WO2020179531A1 - Disturbance suppression device, disturbance suppression method, and program - Google Patents

Disturbance suppression device, disturbance suppression method, and program Download PDF

Info

Publication number
WO2020179531A1
WO2020179531A1 PCT/JP2020/007347 JP2020007347W WO2020179531A1 WO 2020179531 A1 WO2020179531 A1 WO 2020179531A1 JP 2020007347 W JP2020007347 W JP 2020007347W WO 2020179531 A1 WO2020179531 A1 WO 2020179531A1
Authority
WO
WIPO (PCT)
Prior art keywords
disturbance
operation amount
proportional band
time
unit
Prior art date
Application number
PCT/JP2020/007347
Other languages
French (fr)
Japanese (ja)
Inventor
昌平 山口
凌汰 柿原
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Publication of WO2020179531A1 publication Critical patent/WO2020179531A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B11/00Automatic controllers
    • G05B11/01Automatic controllers electric
    • G05B11/36Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential
    • G05B11/42Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential for obtaining a characteristic which is both proportional and time-dependent, e.g. P. I., P. I. D.
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means

Definitions

  • the present invention relates to a disturbance suppression device, a disturbance suppression method, and a program, for example, a disturbance suppression device, a disturbance suppression method, and a program capable of suppressing the influence of a disturbance on a control system.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2000-227801
  • Patent Document 1 describes a disturbance manipulation amount predicting means and a disturbance manipulation amount applying means.
  • the disturbance manipulated amount predicting means predicts the disturbance manipulated amount for canceling the disturbance.
  • the disturbance manipulation amount applying means adds the disturbance manipulation amount to the manipulation amount from the PID control means so as to cancel the disturbance when the disturbance is applied. As a result, the influence of the disturbance on the controlled object is suppressed.
  • system fluctuations may occur in the control system.
  • the control system includes a heater
  • system fluctuation occurs due to deterioration of the heater.
  • system fluctuations can also occur due to changes in the ambient temperature between summer and winter, fluctuations in the workpiece to be processed, and the like. Then, in order to achieve accurate disturbance suppression, it is considered inappropriate to use the disturbance manipulation amount predicted before the system fluctuation occurs even after the system fluctuation occurs.
  • an object of the present invention is to provide a disturbance suppression device, a disturbance suppression method, and a program capable of performing highly accurate disturbance suppression even if a system fluctuation occurs in the disturbance suppression device.
  • the disturbance suppression device is A disturbance suppression device that suppresses disturbances applied to the control system.
  • the control system is Control target, A PID control unit that outputs a PID operation amount to the control target so as to eliminate the deviation between the target value and the control amount,
  • the disturbance suppression device is A disturbance operation amount prediction unit that predicts and creates a disturbance operation amount that acts to cancel the disturbance in response to the disturbance applied to the control system.
  • a disturbance operation amount application unit capable of applying the disturbance operation amount to the PID operation amount, and With respect to the control system, an adjustment process for adjusting the control parameters of the PID control unit is performed according to the time, and information representing the proportional band is acquired.
  • a system fluctuation rate determination unit that obtains the proportional band change rate between the second proportional band and determines the system fluctuation rate of the control system using the proportional band change rate.
  • a disturbance operation amount correction unit that creates the disturbance operation amount for the second time period by dividing the disturbance operation amount created by the disturbance operation amount prediction unit for the first time period by the system fluctuation rate. It is characterized by having and.
  • the PID control (section) is a kind of feedback control and performs proportional control (P control), integral control (I control), and derivative control (D control).
  • the "disturbance manipulated amount” means the manipulated variable applied to cancel the disturbance. If the influence of the disturbance on the feedback control system is stylized with the passage of time, the disturbance manipulation amount is also stylized (patterned) with the passage of time.
  • the "proportional band” means the range of the control amount necessary to change the operation amount from 0 to 100%. Further, the “proportional band change rate” means the rate of change of the proportional band.
  • the disturbance operation amount prediction unit predicts/creates the disturbance operation amount that acts to cancel the disturbance.
  • the proportional band information acquisition unit performs adjustment processing for adjusting the control parameter of the PID control unit according to the time, and acquires information indicating the proportional band.
  • the system fluctuation rate determination unit includes a first proportional band acquired by the proportional band information acquisition unit at the first time, and a second proportional band acquired by the proportional band information acquisition unit at the second time. A proportional band change rate between the proportional band and the proportional band is obtained, and the system change rate is determined using the proportional band change rate.
  • the disturbance manipulation amount correction unit creates the disturbance manipulation amount for the second period by dividing the disturbance manipulation amount created by the disturbance manipulation amount prediction unit for the first period by the system fluctuation rate.
  • the proportional band change rate is proportional to the system fluctuation rate. Therefore, the proportional fluctuation rate is used to determine the system fluctuation rate, and by dividing the disturbance operation amount by the system fluctuation rate, it is possible to determine a more appropriate disturbance operation amount after the system fluctuation. it can. Therefore, even if the system fluctuates in the control system, it is possible to suppress the disturbance with high accuracy.
  • the first time corresponds to the first time and the second time corresponds to the second time.
  • the above proportional band information acquisition unit The above adjustment process is sequentially performed a plurality of times according to the time, and the information indicating the proportional band is sequentially obtained a plurality of times,
  • the system fluctuation rate determination unit may be used.
  • the (n-1) proportional band whose information was acquired by the proportional band information acquisition unit during the (n-1) th time, and the nth time following the (n-1) time.
  • the proportional band change rate between the nth proportional band information acquired by the proportional band information acquisition unit is obtained, and the system change rate is determined using the proportional band change rate.
  • the disturbance operation amount correction unit is A disturbance operation amount for the n-th time is created using the disturbance operation amount created by the disturbance operation amount correction unit for the (n-1)-th time and the system fluctuation rate. It is characterized by
  • the disturbance operation amount correction unit once creates the disturbance operation amount, and then when the disturbance operation amount correction unit newly creates the disturbance operation amount, the disturbance operation amount prediction unit It is not necessary to use the created disturbance operation amount. Therefore, it is not necessary to create the disturbance operation amount by the disturbance operation amount prediction unit after the disturbance operation amount correction unit once creates the disturbance operation amount. Therefore, the disturbance tuning by the disturbance manipulated variable predicting unit after the system fluctuation occurs is unnecessary.
  • the above proportional band information acquisition unit The above adjustment process is sequentially performed a plurality of times according to the time, and the information representing the above proportional band is sequentially acquired a plurality of times.
  • n is an integer of 3 or more
  • the system fluctuation rate determination unit may be used.
  • the proportional band change rate between the first proportional band and the nth proportional band information acquired by the proportional band information acquisition unit at the n-th time is calculated, and the proportional band change rate is calculated.
  • the disturbance operation amount correction unit is It is characterized in that the disturbance operation amount for the nth time is created by using the system fluctuation rate and the disturbance operation amount created by the disturbance operation amount prediction unit.
  • the disturbance operation amount correction unit can create the disturbance operation amount for the nth time period by using the disturbance operation amount created by the disturbance operation amount prediction unit. Therefore, the disturbance operation amount correction unit can accurately determine the disturbance operation amount for the nth time period.
  • the disturbance suppression device of one embodiment is When the proportional band change rate exceeds a preset threshold value, a notification device for notifying the fact is further provided.
  • the proportional band information acquisition unit acquires a proportional band having an abnormal value
  • the user can be notified of that fact. Therefore, it is possible to prevent in advance the improper disturbance operation amount created by the disturbance operation amount correction unit using the abnormal proportional band from being applied to the operation amount from the PID control unit.
  • the disturbance suppression method of this disclosure is It is a disturbance suppression method that suppresses the disturbance applied to the control system.
  • the control system is Control target, A PID control unit that outputs a PID operation amount to the control target so as to eliminate the deviation between the target value and the control amount,
  • the above disturbance suppression method is In the first period, Corresponding to the disturbance applied to the control system, a disturbance operation amount that acts to cancel the disturbance is created by prediction, and the disturbance operation amount is applied to the PID operation amount.
  • an adjustment process for adjusting the control parameters of the PID control unit is performed to acquire information representing the first proportional band as the proportional band.
  • the adjustment process is performed to obtain information indicating the second proportional band as the proportional band,
  • the rate of change in the proportional band between the first proportional band and the second proportional band is obtained, and the rate of change in the proportional band is used to determine the system fluctuation rate of the control system.
  • the disturbance manipulated amount for the first period is divided by the system fluctuation rate, the disturbance manipulated amount for the second period is created.
  • the disturbance operation amount for the second period is applied to the PID operation amount.
  • the disturbance operation amount that acts to cancel the disturbance is predicted and created.
  • the above adjustment process is performed to obtain the information indicating the first proportional band.
  • the adjustment process is performed to obtain the information indicating the second proportional band.
  • the proportional band change rate between the first proportional band and the second proportional band is obtained, and the system fluctuation rate is determined using the change rate of the proportional band.
  • the disturbance manipulated amount for the first period is created.
  • the disturbance operation amount for the second period is applied to the PID operation amount.
  • the proportional band change rate is proportional to the system change rate.
  • the system fluctuation rate is determined using the proportional band change rate, and the disturbance manipulation amount can be divided by the system fluctuation rate to determine a more appropriate disturbance manipulation amount after the system fluctuation. it can. Therefore, even if the system fluctuation occurs in the disturbance suppression system, the disturbance can be suppressed with high accuracy.
  • this disclosed program is a program for causing a computer to execute a disturbance suppression method.
  • the above disturbance suppression method can be carried out by causing a computer to execute the program of this disclosure.
  • the disturbance suppression system and the disturbance suppression method disclosed in this disclosure it is possible to perform highly accurate disturbance suppression even if system fluctuations occur. Further, the disturbance suppression method can be implemented by causing a computer to execute the program of this disclosure.
  • FIG. 4 is a diagram showing a flow of a disturbance tuning operation included in the preparation processing operation of FIG. 3.
  • FIG. It is a figure which shows the flow of the operation which creates the disturbance operation amount performed by a temperature control device. It is a figure which illustrates the change of the temperature and the change of the disturbance operation amount before and after the system change.
  • FIG. 1 shows the configuration of the control system according to this embodiment.
  • the control system includes a system control device 100, a temperature control device 200 to which the disturbance suppression device of one embodiment is applied, a heating device as a control target (hereinafter, simply referred to as “heating device”) 300, and a work transfer device 400. including.
  • the system control device 100 is communicably connected to the temperature control device 200 and the work transfer device 400. Further, the temperature control device 200 is connected to the heating device 300 so as to communicate with each other.
  • the connection method described here may be wired connection or wireless connection.
  • the work transfer device 400 transfers an object to be heated (not shown) to the heating device 300. Then, the heating device 300 heat-treats the heated body to generate an article after the heat treatment.
  • the system control device 100 is responsible for controlling the entire system.
  • the system control device 100 transmits each signal related to heating control to the temperature control device 200, and sends a transport signal CS related to transport control of the heated body and the article after heat treatment to the work transport device 400.
  • the work transfer device 400 controls the movement of the object to be heated from outside the system to the heating device 300 and the movement of the article after the heat treatment from the heating device 300 to the outside of the system.
  • the heating device 300 heat-treats the heated body transported to the heating device 300.
  • the temperature control device 200 controls the temperature of the heating body 300a included in the heating device 300 so that the heating device 300 can perform the heat treatment at a desired temperature.
  • the heating device 300 has a temperature sensor 300b capable of detecting the temperature of the heat treatment.
  • the detected value of the temperature sensor 300b is the temperature T (hereinafter, simply referred to as “temperature T”) as a controlled quantity.
  • the temperature control device 200 transmits a signal including the PID manipulated variable O to the heating device 300 so that the temperature T becomes the target value TO. Then, the heating device 300 controls the heating of the heating body 300a by using the signal including the received PID manipulated variable O so that the temperature T of the heat treatment becomes the target value TO.
  • FIG. 2 shows a specific configuration example of the temperature control device 200.
  • the temperature control device 200 includes a memory 10, a processor 50, and a notification device 60.
  • the processor 50 realizes functions as a PID control unit 15, a disturbance operation amount prediction unit 20, a disturbance operation amount application unit 25, a proportional band information acquisition unit 30, a system fluctuation rate determination unit 35, and a disturbance operation amount correction unit 40. To do.
  • a program for controlling the temperature control device 200, including a disturbance suppression method described later, is stored in the memory 10.
  • the processor 50 is communicatively connected to the memory 10 and reads a program from the memory 10. As a result, the processor 50 executes various operations including the disturbance suppression method.
  • the processor 50 is communicably connected to the notification device 60.
  • the PID control unit 15 in the temperature control device 200 constitutes a control system for controlling the heating device 300 as a control target.
  • the “control system” includes the heating device 300 and the PID control unit 15.
  • the PID control unit 15 sets the PID operation amount O with respect to the heating device 300 so as to eliminate the deviation (TO-T) between the target value TO and the temperature T (detection temperature T of the temperature sensor 300b as described above). Output.
  • the disturbance operation amount prediction unit 20 in the temperature control device 200 corresponds to the disturbance D applied to the control system, and the disturbance operation amount DO acts to cancel the disturbance D (see FIGS. 1 and 2). Predict. Further, as shown in FIG. 2, the disturbance operation amount applying unit 25 can apply the disturbance operation amount DO predicted by the disturbance operation amount prediction unit 20 to the PID operation amount O.
  • the disturbance operation amount DO is the operation amount applied in order to cancel the disturbance D.
  • the disturbance manipulated variable DO is also standardized (patterned) with the passage of time. In the example of FIG. 3, it has a stepwise pattern (that is, the disturbance operation amount DO is composed of a plurality of segments Sa to Sd).
  • the upper part of FIG. 3 shows how the temperature T changes in time series due to the application of the disturbance D.
  • the disturbance element 70, the disturbance D, the disturbance operation amount DO, the operation of the PID control unit 15, the operation of the disturbance operation amount predicting unit 20, the operation of the disturbance operation amount applying unit 25, and the like are described in, for example, Japanese Patent Laid-Open No. 2000-227801. It is described in.
  • the temperature control device 200 has a proportional band information acquisition unit 30, a system fluctuation rate determination unit 35, and a disturbance operation amount correction unit 40 as functional blocks. ing.
  • the proportional band information acquisition unit 30 performs adjustment processing for adjusting the control parameter of the PID control unit 15 in accordance with the time with respect to the control system, and acquires information representing the proportional band (hereinafter, simply obtain the proportional band. (Called).
  • the system fluctuation rate determination unit 35 determines the proportional band change rate (the ratio of the two proportional bands acquired above), and determines the system fluctuation rate SR of the control system using the proportional band change rate.
  • the disturbance operation amount correction unit 40 creates the corrected disturbance operation amount DO by dividing the disturbance operation amount DO created by the disturbance operation amount prediction unit 20 by the system fluctuation rate SR.
  • the operation of the temperature control device 200 according to this embodiment will be described below.
  • the operation is roughly classified into two processes. One is a preparation process, and the other is a heating device control process.
  • FIG. 4 shows the flow of the preparatory processing operation for suppressing disturbance in the temperature control device 200.
  • step S1 PID tuning for the PID control unit 15 shown in FIG. 2 is performed.
  • the PID tuning is performed in order to adjust the control parameters (gain, proportional band, integration time, derivative time, etc.) of the PID control unit 15 corresponding to the control system including the heating device 300.
  • the PID tuning for example, auto tuning by the limit cycle method as described in detail in JP-A-2005-284828 can be adopted.
  • the control parameters may be adjusted by auto-tuning by the step response method, system identification method by the least squares method, or the like.
  • step S1 of the preparatory process the above-mentioned PID tuning (adjustment process for adjusting the control parameters of the PID control unit 15) is performed.
  • the proportional band information acquisition unit 30 acquires the proportional band Kp by performing the PID tuning (step S1).
  • the proportional band Kp acquired by the proportional band information acquisition unit 30 at the first time is referred to as a proportional band Kp1.
