WO2017045319A1 - 一种大型微晶化搪玻璃管道及其制造方法 - Google Patents

一种大型微晶化搪玻璃管道及其制造方法 Download PDF

Info

Publication number
WO2017045319A1
WO2017045319A1 PCT/CN2016/070511 CN2016070511W WO2017045319A1 WO 2017045319 A1 WO2017045319 A1 WO 2017045319A1 CN 2016070511 W CN2016070511 W CN 2016070511W WO 2017045319 A1 WO2017045319 A1 WO 2017045319A1
Authority
WO
WIPO (PCT)
Prior art keywords
microcrystalline
pipe
electric furnace
heating electric
glass
Prior art date
Application number
PCT/CN2016/070511
Other languages
English (en)
French (fr)
Inventor
朱文华
Original Assignee
朱文华
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 朱文华 filed Critical 朱文华
Priority to US15/108,038 priority Critical patent/US20180180216A1/en
Publication of WO2017045319A1 publication Critical patent/WO2017045319A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P23/00Machines or arrangements of machines for performing specified combinations of different metal-working operations not covered by a single other subclass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L58/00Protection of pipes or pipe fittings against corrosion or incrustation
    • F16L58/02Protection of pipes or pipe fittings against corrosion or incrustation by means of internal or external coatings
    • F16L58/04Coatings characterised by the materials used
    • F16L58/14Coatings characterised by the materials used by ceramic or vitreous materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23DENAMELLING OF, OR APPLYING A VITREOUS LAYER TO, METALS
    • C23D11/00Continuous processes; Apparatus therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L23/00Flanged joints
    • F16L23/02Flanged joints the flanges being connected by members tensioned axially
    • F16L23/032Flanged joints the flanges being connected by members tensioned axially characterised by the shape or composition of the flanges
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L58/00Protection of pipes or pipe fittings against corrosion or incrustation
    • F16L58/02Protection of pipes or pipe fittings against corrosion or incrustation by means of internal or external coatings
    • F16L58/04Coatings characterised by the materials used
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L9/00Rigid pipes
    • F16L9/14Compound tubes, i.e. made of materials not wholly covered by any one of the preceding groups
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L9/00Rigid pipes
    • F16L9/14Compound tubes, i.e. made of materials not wholly covered by any one of the preceding groups
    • F16L9/153Compound tubes, i.e. made of materials not wholly covered by any one of the preceding groups comprising only layers of metal and concrete with or without reinforcement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/06Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity heated without contact between combustion gases and charge; electrically heated
    • F27B9/062Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity heated without contact between combustion gases and charge; electrically heated electrically heated
    • F27B9/063Resistor heating, e.g. with resistors also emitting IR rays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/28Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity for treating continuous lengths of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D11/00Arrangement of elements for electric heating in or on furnaces
    • F27D11/02Ohmic resistance heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/30Details, accessories, or equipment peculiar to furnaces of these types
    • F27B9/36Arrangements of heating devices
    • F27B2009/3607Heaters located above the track of the charge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27MINDEXING SCHEME RELATING TO ASPECTS OF THE CHARGES OR FURNACES, KILNS, OVENS OR RETORTS
    • F27M2001/00Composition, conformation or state of the charge
    • F27M2001/07Glass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27MINDEXING SCHEME RELATING TO ASPECTS OF THE CHARGES OR FURNACES, KILNS, OVENS OR RETORTS
    • F27M2003/00Type of treatment of the charge
    • F27M2003/04Sintering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/143Reduction of greenhouse gas [GHG] emissions of methane [CH4]

