility 5a and the input unit of the second water injection facility 5b.
  • Speed detector 8 detects the rotational speed of the most exit side of a stand 4a of the finishing mill 4 ⁇ f (rad / s) .
  • the finishing thermometer 9 measures the finishing temperature T f (° C.) of the rolled material 7 on the exit side of the most exit side stand 4 a in the finish rolling mill 4.
  • the winding thermometer 10 measures the winding temperature T c (° C.) of the rolled material 7 on the entry side of the winder 6.
  • the temperature control device 11 is based on the rotational speed ⁇ f of the most outlet side stand 4 a in the finishing mill 4 and the finishing temperature T f of the rolled material 7 on the exit side of the most exiting stand 4 a in the finishing mill 4.
  • the required water injection amount of the first water injection facility 5a is calculated.
  • the temperature control device 11 performs feedforward control on the water injection valve of the first water injection facility 5a by outputting a signal V FWD corresponding to the required water injection amount of the first water injection facility 5a.
  • the temperature control device 11 determines the second water injection facility 5b based on the deviation between the target value T target (° C.) of the winding temperature of the rolled material 7 and the winding temperature T c of the rolled material 7 on the entry side of the winder 6. The required water injection amount is calculated. The temperature control device 11 performs feedback control on the water injection valve of the second water injection facility 5b by outputting a signal V FBK corresponding to the required water injection amount of the second water injection facility 5b.
  • FIG. 3 is a block diagram showing feedback control by the temperature control device for rolled material in Embodiment 1 of the present invention.
  • the temperature control device 11 includes a PI controller 12, a first feedback unit 13, and a second feedback unit 14.
  • the transfer function of the PI controller 12 is represented by C FBK .
  • the first feedback unit 13 includes a temperature model 13a that does not include dead time.
  • the second feedback unit 14 includes a dead time model 14a and a low-pass filter 14b.
  • the transfer function of the dead time model 14a is expressed by using a comprehensive predicted dead time T ′ ALL and a Laplace operator s.
  • the transfer function of the low-pass filter 14b is represented by LPF.
  • the 1st block 15 shows the response of the water injection valve of the 2nd water injection equipment 5b.
  • the transfer function of the first block 15 is expressed using a control delay T SC (s) in operation of the water injection valve of the second water injection facility 5b, a time constant T S (s) of the water injection valve, and a Laplace operator s.
  • the second block 16 shows the cooling process.
  • the transfer function of the second block 16 is expressed using a cooling process gain K P , a cooling process time constant T P (s), and a Laplace operator s.
  • the third block 17 indicates a dead time due to a transfer delay.
  • the transfer function of the third block 17 is expressed using a dead time T t (s) due to a transfer delay and a Laplace operator s.
  • the fourth block 18 shows the response of the winding thermometer 10.
  • the fourth block 18 is expressed using the winding temperature T C (s) of the rolled material 7 measured by the winding thermometer 10 and the Laplace operator s.
  • the PI controller 12 calculates a control amount for the cooling device 5 by using a deviation between the target value T target of the temperature of the rolled material 7 and the feedback value as an input. For example, the PI controller 12 calculates the required water injection amount of the second water injection facility 5b by inputting the deviation between the target value T target of the temperature of the rolled material 7 and the feedback value.
  • the signal V FBK corresponding to the required water injection amount of the second water injection facility 5 b passes through the first block 15 and the second block 16. As a result, a temperature drop T D FBK (° C.) of the rolled material 7 is obtained.
  • the temperature drop T D FBK of the rolled material 7 is added to the temperature drop T D FWD (° C.) of the rolled material 7 by the first water injection facility 5a.
  • the temperature of the rolled material 7 becomes (T f + T D FWD + T D FBK ).
  • the temperature (T f + T D FWD + T D FBK ) of the rolled material 7 passes through the third block 17 and the fourth block 18. As a result, the winding temperature T C of the strip 7 is obtained.
  • the first feedback unit 13 is the rolled material when the rolled material 7 cooled by the cooling device 5 using the temperature model 13 a based on the control amount calculated by the PI controller 12 reaches the winding thermometer 10. 7 is calculated. For example, the first feedback unit 13 calculates a predicted value T'C of the temperature of the rolled material 7 on the basis of a signal V FBK corresponding to the required injection amount of the second water injection facility 5b. The first feedback unit 13 feeds back the estimated value T'C of the temperature of the rolled material 7 as part of the feedback value. As a result, the responsiveness of the temperature control device 11 is determined.
  • the second feedback unit 14 calculates a value obtained by delaying by the amount the phase of the dead time with respect to the predicted value T'C of the computed temperature of the rolled material 7 by the first feedback portion 13 by using a dead time model 14a .
  • the second feedback unit 14 wasted to the prediction value T'C of the temperature of the rolled material 7, which is calculated by the coiling temperature T C and the first feedback portion 13 of the strip 7, which is measured by winding the thermometer 10
  • the deviation from the value obtained by delaying the phase by the time is calculated.
  • the second feedback unit 14 feeds back the value obtained by passing the low-pass filter 14b with respect to the deviation as the other part of the feedback value.
  • FIG. 4 is a diagram showing a simulation result of control by the temperature control device for rolled material in Embodiment 1 of the present invention.
  • the horizontal axis of FIG. 4 represents time.
  • the vertical axis in FIG. 4 represents temperature.
  • the finishing temperature Tf is set to 900 (° C.).
  • Control delay T SC in the operation of the water injection valve of the second water injection facility 5b is set to 1.5 (s).
  • Constant T S when the water injection valve of the second water injection facility 5b is set to 0.5 (s).
  • Temperature drop T D FWD of the strip 7 according to the first water injection facility 5a is set to 100 (° C.).
  • the dead time T t due to the transfer delay is set to 3 (s).
  • estimates T'SC of the control delay in the operation of the water injection valve of the second water injection facility 5b is set to 0.5 (s).
  • the estimated value T ′ S of the time constant of the water injection valve of the second water injection facility 5b is set to 0.3 (s).
  • Estimate T'P of the time constant of the cooling process is set at 1.5 (s).
  • the estimated value T ′ D FWD of the temperature drop of the rolled material 7 by the first water injection facility 5a is set to 200 (s).
  • the estimated value T ′ t of the dead time due to the transfer delay is set to 2.4 (s).
  • the cutoff frequency is set to 0.12 (rad / s).
  • the target value T target of the temperature of the rolled material 7 is set to 600 (° C.). As shown in FIG. 4, the coiling temperature T C of the rolled material 7, undershoot does not occur. Therefore, the coiling temperature T C of the strip 7 is stably and accurately follows the target value T target.
  • the model error value is fed back to the PI controller 12 in a low frequency region that is less likely to be unstable. Therefore, it is possible in the region of low frequencies, to eliminate a steady deviation between the target value T target temperature of the rolled material 7 and the coiling temperature T C of the rolled material 7. As a result, the influence of the model error value can be suppressed in a short time while maintaining stable responsiveness.
  • the initial value of the cutoff frequency of the low-pass filter 14 b is set to 0 (rad / s), and the cutoff frequency of the low-pass filter 14 b is adjusted after the temperature control of the rolled material 7 is started. Good.
  • the steady-state deviation from the time rate of change of the winding temperature T C of the rolled material 7 becomes equal to or less than a preset threshold has occurred continuously the value of the cutoff frequency of the low pass filter 14b from 0 Just raise it. Thereafter, the change in the cut-off frequency may be terminated when the steady-state deviation becomes smaller than a preset value.
  • the cutoff frequency of the low pass filter 14b should continuously increase the value of the cutoff frequency of the low pass filter 14b from 0 from the time when the deviation between the coiling temperature T C and the target value T target of the strip 7 is smaller than a predetermined threshold value That's fine. Thereafter, the change in the cut-off frequency may be terminated when the steady-state deviation becomes smaller than a preset value.
  • FIG. 5 is a hardware configuration diagram of the temperature control device for the rolled material according to Embodiment 1 of the present invention.
  • Each function of the temperature control device 11 can be realized by a processing circuit.
  • the processing circuit includes at least one processor 19a and at least one memory 19b.
  • the processing circuit comprises at least one dedicated hardware 20.
  • each function of the temperature control device 11 is realized by software, firmware, or a combination of software and firmware.
  • At least one of software and firmware is described as a program.
  • At least one of software and firmware is stored in at least one memory 19b.
  • At least one processor 19a reads out and executes a program stored in at least one memory 19b, thereby realizing each function of the temperature control device 11.
  • the at least one processor 19a is also referred to as a CPU (Central Processing Unit), a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, and a DSP.
  • the at least one memory 19b is a nonvolatile or volatile semiconductor memory such as RAM, ROM, flash memory, EPROM, or EEPROM, a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, a DVD, or the like.
  • the processing circuit comprises at least one dedicated hardware 20
  • the processing circuit is, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC, an FPGA, or a combination thereof. is there.
  • each function of the temperature control device 11 is realized by a processing circuit.
  • each function of the temperature control device 11 is collectively realized by a processing circuit.
  • a part of each function of the temperature control device 11 may be realized by the dedicated hardware 20, and the other part may be realized by software or firmware.
  • the functions of the PI controller 12 are realized by a processing circuit as the dedicated hardware 20, and for functions other than the PI controller 12, at least one processor 19a reads a program stored in at least one memory 19b. It may be realized by executing.
  • the processing circuit realizes each function of the temperature control device 11 by the hardware 20, software, firmware, or a combination thereof.
  • FIG. FIG. 6 is a block diagram showing feedback control by the temperature control device for rolled material in Embodiment 2 of the present invention.
  • symbol is attached
  • the first feedback unit 13 corrects the temperature model 13a based on the value that has passed through the low-pass filter 14b.
  • the second feedback unit 14 corrects the dead time model 14a based on the value that has passed through the low-pass filter 14b.
  • the temperature model 13a and the dead time model 14a are corrected based on values that have passed through the low-pass filter 14b. For this reason, the temperature model 13a and the dead time model 14a can be corrected stably without abrupt changes.
  • FIG. 7 is a configuration diagram of a main portion of a hot rolling line to which a rolled material temperature control apparatus according to Embodiment 3 of the present invention is applied.
  • symbol is attached
  • the finish entry side thermometer 21 is provided on the entry side of the finish rolling mill 4.
  • the finish delivery thermometer 22 is provided on the exit side of the finish rolling mill 4.
  • the plurality of cooling devices 23a to 23f are provided between adjacent stands 4a.
  • the plurality of cooling devices 23a to 23f are arranged in order from the entry side of the cooling device 23.
  • the input unit of the temperature control device 11 is connected to the output unit of the finishing input side thermometer 21 and the output unit of the finishing output side thermometer 22.
  • the output unit of the temperature control device 11 includes an input unit of the cooling device 23a, an input unit of the cooling device 23b, an input unit of the cooling device 23c, an input unit of the cooling device 23d, an input unit of the cooling device 23e, and an input unit of the cooling device 23f. And connected to.
  • the finish entry side thermometer 21 measures the temperature T e (° C.) of the rolled material 7 on the entry side of the finish rolling mill 4.
  • the finish delivery thermometer 22 measures the temperature T f (° C.) of the rolled material 7 on the exit side of the finish rolling mill 4.
  • Temperature control device 11 calculates a required injection amount of the required injection amount and the cooling device 23c of the required injection quantity of the cooling device 23a based on the temperature T e of the strip 7 at the entry side of the finishing mill 4 cooling device 23b To do.
  • the temperature control device 11 performs a feedforward control on the water injection valve of the cooling device 23a by outputting a signal VISC1 corresponding to the required water injection amount of the cooling device 23a.
  • the temperature control device 11 performs feedforward control on the water injection valve of the cooling device 23b by outputting a signal VISC2 corresponding to the required water injection amount of the cooling device 23b.
  • the temperature control device 11 performs a feedforward control on the water injection valve of the cooling device 23c by outputting a signal VISC3 corresponding to the required water injection amount of the cooling device 23c.
  • the temperature control device 11 calculates the required water injection amount of the cooling device 23d, the required water injection amount of the cooling device, and the required water injection amount of the cooling device 23f based on the temperature of the rolled material 7 on the exit side of the finish rolling mill 4.
  • the temperature control device 11 performs feedback control on the water injection valve of the cooling device 23d by outputting a signal VISC4 corresponding to the required water injection amount of the cooling device 23d.
  • the temperature control device 11 performs feedback control on the water injection valve of the cooling device 23e by outputting a signal VISC5 corresponding to the required water injection amount of the cooling device 23e.
  • the temperature control device 11 performs feedback control on the water injection valve of the cooling device 23f by outputting a signal VISC6 corresponding to the required water injection amount of the cooling device 23f.
  • FIG. 8 is a block diagram showing feedback control by the temperature control device for rolled material in Embodiment 3 of the present invention.
  • the distance from the cooling device 23d, the distance from the cooling device 23e, and the distance from the cooling device 23f are different from each other. For this reason, in the cooling device 23d, the cooling device 23e, and the cooling device 23f, the dead time due to the transfer delay is also different from each other.
  • the temperature control apparatus 11 includes a plurality of PI controllers 12, a plurality of first feedback units 13, and a plurality of second feedback units 14.
  • the first set of PI controller 12, the first feedback unit 13, and the second feedback unit 14 are provided corresponding to the cooling device 23d.
  • the second set of PI controller 12, the first feedback unit 13, and the second feedback unit 14 are provided corresponding to the cooling device 23e.
  • the third set of PI controllers 12, the first feedback unit 13, and the second feedback unit 14 are provided corresponding to the cooling device 23f.
  • Each of the plurality of PI controllers 12 includes a target value T target and a feedback value of the temperature of the rolled material 7 when the rolled material 7 cooled by the plurality of cooling devices 23a to 23f reaches the finishing-side thermometer 22.
  • the control amount for the corresponding cooling device is calculated using the deviation as input.
  • Each of the plurality of first feedback units 13 is cooled by the plurality of cooling devices 23a to 23f using the temperature model 13a that does not include a dead time based on the control amount calculated by each of the plurality of PI controllers 12.
  • a predicted value of the temperature of the rolled material 7 when the rolled material 7 reaches the finishing delivery thermometer 22 is calculated.
  • Each of the plurality of first feedback units 13 feeds back the predicted value as part of a feedback value corresponding to each of the plurality of PI controllers 12.
  • Each of the plurality of second feedback sections 14 is provided to each of the cooling devices 23d to 23f with respect to the predicted value of the temperature of the rolled material 7 calculated by each of the plurality of first feedback sections 13 using the dead time model 14a. A value obtained by delaying the phase by the corresponding dead time is calculated. Each of the plurality of second feedback sections 14 is cooled with respect to the measured value of the temperature of the rolled material 7 by the finish-side thermometer 22 and the predicted value of the temperature of the rolled material 7 calculated by each of the first feedback sections 13. The deviation from the value obtained by delaying the phase by the amount of dead time corresponding to each of the devices 23d to 23f is calculated. Each of the plurality of second feedback units 14 feeds back a value obtained by passing the deviation through the low-pass filter 14b as the other part of the feedback value corresponding to each of the plurality of PI controllers 12.
  • FIG. 8 shows the PI controller 12, the first feedback unit 13, and the second feedback unit 14 corresponding to the cooling device 23f.
  • the transfer function of the PI controller 12 is represented by CISC6 .
  • the fifth block 24 shows the response of the water injection valve of the cooling device 23f.
  • the transfer function of the fifth block 24 is expressed using the control delay T SC (s) in the operation of the water injection valve of the cooling device 23f, the time constant T S (s) of the water injection valve, and the Laplace operator s.
  • the sixth block 25 shows the cooling process.
  • the transfer function of the sixth block 25 is expressed using the cooling process gain K P , the cooling process time constant T P (s), and the Laplace operator s.
  • the seventh block 26 indicates a dead time due to a transfer delay.
  • the transfer function of the seventh block 26 is expressed using a dead time T ISC6 (s) due to a transfer delay and a Laplace operator s.
  • the eighth block 27 shows the response of the finishing delivery thermometer 22.
  • the fourth block 18 is expressed using the temperature T f of the rolled material 7 measured by the finishing delivery thermometer 22 and the Laplace operator s.
  • the PI controller 12 calculates the required water injection amount VISC6 of the cooling device 23 f with the deviation between the target value T target of the temperature of the rolled material 7 and the feedback value as an input.
  • the signal VISC6 corresponding to the required water injection amount of the cooling device 23f passes through the fifth block 24 and the sixth block 25. As a result, a temperature drop T D ISC6 (° C.) of the rolled material 7 is obtained.
  • the temperature drop T D ISC6 of the rolled material 7 is added to the temperature drop T D ISC1-5 (° C.) of the rolled material 7 by the cooling devices 23a to 23e.
  • the temperature of the rolled material 7 becomes (T e + T D ISC1-5 + T D ISC6 ).
  • the temperature (T e + T D ISC1-5 + T D ISC6 ) of the rolled material 7 passes through the seventh block 26 and the eighth block 27.
  • the temperature T f of the rolled material 7 on the exit side of the finish rolling mill 4 is obtained.
  • the first feedback unit 13 calculates a predicted value T ′ f of the temperature of the rolled material 7 based on the signal VISC6 corresponding to the required water injection amount of the cooling device 23a.
  • the first feedback unit 13 feeds back the predicted value T′f of the temperature of the rolled material 7 as a part of the feedback value. As a result, the responsiveness of the temperature control device 11 is determined.
  • the second feedback unit 14 calculates a value obtained by delaying the phase by the amount of the dead time with respect to the predicted value T ′ f of the temperature of the rolled material 7 calculated by the first feedback unit 13 using the dead time model 14a. .
  • the second feedback unit 14 the dead time with respect to the finishing delivery temperature meter 22 temperature of the rolled material 7 measured by the T f and temperature predictions T'f of the strip 7, which is calculated by the first feedback portion 13
  • the deviation from the value delayed by the phase is calculated.
  • the second feedback unit 14 feeds back the value obtained by passing the low-pass filter 14b with respect to the deviation as the other part of the feedback value.
  • the model error value is fed back to the PI controller 12 in a low frequency region that is less likely to be unstable. For this reason, in the low frequency region, the steady deviation between the temperature T f of the rolled material 7 and the target value T target of the temperature of the rolled material 7 can be eliminated. As a result, the influence of the model error value can be suppressed in a short time while maintaining stable responsiveness.
  • the initial value of the cutoff frequency of the low-pass filter 14 b is set to 0 (rad / s), and the cutoff frequency of the low-pass filter 14 b is adjusted after the temperature control of the rolled material 7 is started. Good.
  • the change in the cut-off frequency may be terminated when the steady-state deviation becomes smaller than a preset value.
  • the value of the cut-off frequency of the low-pass filter 14b may be continuously increased from 0 when the deviation between the temperature Tf of the rolled material 7 and the target value Ttarget becomes smaller than a preset threshold value. Thereafter, the change in the cut-off frequency may be terminated when the steady-state deviation becomes smaller than a preset value.
  • the low-pass filter 14b of the second feedback unit 14 corresponding to the outlet side cooling device is preferentially used.
  • the cut-off frequency may be increased to For example, if the deviation between the temperature T f of the rolled material 7 and the target value T target remains even when the cutoff frequency of the low-pass filter 14b of the cooling device 23f reaches a preset frequency, the cutoff frequency of the cooling device 23e. Just raise it.
  • FIG. 9 is a block diagram showing feedback control by the temperature control device 11 of the rolled material 7 in Embodiment 4 of the present invention.
  • symbol is attached
  • each of the first feedback units 13 corrects the corresponding temperature model 13a based on the value that has passed through the corresponding low-pass filter 14b.
  • Each of the second feedback units 14 corrects the corresponding dead time model 14a based on the value that has passed through the corresponding low-pass filter 14b.
  • the temperature model 13a and the dead time model 14a are corrected based on values that have passed through the low-pass filter 14b. For this reason, the temperature model 13a and the dead time model 14a can be corrected stably without abrupt changes.
  • the PI controller 12, the first feedback unit 13 and the second feedback unit 14 of the third and fourth embodiments are the same as the PI controller, the first feedback unit, and the first feedback unit. Two feedback units may be applied. Also in this case, the influence of the model error value can be suppressed in a short time while maintaining a stable response.
  • the temperature control device for rolled material according to the present invention can be used for a system that suppresses the influence of a model error value in a short time.
  • thermometer 1 Heating furnace, 2 Rough rolling mill, 3 Induction heating device, 4 Finish rolling mill, 4a stand, 5 Cooling device, 5a 1st water injection equipment, 5b 2nd water injection equipment, 6 Winding machine, 7 Rolling material, 8 Speed detection , 9 finish thermometer, 10 take-up thermometer, 11 temperature controller, 12 PI controller, 13 1st feedback part, 13a temperature model, 14 2nd feedback part, 14a dead time model, 14b low-pass filter, 15th 1 block, 16 second block, 17 third block, 18 fourth block, 19a processor, 19b memory, 20 hardware, 21 finish input side thermometer, 22 finish exit side thermometer, 23a-23f cooling device, 24th 5 blocks, 25 6th Rock, 26 seventh block, 27 eighth block