  • the proportional band Kp1 is stored in the memory 10. Note that acquisition of the proportional band Kp by PID tuning is described in, for example, Japanese Unexamined Patent Application Publication No. 2018-112954.
  • the disturbance operation amount prediction unit 20 shown in FIG. 2 performs disturbance tuning.
  • the disturbance element 70 shown in FIG. 2 occurs when the operation (conveyance and heating) of the object to be heated using the heating device 300 and the work conveyance system 400 is started, and the disturbance element 70 is It can be specified in advance. Since the disturbance operation amount prediction unit 20 predicts the disturbance operation amount DO corresponding to the predictable disturbance D applied by the start of the operation of the above process, the disturbance operation amount prediction unit 20 performs the disturbance tuning. ..
  • the disturbance operation amount DO is added to the PID operation amount O in a feedforward manner.
  • the operation signals O and DO for canceling the disturbance D can be given to the heating device 300.
  • FIG. 5 shows each operation of the disturbance tuning.
  • the disturbance operation amount prediction unit 20 starts the disturbance tuning. Specifically, in the preparatory process, the operation of the process (conveyance and heating) for the object to be heated is started (see “Start of system operation" in Fig. 3).
  • the disturbance operation amount prediction unit 20 can recognize the time point of the start of the operation. Then, upon receiving the signal, the disturbance manipulation amount prediction unit 20 starts disturbance tuning.
  • the process of canceling the disturbance D is not performed, and only the normal PID feedback control is performed. That is, after the start of the operation, with the disturbance D applied to the control system, PID control using the temperature T, the target value TO, and the PID manipulated variable O (that is, feedback that matches the temperature T with the target value TO). Control) is performed in the control system. In this way, after the start of the operation, the disturbance D is applied and the feedback control is performed.
  • the disturbance operation amount prediction unit 20 detects the disturbance start time ti (see the upper part of FIG. 3) (step S11 in FIG. 5).
  • the disturbance start time point ti means a time point when the temperature deviation
  • the disturbance operation amount prediction unit 20 logs (records) the temperature T and the PID operation amount O in the memory 10 in time series while performing the feedback control (step S12). Then, the disturbance operation amount prediction unit 20 detects the disturbance end time point tf (see the upper part of FIG. 3) (step S13).
  • the disturbance end time tf means the time when the temperature deviation
  • the logging (recording) of the temperature T and the PID manipulated variable O ends.
  • the disturbance operation amount prediction unit 20 creates (predicts) the disturbance operation amount DO as shown in the lower part of FIG. 3 using each temperature T and each PID operation amount O recorded in step S12 (. Step S14).
  • the above-mentioned disturbance operation amount created by the disturbance operation amount prediction unit 20 (which can be grasped as the disturbance operation amount created by the disturbance operation amount prediction unit 20 for the first time) DO is stored in the memory 10.
  • the disturbance operation amount DO created by the disturbance operation amount prediction unit 20 for the first time period is referred to as a disturbance operation amount FF1.
  • the creation of the disturbance operation amount DO and the disturbance tuning in the disturbance operation amount prediction unit 20 are described in detail, for example, in Japanese Patent Laid-Open No. 2000-227801.
  • step S2 in Fig. 4 the disturbance tuning (step S2 in Fig. 4) is completed. Then, the preparation process shown in FIG. 4 also ends.
  • the temperature control device 200 transmits the operation amounts O and DO obtained by applying the disturbance operation amount DO to the PID operation amount O in a feedforward manner to the heating device 300.
  • the temperature control device 200 according to the present embodiment can also apply the disturbance operation amount DO created (corrected) by the disturbance operation amount correction unit 40 to the PID operation amount O in a feedforward manner. ..
  • FIG. 6 shows the operation of the heating device control process.
  • the system control device 100 transmits the above-mentioned signal relating to the start of operation to the temperature control device 200.
  • the disturbance D by the disturbance element 70 is applied to the control system described above.
  • the temperature control device 200 receives the temperature T detected by the temperature sensor 300b of the heating device 300.
  • the PID control unit 15 of the temperature control device 200 receives the difference between the target value TO and the received temperature T.
  • the PID control unit 15 outputs the PID operation amount O according to the difference. That is, the PID control unit 15 uses each parameter determined by the PID tuning performed in the preparatory process to perform the PID operation so as to eliminate the temperature deviation
  • the disturbance operation amount application unit 25 applies the disturbance operation amount DO to the PID operation amount O at a predetermined timing, and the disturbance suppression process is executed. (Step S21 in FIG. 6).
  • the disturbance operation amount application unit 25 applies the disturbance operation amount FF1 created by the disturbance operation amount prediction unit 20 in the preparation process to the PID operation amount O in a feedforward manner.
  • system fluctuation may occur in the control system with the passage of time.
  • system fluctuation deterioration of the heating element 300a included in the heating device 300 is assumed. Therefore, in the present embodiment, for example, when there is a possibility that a system change has occurred, the user re-performs PID tuning for the control system (step S22). Then, by the PID tuning, the proportional band information acquisition unit 30 acquires the proportional band Kp2 at the second time (step S22).
  • the proportional band Kp2 is stored in the memory 10.
  • the second time is a time when the PID tuning is performed after the first time.
  • the system fluctuation rate determination unit 35 obtains a proportional band change rate (Kp2/Kp1) between the proportional band Kp1 and the proportional band Kp2 described above. Then, the system fluctuation rate determination unit 35 determines the proportional band change rate (Kp2/Kp1) as the system fluctuation rate SR of the control system for the second time (step S23).
  • the disturbance operation amount correction unit 40 calculates the above-described disturbance operation amount FF1 created by the disturbance operation amount prediction unit 20 for the first time and the system fluctuation rate (Kp2/Kp1).
  • the disturbance manipulated variable DO for the second time period is created using this. More specifically, by dividing the disturbance manipulated variable FF1 by the system fluctuation rate (Kp2 / Kp1), the disturbance manipulated variable DO for the second period is created.
  • the disturbance operation amount DO created by the disturbance operation amount correction unit 40 for the second time is referred to as a disturbance operation amount FF2.
  • the disturbance operation amount FF2 is stored in the memory 10. Further, for example, when the disturbance manipulated variable FF1 and the proportional band Kp1 are not used thereafter, the disturbance manipulated variable FF1 and the proportional band Kp1 are deleted from the memory.
  • step S25 the disturbance manipulated variable application unit 25 applies the disturbance manipulated variable FF2 to the PID manipulated variable O in a feedforward manner instead of the disturbance manipulated variable FF1.
  • FIG. 7 exemplifies a time-series change of the temperature T before and after the system change and a change of the disturbance operation amount FO before and after the system change.
  • the disturbance operation amount correction unit 40 newly creates a disturbance operation amount DO.
  • a mode of creating the disturbance operation amount DO there are, for example, a first mode and a second mode.
  • a method of creating a disturbance manipulated variable DO according to the first aspect and the second aspect will be described.
  • the user performs a third PID tuning on the control system (see step S22 in FIG. 6). Then, by the PID tuning, the proportional band information acquisition unit 30 acquires the proportional band Kp3 at the third time (step S22).
  • the proportional band Kp3 is stored in the memory 10.
  • the third time is the time when PID tuning is performed after the second time.
  • the system fluctuation rate determination unit 35 obtains a proportional band change rate (Kp3/Kp2) between the proportional band Kp2 described above and the proportional band Kp3 described above. Then, the system fluctuation rate determination unit 35 uses the proportional band change rate (Kp3/Kp2) to determine the system fluctuation rate SR for the third time (step S23).
  • the disturbance operation amount correction unit 40 determines the proportional band change rate (Kp3/Kp2) as the system variation rate SR for the third time period.
  • the disturbance operation amount correction unit 40 creates the disturbance operation amount FF2 regarding the second time period created by the disturbance operation amount correction unit 40 and the system fluctuation rate (Kp3/ Kp2) is used to create the disturbance operation amount DO for the third time period.
  • the disturbance operation amount DO created by the disturbance operation amount correction unit 40 for the third time is referred to as a disturbance operation amount FF3.
  • the disturbance operation amount correction unit 40 divides the disturbance operation amount FF2 by the system fluctuation rate (Kp3/Kp2) to create the disturbance operation amount FF3 for the third time period.
  • the disturbance operation amount FF3 is stored in the memory 10, and, for example, the disturbance operation amount FF2 and the proportional band Kp2 are deleted from the memory.
  • the disturbance operation amount application unit 25 applies the disturbance operation amount FF3, instead of the disturbance operation amounts FF1 and FF2, to the PID operation amount O in a feedforward manner.
  • the user performs the fourth PID tuning for the control system (see step S22 in FIG. 6). Then, by the PID tuning, the proportional band information acquisition unit 30 acquires the proportional band Kp4 at the fourth time (step S22).
  • the proportional band Kp4 is stored in the memory 10.
  • the fourth time is a time when the PID tuning is performed after the third time.
  • the system fluctuation rate determination unit 35 obtains the proportional band change rate (Kp4 / Kp3) between the above-mentioned proportional band Kp3 and the above-mentioned proportional band Kp4. Then, the system fluctuation rate determination unit 35 determines the system fluctuation rate SR for the fourth time period using the proportional band change rate (Kp4 / Kp3) (step S23). Here, the disturbance manipulation amount correction unit 40 determines the proportional band change rate (Kp4 / Kp3) as the system fluctuation rate SR for the fourth time period.
  • step S24 the disturbance operation amount correction unit 40, the disturbance operation amount FF3 regarding the third time period created by the disturbance operation amount correction unit 40, and the system fluctuation rate regarding the fourth time period (Kp4/Kp3). And are used to create the disturbance operation amount DO for the fourth time period.
  • the disturbance operation amount DO created by the disturbance operation amount correction unit 40 for the fourth time is referred to as a disturbance operation amount FF4.
  • the disturbance manipulated variable correction unit 40 creates the disturbance manipulated variable FF4 for the fourth time period by dividing the disturbance manipulated variable FF3 by the system fluctuation rate (Kp4 / Kp3).
  • the disturbance operation amount FF4 is stored in the memory 10, and, for example, the disturbance operation amount FF3 and the proportional band Kp3 are deleted from the memory. Then, in step S25, the disturbance operation amount application unit 25 applies the disturbance operation amount FF4, instead of the disturbance operation amounts FF1, FF2, and FF3, to the PID operation amount O in a feedforward manner.
  • FIG. 8 illustrates the relationship between the proportional band Kp, the system fluctuation rate SR, and the disturbance manipulated variable DO when the first aspect is implemented.
  • 4 is acquired as the proportional band Kp1 in the first period
  • 2 is acquired as the proportional band Kp2 in the second period
  • 2 is acquired as the proportional band Kp2 in the third period
  • the proportional band Kp3 is acquired in the third period.
  • Is acquired, and 1 is acquired as the proportional band Kp4 in the fourth time period.
  • the system fluctuation rate SR is Kp3 / for the third time period.
  • the disturbance operation amount correction unit 40 when n is an integer of 3 or more, the disturbance operation amount correction unit 40 generates the disturbance operation amount created by the disturbance operation amount correction unit 40 with respect to the (n-1)th time.
  • the disturbance operation amount FFn for the n-th time is created using the amount FF(n-1) and the system fluctuation rate SR for the n-th time after the (n-1)-th time. ..
  • the proportional band information acquisition unit 30 acquires the proportional band Kp3 at the third time (step S22).
  • the proportional band Kp3 is stored in the memory 10.
  • the third time is a time when the PID tuning is performed after the second time.
  • the system fluctuation rate determination unit 35 obtains the proportional band change rate (Kp3 / Kp1) between the above-mentioned proportional band Kp1 and the above-mentioned proportional band Kp3. Then, the system fluctuation rate determination unit 35 determines the system fluctuation rate SR for the third period using the proportional band change rate (Kp3 / Kp1) (step S23). Here, the disturbance manipulation amount correction unit 40 determines the proportional band change rate (Kp3 / Kp1) as the system fluctuation rate SR for the third time period.
  • the disturbance operation amount correction unit 40 causes the disturbance operation amount prediction unit 20 to create the disturbance operation amount FF1 relating to the first time and the system variation rate (Kp3/Kp1) relating to the third time. ) To create a disturbance manipulated variable DO for the third period.
  • the disturbance operation amount DO created by the disturbance operation amount correction unit 40 for the third time is referred to as a disturbance operation amount FF3'.
  • the disturbance operation amount correction unit 40 divides the disturbance operation amount FF1 by the system fluctuation rate (Kp3/Kp1) to create the disturbance operation amount FF3' for the third time period.
  • the disturbance operation amount FF3' is stored in the memory 10.
  • the disturbance operation amount application unit 25 applies the disturbance operation amount FF3' instead of the disturbance operation amounts FF1 and FF2 to the PID operation amount O in a feedforward manner.
  • the user performs the fourth PID tuning for the control system (see step S22 in FIG. 6). Then, by the PID tuning, the proportional band information acquisition unit 30 acquires the proportional band Kp4 at the fourth time (step S22).
  • the proportional band Kp4 is stored in the memory 10.
  • the fourth time is a time when the PID tuning is performed after the third time.
  • the system fluctuation rate determination unit 35 obtains a proportional band change rate (Kp4/Kp1) between the proportional band Kp1 described above and the proportional band Kp4 described above. Then, the system fluctuation rate determination unit 35 determines the system fluctuation rate SR for the fourth period using the proportional band change rate (Kp4 / Kp1) (step S23). Here, the disturbance operation amount correction unit 40 determines the proportional band change rate (Kp4/Kp1) as the system variation rate SR for the fourth time period.
  • the disturbance operation amount correction unit 40 causes the disturbance operation amount prediction unit 20 to generate the disturbance operation amount FF1 relating to the first time and the system variation rate (Kp4/Kp1) relating to the fourth time. ) And are used to create the disturbance operation amount DO for the fourth time period.
  • the disturbance operation amount DO created by the disturbance operation amount correction unit 40 for the fourth time is referred to as a disturbance operation amount FF4'.
  • the disturbance operation amount correction unit 40 divides the disturbance operation amount FF1 by the system fluctuation rate (Kp4/Kp1) to create the disturbance operation amount FF4' for the fourth time period.
  • the disturbance operation amount FF4' is stored in the memory 10.
  • the disturbance operation amount application unit 25 applies the disturbance operation amount FF4' instead of the disturbance operation amounts FF1, FF2, FF3' to the PID operation amount O in a feedforward manner.
  • FIG. 9 exemplifies the relationship between the proportional band Kp, the system fluctuation rate SR, and the disturbance operation amount DO when the second mode is implemented.
  • the proportional band Kp acquired at each time is the same as the example of FIG.
  • the disturbance operation amount correction unit 40 has the disturbance operation amount FF1 created by the disturbance operation amount prediction unit 20 for the first time, and the disturbance operation amount FF1.
  • the disturbance operation amount FO for the n-th time is created using the system fluctuation rate SR for the n-th time.
  • the notification device included in the temperature control device 200 may notify that the proportional band change rate exceeds the threshold value. ..
  • the proportional band information acquisition unit 30 performs PID tuning on the control system according to the time to acquire the proportional band Kp.
  • the system fluctuation rate determination unit 35 acquires the proportional band information at the first time and the proportional band Kp1 acquired by the proportional band information acquisition unit 30 and at the second time after the first time.
  • the proportional band change rate with the proportional band Kp2 acquired by the unit 30 is obtained, and the system fluctuation rate SR is determined using the proportional band change rate.
  • the disturbance operation amount correction unit 40 divides the disturbance operation amount FF1 created by the disturbance operation amount prediction unit 20 for the first time by the system fluctuation rate SR, so that the disturbance operation for the second time is performed. Create quantity FF2.
  • the proportional band change rate is proportional to the system fluctuation rate SR. Therefore, the system fluctuation rate SR is determined using the proportional band change rate, and the disturbance manipulated variable FO is divided by the system fluctuation rate SR to determine a more appropriate disturbance manipulated variable FO after the system fluctuation. be able to. Therefore, even if the system fluctuates in the control system, it is possible to suppress the disturbance with high accuracy.
  • the disturbance operation amount correction unit 40 is created by the disturbance operation amount correction unit 40 with respect to the (n-1) th time.
  • the disturbance manipulated amount FFn for the nth time. Is created (see the first aspect).
  • the disturbance operation amount prediction unit 20 creates the disturbance. It is not necessary to use the manipulated variable FO(FF1). Therefore, it is not necessary for the disturbance operation amount prediction unit 20 to create the disturbance operation amount after the disturbance operation amount correction unit 40 once creates the disturbance operation amount FO. Therefore, the disturbance tuning by the disturbance operation amount prediction unit 20 after the system fluctuation occurs is not necessary.
  • the disturbance operation amount correction unit 40 is the disturbance operation amount FF1 created by the disturbance operation amount prediction unit 20 for the first time.
  • the system fluctuation rate SR for the n-th time may be used to create the disturbance operation amount FO for the n-th time (see the second mode).
  • the disturbance operation amount correction unit 40 can create the disturbance operation amount FO for the n-th time. Therefore, the disturbance operation amount correction unit 40 can accurately determine the disturbance operation amount FO for the n-th time.
  • the temperature control device 200 further includes a notification device 60 for notifying when the proportional band change rate exceeds a preset threshold value. Therefore, when the proportional band information acquisition unit 30 acquires the proportional band of an abnormal value, the user can be notified to that effect. Therefore, it is possible to prevent in advance the improper disturbance operation amount FO created by the disturbance operation amount correction unit 40 using the abnormal proportional band from being applied to the operation amount O from the PID control unit 15. Can be done.
  • PID control unit 15 PID control unit 20 Disturbance operation amount prediction unit 25 Disturbance operation amount application unit 30 Proportional band information acquisition unit 35 System fluctuation rate determination unit 40 Disturbance operation amount correction unit 60 Notification device 200 Temperature control device (disturbance suppression device) 300 Heating device (controlled object)

