WO2015149342A1 - 一种新搪玻璃反应罐及其制造方法 - Google Patents

一种新搪玻璃反应罐及其制造方法 Download PDF

Info

Publication number
WO2015149342A1
WO2015149342A1 PCT/CN2014/074772 CN2014074772W WO2015149342A1 WO 2015149342 A1 WO2015149342 A1 WO 2015149342A1 CN 2014074772 W CN2014074772 W CN 2014074772W WO 2015149342 A1 WO2015149342 A1 WO 2015149342A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
electric furnace
reinforcing
temperature
heating
Prior art date
Application number
PCT/CN2014/074772
Other languages
English (en)
French (fr)
Inventor
朱文华
Original Assignee
朱文华
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 朱文华 filed Critical 朱文华
Priority to CN201480068486.0A priority Critical patent/CN106457195B/zh
Priority to US15/026,862 priority patent/US9975102B2/en
Priority to PCT/CN2014/074772 priority patent/WO2015149342A1/zh
Publication of WO2015149342A1 publication Critical patent/WO2015149342A1/zh
Priority to US15/953,478 priority patent/US10350571B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/02Apparatus characterised by being constructed of material selected for its chemically-resistant properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/03Pressure vessels, or vacuum vessels, having closure members or seals specially adapted therefor
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23DENAMELLING OF, OR APPLYING A VITREOUS LAYER TO, METALS
    • C23D5/00Coating with enamels or vitreous layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23DENAMELLING OF, OR APPLYING A VITREOUS LAYER TO, METALS
    • C23D5/00Coating with enamels or vitreous layers
    • C23D5/02Coating with enamels or vitreous layers by wet methods
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23DENAMELLING OF, OR APPLYING A VITREOUS LAYER TO, METALS
    • C23D9/00Ovens specially adapted for firing enamels
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23DENAMELLING OF, OR APPLYING A VITREOUS LAYER TO, METALS
    • C23D9/00Ovens specially adapted for firing enamels
    • C23D9/06Electric furnaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/02Apparatus characterised by their chemically-resistant properties
    • B01J2219/0204Apparatus characterised by their chemically-resistant properties comprising coatings on the surfaces in direct contact with the reactive components
    • B01J2219/0209Apparatus characterised by their chemically-resistant properties comprising coatings on the surfaces in direct contact with the reactive components of glass

Definitions

  • the invention relates to a neodymium glass reaction tank for chemical industry and pharmaceutical industry and a manufacturing method thereof, and belongs to the field of pressure vessel equipment for chemical industry and pharmaceutical industry. Background technique
  • the glass-lined reaction tank is a reaction equipment of the second type of pressurized container.
  • the can body is composed of an inner cylinder (the inner wall is sprayed and fired into a glazed glaze layer) and an outer jacket.
  • the firing of the glass-lined reaction tanks at home and abroad is all external heat-type electric furnaces, and all of the iron-embroids are manufactured by secondary processing. Firstly burn the enamel glass layer with the inner wall of the inner cylinder with the upper and lower rings (outer jacket transition structure), and then weld the outer jacket, the single facing seam weld of the lining plate at the upper ring .
  • the can body iron embryo is made into a secondary processing, which involves three major serious product quality problems, and it is difficult to solve the problem.
  • the inner cylinder of the single-layer steel plate with the upper and lower rings is around 900 ° C 6 ⁇ 8 After the sub-high temperature roasting, the overall deformation of the matrix is distorted and deformed.
  • the upper ring and the sleeve body are welded and assembled, the main force is firstly shaped, and the high-temperature thermal shock and the weld stress caused by the post-welding are caused by the micro-cracks of the glass layer.
  • the overall quality of the glass layer is affected by the overall quality of the glass layer.
  • the heat released by the electric heating power is first radiated to the outer wall of the inner cylinder steel plate and then transmitted to the inner glass layer of the inner wall.
  • the temperature of the furnace body is measured and controlled, and the thickness of the high neck large flange steel plate on the inner cylinder is 2.5 times that of the straight cylinder, the required heat capacity is large, and the outer side of the inner cylinder body has a set,
  • the lower ring structure member and the frame or hanger for firing the product are all fire-blocking materials heated by the external heat-type electric furnace.
