JPH0876804A - Digital pid controller - Google Patents

Digital pid controller

Info

Publication number
JPH0876804A
JPH0876804A JP21478094A JP21478094A JPH0876804A JP H0876804 A JPH0876804 A JP H0876804A JP 21478094 A JP21478094 A JP 21478094A JP 21478094 A JP21478094 A JP 21478094A JP H0876804 A JPH0876804 A JP H0876804A
Authority
JP
Japan
Prior art keywords
differential
control
calculation
cycle
digital
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21478094A
Other languages
Japanese (ja)
Inventor
Kazuo Hiroi
和男 広井
Yoshiyuki Yamamoto
美行 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP21478094A priority Critical patent/JPH0876804A/en
Publication of JPH0876804A publication Critical patent/JPH0876804A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To provide a digital PID controller which can improve its control performance by correcting easily a differential operation against the change of control operation cycle. CONSTITUTION: The digital PID controller performs a digital PI operation to the controlled variable given from a system to be controlled and also to the deviation of the controlled variable and its target value, performs a digital D operation to the deviation or the controlled variable based on the control operation cycle and the differential time, and synthesizes these operation outputs to apply them to the controlled system as a manipulation signal. A differential operation correction coefficient computing means 11 is added to the PID controller to calculate a differential operation correction coefficient against the change of a control operation cycle Δt based on the differential time TD0 set in a control operation cycle Δt0 that has been best adjusted, together with a velocity type aifferential computing means 12 which calculates a differential member against the change of the cycle Δt by a prescribed operational expression and based on the differential operation correction coefficient calculated by the means 11.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、PID(P:比例,
I:積分,D:微分)演算項の中のD演算項について制
御演算周期の変化に対応して修正するディジタルPID
制御装置に関する。
BACKGROUND OF THE INVENTION The present invention relates to PID (P: proportional,
Digital PID that corrects the D operation term in the I: integral, D: derivative) operation terms in response to changes in the control operation cycle.
Regarding the control device.

【0002】[0002]

【従来の技術】この種のPID制御方式は、プラント運
転の最適化やフレキシブル化の方向に移行しつつある現
在であっても、プラントのフィードバック制御を行うと
きには必要不可欠な制御方式であると言える。
2. Description of the Related Art This type of PID control system can be said to be an indispensable control system for performing feedback control of a plant even at the present time when the plant operation is being optimized or being made flexible. .

【0003】PID制御の基本式は、偏差に比例する出
力を出すP(比例)演算動作と、偏差の積分に比例する
出力を出すI(積分)演算動作と、偏差の微分に比例す
る出力を出すD(微分)演算動作との和で表すことがで
きる。
The basic equations of PID control are a P (proportional) operation which outputs an output proportional to the deviation, an I (integral) operation which outputs an output proportional to the integral of the deviation, and an output proportional to the derivative of the deviation. It can be expressed as the sum of the D (differential) calculation operation to be performed.

【0004】そこで、これらPID演算動作における演
算式を伝達関数の形で表せば、下式のようになる。 C(s) ={MV(s) /E(s) } =KP {1+1/(TI ・s)+(TD ・s)/(1+ηTD ・s)} ……… (1) 但し、C(s) :PIDの伝達関数、MV(s) :操作量、
E(s) :偏差、KP :比例ゲイン、TI :積分時間、T
D :微分時間、s:ラプラス演算子、1/η:微分ゲイ
ンである。この(1)式を制御演算周期△tごとに変化
するデータを用いて速度形ディジタル演算式で表すと、
(2)式および(3)式のようになる。
Therefore, when the arithmetic expressions in these PID arithmetic operations are expressed in the form of transfer functions, the following equations are obtained. C (s) = {MV (s) / E (s)} = K P {1 + 1 / (T I · s) + (T D · s) / (1 + ηT D · s)} ………… (1) , C (s): transfer function of PID, MV (s): manipulated variable,
E (s): deviation, K P : proportional gain, T I : integration time, T
D : differential time, s: Laplace operator, 1 / η: differential gain. When this equation (1) is expressed as a velocity type digital arithmetic expression using data that changes every control arithmetic cycle Δt,
Expressions (2) and (3) are obtained.

【0005】[0005]

【数1】 [Equation 1]

【0006】ここで、MVn :現時点の操作量、MV
n-1 :前回の制御演算周期時点の操作量、△MVn :前
回から現時点までの操作量の変化分、en :現時点の偏
差、en-1 :前回の制御演算周期時点の偏差、Dn :現
時点の微分出力、Dn-1 :前回の制御演算周期時点の微
分出力、△Dn :前回から現時点までの微分出力の変化
分である。そのうち、前記(3)式の微分演算項の中の
実効微分ゲインβは、 β=TD /(△t+ηTD ) ……… (4) で表せる。
Where MV n : current manipulated variable, MV
n-1: the operation amount of the previous control operation period time, △ MV n: the operation amount of the change of time until a current time from the last, e n: deviation of current, e n-1: previous control operation period time deviation, D n : the differential output at the present time, D n-1 : the differential output at the time of the previous control calculation cycle, ΔD n : the change in the differential output from the previous time to the present time. Among them, the (3) the effective differential gain beta in the differential operation section type, expressed by β = T D / (△ t + ηT D) ......... (4).