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Feedback Control In General (AREA)

Abstract

This disturbance suppression device enables highly accurate suppression of disturbance even in the case of occurrence of system fluctuation. A temperature control device (disturbance suppression device)(200) is provided with a proportional band information acquisition unit (30), a system fluctuation rate determination unit (35), and disturbance operation amount correction unit (40). The proportional band information acquisition unit (30) performs an adjustment process on a control system so as to adjust control parameters for a PID control unit (15) in accordance with a period of time, and acquires information indicating a proportional band. The system fluctuation rate determination unit (35) calculates a proportional band change rate between a first proportional band, information of which is obtained in a first period of time, and a second proportional band, information of which is obtained in a second period of time later than the first period of time, and determines the system fluctuation rate of the control system by using the proportional band change rate. The disturbance operation amount correction unit (40) creates a disturbance operation amount FF2 for a second period of time by dividing, by the system fluctuation rate, a disturbance operation amount FF1 for the first period of time created by a disturbance operation amount prediction unit (20).

Description

外乱抑制装置、外乱抑制方法、およびプログラムDisturbance suppression device, disturbance suppression method, and program
 この発明は、外乱抑制装置、外乱抑制方法、およびプログラムに関し、たとえば、制御系に対する外乱による影響を抑制することが可能な、外乱抑制装置、外乱抑制方法、およびプログラムに関する。 The present invention relates to a disturbance suppression device, a disturbance suppression method, and a program, for example, a disturbance suppression device, a disturbance suppression method, and a program capable of suppressing the influence of a disturbance on a control system.
 制御系に対して印加される外乱を予測し、当該制御系に対する当該外乱による影響を低減する技術が、存在する(たとえば、特許文献1:特開2000-227801号公報)。特許文献1には、外乱操作量予測手段および外乱操作量印加手段が、記載されている。外乱操作量予測手段は、外乱を打ち消すための外乱操作量を予測する。そして、外乱操作量印加手段は、外乱が印加された時、当該外乱を打ち消すように、上記外乱操作量を、PID制御手段からの操作量に加える。これにより、制御対象に対して、外乱の影響を抑制することを図っている。 There is a technique for predicting the disturbance applied to the control system and reducing the influence of the disturbance on the control system (for example, Patent Document 1: Japanese Patent Application Laid-Open No. 2000-227801). Patent Document 1 describes a disturbance manipulation amount predicting means and a disturbance manipulation amount applying means. The disturbance manipulated amount predicting means predicts the disturbance manipulated amount for canceling the disturbance. Then, the disturbance manipulation amount applying means adds the disturbance manipulation amount to the manipulation amount from the PID control means so as to cancel the disturbance when the disturbance is applied. As a result, the influence of the disturbance on the controlled object is suppressed.
特開2000-227801号公報Japanese Unexamined Patent Publication No. 2000-227801
 しかしながら、時間の経過とともに、上記制御系において、システム変動が生じ得る。ここで、当該制御系がヒータを含む場合には、当該ヒータの劣化により、システム変動が生じる。また、システム変動は、夏-冬間の周囲温度の変化、および処理対象のワークの変動等によっても、生じ得る。そして、精度のよい外乱抑制を達成するためには、システム変動が発生する前に予測した外乱操作量を、システム変動が発生した後においても使用することは、適切ではないと考えられる。 However, with the passage of time, system fluctuations may occur in the control system. Here, when the control system includes a heater, system fluctuation occurs due to deterioration of the heater. In addition, system fluctuations can also occur due to changes in the ambient temperature between summer and winter, fluctuations in the workpiece to be processed, and the like. Then, in order to achieve accurate disturbance suppression, it is considered inappropriate to use the disturbance manipulation amount predicted before the system fluctuation occurs even after the system fluctuation occurs.
 そこで、この発明の課題は、外乱抑制装置において、システム変動が生じたとしても、精度の高い外乱抑制を行うことが可能な、外乱抑制装置、外乱抑制方法、およびプログラムを提供することにある。 Therefore, an object of the present invention is to provide a disturbance suppression device, a disturbance suppression method, and a program capable of performing highly accurate disturbance suppression even if a system fluctuation occurs in the disturbance suppression device.
 上記課題を解決するため、この開示に係る外乱抑制装置は、
 制御系に印加される外乱の抑制を行う外乱抑制装置であって、
 上記制御系は、
 制御対象と、
 目標値と制御量との偏差をなくすように、上記制御対象に対してPID操作量を出力するPID制御部とを含み、
 上記外乱抑制装置は、
 上記制御系に印加される外乱に対応して、当該外乱を打ち消すように作用する外乱操作量を予測して作成する外乱操作量予測部と、
 上記外乱操作量を上記PID操作量に印加し得る、外乱操作量印加部と、
 上記制御系について、時期に応じて、上記PID制御部の制御パラメータを調整する調整処理を行って、比例帯を表す情報を取得する、比例帯情報取得部と、
 第1の時期に、上記比例帯情報取得部により情報取得された第1の比例帯と、上記第1の時期よりも後の第2の時期に、上記比例帯情報取得部により情報取得された第2の比例帯との間の、比例帯変化率を求め、当該比例帯変化率を用いて、上記制御系のシステム変動率を決定する、システム変動率決定部と、
 上記第1の時期について上記外乱操作量予測部が作成した上記外乱操作量を、上記システム変動率で除算することにより、上記第2の時期についての外乱操作量を作成する、外乱操作量補正部とを、備える、ことを特徴とする。
In order to solve the above problems, the disturbance suppression device according to this disclosure is
A disturbance suppression device that suppresses disturbances applied to the control system.
The control system is
Control target,
A PID control unit that outputs a PID operation amount to the control target so as to eliminate the deviation between the target value and the control amount,
The disturbance suppression device is
A disturbance operation amount prediction unit that predicts and creates a disturbance operation amount that acts to cancel the disturbance in response to the disturbance applied to the control system.
A disturbance operation amount application unit capable of applying the disturbance operation amount to the PID operation amount, and
With respect to the control system, an adjustment process for adjusting the control parameters of the PID control unit is performed according to the time, and information representing the proportional band is acquired.
Information is acquired by the proportional band information acquisition unit at a first time when the first proportional band is acquired by the proportional band information acquisition unit at a first time and at a second time after the first time. A system fluctuation rate determination unit that obtains the proportional band change rate between the second proportional band and determines the system fluctuation rate of the control system using the proportional band change rate.
A disturbance operation amount correction unit that creates the disturbance operation amount for the second time period by dividing the disturbance operation amount created by the disturbance operation amount prediction unit for the first time period by the system fluctuation rate. It is characterized by having and.
 本明細書で、PID制御(部)とは、フィードバック制御の一種であって、比例制御(P制御)、積分制御(I制御)、および、微分制御(D制御)を行うものをいう。 In the present specification, the PID control (section) is a kind of feedback control and performs proportional control (P control), integral control (I control), and derivative control (D control).
 また、「外乱操作量」とは、外乱を打ち消すために、印加される操作量を意味する。外乱による上記フィードバック制御系に対する影響が、時間の経過に伴って定形化されたものであれば、外乱操作量も時間の経過に伴って定形化(パターン化)される。 In addition, the "disturbance manipulated amount" means the manipulated variable applied to cancel the disturbance. If the influence of the disturbance on the feedback control system is stylized with the passage of time, the disturbance manipulation amount is also stylized (patterned) with the passage of time.
 また、「比例帯」とは、操作量を0から100%まで変化させるために必要な制御量の幅を意味する。また、「比例帯変化率」とは、比例帯の変化率を意味する。 Also, the "proportional band" means the range of the control amount necessary to change the operation amount from 0 to 100%. Further, the "proportional band change rate" means the rate of change of the proportional band.
 この開示に係る外乱抑制装置では、外乱操作量予測部は、外乱を打ち消すように作用する外乱操作量を予測・作成する。比例帯情報取得部は、時期に応じて、PID制御部の制御パラメータを調整する調整処理を行って、比例帯を表す情報を取得する。システム変動率決定部は、第1の時期に、比例帯情報取得部により情報取得された第1の比例帯と、上記第2の時期に、比例帯情報取得部により情報取得された第2の比例帯との間の、比例帯変化率を求め、当該比例帯変化率を用いて、上記システム変動率を決定する。外乱操作量補正部は、第1の時期について外乱操作量予測部が作成した外乱操作量を、上記システム変動率で除算することにより、上記第2の時期についての外乱操作量を作成する。ここで、比例帯変化率は、システム変動率に比例する。したがって、比例帯変化率を用いて、上記システム変動率が決定され、上記外乱操作量を、上記システム変動率で除算することにより、システム変動後において、より適切な外乱操作量を決定することができる。よって、上記制御系においてシステム変動が生じたとしても、精度の高い外乱抑制を行うことができる。 In the disturbance suppression device according to this disclosure, the disturbance operation amount prediction unit predicts/creates the disturbance operation amount that acts to cancel the disturbance. The proportional band information acquisition unit performs adjustment processing for adjusting the control parameter of the PID control unit according to the time, and acquires information indicating the proportional band. The system fluctuation rate determination unit includes a first proportional band acquired by the proportional band information acquisition unit at the first time, and a second proportional band acquired by the proportional band information acquisition unit at the second time. A proportional band change rate between the proportional band and the proportional band is obtained, and the system change rate is determined using the proportional band change rate. The disturbance manipulation amount correction unit creates the disturbance manipulation amount for the second period by dividing the disturbance manipulation amount created by the disturbance manipulation amount prediction unit for the first period by the system fluctuation rate. Here, the proportional band change rate is proportional to the system fluctuation rate. Therefore, the proportional fluctuation rate is used to determine the system fluctuation rate, and by dividing the disturbance operation amount by the system fluctuation rate, it is possible to determine a more appropriate disturbance operation amount after the system fluctuation. it can. Therefore, even if the system fluctuates in the control system, it is possible to suppress the disturbance with high accuracy.
 なお、上記調整処理が時期に応じて順次複数回実施される場合、例えば、上記第1の時期は第1回の時期に相当し、上記第2の時期は第2回の時期に相当する。 When the adjustment process is sequentially performed a plurality of times depending on the time, for example, the first time corresponds to the first time and the second time corresponds to the second time.
 一実施形態の外乱抑制装置では、
 上記比例帯情報取得部は、
 上記調整処理を時期に応じて順次複数回実施して、上記比例帯を表す情報を順次複数回取得し、
 上記システム変動率決定部は、nを3以上の整数としたとき、
 第(n-1)回の時期に、上記比例帯情報取得部により情報取得された第(n-1)の比例帯と、上記第(n-1)回の時期の次の第n回の時期に、上記比例帯情報取得部により情報取得された第nの比例帯との間の、上記比例帯変化率を求め、当該比例帯変化率を用いて、上記システム変動率を決定し、
 上記外乱操作量補正部は、
 上記第(n-1)回の時期について当該外乱操作量補正部が作成した上記外乱操作量と、上記システム変動率とを用いて、上記第n回の時期についての外乱操作量を作成する、
ことを特徴とする。
In the disturbance suppression device of one embodiment,
The above proportional band information acquisition unit
The above adjustment process is sequentially performed a plurality of times according to the time, and the information indicating the proportional band is sequentially obtained a plurality of times,
When n is an integer of 3 or more, the system fluctuation rate determination unit may be used.
The (n-1) proportional band whose information was acquired by the proportional band information acquisition unit during the (n-1) th time, and the nth time following the (n-1) time. At the time, the proportional band change rate between the nth proportional band information acquired by the proportional band information acquisition unit is obtained, and the system change rate is determined using the proportional band change rate.
The disturbance operation amount correction unit is
A disturbance operation amount for the n-th time is created using the disturbance operation amount created by the disturbance operation amount correction unit for the (n-1)-th time and the system fluctuation rate.
It is characterized by
 この一実施形態の外乱抑制装置により、外乱操作量補正部が一度、外乱操作量を作成した後、当該外乱操作量補正部が新たに外乱操作量を作成する際に、外乱操作量予測部が作成した外乱操作量を用いる必要がなくなる。したがって、外乱操作量補正部が一度、外乱操作量を作成した後、外乱操作量予測部で、外乱操作量を作成する必要がなくなる。よって、システム変動が発生した後の外乱操作量予測部による外乱チューニングが、不要となる。 With the disturbance suppression device of this one embodiment, the disturbance operation amount correction unit once creates the disturbance operation amount, and then when the disturbance operation amount correction unit newly creates the disturbance operation amount, the disturbance operation amount prediction unit It is not necessary to use the created disturbance operation amount. Therefore, it is not necessary to create the disturbance operation amount by the disturbance operation amount prediction unit after the disturbance operation amount correction unit once creates the disturbance operation amount. Therefore, the disturbance tuning by the disturbance manipulated variable predicting unit after the system fluctuation occurs is unnecessary.
 一実施形態の外乱抑制装置では、
 上記比例帯情報取得部は、
 上記調整処理を時期に応じて順次複数回実施して、上記比例帯を表す情報を順次複数回取得し、
 上記システム変動率決定部は、nを3以上の整数としたとき、
 上記第1の比例帯と、第n回の時期に、上記比例帯情報取得部により情報取得された第nの比例帯との間の、上記比例帯変化率を求め、当該比例帯変化率を用いて、上記システム変動率を決定し、
 上記外乱操作量補正部は、
 上記システム変動率と、上記外乱操作量予測部が作成した上記外乱操作量を用いて、上記第n回の時期についての外乱操作量を作成する、ことを特徴とする。
In the disturbance suppression device of one embodiment,
The above proportional band information acquisition unit
The above adjustment process is sequentially performed a plurality of times according to the time, and the information representing the above proportional band is sequentially acquired a plurality of times.
When n is an integer of 3 or more, the system fluctuation rate determination unit may be used.
The proportional band change rate between the first proportional band and the nth proportional band information acquired by the proportional band information acquisition unit at the n-th time is calculated, and the proportional band change rate is calculated. Use to determine the above system volatility
The disturbance operation amount correction unit is
It is characterized in that the disturbance operation amount for the nth time is created by using the system fluctuation rate and the disturbance operation amount created by the disturbance operation amount prediction unit.
 この一実施形態の外乱抑制装置により、外乱操作量予測部が作成した外乱操作量を用いて、外乱操作量補正部は第n回の時期についての外乱操作量を作成することができる。したがって、外乱操作量補正部は、第n回の時期について外乱操作量を、精度よく、決定することができる。 With the disturbance suppression device of this one embodiment, the disturbance operation amount correction unit can create the disturbance operation amount for the nth time period by using the disturbance operation amount created by the disturbance operation amount prediction unit. Therefore, the disturbance operation amount correction unit can accurately determine the disturbance operation amount for the nth time period.
 一実施形態の外乱抑制装置は、
 上記比例帯変化率が、予め設定された閾値を超えたとき、その旨を通知する、通知装置を、さらに備える、ことを特徴とする。
The disturbance suppression device of one embodiment is
When the proportional band change rate exceeds a preset threshold value, a notification device for notifying the fact is further provided.
 この一実施形態の外乱抑制システムでは、比例帯情報取得部が異常な値の比例帯を取得したときに、その旨を、ユーザに知らせることができる。よって、当該異常な比例帯を用いて外乱操作量補正部で作成された、不適切な外乱操作量を、PID制御部からの操作量に印加することを、事前に防止することができる。 In the disturbance suppression system of this one embodiment, when the proportional band information acquisition unit acquires a proportional band having an abnormal value, the user can be notified of that fact. Therefore, it is possible to prevent in advance the improper disturbance operation amount created by the disturbance operation amount correction unit using the abnormal proportional band from being applied to the operation amount from the PID control unit.
 別の局面では、この開示の外乱抑制方法は、
 制御系に印加される外乱の抑制を行う外乱抑制方法であって、
 上記制御系は、
 制御対象と、
 目標値と制御量との偏差をなくすように、上記制御対象に対してPID操作量を出力するPID制御部とを含み、
 上記外乱抑制方法は、
 第1の時期に、
 上記制御系に印加される外乱に対応して、当該外乱を打ち消すように作用する外乱操作量を予測して作成し、上記外乱操作量を上記PID操作量に印加するとともに、
 上記制御系について、上記PID制御部の制御パラメータを調整する調整処理を行って、比例帯としての第1の比例帯を表す情報を取得し、
 上記第1の時期よりも後の第2の時期に、
 上記制御系について、上記調整処理を行って、上記比例帯としての第2の比例帯を表す情報を取得し、
 上記第1の比例帯と上記第2の比例帯との間の、比例帯変化率を求め、この比例帯の変化率を用いて、上記制御系のシステム変動率を決定し、
 上記第1の時期についての上記外乱操作量を、上記システム変動率で除算することにより、上記第2の時期についての外乱操作量を作成し、
 上記第2の時期についての上記外乱操作量を、上記PID操作量に印加する、ことを特徴とする。
In another aspect, the disturbance suppression method of this disclosure is
It is a disturbance suppression method that suppresses the disturbance applied to the control system.
The control system is
Control target,
A PID control unit that outputs a PID operation amount to the control target so as to eliminate the deviation between the target value and the control amount,
The above disturbance suppression method is
In the first period,
Corresponding to the disturbance applied to the control system, a disturbance operation amount that acts to cancel the disturbance is created by prediction, and the disturbance operation amount is applied to the PID operation amount.
With respect to the control system, an adjustment process for adjusting the control parameters of the PID control unit is performed to acquire information representing the first proportional band as the proportional band.
In the second period after the first period above,
With respect to the control system, the adjustment process is performed to obtain information indicating the second proportional band as the proportional band,
The rate of change in the proportional band between the first proportional band and the second proportional band is obtained, and the rate of change in the proportional band is used to determine the system fluctuation rate of the control system.
By dividing the disturbance manipulated amount for the first period by the system fluctuation rate, the disturbance manipulated amount for the second period is created.
The disturbance operation amount for the second period is applied to the PID operation amount.