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)

Abstract

Provided is a temperature control device (11) for a rolled material (7) whereby the impacts of a model error value can be suppressed in a short period of time. The temperature control device (11) for the rolled material (7) is provided with: a controller (12) for taking a deviation between a target value and feedback value of the temperature of the rolled material (7) as an input to compute a control quantity for a cooling device (5); a first feedback unit (13) for using a temperature model (13a) not including a dead time on the basis of the control quantity to compute a predicted value for the temperature of the rolled material (7) and for feeding back the predicted value; and a second feedback unit (14) for using a dead time model (14a) to compute a value by which phase is delayed by an amount commensurate with the dead time relative to the predicted value of the temperature of the rolled material (7), computing the deviation between a measured value of the temperature of the rolled material (7) and the value obtained by delaying phase by the amount commensurate with the dead time with respect to the predicted value of the temperature of the rolled material (7), and feeding back a value obtained by having this deviation pass through a low-pass filter (14b).

Description

圧延材の温度制御装置Rolling material temperature control device
 この発明は、圧延材の温度制御装置に関する。 This invention relates to a temperature control device for rolled material.
 特許文献1は、圧延材の温度制御装置を開示する。当該温度制御装置は、制御モデルを用いて圧延材の温度を制御する。当該温度制御装置は、実績制御量が安定しているときにオンラインで制御モデルを修正する。その結果、モデル誤差値の影響が抑制される。 Patent Document 1 discloses a temperature control device for rolled material. The said temperature control apparatus controls the temperature of a rolling material using a control model. The temperature control device corrects the control model online when the actual control amount is stable. As a result, the influence of the model error value is suppressed.
日本特開2011-008437号公報Japanese Unexamined Patent Publication No. 2011-008437
 しかしながら、特許文献1に記載のものにおいては、実績制御量が安定していないときに制御モデルが修正されない。このため、制御モデルの誤差の影響が抑制されるまでに時間がかかる。 However, in the thing of patent document 1, when a track record control amount is not stable, a control model is not corrected. For this reason, it takes time until the influence of the control model error is suppressed.
 この発明は、上述の課題を解決するためになされた。この発明の目的は、モデル誤差値の影響を短時間で抑制することができる圧延材の温度制御装置を提供することである。 This invention has been made to solve the above-mentioned problems. An object of the present invention is to provide a rolled material temperature control device capable of suppressing the influence of a model error value in a short time.
 この発明に係る圧延材の温度制御装置は、熱間圧延ラインの圧延機と巻取機との間に設けられた冷却装置により冷却された圧延材が前記冷却装置と前記巻取機との間に設けられた温度計に到達した際における当該圧延材の温度の目標値とフィードバック値との偏差を入力として前記冷却装置に対する制御量を演算する制御器と、前記制御器により演算された制御量に基づいてむだ時間を含まない温度モデルを用いて前記冷却装置により冷却された圧延材が前記温度計に到達した際における当該圧延材の温度の予測値を演算し、当該予測値を前記フィードバック値の一部としてフィードバックする第1フィードバック部と、むだ時間モデルを用いて前記第1フィードバック部により演算された圧延材の温度の予測値に対してむだ時間の分だけ位相を遅らせた値を演算し、前記温度計による圧延材の温度の計測値と前記第1フィードバック部により演算された圧延材の温度の予測値に対してむだ時間の分だけ位相を遅らせた値との偏差を演算し、当該偏差に対してローパスフィルタを通過させた値を前記フィードバック値の他部としてフィードバックする第2フィードバック部と、を備えた。 The temperature control device for a rolled material according to the present invention provides a rolling material cooled by a cooling device provided between a rolling mill and a winder in a hot rolling line between the cooling device and the winder. A controller for calculating a control amount for the cooling device with a deviation between a target value and a feedback value of the temperature of the rolled material when reaching a thermometer provided in the control unit, and a control amount calculated by the controller Based on the temperature model that does not include a dead time, the rolling material cooled by the cooling device calculates a predicted value of the temperature of the rolled material when it reaches the thermometer, and the predicted value is the feedback value The first feedback part that feeds back as a part of the time, and the dead time corresponding to the predicted value of the temperature of the rolled material calculated by the first feedback part using the dead time model A value obtained by calculating a value obtained by delaying the phase, and a value obtained by delaying the phase by a dead time with respect to a measured value of the temperature of the rolled material by the thermometer and a predicted value of the temperature of the rolled material calculated by the first feedback unit. And a second feedback unit that feeds back a value obtained by passing a low-pass filter with respect to the deviation as another part of the feedback value.
 この発明に係る圧延材の温度制御装置は、熱間圧延ラインの仕上圧延機の複数のスタンドの間に設けられた冷却装置により冷却された圧延材が前記仕上圧延機の出側に設けられた温度計に到達した際における当該圧延材の温度の目標値とフィードバック値との偏差を入力として前記冷却装置に対する制御量を演算する制御器と、前記制御器により演算された制御量に基づいてむだ時間を含まない温度モデルを用いて前記冷却装置により冷却された圧延材が前記温度計に到達した際における当該圧延材の温度の予測値を演算し、当該予測値を前記フィードバック値の一部としてフィードバックする第1フィードバック部と、むだ時間モデルを用いて前記第1フィードバック部により演算された圧延材の温度の予測値に対してむだ時間の分だけ位相を遅らせた値を演算し、前記温度計による圧延材の温度の計測値と前記第1フィードバック部により演算された圧延材の温度の予測値に対してむだ時間の分だけ位相を遅らせた値との偏差を演算し、当該偏差に対してローパスフィルタを通過させた値を前記フィードバック値の他部としてフィードバックする第2フィードバック部と、を備えた。 In the rolled material temperature control device according to the present invention, a rolled material cooled by a cooling device provided between a plurality of stands of a finish rolling mill of a hot rolling line is provided on the outlet side of the finishing mill. A controller that calculates a control amount for the cooling device by using a deviation between a target value of the temperature of the rolled material and a feedback value when reaching the thermometer, and waste based on the control amount calculated by the controller Calculate a predicted value of the temperature of the rolled material when the rolled material cooled by the cooling device using the temperature model not including time reaches the thermometer, and the predicted value as a part of the feedback value The first feedback part that feeds back, and the dead time corresponding to the predicted value of the temperature of the rolled material calculated by the first feedback part using the dead time model A value obtained by calculating a value obtained by delaying the phase, and a value obtained by delaying the phase by a dead time with respect to a measured value of the temperature of the rolled material by the thermometer and a predicted value of the temperature of the rolled material calculated by the first feedback unit. And a second feedback unit that feeds back a value obtained by passing a low-pass filter with respect to the deviation as another part of the feedback value.
 この発明に係る圧延材の温度制御装置は、熱間圧延ラインの仕上圧延機の複数のスタンドに対して隣接したスタンドの間にそれぞれ設けられた複数の冷却装置により冷却された圧延材が前記仕上圧延機の出側に設けられた温度計に到達した際における当該圧延材の温度の目標値とフィードバック値との偏差を入力として前記複数の冷却装置の各々に対する制御量を演算する複数の制御器と、前記複数の制御器の各々により演算された制御量に基づいてむだ時間を含まない温度モデルを用いて前記複数の冷却装置により冷却された圧延材が前記温度計に到達した際における当該圧延材の温度の予測値を演算し、当該予測値を前記複数の制御器の各々に対応したフィードバック値の一部としてフィードバックする複数の第1フィードバック部と、前記複数の冷却装置の各々に対応したむだ時間モデルを用いて前記複数の第1フィードバック部の各々により演算された圧延材の温度の予測値に対して前記複数の冷却装置の各々に対応したむだ時間の分だけ位相を遅らせた値を演算し、前記温度計による圧延材の温度の計測値と前記複数の第1フィードバック部の各々により演算された圧延材の温度の予測値に対して前記複数の冷却装置の各々に対応したむだ時間の分だけ位相を遅らせた値との偏差を演算し、当該偏差に対してローパスフィルタを通過させた値を前記複数の制御器の各々に対応したフィードバック値の他部としてフィードバックする複数の第2フィードバック部と、を備えた。 The temperature control device for a rolled material according to the present invention is characterized in that a rolled material cooled by a plurality of cooling devices respectively provided between stands adjacent to a plurality of stands of a finish rolling mill of a hot rolling line is the finish. A plurality of controllers that calculate a control amount for each of the plurality of cooling devices by inputting a deviation between a target value and a feedback value of the temperature of the rolled material when reaching a thermometer provided on the exit side of the rolling mill And when the rolled material cooled by the plurality of cooling devices reaches the thermometer using a temperature model that does not include a dead time based on the control amount calculated by each of the plurality of controllers. A plurality of first feedback units for calculating a predicted value of the temperature of the material and feeding back the predicted value as part of a feedback value corresponding to each of the plurality of controllers; Using the dead time model corresponding to each of the plurality of cooling devices, the dead time corresponding to each of the plurality of cooling devices with respect to the predicted value of the temperature of the rolled material calculated by each of the plurality of first feedback units. A value obtained by delaying the phase by the amount of time is calculated, and the plurality of measured values of the temperature of the rolled material by the thermometer and the predicted value of the temperature of the rolled material calculated by each of the plurality of first feedback units are calculated. The deviation from the value delayed in phase by the amount of dead time corresponding to each of the cooling devices is calculated, and the value obtained by passing the low-pass filter with respect to the deviation is a feedback value corresponding to each of the plurality of controllers. And a plurality of second feedback units that feed back as other units.
 これらの発明によれば、モデル誤差値は、不安定になりにくい低周波数の領域において制御器にフィードバックされる。このため、低周波数の領域において、圧延材の温度の計測値と圧延材の温度の目標値との定常的な偏差を解消することができる。その結果、モデル誤差値の影響を短時間で抑制することができる。 According to these inventions, the model error value is fed back to the controller in a low frequency region where it is difficult to become unstable. For this reason, in the low frequency region, a steady deviation between the measured value of the temperature of the rolled material and the target value of the temperature of the rolled material can be eliminated. As a result, the influence of the model error value can be suppressed in a short time.
この発明の実施の形態1における圧延材の温度制御装置が適用された熱間圧延ラインの構成図である。It is a block diagram of the hot rolling line to which the temperature control apparatus of the rolling material in Embodiment 1 of this invention was applied. この発明の実施の形態1における圧延材の温度制御装置が適用された熱間圧延ラインの要部の構成図である。It is a block diagram of the principal part of the hot rolling line to which the temperature control apparatus of the rolling material in Embodiment 1 of this invention was applied. この発明の実施の形態1における圧延材の温度制御装置によるフィードバック制御を示すブロック図である。It is a block diagram which shows the feedback control by the temperature control apparatus of the rolling material in Embodiment 1 of this invention. この発明の実施の形態1における圧延材の温度制御装置による制御のシミュレーション結果を示す図である。It is a figure which shows the simulation result of the control by the temperature control apparatus of the rolling material in Embodiment 1 of this invention. この発明の実施の形態1における圧延材の温度制御装置のハードウェア構成図である。It is a hardware block diagram of the temperature control apparatus of the rolling material in Embodiment 1 of this invention. この発明の実施の形態2における圧延材の温度制御装置によるフィードバック制御を示すブロック図である。It is a block diagram which shows the feedback control by the temperature control apparatus of the rolling material in Embodiment 2 of this invention. この発明の実施の形態3における圧延材の温度制御装置が適用された熱間圧延ラインの要部の構成図である。It is a block diagram of the principal part of the hot rolling line to which the temperature control apparatus of the rolling material in Embodiment 3 of this invention was applied. この発明の実施の形態3における圧延材の温度制御装置によるフィードバック制御を示すブロック図である。It is a block diagram which shows the feedback control by the temperature control apparatus of the rolling material in Embodiment 3 of this invention. この発明の実施の形態4における圧延材の温度制御装置によるフィードバック制御を示すブロック図である。It is a block diagram which shows the feedback control by the temperature control apparatus of the rolling material in Embodiment 4 of this invention.