【0007】図4は前記(2)式および(3)式を用い
た従来のディジタルPID制御装置の構成を示す図であ
る。この制御装置は、目標値SVn と制御量PVn とを
偏差演算手段1に導き、ここで偏差en =SVn −PV
n を求めた後、速度形比例演算手段2、速度形積分演算
手段3および速度形微分演算手段4に送出する。この速
度形比例演算手段2は、 △Pn =en −en-1 なる演算を行い、また速度形積分演算手段3では、 △In =(△t/TI )・e なる演算を行い、また速度形微分演算手段4では、前記
((3)式に基づく演算を行って△D を求める。
FIG. 4 is a diagram showing a configuration of a conventional digital PID control device using the equations (2) and (3). The controller directs the target value SV n and controlled variable PV n to the deviation operation means 1, wherein the deviation e n = SV n -PV
After n is obtained, it is sent to the speed type proportional calculating means 2, the speed type integrating calculating means 3 and the speed type differential calculating means 4. The velocity type proportional calculation means 2, △ P n = e n -e n-1 becomes performs the operation, also in the velocity type integral calculation means 3, △ I n = (△ t / T I) · e n becomes operational Further, the velocity-type differential calculation means 4 calculates ΔD n by performing the calculation based on the equation (3).

【0008】そして、各演算手段2〜4により求めた演
算出力を加算手段5に導いて加算合成した後、比例ゲイ
ン手段6で比例ゲインKP を乗ずることにより、前回か
ら現時点までの操作量の変化分△MVn ,つまり △MVn =Kp (△Pn +△In +△Dn ) ……… (5) なる速度形信号を求める。
Then, after the operation outputs obtained by the respective operation means 2 to 4 are guided to the addition means 5 and added and synthesized, the proportional gain means 6 multiplies the proportional gain K P to obtain the operation amount from the previous time to the present time. The change amount ΔMV n , that is, ΔMV n = K p (ΔP n + ΔI n + ΔD n ) ... (5)

【0009】しかる後、このようにして得られた操作量
の変化分△MVn を速度形/位置形信号変換手段7に印
加し、前回時点での操作量MVn-1 に今回制御周期時点
で得られた操作量の変化分△MVn とを用いて、 MVn =MVn-1 +△MVn なる演算を行って現時点の位置形操作量MVn を求め、
この位置形操作量MVnを制御対象8に印加する。
Thereafter, the change amount ΔMV n of the manipulated variable thus obtained is applied to the speed type / position type signal converting means 7, and the manipulated variable MV n-1 at the previous time point is added to the current control cycle time point. MV n = MV n-1 + ΔMV n is calculated by using the change amount ΔMV n of the manipulated variable obtained in step 3 to obtain the current position type manipulated variable MV n ,
This position type manipulated variable MV n is applied to the controlled object 8.

【0010】そして、この制御対象8に対する制御結果
を制御量検出手段9にて制御量PVn として検出し、当
該制御量PVn が目標値SVn と等しくなるように、つ
まり偏差en =SVn −PVn が零となるように制御す
るものである。
The control result for the controlled object 8 is detected by the control amount detecting means 9 as the control amount PV n , and the control amount PV n becomes equal to the target value SV n , that is, the deviation e n = SV. n -PV n is one that is controlled to be zero.

【0011】ところで、PID制御演算方式のうち、ア
ナログ演算方式の場合には連続的であるのに対し、ディ
ジタル演算方式の場合には不連続データを用いて一定の
制御演算周期ごとにPID演算を行うことになる。しか
も、このPIDディジタル演算方式の中で最も不連続演
算の影響を受けるのは、急俊な変化を取り扱う微分演算
であると言える。つまり、アナログ演算方式の場合には
連続的変化の微分出力波形が得られるが、ディジタル演
算方式の場合には制御演算周期が大きくなればなる程、
各制御演算周期ごとに前回制御演算周期時点とは異なる
大きな変化の微分出力が得られる。
By the way, in the PID control operation method, the analog operation method is continuous, whereas in the digital operation method, discontinuous data is used to perform the PID operation at every constant control operation cycle. Will be done. Moreover, it can be said that the differential operation that handles abrupt changes is most affected by the discontinuous operation in this PID digital operation method. In other words, in the case of the analog operation method, the differential output waveform of continuous change is obtained, but in the case of the digital operation method, the larger the control operation cycle,
For each control calculation cycle, a large differential output different from that at the previous control calculation cycle is obtained.