 この発明の外乱抑制方法では、外乱を打ち消すように作用する外乱操作量が予測・作成される。第1の時期に、上記調整処理を行って、第1の比例帯を表す情報が取得される。上記第2の時期に、上記調整処理を行って、第2の比例帯を表す情報が取得される。上記第1の比例帯と上記第2の比例帯との間の、比例帯変化率が求められ、当該比例帯の変化率を用いて、上記システム変動率が決定される。上記第1の時期についての上記外乱操作量を、上記システム変動率で除算することにより、上記第2の時期についての外乱操作量が作成される。そして、上記第2の時期についての上記外乱操作量が、PID操作量に印加される。ここで、比例帯変化率は、システム変動率に比例する。したがって、比例帯変化率を用いて、上記システム変動率が決定され、上記外乱操作量を、上記システム変動率で除算することにより、システム変動後において、より適切な外乱操作量を決定することができる。よって、外乱抑制システムにおいてシステム変動が生じたとしても、精度の高い外乱抑制を行うことができる。 According to the disturbance suppression method of the present invention, the disturbance operation amount that acts to cancel the disturbance is predicted and created. At the first time, the above adjustment process is performed to obtain the information indicating the first proportional band. At the second time, the adjustment process is performed to obtain the information indicating the second proportional band. The proportional band change rate between the first proportional band and the second proportional band is obtained, and the system fluctuation rate is determined using the change rate of the proportional band. By dividing the disturbance manipulated amount for the first period by the system fluctuation rate, the disturbance manipulated amount for the second period is created. Then, the disturbance operation amount for the second period is applied to the PID operation amount. Here, the proportional band change rate is proportional to the system change rate. Therefore, the system fluctuation rate is determined using the proportional band change rate, and the disturbance manipulation amount can be divided by the system fluctuation rate to determine a more appropriate disturbance manipulation amount after the system fluctuation. it can. Therefore, even if the system fluctuation occurs in the disturbance suppression system, the disturbance can be suppressed with high accuracy.
 さらに別の局面では、この開示のプログラムは、外乱抑制方法を、コンピュータに実行させるためのプログラムである。 In yet another aspect, this disclosed program is a program for causing a computer to execute a disturbance suppression method.
 この開示のプログラムをコンピュータに実行させることによって、上記外乱抑制方法を実施することができる。 The above disturbance suppression method can be carried out by causing a computer to execute the program of this disclosure.
 以上より明らかなように、この開示の、外乱抑制システムおよび外乱抑制方法によれば、システム変動が生じたとしても、精度の高い外乱抑制を行うことができる。また、この開示のプログラムをコンピュータに実行させることによって、上記外乱抑制方法を実施することができる。 As is clear from the above, according to the disturbance suppression system and the disturbance suppression method disclosed in this disclosure, it is possible to perform highly accurate disturbance suppression even if system fluctuations occur. Further, the disturbance suppression method can be implemented by causing a computer to execute the program of this disclosure.
実施の形態に係るシステム全体の概略構成を示す図である。It is a figure which shows schematic structure of the whole system which concerns on embodiment. 実施の形態に係る外乱抑制装置が適用された温度制御装置の構成を示す図である。It is a figure which shows the structure of the temperature control apparatus to which the disturbance suppression apparatus which concerns on embodiment is applied. 外乱により温度が時系列的に変化する場合に、当該外乱を打消すように作成された外乱操作量の一例を示す図である。It is a figure which shows an example of the disturbance operation amount created so that the said disturbance may be cancelled, when temperature changes in time series by disturbance. 上記温度制御装置における、外乱抑制のための準備処理動作の流れを示す図である。It is a figure which shows the flow of the preparation process operation for disturbance suppression in the said temperature control apparatus. 図3の準備処理動作に含まれる外乱チューニング動作の流れを示す図である。4 is a diagram showing a flow of a disturbance tuning operation included in the preparation processing operation of FIG. 3. FIG. 温度制御装置で実施される外乱操作量を作成する動作の流れを示す図である。It is a figure which shows the flow of the operation which creates the disturbance operation amount performed by a temperature control device. システム変動前後における、温度の変化および外乱操作量の変化を例示する図である。It is a figure which illustrates the change of the temperature and the change of the disturbance operation amount before and after the system change. 直前に作成された外乱操作量を用いて、新たに外乱操作量を作成する方法により作成された、各時期に対応する外乱操作量を例示する図である。It is a figure which illustrates the disturbance operation amount corresponding to each time, which was created by the method of newly creating a disturbance operation amount using the disturbance operation amount created just before. 外乱操作量予測部で作成された外乱操作量を用いて、新たに外乱操作量を作成する方法により作成された、各時期に対応する外乱操作量を例示する図である。It is a figure which illustrates the disturbance operation amount corresponding to each time created by the method of newly creating a disturbance operation amount using the disturbance operation amount created by the disturbance operation amount prediction unit.
 以下、この発明の実施の形態を、図面を参照しながら詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 図1は、本実施の形態に係る制御システムの構成を、示している。当該制御システムは、システム制御装置100、一実施形態の外乱抑制装置が適用された温度制御装置200、制御対象としての加熱装置(以下、単に「加熱装置」と称する)300、およびワーク搬送装置400を含む。図1に示すように、システム制御装置100は、温度制御装置200およびワーク搬送装置400と、通信可能に接続されている。また、温度制御装置200は、加熱装置300と、通信可能に接続されている。ここで説明した接続方法は、有線による接続であっても、無線による接続であってもよい。 FIG. 1 shows the configuration of the control system according to this embodiment. The control system includes a system control device 100, a temperature control device 200 to which the disturbance suppression device of one embodiment is applied, a heating device as a control target (hereinafter, simply referred to as “heating device”) 300, and a work transfer device 400. including. As shown in FIG. 1, the system control device 100 is communicably connected to the temperature control device 200 and the work transfer device 400. Further, the temperature control device 200 is connected to the heating device 300 so as to communicate with each other. The connection method described here may be wired connection or wireless connection.
 図1に示すシステムでは、ワーク搬送装置400により、被加熱体(図示せず)が、加熱装置300へ搬送される。そして、当該加熱装置300が当該被加熱体に対して加熱処理を行うことにより、加熱処理後の物品が生成される。 In the system shown in FIG. 1, the work transfer device 400 transfers an object to be heated (not shown) to the heating device 300. Then, the heating device 300 heat-treats the heated body to generate an article after the heat treatment.
 システム制御装置100は、システム全体の制御を担っている。当該システム制御装置100は、温度制御装置200に対して、加熱制御に関する各信号を送信し、ワーク搬送装置400に対して、上記被加熱体および加熱処理後の物品の搬送制御に関する搬送信号CSを送信する。当該搬送信号CSに基づいて、ワーク搬送装置400は、システム外から加熱装置300への被加熱体移動、および加熱装置300からシステム外への加熱処理後の物品の移動を、制御する。加熱装置300は、当該加熱装置300に搬送されてくる被加熱体に対して、熱処理を施す。 The system control device 100 is responsible for controlling the entire system. The system control device 100 transmits each signal related to heating control to the temperature control device 200, and sends a transport signal CS related to transport control of the heated body and the article after heat treatment to the work transport device 400. Send. Based on the transfer signal CS, the work transfer device 400 controls the movement of the object to be heated from outside the system to the heating device 300 and the movement of the article after the heat treatment from the heating device 300 to the outside of the system. The heating device 300 heat-treats the heated body transported to the heating device 300.
 温度制御装置200は、加熱装置300において、所望の温度での加熱処理が実現されるように、当該加熱装置300が有する加熱体300aの温度制御を行う。なお、加熱装置300は、加熱処理の温度を検出することが可能な温度センサ300bを有している。温度センサ300bの検出値は、制御量としての温度T(以下、単に「温度T」と称する)である。温度制御装置200は、上記温度Tが目標値TOとなるように、PID操作量Oを含む信号を、加熱装置300に送信する。そして、当該加熱装置300は、受信したPID操作量Oを含む信号を用いて、加熱処理の温度Tが上記目標値TOとなるように、加熱体300aの加熱を制御する。 The temperature control device 200 controls the temperature of the heating body 300a included in the heating device 300 so that the heating device 300 can perform the heat treatment at a desired temperature. The heating device 300 has a temperature sensor 300b capable of detecting the temperature of the heat treatment. The detected value of the temperature sensor 300b is the temperature T (hereinafter, simply referred to as “temperature T”) as a controlled quantity. The temperature control device 200 transmits a signal including the PID manipulated variable O to the heating device 300 so that the temperature T becomes the target value TO. Then, the heating device 300 controls the heating of the heating body 300a by using the signal including the received PID manipulated variable O so that the temperature T of the heat treatment becomes the target value TO.
 図2は、温度制御装置200の具体的な構成例を示す。温度制御装置200は、メモリ10、プロセッサ50、および通知装置60を含む。プロセッサ50は、PID制御部15、外乱操作量予測部20、外乱操作量印加部25、比例帯情報取得部30、システム変動率決定部35、および外乱操作量補正部40としての機能を、実現する。後述する外乱抑制方法を含む、温度制御装置200を制御するためのプログラムが、メモリ10に、格納されている。プロセッサ50は、メモリ10と通信可能に接続されており、メモリ10からプログラムを読み込む。これにより、プロセッサ50は、外乱抑制方法を含む各種動作を、実行する。なお、プロセッサ50は、通知装置60と、通信可能に接続されている。 FIG. 2 shows a specific configuration example of the temperature control device 200. The temperature control device 200 includes a memory 10, a processor 50, and a notification device 60. The processor 50 realizes functions as a PID control unit 15, a disturbance operation amount prediction unit 20, a disturbance operation amount application unit 25, a proportional band information acquisition unit 30, a system fluctuation rate determination unit 35, and a disturbance operation amount correction unit 40. To do. A program for controlling the temperature control device 200, including a disturbance suppression method described later, is stored in the memory 10. The processor 50 is communicatively connected to the memory 10 and reads a program from the memory 10. As a result, the processor 50 executes various operations including the disturbance suppression method. The processor 50 is communicably connected to the notification device 60.
 図2に示すように、温度制御装置200内のPID制御部15は、制御対象としての加熱装置300を制御する制御系を構成している。なお、「制御系」は、加熱装置300とPID制御部15とを含む。PID制御部15は、目標値TOと温度T(上述したように、温度センサ300bの検出温度T)との偏差(TO-T)をなくすように、加熱装置300に対してPID操作量Oを出力する。 As shown in FIG. 2, the PID control unit 15 in the temperature control device 200 constitutes a control system for controlling the heating device 300 as a control target. The “control system” includes the heating device 300 and the PID control unit 15. The PID control unit 15 sets the PID operation amount O with respect to the heating device 300 so as to eliminate the deviation (TO-T) between the target value TO and the temperature T (detection temperature T of the temperature sensor 300b as described above). Output.
 ところで、図1に示すシステムの運転を開始し、被加熱体の当該システム内への搬送が開始されると、図2に示すように、当該運転開始に伴う外乱要素70による外乱Dが生じる。ここで、外乱要素70としては、被加熱体のシステムの侵入に伴う当該システム内への空気の流入、被加熱体が加熱体300aに接触することによる、加熱体300aの温度の低下等がある。ここで、このシステムでは、当該外乱要素70は、予知可能である。したがって、上記制御系に印加される、各外乱要素70に対応する各外乱Dも、予め予測できる。 By the way, when the operation of the system shown in FIG. 1 is started and the transport of the heated body into the system is started, as shown in FIG. 2, a disturbance D due to the disturbance element 70 is generated due to the start of the operation. Here, as the disturbance element 70, there is an inflow of air into the system due to the intrusion of the system to be heated, a decrease in the temperature of the heating body 300a due to the contact of the heated body with the heating body 300a, and the like. .. Here, in this system, the disturbance element 70 is predictable. Therefore, each disturbance D corresponding to each disturbance element 70 applied to the control system can also be predicted in advance.
 そこで、温度制御装置200内の外乱操作量予測部20は、上記制御系に印加される外乱Dに対応して、当該外乱Dを打ち消すように作用する外乱操作量DO(図1,2参照)を予測する。また、図2に示すように、外乱操作量印加部25は、外乱操作量予測部20が予測した外乱操作量DOを、上記PID操作量Oに印加し得る。 Therefore, the disturbance operation amount prediction unit 20 in the temperature control device 200 corresponds to the disturbance D applied to the control system, and the disturbance operation amount DO acts to cancel the disturbance D (see FIGS. 1 and 2). Predict. Further, as shown in FIG. 2, the disturbance operation amount applying unit 25 can apply the disturbance operation amount DO predicted by the disturbance operation amount prediction unit 20 to the PID operation amount O.
 ここで、図3の下段に示すように、外乱操作量DOとは、外乱Dを打ち消すために、印加される操作量である。外乱Dによる上記制御系に対する影響が、時間の経過に伴って定形化されたものであれば、当該外乱操作量DOも時間の経過に伴って定形化(パターン化)される。図3の例では、階段状のパターンになっている(つまり、外乱操作量DOは、複数のセグメントSa~Sdから構成される)。なお、図3の上段には、外乱Dの印加により、温度Tが時系列的に変化する様子を示している。外乱要素70、外乱D、外乱操作量DO、PID制御部15の動作、外乱操作量予測部20の動作、および外乱操作量印加部25の動作等は、たとえば特開2000-227801号公報に詳細に記載されている。 Here, as shown in the lower part of FIG. 3, the disturbance operation amount DO is the operation amount applied in order to cancel the disturbance D. If the influence of the disturbance D on the control system is standardized with the passage of time, the disturbance manipulated variable DO is also standardized (patterned) with the passage of time. In the example of FIG. 3, it has a stepwise pattern (that is, the disturbance operation amount DO is composed of a plurality of segments Sa to Sd). The upper part of FIG. 3 shows how the temperature T changes in time series due to the application of the disturbance D. The disturbance element 70, the disturbance D, the disturbance operation amount DO, the operation of the PID control unit 15, the operation of the disturbance operation amount predicting unit 20, the operation of the disturbance operation amount applying unit 25, and the like are described in, for example, Japanese Patent Laid-Open No. 2000-227801. It is described in.
 図2に示すように、本実施の形態に係る温度制御装置200は、比例帯情報取得部30と、システム変動率決定部35と、外乱操作量補正部40とを、機能ブロックとして、有している。比例帯情報取得部30は、上記制御系について、時期に応じて、PID制御部15の制御パラメータを調整する調整処理を行って、比例帯を表す情報を取得する(以下単に、比例帯を取得すると称する)。システム変動率決定部35は、比例帯変化率(上記で取得された二つの比例帯の比)を求め、当該比例帯変化率を用いて、上記制御系のシステム変動率SRを決定する。また、外乱操作量補正部40は、外乱操作量予測部20が作成した外乱操作量DOを、上記システム変動率SRで除算することにより、補正された外乱操作量DOを作成する。 As shown in FIG. 2, the temperature control device 200 according to the present embodiment has a proportional band information acquisition unit 30, a system fluctuation rate determination unit 35, and a disturbance operation amount correction unit 40 as functional blocks. ing. The proportional band information acquisition unit 30 performs adjustment processing for adjusting the control parameter of the PID control unit 15 in accordance with the time with respect to the control system, and acquires information representing the proportional band (hereinafter, simply obtain the proportional band. (Called). The system fluctuation rate determination unit 35 determines the proportional band change rate (the ratio of the two proportional bands acquired above), and determines the system fluctuation rate SR of the control system using the proportional band change rate. Further, the disturbance operation amount correction unit 40 creates the corrected disturbance operation amount DO by dividing the disturbance operation amount DO created by the disturbance operation amount prediction unit 20 by the system fluctuation rate SR.
 以下、本実施の形態に係る温度制御装置200の動作について説明する。当該動作は、二つの処理に大別される。一方は、準備処理であり、他方は、加熱装置制御処理である。 The operation of the temperature control device 200 according to this embodiment will be described below. The operation is roughly classified into two processes. One is a preparation process, and the other is a heating device control process.
 (準備処理の動作)
 図4は、上記温度制御装置200における、外乱抑制のための準備処理動作の流れを示している。まず、ステップS1において、図2に示すPID制御部15に対するPIDチューニングが、実施される。加熱装置300を含む制御系に対応する、PID制御部15の制御パラメータ(ゲイン、比例帯、積分時間、および微分時間など)を調整するために、当該PIDチューニングは実施される。ここで、PIDチューニングとしては、たとえば、特開2005-284828号公報に詳述されているような、リミットサイクル法によるオートチューニングを採用することができる。なお、ステップ応答法によるオートチューニング、最小2乗法によるシステム同定法などによって、制御パラメータを調整してもよい。
(Operation of preparation process)
FIG. 4 shows the flow of the preparatory processing operation for suppressing disturbance in the temperature control device 200. First, in step S1, PID tuning for the PID control unit 15 shown in FIG. 2 is performed. The PID tuning is performed in order to adjust the control parameters (gain, proportional band, integration time, derivative time, etc.) of the PID control unit 15 corresponding to the control system including the heating device 300. Here, as the PID tuning, for example, auto tuning by the limit cycle method as described in detail in JP-A-2005-284828 can be adopted. The control parameters may be adjusted by auto-tuning by the step response method, system identification method by the least squares method, or the like.
 上記のように、準備処理のステップS1において(第1回の時期において)、上述したPIDチューニング(PID制御部15の制御パラメータを調整する調整処理)が実施される。比例帯情報取得部30は、上記PIDチューニングを行うことにより、比例帯Kpを取得する(ステップS1)。ここで、上記第1回の時期に、比例帯情報取得部30により取得された比例帯Kpを、比例帯Kp1と称する。当該比例帯Kp1は、メモリ10に格納される。なお、PIDチューニングにより、比例帯Kpを取得することは、たとえば、特開2018-112954号公報に、記載されている。 As described above, in step S1 of the preparatory process (at the first time), the above-mentioned PID tuning (adjustment process for adjusting the control parameters of the PID control unit 15) is performed. The proportional band information acquisition unit 30 acquires the proportional band Kp by performing the PID tuning (step S1). Here, the proportional band Kp acquired by the proportional band information acquisition unit 30 at the first time is referred to as a proportional band Kp1. The proportional band Kp1 is stored in the memory 10. Note that acquisition of the proportional band Kp by PID tuning is described in, for example, Japanese Unexamined Patent Application Publication No. 2018-112954.
 次に、図4のステップS2において、図2に示す外乱操作量予測部20は、外乱チューニングを行う。上述したように、図2に示す外乱要素70は、加熱装置300およびワーク搬送システム400を用いた、被加熱体に対する処理(搬送および加熱)の運転開始に伴って生じ、当該外乱要素70は、予め特定することができる。外乱操作量予測部20は、上記処理の運転開始によって印加される予期可能な外乱Dに対応した、外乱操作量DOを予測するため、当該外乱操作量予測部20は、上記外乱チューニングを実施する。 Next, in step S2 of FIG. 4, the disturbance operation amount prediction unit 20 shown in FIG. 2 performs disturbance tuning. As described above, the disturbance element 70 shown in FIG. 2 occurs when the operation (conveyance and heating) of the object to be heated using the heating device 300 and the work conveyance system 400 is started, and the disturbance element 70 is It can be specified in advance. Since the disturbance operation amount prediction unit 20 predicts the disturbance operation amount DO corresponding to the predictable disturbance D applied by the start of the operation of the above process, the disturbance operation amount prediction unit 20 performs the disturbance tuning. ..
 なお、後述する加熱装置制御処理において、外乱操作量DOは、フィードフォワード的に、PID操作量Oに加えられる。これにより、加熱装置制御処理の際に、外乱Dを打ち消すような操作信号O,DOを、加熱装置300に与えることができる。 Note that, in the heating device control process described later, the disturbance operation amount DO is added to the PID operation amount O in a feedforward manner. Thereby, in the heating device control process, the operation signals O and DO for canceling the disturbance D can be given to the heating device 300.