Definitions

  • the invention relates to a medium conveying pipeline such as petroleum, natural gas, chemical industry and coal particle, and a manufacturing method thereof, which belong to the integral pipeline metal layer and the bismuth glass glaze layer, and have strong corrosion resistance, strong anti-wear property, smooth surface and overall pipeline.
  • a medium conveying pipeline such as petroleum, natural gas, chemical industry and coal particle
  • a manufacturing method thereof which belong to the integral pipeline metal layer and the bismuth glass glaze layer, and have strong corrosion resistance, strong anti-wear property, smooth surface and overall pipeline.
  • Long-line special pipelines for large-scale microcrystalline yttrium glass oil and gas transportation which are not deformed and have strong seismic and mechanical properties, ensuring long-term non-corrosion and smooth circulation of pipelines.
  • the oil and gas pipeline is referred to as the oil and gas pipeline. It is an important part of China's national public security. It has an extremely important strategic position in the national economy and is called the national major lifeline. According to reports, China's existing oil and gas pipelines about 10 5 km, gathering and transportation pipeline is about 3 ⁇ 10 5 km, in recent years the country will be at the peak of construction of the pipeline, to the "five-second" end of our long-distance gas The total length of the pipe reaches 1.5 ⁇ 10 5 km.
  • Corrosion is one of the key factors affecting the reliability and service life of oil and gas pipelines.
  • the construction of oil, natural gas gathering and long-distance pipelines has developed rapidly, the pH value is large, the composition of the transport medium is complex, the corrosion is strong, and the wear loss is large, which causes the pipeline corrosion problem to become increasingly prominent.
  • the pipelines made by the current corrosion inhibitor technology, the inner coating technology and the composite pipe technology are actually attached to the inner wall surface of the steel pipe.
  • In the long-term transportation of oil and gas pipelines due to the fouling of oil and gas medium on the surface of the pipe wall, it needs to be washed and cleaned regularly, with large waste of oil and gas, low transportation efficiency, poor corrosion resistance, wear resistance, low mechanical strength, environmental stress corrosion cracking and pipelines.
  • Safety protection such as overall structural deformation is far from meeting the transportation of long-distance pipelines for oil and gas media.
  • the vertical heating electric furnace can be free from the large diameter and special length of the pipe.
  • the straightness of the pipe is guaranteed after firing, but the enamel glaze layer on the inner wall of the pipe is in a flowing state at high temperature (850-900 °C), and the lower end is thin. Thick, glaze uniformity is poor.
  • the pipeline is difficult to enter the furnace, the furnace is difficult to fire, because the pipeline supports the burning frame in the heating furnace is a fire-blocking material, the overall enamel glass glaze layer is unevenly heated, resulting in poor quality of the enamel glass glaze layer after firing;
  • the pipeline has several times in the high-temperature heating for a long time, causing the deformation of the pipeline and the flange faces at both ends to be large, directly related to the safety and economic benefits of the installation of the general project, and does not conform to the current National standard GB25025-2010 (equipment diameter ⁇ 1000mm, maximum and minimum diameter difference ⁇ 6mm, flatness tolerance ⁇ 2mm); horizontal heating electric furnace diameter must be enlarged, electric energy consumption increased; electric furnace is easy to damage and so on.
  • the length of the pipeline is 5 meters, and the installation joint is 400,000. If the length of the pipeline is 25m, the installation joint can be reduced to 80,000.
  • the effective area of the glass-lined glass is 6 million m 2 .
  • the effective area of the enamel glass enamel layer is ⁇ 89m 2 and the number of pinhole repairs is 7.
  • the number of pinholes in the entire engineering pipeline is as high as 460,000. It can be affirmed that the existence of pinhole defects in each place is directly related to the safe operation and economic benefits of a total investment of up to several billion RMB.
  • the innovation of heating electric furnace, the reform of manufacturing technology and process must meet the requirements of pipeline engineering line and the longest length of steel pipe products (diameter larger than 1m, can be welded by two steel pipes to 25m), and manufacture different specifications and overall quality.
  • the object of the present invention is to develop a large-scale microcrystalline bismuth glass pipe and a method of manufacturing the same.
  • the large-scale microcrystalline bismuth glass pipe forms a strong mesh-like adhesion layer and a microcrystalline enamel glass glaze between the interface of the metal and the bismuth glass glaze. It can be used according to the specific needs of different oil and gas media, or acid-resistant. Or alkali resistance, rapid temperature difference resistance, or enhanced wear resistance, or prevention of sudden environmental accidents of soil environmental stress corrosion and deformation of the overall structure of the pipeline, application of adjustment of microcrystalline state and amorphous enamel glass glaze formula ratio, combined Advanced controlled simmering "core technology" firing process and micro-crystallization of bismuth glass, and can provide corresponding adjustments for each oil and gas pipeline engineering line, especially the application of different structural parts of the same pipeline.
  • the highest technical quality indicators for the physical and chemical performance requirements in order to enhance and enhance the long-term non-corrosion, smooth circulation and safe operation of the entire pipeline.
  • Large-scale microcrystalline glass-lined pipes can be welded according to the requirements of current oil and gas pipeline laying projects and the maximum length of steel pipe manufacturing, or two steel pipes (1.0-1.6 m in diameter) can be welded to reduce the length of the long-distance pipeline. The connection point between the installations.
  • a first aspect of the present invention provides a large-sized microcrystalline glass-lined pipe, comprising a straight tubular body, a large flange, and a reinforcing annular body, wherein the two ends of the straight tubular body are flanged to form the large flange, and the reinforcing ring
  • the body is closely matched with the outer circumference of the straight tubular body and welded to the inner side of the large flange, and the inner wall and the outer wall of the straight tubular body, the large flange and the outer side of the reinforcing annular body are sprayed into the microcrystal A enamel glass glaze layer.
  • a circumferential welded circumferential joint is formed between the reinforcing annular body and the outer circumference of the straight tubular body, and a circumferential welded circumferential welded joint is formed between the reinforcing annular body and the large flange.
  • the large-sized microcrystalline glass-lined pipe further comprises a reinforcing steel plate, the reinforcing steel plate is symmetrically distributed along an outer circumference of the straight pipe body, and the reinforcing steel plate is welded to the outer circumference of the straight pipe body, and The reinforcing annular body is welded, and the outer side of the reinforcing steel plate is sprayed and fired into a microcrystalline glazed glass glaze layer.
  • the reinforcing steel plates can be 9-21 groups.
  • the large-sized microcrystalline bismuth glass pipe further comprises a reinforced steel round pipe member symmetrically distributed along an outer circumference of the straight pipe body and disposed between two sets of reinforced steel plates, the reinforcement The two ends of the steel tubular pipe are respectively welded to the outer wall of the straight tubular body and the reinforcing annular body, and the outer side of the reinforced steel round pipe is sprayed and fired into a microcrystalline glazed glass glaze layer.
  • the reinforced steel round pipe member may be 3-6 pieces.
  • microcrystalline enamel glass glaze layer of the large-scale microcrystalline bismuth glass pipe is prepared by a manufacturing method combining a long horizontal heating electric furnace and an intelligent temperature program control/regulating/recording device, and an intelligent temperature program is prepared.
  • the temperature control accuracy of the control/regulation/recorder device is ⁇ 1 °C, combined with the openable and horizontal heating furnace, and combined with the rotation and heating process.
  • the openable and horizontal heating electric furnace comprises a set of fixed horizontal bottom heating electric furnaces with a semi-circular body, two sets of open and horizontal heating electric furnaces with a quarter ring body and two sets of circles.
  • a flat heating electric furnace ; the two sets of 1/4 annular body openable horizontal heating electric furnace are arranged on the upper part of the fixed horizontal bottom heating electric furnace which is a semi-circular body, and the two groups are in the closed state.
  • a 4th annular body openable horizontal heating electric furnace and the semi-circular fixed horizontal bottom heating electric furnace form a torus; the two sets of circular planar heating electric furnaces are disposed in the semicircular body
  • the fixed horizontal bottom heating electric furnace in the form of a semi-circular body and the two sets of open and horizontal heating electric furnaces in the form of a quarter-circle body are combined to form an integral toroidal horizontal heating electric furnace corresponding to The inner wall and the outer wall of the straight tube body of the large-scale microcrystalline bismuth glass pipe and the firing of the outer outer structure assembly ⁇ glass glaze layer, the two sets of circular planar heating electric furnaces corresponding to the double-end flange surface of the pipe The glaze layer is fired.
  • the overall structure of the openable and horizontal heating electric furnace is basically consistent with the pipe shape.
  • the integral outer structural assembly refers to a pipe member disposed outside the straight pipe body, such as a reinforcing annular body, a reinforced reinforcing plate, and a reinforced steel round pipe.
  • the inner wall of the straight tube body is microcrystallized with a glazed glaze layer, the outer wall of the straight tube body and the outer outer structure
  • the composition of the microcrystalline iridium glass glaze layer of the assembly and the microcrystalline enamel glass glaze layer of the two-end large flange surface of the pipe are different.
  • the large-scale microcrystalline bismuth glass pipe of the invention has the excellent physical and chemical properties irreplaceable by the bismuth glass glaze, and the microcrystalline enamel glass glaze has the advantages of Mohs hardness up to 8 or more, and can be used for each oil and gas pipeline transportation pipeline engineering. Different from the physicochemical properties of different structural parts of the same pipe, the microcrystalline enamel glass glaze layer with different formula ratio of microcrystalline state and amorphous bismuth glass glaze is applied, which has different firing temperatures.
  • the microcrystalline enamel glass glaze layer mainly composed of the outer wall of the straight pipe body of the pipeline and the integral outer structural assembly to enhance the micro-crystal state of the seismic mechanical strength; the microcrystalline state of the inner wall of the straight pipe body of the pipeline to enhance the mechanical strength
  • the microcrystalline enamel glass glaze layer of the main body is a microcrystalline enamel glass glaze layer mainly composed of an amorphous state with corrosion resistance and smooth surface on the inner wall of the straight pipe body of the pipe;
  • the microcrystalline glazed glaze layer with large micro-crystal strength is the main body of the microcrystalline glaze layer, which is used to avoid the bolts and the glaze layer on the large flange surface.
  • the oil and gas pipelines have long-term non-corrosive, non-abrasive, smooth and safe operation, and have created large-scale microcrystalline glass-lined pipes with microcrystalline state as the main body.
  • a second aspect of the present invention provides a method for manufacturing a microcrystalline bismuth glass pipe, which is a combination of an innovative and intelligent temperature program control/regulation/recorder device, which can be combined with a long horizontal heating electric furnace, and the overall shape and structure of the electric furnace
  • the structure of the large-scale microcrystalline bismuth glass pipe is similar, and the overall circular body horizontal heating electric furnace corresponds to the inner wall and the outer wall of the straight pipe body of the pipe and the firing of the glass glaze layer of the integral outer structure assembly, and the two sets of circular flat heating electric furnaces correspond to The firing of the enamel glass enamel layer on the large flange surface of the pipe, the temperature of the furnace body measured by the thermocouple of the furnace wall and the heating temperature of the lining glass surface on the inner wall of the pipe and the large flange surface of the pipe are controlled by intelligent temperature control.
  • the device explores and fixes the corresponding fixed temperature difference, and combines the new smoldering process of the enamel glass glaze layer which is heated in the firing process while rotating, and precisely controls the pipe straight pipe body and the pipe on the large flange surface of the pipe
  • Different micro-crystalized enamel glass glaze layers have different compositions.
  • the different firing temperatures of microcrystalline bismuth glass glazes are independently controlled by intelligent controlled temperature control devices. Implementation of integrated synchronous firing, creating the overall quality was significantly better than the current national standard GB25025-2010 large crystallites of glass-lined pipes.
  • the method for manufacturing the large-scale microcrystalline bismuth glass pipe of the present invention specifically includes the following steps:
  • the pipe and the pipe are connected by a circumferential welded joint, and the circumferential welded joint is subjected to X-ray inspection according to JB/T4730, and a pipe member conforming to the safety technical inspection regulations of the pressure vessel is obtained, and the steel plate thickness of the pipe member is designed and manufactured according to the pipeline pressure vessel. standard;
  • the reinforcing annular body is used to ensure that the large flange surface is not deformed in multiple high-temperature firing, and the thickness of the steel plate can be adjusted and thickened according to the nominal diameter of the pipe;
  • the reinforcing steel plate is 9-21 sets, which is selected by the diameter of the pipe; the reinforcing annular body combined with 9-21 sets of symmetric reinforcing steel plates can perfectly improve the nominal pressure of the pipe flange and the sealing performance of the nozzle;
  • the reinforced steel round pipe fittings are 3-6 pieces; the steel round pipe fittings are reinforced to greatly improve the deformation resistance of the overall pipe;
  • microcrystalline bismuth glass glaze is prepared according to the requirements of the highest technical quality index of each physical and chemical performance of each oil and gas pipeline engineering, and the mixture of microcrystalline and amorphous glazed glazes is different. Glaze
  • the application has an intelligent temperature program control/regulation/recorder device and a newly developed and innovative opening and closing horizontal heating electric furnace.
  • the entire pipe body is sprayed through the dried enamel glass glaze layer, and the controlled core technology is implemented to promote the core technology.
  • An adhesion layer between the steel sheet and the enamel glass glaze forms the best and most robust mesh structure.
  • the same heating temperature is applied between the microcrystalline enamel glass glaze and the microcrystalline enamel glass glaze, and the base is simultaneously fired. To eliminate all kinds of hidden defects by the maximum extent, to achieve the highest quality index including 0 pinholes;
  • the "core technology" of the controlled simmering refers to a controlled sintering process of medium temperature pre-firing, high-temperature sintering, and heat preservation stage when the whole body of the pipeline is fired by the glass bottom glaze.
  • the firing temperature can be from room temperature to 950 ° C, and the total firing time is 5-6 h;
  • step 8 using the firing method of step 7), repeatedly simmering the pipe for a plurality of times, and spraying the glass glaze to the pipe before each simmering;
  • the horizontally-glazed electric heating furnace can open and close the enamel layer of the pipe repeatedly, and the glaze layer of the pipe is sprayed and dried before being burned;
  • the specific cooling curve can be converted into a solidified state according to the softened state of the microcrystalline bismuth glass glaze layer, controlled at 6-8 h, and slowly cooled from a furnace temperature of 650 ° C to 150 ° C.
  • the enamel glass glaze used in steps 5), 6), 7), and 8) is a conventional glaze slurry, and the microcrystalline enamel glass glaze is composed of microcrystalline and amorphous enamel glaze.
  • the ground glaze is mixed in the same ratio.
  • the fully automatic spray glaze equipment can be used to uniformly spray the glazed glaze slurry.
  • steps 7), 8) and 9) the application of intelligent temperature program control / adjustment / recorder device and newly developed and innovative open and horizontal heating furnace, the measurement and control accuracy of the system can reach ⁇ 1 ° C, Comprehensive and precise control and realization of the best enamelling process for the enamel glaze layer of the pipeline. Strictly follow the "core technology" of controlled simmering, and accurately control the specific temperature of each stage of heating, heat preservation and cooling, and execute the smoldering process curve by computer, record, print and archive.
  • the inner wall and the outer wall of the straight tube body, the large flange surface, the reinforcing ring body, the reinforcing steel plate and the reinforced steel round pipe are sprayed with the glazing glaze, and the controlled smoldering is performed.
  • the "core technology” can precisely control the medium-temperature pre-burning, heat preservation and high-temperature firing, which promotes the formation of a strong mesh-like structure between the steel outer wall and the glass-lined glaze.
  • the enamel glass glaze has the advantages of Mohs hardness of up to 8 grades in combination with the microcrystalline enamel glass glaze, and can be used for each oil and gas pipeline engineering line, especially the same structural part of the same pipeline, or acid resistant, Or the alkali-resistant, or wear-resistant, or the specific physical and chemical properties of the seismic strength, the application of the corresponding microcrystalline and amorphous bismuth glass glaze formula and mixing ratio, for the entire line of oil and gas pipeline engineering, special development It is the first highest technical quality index with comfortable circulation, long-term non-corrosion, all-round improvement and enhanced operation safety.
  • the first layer of the inner wall of the straight tube body is sprayed and fired in a microcrystalline state as a main body, and the surface layer of the latter layers is amorphous.
  • the main body of the microcrystalline bismuth glass glaze is sprayed and fired to improve the surface smoothness, corrosion resistance and wear resistance.
  • the outer wall of the straight tubular body, the reinforcing annular body, the reinforced reinforcing steel plate and the reinforced steel round pipe are sprayed and fired by microcrystalline glazed glass glaze with microcrystalline state as main body to improve corrosion resistance And seismic strength.
  • the two-end large flange surface of the pipe is sprayed and fired by a microcrystalline bismuth glass glaze with a microcrystalline state as a main body to greatly enhance the mechanical strength.
  • the openable and horizontal heating electric furnace is combined with an intelligent temperature program control/regulating/recording device, and the openable and horizontal heating electric furnace comprises a set of half rings.
  • the openable horizontal heating electric furnace is disposed on an upper part of a fixed horizontal bottom heating electric furnace which is a semi-circular body, and in the closed state, the two sets of 1/4 annular body openable horizontal heating electric furnace and the a fixed horizontal bottom heating electric furnace having a semi-circular body constitutes a torus; the two sets of circular planar heating electric furnaces are disposed on the fixed horizontal bottom heating electric furnace in a semi-circular body and the two groups are 1/4
  • the torus can be opened and closed to heat both ends of the inside of the electric furnace.
  • the two sets of 1/4 annular body openable horizontal heating electric furnace are selected from any of the following mechanical structure devices that can be opened and closed:
  • the second mechanical structure that can be opened and closed is the second mechanical structure that can be opened and closed:
  • the openable and horizontal heating electric furnace further comprises two sets of pipeline positioning members, wherein the pipeline positioning member is disposed on the circular planar heating electric furnace and the fixed horizontal bottom heating electric furnace in the semicircular body.
  • the pipe positioning member comprises an inner ring, an outer ring and a plurality of sets of symmetric round bars, wherein the inner ring and the outer ring are two sets of concentric all-steel rings having different diameters, the plurality of sets of symmetry A round bar is disposed between the inner ring and the outer ring and symmetrically distributed along the circumference.
  • the inner diameter of the inner ring of the pipe positioning member is matched with the outer diameter of the large flange of the pipe.
  • the pipe positioning member is detachable, and the outer ring formed by the pipe positioning member and the space portion formed by the plurality of sets of symmetric round steel bars can be used as the feeding and discharging operation of the large driving lifting pipe.
  • the openable and horizontal heating electric furnace further comprises four rotating fixed pulleys disposed on two sides of the outer ring of the two sets of pipeline positioning members.
  • the four rotating fixed pulleys are a new firing process in which the enamel glass glaze layer of the starting pipe is heated while rotating.
  • the bearing member of the rotating fixed pulley is positioned outside the furnace of the horizontally extendable electric heating furnace, and the rotating fixed pulley can be driven by the motor to rotate, and the whole pipeline is rotated by the large flange of the pipeline, thereby realizing a new firing process of heating while rotating.
  • the rotating fixed pulley is a spur gear
  • the openable horizontal heating electric furnace further includes four spur gears, and the four spur gears are disposed on the outer ring of the two sets of pipeline positioning members. On both sides.
  • the bearing part of the spur gear is positioned outside the furnace of the openable horizontal heating electric furnace.
  • the spur gear can be driven by the motor, and the whole pipe is rotated by the large flange of the pipe, thereby realizing the new firing process of heating while rotating.
  • the two sets of circular planar heating electric furnaces correspond to the microcrystals in the microcrystalline state on the large flange surface of the two ends of the pipeline.
  • the firing of the bismuth glass glaze layer drives the four rotating fixed pulleys of the two sets of pipeline positioning parts and the intelligent temperature program control/adjustment/recorder device.
  • the temperature control precision is ⁇ 1 °C, and the all-round perfect fits the microcrystal.
  • the demand for a specific high-standard baking process for glass-lined glass is to innovate and manufacture large-scale microcrystalline bismuth glass oil and gas pipelines with exceptional strength, excellent quality and safe operation.
  • the fixed horizontal bottom heating electric furnace in a semi-circular body and the two inner walls of the integral inner cavity of the openable heating electric furnace having a quarter-circle body are provided with heat-resistant steel
  • the same central axis curved heat conduction plate is produced.
  • the concentric arc-shaped heat conducting plate is covered on the surface layer of the openable and horizontal heating electric furnace to improve the uniform heating of the overall openable and horizontal heating electric furnace.
  • the inner wall and the outer wall of the straight tube body and the microcrystalline enamel glass glaze layer of the integral outer structure assembly are fired, and the two sets of circular planar heating electric furnaces are fired corresponding to the microcrystalline enamel glass glaze layer on the large flange surface of the pipe end,
  • the microcrystalline enamel glass glazes with different adjustments are applied and different firing temperatures.
  • the inner semi-circumferential wall of the fixed horizontal bottom heating electric furnace having a semi-circular body is provided with a plurality of 1/2 annular grooves; the 1/2 annular groove is wound with a heating cable; /4 annular body of the openable horizontal heating electric furnace, the inner side 1/4 circumference wall is provided with a plurality of 1/4 annular grooves; the 1/4 annular groove is wound in the electric heating; the 1/2 ring
  • the electric heating belt wound in the groove and the two windings in the 1/4 annular groove are circumferentially connected to form a group of electric heating belts, and the whole circular ring horizontal heating electric furnace is composed of a plurality of sets of electric heating belts.
  • the circular plane heating electric furnace has a plurality of concentric circular grooves with different diameters on a circular plane; the concentric circular grooves are wound with a set of electric heating belts; A temperature system that includes a set of thermocouples and intelligent temperature program control/regulator/recorder devices.
  • the two temperature control systems combined by the integral toroidal horizontal heating electric furnace and the two sets of circular planar heating electric furnaces can each adjust the heating power, and accurately implement different microcrystalline enamel glass glaze layers with different structural parts.
  • the same firing temperature is the same as the same firing temperature of the microcrystalline bismuth glass glaze layer of the same structural part, and the same micro-crystallized enamel glass glaze layer is integrally fired in the same pipe.
  • the set of thermocouples is matched with a set of electric heating belts, and is disposed in the heating region of the group of electric heating belts for detecting the heating temperature of the microcrystalline enamel glass glaze layer in the heating zone of the electric heating zone And issuing a temperature signal;
  • the intelligent temperature program control/regulating/recording device is disposed outside the openable and horizontal heating electric furnace, and is connected to a group of electric heatings matched by the set of thermocouples, and is executed Automatic printing, recording, archiving, and quality tracking during the firing process.
  • the integral toroidal horizontal heating electric furnace and the two sets of circular planar heating electric furnace are combined into two temperature control systems, each of which is independently connected with a set of electric heating belts and a corresponding set of thermocouples, respectively, and the intelligent temperature
  • the program control/regulation/recorder device is combined to independently control the heating power, set the temperature control accuracy to ⁇ 1 °C, accurately implement the different structural parts of the pipeline, and the microcrystalline enamel glass glaze layers of different compositions are not the same. Integral microcrystalline crystallization of the same temperature and the same pipe Synchronous firing of the glass glaze layer.
  • the intelligent temperature program control/regulation/recorder device stores a preset temperature or temperature control curve for receiving a temperature signal of the thermocouple, and adjusting the heating temperature of the heating cable after comparing with the preset temperature or the temperature control curve.
  • each group of heating belts can independently control the temperature control system, the heating power of each group of heating belts can be independently regulated.
  • Intelligent temperature program control/adjustment/recorder unit for precise temperature preset, temperature control and automatic recording.
  • One of the features of the openable and horizontal heating electric furnace includes: a set of fixed horizontal bottom heating electric furnaces with a semi-circular body, and two sets of open and horizontal heating electric furnaces with a quarter ring body, Two sets of circular planar heating electric furnaces, the two sets of 1/4 annular body openable horizontal heating electric furnace are arranged on the upper part of the fixed horizontal bottom heating electric furnace which is a semicircular body, the two sets of circles
  • the planar heating electric furnace is disposed at both ends of the fixed horizontal bottom heating electric furnace which is a semi-circular body and the two sets of openable horizontal heating electric furnaces which are 1/4 annular bodies.
  • four sets of rotating connecting members are disposed at the bottoms of the two ends of the two sets of openable horizontal heating electric furnace steel shells which are 1/4 annular bodies, and the two groups are 1/4 annular bodies in the two groups.
  • the opening and closing of the openable horizontal heating electric furnace steel casing annular body is provided with more than 4 sets of opening and closing parts, and the opening and closing of the two sets of 1/4 annular body openable horizontal heating electric furnace are performed; or
  • the two sets of 1/4 annular body openable horizontal heating electric furnace steel outer casing are provided with sliding members at the horizontal bottom, and the two groups are 1/4 annular body openable horizontal heating electric furnace
  • the side is provided with a horizontal slide rail for horizontal sliding of the sliding member, and the opening and closing of the two sets of openable horizontal heating electric furnaces of 1/4 annular body are performed.
  • the second feature of the openable and horizontal heating electric furnace is as follows: the fixed horizontal bottom heating electric furnace with a semi-circular body and the two sets of openable horizontal heating electric furnace with a quarter ring body
  • the cavity wall of the whole inner cavity is provided with a coaxial arc-shaped heat conducting plate made of heat-resistant steel, and the arc-shaped heat conducting plate of the same central axis is covered on the surface of the openable horizontal heating electric furnace to improve the lifting.
  • the heating of the overall heating furnace is uniform.
  • the overall quality of the large-scale microcrystalline glass-lined pipe is simultaneously improved by the same heating temperature and synchronously firing the inner wall and the outer wall of the micro-crystalized enamel glass glaze layer.
  • the third feature of the openable horizontal heating electric furnace is: the fixed horizontal bottom heating electric furnace in the semi-circular body and the two sets of 1/4 annular body openable horizontal heating
  • Two sets of circular flat heating electric furnaces and intelligent temperature program control/regulation/recorder devices are arranged at both ends of the electric furnace to control the same heating temperature and synchronous firing of the microcrystalline enamel glass glaze on the large flange surface of the pipe.
  • the overall structural shape of the openable and horizontal heating electric furnace is matched with the overall shape structure of the pipeline, and the whole annular body horizontal heating electric furnace (a set of fixed horizontal bottom heating electric furnace with a semicircular body) And two sets of 1/4 annular body openable horizontal heating electric furnace combination) and two side circular planar heating electric furnace respectively correspond to the straight tube body of the pipeline and the microcrystalline bismuth glass of the two-end flanged large flange surface Glaze layer.
  • the invention belongs to the whole pipeline with strong corrosion resistance, strong anti-wearing property, smooth surface, good circulation, no deformation of the whole pipeline structural member, strong earthquake resistance, and plays an important role irreplaceable for any existing oil and gas pipeline parts, ensuring the connection of the pipeline engineering installation.
  • the large-scale microcrystalline bismuth glass pipe of the invention has the design of each pipe structural member, and can design and manufacture the overall structural component of the pipe according to the basic provisions of TSGD0001-2009 "Pipeline Safety Technical Supervision Regulations - Industrial Pipeline”.
  • the inner side of the large flange formed on the two ends of the pipe is welded on the inner side thereof with a matching reinforcing ring body, and the pipe integral structural member further comprises a plurality of sets of symmetric reinforcing steel plates, A plurality of sets of symmetric reinforcing steel plates are arranged on the outer wall of the reinforcing ring body and the pipe, and are symmetrically welded in a plurality of sets along the circumference of the outer wall of the pipe to significantly improve the nominal pressure and sealing performance of the large flange face of the pipe.
  • the pipe structural member further comprises several sets of integral symmetric reinforced steel round pipe fittings, which are arranged on the two-end large flange surface reinforcing ring body of the pipe, and are positioned between the plurality of sets of symmetric reinforcing steel plates, and the outer wall of the pipe is axial. It is welded to the whole symmetry to significantly improve the nominal pressure of the large flange face of the pipe and the performance of the overall pipe against deformation.
  • the integral pipe structural member can ensure no deformation after repeated high-temperature firing, so as to perfectly improve the nominal pressure and sealing performance of the large flange surface, and the overall deformation of the pipe is not deformed, and the mechanical strength and safety for enhancing the seismic performance are improved. run.
  • the glass-lined glass layer has a Mohs hardness of up to 8 grades.
  • the combination of the current discipline technology with the pipeline iron embryo is irreplaceable and unique for any material medium composite layer.
  • the most ideal and perfect medium for making oil and gas pipelines. Ensure that the inner wall surface of the pipe does not corrode or wear for a long time; the deep inner wall and the large flange surface of the pipe have strong seismic strength; the outer wall of the pipe does not corrode or peel; the overall pipe structure is not deformed and the strong seismic strength is strong. Ensure that large-scale microcrystalline glass-lined pipes are non-corrosive, non-abrasive, smooth and safe to operate.
  • the large-scale microcrystalline bismuth glass pipe of the invention has the first technical quality index as the circulation, the long-term non-corrosion and the safe operation, and can be different structural parts of each oil and gas pipeline engineering line, especially the same pipeline, or acid-proof, Or the specific requirements of alkali resistance, or improvement of wear resistance, or enhancement of seismic mechanical strength, and application of adjustments to formulate different formula ratios of microcrystalline enamel glass glazes with the highest technical quality requirements.