【0012】そこで、微分演算は、制御演算周期△tの
大小により、どの様な影響を受けるかについて考えてみ
る。今、アナログ演算方式の場合、微分の単位ステップ
入力時の微分制御演算出力の大きさ,つまり微分ゲイン
A は、前記(1)式の微分演算項から、
Therefore, let us consider how the differential calculation is affected by the magnitude of the control calculation cycle Δt. Now, in the case of the analog calculation method, the magnitude of the differential control calculation output when the differential unit step is input, that is, the differential gain K A

【0013】[0013]

【数2】 なる演算式で求めることができる。[Equation 2] Can be obtained by the following formula.

【0014】一方、ディジタル演算方式の場合、微分ゲ
インKD は、前記(3)式のβに相当するので、 KD =TD /(△t+ηTD ) ……… (7) となる。
On the other hand, in the case of the digital operation system, since the differential gain K D corresponds to β in the equation (3), K D = T D / (Δt + ηT D ) (7)

【0015】従って、この(7)式のディジタル演算方
式の微分ゲインKD について△t→0とすると、前記
(6)式と同じ値となる。しかし、ディジタル演算方式
は、一般に△t≠0となるので、制御演算周期△tの影
響を受けることになる。その結果、△t《ηTD の関係
が成立するとき、ほぼアナログ演算方式を適用できる
が、現在使用されているディジタル調節計では、制御演
算周期△tの大きさを無視できない場合も多々ある。
Therefore, if the differential gain K D of the digital operation system of the equation (7) is Δt → 0, the value is the same as that of the equation (6). However, since the digital operation method generally has Δt ≠ 0, it is affected by the control operation cycle Δt. As a result, when the relationship of Δt << ηT D is established, almost the analog calculation method can be applied, but in the digital controller currently used, there are many cases in which the size of the control calculation cycle Δt cannot be ignored.

【0016】[0016]

【発明が解決しようとする課題】従って、以上のように
従来のディジタルPID制御装置においては、制御演算
周期△tの大きさによって微分動作が大きく影響を受
け、それに伴って制御応答が大きく異なってくる。その
結果、従来装置では、次のような問題点が指摘されてい
る。 (1) アナログ式調節計や制御演算周期△tの異なる
ディジタル制御装置に変更しようとしたとき、PIDパ
ラメータをそのまま適用できず、再度微分時間をチュー
ニングする必要があること。 (2) 微分時間については、PIDパラメータ調整時
にジーグラ・ニコルス法やCHR法(実戦ディジタル制
御技術,発行所 工業技術社,広井和男著,1992年
10月1日発行)などの一般調整公式が適用できないこ
とから、個々に試行錯誤を繰り返しながらPIDパラメ
ータの調整作業を行っており、非常に時間がかかるだけ
でなく、その調整作業の間プラントをムダに運転し、経
済的な損失が大きい。 (3) シミュレーションなどもディジタルPID制御
装置の制御演算周期△tを一致させた場合の結果でない
と利用できない。
Therefore, as described above, in the conventional digital PID control device, the differential operation is greatly affected by the size of the control calculation cycle Δt, and the control response is greatly different accordingly. come. As a result, the following problems have been pointed out in the conventional device. (1) When trying to change to an analog type controller or a digital controller having a different control calculation cycle Δt, the PID parameter cannot be applied as it is, and it is necessary to tune the derivative time again. (2) For the differential time, general adjustment formulas such as the Ziegler-Nichols method and CHR method (actual digital control technology, published by Kogyo Kogyo Co., Ltd., Kazuo Hiroi, published October 1, 1992) are applied when adjusting PID parameters. Therefore, the PID parameter adjustment work is performed by repeating trial and error individually, which not only takes a very long time, but also wastes the plant during the adjustment work, resulting in a large economical loss. (3) A simulation or the like cannot be used unless it is the result when the control operation periods Δt of the digital PID control devices are matched.

【0017】このように従来のディジタルPID制御装
置は、種々の問題点をもっていることから、微分動作の
機能を備えていながら、実際には微分演算を行わずに使
用しているのが現状である。
As described above, since the conventional digital PID control device has various problems, it is the present situation that it is used without actually performing the differential operation while having the function of the differential operation. .

【0018】本発明は上記実情に鑑みてなされたもの
で、制御演算周期の変化に応じて微分演算動作を容易に
修正可能とするディジタルPID制御装置を提供するこ
とを目的とする。また、本発明の他の発明は、制御演算
周期の変化があっても制御性の改善を図るディジタルP
ID制御装置を提供することにある。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a digital PID control device capable of easily modifying a differential operation according to a change in a control operation cycle. Another aspect of the present invention is a digital P that improves controllability even if the control calculation cycle changes.
It is to provide an ID control device.

