JPH0535306A - Dead time compensation control device - Google Patents

Dead time compensation control device

Info

Publication number
JPH0535306A
JPH0535306A JP3188809A JP18880991A JPH0535306A JP H0535306 A JPH0535306 A JP H0535306A JP 3188809 A JP3188809 A JP 3188809A JP 18880991 A JP18880991 A JP 18880991A JP H0535306 A JPH0535306 A JP H0535306A
Authority
JP
Japan
Prior art keywords
dead time
gain
signal
controlled object
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3188809A
Other languages
Japanese (ja)
Inventor
Kazuo Hiroi
和男 広井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3188809A priority Critical patent/JPH0535306A/en
Priority to EP92305334A priority patent/EP0518651B1/en
Priority to DE69212721T priority patent/DE69212721T2/en
Priority to CN92105829A priority patent/CN1061764C/en
Priority to KR1019920010100A priority patent/KR960003368B1/en
Publication of JPH0535306A publication Critical patent/JPH0535306A/en
Priority to US08/253,219 priority patent/US5544039A/en
Pending legal-status Critical Current

Links

Landscapes

  • Feedback Control In General (AREA)

Abstract

PURPOSE:To realize much higher controllability by correcting the gain of a controlled system model and effectively utilizing the function of a Smith dead time compensation method while using a suitable gain ratio signal even to the gain change of a controlled system. CONSTITUTION:A dead time compensation part 5 equipped with a controlled system model 7 and a first-order delay means 6 is added to controlled systems (1-3) and although control is executed by outputting dead time elements to the outside of a control loop on the condition of the Smith method, the controllability is degraded by the deviation of the relevant condition due to the gain change of the controlled system. Then, the ratio is calculated according to a controlled variable and the output of the controlled system model by a gain ratio arithmetic means 11, stored in a storing means 12, afterwards transmitted to a gain correcting means 13 and multiplied to the output of the dead time compensation part 5, and the gain of the dead time compensation part 5 is corrected. On the other hand, the zero output of the dead time compensation part 5 is discriminated by updating and judging means (14 and 15) and the gain ratio is updated to the storing means 12.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、むだ時間を補償するス
ミス法を用いたむだ時間補償制御装置に係わり、特に制
御対象のゲイン変化に対する制御対象モデルのゲイン修
正機能を改良したむだ時間補償制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dead time compensation control device using a Smith method for compensating for dead time, and particularly to a dead time compensation control with an improved gain correction function of a controlled object model with respect to a gain change of a controlled object. Regarding the device.

【0002】[0002]

【従来の技術】PIまたはPID調節機能をもった制御
装置は、プロセス制御の有史以来、あらゆる産業分野で
広く利用されており、もはやプラント運転には欠くこと
のできないものとなっている。
2. Description of the Related Art Controllers having PI or PID adjustment functions have been widely used in all industrial fields since the history of process control, and have become indispensable for plant operation.

【0003】ところで、制御対象をむだ時間Lと1次伝
達関数T(時定数)とで近似すると、制御対象が1次遅
れのみの場合にはPID制御によって容易に制御できる
が、むだ時間Lを含む場合にはそのむだ時間Lが大きく
なるにつれ,つまりL/Tが大きくなるにつれてPID
制御のみでは制御がだんだん難しくなってくる。
If the controlled object is approximated by the dead time L and the first-order transfer function T (time constant), the dead time L can be easily controlled by the PID control when the controlled object has only the first-order lag. If it contains PID as the dead time L increases, that is, as L / T increases.
Control becomes difficult only with control.

【0004】そこで、むだ時間を含む制御系の制御性を
改善する方法として、O.J.MSmith(人名)
は、PID制御に制御対象モデルを用いたむだ時間補償
部を付加し、むだ時間を制御ループの外部に出すことに
より、見かけ上,1次遅れの制御対象のみを制御するよ
うにした,いわゆるスミス法またはスミスむだ時間補償
法が提案されており、現在広く用いられている。
Therefore, as a method for improving the controllability of the control system including the dead time, the O.D. J. MSmith (person name)
Is a so-called Smith, in which a dead time compensator using a controlled object model is added to PID control and the dead time is output to the outside of the control loop so that only the apparently first-order delayed controlled object is controlled. Method or Smith dead time compensation method has been proposed and is now widely used.

【0005】図3(a)はかかるスミス法を用いた制御
装置の機能ブロック図である。この制御装置は、目標値
SVn と制御量PVn との偏差En を求める偏差演算手
段1と、この偏差En に基づいてPIまたはPID調節
演算を実行し、得られた操作信号MVn を制御対象2に
印加するPID調節手段3とからなる制御系に対し、あ
る条件の下にむだ時間を制御ループの外部に出して制御
可能とするむだ時間補償部5を設けた構成である。
FIG. 3 (a) is a functional block diagram of a control device using the Smith method. This control device performs a deviation calculation means 1 for obtaining a deviation En between a target value SV n and a control amount PV n, and executes a PI or PID adjustment calculation based on this deviation En to control the obtained operation signal MV n . The control system including the PID adjusting means 3 applied to the target 2 is provided with a dead time compensating unit 5 that allows the dead time to be controlled outside the control loop under a certain condition.