  • the large-scale microcrystalline bismuth glass pipe of the invention has the excellent physical and chemical properties irreplaceable by the enamel glass glaze, and the microcrystalline enamel glass glaze has the advantage of having a Mohs hardness of up to 8 or more, and can be used for each oil and gas pipeline project.
  • the application adjusts the mixing ratio of the proportions corresponding to the microcrystalline state and the amorphous bismuth glass, and the different firing temperatures, further described in the deep layer of the inner wall of the same pipe can be spray-fired to enhance
  • the microcrystalline state of the mechanical strength is the main microcrystalline enamel glass glaze layer, and the surface layer of the inner wall of the pipe can be sprayed and fired to form a microcrystalline enamel glass glaze layer mainly composed of an amorphous state with corrosion resistance, wear resistance and smooth surface.
  • the microcrystalline enamel glass glaze layer mainly composed of the micro-crystal state of seismic resistance and corrosion resistance can be sprayed on the outer wall of the pipeline; the fire can be sprayed on the large flange surface of the pipe to greatly enhance the mechanical strength.
  • the microcrystalline state is the main microcrystalline enamel glass glaze layer, which is used to avoid the bolts from being strongly tightened, resulting in the rupture of the microcrystalline enamel glass glaze layer on the large flange surface, and the omnidirectional enhancement and enhancement guarantee the large-scale microcrystalline yttrium glass oil and gas The pipeline will not corrode, wear, flow and operate safely for a long time.
  • the innovative technical core and major breakthrough of the invention is a group of open and long horizontal heating electric furnaces, combined with the microcrystalline bismuth glass glaze of the pipeline, in the process of heating and firing, a new firing process is performed to produce the diameter.
  • the pipeline is fed into and out of the furnace, and the two large-scale driving vehicles are operated synchronously. It is only necessary to open the upper two groups of openable horizontal heating electric furnaces with a quarter-circle body, first use a driving vehicle, and then heat the firing.
  • the enamel glass pipe is hoisted out of the electric furnace, and the latter hoisting the bismuth glass pipe to be heated and fired into the electric furnace, and finally closing the horizontal heating electric furnace, the operation is convenient and efficient. It can be called the only, irreplaceable and effective high-efficiency electric heating furnace, which is a major breakthrough in the history of the glass-lined industry.
  • the invention develops an innovative openable and horizontal heating electric furnace, and combines with each group of electric heating belts, a set of thermocouples connected with an intelligent temperature program/regulation/recorder can independently regulate the heating power, and the microcrystallization of the pipeline
  • the enamel glass glaze layer is slowly rotated during firing, and the temperature control accuracy of the system is ⁇ 1 °C, so as to maximize the different firing temperatures of different combinations of microcrystalline bismuth glass glazes with different structural parts of the same pipe.
  • the same firing temperature of the microcrystalline bismuth glass glaze is the same as that of the same structural part, and the whole micro-crystalized glazed glass glaze layer of the same pipe is integrally fired.
  • the firing temperature of the combined microcrystalline enamel glass glaze layer is different; the third characteristic is that: four rotating fixed pulleys with slow rotation of the two-position self-positioning member are arranged at the bottom of the inner cavity of the heating electric furnace, perfect It ensures that the whole pipe and the two end flange faces are not deformed, and the whole microcrystalline crystallization of the pipe surface is evenly heated.
  • the two sets of fixed circular planar heating electric furnaces correspond to the microcrystalline state of the bismuth glass glaze layer on the large flange surface of the two ends of the pipeline. Since the invention of the microcrystalline glass, the glass glaze is easy because of the small firing temperature range. It is extremely difficult to create a slightly larger glass-lined device.
  • the two advantages of comprehensively opening and closing the heating furnace, the high-precision temperature control system and the implementation of the new process of firing while rotating, can fully meet the requirements of the specific high-standard firing process of microcrystalline glass glaze.
  • the replacement of microcrystalline glass can double the mechanical strength and thermal properties, combined with the excellent physical and chemical properties of amorphous high silicon silicate glass combined with microcrystalline bismuth glass, creating a new generation of large-scale microcrystalline bismuth
  • the glass equipment has strongly promoted the revolution of the contemporary glass-lined industry. This is the only long-term horizontal heating electric furnace that can be opened and closed. It is the only major irreplaceable breakthrough for the development and manufacture of large-scale microcrystalline glass-lined pipes with excellent quality and excellent quality. .
  • One of the characteristics of the manufacture of large-scale microcrystalline glass-lined pipes designing different physical and chemical properties for each oil and gas pipeline project, or specific requirements for acid resistance, alkali resistance, or improved wear resistance, or enhanced seismic strength. Formulate corresponding technical quality indicators. All-round adaptation to the current technical requirements of oil production medium complex, large changes in pH value, soil environmental stress and severe corrosion cracking of the pipeline is a major technical quality problem.
  • the second feature it can be used for the specific requirements of different physical and chemical properties of different structural parts of the same pipeline.
  • the formula and ratio of the microcrystalline enamel glass glaze with different adjustments should be applied.
  • the deep layer of the inner wall of the pipeline should be strengthened with mechanical strength.
  • the microcrystalline bismuth glass glaze with the microcrystalline state as the main body should have a microcrystalline enamel glass glaze mainly composed of an amorphous state with corrosion resistance, wear resistance and smooth surface on the inner wall surface.
  • the microcrystalline enamel glass glaze with the seismic mechanical strength and the corrosion-resistant microcrystalline state as the main body should be microcrystalline with the microcrystalline state of the mechanical strength of the two end flanges. ⁇ glass glaze. Its three characteristics: bismuth glass glaze is widely used and manufactured with its excellent physicochemical properties. Chemical and pharmaceutical container equipment is the only one of the most perfect and ideal composite material of pipeline iron tire surface, combined with microcrystalline enamel glass glaze.
  • the fourth feature the manufacture of large-scale microcrystalline glass-lined pipes, combined with the application of intelligent temperature program control / adjustment / recording device system temperature control accuracy of ⁇ 1 ° C, can independently control the heating power, accurately implement the different structures of the pipeline
  • the different firing temperatures of the differently combined microcrystalline enamel glass glaze layers are the same as the same structural part, the same firing temperature of the microcrystalline enamel glass glaze layer, and the simultaneous integration of the whole microcrystalline enamel glass glaze layer of the same pipe Burnt.
  • the most Extensively eradicate all kinds of hidden defects such as dark bubbles, cracks, flowing porcelain, and porcelain explosions in the glass glaze layer.
  • FIG. 1 is a schematic view of a microcrystalline bismuth glass glaze layer of a large microcrystalline bismuth glass tube
  • FIG. 2 is a schematic view showing the overall structure of a large-sized microcrystalline glass-lined pipe
  • 2a1 is a schematic diagram of a circumferentially symmetric combined welding structure of the reinforcing annular body 2a on the large flange 2B and the plurality of sets of symmetric reinforcing steel plates 2b and the plurality of sets of reinforcing steel round tubular members 2c;
  • Figure 2a2 is a schematic view of the large flange 2B and the two sets of reinforcing annular bodies 2a welded in a ring and welded along the circumference of the outer wall of the pipe;
  • 2a3 is a schematic view of a plurality of sets of symmetric reinforcing steel plates 2b respectively symmetrical and evenly distributed in the two-end reinforcing annular body 2a of the large flange;
  • 2a4 is a schematic view of the overall welded structure of the plurality of sets of reinforced steel round pipe fittings 2c and the pipe two-end reinforcing annular body 2a being axially distributed along the outer wall of the pipe and distributed in the middle of the plurality of sets of reinforcing steel plates 2b;
  • Figure 3 is a schematic view showing the overall structure of the openable and horizontal heating electric furnace
  • 3A is a schematic view showing the openable structure of two sets of openable horizontal heating electric furnaces having a quarter-circle body
  • 3A1 is a schematic view showing a combination structure of a fixed horizontal bottom heating electric furnace in a semi-circular body and two sets of circular planar heating electric furnaces; and four rotating fixed pulleys for slowly rotating the starting two-end pipe positioning member;
  • Figure 3B is a schematic view showing one of the structures of the openable and horizontal heating electric furnace, which is combined with the rotating connecting member and the opening and closing member;
  • 3C is a schematic view showing a structure of a combination of a sliding member and a horizontal sliding rail
  • FIG. 4 is a schematic view showing a structure in which a large-sized microcrystalline bismuth glass pipe is discharged and fed into a furnace capable of opening and closing a long horizontal heating electric furnace, and is combined with a rotating connecting member and an opening and closing member;
  • 4A is a schematic view showing the overall structure of a large-scale microcrystalline bismuth glass pipe fired in an openable and horizontal heating electric furnace;
  • Figure 5 is a schematic view showing the structure of the two sets of pipe positioning members of the pipe microcrystallized enamel glass glaze layer combined with the hoisting into the horizontal heating electric furnace and the pipe itself, and placed on the four rotating fixed pulleys;
  • FIG. 5A is a structural schematic view showing the connection between the two sets of pipeline concentric pipe positioning members of the pipe microcrystallized enamel glass glaze layer combined with the hoisting into the horizontal heating electric furnace in the firing process;
  • 5B is a partial structural schematic view showing the connection between the two sets of pipe positioning members of the pipe microcrystallized enamel glass glaze layer and the large flanges of the pipe combined with the hoisting into the horizontal heating electric furnace during the firing process;
  • FIG. 6 is a schematic diagram of the structure of the temperature control system in combination with the intelligent temperature program control/regulation/recorder device (PID) and the thermocouple.
  • PID intelligent temperature program control/regulation/recorder device
  • 2B1 ⁇ 2B3, 2B5 ⁇ 2B7, 2B9 ⁇ 2B11 connecting holes of the large flange surface of the pipe;
  • 2B4, 2B8, 2B12 bolt holes on the large flange surface of the pipe
  • 2c, 2c1 ⁇ 2c3 reinforced steel round pipe fittings
  • the overall toroidal horizontal heating electric furnace consists of a fixed horizontal bottom heating electric furnace 3.1 with a semi-circular body and two sets of open and horizontal heating electric furnaces with a quarter ring body of 3.2.
  • 3a a layer of refractory material
  • 3a1, 3a2, 3a3 refractory layer
  • thermocouple thermocouple
  • thermocouples thermocouples
  • 3d1, 3d2, 3d3 heating the insulation material layer of the electric furnace
  • 3e1, 3e2 arc-shaped heat conduction plate with the same central axis
  • 3C2 horizontal slide rail
  • PID Intelligent Temperature Program Control/Adjustment/Recorder Device
  • one or more of the method steps recited in the present invention are not exclusive of other method steps that may be present before or after the combination step, or that other method steps can be inserted between the steps specifically mentioned, unless otherwise It should be understood that the combined connection relationship between one or more devices/devices referred to in the present invention does not exclude that other devices/devices may exist before or after the combined device/device or Other devices/devices can also be inserted between the two devices/devices unless otherwise stated.
  • each method step is merely a convenient means of identifying the various method steps, and is not intended to limit the order of the various method steps or to limit the scope of the invention, the relative In the case where the technical content is not substantially changed, it is considered to be a scope in which the present invention can be implemented.
  • the large-sized microcrystalline bismuth glass pipe 1 shown in FIG. 1 and FIG. 2 includes a straight tubular body 2, a large flange 2B and a reinforcing annular body 2a, and both ends of the straight tubular body 2 are flanged to form the large flange.
  • the reinforcing annular body 2a is closely matched with the outer circumference of the straight tubular body 2 and welded to the inner side of the large flange 2B, and the inner wall 2A and the outer wall 2C of the straight tubular body 2, the large flange 2B
  • the outer side and the outer side of the reinforcing annular body 2a are spray-fired to form a microcrystalline glazed glass glaze layer 1a.
  • the reinforcing annular body 2a and the outer circumference of the straight tubular body 2 are circumferentially welded to the circumferential welded joint 2e, the reinforcing annular body 2a and the The circumferential flanges are welded to the welded joint 2e between the large flanges 2B.
  • the large-sized microcrystalline glass-lined pipe further includes a reinforcing steel plate 2b symmetrically distributed along the outer circumference of the straight tubular body 2, and the reinforcing steel plate 2b is welded.
  • the outer circumference of the straight tubular body 2 is welded to the reinforcing annular body 2a, and the outer surface of the reinforcing reinforcing steel plate 2b is spray-fired to form a microcrystalline glazed glass glaze layer 1a3.
  • the reinforcing steel plates can be 9-21 groups, and Figure 2a1 shows that there are 9 groups of reinforcing steel plates: 2b1 ⁇ 2b9.
  • the large-sized microcrystalline bismuth glass pipe further includes a reinforced steel round pipe member 2c which is symmetrically distributed along the outer circumference of the straight tubular body 2 and is disposed in two sets of reinforcement. Between the steel plates, the two ends of the reinforcing steel tubular member 2c are respectively welded to the outer wall 2C of the straight tubular body and the reinforcing annular body 2a, and the outer side of the reinforcing steel tubular member 2c is sprayed and fired into a microcrystalline glazed glass glaze. Layer 1a3.
  • the reinforced steel round pipe fittings may be 3-6 pieces, and Fig. 2a1 shows that there are 3 pieces of reinforced steel round pipe fittings: 2c1, 2c2 and 2c3.
  • the development and manufacturing application of the large-scale microcrystalline bismuth glass pipe can be prepared by a manufacturing method combining a long horizontal heating electric furnace and an intelligent temperature program control/regulating/recording device, and an intelligent temperature program control/regulating/recording device
  • the temperature control accuracy is ⁇ 1 ° C, combined with the openable and horizontal heating electric furnace, and combined with the rotation and heating process.
  • the openable and horizontal heating electric furnace 3 comprises a set of fixed horizontal bottom heating electric furnaces 3.1 in a semi-circular body, two sets of openable horizontal heating electric furnaces 3.2 and two sets of circles.
  • Planar heating electric furnace 3.3; the two groups are 1/4 torus
  • the openable horizontal heating electric furnace 3.2 is disposed on the upper part of the fixed horizontal bottom heating electric furnace 3.1 which is a semi-circular body, and in the closed state, the two sets of the 1/4 annular body can be opened and closed horizontal heating electric furnace 3.2 forming a torus with the fixed horizontal bottom heating electric furnace 3.1 which is a semi-circular body; the two sets of circular planar heating electric furnaces 3.3 are arranged in the fixed horizontal bottom heating electric furnace 3.1 and the semicircular body
  • the two groups are both ends of the 1/4 torus openable horizontal heating electric furnace 3.2.
  • the fixed horizontal bottom heating electric furnace 3.1 which is a semi-circular body and the two sets of 1/4 circular body openable horizontal heating electric furnace 3.2 are combined into a whole circular body horizontal heating electric furnace 3.4 corresponding Burning of the inner wall 2A and the outer wall 2C of the straight tubular body 2 of the large-sized microcrystalline bismuth glass pipe and the microcrystalline glazing glaze layers 1a1 and 1a3 of the integral outer structural assembly 2C1, the two sets of circular planar heating electric furnace 3.3 corresponds to the firing of the microcrystalline bismuth glass glaze layer 1a2 on the 2B large flange 2B.
  • the inner wall 2A of the straight tube body is microcrystallized glass glaze layer 1a1, the outer wall 2C of the straight tube body and the outer outer structure assembly 2C1 microcrystalline glazed glass glaze layer 1a3, and the second end of the tube 2B
  • the composition of the microcrystalline bismuth glass glaze layer 1a2 is different.
  • the large-scale microcrystalline bismuth glass pipe of the invention has the excellent physical and chemical properties irreplaceable by the bismuth glass glaze, and the microcrystalline enamel glass glaze has the advantages of Mohs hardness up to 8 or more, and can be used for each oil and gas pipeline transportation pipeline engineering.
  • the microcrystalline enamel glass glaze layer with different formula ratio of microcrystalline state and amorphous bismuth glass glaze is applied, which has different firing temperatures.
  • a microcrystalline glazed glass glaze layer 1a3 mainly composed of a microcrystalline state enhancing the seismic mechanical strength; in the deep layer of the inner wall 2A of the straight pipe body 2 of the pipe is reinforced
  • the microcrystalline enamel glass glaze layer 1a1 having a mechanical strength and a microcrystalline state as a main body, and a microcrystalline enamel glass glaze layer 1a1 mainly composed of an amorphous state resistant to corrosion and smooth surface on the surface of the inner wall 2A of the straight pipe body 2 of the pipe
  • the microcrystalline enamel glass glaze layer 1a2 mainly composed of the microcrystalline state with greatly enhanced mechanical strength on the 2B side of the large flange of the pipe is circumvented to avoid the bolts being strongly tightened, resulting in the rupture of the enamel glass
  • the enhancement of the azimuth enhances the long-term non-corrosion, non-wearing, smooth circulation and safe operation of the large-scale microcrystalline yttrium glass oil and gas pipelines of the whole line, and the creation of large-scale microcrystalline bismuth glass pipes with microcrystalline state as the main body.
  • the manufacturing method of the large-scale microcrystalline glass-lined pipe comprises the following steps:
  • the steel pipe welding between the pipe iron embryos is connected by a circumferential welded joint, and the circumferential welded joint is subjected to X-ray inspection according to JB/T4730, and the pipe member conforming to the safety regulation of the pressure vessel is obtained, and the thickness of the steel plate of the pipe member is according to the pipe pressure.
  • the reinforcing annular body is used to ensure that the large flange surface is not deformed in multiple high-temperature firing, and the thickness of the steel plate can be adjusted and thickened according to the nominal diameter of the pipe;
  • the reinforcing steel plate is 9-21 sets, which is selected by the diameter of the pipe; the reinforcing annular body combined with 9-21 sets of symmetric reinforcing steel plates can perfectly improve the nominal pressure of the pipe flange and the sealing performance of the nozzle;
  • a reinforced steel round pipe member 2c which is symmetrically distributed and disposed in the middle of the two sets of reinforced reinforcing steel plates 2b is welded on the outer circumference of the straight tubular body 2, and the two ends of the reinforced steel round pipe member 2c are respectively The outer wall 2C of the straight tubular body and the reinforcing annular body 2a are welded;
  • the reinforced steel round pipe fittings are 3-6 pieces; the steel round pipe fittings are reinforced to greatly improve the deformation resistance of the overall pipe;
  • microcrystalline enamel glass glaze is mixed with the glaze slurry of microcrystalline state and amorphous bismuth glass glaze according to the requirements of the highest technical quality index of each physicochemical performance of each oil and gas pipeline engineering. ;
  • the application has intelligent temperature program control/adjustment/recorder and new development and innovation to open and close the horizontal heating electric furnace.
  • the whole pipe body is sprayed with the dried enamel glass glaze layer, and the controlled core technology is implemented to promote the steel plate.
  • An adhesive layer that forms the best and most robust mesh-like structure with the enamel glass glaze.
  • the same heating temperature is applied between the microcrystalline enamel glass glaze and the microcrystalline enamel glass glaze, and the base is simultaneously fired.
  • step 8 using the firing method of step 7), repeatedly simmering the pipe for a plurality of times, and spraying the glass glaze to the pipe before each simmering;
  • the fully automatic spray glaze equipment can be used to uniformly spray the glazed glaze slurry.
  • the large-scale microcrystalline glass-lined pipe is repeatedly fired repeatedly by the newly developed and innovative long-distance horizontal electric heating furnace combined with intelligent temperature program control/regulation/recorder, and each time before the smoldering Glass-lined piping Spraying the glaze layer after drying and then firing;
  • the firing uses a controlled core "core technology.”
  • the boring process of medium temperature pre-baking, high-temperature sintering, heat preservation and staged controlled firing can be used in the inner wall of the pipe.
  • the firing temperature is room temperature -950 ° C, and the whole firing time is 5.5-6 h.
  • the firing when firing, it can be slowly heated at room temperature -150 ° C, then preheated and heated at 150 ° C - 400 ° C, and then preheated and kept at 400 ° C - 600 ° C, wherein the temperature is -600 ° C
  • the firing time is 4 hours in total, and then fired and insulated at a high temperature of 600 ° C - 950 ° C, and the high temperature firing and holding time of 600 ° C - 950 ° C is 1.5-2 hours.
  • the inner wall 2A and the outer wall 2C of the straight tubular body 2, the large flange 2B surface, the reinforcing annular body 2a, the reinforcing steel plate 2b and the reinforced steel round pipe member 2c are sprayed with a glazing glaze, and the execution thereof is performed.
  • Controlled simmering "core technology” can precisely control medium-temperature pre-burning, heat preservation and high-temperature firing, which promotes the formation of a strong mesh-like structure between the steel outer wall and the enamel glass glaze.
  • the glass-ceramic glaze With its excellent physical and chemical properties, the glass-ceramic glaze combines the advantages of Mohs hardness of up to 8 grades. It can be used for each oil and gas pipeline engineering line, especially the different structural parts of the same pipeline, or acid or alkali resistance. Or the wear resistance, or the need to enhance the specific physical and chemical properties of seismic mechanical strength, the application of the corresponding microcrystalline and amorphous bismuth glass glaze formula and mixing ratio, for the entire line of oil and gas pipeline engineering, special development to flow comfort Long-term non-corrosion, all-round improvement and enhanced safety of operation are the first highest technical quality indicators.
  • microcrystalline enamel glass glaze layer 1a1 mainly in the microcrystalline state with enhanced mechanical strength in the first layer of the inner wall 2A of the inner body of the straight tube body 2, the surface layers of the latter layers are smooth,
  • the corrosion-resistant amorphous state is the main body of the microcrystalline bismuth glass glaze layer 1a1 sprayed and fired.
  • the two-end large flange 2B surface of the pipe is sprayed and fired by the microcrystalline glazed glass glaze layer 1a2 mainly composed of a microcrystalline state which greatly enhances the mechanical strength.
  • microcrystalline iridium glass glaze layers 1a1, 1a2 and 1a3 are collectively referred to as a microcrystalline yttrium glass glaze layer 1a.
  • the openable horizontal heating electric furnace is combined with an intelligent temperature program control/regulating/recording device, and the opening and closing
  • the extra-long horizontal heating electric furnace comprises a set of fixed horizontal bottom heating electric furnace 3.1 which is a semi-circular body, two sets of openable horizontal heating electric furnace 3.2 which is 1/4 annular body and two sets of circular flat heating electric furnace 3.3;
  • the two sets of openable horizontal heating electric furnaces 3.2 which are 1/4 annular bodies are disposed on the upper part of the fixed horizontal bottom heating electric furnace 3.1 which is a semicircular body, and the two sets are 1/4 round in the closed state.
  • the opening and closing horizontal heating electric furnace of the ring body 3.2 Forming a torus with the fixed horizontal bottom heating electric furnace 3.1 in the form of a semi-circular body; the two sets of circular planar heating electric furnaces 3.3 are disposed on the fixed horizontal bottom heating electric furnace 3.1 and the said semicircular body
  • the two groups are 1/4 annular body openable horizontal heating electric furnace 3.2 at both ends.
  • the semi-circular fixed horizontal bottom heating electric furnace 3.1, the two sets of 1/4 annular body openable horizontal heating electric furnace 3.2 and the two sets of circular flat heating electric furnace 3.3 include a refractory layer from the inside to the outside 3a1, 3a2, 3a3 and insulating material layers 3d1, 3d2, 3d3 and concentric arc-shaped heat conducting plates 3e1, 3e2.
  • the refractory layers 3a1, 3a2, and 3a3 are collectively referred to as a refractory layer 3a, and the insulating material layers 3d1, 3d2, and 3d3 are collectively referred to as a heat insulating material layer 3d, and the central axis curved heat conducting plates 3e1 and 3e2 are collectively referred to as a concentric axis curved heat conducting plate 3e. .
  • the two sets of 1/4 annular body openable horizontal heating electric furnace are selected from any of the following mechanical structure devices that can be opened and closed:
  • FIG. 3B four sets of the above-mentioned rotating connecting members 3B1 are disposed at the bottoms of the two ends of the two-piece annular heating electric furnace 3.2 steel casing which are 1/4 annular bodies, and are in the two groups.
  • /4 ring body can be opened and closed horizontal heating electric furnace 3.2 steel outer ring body is provided with more than 4 sets of opening and closing parts 3B2, and the two sets of 1/4 annular body can be opened and closed horizontal heating electric furnace Opening and closing of 3.2;
  • the second mechanical structure that can be opened and closed is the second mechanical structure that can be opened and closed:
  • a sliding member 3C1 is disposed at the horizontal bottom of the 3.2 steel outer casing of the two sets of openable horizontal heating electric furnaces of 1/4 annular body, and the two groups are 1/4 annular body. Both sides of the opening and closing horizontal heating electric furnace 3.2 are provided with horizontal slide rails 3C2 for horizontal sliding of the sliding member 3C1. In the two groups of openable horizontal heating electric furnaces which are 1/4 annular bodies, 16 sliding members can be arranged.
  • the openable horizontal heating electric furnace further includes two sets of pipeline positioning members 5, and the pipeline positioning member 5 is disposed on the circular plane heating electric furnace 3.3 and Between the fixed horizontal bottom heating electric furnaces 3.1 having a semi-circular body, the pipe positioning member 5 comprises an inner ring 5.1, an outer ring 5.2 and a plurality of sets of symmetric round bars 5.3, the inner ring 5.1 and the outer ring
  • the ring 5.2 is two sets of concentric all-steel ring rings of different diameters, and the plurality of sets of symmetric round bars 5.3 are disposed between the inner ring 5.1 and the outer ring 5.2 and are symmetrically distributed along the circumference.
  • the space portion formed by the inner ring 5.1, the outer ring 5.2 and the plurality of sets of symmetric round bars 5.3 of the pipe positioning member can be used as the feeding and discharging operation of the large driving pipe.
  • the inner ring 5.1 is connected to the pipe for connection.
  • the inner diameter of the inner ring 5.1 of the pipe positioning member matches the outer diameter of the large flange 2B of the pipe, and the inner ring 5.1 and the large flange 2B of the pipe in the pipe positioning member.
  • the openable and horizontal heating electric furnace further comprises four rotating fixed pulleys 3.5, and the four rotating fixed pulleys 3.5 are arranged On both sides of the outer ring 5.2 of the two sets of pipe positioning members 5.
  • the four rotating fixed pulleys 3.5 are a new firing process in which the enamel glass glaze layer of the starting pipe is heated while rotating.
  • the fixed horizontal bottom heating electric furnace 3.1 which is a semi-circular body and the two sets of 1/4 annular body openable horizontal heating electric furnace 3.2 are provided with a cavity wall of the whole inner cavity.
  • Concentric curved arc heat conducting plates 3e1, 3e2 made of heat resistant steel.
  • the concentric arc-shaped heat conducting plates 3e1, 3e2 are covered on the surface layer of the openable horizontal heating electric furnace to improve the uniform heating of the overall openable horizontal heating electric furnace.
  • the bismuth glass glaze with different crystallinity and the different firing temperature which are semi-circular
  • the fixed horizontal bottom heating electric furnace 3.1 and the two sets of 1/4 annular body openable horizontal heating electric furnace 3.2 are combined into a whole circular body horizontal heating electric furnace 3.4 corresponding to the inner wall and the outer wall of the pipe straight pipe body and
  • the microcrystalline enamel glass glaze layer of the overall outer structural assembly is fired, and the two sets of circular planar heating electric furnaces 3.3 are fired corresponding to the microcrystalline bismuth glass glaze layer on the large flange surface of the pipe.
  • the two temperature control systems which are combined by the integral toroidal horizontal heating electric furnace and the two-sided circular planar heating electric furnace, can effectively regulate the different firing temperatures of the microcrystalline enamel glass glaze layers which are different in the different structural parts of the pipeline.
  • the same firing temperature of the microcrystalline bismuth glass glaze layer of the same structural part is used to accurately perform the simultaneous integrated firing of the entire micro-crystalized glazed glaze layer of the same pipe.
  • the integral outer structural assembly refers to a pipe member disposed outside the straight pipe body, such as a reinforcing ring body, a reinforcing steel plate or a reinforced steel pipe fitting.
  • the inner semi-circumferential wall of the fixed horizontal bottom heating electric furnace 3.1 which is a semi-circular body is provided with a plurality of 1/2 annular grooves; the 1/2 annular groove
  • the middle winding electric heating belt 3b1; the inner side 1/4 circumference wall of the 1/4 annular body openable horizontal heating electric furnace 3.2 is provided with a plurality of 1/4 annular grooves; the 1/4 annular groove a winding electric heating belt 3b2; a heating cable 3b1 wound in the 1/2 annular groove and two winding electric heating belts 3b2 in the 1/4 annular groove are circumferentially connected to form a group of electric heating belts
  • the overall toroidal horizontal heating electric furnace 3.4 is composed of a plurality of sets of electric heating belts; the circular plane heating electric furnace 3.3 has a plurality of concentric circular grooves having different diameters on a circular plane; the concentric circular grooves are wound around A set of electric heating belts 3b3 are formed; each of the group of electric heating belt
  • the two temperature control systems which are combined by the integral toroidal horizontal heating electric furnace 3.4 and the two sets of circular planar heating electric furnaces 3.3, can each adjust the heating power, and accurately implement the different crystallized enamel glass glazes with different structural parts.
  • the different firing temperatures of the layers are the same as those of the same structural portion, and the same firing temperature of the microcrystalline enamel glass glaze layer is formed, and the entire micro-crystalized enamel glass glaze layer of the same pipe is integrally fired.
  • the electric cables 3b1, 3b2 and 3b3 are collectively referred to as a heating belt 3b, and the thermocouples 3c1, 3c2 and 3c3 are collectively referred to as a thermocouple 3c.
  • the set of thermocouples 3c1, 3c2, 3c3 are matched with a set of electric heating belts 3b1, 3b2, 3b3, and are disposed in the heating area of the group of electric heating belts for detecting the pipelines in the heating zone of the electric heating belt.
  • Glass glaze layer is heated by heat, concurrent a temperature signal;
  • the intelligent temperature program control/regulation/recorder device 6.1 is disposed outside the openable and horizontal heating furnace, and is connected to a group of thermocouples matched by the set of thermocouples, and is executed at Automatic printing, recording, archiving, and quality tracking during the firing process.
  • the intelligent temperature program control/regulation/recorder device stores a preset temperature or temperature control curve for receiving a temperature signal of the thermocouple, and adjusting the heating temperature of the heating cable after comparing with the preset temperature or the temperature control curve.
  • a horizontally long heating electric furnace with a length of 26 m and a diameter of 1.8 m was separately produced, and a large-sized microcrystalline bismuth glass pipe with a length of 25 m and a diameter of 1 m was developed.
  • the seismic strength is greatly enhanced, the large flange is not deformed, and the number of pinholes in the glass layer is 0.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Materials Engineering (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Heat Treatment Of Articles (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