 この発明を実施するための形態について添付の図面に従って説明する。なお、各図中、同一又は相当する部分には同一の符号が付される。当該部分の重複説明は適宜に簡略化ないし省略する。 DETAILED DESCRIPTION Embodiments for carrying out the present invention will be described with reference to the accompanying drawings. In addition, the same code | symbol is attached | subjected to the part which is the same or it corresponds in each figure. The overlapping explanation of the part is appropriately simplified or omitted.
実施の形態1.
 図1はこの発明の実施の形態1における圧延材の温度制御装置が適用された熱間圧延ラインの構成図である。
Embodiment 1 FIG.
FIG. 1 is a configuration diagram of a hot rolling line to which a rolled material temperature control apparatus according to Embodiment 1 of the present invention is applied.
 図1において、加熱炉1は、熱間圧延ラインの入側に設けられる。粗圧延機2は、加熱炉1の出側に設けられる。誘導加熱装置3は、粗圧延機2の出側に設けられる。仕上圧延機4は、誘導加熱装置3の出側に設けられる。仕上圧延機4は、複数のスタンド4aを備える。例えば、仕上圧延機4は、5台から7台のスタンド4aを備える。図1の仕上圧延機4は、6台のスタンド4aを備える。冷却装置5は、仕上圧延機4の出側に設けられる。巻取機6は、冷却装置5の出側に設けられる。 1, the heating furnace 1 is provided on the entry side of the hot rolling line. The rough rolling mill 2 is provided on the exit side of the heating furnace 1. The induction heating device 3 is provided on the exit side of the rough rolling mill 2. The finish rolling mill 4 is provided on the exit side of the induction heating device 3. The finish rolling mill 4 includes a plurality of stands 4a. For example, the finish rolling mill 4 includes 5 to 7 stands 4a. The finishing mill 4 of FIG. 1 includes six stands 4a. The cooling device 5 is provided on the exit side of the finishing mill 4. The winder 6 is provided on the exit side of the cooling device 5.
 圧延材7は、加熱炉1の内部に装入される。その後、圧延材7は、加熱炉1により加熱される。その後、圧延材7は、加熱炉1から抽出される。その後、圧延材7は、粗圧延機2により圧延される。その後、圧延材7の端部は、誘導加熱装置3により加熱される。その後、圧延材7は、仕上圧延機4の各スタンド4aにより圧延される。その後、圧延材7は、冷却装置5に冷却される。その後、当該圧延材7は、巻取機6により巻き取られる。 The rolled material 7 is charged into the heating furnace 1. Thereafter, the rolled material 7 is heated by the heating furnace 1. Thereafter, the rolled material 7 is extracted from the heating furnace 1. Thereafter, the rolled material 7 is rolled by the rough rolling machine 2. Thereafter, the end of the rolled material 7 is heated by the induction heating device 3. Thereafter, the rolled material 7 is rolled by each stand 4a of the finish rolling mill 4. Thereafter, the rolled material 7 is cooled by the cooling device 5. Thereafter, the rolled material 7 is wound up by a winder 6.
 次に、図2を用いて、熱間圧延ラインの要部を説明する。
 図2はこの発明の実施の形態1における圧延材の温度制御装置が適用された熱間圧延ラインの要部の構成図である。
Next, the principal part of a hot rolling line is demonstrated using FIG.
FIG. 2 is a configuration diagram of a main part of a hot rolling line to which the temperature control device for rolled material according to Embodiment 1 of the present invention is applied.
 図2において、速度検出器8は、仕上圧延機4における最も出側のスタンド4aに対応して設けられる。仕上温度計9は、仕上圧延機4における最も出側のスタンド4aと冷却装置5との間に設けられる。仕上温度計9は、仕上圧延機4における最も出側のスタンド4aの出側に設けられる。巻取温度計10は、冷却装置5と巻取機6との間に設けられる。巻取温度計10は、巻取機6の入側に設けられる。 In FIG. 2, the speed detector 8 is provided corresponding to the most stand 4a in the finishing mill 4. The finishing thermometer 9 is provided between the most stand 4 a and the cooling device 5 in the finishing mill 4. The finishing thermometer 9 is provided on the exit side of the most exit side stand 4 a in the finishing mill 4. The winding thermometer 10 is provided between the cooling device 5 and the winder 6. The winding thermometer 10 is provided on the entry side of the winding machine 6.
 冷却装置5は、第1注水設備5aと第2注水設備5bとを備える。第1注水設備5aは、冷却装置5の入側に配置される。第2注水設備5bは、冷却装置5の出側に配置される。 The cooling device 5 includes a first water injection facility 5a and a second water injection facility 5b. The first water injection facility 5 a is disposed on the entry side of the cooling device 5. The second water injection facility 5b is disposed on the outlet side of the cooling device 5.
 温度制御装置11の入力部は、速度検出器8の出力部と仕上温度計9の出力部と巻取温度計10の出力部とに接続される。温度制御装置11の出力部は、第1注水設備5aの入力部と第2注水設備5bの入力部とに接続される。 The input unit of the temperature control device 11 is connected to the output unit of the speed detector 8, the output unit of the finishing thermometer 9, and the output unit of the winding thermometer 10. The output unit of the temperature control device 11 is connected to the input unit of the first water injection facility 5a and the input unit of the second water injection facility 5b.
 速度検出器8は、仕上圧延機4における最も出側のスタンド4aの回転速度ω(rad/s)を検出する。仕上温度計9は、仕上圧延機4における最も出側のスタンド4aの出側における圧延材7の仕上温度T(℃)を計測する。巻取温度計10は、巻取機6の入側における圧延材7の巻取温度T(℃)を計測する。 Speed detector 8 detects the rotational speed of the most exit side of a stand 4a of the finishing mill 4 ω f (rad / s) . The finishing thermometer 9 measures the finishing temperature T f (° C.) of the rolled material 7 on the exit side of the most exit side stand 4 a in the finish rolling mill 4. The winding thermometer 10 measures the winding temperature T c (° C.) of the rolled material 7 on the entry side of the winder 6.
 温度制御装置11は、仕上圧延機4における最も出側のスタンド4aの回転速度ωと仕上圧延機4における最も出側のスタンド4aの出側における圧延材7の仕上温度Tとに基づいて第1注水設備5aの所要注水量を演算する。温度制御装置11は、第1注水設備5aの所要注水量に対応した信号VFWDを出力することにより第1注水設備5aの注水バルブに対してフィードフォワード制御を行う。 The temperature control device 11 is based on the rotational speed ω f of the most outlet side stand 4 a in the finishing mill 4 and the finishing temperature T f of the rolled material 7 on the exit side of the most exiting stand 4 a in the finishing mill 4. The required water injection amount of the first water injection facility 5a is calculated. The temperature control device 11 performs feedforward control on the water injection valve of the first water injection facility 5a by outputting a signal V FWD corresponding to the required water injection amount of the first water injection facility 5a.
 温度制御装置11は、圧延材7の巻取温度の目標値Ttarget(℃)と巻取機6の入側における圧延材7の巻取温度Tとの偏差に基づいて第2注水設備5bの所要注水量を演算する。温度制御装置11は、第2注水設備5bの所要注水量に対応した信号VFBKを出力することにより第2注水設備5bの注水バルブに対してフィードバック制御を行う。 The temperature control device 11 determines the second water injection facility 5b based on the deviation between the target value T target (° C.) of the winding temperature of the rolled material 7 and the winding temperature T c of the rolled material 7 on the entry side of the winder 6. The required water injection amount is calculated. The temperature control device 11 performs feedback control on the water injection valve of the second water injection facility 5b by outputting a signal V FBK corresponding to the required water injection amount of the second water injection facility 5b.
 次に、図3を用いて、温度制御装置11によるフィードバック制御を説明する。
 図3はこの発明の実施の形態1における圧延材の温度制御装置によるフィードバック制御を示すブロック図である。
Next, feedback control by the temperature control device 11 will be described with reference to FIG.
FIG. 3 is a block diagram showing feedback control by the temperature control device for rolled material in Embodiment 1 of the present invention.
 図3に示すように、温度制御装置11は、PI制御器12と第1フィードバック部13と第2フィードバック部14とを備える。 As shown in FIG. 3, the temperature control device 11 includes a PI controller 12, a first feedback unit 13, and a second feedback unit 14.
 PI制御器12の伝達関数は、CFBKで表される。第1フィードバック部13は、むだ時間を含まない温度モデル13aを備える。第2フィードバック部14は、むだ時間モデル14aとローパスフィルタ14bとを備える。むだ時間モデル14aの伝達関数は、総合的なむだ時間の予測値T´ALLとラプラス演算子sとを用いて表される。ローパスフィルタ14bの伝達関数は、LPFで表される。 The transfer function of the PI controller 12 is represented by C FBK . The first feedback unit 13 includes a temperature model 13a that does not include dead time. The second feedback unit 14 includes a dead time model 14a and a low-pass filter 14b. The transfer function of the dead time model 14a is expressed by using a comprehensive predicted dead time T ′ ALL and a Laplace operator s. The transfer function of the low-pass filter 14b is represented by LPF.
 第1ブロック15は、第2注水設備5bの注水バルブの応答を示す。第1ブロック15の伝達関数は、第2注水設備5bの注水バルブの操作における制御遅れTSC(s)と当該注水バルブの時定数T(s)とラプラス演算子sとを用いて表される。第2ブロック16は、冷却プロセスを示す。第2ブロック16の伝達関数は、冷却プロセスのゲインKと冷却プロセスの時定数T(s)とラプラス演算子sとを用いて表される。第3ブロック17は、移送遅れによるむだ時間を示す。第3ブロック17の伝達関数は、移送遅れによるむだ時間T(s)とラプラス演算子sとを用いて表される。第4ブロック18は、巻取温度計10の応答を示す。第4ブロック18は、巻取温度計10に計測された圧延材7の巻取温度T(s)とラプラス演算子sを用いて表される。 The 1st block 15 shows the response of the water injection valve of the 2nd water injection equipment 5b. The transfer function of the first block 15 is expressed using a control delay T SC (s) in operation of the water injection valve of the second water injection facility 5b, a time constant T S (s) of the water injection valve, and a Laplace operator s. The The second block 16 shows the cooling process. The transfer function of the second block 16 is expressed using a cooling process gain K P , a cooling process time constant T P (s), and a Laplace operator s. The third block 17 indicates a dead time due to a transfer delay. The transfer function of the third block 17 is expressed using a dead time T t (s) due to a transfer delay and a Laplace operator s. The fourth block 18 shows the response of the winding thermometer 10. The fourth block 18 is expressed using the winding temperature T C (s) of the rolled material 7 measured by the winding thermometer 10 and the Laplace operator s.
 温度制御装置11において、PI制御器12は、当該圧延材7の温度の目標値Ttargetとフィードバック値との偏差を入力として冷却装置5に対する制御量を演算する。例えば、PI制御器12は、当該圧延材7の温度の目標値Ttargetとフィードバック値との偏差を入力として第2注水設備5bの所要注水量を演算する。第2注水設備5bの所要注水量に対応した信号VFBKは、第1ブロック15と第2ブロック16とを経由する。その結果、圧延材7の温度降下T FBK(℃)が得られる。 In the temperature control device 11, the PI controller 12 calculates a control amount for the cooling device 5 by using a deviation between the target value T target of the temperature of the rolled material 7 and the feedback value as an input. For example, the PI controller 12 calculates the required water injection amount of the second water injection facility 5b by inputting the deviation between the target value T target of the temperature of the rolled material 7 and the feedback value. The signal V FBK corresponding to the required water injection amount of the second water injection facility 5 b passes through the first block 15 and the second block 16. As a result, a temperature drop T D FBK (° C.) of the rolled material 7 is obtained.