【0006】このむだ時間補償部5は、PID調節手段
3からの操作信号MVn を1次遅れ伝達関数を通して出
力する制御対象の1次モデル手段6、同じくPID調節
手段3からの操作信号MVn を1次遅れおよびむだ時間
をもつ伝達関数を通して出力する制御対象モデル手段
(以下、この制御対象モデル手段を制御対象モデルと呼
ぶ場合もある)7、1次モデル手段6の出力から制御対
象モデル手段7の出力を減算する減算手段8等からな
り、この減算手段8の出力を前記偏差演算手段1出力側
に設けた減算手段4に導入し、偏差演算手段1の偏差E
n からむだ時間補償部5の出力を減算する構成となって
いる。但し、図3(a)において、 GP -Lp s :制御対象の伝達関数 GP =Kp /(1+TP s):制御対象の特性からむだ
時間を除いた伝達関数 Lp :制御対象のむだ時間 Kp :制御対象のゲイン Tp :制御対象の時定数 s:ラプラス演算子 また、GM ・e-LMs:制御対象モデルの伝達関数 GM =KM /(1+TM s):制御対象モデルからむだ
時間を除いた伝達関数 LM :制御対象モデルのむだ時間 KM :制御対象モデルのゲイン TM :制御対象モデルの時定数 で表わされ、さらに図2(a)を等価変換して整理する
と、図3(b)のような構成となる。ところで、図3
(a)の装置において外乱Dが小さくて無視でき、か
つ、制御対象特性と制御対象モデル7の特性が一致する
条件,つまり 外乱=小、Tp =TM 、Lp =LM ……(1) なる関係にあると仮定すると、GP =GM となり、この
場合のSVn →PVn 間の伝達関数を求めると、 PVn /SVn ={(Gc ・GM )/(1+Gc ・GM )}e-LP s ……(2)
The dead time compensation unit 5 is a PID adjusting means.
Operation signal MV from 3nThrough the first-order lag transfer function
First-order model means 6 to be controlled, similarly PID adjustment
Operation signal MV from the means 3n1st delay and dead time
Object model means for outputting through transfer function with
(Hereinafter, this controlled object model means is called a controlled object model.
7) The output of the primary model means 6 is used as a control pair.
The subtraction means 8 for subtracting the output of the elephant model means 7
The output of this subtraction means 8 is the output side of the deviation calculation means 1
The deviation E of the deviation calculation means 1 is introduced into the subtraction means 4 provided in
The output of the dead time compensation unit 5 is subtracted from n.
There is. However, in FIG. GPe-Lp s : Transfer function of controlled object GP= Kp/ (1 + TPs): waste from the characteristics of the controlled object
Transfer function excluding time Lp: Dead time of controlled object Kp: Gain to be controlled Tp: Time constant of controlled object s: Laplace operator Also, GM・ E-LMs: Transfer function of controlled model GM= KM/ (1 + TMs): waste from controlled model
Transfer function excluding time LM: Dead time of controlled model KM: Gain of controlled model TM: Time constant of controlled model , And the equivalent conversion of FIG.
Then, the configuration is as shown in FIG. By the way,
In the device of (a), the disturbance D is small and can be ignored.
The characteristics of the controlled object and the characteristics of the controlled object model 7 match
Condition, that is,   Disturbance = small, Tp= TM, Lp= LM                          …… (1) Assuming that the relationship isP= GMNext to this
SV in casen→ PVnThe transfer function between PVn/ SVn= {(Gc・ GM) / (1 + Gc・ GM)} E-LP s                                                             …… (2)

【0007】となり、図3(c)のような簡単な構成に
変換できる。ゆえに、この制御装置は、制御ループの外
部にむだ時間要素9を出すことができ、PID調節手段
3によってむだ時間を除いた1次モデル手段6をフィー
ドバック制御すれば良いことを意味する。従って、制御
対象にむだ時間があってもPID調節手段3によって容
易に制御でき、良好な制御性を実現できる。
Therefore, it can be converted into a simple structure as shown in FIG. Therefore, this control device can output the dead time element 9 to the outside of the control loop, and means that the PID adjusting means 3 may feedback-control the primary model means 6 excluding the dead time. Therefore, even if there is dead time in the controlled object, it can be easily controlled by the PID adjusting means 3, and good controllability can be realized.