一种大型微晶化搪玻璃管道,包括直筒管身(2),大法兰(2B)和增强圆环体(2a),直筒管身(2)的两端翻边形成所述大法兰(2B),增强圆环体(2a)与直筒管身(2)外侧圆周相紧密配作且焊接于所述大法兰(2B)内侧,直筒管身(2)的内壁(2A)和外壁(2C)、大法兰(2B)外侧以及增强圆环体(2a)外侧喷涂烧成微晶化搪玻璃釉层(1a)。管道抗磨耗性强,表面光滑,整体管道结构件不变形和抗震机械性能强。

Description

一种大型微晶化搪玻璃管道及其制造方法 技术领域
本发明涉及一种石油、天然气、化工、煤粒等介质输送管道及其制造方法,属于整体管道金属层与搪玻璃釉层结合牢固,抗腐蚀性强,抗磨耗性强,表面光滑,整体管道结构件不变形和抗震机械性能强,确保管道经久不腐蚀、流通舒畅,安全运行的大型微晶化搪玻璃油气输送的长线专用管道。
背景技术
石油天然气管道简称油气管道,是我国国家公共安全的重要组成部分,在国民经济中占有极为重要的战略地位,被称为国家重大生命线。据报导,我国现有油气长输管道约105km,集输管道约为3×105km,近几年国内将处于管道建设的高峰期,至“十二五”末期,我国油气长输管道总长度达到1.5×105km。
腐蚀是影响石油天然气管道可靠性和使用寿命的关键因素之一。近年来,开采石油、天然气集输和长输管道建设发展迅速,pH值变量大、输送介质成分复杂、腐蚀性强,磨损耗大,致使管道腐蚀问题日益突出。
还有管道外壁受土壤环境应力腐蚀开裂突发性事故和管道整体结构的变形等重大安全保障之技术质量难题。
青岛输油管道泄漏,维修突然爆炸。国家主席习近平发出重大指令:“强化安全生产措施,坚决杜绝此类事故”。
现行缓蚀剂技术、内涂层技术、复合管技术制成的管道,实为自身材质依附加于钢管内壁表面。油气管道在长期输送中,因管壁表面油气介质结污垢,需定期冲刷清洗,油气浪费大,输送效率低,且抗腐蚀、抗磨损性能差,抗机械强度低,以及环境应力腐蚀开裂和管道整体结构变形等安全保障,远不能满足油气介质长线管道的输送。
1990年由全国最具权威的研究部门立项研究煤粒由煤矿直送到发电厂长线输送的搪瓷管道,精心设计并制造了立式电加热炉和卧式电加热炉,还对应配套了自动温度控制装置。
立式加热电炉可不受管道大直径和特长度所限制,管道烧成后准直度保证,但管道内壁的搪玻璃釉层在高温(850-900℃)烧成中呈流动状态,上端薄下端厚,釉层均匀度差。
卧式加热电炉,管道进炉难、出炉难,因管道支撑烧架在加热炉内系为挡火物,整体搪玻璃釉层受热不均匀,致使烧成后的搪玻璃釉层的质量差;管道几次在长时间高温加热中引起管道以及两端法兰面变形量大,直接关联安装总工程的安全性和经济效益,且不符合现行 国标GB25025-2010(设备直径≥1000mm,最大最小直径差≤6mm,平面度公差≤2mm);还有卧式加热电炉直径须放大,电能耗增大;电炉易损坏等等。
由此可见应用立式和卧式电加热炉,因整体较长管道受热温度不均匀,极难突破长管道的制造,其整体搪玻璃釉层所存在严重的质量问题和管道整体结构以及两端法兰面变形。
经一年多时间的试制不适合煤粒长线管道输送,终止了项目的研究,20余年来仍未见大型搪玻璃管道的开发制造。
按一项工程2000公里推算,以管道长为5米,则安装联接点为40万个,如果管道长为25m,则安装联接点可减少至8万个。
按一项工程2000公里推算,管道搪玻璃有效面积达600万m2,按GB25025-2010国家制定的搪玻璃设备技术条件所规定的搪玻璃釉层有效面积≥89m2,针孔修补数为7个,则全工程管道的针孔数高达46万个。可以肯定:每一处针孔缺陷的存在,直接关联总投资高达几百亿人民币特大工程项目的安全运行和经济效益。
这是为什么适用石油输送管道必须是大型的长管道,整体搪玻璃釉层的质量必须优良的主要原因。
因此加热电炉的创新,制造技术和工艺的改革,必须全方位满足按管道工程线的需求和钢管制品的最长度(直径大于1m,可由2根钢管焊接组合为25m),制造不同规格且整体质量优良的大型微晶化搪玻璃管道,以减少全程干线管道之间的安装联接点,便于现场施工、安装,从而极大地提高了管道工程整体的质量、流通效果和安全运行。
发明内容
本发明的目的是:开发一种大型微晶化搪玻璃管道及其制造方法。
大型微晶化搪玻璃管道在金属与搪玻璃底釉的界面之间形成了丝网状坚强的密着层和微晶化搪玻璃釉优良的理化性能,可根据不同油气介质特定的需求,或耐酸、或耐碱、或耐温差急变、或增强耐磨耗性、或防范土壤环境应力腐蚀突发性事故和管道整体结构变形,应用调整微晶态和非晶态搪玻璃釉配方配比,结合先进的受控搪烧“核心技术”烧成工艺和搪玻璃的微晶化处理,并可为每一项油气管道工程线,尤其是同一根管道不相同结构部位应用调整制订提供相对应的各项理化性能需求的最高技术质量指标,以全方位提升增强保障全线管道的经久不腐蚀、流通舒畅和安全运行。
大型微晶化搪玻璃管道,可按现行油气管道铺设工程的需求和钢管制造的最长度,或由二根钢管(直径1.0~1.6m)焊接组合长度为25m的油气管道,以减少全程长线管道之间的安装联接点。
本发明第一方面提供一种大型微晶化搪玻璃管道,包括直筒管身、大法兰和增强圆环体,所述直筒管身的两端翻边形成所述大法兰,所述增强圆环体与所述直筒管身外侧圆周相紧密配作且焊接于所述大法兰内侧,所述直筒管身的内壁和外壁、所述大法兰以及以及所述增强圆环体外侧喷涂烧成微晶化搪玻璃釉层。
进一步的,所述增强圆环体与所述直筒管身外侧圆周之间呈圆周焊接环向焊接接头,所述增强圆环体与所述大法兰之间呈圆周焊接环向焊接接头。
进一步的,所述大型微晶化搪玻璃管道还包括加强钢筋板,所述加强钢筋板沿所述直筒管身的外侧圆周对称分布,所述加强钢筋板焊接于直筒管身外侧圆周,并与所述增强圆环体焊接,所述加强钢筋板外侧喷涂烧成微晶化搪玻璃釉层。所述加强钢筋板可为9~21组。
进一步的,所述大型微晶化搪玻璃管道还包括增强钢圆管件,所述增强钢圆管件沿所述直筒管身的外侧圆周对称分布并设置于二组加强钢筋板之间,所述增强钢圆管件两端分别与所述直筒管身的外壁和增强圆环体相焊接,所述增强钢圆管件外侧喷涂烧成微晶化搪玻璃釉层。所述增强钢圆管件可为3~6件。
进一步的,所述大型微晶化搪玻璃管道的微晶化搪玻璃釉层应用可开合特长卧式加热电炉与智能温度程序控制/调节/记录仪装置相组合的制造方法制备,智能温度程序控制/调节/记录仪装置的控温精度为±1℃,与所述可开合特长卧式加热电炉相组合,并结合实施边旋转边加热烧成工艺。
进一步的,所述可开合特长卧式加热电炉包括一组呈半圆环体的固定卧式底部加热电炉、二组呈1/4圆环体的可开合卧式加热电炉和二组圆平面加热电炉;所述二组呈1/4圆环体的可开合卧式加热电炉设置于呈半圆环体的固定卧式底部加热电炉的上部,在闭合状态下所述二组呈1/4圆环体的可开合卧式加热电炉与所述呈半圆环体的固定卧式底部加热电炉组成圆环体;所述二组圆平面加热电炉设置于所述呈半圆环体的固定卧式底部加热电炉和所述二组呈1/4圆环体的可开合卧式加热电炉内部的两端。
进一步的,所述呈半圆环体的固定卧式底部加热电炉和所述二组呈1/4圆环体的可开合卧式加热电炉组合成的整体圆环体卧式加热电炉对应于所述大型微晶化搪玻璃管道的直筒管身的内壁和外壁以及整体外结构组合件搪玻璃釉层的烧成,所述二组圆平面加热电炉对应于管道二端大法兰面上搪玻璃釉层的烧成。所述可开合特长卧式加热电炉的整体结构与管道造型基本相一致。整体外结构组合件是指设置于直筒管身外部的管道构件,例如增强圆环体、加强钢筋板和增强钢圆管件。
进一步的,所述直筒管身的内壁微晶化搪玻璃釉层、所述直筒管身的外壁和整体外结构 组合件微晶化搪玻璃釉层以及所述管道二端大法兰面的微晶化搪玻璃釉层的组成各不相同。
本发明的大型微晶化搪玻璃管道,以搪玻璃釉不可替代的优异的理化性能,结合微晶搪玻璃釉具有莫氏硬度高达8级以上的优势,可为每一项油气管道输送管道工程和按同一根管道不相同结构部位不相同理化性能特定的需求,应用调整微晶态与非晶态搪玻璃釉不相同配方配比的微晶化搪玻璃釉层,不相同的烧成温度。在管道直筒管身的外壁和整体外结构组合件以增强抗震机械强度的微晶态为主体的微晶化搪玻璃釉层;在管道直筒管身的内壁的深层以增强机械强度的微晶态为主体的微晶化搪玻璃釉层,在管道直筒管身的内壁的表层以耐腐蚀、表面光滑的非晶态为主体的微晶化搪玻璃釉层;在管道二端大法兰面以极大增强机械强度的微晶态为主体的微晶化搪玻璃釉层,为规避螺栓大力紧固导致大法兰面上搪玻璃釉层破裂,以全方位的提升增强保障全线大型微晶化搪玻璃油气管道经久不腐蚀、不磨耗、流通舒畅、安全运行,开创制造出以微晶态为主体的大型微晶化搪玻璃管道。
本发明第二方面提供一种微晶化搪玻璃管道的制造方法,其是开发创新与智能温度程序控制/调节/记录仪装置相结合的可开合特长卧式加热电炉,电炉整体造型结构与大型微晶化搪玻璃管道结构相近似,整体圆环体卧式加热电炉对应于管道直筒管身的内壁和外壁以及整体外结构组合件搪玻璃釉层的烧成,二组圆平面加热电炉对应于管道二端大法兰面上的搪玻璃釉层的烧成,其炉壁热电偶测量的炉体温度与管道内壁和管道二端大法兰面上搪玻璃面的受热温度由智能受控温控装置探索定位相对应固定的温度差值,结合实施管道的搪玻璃釉层在烧成过程中边旋转边加热的搪烧新工艺,精确的控制管道直筒管身和管道二端大法兰面上管道整体微晶化搪玻璃釉层的不相同组成微晶化搪玻璃釉的不相同烧成温度由智能受控温控装置各自独立调控加热功率,有效的实施同步一体烧成,制造出整体质量显著优于现行国标GB25025-2010的大型微晶化搪玻璃管道。
本发明的大型微晶化搪玻璃管道的制造方法,具体包括如下步骤:
1)制作管道构件:分别制作直筒管身和直筒管身的两端翻边形成的大法兰;
管道与管道之间通过环向焊接接头连接,所述环向焊接接头按JB/T4730进行X射线探伤,获得符合压力容器安全技术监察规程的管道构件,管道构件的钢板厚度按管道压力容器设计制造标准;
2)制作管道整体结构:在所述大法兰的内侧焊接增强圆环体,所述增强圆环体与所述直筒管身外侧圆周相紧密配作,在所述增强圆环体与所述直筒管身外侧圆周之间呈圆周焊接一组环向焊接接头,在所述增强圆环体与所述大法兰之间呈圆周焊接一组环向焊接接头,组合成增强大法兰部位的管道构件;
所述增强圆环体为确保大法兰面在多次高温烧成中不变形,其钢板厚度可按管道的公称直径的大小设定调整增厚;
3)制作加强钢筋板:在所述直筒管身外侧圆周焊接多组呈对称分布的加强钢筋板,所述加强钢筋板并与所述增强圆环体焊接;
所述加强钢筋板为9~21组,由管道直径大小所选定;所述增强圆环体结合9~21组对称加强钢筋板可完美提升管道大法兰公称压力和管口密封性能;
4)制作增强钢圆管件:在所述直筒管身外侧圆周焊接多组成对称分布且设置于二组加强钢筋板中间的增强钢圆管件,所述增强钢圆管件两端分别与所述直筒管身的外壁和增强圆环体相焊接;
所述增强钢圆管件为3~6件;增强钢圆管件,以极大的提升整体管道抗变形的强度;
5)对直筒管身的内壁、外壁、大法兰面、增强圆环体、加强钢筋板和增强钢圆管件(增强圆环体、加强钢筋板和增强钢圆管件组合为整体外结构组合件)进行搪玻璃底釉的喷涂;
6)对直筒管身的内壁和外壁、大法兰面、增强圆环体、加强钢筋板和增强钢圆管件(增强圆环体、加强钢筋板和增强钢圆管件组合为整体外结构组合件)进行微晶化搪玻璃面釉的喷涂;
微晶化搪玻璃面釉的组合按每项油气管道工程特定的理化性能各项最高技术质量指标的需求,由微晶态和非晶态搪玻璃釉不相同的配方和配比混合研磨后的釉浆;
7)采用可开合特长卧式加热电炉与智能温度程序控制/调节/记录仪装置相组合,结合实施边旋转边烧成工艺,将喷涂有搪玻璃釉的管道进行烧制,控制搪玻璃底釉与微晶化搪玻璃面釉,微晶化搪玻璃面釉与微晶化搪玻璃面釉之间受热温度一致,同步一体烧制;
应用具有智能温度程序控制/调节/记录仪装置与新开发创新可开合特长卧式加热电炉,将管道统体全部喷涂经干燥的搪玻璃釉层,实施受控搪烧“核心技术”,促成钢板与搪玻璃底釉之间形成最佳最坚固丝网状结构的密着层。为之后精确控制搪玻璃底釉与微晶化搪玻璃面釉,微晶化搪玻璃面釉与微晶化搪玻璃面釉之间实施同一受热温度,同步一体烧成打下基础。以最大限度的彻底根除各类隐患缺陷,达到包括针孔数为0的最高质量指标;
所述受控搪烧“核心技术”是指,在管道的统体搪玻璃底釉烧制时,实施中温预烧、高温烧结、保温阶段的受控搪烧工艺。烧成温度可为室温~950℃,全部烧成时间为5-6h;
8)采用步骤7)的烧制方法,对所述管道反复搪烧多次,且每次搪烧前均先对管道喷涂搪玻璃釉;
大型微晶化搪玻璃管道采用结合由智能温度程序控制/调节/记录仪装置的新开发创新的 可开合特长卧式加热电炉对所述管道的搪玻璃釉层反复多次搪烧,且每次搪烧前均先对管道的统体进行搪玻璃釉层的喷涂干燥后再烧成;
9)将末次烧制好的管道按特定降温曲线随炉冷却。
特定降温曲线可按微晶化搪玻璃釉层软化态转化为固化态,控制在6~8h,由炉温650℃缓慢冷却至150℃。
步骤5)、6)、7)、8)所用的搪玻璃底釉为现有技术中常规的釉浆,含有微晶化的搪玻璃面釉为由微晶态和非晶态搪玻璃釉不相同配比混合研磨后的釉浆。较佳的,可应用全自动喷涂釉浆设备均匀的喷涂搪玻璃釉浆。
步骤7)、8)和9)中,应用具有智能温度程序控制/调节/记录仪装置与新开发创新的可开合特长卧式加热电炉,系统的测量、控制精度可达±1℃,可全面精确控制并实现管道的搪玻璃釉层最佳搪烧工艺。严格遵循受控搪烧“核心技术”,对升温、保温、降温的每一个阶段的特定温度进行精确的控制,由计算机执行搪烧工艺曲线,记录、打印、存档。
进一步的,所述步骤5)中,对直筒管身的内壁和外壁、大法兰面、增强圆环体、加强钢筋板和增强钢圆管件进行搪玻璃底釉的喷涂,其执行受控搪烧“核心技术”,可精密的调控中温预烧、保温、高温烧成,促成钢材外壁与搪玻璃底釉之间形成丝网状结构坚固的密着层。
进一步的,搪玻璃釉以其优异理化性能,结合微晶搪玻璃釉具有莫氏硬度高达8级以上的优势,可按每项油气管道工程线,尤其是同一根管道不相同结构部位,或耐酸、或耐碱、或耐磨耗、或增强抗震机械强度特定理化性能的需求,应用调整相对应的微晶态和非晶态搪玻璃釉的配方和混合配比,为全线油气管道工程,专项制定以流通舒畅、经久不腐蚀、全方位提升增强保障运行安全为第一最高技术质量指标。
进一步的,所述直筒管身的内壁前几层深层处以微晶态为主体的微晶化搪玻璃釉的喷涂和烧成,以极大的增强机械强度,后几层之表面层以非晶态为主体的微晶化搪玻璃釉的喷涂和烧成,以提升表面光滑、耐腐蚀、耐磨耗。
进一步的,所述直筒管身的外壁、所述增强圆环体、加强钢筋板和增强钢圆管件以微晶态为主体的微晶化搪玻璃釉的喷涂和烧成,以提升耐腐蚀性和抗震机械强度。
进一步的,所述管道二端大法兰面以微晶态为主体的微晶化搪玻璃釉的喷涂和烧成,以极大增强机械强度。
进一步的,所述步骤7)中,所述可开合特长卧式加热电炉结合有智能温度程序控制/调节/记录仪装置,所述可开合特长卧式加热电炉包括一组呈半圆环体的固定卧式底部加热电炉、二组呈1/4圆环体的可开合卧式加热电炉和二组圆平面加热电炉;所述二组呈1/4圆环体的 可开合卧式加热电炉设置于呈半圆环体的固定卧式底部加热电炉的上部,在闭合状态下所述二组呈1/4圆环体的可开合卧式加热电炉与所述呈半圆环体的固定卧式底部加热电炉组成圆环体;所述二组圆平面加热电炉设置于所述呈半圆环体的固定卧式底部加热电炉和所述二组呈1/4圆环体的可开合卧式加热电炉内部的两端。
进一步的,所述二组呈1/4圆环体的可开合卧式加热电炉选自以下可开合的机械结构装置之任一:
可开合的机械结构装置之一:
在所述二组呈1/4圆环体的可开合卧式加热电炉钢制外壳二端的底部设置4组以上转动连接部件,且在所述二组呈1/4圆环体的可开合卧式加热电炉钢制外壳圆环体上设置4组以上开合部件;
可开合的机械结构装置之二:
在所述二组呈1/4圆环体的可开合卧式加热电炉钢制外壳的水平底部设置滑动部件,所述二组呈1/4圆环体的可开合卧式加热电炉的两侧设有供所述滑动部件水平滑动的水平滑轨。
进一步的,所述可开合特长卧式加热电炉还包括二组管道定位件,所述管道定位件设置于所述圆平面加热电炉和所述呈半圆环体的固定卧式底部加热电炉之间,所述管道定位件包括内圆环、外圆环和多组对称圆钢筋,所述内圆环和外圆环为两组直径不相同的同心全钢件圆环,所述多组对称圆钢筋设置于所述内圆环和外圆环之间且沿圆周对称分布。更进一步的,所述管道定位件的内圆环的内直径与管道大法兰的外直径相匹配相连接。所述管道定位件为可拆卸,所述管道定位件的外圆环和多组对称圆钢筋形成的空间部位可作为大行车起吊管道的进炉与出炉运行操作。
更进一步的,所述可开合特长卧式加热电炉还包括4个旋转定滑轮,所述4个旋转定滑轮设置于所述二组管道定位件的外圆环的两侧。所述4个旋转定滑轮是启动管道的搪玻璃釉层在烧成过程中实施边旋转边加热的烧成新工艺。旋转定滑轮的轴承件定位于可开合特长卧式加热电炉炉体外,旋转定滑轮可由电机驱动自转,通过管道大法兰带动整体管道旋转,从而实现边旋转边加热的烧成新工艺。
更进一步的,所述旋转定滑轮为圆柱齿轮,所述可开合特长卧式加热电炉还包括4个圆柱齿轮,所述4个圆柱齿轮设置于所述二组管道定位件的外圆环的两侧。圆柱齿轮的轴承件定位于可开合特长卧式加热电炉炉体外,圆柱齿轮可由电机驱动,通过管道大法兰带动整体管道旋转,从而实现边旋转边加热的烧成新工艺。
更进一步的,二组圆平面加热电炉对应于管道二端大法兰面上的以微晶态为主体的微晶 化搪玻璃釉层的烧成,带动二组管道定位件旋转的4个旋转定滑轮和智能温度程序控制/调节/记录仪装置,控温精度为±1℃相结合,全方位完美符合微晶搪玻璃特定高标准烧成工艺的需求,创新制造出特大特长、品质优异、运行安全大型微晶化搪玻璃油气管道。