【0019】[0019]

【課題を解決するための手段】上記課題を解決するため
に、請求項に対応する発明は、制御対象からの制御量と
当該制御量の目標値との偏差に対してディジタルPI
(P:比例,I:積分)演算を実行し、また前記偏差ま
たは前記制御量に対して制御演算周期および微分時間を
用いてディジタルD(D:微分)演算を実行し、これら
演算出力を合成して操作信号として前記制御対象に印加
するディジタルPID制御装置において、制御演算周期
△tの変化に対し、予め制御演算周期△t0 で最適調整
された微分時間TD0を用いて微分演算修正係数ρを求め
る修正係数演算手段と、この演算手段によって求めた微
分演算修正係数ρを用いて Dn =Dn-1 +{TD0/(△t+ηTD0)}(en −en-1 ) −ρ{△t/(△t+ηTD0)}Dn-1 …… (8) なる演算式により前記制御演算周期△tの変化に応じた
微分演算出力Dn を求める速度形微分演算手段とを設け
たディジタルPID制御装置である。
In order to solve the above-mentioned problems, the invention corresponding to the claims claims a digital PI for the deviation between the controlled variable from the controlled object and the target value of the controlled variable.
(P: Proportional, I: Integral) operation is performed, and a digital D (D: Derivative) operation is performed on the deviation or the control amount using the control operation cycle and the derivative time, and these operation outputs are combined. In the digital PID control device which is applied as an operation signal to the control target, the differential operation correction coefficient is used for the change of the control operation cycle Δt by using the differential time T D0 optimally adjusted in advance in the control operation cycle Δt 0. and correction factor calculation means for obtaining the [rho, by using this differential operation correction coefficient [rho determined by calculating means D n = D n-1 + {T D0 / (△ t + ηT D0)} (e n -e n-1) −ρ {Δt / (Δt + ηT D0 )} D n-1 (8) The speed-type differential operation means for obtaining the differential operation output D n according to the change in the control operation cycle Δt by the operation expression The digital PID control device is provided.

【0020】但し、上式においてDn :現時点の微分演
算出力、Dn-1 :前回の制御演算周期時点の微分演算出
力、en :現時点の偏差、en-1 :前回の制御演算周期
時点の偏差、1/η:微分ゲイン、ρ:微分演算修正係
数(=ρ(△t−△t0 ):△t−△t0 の関数)であ
る。
However, in the above equation, D n : the differential operation output at the present time, D n-1 : the differential operation output at the time of the previous control operation cycle, e n : the deviation at the current time, e n-1 : the previous control operation cycle Time deviation, 1 / η: differential gain, ρ: differential calculation correction coefficient (= ρ (Δt−Δt 0 ): Δt−Δt 0 function).

【0021】なお、制御演算周期△tが変化したとき
に、前記(8)式において用いるべき微分演算修正係数
ρとしては、 ρ=1+A{(△t−△t0 )/ηTD0} (但し、A:係数)… (9) または ρ=1+B{(△t−△t0 )/ηTD0} +C{(△t−△t0 )/ηTD02 (但し、B,C:係数) … (10) なる演算式により求めるものである。
When the control calculation period Δt changes, the differential calculation correction coefficient ρ to be used in the equation (8) is ρ = 1 + A {(Δt-Δt 0 ) / ηT D0 } (however, , A: coefficient) (9) or ρ = 1 + B {(Δt-Δt 0 ) / ηT D0 } + C {(Δt-Δt 0 ) / ηT D0 } 2 (B, C: coefficient) (10) It is obtained by the following arithmetic expression.

【0022】[0022]

【作用】従って、請求項に対応する発明は、以上のよう
な手段を講じたことにより、装置設置時または定期点検
時に制御演算周期△t0 で最適調整を行って微分時間T
D0を決定するが、その後、装置変更その他のリプレース
によって制御演算周期が△t0 から△tに変化したと
き、微分時間TD0および予め定められた係数Aまたは
B,Cを用いて微分演算修正係数ρを求めた後、この修
正係数ρを用いて前記(8)式に基づいて微分演算出力
を得るようにしたので、制御演算周期の変化に際して再
チューニングする必要がなく、また当該変化後の制御演
算周期に適した微分項の演算を行うことができ、よって
制御性を向上でき、ディジタルPID制御装置の微分演
算をを効率的に活用することができる。
Therefore, according to the invention corresponding to the claims, by taking the above-mentioned means, the differential time T is obtained by performing the optimum adjustment at the control calculation cycle Δt 0 at the time of installing the apparatus or at the time of regular inspection.
D0 is determined, but thereafter, when the control operation cycle changes from Δt 0 to Δt due to a device change or other replacement, the differential operation correction is performed using the differential time T D0 and the predetermined coefficients A or B, C. After obtaining the coefficient ρ, the modified coefficient ρ is used to obtain the differential operation output based on the equation (8). Therefore, it is not necessary to retune when the control operation cycle changes, and after the change. A differential term suitable for the control calculation cycle can be calculated, so that the controllability can be improved and the differential calculation of the digital PID control device can be efficiently utilized.