 圧延材7の温度降下T FBKは、第1注水設備5aによる圧延材7の温度降下T FWD(℃)に加わる。圧延材7の温度降下T FWDと圧延材7の温度降下T FBKとは、圧延材7の仕上温度Tに加わる。その結果、圧延材7の温度は、(T+T FWD+T FBK)となる。圧延材7の温度(T+T FWD+T FBK)は、第3ブロック17と第4ブロック18とを経由する。その結果、圧延材7の巻上温度Tが得られる。 The temperature drop T D FBK of the rolled material 7 is added to the temperature drop T D FWD (° C.) of the rolled material 7 by the first water injection facility 5a. A temperature drop T D FWD of the strip 7 and the temperature drop T D FBK of the strip 7, applied to the finishing temperature T f of the strip 7. As a result, the temperature of the rolled material 7 becomes (T f + T D FWD + T D FBK ). The temperature (T f + T D FWD + T D FBK ) of the rolled material 7 passes through the third block 17 and the fourth block 18. As a result, the winding temperature T C of the strip 7 is obtained.
 第1フィードバック部13は、PI制御器12により演算された制御量に基づいて温度モデル13aを用いて冷却装置5により冷却された圧延材7が巻取温度計10に到達した際における当該圧延材7の温度の予測値を演算する。例えば、第1フィードバック部13は、第2注水設備5bの所要注水量に対応した信号VFBKに基づいて圧延材7の温度の予測値T´を演算する。第1フィードバック部13は、圧延材7の温度の予測値T´をフィードバック値の一部としてフィードバックする。その結果、温度制御装置11の応答性が決定する。 The first feedback unit 13 is the rolled material when the rolled material 7 cooled by the cooling device 5 using the temperature model 13 a based on the control amount calculated by the PI controller 12 reaches the winding thermometer 10. 7 is calculated. For example, the first feedback unit 13 calculates a predicted value T'C of the temperature of the rolled material 7 on the basis of a signal V FBK corresponding to the required injection amount of the second water injection facility 5b. The first feedback unit 13 feeds back the estimated value T'C of the temperature of the rolled material 7 as part of the feedback value. As a result, the responsiveness of the temperature control device 11 is determined.
 第2フィードバック部14は、むだ時間モデル14aを用いて第1フィードバック部13により演算された圧延材7の温度の予測値T´に対してむだ時間の分だけ位相を遅らせた値を演算する。第2フィードバック部14は、巻取温度計10により計測された圧延材7の巻取温度Tと第1フィードバック部13により演算された圧延材7の温度の予測値T´に対してむだ時間の分だけ位相を遅らせた値との偏差を演算する。第2フィードバック部14は、当該偏差に対してローパスフィルタ14bを通過させた値をフィードバック値の他部としてフィードバックする。 The second feedback unit 14 calculates a value obtained by delaying by the amount the phase of the dead time with respect to the predicted value T'C of the computed temperature of the rolled material 7 by the first feedback portion 13 by using a dead time model 14a . The second feedback unit 14, wasted to the prediction value T'C of the temperature of the rolled material 7, which is calculated by the coiling temperature T C and the first feedback portion 13 of the strip 7, which is measured by winding the thermometer 10 The deviation from the value obtained by delaying the phase by the time is calculated. The second feedback unit 14 feeds back the value obtained by passing the low-pass filter 14b with respect to the deviation as the other part of the feedback value.
 次に、図4を用いて、温度制御装置11による制御のシミュレーション結果を説明する。
 図4はこの発明の実施の形態1における圧延材の温度制御装置による制御のシミュレーション結果を示す図である。図4の横軸は時間を表す。図4の縦軸は温度を表す。
Next, a simulation result of control by the temperature control device 11 will be described with reference to FIG.
FIG. 4 is a diagram showing a simulation result of control by the temperature control device for rolled material in Embodiment 1 of the present invention. The horizontal axis of FIG. 4 represents time. The vertical axis in FIG. 4 represents temperature.
 シミュレーションにおいて、仕上温度Tは900(℃)に設定される。第2注水設備5bの注水バルブの操作における制御遅れTSCは1.5(s)に設定される。第2注水設備5bの注水バルブの時定数Tは0.5(s)に設定される。冷却プロセスの時定数Tは2(s)に設定される。第1注水設備5aによる圧延材7の温度降下T FWDは100(℃)に設定される。移送遅れによるむだ時間Tは3(s)に設定される。 In the simulation, the finishing temperature Tf is set to 900 (° C.). Control delay T SC in the operation of the water injection valve of the second water injection facility 5b is set to 1.5 (s). Constant T S when the water injection valve of the second water injection facility 5b is set to 0.5 (s). Constant T P when the cooling process is set to 2 (s). Temperature drop T D FWD of the strip 7 according to the first water injection facility 5a is set to 100 (° C.). The dead time T t due to the transfer delay is set to 3 (s).
 むだ時間モデル14aにおいて、第2注水設備5bの注水バルブの操作における制御遅れの推定値T´SCは0.5(s)に設定される。第2注水設備5bの注水バルブの時定数の推定値T´は0.3(s)に設定される。冷却プロセスの時定数の推定値T´は1.5(s)に設定される。第1注水設備5aによる圧延材7の温度降下の推定値T´ FWDは200(s)に設定される。移送遅れによるむだ時間の推定値T´は2.4(s)に設定される。 In dead time model 14a, estimates T'SC of the control delay in the operation of the water injection valve of the second water injection facility 5b is set to 0.5 (s). The estimated value T ′ S of the time constant of the water injection valve of the second water injection facility 5b is set to 0.3 (s). Estimate T'P of the time constant of the cooling process is set at 1.5 (s). The estimated value T ′ D FWD of the temperature drop of the rolled material 7 by the first water injection facility 5a is set to 200 (s). The estimated value T ′ t of the dead time due to the transfer delay is set to 2.4 (s).
 ローパスフィルタ14bにおいて、カットオフ周波数は0.12(rad/s)に設定される。 In the low-pass filter 14b, the cutoff frequency is set to 0.12 (rad / s).
 図4において、圧延材7の温度の目標値Ttargetは600(℃)に設定される。図4に示すように、圧延材7の巻取温度Tにおいて、アンダーシュートは生じない。このため、圧延材7の巻取温度Tは、安定かつ正確に目標値Ttargetに追従する。 In FIG. 4, the target value T target of the temperature of the rolled material 7 is set to 600 (° C.). As shown in FIG. 4, the coiling temperature T C of the rolled material 7, undershoot does not occur. Therefore, the coiling temperature T C of the strip 7 is stably and accurately follows the target value T target.
 以上で説明した実施の形態1によれば、モデル誤差値は、不安定になりにくい低周波数の領域においてPI制御器12にフィードバックされる。このため、低周波数の領域において、圧延材7の巻取温度Tと圧延材7の温度の目標値Ttargetとの定常的な偏差を解消することができる。その結果、安定した応答性を保ちつつ、モデル誤差値の影響を短時間で抑制することができる。 According to the first embodiment described above, the model error value is fed back to the PI controller 12 in a low frequency region that is less likely to be unstable. Therefore, it is possible in the region of low frequencies, to eliminate a steady deviation between the target value T target temperature of the rolled material 7 and the coiling temperature T C of the rolled material 7. As a result, the influence of the model error value can be suppressed in a short time while maintaining stable responsiveness.
 なお、第2フィードバック部14において、ローパスフィルタ14bのカットオフ周波数の初期値を0(rad/s)に設定し、圧延材7の温度制御開始後にローパスフィルタ14bのカットオフ周波数を調整してもよい。 In the second feedback unit 14, the initial value of the cutoff frequency of the low-pass filter 14 b is set to 0 (rad / s), and the cutoff frequency of the low-pass filter 14 b is adjusted after the temperature control of the rolled material 7 is started. Good.
 例えば、圧延材7の巻取温度Tの変化率が予め設定された閾値以下になった時点から定常偏差が生じたと判定して、ローパスフィルタ14bのカットオフ周波数の値を0から連続的に上げていけばよい。その後、定常偏差が予め設定された値よりも小さくなった時点でカットオフ周波数の変化を終了させればよい。 For example, it is determined that the steady-state deviation from the time rate of change of the winding temperature T C of the rolled material 7 becomes equal to or less than a preset threshold has occurred continuously the value of the cutoff frequency of the low pass filter 14b from 0 Just raise it. Thereafter, the change in the cut-off frequency may be terminated when the steady-state deviation becomes smaller than a preset value.
 例えば、圧延材7の巻取温度Tと目標値Ttargetとの偏差が予め設定された閾値よりも小さくなった時点からローパスフィルタ14bのカットオフ周波数の値を0から連続的に上げていけばよい。その後、定常偏差が予め設定された値よりも小さくなった時点でカットオフ周波数の変化を終了させればよい。 For example, it should continuously increase the value of the cutoff frequency of the low pass filter 14b from 0 from the time when the deviation between the coiling temperature T C and the target value T target of the strip 7 is smaller than a predetermined threshold value That's fine. Thereafter, the change in the cut-off frequency may be terminated when the steady-state deviation becomes smaller than a preset value.
 次に、図5を用いて、温度制御装置11の例を説明する。
 図5はこの発明の実施の形態1における圧延材の温度制御装置のハードウェア構成図である。
Next, an example of the temperature control device 11 will be described with reference to FIG.
FIG. 5 is a hardware configuration diagram of the temperature control device for the rolled material according to Embodiment 1 of the present invention.
 温度制御装置11の各機能は、処理回路により実現し得る。例えば、処理回路は、少なくとも1つのプロセッサ19aと少なくとも1つのメモリ19bとを備える。例えば、処理回路は、少なくとも1つの専用のハードウェア20を備える。 Each function of the temperature control device 11 can be realized by a processing circuit. For example, the processing circuit includes at least one processor 19a and at least one memory 19b. For example, the processing circuit comprises at least one dedicated hardware 20.
 処理回路が少なくとも1つのプロセッサ19aと少なくとも1つのメモリ19bとを備える場合、温度制御装置11の各機能は、ソフトウェア、ファームウェア、又はソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェアおよびファームウェアの少なくとも一方は、プログラムとして記述される。ソフトウェアおよびファームウェアの少なくとも一方は、少なくとも1つのメモリ19bに格納される。少なくとも1つのプロセッサ19aは、少なくとも1つのメモリ19bに記憶されたプログラムを読み出して実行することにより、温度制御装置11の各機能を実現する。少なくとも1つのプロセッサ19aは、CPU(Central Processing Unit)、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、DSPともいう。例えば、少なくとも1つのメモリ19bは、RAM、ROM、フラッシュメモリ、EPROM、EEPROM等の、不揮発性又は揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVD等である。 When the processing circuit includes at least one processor 19a and at least one memory 19b, each function of the temperature control device 11 is realized by software, firmware, or a combination of software and firmware. At least one of software and firmware is described as a program. At least one of software and firmware is stored in at least one memory 19b. At least one processor 19a reads out and executes a program stored in at least one memory 19b, thereby realizing each function of the temperature control device 11. The at least one processor 19a is also referred to as a CPU (Central Processing Unit), a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, and a DSP. For example, the at least one memory 19b is a nonvolatile or volatile semiconductor memory such as RAM, ROM, flash memory, EPROM, or EEPROM, a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, a DVD, or the like.
 処理回路が少なくとも1つの専用のハードウェア20を備える場合、処理回路は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC、FPGA、又はこれらを組み合わせたものである。例えば、温度制御装置11の各機能は、それぞれ処理回路で実現される。例えば、温度制御装置11の各機能は、まとめて処理回路で実現される。 If the processing circuit comprises at least one dedicated hardware 20, the processing circuit is, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC, an FPGA, or a combination thereof. is there. For example, each function of the temperature control device 11 is realized by a processing circuit. For example, each function of the temperature control device 11 is collectively realized by a processing circuit.
 温度制御装置11の各機能について、一部を専用のハードウェア20で実現し、他部をソフトウェア又はファームウェアで実現してもよい。例えば、PI制御器12の機能については専用のハードウェア20としての処理回路で実現し、PI制御器12以外の機能については少なくとも1つのプロセッサ19aが少なくとも1つのメモリ19bに格納されたプログラムを読み出して実行することによって実現してもよい。 A part of each function of the temperature control device 11 may be realized by the dedicated hardware 20, and the other part may be realized by software or firmware. For example, the functions of the PI controller 12 are realized by a processing circuit as the dedicated hardware 20, and for functions other than the PI controller 12, at least one processor 19a reads a program stored in at least one memory 19b. It may be realized by executing.