更进一步的,所述呈半圆环体的固定卧式底部加热电炉和所述二组呈1/4圆环体的可开合卧式加热电炉整体内腔的腔壁设有由耐热钢制作的同中心轴弧形导热板。所述同中心轴弧形导热板复罩于所述可开合特长卧式加热电炉的表层,以完善提升整体可开合特长卧式加热电炉的发热均匀。
进一步的,所述呈半圆环体的固定卧式底部加热电炉和所述二组呈1/4圆环体的可开合卧式加热电炉组合成整体圆环体卧式加热电炉对应于管道直筒管身的内壁和外壁以及整体外结构组合件的微晶化搪玻璃釉层烧成,二组圆平面加热电炉对应管道二端大法兰面上的微晶化搪玻璃釉层烧成,可根据同一根管道不相同结构部位特定理化性能和高标准技术质量的需求,应用调整相对应不相同的微晶化搪玻璃釉和不相同的烧成温度。
进一步的,所述呈半圆环体的固定卧式底部加热电炉的内侧半周壁设有多个1/2环形凹槽;所述1/2环形凹槽中绕制电热带;所述呈1/4圆环体的可开合卧式加热电炉的内侧1/4周壁设有多个1/4环形凹槽;所述1/4环形凹槽中绕制电热带;所述1/2环形凹槽中绕制的电热带和二个所述1/4环形凹槽中绕制电热带呈圆周相连接组合成一组电热带,所述整体圆环体卧式加热电炉由多组电热带所组成;所述圆平面加热电炉的圆平面上设有多圈直径不相同的同心圆凹槽;所述同心圆凹槽内绕制一组电热带;所述各组电热带均各自连接一控温系统,所述控温系统包括一组热电偶和智能温度程序控制/调节/记录仪装置。由整体圆环体卧式加热电炉和二组圆平面加热电炉所组合的二大控温系统,均可各自调控加热功率,精确实施管道不相同结构部位不相同微晶化搪玻璃釉层的不相同的烧成温度与同一结构部位相同微晶化搪玻璃釉层的同一烧成温度,同一根管道整体微晶化搪玻璃釉层的同步一体烧成。
更进一步的,所述一组热电偶与一组电热带匹配,并设置于该组电热带的加热区域内,用于检测所述电热带加热区域内的管道微晶化搪玻璃釉层受热温度,并发出温度信号;所述智能温度程序控制/调节/记录仪装置设置于所述可开合特长卧式加热电炉外,与所述一组热电偶匹配的一组电热带相连接,并执行在烧成过程中自动打印、记录、存档、质量跟踪。
更进一步的,由整体圆环体卧式加热电炉和二组圆平面加热电炉组合成二大控温系统,各自独立连接一组电热带和一组相对应的热电偶,分别与所述智能温度程序控制/调节/记录仪装置相组合成各自独立调控加热功率、设定温控精度为±1℃,精确实施管道不相同结构部位,不相同组成的微晶化搪玻璃釉层不相同的烧成温度,同一根管道不相同组成的整体微晶化搪 玻璃釉层的同步一体烧成。
所述智能温度程序控制/调节/记录仪装置储存有一预设温度或温控曲线,用于接收热电偶的温度信号,在与预设温度或温控曲线比较后调控电热带的加热温度。
由于每组电热带均可独立匹配的控温系统,因此各组电热带的加热功率均可独立调控。智能温度程序控制/调节/记录仪装置,以精确的实现温度预设、温度控制与自动记录。
所述的可开合特长卧式加热电炉的特征之一:包括一组呈半圆环体的固定卧式底部加热电炉、二组呈1/4圆环体的可开合卧式加热电炉、二组圆平面加热电炉,所述二组呈1/4圆环体的可开合卧式加热电炉设置于所述呈半圆环体的固定卧式底部加热电炉的上部,所述二组圆平面加热电炉设置于所述呈半圆环体的固定卧式底部加热电炉和所述二组呈1/4圆环体的可开合卧式加热电炉的两端。进一步的,在所述二组呈1/4圆环体的可开合卧式加热电炉钢制外壳二端的底部设置4组以上转动连接部件,且在所述二组呈1/4圆环体的可开合卧式加热电炉钢制外壳圆环体上设置4组以上开合部件,执行所述二组呈1/4圆环体的可开合卧式加热电炉的开合;或者,在所述二组呈1/4圆环体的可开合卧式加热电炉钢制外壳的水平底部设置滑动部件,所述二组呈1/4圆环体的可开合卧式加热电炉的两侧设有供所述滑动部件水平滑动的水平滑轨,执行所述二组呈1/4圆环体的可开合卧式加热电炉的开合。
所述的可开合特长卧式加热电炉的特征之二:所述呈半圆环体的固定卧式底部加热电炉和所述二组呈1/4圆环体的可开合卧式加热电炉整体内腔的腔壁设有由耐热钢制作的同中心轴弧形导热板,所述同中心轴弧形导热板复罩于所述可开合特长卧式加热电炉的表层,以完善提升整体加热电炉的发热均匀。结合应用智能温度程序控制/调节/记录仪装置,以极大的提升直筒管身内壁和外壁微晶化搪玻璃釉层同一受热温度和同步一体烧成大型微晶化搪玻璃管道的整体质量。
所述的可开合特长卧式加热电炉的特征之三:在所述呈半圆环体的固定卧式底部加热电炉和所述二组呈1/4圆环体的可开合卧式加热电炉的两端设置有二组圆平面加热电炉,智能温度程序控制/调节/记录仪装置,以控制管道二端大法兰面上的微晶化搪玻璃釉同一受热温度和同步一体烧成。
所述可开合特长卧式加热电炉的整体结构造型与所述管道整体造型结构相匹配一致,所述整体圆环体卧式加热电炉(一组呈半圆环体的固定卧式底部加热电炉和二组呈1/4圆环体的可开合卧式加热电炉相组合)和二侧圆平面加热电炉分别对应于管道的直筒管身和二端翻边大法兰面的微晶化搪玻璃釉层。
所述的智能温度程序控制/调节/记录仪装置与可开合特长卧式加热电炉,系统的控温精度 为±1℃,科学精确的全面的实施中温预烧、高温烧制、保温、分阶段受控搪烧的“核心技术”,可严格遵循钢材自身的物理化学反应,钢材与搪玻璃底釉、搪玻璃底釉与微晶化搪玻璃面釉、微晶化搪玻璃面釉与微晶化搪玻璃面釉之间的最佳、最完美的物理化学反应的实现与管道铁胚之间的牢固结合,致密光滑,以最大限度的彻底根除搪玻璃层中各类缺陷包括针孔数为0的最高质量指标,极大地提高大型微晶化搪玻璃管道的整体质量和安全运行。
总体而言,本发明的有益效果如下:
本发明属于整体管道抗腐蚀性强,抗磨耗性强,表面光滑,流通舒畅,整体管道结构件不变形,抗震性强,发挥了现行任何油气管道件不可替代的重要作用,确保管道工程安装联接点少,密封性能好,做大做长,经久不腐蚀,流通舒畅,品质优异,安全运行的大型微晶化搪玻璃油气长线输送的专用管道。
本发明大型微晶化搪玻璃管道,其每一根管道结构件的设计,可按TSGD0001-2009《压力管道安全技术监察规程——工业管道》的基本规定设计制造管道整体结构件。所述的在管道二端翻边成形的大法兰内侧,分别在其内侧焊接一件与之相配的增强圆环体,所述的管道整体结构件还包括多组对称加强钢筋板,所述的多组对称加强钢筋板设于增强圆环体和管道的外壁,并沿管道外壁的圆周呈多组对称焊接而成,以显著提升管道大法兰面的公称压力和密封性能。进一步所述的管道结构件,还包括几组整体对称增强钢圆管件,设置于管道二端大法兰面增强圆环体,并定位于多组对称加强钢筋板之间,和管道的外壁呈轴向整体对称焊接而成,以显著提升管道二端大法兰面的公称压力和整体管道抗不变形的性能。所述的整体管道结构件,可确保经多次高温烧成后绝不变形,以完美提升大法兰面的公称压力和密封性能,以及整体管道绝不变形,提升增强抗震性能的机械强度和安全运行。
搪玻璃以其优异的理化性能,结合微晶搪玻璃层具有莫氏硬度高达8级以上的优势,为当今学科技术在与管道铁胚的结合是任何材料介质复合层无可替代的、唯一的、最理想、最完美的制作油气管道的介质材料。确保管道内壁表面经久不腐蚀、不磨耗;内壁深层和管道二端大法兰面以极强的抗震机械强度;管道外壁不腐蚀、不剥离;整体管道结构不变形和极强的抗震机械强度。确保大型微晶化搪玻璃管道经久不腐蚀、不磨耗、流通舒畅、安全运行。
本发明的大型微晶化搪玻璃管道,以流通舒畅、经久不腐蚀和安全运行为第一技术质量指标,可为每一项油气管道工程线特别是同一根管道不相同结构部位,或耐酸、或耐碱、或提升耐磨耗性、或增强抗震性机械强度的特定需求,应用调整制订相对应的各项理化性能需求最高技术质量指标的微晶化搪玻璃釉的不同配方配比,不相同的烧成温度。成功的突破了油气输送介质成分复杂,pH值变化大,所面临更加严重腐蚀的趋势以及土壤环境应力腐蚀的 开裂,抗震机械强度差,管道整体变形,所面临的管道严重腐蚀和安全保障运行问题日益突出。
本发明的大型微晶化搪玻璃管道,以搪玻璃釉不可替代的优异的理化性能,结合微晶搪玻璃釉具有莫氏硬度高达8级以上的优势,可为每一项油气输送管道工程的特定需求,应用调整相对应微晶态和非晶态搪玻璃不相同的比例的混合配比,不相同的烧成温度,进一步所述的在同一根管道内壁的深层可喷涂烧成的以增强机械强度的微晶态为主体的微晶化搪玻璃釉层,在管道内壁的表层可喷涂烧成以耐腐蚀、耐磨耗、表面光滑的非晶态为主体的微晶化搪玻璃釉层;在管道的外壁可喷涂烧成的以抗震机械强度和耐蚀的微晶态为主体的微晶化搪玻璃釉层;在管道二端大法兰面上可喷涂烧成以极大增强机械强度的微晶态为主体的微晶化搪玻璃釉层,为规避螺栓大力紧固导致大法兰面上微晶化搪玻璃釉层破裂,以全方位的提升增强保障全线大型微晶化搪玻璃油气管道经久不腐蚀、不磨耗、流通舒畅、安全运行。
本发明创新的技术核心和重大突破是一组可开合特长卧式加热电炉,结合管道的微晶化搪玻璃釉在加热烧成过程中实施边旋转边加热的烧成新工艺,制造出直径大于1m长度大于25m品质优异的大型微晶化搪玻璃管道。管道的进炉和出炉,用二部大行车同步运行操作,只需打开上部二组呈1/4圆环体的可开合卧式加热电炉,先用一台行车,先将已加热烧成的搪玻璃管道吊装出电炉,后一部行车将待需加热烧成的搪玻璃管道吊入电炉内,最后关闭卧式加热电炉,操作运行方便,高效。可称之为唯一的、不可替代的、行之有效的高效电加热炉,这是搪玻璃工业发展史上的重大突破。
本发明应用开发创新的可开合特长卧式加热电炉,结合与每一组电热带,一组热电偶相连接的智能温度程序/调节/记录仪均可独立调控加热功率,管道的微晶化搪玻璃釉层在烧成中实施缓慢自转,系统的控温精度为±1℃,以最大限度的实施同一根管道不相同结构部位的不相同组合微晶化搪玻璃釉的不相同烧成温度与同一结构部位相同组合微晶化搪玻璃釉的同一烧成温度,同一根管道整体微晶化搪玻璃釉层的同步一体烧成。结合受控搪烧“核心技术”新工艺,向着最大限度的彻底根除搪玻璃层中暗泡、裂纹、流瓷、爆瓷等各类隐患缺陷,包括针孔数为0的最高质量指标深化发展,极大的提升了大型微晶化搪玻璃管道的整体质量,显著增长产品的使用寿命和安全运行,这又属于搪玻璃工业发展史上的重大突破。
可开合特长卧式加热电炉,其特征之一:设置二组呈1/4圆环体或移动开合或转动开合加热电炉的机械装置,顺利的解决了特大特长搪玻璃管道进出炉操作运行之难题以及由此引伸的二项重大突破;其特征之二:由一组呈半圆环体的固定卧式底部加热电炉和二组呈1/4圆环体的可开合卧式加热电炉组合成的整体圆环体加热电炉对应管道直筒身整体微晶化搪玻 璃釉层的烧成;二组圆平面电炉对应于管道二端大法兰面的微晶化搪玻璃釉层的烧成,精确实现了同一根管道不相同结构部位不相同理化性能特定需求不相同组合微晶化搪玻璃釉层不相同的烧成温度;其特征之三:在加热电炉内腔的内腔底部设置了4个可启动管道二端自身定位件缓慢旋转的旋转定滑轮,完美的确保了管道整体和二端法兰面绝不变形,和管道整体微晶化搪玻璃面的受热均匀。尤指二组固定圆平面加热电炉对应于管道二端大法兰面上的以微晶态为主体的搪玻璃釉层,自微晶搪玻璃发明以来,因烧成温度幅度小,搪玻璃釉易流淌,极难制造出稍大件搪玻璃设备。综合可开合加热电炉的二大优势,由高精度控温系统和实施边旋转边烧成新工艺,可全方位完美的符合微晶搪玻璃釉特定的高标准的烧成工艺的需求,为更新换代应用微晶搪玻璃可成倍增强抗机械强度和热性能,结合非晶态高硅氧搪玻璃优良的理化性能相结合的微晶化搪玻璃,开创制造出新一代大型微晶化搪玻璃设备,强力推动当代搪玻璃工业的大革命,这就是可开合特长卧式加热电炉,为开发制造特大特长、品质优良,运行安全大型微晶化搪玻璃管道,唯一的,不可取代的重大突破。
大型微晶化搪玻璃管道的制造,其特征之一:可为每项油气管道工程不同理化性能,或耐酸、或耐碱、或提升耐磨耗性、或增强抗震机械强度的特定需求,设计制定相对应的各项技术质量指标。全方位的适应当前石油开采介质成分复杂,pH值变化量大,土壤环境应力严重腐蚀开裂所面临的管道安全运行重大的技术质量问题。其特征之二:可为同一根管道不相同结构部位不相同理化性能的特定需求,应用调整不相同的微晶化搪玻璃釉的配方和配比,在管道内壁的深层应以增强机械强度的微晶态为主体的微晶化搪玻璃釉,在内壁的表层应以耐腐蚀、耐磨耗、表面光滑的非晶态为主体的微晶化搪玻璃釉。在管道的外壁应以抗震机械强度和耐腐蚀的微晶态为主体的微晶化搪玻璃釉,在管道二端法兰面应以极大的增强机械强度的微晶态为主体的微晶化搪玻璃釉。其特征之三:搪玻璃釉以其优异的理化性广泛应用与制造,化工、制药容器设备是当今科学技术唯一的,最完美,最理想管道铁胎表层的复合介质材料,结合微晶搪玻璃釉具有莫氏硬度高达8级以上的优势,可确保管道经久不腐蚀,不磨耗,表面光滑,流通舒畅,抗震机械性强和安全运行。特别是大型微晶化搪玻璃油气管道工程的开发,按每项工程2000公里,每根管道长25m计算,就80000处法兰面连接点。每一处管道法兰面搪玻璃机械强度质量指标的实现和保证,直接关联油气管道的安全运行。其特征之四:大型微晶化搪玻璃管道的制造,结合应用智能温度程序控制/调节/记录装置系统的控温精度为±1℃,可各自独立调控加热功率,精确的实施管道不相同结构部位不相同组合微晶化搪玻璃釉层的不相同烧成温度与同一结构部位相同组合微晶化搪玻璃釉层的同一烧成温度,同一根管道整体微晶化搪玻璃釉层的同步一体烧成。结合实施受控搪烧“核心技术”,最 大限度的彻底根除搪玻璃釉层中暗泡、裂纹、流瓷、爆瓷等各类隐患缺陷。以极大的提升我国制定的新标准GB25025-2010《搪玻璃设备技术条件》规定标准检测,确保管道大法兰面不变形和搪玻璃釉层针孔数为0的最高质量指标深化发展。其特征之五:按我国现行GB25025-2010《搪玻璃设备技术条件》制定的各项技术质量指标为标准,发明人按油气管道工程特定理化性能之需求,引入应用可极大提高机械强度和热性能的微晶搪玻璃釉,起草编制《搪玻璃管道技术条件》以极大的增强抗震机械强度为最高质量指标准则下的各项理化性能,包括管道大法兰不变形和搪玻璃釉层针孔数为“0”的新指标。确保管道经久不腐蚀,不磨耗,表面光滑,流通舒畅,抗震机械强度高,安全运行全方位的优势,全面取代现行包括早期建设已严重腐蚀的种种管道,安全高效推动我国制造发明的大型微晶化搪玻璃管道发展成为世界第一大国。
附图说明
图1为大型微晶化搪玻璃管道的微晶化搪玻璃釉层示意图;
图2为大型微晶化搪玻璃管道的管道整体结构示意图;
图2a1为大法兰2B上的增强圆环体2a与多组对称加强钢筋板2b和多组增强钢圆管件2c,呈圆周对称组合焊接结构示意图;
图2a2为大法兰2B和二组增强圆环体2a,呈圆环焊接并沿管道外壁圆周焊接结构示意图;
图2a3为多组对称加强钢筋板2b分别于大法兰二端增强圆环体2a相对称均匀分布焊接结构示意图;
图2a4为多组增强钢圆管件2c和管道二端增强圆环体2a沿管道外壁呈轴向且分布于多组加强钢筋板2b之中间,整体焊接结构示意图;
图2a5为增强圆环体2a与直筒管身2外侧圆周之间呈圆周焊接环向焊接接头,增强圆环体2a与大法兰2B之间呈圆周焊接环向焊接接头局部放大示意图;
图3为可开合特长卧式加热电炉整体结构的示意图;
图3A为二组呈1/4圆环体的可开合卧式加热电炉的可开合结构的示意图;
图3A1为呈半圆环体的固定卧式底部加热电炉与二组圆平面加热电炉相组合结构与启动二端管道定位件缓慢旋转的四个旋转定滑轮的示意图;
图3B为可开合特长卧式加热电炉,由转动连接部件与开合部件相组合结构之一的示意图;
图3C为可开合特长卧式加热电炉,由滑动部件与水平滑轨相组合结构之二的示意图;
图4为大型微晶化搪玻璃管道在可开合特长卧式加热电炉烧成过程中出炉和进炉,且由转动连接部件与开合部件相组合的结构的示意图;
图4A为大型微晶化搪玻璃管道在可开合特长卧式加热电炉中烧成整体结构示意图;
图5为管道微晶化搪玻璃釉层在烧成过程中结合吊装进入卧式加热电炉的二组管道定位件与管道自身紧定连接,置于4个旋转定滑轮上的结构示意图;
图5A为管道微晶化搪玻璃釉层在烧成过程中结合吊装进入卧式加热电炉的二组管道同心圆管道定位件与管道自身连接的结构示意图;
图5B为管道微晶化搪玻璃釉层在烧成过程中结合吊装进入卧式加热电炉的二组管道定位件与管道大法兰紧定连接的局部结构示意图;
图6为智能温度程序控制/调节/记录仪装置(PID)与热电偶组合即控温系统结构示意图。
附图标记:
1:大型微晶化搪玻璃管道;
1a:微晶化搪玻璃釉层;
1a1:管道内壁微晶化搪玻璃釉层;
1a2:管道大法兰面微晶化搪玻璃釉层;
1a3:管道外壁和管道整体外结构组合件微晶化搪玻璃釉层;
2:直筒管身;
2A:直筒管身的内壁;
2B:大法兰;
2B1~2B3、2B5~2B7、2B9~2B11:管道大法兰面的连接孔;
2B4、2B8、2B12:管道大法兰面上的螺栓孔;
2C:直筒管身的外壁;
2C1:整体外结构组合件;
2a:增强圆环体;
2b、2b1~2b9:加强钢筋板;
2c、2c1~2c3:增强钢圆管件;
2e:环向焊接接头;
3:可开合特长卧式加热电炉;
3.1:一组呈半圆环体的固定卧式底部加热电炉;
3.2:二组呈1/4圆环体的可开合卧式加热电炉;
3.3:固定于整体圆环体卧式加热电炉的两端的圆平面加热电炉;
3.4:整体圆环体卧式加热电炉,由呈半圆环体的固定卧式底部加热电炉3.1和二组呈1/4圆环体的可开合卧式加热电炉3.2相组合;