  • the heat-treating temperature of the inner wall of the glass layer in the above part is significantly lower than that of other parts, so that the external heat-type electric furnace is executed.
  • the "core technology" of controlled simmering is not the actual heating temperature of the enamel layer, and the uneven heating and large temperature difference directly affect the overall quality of the product.
  • the sealing surface of the equipment flange is 15mm wide.
  • the oxygen and acetylene flame cutting are excluded from the jacket, and after the glass layer is repeatedly fired and tested, re-soldering
  • the single facing ring of the uneven, curved lining plate is welded to the welded joint and the lower joint to form the can body, which does not meet the repair specifications of the pressurized container. It was reported that an explosion occurred.
  • the glass-lined reaction tank is a high-value consumable, which is generally damaged after 1 ⁇ 2 years. It should be noted that the damage rate of the glass layer of a considerable number of reaction tanks is only 0.05% of the total area, and there are only a few small areas of damage. Every year, the country has a large amount of hundreds of millions of yuan. The glass layer of steel with up to tens of thousands of tons of reaction tanks can not be repaired due to damage and then used as a pressurized container to be scrapped. The waste of steel is extremely high and the capital loss is serious.
  • the present invention deepens the development of the "technical standard" for the processing and forming of the can body of the glass-lined reaction tank, and creates a high-end neodymium glass reaction tank which has the original intellectual property rights of China's pioneers and whose overall quality is superior to the international leading level. The great revolution of the glass industry in the contemporary world.
  • CN201110287709. 0 discloses a glass-lined reaction tank fired by an internal heat type electric furnace, but the glass-lined reaction tank still cannot completely eliminate all kinds of hidden defects of the entire glass layer, the nominal pressure of the large flange of the tank mouth and the tank. The sealing performance of the mouth is still not perfect, and it is difficult to manufacture a glass-lined reaction tank that fully meets the requirements of the three types of pressure vessels. Summary of the invention
  • a novel neodymium glass reaction tank and a method of manufacturing the same are created.
  • body standard for the processing of can body iron embryos, and replace the current glass-lined reaction tank and its manufacturing method with all-round advantages.
  • the large flange deformation and the sealing performance of the tank mouth are poor; the defects of the enamel glass layer are many; the service life of the product is not long; the enamel glaze layer of the reaction tank is damaged. After that, it can never be repaired and used as a pressurized container; steel waste is serious; capital loss is extremely high.
  • the invention adopts a one-time forming "technical standard" to implement the iron embryo manufacturing of the can body of the glass-lined reaction tank.
  • the can body of the novel neodymium glass reaction tank of the present invention includes a new inner cylinder body and a new outer jacket body, and the new inner cylinder body includes a straight cylinder body, a head piece connecting the straight body body, and a discharge port flange.
  • the upper flange of the straight body of the new inner cylinder forms a first large flange, and a lower reinforcing ring body precisely matched with the second inner flange is welded at the lower portion thereof.
  • the thickness of the steel plate of the first reinforcing annular body can be adjusted and thickened according to the nominal diameter of the can body, so as to greatly enhance the mechanical performance of the large flange surface against high temperature and deformation, and significantly increase the nominal pressure of the large flange.
  • the lower part of the new inner cylinder is a discharge port flange.
  • the new outer jacket is a unitary structure welded by a jacket body with a closed mouth and a head member with an inner ring closing structure.
  • the new inner cylinder and the new outer jacket are all tested according to the standard JB/T 4730 method and conform to the requirements of the second type pressure vessel in the Pressure Vessel Safety Technical Supervision Regulations, and welded to the overall structure of the tank body, new The cavity between the inner cylinder and the new outer jacket is a cavity.
  • the inner wall of the new inner cylinder body, the outer wall of the new inner cylinder body, and the inner wall of the new outer jacket are sprayed and fired with a enamel glass glaze layer. Further, the inner wall of the new inner cylinder body, the large flange surface, the flange surface of the discharge port, the outer wall of the new inner cylinder body, and the inner wall of the new outer jacket are all sprayed and fired into a glass layer.