 このように、処理回路は、ハードウェア20、ソフトウェア、ファームウェア、又はこれらの組み合わせによって、温度制御装置11の各機能を実現する。 Thus, the processing circuit realizes each function of the temperature control device 11 by the hardware 20, software, firmware, or a combination thereof.
実施の形態2.
 図6はこの発明の実施の形態2における圧延材の温度制御装置によるフィードバック制御を示すブロック図である。なお、実施の形態1と同一又は相当部分には、同一符号が付される。当該部分の説明は省略される。
Embodiment 2. FIG.
FIG. 6 is a block diagram showing feedback control by the temperature control device for rolled material in Embodiment 2 of the present invention. In addition, the same code | symbol is attached | subjected to the same part as Embodiment 1, or an equivalent part. The description of this part is omitted.
 実施の形態2において、第1フィードバック部13は、ローパスフィルタ14bを通過した値に基づいて温度モデル13aを修正する。第2フィードバック部14は、ローパスフィルタ14bを通過した値に基づいてむだ時間モデル14aを修正する。 In Embodiment 2, the first feedback unit 13 corrects the temperature model 13a based on the value that has passed through the low-pass filter 14b. The second feedback unit 14 corrects the dead time model 14a based on the value that has passed through the low-pass filter 14b.
 以上で説明した実施の形態2によれば、温度モデル13aおよびむだ時間モデル14aは、ローパスフィルタ14bを通過した値に基づいて修正される。このため、温度モデル13aおよびむだ時間モデル14aを急激に変化させることなく安定して修正することができる。 According to the second embodiment described above, the temperature model 13a and the dead time model 14a are corrected based on values that have passed through the low-pass filter 14b. For this reason, the temperature model 13a and the dead time model 14a can be corrected stably without abrupt changes.
実施の形態3.
 図7はこの発明の実施の形態3における圧延材の温度制御装置が適用された熱間圧延ラインの要部の構成図である。なお、実施の形態1と同一又は相当部分には、同一符号が付される。当該部分の説明は省略される。
Embodiment 3 FIG.
FIG. 7 is a configuration diagram of a main portion of a hot rolling line to which a rolled material temperature control apparatus according to Embodiment 3 of the present invention is applied. In addition, the same code | symbol is attached | subjected to the same part as Embodiment 1, or an equivalent part. The description of this part is omitted.
 図7において、仕上入側温度計21は、仕上圧延機4の入側に設けられる。仕上出側温度計22は、仕上圧延機4の出側に設けられる。 In FIG. 7, the finish entry side thermometer 21 is provided on the entry side of the finish rolling mill 4. The finish delivery thermometer 22 is provided on the exit side of the finish rolling mill 4.
 複数の冷却装置23a~23fは、隣接したスタンド4aの間に設けられる。複数の冷却装置23a~23fは、冷却装置23の入側から順々に並ぶ。 The plurality of cooling devices 23a to 23f are provided between adjacent stands 4a. The plurality of cooling devices 23a to 23f are arranged in order from the entry side of the cooling device 23.
 温度制御装置11の入力部は、仕上入側温度計21の出力部と仕上出側温度計22の出力部とに接続される。温度制御装置11の出力部は、冷却装置23aの入力部と冷却装置23bの入力部と冷却装置23cの入力部と冷却装置23dの入力部と冷却装置23eの入力部と冷却装置23fの入力部とに接続される。 The input unit of the temperature control device 11 is connected to the output unit of the finishing input side thermometer 21 and the output unit of the finishing output side thermometer 22. The output unit of the temperature control device 11 includes an input unit of the cooling device 23a, an input unit of the cooling device 23b, an input unit of the cooling device 23c, an input unit of the cooling device 23d, an input unit of the cooling device 23e, and an input unit of the cooling device 23f. And connected to.
 仕上入側温度計21は、仕上圧延機4の入側における圧延材7の温度T(℃)を計測する。仕上出側温度計22は、仕上圧延機4の出側における圧延材7の温度T(℃)を計測する。 The finish entry side thermometer 21 measures the temperature T e (° C.) of the rolled material 7 on the entry side of the finish rolling mill 4. The finish delivery thermometer 22 measures the temperature T f (° C.) of the rolled material 7 on the exit side of the finish rolling mill 4.
 温度制御装置11は、仕上圧延機4の入側における圧延材7の温度Tに基づいて冷却装置23aの所要注水量と冷却装置23bの所要注水量と冷却装置23cの所要注水量とを演算する。温度制御装置11は、冷却装置23aの所要注水量に対応した信号VISC1を出力することにより冷却装置23aの注水バルブに対してフィードフォワード制御を行う。温度制御装置11は、冷却装置23bの所要注水量に対応した信号VISC2を出力することにより冷却装置23bの注水バルブに対してフィードフォワード制御を行う。温度制御装置11は、冷却装置23cの所要注水量に対応した信号VISC3を出力することにより冷却装置23cの注水バルブに対してフィードフォワード制御を行う。 Temperature control device 11 calculates a required injection amount of the required injection amount and the cooling device 23c of the required injection quantity of the cooling device 23a based on the temperature T e of the strip 7 at the entry side of the finishing mill 4 cooling device 23b To do. The temperature control device 11 performs a feedforward control on the water injection valve of the cooling device 23a by outputting a signal VISC1 corresponding to the required water injection amount of the cooling device 23a. The temperature control device 11 performs feedforward control on the water injection valve of the cooling device 23b by outputting a signal VISC2 corresponding to the required water injection amount of the cooling device 23b. The temperature control device 11 performs a feedforward control on the water injection valve of the cooling device 23c by outputting a signal VISC3 corresponding to the required water injection amount of the cooling device 23c.
 温度制御装置11は、仕上圧延機4の出側における圧延材7の温度に基づいて冷却装置23dの所要注水量と冷却装置の所要注水量と冷却装置23fの所要注水量とを演算する。温度制御装置11は、冷却装置23dの所要注水量に対応した信号VISC4を出力することにより冷却装置23dの注水バルブに対してフィードバック制御を行う。温度制御装置11は、冷却装置23eの所要注水量に対応した信号VISC5を出力することにより冷却装置23eの注水バルブに対してフィードバック制御を行う。温度制御装置11は、冷却装置23fの所要注水量に対応した信号VISC6を出力することにより冷却装置23fの注水バルブに対してフィードバック制御を行う。 The temperature control device 11 calculates the required water injection amount of the cooling device 23d, the required water injection amount of the cooling device, and the required water injection amount of the cooling device 23f based on the temperature of the rolled material 7 on the exit side of the finish rolling mill 4. The temperature control device 11 performs feedback control on the water injection valve of the cooling device 23d by outputting a signal VISC4 corresponding to the required water injection amount of the cooling device 23d. The temperature control device 11 performs feedback control on the water injection valve of the cooling device 23e by outputting a signal VISC5 corresponding to the required water injection amount of the cooling device 23e. The temperature control device 11 performs feedback control on the water injection valve of the cooling device 23f by outputting a signal VISC6 corresponding to the required water injection amount of the cooling device 23f.
 次に、図8を用いて、温度制御装置11によるフィードバック制御を説明する。
 図8はこの発明の実施の形態3における圧延材の温度制御装置によるフィードバック制御を示すブロック図である。
Next, feedback control by the temperature control device 11 will be described with reference to FIG.
FIG. 8 is a block diagram showing feedback control by the temperature control device for rolled material in Embodiment 3 of the present invention.
 仕上出側温度計22に対し、冷却装置23dからの距離と冷却装置23eからの距離と冷却装置23fからの距離とは互いに異なる。このため、冷却装置23dと冷却装置23eと冷却装置23fとにおいては、移送遅れによるむだ時間も互いに異なる。 For the finishing delivery thermometer 22, the distance from the cooling device 23d, the distance from the cooling device 23e, and the distance from the cooling device 23f are different from each other. For this reason, in the cooling device 23d, the cooling device 23e, and the cooling device 23f, the dead time due to the transfer delay is also different from each other.
 これに対し、温度制御装置11は、複数のPI制御器12と複数の第1フィードバック部13と複数の第2フィードバック部14とを備える。例えば、一組目のPI制御器12と第1フィードバック部13と第2フィードバック部14とは、冷却装置23dに対応して設けられる。例えば、二組目のPI制御器12と第1フィードバック部13と第2フィードバック部14とは、冷却装置23eに対応して設けられる。例えば、三組目のPI制御器12と第1フィードバック部13と第2フィードバック部14とは、冷却装置23fに対応して設けられる。 In contrast, the temperature control apparatus 11 includes a plurality of PI controllers 12, a plurality of first feedback units 13, and a plurality of second feedback units 14. For example, the first set of PI controller 12, the first feedback unit 13, and the second feedback unit 14 are provided corresponding to the cooling device 23d. For example, the second set of PI controller 12, the first feedback unit 13, and the second feedback unit 14 are provided corresponding to the cooling device 23e. For example, the third set of PI controllers 12, the first feedback unit 13, and the second feedback unit 14 are provided corresponding to the cooling device 23f.
 複数のPI制御器12の各々は、複数の冷却装置23a~23fにより冷却された圧延材7が仕上出側温度計22に到達した際における当該圧延材7の温度の目標値Ttargetとフィードバック値との偏差を入力として対応した冷却装置に対する制御量を演算する。 Each of the plurality of PI controllers 12 includes a target value T target and a feedback value of the temperature of the rolled material 7 when the rolled material 7 cooled by the plurality of cooling devices 23a to 23f reaches the finishing-side thermometer 22. The control amount for the corresponding cooling device is calculated using the deviation as input.
 複数の第1フィードバック部13の各々は、複数のPI制御器12の各々により演算された制御量に基づいてむだ時間を含まない温度モデル13aを用いて複数の冷却装置23a~23fにより冷却された圧延材7が仕上出側温度計22に到達した際における当該圧延材7の温度の予測値を演算する。複数の第1フィードバック部13の各々は、当該予測値を複数のPI制御器12の各々に対応したフィードバック値の一部としてフィードバックする。 Each of the plurality of first feedback units 13 is cooled by the plurality of cooling devices 23a to 23f using the temperature model 13a that does not include a dead time based on the control amount calculated by each of the plurality of PI controllers 12. A predicted value of the temperature of the rolled material 7 when the rolled material 7 reaches the finishing delivery thermometer 22 is calculated. Each of the plurality of first feedback units 13 feeds back the predicted value as part of a feedback value corresponding to each of the plurality of PI controllers 12.
 複数の第2フィードバック部14の各々は、むだ時間モデル14aを用いて複数の第1フィードバック部13の各々により演算された圧延材7の温度の予測値に対して冷却装置23d~23fの各々に対応したむだ時間の分だけ位相を遅らせた値を演算する。複数の第2フィードバック部14の各々は、仕上出側温度計22による圧延材7の温度の計測値と第1フィードバック部13の各々により演算された圧延材7の温度の予測値に対して冷却装置23d~23fの各々に対応したむだ時間の分だけ位相を遅らせた値との偏差を演算する。複数の第2フィードバック部14の各々は、当該偏差に対してローパスフィルタ14bを通過させた値を複数のPI制御器12の各々に対応したフィードバック値の他部としてフィードバックする。 Each of the plurality of second feedback sections 14 is provided to each of the cooling devices 23d to 23f with respect to the predicted value of the temperature of the rolled material 7 calculated by each of the plurality of first feedback sections 13 using the dead time model 14a. A value obtained by delaying the phase by the corresponding dead time is calculated. Each of the plurality of second feedback sections 14 is cooled with respect to the measured value of the temperature of the rolled material 7 by the finish-side thermometer 22 and the predicted value of the temperature of the rolled material 7 calculated by each of the first feedback sections 13. The deviation from the value obtained by delaying the phase by the amount of dead time corresponding to each of the devices 23d to 23f is calculated. Each of the plurality of second feedback units 14 feeds back a value obtained by passing the deviation through the low-pass filter 14b as the other part of the feedback value corresponding to each of the plurality of PI controllers 12.
 図8は、冷却装置23fに対応したPI制御器12と第1フィードバック部13と第2フィードバック部14とを示す。PI制御器12の伝達関数は、CISC6で表される。 FIG. 8 shows the PI controller 12, the first feedback unit 13, and the second feedback unit 14 corresponding to the cooling device 23f. The transfer function of the PI controller 12 is represented by CISC6 .