【0008】[0008]

【発明が解決しようとする課題】しかし、以上のような
スミス法を用いた制御装置は、前述の説明からも明らか
なように、(1)式の条件が成立しなければ図3(c)
のような構成とすることができない。
However, as is clear from the above description, the control device using the Smith method as described above is shown in FIG. 3 (c) unless the condition of the expression (1) is satisfied.
Cannot be configured as

【0009】しかるに、実際のプラント制御では、
(1)式の条件を常時成立させることは難しく、例えば
周囲温度,触媒濃度,原料条件,負荷の大小など制御対
象2の特性変化や環境変化により、(1)式の条件が経
時的にずれるものである。その結果、(1)式の条件が
ずれればずれるほど制御性が劣化していき、スミス法の
機能を果たさなくなり、プラントの制御性に大きな影響
を与える問題がある。
However, in actual plant control,
It is difficult to always satisfy the condition of the formula (1), and the condition of the formula (1) shifts with time due to the characteristic change of the controlled object 2 such as the ambient temperature, the catalyst concentration, the raw material condition, and the load. It is a thing. As a result, the controllability deteriorates as the condition of equation (1) shifts, and the function of the Smith method is no longer fulfilled, which has a problem of greatly affecting the controllability of the plant.

【0010】本発明は上記実情にかんがみてなされたも
ので、制御対象の特性変化や環境変化等による制御対象
ゲインの変化に対してもスミス法の機能を十分発揮させ
ることが可能であり、制御性の高い制御を実行し得るむ
だ時間補償制御装置を提供することを目的とする。
The present invention has been made in view of the above situation, and it is possible to sufficiently exhibit the function of the Smith method even when the gain of the controlled object is changed due to the characteristic change of the controlled object or the environmental change. An object of the present invention is to provide a dead time compensation control device capable of executing highly efficient control.

【0011】[0011]

【課題を解決するための手段】本発明は上記課題を解決
するために、制御対象をフィードバック制御する制御系
に対し、制御対象モデル手段,1次モデル手段とおよび
減算手段をもったむだ時間補償部を設けたむだ時間補償
制御装置において、
In order to solve the above problems, the present invention provides a control system for feedback controlling a controlled object with a dead time compensation having controlled object model means, first order model means and subtraction means. In the dead time compensation control device provided with a section,

【0012】前記制御対象からの制御量と制御対象モデ
ル手段の出力とからゲイン比率信号を求めるゲイン比率
演算手段と、このゲイン比率演算手段によって求めたゲ
イン比率信号を記憶する記憶手段と、この記憶手段に記
憶されたゲイン比率信号を前記むだ時間補償部の出力に
乗じて前記制御対象のゲイン変化による前記むだ時間補
償部のゲインを修正するゲイン修正手段とを設け、
Gain ratio calculating means for obtaining a gain ratio signal from the controlled variable from the controlled object and the output of the controlled object model means, storage means for storing the gain ratio signal obtained by the gain ratio calculating means, and this storage Gain correction means for multiplying the output of the dead time compensating section by the gain ratio signal stored in the means to correct the gain of the dead time compensating section due to the gain change of the controlled object,

【0013】さらに、前記むだ時間補償部から出力され
るほぼ零の信号を判別する信号判別手段と、この信号判
別手段によって判別された零信号を判別し、或いは零信
号の判別時間が所定時間継続したとき、前記記憶手段に
対して前記ゲイン比率信号の更新を行い、それ以外のと
きに前記ゲイン比率信号の更新を行わない時限手段とを
設けた構成である。
Further, a signal discriminating means for discriminating a substantially zero signal output from the dead time compensating portion and a zero signal discriminated by the signal discriminating means are discriminated, or the discrimination time of the zero signal continues for a predetermined time. The gain ratio signal is updated to the storage means at this time, and the time ratio means does not update the gain ratio signal at other times.

【0014】[0014]

【作用】従って、本発明は以上のような手段を講じたこ
とにより、制御対象のゲインが大きくなるように変化す
ると、ゲイン比率演算手段から得られるゲイン比率信号
が大きくなり、このゲイン比率信号をむだ時間補償部の
出力に乗算することにより、むだ時間補償部のゲインが
大きくなる方向に自動的に修正でき、よってスミス法の
適切な動作状態を維持できる。
Therefore, according to the present invention, by taking the above means, when the gain of the controlled object changes so as to increase, the gain ratio signal obtained from the gain ratio calculating means increases, and this gain ratio signal is By multiplying the output of the dead time compensating unit, the gain of the dead time compensating unit can be automatically corrected in the direction of increasing the gain, and thus the appropriate operating state of the Smith method can be maintained.

【0015】しかも、操作信号の変化後、制御対象が完
全応答に相当する時間になったときのゲイン比率信号を
用いてむだ時間補償部のゲインを修正するので、スミス
法の機能を最適な動作状態とすることができ、より高い
制御性を実現できる。
Moreover, since the gain of the dead time compensating unit is corrected by using the gain ratio signal when the controlled object reaches the time corresponding to the complete response after the change of the operation signal, the Smith method function is optimally operated. It can be in a state, and higher controllability can be realized.