 ここで、図4のステップS2の外乱チューニングにより、外乱操作量DOが決定される動作を、図5を用いて説明する。図5は、外乱チューニングの各動作を示している。 Now, the operation of determining the disturbance operation amount DO by the disturbance tuning in step S2 of FIG. 4 will be described with reference to FIG. FIG. 5 shows each operation of the disturbance tuning.
 まず、上述した制御系において、温度Tが目標値TOと略一致している状態を、作り出す。その後、外乱操作量予測部20は、上記外乱チューニングを開始する。具体的に、準備処理において、被加熱体に対する処理(搬送および加熱)の運転が、開始される(図3の「システム運転開始」参照)。システム制御装置100が、温度制御装置200に対して、当該システム運転開始に係る信号を送信することにより、外乱操作量予測部20は、当該運転開始の時点を、認識することができる。そして、当該信号の受信により、外乱操作量予測部20は、外乱チューニングを開始する。 First, in the control system described above, a state is created in which the temperature T substantially matches the target value TO. After that, the disturbance operation amount prediction unit 20 starts the disturbance tuning. Specifically, in the preparatory process, the operation of the process (conveyance and heating) for the object to be heated is started (see "Start of system operation" in Fig. 3). When the system control device 100 transmits a signal related to the start of the system operation to the temperature control device 200, the disturbance operation amount prediction unit 20 can recognize the time point of the start of the operation. Then, upon receiving the signal, the disturbance manipulation amount prediction unit 20 starts disturbance tuning.
 その後、外乱Dを打ち消す処理を行わず、通常のPIDフィードバック制御のみが実施される。つまり、当該運転開始後、制御系に外乱Dが印加された状態で、温度T、目標値TOおよびPID操作量Oを用いた、PID制御(つまり、温度Tと目標値TOとを一致させるフィードバック制御)のみが、上記制御系において実施される。このように、上記運転開始後、外乱Dが印加され、上記フィードバック制御が実施される。 After that, the process of canceling the disturbance D is not performed, and only the normal PID feedback control is performed. That is, after the start of the operation, with the disturbance D applied to the control system, PID control using the temperature T, the target value TO, and the PID manipulated variable O (that is, feedback that matches the temperature T with the target value TO). Control) is performed in the control system. In this way, after the start of the operation, the disturbance D is applied and the feedback control is performed.
 上記運転開始後、上記フィードバック制御中において、外乱操作量予測部20は、外乱開始時点ti(図3の上段参照)を検知する(図5のステップS11)。ここで、外乱開始時点tiとは、上記運転開始後、目標値TOと温度Tとの間の温度偏差|TO-T|が、予め設定した温度閾値Tthを、上回った時点を意味する。 After the start of the operation, during the feedback control, the disturbance operation amount prediction unit 20 detects the disturbance start time ti (see the upper part of FIG. 3) (step S11 in FIG. 5). Here, the disturbance start time point ti means a time point when the temperature deviation |TO-T| between the target value TO and the temperature T exceeds the preset temperature threshold value Tth after the start of the operation.
 ステップS11の後、外乱操作量予測部20は、上記フィードバック制御を行いながら、温度TおよびPID操作量Oを、時系列に、メモリ10にロギング(記録)する(ステップS12)。そして、外乱操作量予測部20が、外乱終了時点tf(図3の上段参照)を検知する(ステップS13)。ここで、外乱終了時点tfとは、ステップS11後、温度偏差|TO-T|が、予め設定した温度閾値Tthを下回った時点を意味する。なお、ステップS13後、温度TおよびPID操作量Oのロギング(記録)は、終了する。 After step S11, the disturbance operation amount prediction unit 20 logs (records) the temperature T and the PID operation amount O in the memory 10 in time series while performing the feedback control (step S12). Then, the disturbance operation amount prediction unit 20 detects the disturbance end time point tf (see the upper part of FIG. 3) (step S13). Here, the disturbance end time tf means the time when the temperature deviation |TO-T| falls below a preset temperature threshold Tth after step S11. After step S13, the logging (recording) of the temperature T and the PID manipulated variable O ends.
 ステップS13後、外乱操作量予測部20は、ステップS12において記録した、各温度Tおよび各PID操作量Oを用いて、図3の下段に示すような外乱操作量DOを作成(予測)する(ステップS14)。準備処理において、外乱操作量予測部20で作成された上記外乱操作量(第1回の時期に関して外乱操作量予測部20が作成した、外乱操作量と把握できる)DOは、メモリ10に格納される。なお、第1回の時期に関して、外乱操作量予測部20が作成した外乱操作量DOを、外乱操作量FF1と称する。ここで、外乱操作量予測部20における、外乱操作量DOの作成および外乱チューニングは、たとえば、特開2000-227801号公報に詳述されている。 After step S13, the disturbance operation amount prediction unit 20 creates (predicts) the disturbance operation amount DO as shown in the lower part of FIG. 3 using each temperature T and each PID operation amount O recorded in step S12 (. Step S14). In the preparation process, the above-mentioned disturbance operation amount created by the disturbance operation amount prediction unit 20 (which can be grasped as the disturbance operation amount created by the disturbance operation amount prediction unit 20 for the first time) DO is stored in the memory 10. To. The disturbance operation amount DO created by the disturbance operation amount prediction unit 20 for the first time period is referred to as a disturbance operation amount FF1. Here, the creation of the disturbance operation amount DO and the disturbance tuning in the disturbance operation amount prediction unit 20 are described in detail, for example, in Japanese Patent Laid-Open No. 2000-227801.
 このようにして、外乱チューニング(図4のステップS2)を終了する。そして、図4に示す準備処理も終了する。 In this way, the disturbance tuning (step S2 in Fig. 4) is completed. Then, the preparation process shown in FIG. 4 also ends.
 (加熱装置制御処理)
 次に、上記準備処理後に実施される、加熱装置制御処理の動作を説明する。概して言うと、当該加熱装置制御処理では、温度制御装置200は、PID操作量Oに外乱操作量DOをフィードフォワード的に印加した操作量O,DOを、加熱装置300へ送信する。また、本実施の形態に係る温度制御装置200は、外乱操作量補正部40で作成(補正)された外乱操作量DOを、フィードフォワード的に、PID操作量Oに印加することも可能である。
(Heating device control processing)
Next, the operation of the heating device control process performed after the preparatory process will be described. Generally speaking, in the heating device control process, the temperature control device 200 transmits the operation amounts O and DO obtained by applying the disturbance operation amount DO to the PID operation amount O in a feedforward manner to the heating device 300. The temperature control device 200 according to the present embodiment can also apply the disturbance operation amount DO created (corrected) by the disturbance operation amount correction unit 40 to the PID operation amount O in a feedforward manner. ..
 図6を用いて、加熱装置制御処理を詳述する。なお、図6は、加熱装置制御処理の動作を示している。 The heating device control process will be described in detail with reference to FIG. Note that FIG. 6 shows the operation of the heating device control process.
 上記準備処理後、上述した制御系において、温度Tが目標値TOと略一致している状態を、作り出す。その後、被加熱体に対する処理(搬送および加熱)の運転が、開始される。当該開始の時点で、システム制御装置100は、温度制御装置200に対して、上述した運転開始に係る信号を送信する。被加熱体に対するシステム内への搬送が開始されると、外乱要素70による外乱Dが上述した制御系に印加される。一方で、温度制御装置200は、加熱装置300の温度センサ300bで検出した温度Tを受信する。温度制御装置200のPID制御部15は、目標値TOと受信した温度Tとの差分を、受信する。そして、PID制御部15は、当該差分に応じたPID操作量Oを出力する。つまり、PID制御部15は、準備処理で実施されたPIDチューニングにより決定された各パラメータを用いて、目標値TOと温度Tとの間の温度偏差|TO-T|をなくすように、PID操作量Oを出力する。 After the above preparatory process, in the above-mentioned control system, a state in which the temperature T substantially matches the target value TO is created. Then, the operation of processing (conveying and heating) on the object to be heated is started. At the time of the start, the system control device 100 transmits the above-mentioned signal relating to the start of operation to the temperature control device 200. When the conveyance of the object to be heated into the system is started, the disturbance D by the disturbance element 70 is applied to the control system described above. On the other hand, the temperature control device 200 receives the temperature T detected by the temperature sensor 300b of the heating device 300. The PID control unit 15 of the temperature control device 200 receives the difference between the target value TO and the received temperature T. Then, the PID control unit 15 outputs the PID operation amount O according to the difference. That is, the PID control unit 15 uses each parameter determined by the PID tuning performed in the preparatory process to perform the PID operation so as to eliminate the temperature deviation | TO-T | between the target value TO and the temperature T. Output the quantity O.
 また、温度制御装置200が運転開始に関する信号を受信した後、所定のタイミングで、外乱操作量印加部25は、PID操作量Oに対して、外乱操作量DOを印加し、外乱抑制処理が実行される(図6のステップS21)。ここで、ステップS21における外乱抑制処理では、外乱操作量印加部25は、準備処理で外乱操作量予測部20が作成した外乱操作量FF1を、PID操作量Oに、フィードフォワード的に印加する。 Further, after the temperature control device 200 receives the signal regarding the operation start, the disturbance operation amount application unit 25 applies the disturbance operation amount DO to the PID operation amount O at a predetermined timing, and the disturbance suppression process is executed. (Step S21 in FIG. 6). Here, in the disturbance suppression process in step S21, the disturbance operation amount application unit 25 applies the disturbance operation amount FF1 created by the disturbance operation amount prediction unit 20 in the preparation process to the PID operation amount O in a feedforward manner.
 ところで、上述したように、時間の経過とともに、上記制御系において、システム変動が生じ得る。システム変動の一例として、当該加熱装置300が有する加熱体300aの劣化が想定される。そこで、本実施の形態では、たとえば、システム変動が生じた可能性がある場合には、ユーザは、上記制御系について、PIDチューニングを再度実施する(ステップS22)。そして、当該PIDチューニングにより、比例帯情報取得部30は、第2回の時期において、比例帯Kp2を取得する(ステップS22)。当該比例帯Kp2は、メモリ10に格納される。当該第2回の時期は、上記第1回の時期の次に、PIDチューニングが実施される時期である。 By the way, as described above, system fluctuation may occur in the control system with the passage of time. As an example of system fluctuation, deterioration of the heating element 300a included in the heating device 300 is assumed. Therefore, in the present embodiment, for example, when there is a possibility that a system change has occurred, the user re-performs PID tuning for the control system (step S22). Then, by the PID tuning, the proportional band information acquisition unit 30 acquires the proportional band Kp2 at the second time (step S22). The proportional band Kp2 is stored in the memory 10. The second time is a time when the PID tuning is performed after the first time.
 次に、システム変動率決定部35は、上述した比例帯Kp1と、上述した比例帯Kp2との間の、比例帯変化率(Kp2/Kp1)を求める。そして、システム変動率決定部35は、当該比例帯変化率(Kp2/Kp1)を、第2回の時期に関する、上記制御系のシステム変動率SRとして決定する(ステップS23)。 Next, the system fluctuation rate determination unit 35 obtains a proportional band change rate (Kp2/Kp1) between the proportional band Kp1 and the proportional band Kp2 described above. Then, the system fluctuation rate determination unit 35 determines the proportional band change rate (Kp2/Kp1) as the system fluctuation rate SR of the control system for the second time (step S23).
 次に、ステップS24において、外乱操作量補正部40は、上述した、第1回の時期について外乱操作量予測部20が作成した外乱操作量FF1と、上記システム変動率(Kp2/Kp1)とを用いて、第2回の時期についての外乱操作量DOを作成する。より具体的に、上記外乱操作量FF1を、システム変動率(Kp2/Kp1)で除算することにより、第2回の時期についての外乱操作量DOが作成される。なお、第2回の時期に関して、外乱操作量補正部40が作成した外乱操作量DOを、外乱操作量FF2と称する。当該外乱操作量FF2は、メモリ10に格納される。また、たとえば、以後、外乱操作量FF1および比例帯Kp1を用いない場合には、外乱操作量FF1および比例帯Kp1は、メモリから削除される。 Next, in step S24, the disturbance operation amount correction unit 40 calculates the above-described disturbance operation amount FF1 created by the disturbance operation amount prediction unit 20 for the first time and the system fluctuation rate (Kp2/Kp1). The disturbance manipulated variable DO for the second time period is created using this. More specifically, by dividing the disturbance manipulated variable FF1 by the system fluctuation rate (Kp2 / Kp1), the disturbance manipulated variable DO for the second period is created. The disturbance operation amount DO created by the disturbance operation amount correction unit 40 for the second time is referred to as a disturbance operation amount FF2. The disturbance operation amount FF2 is stored in the memory 10. Further, for example, when the disturbance manipulated variable FF1 and the proportional band Kp1 are not used thereafter, the disturbance manipulated variable FF1 and the proportional band Kp1 are deleted from the memory.
 そして、ステップS25において、外乱操作量印加部25は、外乱操作量FF1でなく、外乱操作量FF2を、PID操作量Oに、フィードフォワード的に印加する。なお、図7は、システム変動前後の温度Tの時系列的変化と、システム変動前後の外乱操作量FOの変化とを、例示している。 Then, in step S25, the disturbance manipulated variable application unit 25 applies the disturbance manipulated variable FF2 to the PID manipulated variable O in a feedforward manner instead of the disturbance manipulated variable FF1. Note that FIG. 7 exemplifies a time-series change of the temperature T before and after the system change and a change of the disturbance operation amount FO before and after the system change.
 ところで、第2回の時期後においても、上記制御系においてシステム変動が生じる可能性がある。このような場合には、外乱操作量補正部40は、新たに外乱操作量DOを作成する。ここで、第3回の時期以降に関して、外乱操作量DOを作成する態様として、たとえば、第1の態様と第2の態様とがある。以下、例として、当該第1の態様および第2の態様による、外乱操作量DOの作成方法について、説明する。 By the way, there is a possibility that system fluctuation will occur in the above control system even after the second time. In such a case, the disturbance operation amount correction unit 40 newly creates a disturbance operation amount DO. Here, with respect to the third time period and thereafter, as a mode of creating the disturbance operation amount DO, there are, for example, a first mode and a second mode. Hereinafter, as an example, a method of creating a disturbance manipulated variable DO according to the first aspect and the second aspect will be described.
 (第1の態様)
 第2回の時期後において、システム変動が生じた可能性がある場合には、ユーザは、上記制御系について、三度目のPIDチューニングを実施する(図6のステップS22参照)。そして、当該PIDチューニングにより、比例帯情報取得部30は、第3回の時期において、比例帯Kp3を取得する(ステップS22)。当該比例帯Kp3は、メモリ10に格納される。当該第3回の時期は、上記第2回の時期の次に、PIDチューニングが実施される時期である。
(First mode)
If there is a possibility that system fluctuation has occurred after the second time, the user performs a third PID tuning on the control system (see step S22 in FIG. 6). Then, by the PID tuning, the proportional band information acquisition unit 30 acquires the proportional band Kp3 at the third time (step S22). The proportional band Kp3 is stored in the memory 10. The third time is the time when PID tuning is performed after the second time.
 次に、システム変動率決定部35は、上述した比例帯Kp2と、上述した比例帯Kp3との間の、比例帯変化率(Kp3/Kp2)を求める。そして、システム変動率決定部35は、当該比例帯変化率(Kp3/Kp2)を用いて、第3回の時期に関して、システム変動率SRを決定する(ステップS23)。ここでは、外乱操作量補正部40は、上記比例帯変化率(Kp3/Kp2)を、第3回の時期に関するシステム変動率SRとして決定する。 Next, the system fluctuation rate determination unit 35 obtains a proportional band change rate (Kp3/Kp2) between the proportional band Kp2 described above and the proportional band Kp3 described above. Then, the system fluctuation rate determination unit 35 uses the proportional band change rate (Kp3/Kp2) to determine the system fluctuation rate SR for the third time (step S23). Here, the disturbance operation amount correction unit 40 determines the proportional band change rate (Kp3/Kp2) as the system variation rate SR for the third time period.
 次に、ステップS24において、外乱操作量補正部40は、外乱操作量補正部40が作成した、第2回の時期に関する上記外乱操作量FF2と、第3回の時期に関するシステム変動率(Kp3/Kp2)とを用いて、第3回の時期についての外乱操作量DOを作成する。なお、第3回の時期に関して、外乱操作量補正部40が作成した外乱操作量DOを、外乱操作量FF3と称する。たとえば、外乱操作量補正部40は、外乱操作量FF2を、システム変動率(Kp3/Kp2)で除算することにより、第3回の時期についての外乱操作量FF3を作成する。当該外乱操作量FF3は、メモリ10に格納され、たとえば、外乱操作量FF2および比例帯Kp2は、メモリから削除される。そして、ステップS25において、外乱操作量印加部25は、外乱操作量FF1,FF2でなく、外乱操作量FF3を、PID操作量Oに、フィードフォワード的に印加する。 Next, in step S24, the disturbance operation amount correction unit 40 creates the disturbance operation amount FF2 regarding the second time period created by the disturbance operation amount correction unit 40 and the system fluctuation rate (Kp3/ Kp2) is used to create the disturbance operation amount DO for the third time period. The disturbance operation amount DO created by the disturbance operation amount correction unit 40 for the third time is referred to as a disturbance operation amount FF3. For example, the disturbance operation amount correction unit 40 divides the disturbance operation amount FF2 by the system fluctuation rate (Kp3/Kp2) to create the disturbance operation amount FF3 for the third time period. The disturbance operation amount FF3 is stored in the memory 10, and, for example, the disturbance operation amount FF2 and the proportional band Kp2 are deleted from the memory. Then, in step S25, the disturbance operation amount application unit 25 applies the disturbance operation amount FF3, instead of the disturbance operation amounts FF1 and FF2, to the PID operation amount O in a feedforward manner.
 同様に、第3回の時期後において、システム変動が生じた可能性がある場合には、ユーザは、上記制御系について、四度目のPIDチューニングを実施する(図6のステップS22参照)。そして、当該PIDチューニングにより、比例帯情報取得部30は、第4回の時期において、比例帯Kp4を取得する(ステップS22)。当該比例帯Kp4は、メモリ10に格納される。当該第4回の時期は、上記第3回の時期の次に、PIDチューニングが実施される時期である。 Similarly, if there is a possibility that system fluctuation has occurred after the third time, the user performs the fourth PID tuning for the control system (see step S22 in FIG. 6). Then, by the PID tuning, the proportional band information acquisition unit 30 acquires the proportional band Kp4 at the fourth time (step S22). The proportional band Kp4 is stored in the memory 10. The fourth time is a time when the PID tuning is performed after the third time.
 次に、システム変動率決定部35は、上述した比例帯Kp3と、上述した比例帯Kp4との間の、比例帯変化率(Kp4/Kp3)を求める。そして、システム変動率決定部35は、当該比例帯変化率(Kp4/Kp3)を用いて、第4回の時期に関するシステム変動率SRを決定する(ステップS23)。ここでは、外乱操作量補正部40は、上記比例帯変化率(Kp4/Kp3)を、第4回の時期に関するシステム変動率SRとして決定する。 Next, the system fluctuation rate determination unit 35 obtains the proportional band change rate (Kp4 / Kp3) between the above-mentioned proportional band Kp3 and the above-mentioned proportional band Kp4. Then, the system fluctuation rate determination unit 35 determines the system fluctuation rate SR for the fourth time period using the proportional band change rate (Kp4 / Kp3) (step S23). Here, the disturbance manipulation amount correction unit 40 determines the proportional band change rate (Kp4 / Kp3) as the system fluctuation rate SR for the fourth time period.