 第5ブロック24は、冷却装置23fの注水バルブの応答を示す。第5ブロック24の伝達関数は、冷却装置23fの注水バルブの操作における制御遅れTSC(s)と当該注水バルブの時定数T(s)とラプラス演算子sとを用いて表される。第6ブロック25は、冷却プロセスを示す。第6ブロック25の伝達関数は、冷却プロセスのゲインKと冷却プロセスの時定数T(s)とラプラス演算子sとを用いて表される。第7ブロック26は、移送遅れによるむだ時間を示す。第7ブロック26の伝達関数は、移送遅れによるむだ時間TISC6(s)とラプラス演算子sを用いて表される。第8ブロック27は、仕上出側温度計22の応答を示す。第4ブロック18は、仕上出側温度計22により計測された圧延材7の温度Tとラプラス演算子sを用いて表される。 The fifth block 24 shows the response of the water injection valve of the cooling device 23f. The transfer function of the fifth block 24 is expressed using the control delay T SC (s) in the operation of the water injection valve of the cooling device 23f, the time constant T S (s) of the water injection valve, and the Laplace operator s. The sixth block 25 shows the cooling process. The transfer function of the sixth block 25 is expressed using the cooling process gain K P , the cooling process time constant T P (s), and the Laplace operator s. The seventh block 26 indicates a dead time due to a transfer delay. The transfer function of the seventh block 26 is expressed using a dead time T ISC6 (s) due to a transfer delay and a Laplace operator s. The eighth block 27 shows the response of the finishing delivery thermometer 22. The fourth block 18 is expressed using the temperature T f of the rolled material 7 measured by the finishing delivery thermometer 22 and the Laplace operator s.
 温度制御装置11において、PI制御器12は、当該圧延材7の温度の目標値Ttargetとフィードバック値との偏差を入力として冷却装置23fの所要注水量VISC6を演算する。冷却装置23fの所要注水量に対応した信号VISC6は、第5ブロック24と第6ブロック25とを経由する。その結果、圧延材7の温度降下T ISC6(℃)が得られる。 In the temperature control device 11, the PI controller 12 calculates the required water injection amount VISC6 of the cooling device 23 f with the deviation between the target value T target of the temperature of the rolled material 7 and the feedback value as an input. The signal VISC6 corresponding to the required water injection amount of the cooling device 23f passes through the fifth block 24 and the sixth block 25. As a result, a temperature drop T D ISC6 (° C.) of the rolled material 7 is obtained.
 圧延材7の温度降下T ISC6は、冷却装置23a~23eによる圧延材7の温度降下T ISC1-5(℃)に加わる。圧延材7の温度降下T ISC1-5と圧延材7の温度降下T ISC6とは、仕上圧延機4の入側における圧延材7の温度Tに加わる。その結果、圧延材7の温度は、(T+T ISC1-5+T ISC6)となる。圧延材7の温度(T+T ISC1-5+T ISC6)は、第7ブロック26と第8ブロック27とを経由する。その結果、仕上圧延機4の出側における圧延材7の温度Tが得られる。 The temperature drop T D ISC6 of the rolled material 7 is added to the temperature drop T D ISC1-5 (° C.) of the rolled material 7 by the cooling devices 23a to 23e. A temperature drop T D ISC1-5 of the strip 7 and the temperature drop T D ISC6 of the strip 7, applied to the temperature T e of the strip 7 at the entry side of the finishing mill 4. As a result, the temperature of the rolled material 7 becomes (T e + T D ISC1-5 + T D ISC6 ). The temperature (T e + T D ISC1-5 + T D ISC6 ) of the rolled material 7 passes through the seventh block 26 and the eighth block 27. As a result, the temperature T f of the rolled material 7 on the exit side of the finish rolling mill 4 is obtained.
 第1フィードバック部13は、冷却装置23aの所要注水量に対応した信号VISC6に基づいて圧延材7の温度の予測値T´を演算する。第1フィードバック部13は、圧延材7の温度の予測値T´fをフィードバック値の一部としてフィードバックする。その結果、温度制御装置11の応答性が決定する。 The first feedback unit 13 calculates a predicted value T ′ f of the temperature of the rolled material 7 based on the signal VISC6 corresponding to the required water injection amount of the cooling device 23a. The first feedback unit 13 feeds back the predicted value T′f of the temperature of the rolled material 7 as a part of the feedback value. As a result, the responsiveness of the temperature control device 11 is determined.
 第2フィードバック部14は、むだ時間モデル14aを用いて第1フィードバック部13により演算された圧延材7の温度の予測値T´に対してむだ時間の分だけ位相を遅らせた値を演算する。第2フィードバック部14は、仕上出側温度計22により計測された圧延材7の温度Tと第1フィードバック部13により演算された圧延材7の温度の予測値T´に対してむだ時間の分だけ位相を遅らせた値との偏差を演算する。第2フィードバック部14は、当該偏差に対してローパスフィルタ14bを通過させた値をフィードバック値の他部としてフィードバックする。 The second feedback unit 14 calculates a value obtained by delaying the phase by the amount of the dead time with respect to the predicted value T ′ f of the temperature of the rolled material 7 calculated by the first feedback unit 13 using the dead time model 14a. . The second feedback unit 14, the dead time with respect to the finishing delivery temperature meter 22 temperature of the rolled material 7 measured by the T f and temperature predictions T'f of the strip 7, which is calculated by the first feedback portion 13 The deviation from the value delayed by the phase is calculated. The second feedback unit 14 feeds back the value obtained by passing the low-pass filter 14b with respect to the deviation as the other part of the feedback value.
 以上で説明した実施の形態3によれば、モデル誤差値は、不安定になりにくい低周波数の領域においてPI制御器12にフィードバックされる。このため、低周波数の領域において、圧延材7の温度Tと圧延材7の温度の目標値Ttargetとの定常的な偏差を解消することができる。その結果、安定した応答性を保ちつつ、モデル誤差値の影響を短時間で抑制することができる。 According to the third embodiment described above, the model error value is fed back to the PI controller 12 in a low frequency region that is less likely to be unstable. For this reason, in the low frequency region, the steady deviation between the temperature T f of the rolled material 7 and the target value T target of the temperature of the rolled material 7 can be eliminated. As a result, the influence of the model error value can be suppressed in a short time while maintaining stable responsiveness.
 なお、第2フィードバック部14において、ローパスフィルタ14bのカットオフ周波数の初期値を0(rad/s)に設定し、圧延材7の温度制御開始後にローパスフィルタ14bのカットオフ周波数を調整してもよい。 In the second feedback unit 14, the initial value of the cutoff frequency of the low-pass filter 14 b is set to 0 (rad / s), and the cutoff frequency of the low-pass filter 14 b is adjusted after the temperature control of the rolled material 7 is started. Good.
 例えば、圧延材7の温度Tの変化率が予め設定された閾値以下になった時点から定常偏差が生じたと判定して、ローパスフィルタ14bのカットオフ周波数の値を0から連続的に上げていけばよい。その後、定常偏差が予め設定された値よりも小さくなった時点でカットオフ周波数の変化を終了させればよい。 For example, it is determined that a steady deviation has occurred when the rate of change of the temperature Tf of the rolled material 7 is equal to or lower than a preset threshold, and the value of the cutoff frequency of the low-pass filter 14b is continuously increased from 0. I'll do it. Thereafter, the change in the cut-off frequency may be terminated when the steady-state deviation becomes smaller than a preset value.
 例えば、圧延材7の温度Tと目標値Ttargetとの偏差が予め設定された閾値よりも小さくなった時点からローパスフィルタ14bのカットオフ周波数の値を0から連続的に上げていけばよい。その後、定常偏差が予め設定された値よりも小さくなった時点でカットオフ周波数の変化を終了させればよい。 For example, the value of the cut-off frequency of the low-pass filter 14b may be continuously increased from 0 when the deviation between the temperature Tf of the rolled material 7 and the target value Ttarget becomes smaller than a preset threshold value. . Thereafter, the change in the cut-off frequency may be terminated when the steady-state deviation becomes smaller than a preset value.
 例えば、圧延材7の温度Tと目標値Ttargetとの偏差が予め設定された閾値よりも小さくなった際により出側の冷却装置に対応した第2フィードバック部14のローパスフィルタ14bから優先的にカットオフ周波数を上げればよい。例えば、冷却装置23fのローパスフィルタ14bのカットオフ周波数が予め設定された周波数に到達しても圧延材7の温度Tと目標値Ttargetとの偏差が残る場合、冷却装置23eのカットオフ周波数を上げればよい。 For example, when the deviation between the temperature T f of the rolled material 7 and the target value T target becomes smaller than a preset threshold, the low-pass filter 14b of the second feedback unit 14 corresponding to the outlet side cooling device is preferentially used. The cut-off frequency may be increased to For example, if the deviation between the temperature T f of the rolled material 7 and the target value T target remains even when the cutoff frequency of the low-pass filter 14b of the cooling device 23f reaches a preset frequency, the cutoff frequency of the cooling device 23e. Just raise it.
実施の形態4.
 図9はこの発明の実施の形態4における圧延材7の温度制御装置11によるフィードバック制御を示すブロック図である。なお、実施の形態3と同一又は相当部分には、同一符号が付される。当該部分の説明は省略される。
Embodiment 4 FIG.
FIG. 9 is a block diagram showing feedback control by the temperature control device 11 of the rolled material 7 in Embodiment 4 of the present invention. In addition, the same code | symbol is attached | subjected to the same part as Embodiment 3, or an equivalent part. The description of this part is omitted.
 実施の形態4において、第1フィードバック部13の各々は、対応したローパスフィルタ14bを通過した値に基づいて対応した温度モデル13aを修正する。第2フィードバック部14の各々は、対応したローパスフィルタ14bを通過した値に基づいて対応したむだ時間モデル14aを修正する。 In the fourth embodiment, each of the first feedback units 13 corrects the corresponding temperature model 13a based on the value that has passed through the corresponding low-pass filter 14b. Each of the second feedback units 14 corrects the corresponding dead time model 14a based on the value that has passed through the corresponding low-pass filter 14b.
 以上で説明した実施の形態4によれば、温度モデル13aおよびむだ時間モデル14aは、ローパスフィルタ14bを通過した値に基づいて修正される。このため、温度モデル13aおよびむだ時間モデル14aを急激に変化させることなく安定して修正することができる。 According to the fourth embodiment described above, the temperature model 13a and the dead time model 14a are corrected based on values that have passed through the low-pass filter 14b. For this reason, the temperature model 13a and the dead time model 14a can be corrected stably without abrupt changes.
 なお、1つの冷却装置に対して、実施の形態3と実施の形態4とのPI制御器12と第1フィードバック部13と第2フィードバック部14と同様のPI制御器と第1フィードバック部と第2フィードバック部を適用してもよい。この場合も、安定した応答性を保ちつつ、モデル誤差値の影響を短時間で抑制することができる。 For one cooling device, the PI controller 12, the first feedback unit 13 and the second feedback unit 14 of the third and fourth embodiments are the same as the PI controller, the first feedback unit, and the first feedback unit. Two feedback units may be applied. Also in this case, the influence of the model error value can be suppressed in a short time while maintaining a stable response.
 以上のように、この発明に係る圧延材の温度制御装置は、モデル誤差値の影響を短時間で抑制するシステムに利用できる。 As described above, the temperature control device for rolled material according to the present invention can be used for a system that suppresses the influence of a model error value in a short time.
1 加熱炉、 2 粗圧延機、 3 誘導加熱装置、 4 仕上圧延機、 4a スタンド、 5 冷却装置、 5a 第1注水設備、 5b 第2注水設備、 6 巻取機、 7 圧延材、 8 速度検出器、 9 仕上温度計、 10 巻取温度計、 11 温度制御装置、 12 PI制御器、 13 第1フィードバック部、 13a 温度モデル、 14 第2フィードバック部、 14a むだ時間モデル、 14b ローパスフィルタ、 15 第1ブロック、 16 第2ブロック、 17 第3ブロック、 18 第4ブロック、 19a プロセッサ、 19b メモリ、 20 ハードウェア、 21 仕上入側温度計、 22 仕上出側温度計、 23a~23f 冷却装置、 24 第5ブロック、 25 第6ブロック、 26 第7ブロック、 27 第8ブロック 1 Heating furnace, 2 Rough rolling mill, 3 Induction heating device, 4 Finish rolling mill, 4a stand, 5 Cooling device, 5a 1st water injection equipment, 5b 2nd water injection equipment, 6 Winding machine, 7 Rolling material, 8 Speed detection , 9 finish thermometer, 10 take-up thermometer, 11 temperature controller, 12 PI controller, 13 1st feedback part, 13a temperature model, 14 2nd feedback part, 14a dead time model, 14b low-pass filter, 15th 1 block, 16 second block, 17 third block, 18 fourth block, 19a processor, 19b memory, 20 hardware, 21 finish input side thermometer, 22 finish exit side thermometer, 23a-23f cooling device, 24th 5 blocks, 25 6th Rock, 26 seventh block, 27 eighth block