【0016】[0016]

【実施例】以下、本発明装置の一実施例について図1を
参照して説明する。なお、同図において図3と同一機能
ないしは同一部分には同一符号を付してその詳しい説明
は省略する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the device of the present invention will be described below with reference to FIG. In the figure, the same functions or parts as those of FIG. 3 are designated by the same reference numerals, and detailed description thereof will be omitted.

【0017】この制御装置は、スミス法を適用するむだ
時間補償部5に、制御対象2のゲイン変化に対応して当
該むだ時間補償部5のゲインを自動的に修正するモデル
ゲイン修正部10を設けたことにある。
In this control device, a model gain correction unit 10 that automatically corrects the gain of the dead time compensation unit 5 in response to the gain change of the controlled object 2 is provided in the dead time compensation unit 5 to which the Smith method is applied. It is provided.

【0018】このモデルゲイン修正部10には、制御対
象2からの制御量PVn とむだ時間補償部5の一部を構
成する制御対象モデル手段7の出力信号PVMnとを取り
込んで、制御対象2のゲイン変化に応じたゲイン比率信
号kn =PVn /PVMnを求めるゲイン比率演算手段1
1が設けられ、ここで求めたゲイン比率信号kn は記憶
手段12に記憶される。13は制御対象2のゲイン変化
に応じて制御対象モデル手段7のゲインを修正するゲイ
ン修正手段であって、ここではむだ時間補償部5の出力
に記憶手段12から読み出したゲイン比率信号を乗算
し、得られたゲイン修正後の信号を前記減算手段4に与
える構成となっている。
The model gain correction unit 10 takes in the controlled variable PV n from the controlled object 2 and the output signal PV Mn of the controlled object model means 7 forming a part of the dead time compensation unit 5, and controls the controlled object. Gain ratio calculating means 1 for obtaining a gain ratio signal k n = PV n / PV Mn according to the gain change of 2
1 is provided, and the gain ratio signal k n obtained here is stored in the storage means 12. Reference numeral 13 is a gain correction means for correcting the gain of the controlled object model means 7 according to the change in the gain of the controlled object 2. Here, the output of the dead time compensation section 5 is multiplied by the gain ratio signal read from the storage means 12. The gain-corrected signal thus obtained is supplied to the subtracting means 4.

【0019】また、このモデルゲイン修正部10は、む
だ時間補償部5から出力されるほぼ零の信号を判別し零
判別信号を出力する信号判別手段14を有し、ここで得
られた零判別信号は時限手段15に導入される。この時
限手段15は、計時機能を有し、零判別信号,つまりが
むだ時間補償部5の出力零が所定時間Ts以上継続した
ときに更新指令信号を記憶手段12に与えてゲイン比率
信号Kn の更新を行い、それ以外のときに更新記憶を停
止し直前のゲイン比率信号Kn を保持しながら制御対象
モデル7のゲインを修正する機能をもっている。
The model gain correction section 10 also has a signal discriminating means 14 for discriminating an almost zero signal output from the dead time compensating section 5 and outputting a zero discrimination signal. The signal is introduced into the timing means 15. The time limiter 15 has a time counting function, and when the zero determination signal, that is, the output zero of the dead time compensation unit 5 continues for a predetermined time Ts or more, gives an update command signal to the memory 12 to give a gain ratio signal K n. Of the controlled object model 7 is updated, and the update storage is stopped at other times, and the gain of the controlled object model 7 is corrected while holding the immediately preceding gain ratio signal K n .

【0020】次に、図1に示す構成を採用するに至った
経緯、ひいては実験、検討結果について述べる。今、制
御対象2の完全応答所要時間をTR とすれば、この完全
応答所要時間TR は、 TR =ほぼむだ時間LP +(3〜5)・TP
Next, the circumstances leading to the adoption of the configuration shown in FIG. 1, and the results of experiments and examinations will be described. Now, assuming that the complete response required time of the controlled object 2 is T R , the complete response required time T R is: T R = almost dead time L P + (3 to 5) · T P

【0021】で表すことができる。そこで、今、制御対
象特性と制御対象モデルの特性が一致していれば、図2
に示す如く操作量MVn の変化後、上式の完全応答所要
時間TR を経過した時、制御量PVn と制御対象モデル
7の出力PVMnが一致する。ゆえに、このときのゲイン
比率Kn は Kn =PVn /PVMn=1 とならなければならない。
Can be expressed as Therefore, if the characteristics of the controlled object and the characteristics of the controlled object model match, if the characteristics of FIG.
After the change of the manipulated variable MV n , as shown in (4), the controlled variable PV n and the output PV Mn of the controlled object model 7 match when the complete response required time T R of the above equation has elapsed. Therefore, the gain ratio K n at this time must be K n = PV n / PV Mn = 1.