 次に、ステップS24において、外乱操作量補正部40は、外乱操作量補正部40が作成した第3回の時期に関する外乱操作量FF3と、第4回の時期に関するシステム変動率(Kp4/Kp3)とを用いて、第4回の時期についての外乱操作量DOを作成する。なお、第4回の時期に関して、外乱操作量補正部40が作成した外乱操作量DOを、外乱操作量FF4と称する。たとえば、外乱操作量補正部40は、外乱操作量FF3を、システム変動率(Kp4/Kp3)で除算することにより、第4回の時期についての外乱操作量FF4を作成する。当該外乱操作量FF4は、メモリ10に格納され、たとえば、外乱操作量FF3および比例帯Kp3は、メモリから削除される。そして、ステップS25において、外乱操作量印加部25は、外乱操作量FF1,FF2,FF3でなく、外乱操作量FF4を、PID操作量Oに、フィードフォワード的に印加する。 Next, in step S24, the disturbance operation amount correction unit 40, the disturbance operation amount FF3 regarding the third time period created by the disturbance operation amount correction unit 40, and the system fluctuation rate regarding the fourth time period (Kp4/Kp3). And are used to create the disturbance operation amount DO for the fourth time period. The disturbance operation amount DO created by the disturbance operation amount correction unit 40 for the fourth time is referred to as a disturbance operation amount FF4. For example, the disturbance manipulated variable correction unit 40 creates the disturbance manipulated variable FF4 for the fourth time period by dividing the disturbance manipulated variable FF3 by the system fluctuation rate (Kp4 / Kp3). The disturbance operation amount FF4 is stored in the memory 10, and, for example, the disturbance operation amount FF3 and the proportional band Kp3 are deleted from the memory. Then, in step S25, the disturbance operation amount application unit 25 applies the disturbance operation amount FF4, instead of the disturbance operation amounts FF1, FF2, and FF3, to the PID operation amount O in a feedforward manner.
 図8は、第1の態様が実施された場合の、比例帯Kp、システム変動率SR、および外乱操作量DOとの関係を、例示している。図8の例では、第1回の時期において、比例帯Kp1として、4が取得され、第2回の時期において、比例帯Kp2として、2が取得され、第3回の時期において、比例帯Kp3として、8が取得され、第4回の時期において、比例帯Kp4として、1が取得される。また、図8の例では、第2回の時期に関して、システム変動率SRは、Kp2/Kp1=2/4=0.5であり、第3回の時期に関して、システム変動率SRは、Kp3/Kp2=8/2=4であり、第4回の時期に関して、システム変動率SRは、Kp4/Kp3=1/8=0.125である。よって、第1の態様を例示する図8では、第2回の時期に関する外乱操作量FF2は、FF2=FF1/0.5であり、第3回の時期に関する外乱操作量FF3は、FF3=FF2/4であり、第4回の時期に関する外乱操作量FF4は、FF4=FF3/0.125である。 FIG. 8 illustrates the relationship between the proportional band Kp, the system fluctuation rate SR, and the disturbance manipulated variable DO when the first aspect is implemented. In the example of FIG. 8, 4 is acquired as the proportional band Kp1 in the first period, 2 is acquired as the proportional band Kp2 in the second period, and 2 is acquired as the proportional band Kp2 in the third period, and the proportional band Kp3 is acquired in the third period. Is acquired, and 1 is acquired as the proportional band Kp4 in the fourth time period. Further, in the example of FIG. 8, the system fluctuation rate SR is Kp2 / Kp1 = 2/4 = 0.5 for the second time period, and the system fluctuation rate SR is Kp3 / for the third time period. Kp2 = 8/2 = 4, and the system fluctuation rate SR is Kp4 / Kp3 = 1/8 = 0.125 for the 4th period. Therefore, in FIG. 8 exemplifying the first mode, the disturbance operation amount FF2 for the second time period is FF2=FF1/0.5, and the disturbance operation amount FF3 for the third time period is FF3=FF2. /4, and the disturbance operation amount FF4 for the fourth time is FF4=FF3/0.125.
 このように、第1の態様では、nを3以上の整数としたとき、外乱操作量補正部40は、第(n-1)回の時期に関して当該外乱操作量補正部40が作成した外乱操作量FF(n-1)と、第(n-1)回の時期の次の第n回の時期に関するシステム変動率SRとを用いて、第n回の時期についての外乱操作量FFnを作成する。 As described above, in the first aspect, when n is an integer of 3 or more, the disturbance operation amount correction unit 40 generates the disturbance operation amount created by the disturbance operation amount correction unit 40 with respect to the (n-1)th time. The disturbance operation amount FFn for the n-th time is created using the amount FF(n-1) and the system fluctuation rate SR for the n-th time after the (n-1)-th time. ..
 (第2の態様)
 次に、第2の態様について、説明する。第2回の時期後において、システム変動が生じた可能性がある場合には、ユーザは、上記制御系について、三度目のPIDチューニングを実施する(図6のステップS22参照)。そして、当該PIDチューニングにより、比例帯情報取得部30は、第3回の時期において、比例帯Kp3を取得する(ステップS22)。当該比例帯Kp3は、メモリ10に格納される。当該第3回の時期は、上記第2回の時期の次に、PIDチューニングが実施される時期である。
(Second mode)
Next, the second aspect will be described. If there is a possibility that system fluctuation has occurred after the second time, the user performs a third PID tuning on the control system (see step S22 in FIG. 6). Then, by the PID tuning, the proportional band information acquisition unit 30 acquires the proportional band Kp3 at the third time (step S22). The proportional band Kp3 is stored in the memory 10. The third time is a time when the PID tuning is performed after the second time.
 次に、システム変動率決定部35は、上述した比例帯Kp1と、上述した比例帯Kp3との間の、比例帯変化率(Kp3/Kp1)を求める。そして、システム変動率決定部35は、当該比例帯変化率(Kp3/Kp1)を用いて、第3回の時期に関するシステム変動率SRを決定する(ステップS23)。ここでは、外乱操作量補正部40は、上記比例帯変化率(Kp3/Kp1)を、第3回の時期に関するシステム変動率SRとして決定する。 Next, the system fluctuation rate determination unit 35 obtains the proportional band change rate (Kp3 / Kp1) between the above-mentioned proportional band Kp1 and the above-mentioned proportional band Kp3. Then, the system fluctuation rate determination unit 35 determines the system fluctuation rate SR for the third period using the proportional band change rate (Kp3 / Kp1) (step S23). Here, the disturbance manipulation amount correction unit 40 determines the proportional band change rate (Kp3 / Kp1) as the system fluctuation rate SR for the third time period.
 次に、ステップS24において、外乱操作量補正部40は、外乱操作量予測部20が作成した第1回の時期に関する上記外乱操作量FF1と、第3回の時期に関するシステム変動率(Kp3/Kp1)とを用いて、第3回の時期についての外乱操作量DOを作成する。なお、ここでは、第3回の時期に関して、外乱操作量補正部40が作成した外乱操作量DOを、外乱操作量FF3’と称する。たとえば、外乱操作量補正部40は、外乱操作量FF1を、システム変動率(Kp3/Kp1)で除算することにより、第3回の時期についての外乱操作量FF3’を作成する。当該外乱操作量FF3’は、メモリ10に格納される。そして、ステップS25において、外乱操作量印加部25は、外乱操作量FF1,FF2でなく、外乱操作量FF3’を、PID操作量Oに、フィードフォワード的に印加する。 Next, in step S24, the disturbance operation amount correction unit 40 causes the disturbance operation amount prediction unit 20 to create the disturbance operation amount FF1 relating to the first time and the system variation rate (Kp3/Kp1) relating to the third time. ) To create a disturbance manipulated variable DO for the third period. Note that, here, the disturbance operation amount DO created by the disturbance operation amount correction unit 40 for the third time is referred to as a disturbance operation amount FF3'. For example, the disturbance operation amount correction unit 40 divides the disturbance operation amount FF1 by the system fluctuation rate (Kp3/Kp1) to create the disturbance operation amount FF3' for the third time period. The disturbance operation amount FF3' is stored in the memory 10. Then, in step S25, the disturbance operation amount application unit 25 applies the disturbance operation amount FF3' instead of the disturbance operation amounts FF1 and FF2 to the PID operation amount O in a feedforward manner.
 同様に、第3回の時期後において、システム変動が生じた可能性がある場合には、ユーザは、上記制御系について、四度目のPIDチューニングを実施する(図6のステップS22参照)。そして、当該PIDチューニングにより、比例帯情報取得部30は、第4回の時期において、比例帯Kp4を取得する(ステップS22)。当該比例帯Kp4は、メモリ10に格納される。当該第4回の時期は、上記第3回の時期の次に、PIDチューニングが実施される時期である。 Similarly, if there is a possibility that system fluctuation has occurred after the third time, the user performs the fourth PID tuning for the control system (see step S22 in FIG. 6). Then, by the PID tuning, the proportional band information acquisition unit 30 acquires the proportional band Kp4 at the fourth time (step S22). The proportional band Kp4 is stored in the memory 10. The fourth time is a time when the PID tuning is performed after the third time.
 次に、システム変動率決定部35は、上述した比例帯Kp1と、上述した比例帯Kp4との間の、比例帯変化率(Kp4/Kp1)を求める。そして、システム変動率決定部35は、当該比例帯変化率(Kp4/Kp1)を用いて、第4回の時期に関するシステム変動率SRを決定する(ステップS23)。ここでは、外乱操作量補正部40は、上記比例帯変化率(Kp4/Kp1)を、第4回の時期に関するシステム変動率SRとして決定する。 Next, the system fluctuation rate determination unit 35 obtains a proportional band change rate (Kp4/Kp1) between the proportional band Kp1 described above and the proportional band Kp4 described above. Then, the system fluctuation rate determination unit 35 determines the system fluctuation rate SR for the fourth period using the proportional band change rate (Kp4 / Kp1) (step S23). Here, the disturbance operation amount correction unit 40 determines the proportional band change rate (Kp4/Kp1) as the system variation rate SR for the fourth time period.
 次に、ステップS24において、外乱操作量補正部40は、外乱操作量予測部20が作成した第1回の時期に関する上記外乱操作量FF1と、第4回の時期に関するシステム変動率(Kp4/Kp1)とを用いて、第4回の時期についての外乱操作量DOを作成する。なお、ここでは、第4回の時期に関して、外乱操作量補正部40が作成した外乱操作量DOを、外乱操作量FF4’と称する。たとえば、外乱操作量補正部40は、外乱操作量FF1を、システム変動率(Kp4/Kp1)で除算することにより、第4回の時期についての外乱操作量FF4’を作成する。当該外乱操作量FF4’は、メモリ10に格納される。そして、ステップS25において、外乱操作量印加部25は、外乱操作量FF1,FF2,FF3’でなく、外乱操作量FF4’を、PID操作量Oに、フィードフォワード的に印加する。 Next, in step S24, the disturbance operation amount correction unit 40 causes the disturbance operation amount prediction unit 20 to generate the disturbance operation amount FF1 relating to the first time and the system variation rate (Kp4/Kp1) relating to the fourth time. ) And are used to create the disturbance operation amount DO for the fourth time period. Note that, here, the disturbance operation amount DO created by the disturbance operation amount correction unit 40 for the fourth time is referred to as a disturbance operation amount FF4'. For example, the disturbance operation amount correction unit 40 divides the disturbance operation amount FF1 by the system fluctuation rate (Kp4/Kp1) to create the disturbance operation amount FF4' for the fourth time period. The disturbance operation amount FF4' is stored in the memory 10. Then, in step S25, the disturbance operation amount application unit 25 applies the disturbance operation amount FF4' instead of the disturbance operation amounts FF1, FF2, FF3' to the PID operation amount O in a feedforward manner.
 図9は、第2の態様が実施された場合の、比例帯Kp、システム変動率SR、および外乱操作量DOとの関係を、例示している。図9の例では、各時期に取得される比例帯Kpは、図8の例と同じである。図9の例では、第2回の時期に関して、システム変動率SRは、Kp2/Kp1=2/4=0.5であり、第3回の時期に関して、システム変動率SRは、Kp3/Kp1=8/4=2であり、第4回の時期に関して、システム変動率SRは、Kp4/Kp1=1/4=0.25である。よって、第2の態様を例示する図9では、第2回の時期に関する外乱操作量FF2は、FF2=FF1/0.5であり、第3回の時期に関する外乱操作量FF3’は、FF3’=FF1/2であり、第4回の時期に関する外乱操作量FF4’は、FF4’=FF1/0.25である。 FIG. 9 exemplifies the relationship between the proportional band Kp, the system fluctuation rate SR, and the disturbance operation amount DO when the second mode is implemented. In the example of FIG. 9, the proportional band Kp acquired at each time is the same as the example of FIG. In the example of FIG. 9, the system fluctuation rate SR is Kp2/Kp1=2/4=0.5 for the second time, and the system fluctuation rate SR is Kp3/Kp1= for the third time. 8/4=2, and the system variation rate SR is Kp4/Kp1=1/4=0.25 for the fourth time period. Therefore, in FIG. 9 illustrating the second aspect, the disturbance manipulated amount FF2 for the second time period is FF2 = FF1 / 0.5, and the disturbance manipulated amount FF3'for the third time period is FF3'. =FF1/2, and the disturbance operation amount FF4′ regarding the fourth time is FF4′=FF1/0.25.
 このように、第2の態様では、nを3以上の整数としたとき、外乱操作量補正部40は、第1回の時期に関して外乱操作量予測部20が作成した外乱操作量FF1と、第n回の時期に関するシステム変動率SRとを用いて、第n回の時期についての外乱操作量FOを作成する。 As described above, in the second aspect, when n is an integer of 3 or more, the disturbance operation amount correction unit 40 has the disturbance operation amount FF1 created by the disturbance operation amount prediction unit 20 for the first time, and the disturbance operation amount FF1. The disturbance operation amount FO for the n-th time is created using the system fluctuation rate SR for the n-th time.
 ここで、各時期における比例帯変化率が、予め設定された閾値を超える場合には、温度制御装置200が備える通知装置が、比例帯変化率が当該閾値を超える旨を、通知してもよい。 Here, when the proportional band change rate at each time exceeds a preset threshold value, the notification device included in the temperature control device 200 may notify that the proportional band change rate exceeds the threshold value. ..
 (効果)
 本実施の形態に係る外乱抑制装置が適用された温度制御装置200では、比例帯情報取得部30は、上記制御系について、時期に応じて、PIDチューニングを行って、比例帯Kpを取得する。システム変動率決定部35は、第1回の時期に、比例帯情報取得部30により取得された比例帯Kp1と、第1回の時期よりも後の第2回の時期に、比例帯情報取得部30により取得された比例帯Kp2との間の、比例帯変化率を求め、当該比例帯変化率を用いて、システム変動率SRを決定する。そして、外乱操作量補正部40は、第1回の時期について外乱操作量予測部20が作成した外乱操作量FF1を、システム変動率SRで除算することにより、第2回の時期についての外乱操作量FF2を作成する。
(effect)
In the temperature control device 200 to which the disturbance suppression device according to the present embodiment is applied, the proportional band information acquisition unit 30 performs PID tuning on the control system according to the time to acquire the proportional band Kp. The system fluctuation rate determination unit 35 acquires the proportional band information at the first time and the proportional band Kp1 acquired by the proportional band information acquisition unit 30 and at the second time after the first time. The proportional band change rate with the proportional band Kp2 acquired by the unit 30 is obtained, and the system fluctuation rate SR is determined using the proportional band change rate. Then, the disturbance operation amount correction unit 40 divides the disturbance operation amount FF1 created by the disturbance operation amount prediction unit 20 for the first time by the system fluctuation rate SR, so that the disturbance operation for the second time is performed. Create quantity FF2.
 ここで、比例帯変化率は、システム変動率SRに比例する。したがって、比例帯変化率を用いて、システム変動率SRが決定され、外乱操作量FOを、上記システム変動率SRで除算することにより、システム変動後において、より適切な外乱操作量FOを決定することができる。よって、上記制御系においてシステム変動が生じたとしても、精度の高い外乱抑制を行うことができる。 Here, the proportional band change rate is proportional to the system fluctuation rate SR. Therefore, the system fluctuation rate SR is determined using the proportional band change rate, and the disturbance manipulated variable FO is divided by the system fluctuation rate SR to determine a more appropriate disturbance manipulated variable FO after the system fluctuation. be able to. Therefore, even if the system fluctuates in the control system, it is possible to suppress the disturbance with high accuracy.
 また、本実施形態に係る温度制御装置200では、nを3以上の整数としたとき、外乱操作量補正部40は、第(n-1)回の時期に関して当該外乱操作量補正部40が作成した外乱操作量FF(n-1)と、第(n-1)回の時期の次の第n回の時期に関するシステム変動率SRとを用いて、第n回の時期についての外乱操作量FFnを作成する(第1の態様参照)。 Further, in the temperature control device 200 according to the present embodiment, when n is an integer of 3 or more, the disturbance operation amount correction unit 40 is created by the disturbance operation amount correction unit 40 with respect to the (n-1) th time. Using the disturbance manipulated variable FF (n-1) and the system fluctuation rate SR for the nth time following the (n-1) time, the disturbance manipulated amount FFn for the nth time. Is created (see the first aspect).
 したがって、外乱操作量補正部40が一度、外乱操作量FOを作成した後、当該外乱操作量補正部40が新たに外乱操作量FOを作成する際に、外乱操作量予測部20が作成した外乱操作量FO(FF1)を用いる必要がなくなる。したがって、外乱操作量補正部40が一度、外乱操作量FOを作成した後、外乱操作量予測部20で、外乱操作量を作成する必要がなくなる。よって、システム変動が発生した後の外乱操作量予測部20による外乱チューニングが、不要となる。 Therefore, after the disturbance operation amount correction unit 40 once creates the disturbance operation amount FO, when the disturbance operation amount correction unit 40 newly creates the disturbance operation amount FO, the disturbance operation amount prediction unit 20 creates the disturbance. It is not necessary to use the manipulated variable FO(FF1). Therefore, it is not necessary for the disturbance operation amount prediction unit 20 to create the disturbance operation amount after the disturbance operation amount correction unit 40 once creates the disturbance operation amount FO. Therefore, the disturbance tuning by the disturbance operation amount prediction unit 20 after the system fluctuation occurs is not necessary.
 また、本実施形態に係る温度制御装置200では、nを3以上の整数としたとき、外乱操作量補正部40は、第1回の時期に関して外乱操作量予測部20が作成した外乱操作量FF1と、第n回の時期に関するシステム変動率SRとを用いて、第n回の時期についての外乱操作量FOを作成してもよい(第2の態様参照)。 Further, in the temperature control device 200 according to the present embodiment, when n is an integer of 3 or more, the disturbance operation amount correction unit 40 is the disturbance operation amount FF1 created by the disturbance operation amount prediction unit 20 for the first time. And the system fluctuation rate SR for the n-th time may be used to create the disturbance operation amount FO for the n-th time (see the second mode).
 したがって、外乱操作量予測部20が作成した外乱操作量FO(FF1)を用いて、外乱操作量補正部40は、第n回の時期についての外乱操作量FOを作成することができる。したがって、外乱操作量補正部40は、第n回の時期について外乱操作量FOを、精度よく、決定することができる。 Therefore, using the disturbance operation amount FO (FF1) created by the disturbance operation amount prediction unit 20, the disturbance operation amount correction unit 40 can create the disturbance operation amount FO for the n-th time. Therefore, the disturbance operation amount correction unit 40 can accurately determine the disturbance operation amount FO for the n-th time.
 本実施形態に係る温度制御装置200では、上記比例帯変化率が、予め設定された閾値を超えたとき、その旨を通知する、通知装置60をさらに備える。したがって、比例帯情報取得部30が異常な値の比例帯を取得したときに、その旨を、ユーザに知らせることができる。よって、当該異常な比例帯を用いて外乱操作量補正部40で作成された、不適切な外乱操作量FOを、PID制御部15からの操作量Oに印加することを、事前に防止することができる。 The temperature control device 200 according to the present embodiment further includes a notification device 60 for notifying when the proportional band change rate exceeds a preset threshold value. Therefore, when the proportional band information acquisition unit 30 acquires the proportional band of an abnormal value, the user can be notified to that effect. Therefore, it is possible to prevent in advance the improper disturbance operation amount FO created by the disturbance operation amount correction unit 40 using the abnormal proportional band from being applied to the operation amount O from the PID control unit 15. Can be done.
 以上の実施の形態は例示であり、この発明の範囲から離れることなく様々な変形が可能である。上述した複数の実施の形態は、それぞれ単独で成立し得るものであるが、実施の形態同士の組みあわせも可能である。また、異なる実施の形態の中の種々の特徴も、それぞれ単独で成立し得るものであるが、異なる実施の形態の中の特徴同士の組みあわせも可能である。 The above embodiments are examples, and various modifications can be made without departing from the scope of the present invention. The above-described plurality of embodiments can be independently established, but the embodiments can be combined with each other. Further, although various features in different embodiments can be established independently, it is also possible to combine features in different embodiments.
 15 PID制御部
 20 外乱操作量予測部
 25 外乱操作量印加部
 30 比例帯情報取得部
 35 システム変動率決定部
 40 外乱操作量補正部
 60 通知装置
 200 温度制御装置(外乱抑制装置)
 300 加熱装置(制御対象)
15 PID control unit 20 Disturbance operation amount prediction unit 25 Disturbance operation amount application unit 30 Proportional band information acquisition unit 35 System fluctuation rate determination unit 40 Disturbance operation amount correction unit 60 Notification device 200 Temperature control device (disturbance suppression device)
300 Heating device (controlled object)