Claims (12)

  1.  熱間圧延ラインの圧延機と巻取機との間に設けられた冷却装置により冷却された圧延材が前記冷却装置と前記巻取機との間に設けられた温度計に到達した際における当該圧延材の温度の目標値とフィードバック値との偏差を入力として前記冷却装置に対する制御量を演算する制御器と、
     前記制御器により演算された制御量に基づいてむだ時間を含まない温度モデルを用いて前記冷却装置により冷却された圧延材が前記温度計に到達した際における当該圧延材の温度の予測値を演算し、当該予測値を前記フィードバック値の一部としてフィードバックする第1フィードバック部と、
     むだ時間モデルを用いて前記第1フィードバック部により演算された圧延材の温度の予測値に対してむだ時間の分だけ位相を遅らせた値を演算し、前記温度計による圧延材の温度の計測値と前記第1フィードバック部により演算された圧延材の温度の予測値に対してむだ時間の分だけ位相を遅らせた値との偏差を演算し、当該偏差に対してローパスフィルタを通過させた値を前記フィードバック値の他部としてフィードバックする第2フィードバック部と、
    を備えた圧延材の温度制御装置。
    The rolling material cooled by the cooling device provided between the rolling mill and the winder in the hot rolling line reaches the thermometer provided between the cooling device and the winder. A controller for calculating a control amount for the cooling device with a deviation between a target value of the temperature of the rolled material and a feedback value as an input;
    Based on a control amount calculated by the controller, a predicted value of the temperature of the rolled material when the rolled material cooled by the cooling device reaches the thermometer using a temperature model that does not include dead time is calculated. A first feedback unit that feeds back the predicted value as part of the feedback value;
    A value obtained by delaying the phase by the amount of the dead time with respect to the predicted value of the temperature of the rolled material calculated by the first feedback unit using a dead time model, and a measured value of the temperature of the rolled material by the thermometer And a value obtained by delaying the phase by the amount of the dead time with respect to the predicted value of the temperature of the rolled material calculated by the first feedback unit, and a value obtained by passing the low-pass filter for the deviation. A second feedback unit that feeds back as the other part of the feedback value;
    The temperature control apparatus of the rolling material provided with.
  2.  前記第2フィードバック部は、圧延材が前記温度計に到達した際における当該圧延材の温度の目標値と前記温度計による圧延材の温度の計測値との間に定常偏差が生じた際に前記ローパスフィルタのカットオフ周波数を上げる請求項1に記載の圧延材の温度制御装置。 The second feedback unit is configured such that when a steady deviation occurs between a target value of the temperature of the rolled material when the rolled material reaches the thermometer and a measured value of the temperature of the rolled material by the thermometer. The temperature control apparatus of the rolling material of Claim 1 which raises the cutoff frequency of a low-pass filter.
  3.  前記第2フィードバック部は、圧延材が前記温度計に到達した際における当該圧延材の温度の目標値と前記温度計による圧延材の温度の計測値との間の偏差が予め設定された閾値よりも小さくなった際に前記ローパスフィルタのカットオフ周波数を上げる請求項1に記載の圧延材の温度制御装置。 The second feedback unit is configured such that a deviation between a target value of the temperature of the rolled material when the rolled material reaches the thermometer and a measured value of the temperature of the rolled material by the thermometer is set from a preset threshold. The temperature control device for a rolled material according to claim 1, wherein the cutoff frequency of the low-pass filter is increased when the value becomes smaller.
  4.  前記第1フィードバック部は、前記ローパスフィルタを通過した値に基づいて前記温度モデルを修正し、
     前記第2フィードバック部は、前記ローパスフィルタを通過した値に基づいて前記むだ時間モデルを修正する請求項1から請求項3のいずれか一項に記載の圧延材の温度制御装置。
    The first feedback unit corrects the temperature model based on a value that has passed through the low-pass filter,
    The said 2nd feedback part is a temperature control apparatus of the rolling material as described in any one of Claims 1-3 which corrects the said dead time model based on the value which passed the said low-pass filter.
  5.  熱間圧延ラインの仕上圧延機の複数のスタンドの間に設けられた冷却装置により冷却された圧延材が前記仕上圧延機の出側に設けられた温度計に到達した際における当該圧延材の温度の目標値とフィードバック値との偏差を入力として前記冷却装置に対する制御量を演算する制御器と、
     前記制御器により演算された制御量に基づいてむだ時間を含まない温度モデルを用いて前記冷却装置により冷却された圧延材が前記温度計に到達した際における当該圧延材の温度の予測値を演算し、当該予測値を前記フィードバック値の一部としてフィードバックする第1フィードバック部と、
     むだ時間モデルを用いて前記第1フィードバック部により演算された圧延材の温度の予測値に対してむだ時間の分だけ位相を遅らせた値を演算し、前記温度計による圧延材の温度の計測値と前記第1フィードバック部により演算された圧延材の温度の予測値に対してむだ時間の分だけ位相を遅らせた値との偏差を演算し、当該偏差に対してローパスフィルタを通過させた値を前記フィードバック値の他部としてフィードバックする第2フィードバック部と、
    を備えた圧延材の温度制御装置。
    The temperature of the rolled material when the rolled material cooled by a cooling device provided between a plurality of stands of the finishing mill of the hot rolling line reaches a thermometer provided on the exit side of the finishing mill. A controller for calculating a control amount for the cooling device with a deviation between the target value and the feedback value as an input;
    Based on a control amount calculated by the controller, a predicted value of the temperature of the rolled material when the rolled material cooled by the cooling device reaches the thermometer using a temperature model that does not include dead time is calculated. A first feedback unit that feeds back the predicted value as part of the feedback value;
    A value obtained by delaying the phase by the amount of the dead time with respect to the predicted value of the temperature of the rolled material calculated by the first feedback unit using a dead time model, and a measured value of the temperature of the rolled material by the thermometer And a value obtained by delaying the phase by the amount of the dead time with respect to the predicted value of the temperature of the rolled material calculated by the first feedback unit, and a value obtained by passing the low-pass filter for the deviation. A second feedback unit that feeds back as the other part of the feedback value;
    The temperature control apparatus of the rolling material provided with.
  6.  前記第2フィードバック部は、圧延材が前記温度計に到達した際における当該圧延材の温度の目標値と前記温度計による圧延材の温度の計測値との間に定常偏差が生じた際に前記ローパスフィルタのカットオフ周波数を上げる請求項5に記載の圧延材の温度制御装置。 The second feedback unit is configured such that when a steady deviation occurs between a target value of the temperature of the rolled material when the rolled material reaches the thermometer and a measured value of the temperature of the rolled material by the thermometer. The temperature control device for a rolled material according to claim 5, wherein the cutoff frequency of the low-pass filter is increased.
  7.  前記第2フィードバック部は、圧延材が前記温度計に到達した際における当該圧延材の温度の目標値と前記温度計による圧延材の温度の計測値との間の偏差が予め設定された閾値よりも小さくなった際に前記ローパスフィルタのカットオフ周波数を上げる請求項5に記載の圧延材の温度制御装置。 The second feedback unit is configured such that a deviation between a target value of the temperature of the rolled material when the rolled material reaches the thermometer and a measured value of the temperature of the rolled material by the thermometer is set from a preset threshold. The temperature control device for a rolled material according to claim 5, wherein the cut-off frequency of the low-pass filter is increased when the value becomes smaller.
  8.  前記第1フィードバック部は、前記ローパスフィルタを通過した値に基づいて温度モデルを修正し、
     前記第2フィードバック部は、前記ローパスフィルタを通過した値に基づいてむだ時間モデルを修正する請求項5から請求項7のいずれか一項に記載の圧延材の温度制御装置。
    The first feedback unit corrects the temperature model based on a value that has passed through the low-pass filter,
    The said 2nd feedback part is a temperature control apparatus of the rolling material as described in any one of Claims 5-7 which corrects a dead time model based on the value which passed the said low-pass filter.
  9.  熱間圧延ラインの仕上圧延機の複数のスタンドに対して隣接したスタンドの間にそれぞれ設けられた複数の冷却装置により冷却された圧延材が前記仕上圧延機の出側に設けられた温度計に到達した際における当該圧延材の温度の目標値とフィードバック値との偏差を入力として前記複数の冷却装置の各々に対する制御量を演算する複数の制御器と、
     前記複数の制御器の各々により演算された制御量に基づいてむだ時間を含まない温度モデルを用いて前記複数の冷却装置により冷却された圧延材が前記温度計に到達した際における当該圧延材の温度の予測値を演算し、当該予測値を前記複数の制御器の各々に対応したフィードバック値の一部としてフィードバックする複数の第1フィードバック部と、
     前記複数の冷却装置の各々に対応したむだ時間モデルを用いて前記複数の第1フィードバック部の各々により演算された圧延材の温度の予測値に対して前記複数の冷却装置の各々に対応したむだ時間の分だけ位相を遅らせた値を演算し、前記温度計による圧延材の温度の計測値と前記複数の第1フィードバック部の各々により演算された圧延材の温度の予測値に対して前記複数の冷却装置の各々に対応したむだ時間の分だけ位相を遅らせた値との偏差を演算し、当該偏差に対してローパスフィルタを通過させた値を前記複数の制御器の各々に対応したフィードバック値の他部としてフィードバックする複数の第2フィードバック部と、
    を備えた圧延材の温度制御装置。
    A rolled material cooled by a plurality of cooling devices provided between adjacent stands of a plurality of stands of a finishing mill of a hot rolling line is provided on a thermometer provided on the exit side of the finishing mill. A plurality of controllers that calculate a control amount for each of the plurality of cooling devices with the deviation between the target value and the feedback value of the temperature of the rolled material when reached as an input,
    Based on the control amount calculated by each of the plurality of controllers, the rolled material cooled by the plurality of cooling devices using a temperature model that does not include a dead time reaches the thermometer. A plurality of first feedback units for calculating a predicted temperature value and feeding back the predicted value as part of a feedback value corresponding to each of the plurality of controllers;
    Using the dead time model corresponding to each of the plurality of cooling devices, the dead time corresponding to each of the plurality of cooling devices with respect to the predicted value of the temperature of the rolled material calculated by each of the plurality of first feedback units. A value obtained by delaying the phase by the amount of time is calculated, and the plurality of measured values of the temperature of the rolled material by the thermometer and the predicted value of the temperature of the rolled material calculated by each of the plurality of first feedback units are calculated. The deviation from the value delayed in phase by the amount of dead time corresponding to each of the cooling devices is calculated, and the value obtained by passing the low-pass filter with respect to the deviation is a feedback value corresponding to each of the plurality of controllers. A plurality of second feedback parts that feed back as other parts;
    The temperature control apparatus of the rolling material provided with.
  10.  前記複数の第2フィードバック部の各々は、圧延材が前記温度計に到達した際における当該圧延材の温度の目標値と前記温度計による圧延材の温度の計測値との間に定常偏差が生じた際に対応したローパスフィルタのカットオフ周波数を上げる請求項9に記載の圧延材の温度制御装置。 Each of the plurality of second feedback portions has a steady deviation between a target value of the temperature of the rolled material when the rolled material reaches the thermometer and a measured value of the temperature of the rolled material by the thermometer. The temperature control device for a rolled material according to claim 9, wherein the cutoff frequency of the low-pass filter corresponding to the rolling is increased.
  11.  前記複数の第2フィードバック部の各々は、圧延材が前記温度計に到達した際における当該圧延材の温度の目標値と前記温度計による圧延材の温度の計測値との間の偏差が予め設定された閾値よりも小さくなった際に、より出側の冷却装置に対応した第2フィードバック部のローパスフィルタから優先的にカットオフ周波数を上げる請求項9に記載の圧延材の温度制御装置。 In each of the plurality of second feedback units, a deviation between a target value of the temperature of the rolled material when the rolled material reaches the thermometer and a measured value of the temperature of the rolled material by the thermometer is set in advance. The rolled material temperature control device according to claim 9, wherein when it becomes smaller than the set threshold value, the cutoff frequency is preferentially raised from a low-pass filter of the second feedback unit corresponding to the cooling device on the outgoing side.
  12.  前記複数の第1フィードバック部の各々は、対応したローパスフィルタを通過した値に基づいて対応した温度モデルを修正し、
     前記複数の第2フィードバック部の各々は、対応したローパスフィルタを通過した値に基づいて対応したむだ時間モデルを修正する請求項9から請求項11のいずれか一項に記載の圧延材の温度制御装置。
    Each of the plurality of first feedback units modifies a corresponding temperature model based on a value that has passed through a corresponding low-pass filter,
    The temperature control of the rolling material according to any one of claims 9 to 11, wherein each of the plurality of second feedback units corrects a corresponding dead time model based on a value that has passed through a corresponding low-pass filter. apparatus.
PCT/JP2015/076013 2015-09-14 2015-09-14 Temperature control device for rolled material WO2017046846A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201580080687.7A CN107614135B (en) 2015-09-14 2015-09-14 The temperature control equipment of rolled parts
PCT/JP2015/076013 WO2017046846A1 (en) 2015-09-14 2015-09-14 Temperature control device for rolled material
JP2017540359A JP6477900B2 (en) 2015-09-14 2015-09-14 Rolling material temperature control device
KR1020177035401A KR102058786B1 (en) 2015-09-14 2015-09-14 Temperature control device of rolled material
TW104140710A TWI590881B (en) 2015-09-14 2015-12-04 Temperature control device for rolled material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/076013 WO2017046846A1 (en) 2015-09-14 2015-09-14 Temperature control device for rolled material