【0022】しかし、実際上,Kn =1でない場合が生
じる。これは制御対象2の特性変化や周囲温度,触媒濃
度,原料条件,負荷の大小などの環境条件などによって
制御対象特性のゲインが変化し、制御対象特性と制御対
象モデルのゲインが不一致となるためである。そこで、
このゲイン比率Kn を求めて制御対象モデルのゲインを
制御対象特性のゲインに一致するようにすれば、スミス
法の条件を満足すことになる。
However, in practice, there may be cases where K n = 1. This is because the gain of the controlled object characteristic changes due to changes in the characteristic of the controlled object 2 and environmental conditions such as ambient temperature, catalyst concentration, raw material conditions, and the size of the load, and the gains of the controlled object characteristic and the controlled object model do not match. Is. Therefore,
If the gain ratio K n is obtained so that the gain of the controlled object model matches the gain of the controlled object characteristic, the condition of the Smith method is satisfied.

【0023】そこで、前記完全応答所要時間TR を計時
する必要があるが、もともとむだ時間補償部5ではむだ
時間を除去しているので、完全応答所要時間TR からむ
だ時間LM を除いた残りの時間TS、つまり TS =(3〜5)・TM
Therefore, it is necessary to measure the complete response time T R , but since the dead time compensator 5 originally removes the dead time, the dead time L M is removed from the complete response time T R. Remaining time T S , that is, T S = (3-5) · T M

【0024】なる時間をほぼ完全応答所要時間として計
時し、この時間TSの経過後に求めたゲイン比率Kn
用いれば、制御対象特性のゲイン変化を適正に反映した
値となり、かつ、このゲイン比率Kn を用いて制御対象
モデルのゲイン補償を行えばスミス法の条件を満足させ
ることができる。
By using the gain ratio K n obtained after the elapse of this time T S , a value that properly reflects the gain change of the controlled object characteristic and this gain is obtained. If the gain of the controlled object model is compensated by using the ratio K n , the condition of the Smith method can be satisfied.

【0025】従って、本装置は以上のような実験、検討
結果を踏えつつ実現したものであって、以下、制御対象
ゲインの変化に対する制御対象モデルのゲイン修正につ
いて数式をもって説明する。先ず、PID調節手段3か
ら与えられた操作信号MVn に対する制御量PVnおよ
び制御対象モデル7の出力PVMnは、 PVn =MVn ・GP ・e-LP ・s =MVn ・{KP /(1+TP ・s)}・e-LP ・s ……(3) PVMn=MVn ・GM ・e-LM ・s =MVn ・{KM /(1+TM ・s)}・e-LM ・s ……(4) で表すことができる。一方、ゲイン比率演算手段11の
出力であるゲイン比率信号Kn は、 Kn =PVn /PVMn ……(5) となるが、この(5)式に上記(3)式、(4)式を代
入すると、次の(6)式が得られる。 Kn =(KP /KM )・{(1+TM ・s)/(1+TP ・s)} ・e- (LP-LM)・s……(6)
Therefore, the present apparatus has been tested and studied as described above.
It was realized while stepping on the results.
For modifying the gain of the controlled model for changes in gain.
I will explain with a mathematical formula. First, the PID adjustment means 3
Operation signal MV given bynControlled variable PVnAnd
And output PV of controlled object model 7MnIs   PVn= MVn・ GP・ E-LP ・ S         = MVn・ {KP/ (1 + TP・ S)} ・ e-LP ・ S    …… (3)   PVMn= MVn・ GM・ E-LM ・ S         = MVn・ {KM/ (1 + TM・ S)} ・ e-LM ・ S    …… (4) Can be expressed as On the other hand, the gain ratio calculation means 11
Output gain ratio signal KnIs     Kn= PVn/ PVMn                                    …… (5) However, the above equations (3) and (4) are substituted for this equation (5).
When entered, the following equation (6) is obtained.     Kn= (KP/ KM) ・ {(1 + TM・ S) / (1 + TP・ S)}                                           ・ E- (LP-LM) ・ s…… (6)

【0026】ここで、むだ時間補償部5の出力が零とな
り、信号判別手段14で零信号を判別し、時限手段15
から更新指令信号が出たときには、操作信号MVn の変
化後、完全応答所要時間TR を越えているので、前記
(6)式の (1+TM ・s)/(1+TP ・s)=1、e- (LP-LM)・s=1 となるので、結局(6)式は Kn =(KP /KM ) ……(7) となる。
Here, the output of the dead time compensator 5 becomes zero, the signal discriminating means 14 discriminates the zero signal, and the time limiting means 15 is reached.
When the update command signal is output from, since the complete response required time T R has been exceeded after the change of the operation signal MV n , (1 + T M · s) / (1 + T P · s) = 1 in the equation (6) above. , e - Since (LP-LM) · s = 1, the equation (6) eventually becomes K n = (K P / K M ) ... (7).