【0023】[0023]

【実施例】以下、本発明装置の実施例について図面を参
照して説明する。図1は本発明に係わるディジタルPI
D制御装置の一実施例を示す構成図である。なお、同図
において図4と同一部分には同一符号を付し、特に本装
置で改良された構成部分について説明する。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a digital PI according to the present invention.
It is a block diagram which shows one Example of a D control apparatus. In the figure, the same parts as those in FIG. 4 are designated by the same reference numerals, and particularly the constituent parts improved by this device will be described.

【0024】すなわち、本発明に係わる制御装置は、新
たに修正係数演算手段11と改良された速度形微分演算
手段12を設けたことにある。この修正係数演算手段1
1は、制御演算周期が△t0 から△tに変化したとき、
予め定めた係数AまたはB,C、装置設置時,定期点検
時等のときに制御演算周期△t0 で最適調整された微分
時間TD0、制御演算周期△t0 ,△t等を用いて下記式
により、微分演算修正係数ρを求めて速度形微分演算手
段12に送出する。
That is, the control device according to the present invention is provided with a new correction coefficient calculating means 11 and an improved speed type differential calculating means 12. This correction coefficient calculation means 1
1 indicates that when the control calculation cycle changes from Δt 0 to Δt,
Using the predetermined coefficient A or B, C, the differential operation time T D0 , the control operation cycle Δt 0 , Δt, etc. optimally adjusted at the control operation cycle Δt 0 at the time of equipment installation, periodic inspection, etc. The differential calculation correction coefficient ρ is calculated by the following equation and is sent to the velocity type differential calculating means 12.

【0025】 ρ=1+A{(△t−△t0 )/ηTD0} ……… (11) ρ=1+B{(△t−△t0 )/ηTD0} +C{(△t−△t0 )/ηTD02 ……… (12) 但し、A,B,C:係数である。Ρ = 1 + A {(Δt−Δt 0 ) / ηT D0 } ... (11) ρ = 1 + B {(Δt−Δt 0 ) / ηT D0 } + C {(Δt−Δt 0 ) / ΗT D0 } 2 (12) where A, B, C are coefficients.

【0026】前記速度形微分演算手段12は、微分演算
修正係数演算手段11から微分演算修正係数ρを受ける
と、変化後の制御演算周期△t、微分時間TD0を用い
て、 Dn =Dn-1 +{TD0/(△t+ηTD0)}(en −en-1 ) −ρ{△t/(△t+ηTD0)}Dn-1 ……… (13) なる演算式により、微分項である現時点の微分演算出力
n を求める。
When the velocity-type differential operation means 12 receives the differential operation correction coefficient ρ from the differential operation correction coefficient operation means 11, D n = D using the changed control operation cycle Δt and the differential time T D0. the n-1 + {T D0 / (△ t + ηT D0)} (e n -e n-1) -ρ {△ t / (△ t + ηT D0)} D n-1 ......... (13) becomes operational expression, The current differential operation output D n , which is the differential term, is obtained.

【0027】ここで、Dn-1 :前回の制御演算周期時点
の微分演算出力、en :現時点の偏差、en-1 :前回の
制御演算周期時点の偏差、1/η:微分ゲイン、ρ:微
分演算修正係数(=ρ(△t−△t0 ):△t−△t0
の関数)である。
Here, D n-1 : differential operation output at the time of the previous control operation cycle, e n : current deviation, e n-1 : deviation at the time of the previous control operation cycle, 1 / η: differential gain, ρ: differential calculation correction coefficient (= ρ (Δt−Δt 0 ): Δt−Δt 0
Function).

【0028】そこで、以上のような微分演算出力Dn
求めるための演算式としては、制御演算周期△tによっ
て微分ゲインが変わることに着目し、前記(3)式とシ
ミュレーション結果とから、微分演算修正係数ρを定め
るとともに前記(13)式の演算式を得るものである。
Therefore, as an arithmetic expression for obtaining the differential operation output D n as described above, paying attention to the fact that the differential gain changes depending on the control operation cycle Δt, the differential equation is obtained from the equation (3) and the simulation result. The calculation correction coefficient ρ is determined, and the calculation formula of the formula (13) is obtained.

【0029】なお、係数Aはシミュレーションによって
線形の1次近似となるようにしたときのシミュレーショ
ン結果の最良条件で決まる値であり、また係数B,Cは
同じくシミュレーションによって非線形の2次近似とな
るようにしたときのシミュレーション結果の最良条件で
決まる値である。
It should be noted that the coefficient A is a value determined by the best condition of the simulation result when the linear first approximation is performed by the simulation, and the coefficients B and C are also the nonlinear second order approximation by the simulation. It is a value determined by the best condition of the simulation result when set to.

【0030】なお、微分演算出力Dn の演算式として、
下記する(14)式および(15)式も考えられるが、
シミュレーション結果から制御演算周期△tの変化に対
する補正の演算式として効果が少ないことが確認され
た。
As an arithmetic expression of the differential operation output D n ,
The following equations (14) and (15) are also conceivable,
From the simulation result, it was confirmed that the effect of the correction calculation formula for the change of the control calculation period Δt was small.