Claims (6)

  1.  制御系に印加される外乱の抑制を行う外乱抑制装置であって、
     前記制御系は、
     制御対象と、
     目標値と制御量との偏差をなくすように、前記制御対象に対してPID操作量を出力するPID制御部とを含み、
     前記外乱抑制装置は、
     前記制御系に印加される外乱に対応して、当該外乱を打ち消すように作用する外乱操作量を予測して作成する、外乱操作量予測部と、
     前記外乱操作量を前記PID操作量に印加し得る、外乱操作量印加部と、
     前記制御系について、時期に応じて、前記PID制御部の制御パラメータを調整する調整処理を行って、比例帯を表す情報を取得する、比例帯情報取得部と、
     第1の時期に、前記比例帯情報取得部により情報取得された第1の比例帯と、前記第1の時期よりも後の第2の時期に、前記比例帯情報取得部により情報取得された第2の比例帯との間の、比例帯変化率を求め、当該比例帯変化率を用いて、前記制御系のシステム変動率を決定する、システム変動率決定部と、
     前記第1の時期について前記外乱操作量予測部が作成した前記外乱操作量を、前記システム変動率で除算することにより、前記第2の時期についての外乱操作量を作成する、外乱操作量補正部とを、備える、
    外乱抑制装置。
    A disturbance suppression device that suppresses disturbances applied to the control system.
    The control system is
    Control target,
    A PID control unit that outputs a PID operation amount to the control target so as to eliminate the deviation between the target value and the control amount,
    The disturbance suppression device is
    A disturbance operation amount prediction unit that predicts and creates a disturbance operation amount that acts to cancel the disturbance in response to the disturbance applied to the control system.
    A disturbance manipulation amount application unit capable of applying the disturbance manipulation amount to the PID manipulation amount,
    With respect to the control system, an adjustment process for adjusting the control parameters of the PID control unit is performed according to the time, and information representing the proportional band is acquired.
    Information is acquired by the proportional band information acquisition unit at a first ratio band acquired by the proportional band information acquisition unit at a first time and at a second time after the first time. A system fluctuation rate determination unit that obtains the proportional band change rate between the second proportional band and determines the system fluctuation rate of the control system using the proportional band change rate.
    A disturbance operation amount correction unit that creates a disturbance operation amount for the second time period by dividing the disturbance operation amount created by the disturbance operation amount prediction unit for the first time period by the system fluctuation rate. And
    Disturbance suppressor.
  2.  請求項1に記載の外乱抑制装置であって、
     前記比例帯情報取得部は、
     前記調整処理を時期に応じて順次複数回実施して、前記比例帯を表す情報を順次複数回取得し、
     前記システム変動率決定部は、nを3以上の整数としたとき、
     第(n-1)回の時期に、前記比例帯情報取得部により情報取得された第(n-1)の比例帯と、前記第(n-1)回の時期の次の第n回の時期に、前記比例帯情報取得部により情報取得された第nの比例帯との間の、前記比例帯変化率を求め、当該比例帯変化率を用いて、前記システム変動率を決定し、
     前記外乱操作量補正部は、
     前記第(n-1)回の時期について当該外乱操作量補正部が作成した前記外乱操作量と、前記システム変動率とを用いて、前記第n回の時期についての外乱操作量を作成する、
    ことを特徴とする外乱抑制装置。
    The disturbance suppression device according to claim 1.
    The proportional band information acquisition unit
    The adjustment process is sequentially performed a plurality of times according to the timing, and the information representing the proportional band is sequentially acquired a plurality of times.
    When n is an integer of 3 or more, the system fluctuation rate determination unit may be used.
    The (n-1) proportional band whose information was acquired by the proportional band information acquisition unit during the (n-1) th time, and the nth time following the (n-1) time. At the time, the proportional band change rate between the nth proportional band information acquired by the proportional band information acquisition unit is obtained, and the system change rate is determined using the proportional band change rate.
    The disturbance operation amount correction unit is
    A disturbance operation amount for the n-th time is created using the disturbance operation amount created by the disturbance operation amount correction unit for the (n-1)-th time and the system fluctuation rate.
    A disturbance suppression device characterized by this.
  3.  請求項1に記載の外乱抑制装置であって、
     前記比例帯情報取得部は、
     前記調整処理を時期に応じて順次複数回実施して、前記比例帯を表す情報を順次複数回取得し、
     前記システム変動率決定部は、nを3以上の整数としたとき、
     前記第1の比例帯と、第n回の時期に、前記比例帯情報取得部により情報取得された第nの比例帯との間の、前記比例帯変化率を求め、当該比例帯変化率を用いて、前記システム変動率を決定し、
     前記外乱操作量補正部は、
     前記システム変動率と、前記外乱操作量予測部が作成した前記外乱操作量を用いて、前記第n回の時期についての外乱操作量を作成する、
    ことを特徴とする外乱抑制装置。
    The disturbance suppression device according to claim 1.
    The proportional band information acquisition unit
    The adjustment process is sequentially performed a plurality of times depending on the time, and the information indicating the proportional band is sequentially obtained a plurality of times,
    When n is an integer of 3 or more, the system fluctuation rate determination unit may be used.
    The proportional band change rate between the first proportional band and the nth proportional band information acquired by the proportional band information acquisition unit at the n-th time is calculated, and the proportional band change rate is calculated. Use to determine the system volatility
    The disturbance operation amount correction unit is
    Using the system fluctuation rate and the disturbance manipulation amount created by the disturbance manipulation amount prediction unit, a disturbance manipulation amount for the nth time period is created.
    A disturbance suppression device characterized by this.
  4.  請求項1に記載の外乱抑制装置であって、
     前記比例帯変化率が、予め設定された閾値を超えたとき、その旨を通知する、通知装置を、さらに備える、
    ことを特徴とする外乱抑制装置。
    The disturbance suppression device according to claim 1.
    When the proportional band change rate exceeds a preset threshold value, a notification device for notifying that effect is further provided,
    A disturbance suppression device characterized by this.
  5.  制御系に印加される外乱の抑制を行う外乱抑制方法であって、
     前記制御系は、
     制御対象と、
     目標値と制御量との偏差をなくすように、前記制御対象に対してPID操作量を出力するPID制御部とを含み、
     前記外乱抑制方法は、
     第1の時期に、
     前記制御系に印加される外乱に対応して、当該外乱を打ち消すように作用する外乱操作量を予測して作成し、前記外乱操作量を前記PID操作量に印加するとともに、
     前記制御系について、前記PID制御部の制御パラメータを調整する調整処理を行って、比例帯としての第1の比例帯を表す情報を取得し、
     前記第1の時期よりも後の第2の時期に、
     前記制御系について、前記調整処理を行って、前記比例帯としての第2の比例帯を表す情報を取得し、
     前記第1の比例帯と前記第2の比例帯との間の、比例帯変化率を求め、この比例帯の変化率を用いて、前記制御系のシステム変動率を決定し、
     前記第1の時期についての前記外乱操作量を、前記システム変動率で除算することにより、前記第2の時期についての外乱操作量を作成し、
     前記第2の時期についての前記外乱操作量を、前記PID操作量に印加する、
    外乱抑制方法。
    It is a disturbance suppression method that suppresses the disturbance applied to the control system.
    The control system is
    Control target,
    It includes a PID control unit that outputs a PID operation amount to the control target so as to eliminate the deviation between the target value and the control amount.
    The disturbance suppression method is
    In the first period,
    Corresponding to the disturbance applied to the control system, a disturbance operation amount that acts to cancel the disturbance is created by prediction, and the disturbance operation amount is applied to the PID operation amount,
    The control system is subjected to an adjustment process for adjusting the control parameters of the PID control unit to acquire information representing the first proportional band as the proportional band.
    In the second period after the first period,
    The adjustment process is performed on the control system to acquire information representing a second proportional band as the proportional band.
    A proportional band change rate between the first proportional band and the second proportional band is determined, and the system change rate of the control system is determined using the proportional band change rate,
    A disturbance operation amount for the second time period is created by dividing the disturbance operation amount for the first time period by the system fluctuation rate,
    The disturbance manipulation amount for the second period is applied to the PID manipulation amount.
    Disturbance suppression method.
  6.  請求項5に記載の外乱抑制方法を、コンピュータに実行させるためのプログラム。 A program for causing a computer to execute the disturbance suppression method according to claim 5.
PCT/JP2020/007347 2019-03-06 2020-02-25 Disturbance suppression device, disturbance suppression method, and program WO2020179531A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019040501A JP7006637B2 (en) 2019-03-06 2019-03-06 Disturbance suppression device, disturbance suppression method, and program
JP2019-040501 2019-03-06