【0027】そこで、この式によって得られたゲイン比
率信号をゲイン修正手段13に導入してむだ時間補償部
5の出力信号Xn に乗算することにより、ゲイン修正手
段13から次式のような出力Yn が得られる。 Yn =Kn /Xn ……(8) =(KP /KM )・{KM /(1+TM ・s)} ・(1−e-LM ・s)・MVn ={KP /(1+TM ・s)}・(1−e-LM ・s)・MVn …(9)
Therefore, the gain ratio obtained by this equation
A dead time compensator for introducing the rate signal into the gain correction means 13.
Output signal X of 5nGain correction by multiplying
Output Y from stage 13 asnIs obtained.   Yn= Kn/ Xn                                          …… (8)       = (KP/ KM) ・ {KM/ (1 + TM・ S)}                         ・ (1-e-LM ・ S) ・ MVn       = {KP/ (1 + TM・ S)} ・ (1-e-LM ・ S) ・ MVn… (9)

【0028】よって、前記(9)式から明らかなよう
に、むだ時間補償部5の出力Xn に制御対象モデルゲイ
ン修正部10のゲイン比率信号Knを乗ずれば、むだ時
間補償部5の制御対象モデルゲインKM は常に制御対象
ゲインKP によって自動修正されることを示す。
Therefore, as is apparent from the equation (9), if the output X n of the dead time compensation unit 5 is multiplied by the gain ratio signal K n of the controlled object model gain correction unit 10, the dead time compensation unit 5's It is shown that the controlled object model gain K M is always automatically corrected by the controlled object gain K P.

【0029】従って、一般に、むだ時間を含む制御対象
に対してスミスむだ時間補償法を適用するのは、外乱が
小さく、かつ、制御対象特性と制御対象モデルが一致す
る場合であるが、多くは制御対象2の特性変化や環境条
件などによって制御対象特性のゲインが変化し、制御対
象特性と制御対象モデルのゲインが不一致となり、制御
性に大きな影響を与える。
Therefore, in general, the Smith dead time compensation method is applied to a controlled object including dead time when the disturbance is small and the controlled object characteristic and the controlled object model match. The gain of the controlled object characteristic changes due to the change in the characteristic of the controlled object 2 or the environmental conditions, and the gains of the controlled object characteristic and the controlled object model do not match, which greatly affects the controllability.

【0030】そこで、本装置は、制御量と制御対象モデ
ルの出力からゲイン比率信号を求めるとともに、操作信
号の変化後,完全応答時間に相当する時間に前記ゲイン
比率を記憶する。そして、この保存されたゲイン比率信
号を用いて制御対象モデルのゲインを修正するようにし
たので、制御対象の変化ゲインに基づいてむだ時間補償
部5の制御対象モデルゲインを修正するので、スミス無
駄時間補償法の機能を十分に発揮でき、制御性の高いむ
だ時間補償制御装置を実現できる。
Therefore, the present apparatus obtains the gain ratio signal from the output of the controlled variable and the controlled object model, and stores the gain ratio at the time corresponding to the complete response time after the change of the operation signal. Since the gain of the controlled object model is modified using the stored gain ratio signal, the controlled object model gain of the dead time compensating unit 5 is modified based on the change gain of the controlled object. It is possible to realize a dead time compensation control device having a high controllability by fully exerting the function of the time compensation method.

【0031】特に、実際のプラントでは、頻繁、かつ、
大きく制御対象のゲインが変化するが、このような場合
に制御対象モデルゲインを自動修正することにより、実
プラントへの適用性が著しく向上し、プラントの各所に
ちりばめている制御装置に多用すれば、プラント全体の
制御性の向上に大きく貢献でき、かつ、プラント運転の
本格的なフレキシブル化、超自動化および高品質製品を
生産できる。
Particularly, in an actual plant, frequently and
The gain of the controlled object changes greatly, but in such a case, by automatically correcting the controlled object model gain, the applicability to the actual plant is significantly improved, and if it is often used for control devices scattered throughout the plant. In addition, it can greatly contribute to the improvement of controllability of the entire plant, and can realize full-scale flexibility of plant operation, super automation and high quality products.

【0032】なお、本発明は上記実施例に限定されるも
のではない。つまり、上記実施例では、ゲイン比率演算
手段11の出力をそのまま記憶手段12に記憶した後、
ゲイン修正手段13に送出するようにしたが、例えば比
率演算手段11または記憶手段12の出力側に比率Kn
の瞬時的な変動を取り除くための平滑手段を設けた構成
でもよい。また、時限手段15を取り除いてむだ時間補
償部5の出力零で更新を行なうか、或いは時限手段15
の時間設定値のうち例えばT(3〜5)・TMを零とし
てもよい。この場合には時定数TMによる領域を無視す
るだけとなり、近似的にゲイン変化に適用できるもので
ある。その他、本発明はその要旨を逸脱しない範囲で種
々変形して実施できる。
The present invention is not limited to the above embodiment. That is, in the above embodiment, after the output of the gain ratio calculation means 11 is stored in the storage means 12 as it is,
Although it is sent to the gain correction means 13, the ratio K n is output to the output side of the ratio calculation means 11 or the storage means 12, for example.
Alternatively, the smoothing means for removing the instantaneous fluctuation of Also, the time limit means 15 is removed and updating is performed with the output of the dead time compensation unit 5 being zero, or the time limit means 15 is used.
Of may be zero, for example, T (3~5) · T M of the time set value. In this case, the region due to the time constant T M is simply ignored and the gain change can be approximately applied. In addition, the present invention can be modified in various ways without departing from the scope of the invention.