3.5:带动管道微晶化搪玻璃釉层在烧成过程中实施缓慢自转的两侧4个旋转定滑轮,其轴承件定位于可开合特长卧式加热电炉炉体外;
3a:耐火材料层;
3a1、3a2、3a3:耐火材料层;
3b:电热带;
3b1、3b2、3b3:电热带;
3c:热电偶;
3c1、3c2、3c3:热电偶;
3d:加热电炉的保温材料层;
3d1、3d2、3d3:加热电炉的保温材料层;
3e:同中心轴弧形导热板;
3e1、3e2:同中心轴弧形导热板;
3B1:转动连接部件;
3B2:开合部件;
3C1:滑动部件;
3C2:水平滑轨;
5:管道定位件;
5.1:管道定位件的内圆环;
5.2:管道定位件的外圆环;
5.3:多组对称圆钢筋;
5.4:三件连接钢板;
6.1:智能温度程序控制/调节/记录仪装置(PID)。
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加 以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。
此外应理解,本发明中提到的一个或多个方法步骤并不排斥在所述组合步骤前后还可以存在其他方法步骤或在这些明确提到的步骤之间还可以插入其他方法步骤,除非另有说明;还应理解,本发明中提到的一个或多个设备/装置之间的组合连接关系并不排斥在所述组合设备/装置前后还可以存在其他设备/装置或在这些明确提到的两个设备/装置之间还可以插入其他设备/装置,除非另有说明。而且,除非另有说明,各方法步骤的编号仅为鉴别各方法步骤的便利工具,而非为限制各方法步骤的排列次序或限定本发明可实施的范围,其相对关系的改变或调整,在无实质变更技术内容的情况下,当亦视为本发明可实施的范畴。
如图1和图2所示的大型微晶化搪玻璃管道1,包括直筒管身2、大法兰2B和增强圆环体2a,所述直筒管身2的两端翻边形成所述大法兰2B,所述增强圆环体2a与所述直筒管身2外侧圆周相紧密配作且焊接于所述大法兰2B内侧,所述直筒管身2的内壁2A和外壁2C、所述大法兰2B外侧以及所述增强圆环体2a外侧喷涂烧成微晶化搪玻璃釉层1a。
如图2a1、图2a2和图2a5和所示,所述增强圆环体2a与所述直筒管身2外侧圆周之间呈圆周焊接环向焊接接头2e,所述增强圆环体2a与所述大法兰2B之间呈圆周焊接环向焊接接头2e。
如图2a1和2a3所示,所述大型微晶化搪玻璃管道还包括加强钢筋板2b,所述加强钢筋板2b沿所述直筒管身2的外侧圆周对称分布,所述加强钢筋板2b焊接于直筒管身2外侧圆周,并与所述增强圆环体2a焊接,所述加强钢筋板2b外侧喷涂烧成微晶化搪玻璃釉层1a3。所述加强钢筋板可为9~21组,图2a1显示加强钢筋板共有9组:2b1~2b9。
如图2a1和2a4所示,所述大型微晶化搪玻璃管道还包括增强钢圆管件2c,所述增强钢圆管件2c沿所述直筒管身2的外侧圆周对称分布并设置于二组加强钢筋板之间,所述增强钢圆管件2c两端分别与所述直筒管身的外壁2C和增强圆环体2a相焊接,所述增强钢圆管件2c外侧喷涂烧成微晶化搪玻璃釉层1a3。所述增强钢圆管件可为3~6件,图2a1显示增强钢圆管件共有3件:2c1、2c2和2c3。
所述大型微晶化搪玻璃管道的开发和制造应用可开合特长卧式加热电炉与智能温度程序控制/调节/记录仪装置相组合的制造方法制备,智能温度程序控制/调节/记录仪装置的控温精度为±1℃,与所述可开合特长卧式加热电炉相组合,并结合实施边旋转边加热烧成工艺。
所述可开合特长卧式加热电炉3包括一组呈半圆环体的固定卧式底部加热电炉3.1、二组呈1/4圆环体的可开合卧式加热电炉3.2和二组圆平面加热电炉3.3;所述二组呈1/4圆环体 的可开合卧式加热电炉3.2设置于呈半圆环体的固定卧式底部加热电炉3.1的上部,在闭合状态下所述二组呈1/4圆环体的可开合卧式加热电炉3.2与所述呈半圆环体的固定卧式底部加热电炉3.1组成圆环体;所述二组圆平面加热电炉3.3设置于所述呈半圆环体的固定卧式底部加热电炉3.1和所述二组呈1/4圆环体的可开合卧式加热电炉3.2的两端。
所述呈半圆环体的固定卧式底部加热电炉3.1和所述二组呈1/4圆环体的可开合卧式加热电炉3.2相组合成的整体圆环体卧式加热电炉3.4对应于所述大型微晶化搪玻璃管道的直筒管身2的内壁2A和外壁2C以及整体外结构组合件2C1微晶化搪玻璃釉层1a1、1a3的烧成,所述二组圆平面加热电炉3.3对应于管道二端大法兰2B面上微晶化搪玻璃釉层1a2的烧成。
所述直筒管身的内壁2A微晶化搪玻璃釉层1a1、所述直筒管身的外壁2C和整体外结构组合件2C1微晶化搪玻璃釉层1a3以及所述管道二端大法兰2B面的微晶化搪玻璃釉层1a2的组成各不相同。本发明的大型微晶化搪玻璃管道,以搪玻璃釉不可替代的优异的理化性能,结合微晶搪玻璃釉具有莫氏硬度高达8级以上的优势,可为每一项油气管道输送管道工程和按同一根管道不相同结构部位不相同理化性能特定的需求,应用调整微晶态与非晶态搪玻璃釉不相同配方配比的微晶化搪玻璃釉层,不相同的烧成温度。在管道直筒管身2的外壁2C和整体外结构组合件2C1以增强抗震机械强度的微晶态为主体的微晶化搪玻璃釉层1a3;在管道直筒管身2的内壁2A的深层以增强机械强度的微晶态为主体的微晶化搪玻璃釉层1a1,在管道直筒管身2的内壁2A的表层以耐腐蚀、表面光滑的非晶态为主体的微晶化搪玻璃釉层1a1;在管道二端大法兰2B面以极大增强机械强度的微晶态为主体的微晶化搪玻璃釉层1a2,为规避螺栓大力紧固导致大法兰面上搪玻璃釉层破裂,以全方位的提升增强保障全线大型微晶化搪玻璃油气管道经久不腐蚀、不磨耗、流通舒畅、安全运行,开创制造出以微晶态为主体的大型微晶化搪玻璃管道。
大型微晶化搪玻璃管道的制造方法,具体包括如下步骤:
1)制作管道构件:分别制作直筒管身2和直筒管身的两端翻边形成的大法兰2B;
管道铁胚之间的钢管焊接通过环向焊接接头连接,所述环向焊接接头按JB/T4730进行X射线探伤,获得符合压力容器安全技术监察规程的管道构件,管道构件的钢板厚度按管道压力容器设计制造标准;
2)制作管道整体结构:在所述大法兰的内侧焊接增强圆环体2a,所述增强圆环体2a与所述直筒管身2外侧圆周相紧密配作,在所述增强圆环体2a与所述直筒管身2外侧圆周之间呈圆周焊接一组环向焊接接头,在所述增强圆环体2a与所述大法兰2B之间呈圆周焊接一组环向焊接接头,组合成整体结构的管道构件;
所述增强圆环体为确保大法兰面在多次高温烧成中不变形,其钢板厚度可按管道的公称直径的大小设定调整增厚;
3)制作加强钢筋板:在所述直筒管身2外侧圆周焊接多组呈对称分布的加强钢筋板2b,所述加强钢筋板2b并与所述增强圆环体2a焊接;
所述加强钢筋板为9~21组,由管道直径大小所选定;所述增强圆环体结合9~21组对称加强钢筋板可完美提升管道大法兰公称压力和管口密封性能;
4)制作增强钢圆管件:在所述直筒管身2外侧圆周焊接多组成对称分布且设置于二组加强钢筋板2b中间的增强钢圆管件2c,所述增强钢圆管件2c两端分别与所述直筒管身的外壁2C和增强圆环体2a相焊接;
所述增强钢圆管件为3~6件;增强钢圆管件,以极大的提升整体管道抗变形的强度;
5)对直筒管身2的内壁2A、外壁2C、大法兰2B面、增强圆环体2a、加强钢筋板2b和增强钢圆管件2c(增强圆环体、加强钢筋板和增强钢圆管件可称为整体外结构组合件2C1)进行搪玻璃底釉的喷涂;
6)对直筒管身2的内壁2A、外壁2C、大法兰2B面、增强圆环体2a、加强钢筋板2b和增强钢圆管件2c进行微晶化搪玻璃面釉的喷涂;
微晶化搪玻璃面釉的组合按每项油气管道工程特定的理化性能各项最高技术质量指标的需求,由微晶态和非晶态搪玻璃釉不相同的配比混合研磨后的釉浆;
7)采用可开合特长卧式加热电炉与智能温度程序控制/调节/记录仪装置相组合,结合实施边旋转边烧成工艺,将喷涂有搪玻璃釉的管道进行烧制,控制搪玻璃底釉与微晶化搪玻璃面釉,微晶化搪玻璃面釉与微晶化搪玻璃面釉之间受热温度一致,同步一体烧制;
应用具有智能温度程序控制/调节/记录仪与新开发创新可开合特长卧式加热电炉,将管道统体全部喷涂经干燥的搪玻璃釉层,实施受控搪烧“核心技术”,促成钢板与搪玻璃底釉之间形成最佳最坚固丝网状结构的密着层。为之后精确控制搪玻璃底釉与微晶化搪玻璃面釉,微晶化搪玻璃面釉与微晶化搪玻璃面釉之间实施同一受热温度,同步一体烧成打下基础。以最大限度的彻底根除搪玻璃釉层的各类隐患缺陷,达到包括针孔数为0的最高质量指标;
8)采用步骤7)的烧制方法,对所述管道反复搪烧多次,且每次搪烧前均先对管道喷涂搪玻璃釉;
较佳的,可应用全自动喷涂釉浆设备均匀的喷涂搪玻璃釉浆。
大型微晶化搪玻璃管道采用结合有智能温度程序控制/调节/记录仪的新开发创新的可开合特长卧式加热电炉对所述管道反复多次搪烧,且每次搪烧前均先对管道的统体进行搪玻璃 釉层的喷涂经干燥后再烧成;
9)将末次烧制好的管道按特定降温曲线随炉冷却。
烧制采用受控搪烧“核心技术”。可在管道内壁搪玻璃底釉烧制时采用中温预烧、高温烧结、保温、分阶段受控烧制的搪烧工艺,烧成温度为室温-950℃,全部烧成时间为5.5~6h。
具体的,烧制时,可先采用室温-150℃缓慢升温,再150℃-400℃升温预烧并保温,再采用400℃-600℃升温预烧并保温,其中室温-600℃温度段的烧制时间总共为4小时,然后采用600℃-950℃高温烧制并保温,600℃-950℃高温烧制和保温的时间总共1.5-2小时。
一般情况下,大型微晶化搪玻璃管道反复搪烧的遍数可达6-7遍。
所述步骤5)中,对直筒管身2的内壁2A和外壁2C、大法兰2B面、增强圆环体2a、加强钢筋板2b和增强钢圆管件2c进行搪玻璃底釉的喷涂,其执行受控搪烧“核心技术”,可精密的调控中温预烧、保温、高温烧成,促成钢材外壁与搪玻璃底釉之间形成丝网状结构坚固的密着层。
搪玻璃釉以其优异理化性能,结合微晶搪玻璃釉具有莫氏硬度高达8级以上的优势,可按每项油气管道工程线,尤其是同一根管道不相同结构部位,或耐酸、或耐碱、或耐磨耗、或增强抗震机械强度特定理化性能的需求,应用调整相对应的微晶态和非晶态搪玻璃釉的配方和混合配比,为全线油气管道工程,专项制定以流通舒畅、经久不腐蚀、全方位提升增强保障运行安全为第一最高技术质量指标。
所述直筒管身2内腔体内壁2A前几层深层处以增强机械强度的微晶态为主体的微晶化搪玻璃釉层1a1的喷涂和烧成,后几层之表面层以表面光滑、耐腐蚀的非晶态为主体的微晶化搪玻璃釉层1a1的喷涂和烧成。
所述管道外壁2C、增强圆环体2a、加强钢筋板2b和增强钢圆管件2c以耐腐蚀性,抗震强度高的微晶态为主体的微晶化搪玻璃釉层1a3的喷涂和烧成。
所述管道二端大法兰2B面以极大增强机械强度的微晶态为主体的微晶化搪玻璃釉层1a2的喷涂和烧成。
上述微晶化搪玻璃釉层1a1、1a2和1a3统称为微晶化搪玻璃釉层1a。
具体的,如图3、图3A和图3A1所示,所述步骤7)中,所述可开合特长卧式加热电炉结合有智能温度程序控制/调节/记录仪装置,所述可开合特长卧式加热电炉包括一组呈半圆环体的固定卧式底部加热电炉3.1、二组呈1/4圆环体的可开合卧式加热电炉3.2和二组圆平面加热电炉3.3;所述二组呈1/4圆环体的可开合卧式加热电炉3.2设置于呈半圆环体的固定卧式底部加热电炉3.1的上部,在闭合状态下所述二组呈1/4圆环体的可开合卧式加热电炉3.2 与所述呈半圆环体的固定卧式底部加热电炉3.1组成圆环体;所述二组圆平面加热电炉3.3设置于所述呈半圆环体的固定卧式底部加热电炉3.1和所述二组呈1/4圆环体的可开合卧式加热电炉3.2的两端。
所述呈半圆环体的固定卧式底部加热电炉3.1、二组呈1/4圆环体的可开合卧式加热电炉3.2和二组圆平面加热电炉3.3由内到外包括耐火材料层3a1、3a2、3a3和保温材料层3d1、3d2、3d3与同中心轴弧形导热板3e1、3e2。耐火材料层3a1、3a2和3a3统称为耐火材料层3a,保温材料层3d1、3d2和3d3统称为保温材料层3d,同中心轴弧形导热板3e1和3e2统称为同中心轴弧形导热板3e。
所述二组呈1/4圆环体的可开合卧式加热电炉选自以下可开合的机械结构装置之任一:
可开合的机械结构装置之一:
如图3B所示,在所述二组呈1/4圆环体的可开合卧式加热电炉3.2钢制外壳二端的底部设置4组以上转动连接部件3B1,且在所述二组呈1/4圆环体的可开合卧式加热电炉3.2钢制外壳圆环体上设置4组以上开合部件3B2,执行所述二组呈1/4圆环体的可开合卧式加热电炉3.2的开合;
可开合的机械结构装置之二:
如3C所示,在所述二组呈1/4圆环体的可开合卧式加热电炉3.2钢制外壳的水平底部设置滑动部件3C1,所述二组呈1/4圆环体的可开合卧式加热电炉3.2的两侧设有供所述滑动部件3C1水平滑动的水平滑轨3C2。在所述二组呈1/4圆环体的可开合卧式加热电炉可设置16个滑动部件。
如图4、图4A、图5和图5A所示,所述可开合特长卧式加热电炉还包括二组管道定位件5,所述管道定位件5设置于所述圆平面加热电炉3.3和所述呈半圆环体的固定卧式底部加热电炉3.1之间,所述管道定位件5包括内圆环5.1、外圆环5.2和多组对称圆钢筋5.3,所述内圆环5.1和外圆环5.2为两组直径不相同的同心全钢件圆环,所述多组对称圆钢筋5.3设置于所述内圆环5.1和外圆环5.2之间且沿圆周对称分布。所述管道定位件的内圆环5.1、外圆环5.2和多组对称圆钢筋5.3形成的空间部位可作为大行车起吊管道的进炉与出炉运行操作。内圆环5.1与管道相配作相连接。
如图4、图5A和图5B所示,所述管道定位件内圆环5.1的内直径与所述管道大法兰2B的外直径相匹配,在管道定位件内圆环5.1和管道大法兰2B面上有三个呈120°的螺栓孔2B4,通过三件连结钢板5.4以螺栓孔可拆卸的紧固联结。
所述可开合特长卧式加热电炉还包括4个旋转定滑轮3.5,所述4个旋转定滑轮3.5设置 于所述二组管道定位件5的外圆环5.2的两侧。所述4个旋转定滑轮3.5是启动管道的搪玻璃釉层在烧成过程中实施边旋转边加热的烧成新工艺。
如图3所示,所述呈半圆环体的固定卧式底部加热电炉3.1和所述二组呈1/4圆环体的可开合卧式加热电炉3.2整体内腔的腔壁设有由耐热钢制作的同中心轴弧形导热板3e1、3e2。所述同中心轴弧形导热板3e1、3e2复罩于所述可开合特长卧式加热电炉的表层,以完善提升整体可开合特长卧式加热电炉的发热均匀。
可根据同一根管道不相同结构部位特定理化性能和高标准技术质量的需求,应用调整相对应不相同组成微晶化的搪玻璃釉和不相同的烧成温度,所述呈半圆环体的固定卧式底部加热电炉3.1和所述二组呈1/4圆环体的可开合卧式加热电炉3.2组合成整体圆环体卧式加热电炉3.4对应于管道直筒管身的内壁和外壁以及整体外结构组合件的微晶化搪玻璃釉层烧成,二组圆平面加热电炉3.3对应管道二端大法兰面上的微晶化搪玻璃釉层烧成。分别由整体圆环体卧式加热电炉和二侧圆平面加热电炉所组合的二大控温系统可有效的调控管道不相同结构部位不相同组成微晶化搪玻璃釉层的不相同烧成温度,同一结构部位相同组成微晶化搪玻璃釉层的相同烧成温度,以精确的实施同一根管道整体微晶化搪玻璃釉层的同步一体烧成。制造出特大特长,品质优异,运行安全的大型微晶化搪玻璃管道。整体外结构组合件是指设置于直筒管身外部的管道构件,例如增强圆环体、加强钢筋板或增强钢圆管件等。
如图3、图3a和图6所示,所述呈半圆环体的固定卧式底部加热电炉3.1的内侧半周壁设有多个1/2环形凹槽;所述1/2环形凹槽中绕制电热带3b1;所述呈1/4圆环体的可开合卧式加热电炉3.2的内侧1/4周壁设有多个1/4环形凹槽;所述1/4环形凹槽中绕制电热带3b2;所述1/2环形凹槽中绕制的电热带3b1和二个所述1/4环形凹槽中绕制电热带3b2呈圆周相连接组合成一组电热带,所述整体圆环体卧式加热电炉3.4由多组电热带所组成;所述圆平面加热电炉3.3的圆平面上设有多圈直径不相同的同心圆凹槽;所述同心圆凹槽内绕制一组电热带3b3;所述各组电热带均各自连接一控温系统,所述控温系统包括一组热电偶和智能温度程序控制/调节/记录仪装置6.1。由整体圆环体卧式加热电炉3.4和二组圆平面加热电炉3.3所组合的二大控温系统,均可各自调控加热功率,精确实施管道不相同结构部位不相同组成微晶化搪玻璃釉层的不相同的烧成温度与同一结构部位相同组成微晶化搪玻璃釉层的同一烧成温度,同一根管道整体微晶化搪玻璃釉层的同步一体烧成。电热带3b1、3b2和3b3统称为电热带3b,热电偶3c1、3c2和3c3统称为热电偶3c。
所述一组热电偶3c1、3c2、3c3与一组电热带3b1、3b2、3b3相对应匹配,并设置于该组电热带的加热区域内,用于检测所述电热带加热区域内的管道搪玻璃釉层受热温度,并发 出温度信号;所述智能温度程序控制/调节/记录仪装置6.1设置于所述可开合特长卧式加热电炉外,与所述一组热电偶匹配的一组电热带相连接,并执行在烧成过程中自动打印、记录、存档、质量跟踪。所述智能温度程序控制/调节/记录仪装置储存有一预设温度或温控曲线,用于接收热电偶的温度信号,在与预设温度或温控曲线比较后调控电热带的加热温度。
分别按上述方法分别制造长度为26m和直径为1.8m的可开合特长卧式加热电炉,开发生产长度为25m和直径为1m的大型微晶化搪玻璃管道。按GB25025-2010《搪玻璃设备技术条件》中的检测方法进行检测,极大增强抗震机械强度,大法兰不变形,搪玻璃层的针孔数为0。以极大地提高大型微晶化搪玻璃管道的整体质量、使用寿命和安全运行。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (20)