Publications (1)

Publication Number Publication Date
WO2020179531A1 true WO2020179531A1 (en) 2020-09-10

Family

ID=72337256

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/007347 WO2020179531A1 (en) 2019-03-06 2020-02-25 Disturbance suppression device, disturbance suppression method, and program

Country Status (2)

Country Link
JP (1) JP7006637B2 (en)
WO (1) WO2020179531A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06274205A (en) * 1993-03-22 1994-09-30 Toshiba Corp Gain adaptive control device
JPH10222207A (en) * 1997-01-31 1998-08-21 Mitsubishi Heavy Ind Ltd Feedforward controller
JP2000227801A (en) * 1998-12-01 2000-08-15 Omron Corp Control device
JP2005284828A (en) * 2004-03-30 2005-10-13 Omron Corp Controller, method for tuning control parameter, program, and recording medium
WO2016042589A1 (en) * 2014-09-18 2016-03-24 理化工業株式会社 Control apparatus
JP2018112954A (en) * 2017-01-13 2018-07-19 オムロン株式会社 Controller, method for control, and control program

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160003628A (en) 2013-04-23 2016-01-11 미츠비시 가스 가가쿠 가부시키가이샤 Novel alicyclic ester compound, and (meth)acrylic copolymer and photosensitive resin composition containing same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06274205A (en) * 1993-03-22 1994-09-30 Toshiba Corp Gain adaptive control device
JPH10222207A (en) * 1997-01-31 1998-08-21 Mitsubishi Heavy Ind Ltd Feedforward controller
JP2000227801A (en) * 1998-12-01 2000-08-15 Omron Corp Control device
JP2005284828A (en) * 2004-03-30 2005-10-13 Omron Corp Controller, method for tuning control parameter, program, and recording medium
WO2016042589A1 (en) * 2014-09-18 2016-03-24 理化工業株式会社 Control apparatus
JP2018112954A (en) * 2017-01-13 2018-07-19 オムロン株式会社 Controller, method for control, and control program

Also Published As

Publication number Publication date
JP7006637B2 (en) 2022-01-24
JP2020144590A (en) 2020-09-10

Similar Documents

Publication Publication Date Title
JP4859931B2 (en) Method and apparatus for adjusting and controlling
JP5127824B2 (en) Axis position control method, position adjuster, and data medium
JP2006113724A (en) Control method, temperature control method, temperature regulator, heat treatment equipment, program and recording medium
JP2009181392A (en) Model prediction control method and model prediction control device
JP6642289B2 (en) Rolling line mathematical model calculation device and rolled material temperature control device
US20180224830A1 (en) Servo controller
US20140121853A1 (en) Feedback control method, feedback control apparatus, and feedback control program
JP2006220408A (en) Temperature control method, temperature controller, heat treatment device and program
JP2019101847A (en) Control device and control method
WO2016042589A1 (en) Control apparatus
WO2017046846A1 (en) Temperature control device for rolled material
WO2020179531A1 (en) Disturbance suppression device, disturbance suppression method, and program
JP6469320B1 (en) Servo control device
JP6075178B2 (en) Plate thickness control method and plate thickness control device
WO2020162140A1 (en) Disturbance suppression apparatus, disturbance suppression method, and program
JPH0822306A (en) Automatic adjusting device for arithmetic control parameter
JP3869388B2 (en) air conditioner
JP2009076098A (en) Closed loop system process controller including pid controller
JP4982905B2 (en) Control method and control apparatus
CN109964180B (en) Device and method for determining parameters of a control device
JP6965516B2 (en) Control device, control method, control program
JP6610676B2 (en) Temperature control apparatus and temperature control method
WO2017170647A1 (en) Pressure control device and pressure control system
JP2008299697A (en) Control method, temperature control method, correction device, temperature adjuster, and program
JP2009187180A (en) Controller and control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20765596

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20765596

Country of ref document: EP

Kind code of ref document: A1