【0033】[0033]

【発明の効果】以上説明したように本発明によれば、制
御対象の特性変化や環境変化等による制御対象ゲインの
変化に対してもスミスむだ時間補償法の機能を十分に生
かすことができ、かつ、適切なゲイン比率信号を用いて
ゲイン修正でき、より高い制御性を維持できるむだ時間
補償制御装置を提供できる。
As described above, according to the present invention, the function of the Smith dead time compensation method can be fully utilized even when the gain of the controlled object is changed due to the characteristic change of the controlled object or the environmental change. In addition, it is possible to provide a dead time compensation control device capable of performing gain correction using an appropriate gain ratio signal and maintaining higher controllability.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明に係わるむだ時間補償制御装置の一実
施例を示す機能ブロック図。
FIG. 1 is a functional block diagram showing an embodiment of a dead time compensation control device according to the present invention.

【図2】 むだ時間LM と時定数TM を持つ系に変化を
加えたときにほぼ完全に応答するまでの経過を説明する
図。
FIG. 2 is a diagram for explaining the progress until almost complete response when a system having a dead time L M and a time constant T M is changed.

【図3】 従来のむだ時間補償制御装置の機能ブロック
図。
FIG. 3 is a functional block diagram of a conventional dead time compensation control device.

【符号の説明】[Explanation of symbols]

1…偏差演算手段、2…制御対象、3…PIまたはPI
D調節手段、4…減算手段、5…むだ時間補償部、6…
1次モデル手段、7…制御対象モデル手段、8…減算手
段、10…モデルゲイン修正部、11…ゲイン比率演算
手段、12…記憶手段、13…ゲイン修正手段、14…
信号判別手段、15…時限手段。
1 ... Deviation calculation means, 2 ... Control object, 3 ... PI or PI
D adjusting means, 4 ... subtracting means, 5 ... dead time compensation section, 6 ...
Primary model means, 7 ... Controlled model means, 8 ... Subtraction means, 10 ... Model gain correction section, 11 ... Gain ratio calculation means, 12 ... Storage means, 13 ... Gain correction means, 14 ...
Signal discriminating means, 15 ... Timer means.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 目標値と制御対象からの制御量との偏差
に基づき、調節手段ではPIまたはPID調節演算を実
行し、得られた操作信号を前記制御対象に印加する制御
系に対し、むだ時間および1次伝達関数で近似される制
御対象モデル手段と、むだ時間要素を除いた1次モデル
手段と、この1次モデル手段の出力から前記制御対象モ
デル手段の出力を減算する減算手段とを有し、この減算
手段から得られたむだ時間補償信号を前記調節手段の入
力側に与えるスミス法によるむだ時間補償部を設けたむ
だ時間補償制御装置において、 前記制御対象からの制御量と前記制御対象モデル手段の
出力とからゲイン比率信号を求めるゲイン比率演算手段
と、このゲイン比率演算手段によって求めたゲイン比率
信号を記憶する記憶手段と、この記憶手段に記憶された
ゲイン比率信号を前記むだ時間補償部の出力に乗じて前
記制御対象のゲイン変化による前記むだ時間補償部のゲ
インを修正するゲイン修正手段と、前記むだ時間補償部
から出力されるほぼ零の信号を判別すると前記記憶手段
に対し前記ゲイン比率信号の更新を行う更新判断手段と
を備えたことを特徴とするむだ時間補償制御装置。
1. A control system for executing a PI or PID adjustment calculation in an adjusting means on the basis of a deviation between a target value and a controlled variable from a controlled object and applying a resulting operation signal to the controlled object is wasteful. A controlled object model means approximated by time and a first-order transfer function, a first-order model means excluding dead time elements, and a subtraction means for subtracting the output of the controlled object model means from the output of the first-order model means. In the dead time compensation control device having a dead time compensating section by the Smith method for providing the dead time compensation signal obtained from the subtracting means to the input side of the adjusting means, the control amount from the control target and the control Gain ratio calculation means for obtaining a gain ratio signal from the output of the target model means, storage means for storing the gain ratio signal obtained by the gain ratio calculation means, and this storage means Gain correction means for multiplying the stored gain ratio signal by the output of the dead time compensating section to correct the gain of the dead time compensating section due to the gain change of the controlled object, and almost zero output from the dead time compensating section. And a determination unit for updating the gain ratio signal with respect to the storage unit when the above signal is discriminated.
【請求項2】 更新判断手段は、前記むだ時間補償部か
ら出力されるほぼ零の信号を判別する信号判別手段と、
この信号判別手段によって判別された零信号の判別時間
が所定時間継続したとき、前記記憶手段に対し前記ゲイ
ン比率信号の更新を行い、それ以外のときに前記ゲイン
比率信号の更新を行わない時限手段とを備えたことを特
徴とするむだ時間補償制御装置。
2. The update determining means includes a signal determining means for determining a substantially zero signal output from the dead time compensating section,
When the zero signal determination time determined by the signal determination means continues for a predetermined time, the gain ratio signal is updated in the storage means, and the gain ratio signal is not updated at other times. And a dead time compensation control device.
JP3188809A 1991-06-11 1991-07-29 Dead time compensation control device Pending JPH0535306A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP3188809A JPH0535306A (en) 1991-07-29 1991-07-29 Dead time compensation control device
EP92305334A EP0518651B1 (en) 1991-06-11 1992-06-10 Process control system
DE69212721T DE69212721T2 (en) 1991-06-11 1992-06-10 Process control
CN92105829A CN1061764C (en) 1991-06-11 1992-06-11 Process control system
KR1019920010100A KR960003368B1 (en) 1991-06-11 1992-06-11 Process control system
US08/253,219 US5544039A (en) 1991-06-11 1994-06-02 Process control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3188809A JPH0535306A (en) 1991-07-29 1991-07-29 Dead time compensation control device