  1. 一种大型微晶化搪玻璃管道,包括直筒管身(2),其特征在于,还包括大法兰(2B)和增强圆环体(2a),所述直筒管身(2)的两端翻边形成所述大法兰(2B),所述增强圆环体(2a)与所述直筒管身(2)外侧圆周相紧密配作且焊接于所述大法兰(2B)内侧,所述直筒管身(2)的内壁(2A)和外壁(2C)、所述大法兰(2B)外侧以及所述增强圆环体(2a)外侧喷涂烧成微晶化搪玻璃釉层(1a)。
  2. 如权利要求1所述的大型微晶化搪玻璃管道,其特征在于,所述增强圆环体(2a)与所述直筒管身(2)外侧圆周之间呈圆周焊接环向焊接接头(2e),所述增强圆环体(2a)与所述大法兰(2B)之间呈圆周焊接环向焊接接头(2e)。
  3. 如权利要求1所述的大型微晶化搪玻璃管道,其特征在于,所述大型微晶化搪玻璃管道还包括加强钢筋板(2b),所述加强钢筋板(2b)沿所述直筒管身(2)的外侧圆周对称分布,所述加强钢筋板(2b)焊接于直筒管身(2)外侧圆周,并与所述增强圆环体(2a)焊接,所述加强钢筋板(2b)外侧喷涂烧成微晶化搪玻璃釉层(1a3)。
  4. 如权利要求3所述的大型微晶化搪玻璃管道,其特征在于,所述大型微晶化搪玻璃管道还包括增强钢圆管件(2c),所述增强钢圆管件(2c)沿所述直筒管身(2)的外侧圆周对称分布并设置于二组加强钢筋板之间,所述增强钢圆管件(2c)两端分别与所述直筒管身的外壁(2C)和增强圆环体(2a)相焊接,所述增强钢圆管件(2c)外侧喷涂烧成微晶化搪玻璃釉层(1a3)。
  5. 如权利要求1所述的大型微晶化搪玻璃管道,其特征在于,所述大型微晶化搪玻璃管道的微晶化搪玻璃釉层应用可开合特长卧式加热电炉与智能温度程序控制/调节/记录仪装置相组合的制造方法制备,智能温度程序控制/调节/记录仪装置的控温精度为±1℃,与所述可开合特长卧式加热电炉相组合,并结合实施边旋转边加热烧成工艺。
  6. 如权利要求5所述的大型微晶化搪玻璃管道,其特征在于,所述可开合特长卧式加热电炉包括一组呈半圆环体的固定卧式底部加热电炉(3.1)、二组呈1/4圆环体的可开合卧式加热电炉(3.2)和二组圆平面加热电炉(3.3);所述二组呈1/4圆环体的可开合卧式加热电炉(3.2)设置于呈半圆环体的固定卧式底部加热电炉(3.1)的上部,在闭合状态下所述二组呈1/4圆环体的可开合卧式加热电炉(3.2)与所述呈半圆环体的固定卧式底部加热电炉(3.1)组成圆环体;所述二组圆平面加热电炉(3.3)设置于所述呈半圆环体的固定卧式底部加热电炉(3.1)和所述二组呈1/4圆环体的可开合卧式加热电炉(3.2)的两端。
  7. 如权利要求6所述的大型微晶化搪玻璃管道,其特征在于,所述呈半圆环体的固定卧式底部加热电炉(3.1)和所述二组呈1/4圆环体的可开合卧式加热电炉(3.2)组合成的整体圆环体卧式加热电炉(3.4)对应于所述大型微晶化搪玻璃管道的直筒管身的内壁(2A)和外壁(2C)以及整 体外结构组合件(2C1)微晶化搪玻璃釉层(1a1、1a3)的烧成,所述二组圆平面加热电炉(3.3)对应于管道二端大法兰(2B)面上微晶化搪玻璃釉层(1a2)的烧成。
  8. 如权利要求7所述的大型微晶化搪玻璃管道,其特征在于,所述直筒管身的内壁(2A)微晶化搪玻璃釉层(1a1)、所述直筒管身的外壁(2C)和整体外结构组合件(2C1)微晶化搪玻璃釉层(1a3)以及所述管道二端大法兰(2B)面的微晶化搪玻璃釉层(1a2)的组成各不相同。
  9. 如权利要求8所述的大型微晶化搪玻璃管道,其特征在于,按同一根管道不相同结构部位不相同理化性能特定的需求,应用调整微晶态和非晶态搪玻璃釉不相同配方配比的微晶化搪玻璃釉层(1a),优选的,在管道直筒管身(2)的外壁(2C)和整体外结构组合件(2C1)以增强抗震机械强度的微晶态为主体的微晶化搪玻璃釉层(1a3);在管道直筒管身(2)的内壁(2A)的深层以增强机械强度的微晶态为主体的微晶化搪玻璃釉层(1a1),在管道直筒管身(2)的内壁(2A)的表层以耐腐蚀、表面光滑的非晶态为主体的微晶化搪玻璃釉层(1a1);在管道二端大法兰(2B)面以极大增强机械强度的微晶态为主体的微晶化搪玻璃釉层(1a2),开创制造出以微晶态为主体的大型微晶化搪玻璃管道。
  10. 如权利要求1-9任一所述的大型微晶化搪玻璃管道的制造方法,具体包括如下步骤:
    1)制作管道构件:分别制作直筒管身(2)和直筒管身的两端翻边形成的大法兰(2B);
    2)制作管道整体结构:在所述大法兰的内侧焊接增强圆环体(2a),所述增强圆环体(2a)与所述直筒管身(2)外侧圆周相紧密配作,在所述增强圆环体(2a)与所述直筒管身(2)外侧圆周之间呈圆周焊接一组环向焊接接头,在所述增强圆环体(2a)与所述大法兰(2B)之间呈圆周焊接一组环向焊接接头,组合成整体结构的管道构件;
    3)制作加强钢筋板(2b):在所述直筒管身(2)外侧圆周焊接多组呈对称分布的加强钢筋板(2b),所述加强钢筋板(2b)并与所述增强圆环体(2a)焊接;
    4)制作增强钢圆管件(2c):在所述直筒管身(2)外侧圆周焊接多组成对称分布且设置于二组加强钢筋板(2b)中间的增强钢圆管件(2c),所述增强钢圆管件(2c)两端分别与所述直筒管身的外壁(2C)和增强圆环体(2a)相焊接;
    5)对直筒管身(2)的内壁(2A)、外壁(2C)、大法兰(2B)面、增强圆环体(2a)、加强钢筋板(2b)和增强钢圆管件(2c)进行搪玻璃底釉的喷涂;
    6)对直筒管身(2)的内壁(2A)、外壁(2C)、大法兰(2B)面、增强圆环体(2a)、加强钢筋板(2b)和增强钢圆管件(2c)进行微晶化搪玻璃面釉的喷涂;
    7)采用可开合特长卧式加热电炉与智能温度程序控制/调节/记录仪装置相组合,结合实施边旋转边烧成工艺,将喷涂有搪玻璃釉的管道进行烧制,控制搪玻璃底釉与微晶化搪玻璃面 釉,微晶化搪玻璃面釉与微晶化搪玻璃面釉之间受热温度一致,同步一体烧制;
    8)采用步骤7)的烧制方法,对所述管道反复搪烧多次,且每次搪烧前均先对管道喷涂搪玻璃釉;
    9)将末次烧制好的管道按特定降温曲线随炉冷却。
  11. 如权利要求10所述的大型微晶化搪玻璃管道的制造方法,其特征在于,所述步骤5)中,对直筒管身(2)的内壁(2A)和外壁(2C)、大法兰(2B)面、增强圆环体(2a)、加强钢筋板(2b)和增强钢圆管件(2c)进行搪玻璃底釉的喷涂,其执行受控搪烧“核心技术”,可精密的调控中温预烧、保温、高温烧成,促成钢材外壁与搪玻璃底釉之间形成丝网状结构坚固的密着层。
  12. 如权利要求10所述的大型微晶化搪玻璃管道的制造方法,其特征在于,所述步骤7)中,所述可开合特长卧式加热电炉结合有智能温度程序控制/调节/记录仪装置,所述可开合特长卧式加热电炉包括一组呈半圆环体的固定卧式底部加热电炉(3.1)、二组呈1/4圆环体的可开合卧式加热电炉(3.2)和二组圆平面加热电炉(3.3);所述二组呈1/4圆环体的可开合卧式加热电炉(3.2)设置于呈半圆环体的固定卧式底部加热电炉(3.1)的上部,在闭合状态下所述二组呈1/4圆环体的可开合卧式加热电炉(3.2)与所述呈半圆环体的固定卧式底部加热电炉(3.1)组成圆环体;所述二组圆平面加热电炉(3.3)设置于所述呈半圆环体的固定卧式底部加热电炉(3.1)和所述二组呈1/4圆环体的可开合卧式加热电炉(3.2)的两端。
  13. 如权利要求12所述的大型微晶化搪玻璃管道的制造方法,其特征在于,所述二组呈1/4圆环体的可开合卧式加热电炉选自以下可开合的机械结构装置之任一:
    可开合的机械结构装置之一:
    在所述二组呈1/4圆环体的可开合卧式加热电炉(3.2)钢制外壳二端的底部设置4组以上转动连接部件(3B1),且在所述二组呈1/4圆环体的可开合卧式加热电炉(3.2)钢制外壳圆环体上设置4组以上开合部件(3B2);
    可开合的机械结构装置之二:
    在所述二组呈1/4圆环体的可开合卧式加热电炉(3.2)钢制外壳的水平底部设置滑动部件(3C1),所述二组呈1/4圆环体的可开合卧式加热电炉(3.2)的两侧设有供所述滑动部件(3C1)水平滑动的水平滑轨(3C2)。
  14. 如权利要求12所述的大型微晶化搪玻璃管道的制造方法,其特征在于,所述可开合特长卧式加热电炉还包括二组管道定位件(5),所述管道定位件(5)设置于所述圆平面加热电炉(3.3)和所述呈半圆环体的固定卧式底部加热电炉(3.1)之间,所述管道定位件(5)包括内圆环(5.1)、外圆环(5.2)和多组对称圆钢筋(5.3),所述内圆环(5.1)和外圆环(5.2)为两组直径不相同的同心 全钢件圆环,所述多组对称圆钢筋(5.3)设置于所述内圆环(5.1)和外圆环(5.2)之间且沿圆周对称分布。
  15. 如权利要求14所述的大型微晶化搪玻璃管道的制造方法,其特征在于,所述可开合特长卧式加热电炉还包括4个旋转定滑轮(3.5),所述4个旋转定滑轮(3.5)设置于所述二组管道定位件(5)的外圆环(5.2)的两侧。
  16. 如权利要求15所述的大型微晶化搪玻璃管道的制造方法,其特征在于,二组圆平面加热电炉(3.3)对应于管道二端大法兰(2B)面上的以微晶态为主体的微晶化搪玻璃釉层(1a2)的烧成,带动二组管道定位件(5)旋转的4个旋转定滑轮(3.5)和智能温度程序控制/调节/记录仪装置(6.1),控温精度为±1℃相结合,全方位完美符合微晶搪玻璃特定高标准烧成工艺的需求,创新制造出特大特长、品质优异、运行安全大型微晶化搪玻璃油气管道。
  17. 如权利要求12所述的大型微晶化搪玻璃管道的制造方法,其特征在于,所述呈半圆环体的固定卧式底部加热电炉(3.1)和所述二组呈1/4圆环体的可开合卧式加热电炉(3.2)整体内腔的腔壁设有由耐热钢制作的同中心轴弧形导热板(3e1、3e2)。
  18. 如权利要求12所述的大型微晶化搪玻璃管道的制造方法,其特征在于,所述呈半圆环体的固定卧式底部加热电炉(3.1)的内侧半周壁设有多个1/2环形凹槽;所述1/2环形凹槽中绕制电热带(3b1);所述呈1/4圆环体的可开合卧式加热电炉(3.2)的内侧1/4周壁设有多个1/4环形凹槽;所述1/4环形凹槽中绕制电热带(3b2);所述1/2环形凹槽中绕制的电热带(3b1)和二个所述1/4环形凹槽中绕制电热带(3b2)呈圆周相连接组合成一组电热带,所述整体圆环体卧式加热电炉(3.4)由多组电热带所组成;所述圆平面加热电炉(3.3)的圆平面上设有多圈直径不相同的同心圆凹槽;所述同心圆凹槽内绕制一组电热带(3b3);所述各组电热带均各自连接一控温系统,所述控温系统包括一组热电偶(3c)和智能温度程序控制/调节/记录仪装置(6.1)。
  19. 如权利要求18所述的大型微晶化搪玻璃管道的制造方法,其特征在于,所述一组热电偶与一组电热带匹配,并设置于该组电热带的加热区域内;所述智能温度程序控制/调节/记录仪装置(6.1)设置于所述可开合特长卧式加热电炉外,与所述一组热电偶匹配的一组电热带相连接。
  20. 如权利要求19所述的大型微晶化搪玻璃管道的制造方法,其特征在于,由整体圆环体卧式加热电炉(3.4)和二组圆平面加热电炉(3.3)组合成二大控温系统,各自独立连接一组电热带(3b1)、(3b2)、(3b3)和一组相对应的热电偶(3c1)、(3c2)、(3c3),分别与所述智能温度程序控制/调节/记录仪装置(6.1)相组合成各自独立调控加热功率、设定温控精度为±1℃,精确实施管道不相同结构部位(2A)、(2B)、(2C)、(2C1),不相同组成的微晶化搪玻璃釉层(1a1)、 (1a2)、(1a3)不相同的烧成温度,同一根管道不相同组成的整体微晶化搪玻璃釉层(1a)的同步一体烧成。
PCT/CN2016/070511 2015-09-16 2016-01-08 一种大型微晶化搪玻璃管道及其制造方法 WO2017045319A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/108,038 US20180180216A1 (en) 2015-09-16 2016-01-08 Large micro-crystallized glass-lined pipeline and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510587261.2 2015-09-16
CN201510587261.2A CN105196054B (zh) 2015-09-16 2015-09-16 一种大型微晶化搪玻璃管道及其制造方法