  • the thickness of the new inner cylinder and the new outer casing is thickened according to the current design and manufacture standard of the neodymium glass pressure vessel, and the thickness of the steel body of the cylinder body and the outer jacket is glass-lined.
  • the pressure vessel is designed and manufactured to a thickness of 2-10 mm, and is sprayed with a enamel glass enamel layer on the outer wall of the inner cylinder and the inner wall of the outer sleeve.
  • the purpose of the design is to compensate for the oxidation of the surface of the iron embryo caused by repeated high temperature firing of the can body and the corrosion of the steel plate during actual production and use.
  • the glass layer of the reaction tank of the present invention is damaged, as long as the thickness of the steel plate of the can body is fully inspected and conforms to the design and manufacture standards of the second type pressure vessel, the overall repair and reuse of the jacket can be carried out multiple times, and the repairing process fully conforms to the second type pressure vessel. Standard, and the quality after repair reaches the new standard.
  • the can body further includes a plurality of sets of symmetric reinforcing steel plates; the plurality of sets of reinforcing steel plates are disposed between the first reinforcing ring body of the can body and the closing portion of the jacket body with the closing mouth, and along the can The circumference of the body is welded by a plurality of sets of symmetrical combinations, which significantly improves the nominal pressure of the large flange and the sealing performance of the can.
  • the can lid of the novel neodymium glass reaction tank of the present invention comprises a can lid straight cylinder, the can lid is straightly turned into a second large flange, and the upper portion of the second large flange is welded with the can lid straight cylinder circumference
  • the second reinforcing annular body is precisely configured, and preferably, the second reinforcing annular body has a curved neck.
  • the thickness of the steel plate of the second reinforcing annular body can be adjusted and thickened according to the size of the nominal diameter of the can lid. The larger the nominal diameter of the can lid, the greater the thickness of the steel plate of the second reinforcing torus.
  • the second reinforcing annular body is circumferentially welded along the straight body portion of the can lid to form an integral structure of the can lid, so as to greatly improve the nominal pressure of the large flange and the sealing performance of the can.
  • the second reinforcing annular body is further welded with a plurality of second reinforcing steel plates for reinforcing; the inner wall of the can lid, the second large flange surface and the flange surfaces of the upper portion of the can lid are sprayed with a glazed glaze layer.
  • the number of the plurality of sets of symmetric reinforcing steel plates of the can body and the can lid is 8-36 pieces.
  • the invention reforms the structure of the whole structural part of the can body and the matching structure of the can lid structure, and ensures that after a plurality of high temperature firing, the large flange surface is never deformed, and the nominal pressure of the large flange surface and the overall tank mouth are perfectly improved. Sealing performance, after passing through the inner wall of the glass layer, after passing the test, the glass-lined reaction tank which fully meets the requirements of the three types of pressure vessels can be obtained.
  • the invention adopts a intelligent controlled internal heat type electric furnace with an intelligent temperature program control/regulation/recorder and a new structure combination, and implements a controlled core technology of simmering to accurately control the same heating temperature of the entire bismuth glass layer of the can body. Synchronized and integrated firing to completely eliminate all kinds of hidden defects in the glass layer of the reaction tank, and achieve the highest quality index including the number of pinholes.
  • the method for manufacturing a new glass-lined reaction tank of the present invention specifically includes the following steps: 1) Make the inner cylinder member, and perform X-ray inspection on the longitudinal welded joint and the hoop welded joint of the new inner cylinder according to JB/T4730, and obtain a new inner cylinder conforming to the safety technical supervision regulations of the second type pressure vessel.
  • the thickness of the steel plate of the new inner cylinder is 2 ⁇ 10mm thick according to the current design and manufacture standard of the glass pressure vessel;
  • a jacket body with a closed mouth and an outer jacket head with an inner ring-shaped closing structure are separately fabricated and welded into a whole structure to obtain a new outer jacket of the overall structure.
  • the thickness of the new outer jacket steel plate is increased by 2 to 10 mm according to the current design and manufacture standard of the glass pressure vessel;
  • the can body of the reaction tank is repeatedly fired several times with a precision controlled internal heating electric furnace combined with a new structure of intelligent temperature program control/regulation/recorder, and each time before the smoldering
  • the inner wall of the new inner cylinder body, the large flange surface of the flange, and the flange surface of the discharge port are sprayed with a glaze layer and then fired.