Publications (1)

Publication Number Publication Date
WO2017046846A1 true WO2017046846A1 (en) 2017-03-23

Family

ID=58288202

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/076013 WO2017046846A1 (en) 2015-09-14 2015-09-14 Temperature control device for rolled material

Country Status (5)

Country Link
JP (1) JP6477900B2 (en)
KR (1) KR102058786B1 (en)
CN (1) CN107614135B (en)
TW (1) TWI590881B (en)
WO (1) WO2017046846A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022264248A1 (en) * 2021-06-15 2022-12-22 東芝三菱電機産業システム株式会社 Control device of cooling apparatus

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108710392B (en) * 2018-04-26 2020-12-22 广东美的厨房电器制造有限公司 Oven preheating control method and device and computer readable storage medium
CN110802115B (en) * 2019-11-13 2020-12-22 北京科技大学 Data-driven hot continuous rolling finish rolling inlet temperature prediction method
TWI747774B (en) * 2021-03-26 2021-11-21 中國鋼鐵股份有限公司 Method for estimating an outlet temperature of a finishing mill
TWI763578B (en) * 2021-08-04 2022-05-01 中國鋼鐵股份有限公司 Prediction method of rough-rolling outlet temperature of billet steel
TWI830575B (en) * 2023-01-11 2024-01-21 中國鋼鐵股份有限公司 Method of steel rolling

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63171215A (en) * 1987-01-08 1988-07-15 Kawasaki Steel Corp Method for controlling rolled stock with water cooling
JPH03198905A (en) * 1989-12-26 1991-08-30 Sumitomo Metal Ind Ltd Control method for cooling rolled stock
JPH0535306A (en) * 1991-07-29 1993-02-12 Toshiba Corp Dead time compensation control device
JPH10202311A (en) * 1997-01-22 1998-08-04 Nkk Corp Temperature control method of finishing mill
JP2000167615A (en) * 1998-12-03 2000-06-20 Toshiba Corp Method for controlling coiling temperature and controller
JP2001164971A (en) * 1999-12-14 2001-06-19 Unisia Jecs Corp Air-fuel ratio control device for internal combustion engine
JP2001334304A (en) * 2000-05-22 2001-12-04 Mitsubishi Electric Corp Device for controlling temperature on outlet side of hot finishing rolling mill
JP2001353512A (en) * 2000-06-09 2001-12-25 Nkk Corp Method for controlling temperature of hot strip
JP2003531335A (en) * 2000-04-14 2003-10-21 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method and apparatus for controlling a drive unit of a vehicle
JP2010170344A (en) * 2009-01-22 2010-08-05 Nagaoka Univ Of Technology Apparatus for compensating dead time of inverter system
JP2015131337A (en) * 2014-01-15 2015-07-23 東芝三菱電機産業システム株式会社 Plate thickness control device of rolled material
WO2015118606A1 (en) * 2014-02-04 2015-08-13 東芝三菱電機産業システム株式会社 Temperature control unit of hot-rolling machine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5858926A (en) * 1981-10-01 1983-04-07 Sumitomo Metal Ind Ltd Automatically controlling method for plate thickness
JP2617649B2 (en) * 1992-03-18 1997-06-04 新日本製鐵株式会社 Thickness deviation disturbance rejection control method
CN102069097B (en) * 2011-01-20 2012-09-05 马鞍山钢铁股份有限公司 System and process for cooling after H-shaped steel is hot-rolled
CN103861875B (en) * 2014-03-05 2016-01-20 辽宁科技大学 The optimal control method of cold-rolling mill technical cooling system

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63171215A (en) * 1987-01-08 1988-07-15 Kawasaki Steel Corp Method for controlling rolled stock with water cooling
JPH03198905A (en) * 1989-12-26 1991-08-30 Sumitomo Metal Ind Ltd Control method for cooling rolled stock
JPH0535306A (en) * 1991-07-29 1993-02-12 Toshiba Corp Dead time compensation control device
JPH10202311A (en) * 1997-01-22 1998-08-04 Nkk Corp Temperature control method of finishing mill
JP2000167615A (en) * 1998-12-03 2000-06-20 Toshiba Corp Method for controlling coiling temperature and controller
JP2001164971A (en) * 1999-12-14 2001-06-19 Unisia Jecs Corp Air-fuel ratio control device for internal combustion engine
JP2003531335A (en) * 2000-04-14 2003-10-21 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method and apparatus for controlling a drive unit of a vehicle
JP2001334304A (en) * 2000-05-22 2001-12-04 Mitsubishi Electric Corp Device for controlling temperature on outlet side of hot finishing rolling mill
JP2001353512A (en) * 2000-06-09 2001-12-25 Nkk Corp Method for controlling temperature of hot strip
JP2010170344A (en) * 2009-01-22 2010-08-05 Nagaoka Univ Of Technology Apparatus for compensating dead time of inverter system
JP2015131337A (en) * 2014-01-15 2015-07-23 東芝三菱電機産業システム株式会社 Plate thickness control device of rolled material
WO2015118606A1 (en) * 2014-02-04 2015-08-13 東芝三菱電機産業システム株式会社 Temperature control unit of hot-rolling machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022264248A1 (en) * 2021-06-15 2022-12-22 東芝三菱電機産業システム株式会社 Control device of cooling apparatus
JP7338814B2 (en) 2021-06-15 2023-09-05 東芝三菱電機産業システム株式会社 cooling system controller

Also Published As

Publication number Publication date
TWI590881B (en) 2017-07-11
KR20180004789A (en) 2018-01-12
CN107614135B (en) 2019-07-23
JPWO2017046846A1 (en) 2018-02-15
JP6477900B2 (en) 2019-03-06
CN107614135A (en) 2018-01-19
TW201709993A (en) 2017-03-16
KR102058786B1 (en) 2019-12-23

Similar Documents

Publication Publication Date Title
JP6477900B2 (en) Rolling material temperature control device
JP6435234B2 (en) Hot roll finishing mill outlet temperature control device and control method thereof
US20150048772A1 (en) Motor drive device
JP2017224091A (en) Mathematical model calculation device for rolling line and temperature controller for rolled material
JPWO2017130508A1 (en) Steel plate temperature control device and temperature control method
WO2017130508A1 (en) Steel sheet temperature control device and temperature control method
KR101821089B1 (en) Rolling system
JP6075178B2 (en) Plate thickness control method and plate thickness control device
JP5768467B2 (en) Finishing delivery temperature control method of rolled steel sheet in hot rolling line
JP2009113109A (en) Load distribution control device for continuous rolling mill
JP5948967B2 (en) Temperature prediction method, cooling control method and cooling control device for metal plate in hot rolling
JP2016093828A (en) Rolling control device, rolling control method and rolling control program
JP4894686B2 (en) Manufacturing method and manufacturing apparatus for hot-rolled steel sheet
JP2019209372A (en) Steel plate temperature control device in hot endless rolling line
CN112437702A (en) Temperature control device of hot rolling production line
CN111299330B (en) Mathematical model calculation device and control device for rolling production line
WO2019180961A1 (en) Device and method for assisting operation of heat-treating furnace, and heat-treating facility and operation method thereof
JP6299641B2 (en) Bridle roll tension control method and apparatus
KR101428305B1 (en) System and method of feedback control in minimill process
JP6319149B2 (en) Plate temperature control method and apparatus in continuous annealing furnace
KR101597468B1 (en) Method for controlling thickness in tandem cold rolling mill and apparatus thereof
JP5761091B2 (en) Temperature control method and temperature control system for hot rolling line
WO2020179531A1 (en) Disturbance suppression device, disturbance suppression method, and program
JP2006043726A (en) Method for controlling thickness in rolling mill
JPWO2022264248A5 (en)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15904035

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017540359

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177035401

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15904035

Country of ref document: EP

Kind code of ref document: A1