Publications (1)

Publication Number Publication Date
WO2017045319A1 true WO2017045319A1 (zh) 2017-03-23

Family

ID=54944182

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/070511 WO2017045319A1 (zh) 2015-09-16 2016-01-08 一种大型微晶化搪玻璃管道及其制造方法

Country Status (4)

Country Link
US (1) US20180180216A1 (zh)
CN (1) CN105196054B (zh)
HK (1) HK1215006A1 (zh)
WO (1) WO2017045319A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105196054B (zh) * 2015-09-16 2017-11-10 朱文华 一种大型微晶化搪玻璃管道及其制造方法
CN106914186A (zh) * 2017-04-10 2017-07-04 朱文华 一种增强连接基件、聚四氟乙烯罐盖、复合式微晶化搪玻璃反应罐及其制造方法
CN111644130B (zh) * 2020-06-28 2022-02-18 江苏朗瑞精锻有限公司 一种搪玻璃设备用管口的制造方法
CN113764243B (zh) * 2021-09-06 2022-06-10 核工业西南物理研究院 分离式超导磁体法兰、超导磁体及回旋管装配方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2310328A1 (de) * 1969-08-20 1974-10-17 Tatarskij Gni I Pi Neftjanoj P Verfahren zum ueberziehen der innenflaeche von roehrenfoermigen metallerzeugnissen mit glas
CN1051075A (zh) * 1989-10-17 1991-05-01 王理泉 金属-玻璃(釉)热喷复合防腐管道
KR100205150B1 (ko) * 1995-06-22 1999-07-01 야마다 아키오 배선.배관재 지지 구조물용 보조 빔
CN1417382A (zh) * 2002-11-28 2003-05-14 崔光波 使铁不生锈永不烂的工艺
CN102389758A (zh) * 2011-02-17 2012-03-28 朱文华 一种新搪玻璃反应罐及其制造方法
US20140013571A1 (en) * 2012-06-06 2014-01-16 Gulfstream Services, Inc. Web restraint system
CN105196054A (zh) * 2015-09-16 2015-12-30 朱文华 一种大型微晶化搪玻璃管道及其制造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5023591B1 (zh) * 1970-01-23 1975-08-08
CN2168148Y (zh) * 1993-07-29 1994-06-08 娄底地区煤矿机械厂 一种输液输气防腐管道构件
CN2465020Y (zh) * 2001-01-22 2001-12-12 宋煌 一种涂烧搪瓷的管子
CN1727743A (zh) * 2004-07-27 2006-02-01 朱文华 大型搪玻璃内衬管道及其制造方法
JP2007009986A (ja) * 2005-06-29 2007-01-18 Asahi Techno Glass Corp ガラスライニング管
CN102021303B (zh) * 2010-11-23 2012-05-23 冯新林 管体内烧式球铁铸管随形炉壳退火炉

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2310328A1 (de) * 1969-08-20 1974-10-17 Tatarskij Gni I Pi Neftjanoj P Verfahren zum ueberziehen der innenflaeche von roehrenfoermigen metallerzeugnissen mit glas
CN1051075A (zh) * 1989-10-17 1991-05-01 王理泉 金属-玻璃(釉)热喷复合防腐管道
KR100205150B1 (ko) * 1995-06-22 1999-07-01 야마다 아키오 배선.배관재 지지 구조물용 보조 빔
CN1417382A (zh) * 2002-11-28 2003-05-14 崔光波 使铁不生锈永不烂的工艺
CN102389758A (zh) * 2011-02-17 2012-03-28 朱文华 一种新搪玻璃反应罐及其制造方法
US20140013571A1 (en) * 2012-06-06 2014-01-16 Gulfstream Services, Inc. Web restraint system
CN105196054A (zh) * 2015-09-16 2015-12-30 朱文华 一种大型微晶化搪玻璃管道及其制造方法

Also Published As

Publication number Publication date
HK1215006A1 (zh) 2016-08-12
CN105196054A (zh) 2015-12-30
CN105196054B (zh) 2017-11-10
US20180180216A1 (en) 2018-06-28

Similar Documents

Publication Publication Date Title
WO2017045319A1 (zh) 一种大型微晶化搪玻璃管道及其制造方法
CN106122613B (zh) 一种耐蚀搪瓷复合管道及其制造方法
WO2015149342A1 (zh) 一种新搪玻璃反应罐及其制造方法
CN104162765A (zh) 一种管件加工工艺
CN203068540U (zh) 高温耐磨的烟管保温结构
CN103604025B (zh) 一种快开型可拆卸保温盒
CN102020482A (zh) 一种大型电阻式双真空气相沉炭装置
CN207659487U (zh) 一种淬火加热用盐浴炉内胆结构
JP7398426B2 (ja) 熱回収装置及び熱回収方法
CN202791146U (zh) 一种内衬耐火材料碳钢热风管道
CN212408688U (zh) 烷基化废酸再生装置中的衬里结构
CN110643773A (zh) 一种高炉热风支管端口耐材修复方法
CN201081548Y (zh) 一种工业炉窑
CN210266353U (zh) 一种热补偿直埋保温弯头
CN103553669B (zh) 一种高炉内Sialon材料的制备方法
CN202329168U (zh) 一种半密闭矿热炉用的炉盖装置
CN203872376U (zh) 一种管道焊接接头加热装备
CN112614793A (zh) 一种退火炉双燃料在线快速切换装置
CN201867064U (zh) 组合式全纤维结构点火保温炉
WO2017012131A1 (zh) 焊接后内防腐层免修补的内环氧外3pe 防腐管道及其制备工艺
CN103987143B (zh) 一种管道焊接接头加热装备及其制作方法
CN101551041B (zh) 整体无焊缝锥度管
CN206093359U (zh) 一种蒸汽直埋管道低能耗型隔热固定节
CN2852015Y (zh) 内加热锌锅
CN205938219U (zh) 一种耐蚀搪瓷复合管道

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16845439

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15108038

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16-08-2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16845439

Country of ref document: EP

Kind code of ref document: A1