Publications (1)

Publication Number Publication Date
JPH0535306A true JPH0535306A (en) 1993-02-12

Family

ID=16230191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3188809A Pending JPH0535306A (en) 1991-06-11 1991-07-29 Dead time compensation control device

Country Status (1)

Country Link
JP (1) JPH0535306A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5535117A (en) * 1993-03-22 1996-07-09 Kabushiki Kaisha Toshiba Method and apparatus for controlling a process having a control loop using feedback control
US5745362A (en) * 1995-06-20 1998-04-28 Kabushiki Kaisha Toshiba Digital PID control apparatus
JP2008097390A (en) * 2006-10-13 2008-04-24 Fuji Electric Systems Co Ltd Model following control device applied to control object including dead time
JP2010205141A (en) * 2009-03-05 2010-09-16 Toshiba Mitsubishi-Electric Industrial System Corp Dead time compensation control unit
JP2011013916A (en) * 2009-07-01 2011-01-20 Sony Corp Signal processing circuit, agc circuit and recording and playback device
WO2017046846A1 (en) * 2015-09-14 2017-03-23 東芝三菱電機産業システム株式会社 Temperature control device for rolled material

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5535117A (en) * 1993-03-22 1996-07-09 Kabushiki Kaisha Toshiba Method and apparatus for controlling a process having a control loop using feedback control
US5745362A (en) * 1995-06-20 1998-04-28 Kabushiki Kaisha Toshiba Digital PID control apparatus
JP2008097390A (en) * 2006-10-13 2008-04-24 Fuji Electric Systems Co Ltd Model following control device applied to control object including dead time
JP2010205141A (en) * 2009-03-05 2010-09-16 Toshiba Mitsubishi-Electric Industrial System Corp Dead time compensation control unit
JP2011013916A (en) * 2009-07-01 2011-01-20 Sony Corp Signal processing circuit, agc circuit and recording and playback device
WO2017046846A1 (en) * 2015-09-14 2017-03-23 東芝三菱電機産業システム株式会社 Temperature control device for rolled material
CN107614135A (en) * 2015-09-14 2018-01-19 东芝三菱电机产业系统株式会社 The temperature control equipment of rolled parts
CN107614135B (en) * 2015-09-14 2019-07-23 东芝三菱电机产业系统株式会社 The temperature control equipment of rolled parts

Similar Documents

Publication Publication Date Title
EP0518651B1 (en) Process control system
EP0296638B1 (en) Process control having improved combination of feedforward feedback control
JPH07104681B2 (en) Process control equipment
KR0135586B1 (en) Gain adaptive control device
JPH0535306A (en) Dead time compensation control device
JP2001514404A (en) Method for preventing windup of PID controller using non-linear gain
CA2458149A1 (en) Control apparatus for plant
JPH0434766B2 (en)
JP3340923B2 (en) SAC controller
JP3279745B2 (en) Controller with fuzzy inference function
JP2885544B2 (en) Dead time compensation controller
JP2532967B2 (en) Fuzzy control rule automatic tuning device
JP3234109B2 (en) Process control equipment
JPH0250701A (en) Adaptive control method
JPH07191709A (en) Parameter setting method for model estimating control
JP3277484B2 (en) PID controller
JPH0619506A (en) Identifying device
JPH0876804A (en) Digital pid controller
JPH07319504A (en) Controller
JPH0635508A (en) Fuzzy controller
JPH02206804A (en) Adaptive controller
JPH0527802A (en) Controller
JP2766395B2 (en) Control device
JPH08314504A (en) Pid-imc interface device and imc controller
JPS6275803A (en) Adaptive controller