【0031】 Dn =Dn-1 +ρ1 [{TD0/(△t+ηTD0)}(en −en-1 ) −{△t/(△t+ηTD0)}Dn-1 ] ……… (14) Dn =Dn-1 +ρ2 {TD0/(△t+ηTD0)}(en −en-1 ) −{△t/(△t+ηTD0)}Dn-1 ……… (15) 因みに、制御演算周期△tが変化したときのシミュレー
ション結果について図2および図3を参照して説明す
る。
[0031] D n = D n-1 + ρ 1 [{T D0 / (△ t + ηT D0)} (e n -e n-1) - {△ t / (△ t + ηT D0)} D n-1] ...... ... (14) D n = D n-1 + ρ 2 {T D0 / (△ t + ηT D0)} (e n -e n-1) - {△ t / (△ t + ηT D0)} D n-1 ......... (15) Incidentally, the simulation result when the control calculation period Δt changes will be described with reference to FIGS. 2 and 3.

【0032】図2は制御応答性を示す図であって、応答
の条件は、制御対象の伝達関数G(s) =e-2s /(1+
5s)に対し、△t0 =0.01sec、η=0.1の
とき、PIDパラメータの最適値として比例ゲインKp
=3.04、TI =3.24sec、TD =0.767
9secが得られる。そして、種々の制御演算周期△t
に対する制御性を考慮しながらシミュレーションにより
微分演算修正係数ρを求めると、次のような演算式が得
られる。
FIG. 2 is a diagram showing the control response, and the condition of the response is that the transfer function G (s) of the controlled object = e −2s / (1+
5 s), when Δt 0 = 0.01 sec and η = 0.1, the proportional gain K p is set as the optimum value of the PID parameter.
= 3.04, T I = 3.24 sec, T D = 0.767
9 seconds can be obtained. Then, various control calculation cycles Δt
When the differential operation correction coefficient ρ is obtained by a simulation while considering the controllability with respect to, the following operational expression is obtained.

【0033】 ρ=1+0.02617{(△t−△t0 )/ηTD0} …… (16) 従って、このシミュレーションによる線形の1次近似に
よって係数A=0.02617が最良条件として得られ
る。
Ρ = 1 + 0.02617 {(Δt−Δt 0 ) / ηT D0 } (16) Therefore, the coefficient A = 0.02617 is obtained as the best condition by the linear first-order approximation by this simulation.

【0034】そして、制御演算周期△tの変化に対し、
従来技術によるρ=1固定の場合の制御性評価関数IT
AE(=t・edt)と前記(16)式によって求めた
微分演算修正係数ρを用いたときの制御性評価関数IT
AEとを比較すると、図3に示すような結果が得られ
る。つまり、同図から明らかなように、△t=0.4s
ecのとき、本装置は従来装置に較べて約10%程度改
善することができる。
Then, with respect to the change of the control calculation cycle Δt,
Controllability evaluation function IT when ρ = 1 is fixed according to the conventional technique
Controllability evaluation function IT using AE (= t · edt) and the differential operation correction coefficient ρ obtained by the equation (16)
When compared with AE, the result shown in FIG. 3 is obtained. That is, as is clear from the figure, Δt = 0.4s
When ec, the present device can be improved by about 10% as compared with the conventional device.

【0035】なお、従来装置の場合には設定値の変化や
外乱の変化に対して応答の乱れが大きく、整定時間もか
かるが、本発明装置の場合には図2に示すような制御応
答を示す。つまり、本発明装置は、設定値(目標値)S
Vの変化および外乱(D)の変化に対し、乱れが少な
く、制御応答性を向上できる。また、本発明装置の方が
PVの行き過ぎ量および整定時間も良好である。
Incidentally, in the case of the conventional apparatus, the disturbance of the response is large with respect to the change of the set value and the change of the disturbance, and it takes a settling time, but in the case of the apparatus of the present invention, the control response as shown in FIG. Show. In other words, the device of the present invention uses the set value (target value) S
With respect to changes in V and changes in disturbance (D), there is little disturbance, and control response can be improved. Further, the apparatus of the present invention has better PV overshoot and settling time.

【0036】従って、以上のような実施例の構成によれ
ば、制御演算周期△tの変化に対し、既に制御演算周期
△t0 で最適調整された微分時間TD0を用いて微分演算
修正係数ρを求めた後、(3)式である過去の速度形デ
ィジタル演算式やシミュレーション結果を考慮して補正
の演算式である前記(13)式に基づいて微分演算出力
を得るので、制御演算周期の変化に対して制御性の悪化
を最小限に防止できる。しかも、制御演算周期の異なる
装置で求めた微分時間を設定しても、再チューニングの
必要性がなくなる。ディジタル演算の微分項は、本質的
に制御演算周期△tの影響を受けるが、本発明装置によ
れば制御演算周期△tに適した微分項演算を行うことが
でき、従来装置の問題点を解消し、ディジタルPID制
御装置の微分演算を効率的に活用できる。
Therefore, according to the configuration of the above embodiment, the differential operation correction coefficient is adjusted for the change in the control operation cycle Δt by using the differential time T D0 which has been optimally adjusted in the control operation cycle Δt 0. After ρ is obtained, the differential operation output is obtained based on the equation (13) which is the operation equation for correction in consideration of the past velocity type digital operation equation which is the equation (3) and the simulation result. It is possible to prevent deterioration of controllability to a minimum with respect to the change. Moreover, the need for retuning is eliminated even if the differential times obtained by devices with different control operation cycles are set. The differential term of the digital operation is essentially affected by the control operation cycle Δt. However, according to the apparatus of the present invention, the differential term operation suitable for the control operation cycle Δt can be performed, and the problem of the conventional apparatus can be solved. Therefore, the differential operation of the digital PID control device can be efficiently utilized.

【0037】特に、ディジタルPID制御装置は、プラ
ント制御に多用されているので、その工業的意義が非常
に大きなものがある。なお、上記実施例では、速度形微
分演算手段12が偏差に基づいて微分演算動作を行うよ
うにしたが、例えば偏差に代えて制御量PVn を直接取
り込んで微分動作演算を行う,いわゆる測定値微分先行
形のものでもよい。その他、本発明はその要旨を逸脱し
ない範囲で種々変形して実施できる。
In particular, since the digital PID control device is frequently used for plant control, it has a very great industrial significance. In the above-mentioned embodiment, the velocity differential operation means 12 performs the differential operation based on the deviation. However, for example, instead of the deviation, the controlled variable PV n is directly taken in to perform the differential operation, that is, a so-called measured value. It may be of the differential precedence type. In addition, the present invention can be modified in various ways without departing from the scope of the invention.

【0038】[0038]

【発明の効果】以上説明したように本発明によれば、制
御演算周期の変化に対して、微分演算を容易に修正で
き、よって制御性を大幅に改善できる。
As described above, according to the present invention, the differential operation can be easily corrected with respect to the change in the control operation cycle, and the controllability can be greatly improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係わるディジタルPID制御装置の一
実施例を示す構成図。
FIG. 1 is a configuration diagram showing an embodiment of a digital PID control device according to the present invention.

【図2】本発明装置の制御応答性を示す図。FIG. 2 is a diagram showing the control response of the device of the present invention.

【図3】従来装置と本発明装置との制御性評価関数の比
較図。
FIG. 3 is a comparison diagram of controllability evaluation functions of the conventional device and the device of the present invention.

【図4】従来装置の構成を示す図。FIG. 4 is a diagram showing a configuration of a conventional device.

【符号の説明】[Explanation of symbols]

2…速度形比例演算手段、3…速度形積分演算手段、5
…加算手段、6…比例ゲイン手段、7…速度形/位置形
信号変換手段、8…制御対象、9…制御量検出手段、1
1…微分演算修正係数演算手段、12…速度形微分演算
手段。
2 ... Velocity type proportional computing means, 3 ... Velocity type integral computing means, 5
... adding means, 6 ... proportional gain means, 7 ... speed type / position type signal converting means, 8 ... controlled object, 9 ... control amount detecting means, 1
1 ... Differential calculation correction coefficient calculation means, 12 ... Velocity type differential calculation means.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 制御対象からの制御量と当該制御量の目
標値との偏差に対してディジタルPI(P:比例,I:
積分)演算を実行し、また前記偏差または前記制御量に
対して制御演算周期および微分時間を用いてディジタル
D(D:微分)演算を実行し、これら演算出力を合成し
て操作信号として前記制御対象に印加するディジタルP
ID制御装置において、 制御演算周期△tの変化に対し、予め制御演算周期△t
0 で最適調整された微分時間TD0を用いて微分演算修正
係数ρを求める修正係数演算手段と、 この演算手段によって求めた微分演算修正係数ρを用い
て下式により前記制御演算周期△tの変化に応じた微分
演算出力Dn を求める速度形微分演算手段と、 を備えたことを特徴とするディジタルPID制御装置。 Dn =Dn-1 +{TD0/(△t+ηTD0)}(en −e
n-1 )−ρ{△t/(△t+ηTD0)}Dn-1 但し、Dn :現時点の微分演算出力、Dn-1 :前回の制
御演算周期時点の微分演算出力、en :現時点の偏差、
n-1 :前回の制御演算周期時点の偏差、1/η:微分
ゲイン、ρ:微分演算修正係数(=ρ(△t−△t
0 ):△t−△t0の関数)
1. A digital PI (P: proportional, I: relative to a deviation between a controlled variable from a controlled object and a target value of the controlled variable).
(Integration) calculation is performed, and a digital D (D: differentiation) calculation is performed on the deviation or the control amount by using a control calculation cycle and a differentiation time, and these calculation outputs are combined to perform the control as an operation signal. Digital P applied to target
In the ID control device, when the control calculation cycle Δt changes, the control calculation cycle Δt is changed in advance.
A correction coefficient calculation means for obtaining a differential calculation correction coefficient ρ using the differential time T D0 optimally adjusted at 0 , and a differential calculation correction coefficient ρ obtained by this calculation means are used to calculate the control calculation cycle Δt A digital PID control device comprising: a speed-type differential operation means for obtaining a differential operation output D n according to a change. D n = D n-1 + {T D0 / (△ t + ηT D0)} (e n -e
n-1 ) -ρ {Δt / (Δt + ηT D0 )} D n-1 where D n is the differential operation output at the present time, D n-1 is the differential operation output at the time of the previous control operation cycle, e n : Current deviation,
e n-1 : deviation at the time of the previous control operation cycle, 1 / η: differential gain, ρ: differential operation correction coefficient (= ρ (Δt−Δt
0 ): function of Δt-Δt 0 )
【請求項2】 制御演算周期△tが変化したとき、微分
演算修正係数ρは、 ρ=1+A{(△t−△t0 )/ηTD0} (但し、
A:係数) なる演算によって求めることを特徴とする請求項1記載
のディジタルPID制御装置。
2. When the control calculation cycle Δt changes, the differential calculation correction coefficient ρ is ρ = 1 + A {(Δt−Δt 0 ) / ηT D0 } (however,
The digital PID control device according to claim 1, wherein the digital PID control device is obtained by a calculation of A: coefficient.
【請求項3】 制御演算周期△tが変化したとき、微分
演算修正係数ρは、 ρ=1+B{(△t−△t0 )/ηTD0}+C{(△t
−△t0 )/ηTD02 (但し、B,C:係数) なる演算によって求めることを特徴とする請求項1記載
のディジタルPID制御装置。
3. When the control calculation cycle Δt changes, the differential calculation correction coefficient ρ is expressed as ρ = 1 + B {(Δt−Δt 0 ) / ηT D0 } + C {(Δt
The digital PID control device according to claim 1, wherein the calculation is performed by the following formula: -Δt 0 ) / ηT D0 } 2 (B, C: coefficient).
JP21478094A 1994-09-08 1994-09-08 Digital pid controller Pending JPH0876804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21478094A JPH0876804A (en) 1994-09-08 1994-09-08 Digital pid controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21478094A JPH0876804A (en) 1994-09-08 1994-09-08 Digital pid controller

Publications (1)

Publication Number Publication Date
JPH0876804A true JPH0876804A (en) 1996-03-22

Family

ID=16661418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21478094A Pending JPH0876804A (en) 1994-09-08 1994-09-08 Digital pid controller

Country Status (1)

Country Link
JP (1) JPH0876804A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0750236A2 (en) * 1995-06-20 1996-12-27 Kabushiki Kaisha Toshiba Digital pid control apparatus
CN112532054A (en) * 2020-11-12 2021-03-19 苏州浪潮智能科技有限公司 System, method and medium for automatically adjusting voltage regulator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0750236A2 (en) * 1995-06-20 1996-12-27 Kabushiki Kaisha Toshiba Digital pid control apparatus
EP0750236A3 (en) * 1995-06-20 1997-09-17 Toshiba Kk Digital pid control apparatus
US5745362A (en) * 1995-06-20 1998-04-28 Kabushiki Kaisha Toshiba Digital PID control apparatus
CN112532054A (en) * 2020-11-12 2021-03-19 苏州浪潮智能科技有限公司 System, method and medium for automatically adjusting voltage regulator

Similar Documents

Publication Publication Date Title
EP0710901B1 (en) Multivariable nonlinear process controller
JP3185857B2 (en) Motor control device
KR0135586B1 (en) Gain adaptive control device
JP3864781B2 (en) air conditioner
JP2005293564A (en) Position control device having sliding mode controller
JPH06119001A (en) Controller
JP2010033172A (en) Digital servo control unit using feedforward signal
JPH03289385A (en) Regulating method for gain of motor control
JP2004030500A (en) Motor controller
JPH0876804A (en) Digital pid controller
JPH0883103A (en) Automatic adjusting device for controller parameter
JP3224941B2 (en) Digital PID controller
JP4636271B2 (en) Servo control device and adjustment method thereof
JPH0535306A (en) Dead time compensation control device
US6920362B2 (en) Control apparatus
JPH09146610A (en) Multivariable nonlinear process controller
JP2000020104A (en) Method and device for speed control gain adjustment
JPH04326402A (en) Fuzzy controller
JPH0816205A (en) Servo control system and its tuning method
JPH10143205A (en) Sac controller
WO2005062138A1 (en) Control calculation device
JP3277484B2 (en) PID controller
US20020147510A1 (en) Process for rapidly controlling a process variable without overshoot using a time domain polynomial feedback controller.
JP2003274684A (en) Servo controlling apparatus
JPH06274201A (en) Control method and control device