  • the plurality of sets of symmetric reinforcing steel plates and the second reinforcing annular body are circumferentially welded together along the straight cylindrical portion of the can lid to form a canopy integral structural member, so as to greatly improve the nominal pressure of the large flange of the can lid and the can end. Sealing performance. Spraying and firing the glazed glaze slurry on the inner wall of the can body cover structural member, the second large flange surface and the upper flange surface of the can lid to obtain the can lid of the new bismuth glass reaction tank.
  • the bismuth glass glaze used is a glaze of a special enamel glass glaze which is conventional glaze in the prior art or in accordance with the requirements of the reaction medium in the tank.
  • the fully automatic spray glaze equipment can be used to spray the glazed glaze slurry.
  • the cooling curve can be set according to a specific temperature range in which the glass glaze layer is softened and converted into a solidified state, and the furnace is slowly cooled to effectively The residual stress and hairline of the can body glass layer are eradicated.
  • the cooling rate of the slow cooling with the furnace can be controlled to be slowly cooled from the furnace temperature of 65 CTC to 15 CTC at 6-8 hours.
  • the controlled "burning core technology” refers to a controlled simmering process in the intermediate temperature pre-firing, high-temperature sintering, and heat preservation stages when the inner wall of the can body is fired.
  • the firing temperature can be from room temperature to 900 ° C, and all firing times are
  • steps 9) and 10 a precision controlled internal heating electric furnace with intelligent temperature program control/regulation/recorder and new structure is applied.
  • the measurement and control precision of the system can reach rc, which can fully and accurately control and realize the bismuth glass.
  • the best calcination process for the reaction tank. Strictly follow the controlled "core technology" to accurately control the specific temperature of each stage of heating, heat preservation and cooling, and execute the smoldering process curve by computer, record, print and archive.
  • Step 9) The precision controlled internal heating electric furnace with a new structural combination for the can body burning includes several reforms:
  • One of the structural reforms of the precision controlled internal heating electric furnace of the new structure combination is: adding a set of temperature-regulated straight-ring electric furnace to the original ring plane electric furnace, and the whole structural member for the outer side of the large flange of the can body structural member
  • the auxiliary heating of the part is used to effectively control the same heating temperature of the glass layer of the large flange surface of the inner cylinder of the can body and the entire inner wall of the glass layer, and is integrally fired.
  • the structural reform of the precision controlled internal heating electric furnace of the new structure combination is as follows: the above-mentioned one of the heat-resistant steel made of the heat-resistant steel is matched with the inner wall structure of the new inner cylinder head member.
  • the head-shaped heating structure member can effectively improve the uniform heat generation of the head-shaped heating structure member, and accurately control the same heating temperature of the glass-lined layer on the inner wall of the inner cylinder head member of the can body and the same inner wall and the glass layer. to make.
  • the third structural reform of the precision controlled internal heating electric furnace of the new structure combination is: the can body of the glass-lined reaction tank is poured It is placed on the main heating electric furnace, and a set of temperature-adjustable new plane electric furnace for increasing the diameter of the circular electric furnace is added to the bottom of the firing hanger of the can body, and is used for closing the inner ring of the outer jacket with the can body.
  • the auxiliary heating of the part is effective to control the same heating temperature of the inner glass layer of the inner wall, and is integrally fired.
  • the precision controlled internal heat type electric furnace combined with the new structure comprises a heat preservation cylinder body, and a set of openable heat preservation furnace top doors is arranged on the top of the heat insulation cylinder body, and the heat preservation furnace
  • the top door is provided with a rotating body of the can body burning hanger extending through the top door of the holding furnace, and the bottom of the rotating body of the can body is also provided with a new plane electric furnace;
  • the precision controlled internal heat type electric furnace of the new structure combination is further
  • the utility model comprises a main body heating electric furnace in a heat preservation cylinder body, wherein the main body heating electric furnace comprises a ring body electric furnace, a multi-layer area combined cylindrical electric furnace and a circular step trapezoidal electric furnace from bottom to top; the ring body plane electric furnace is further provided.
  • the ring body plane furnace lifting device is composed of a ring plane electric furnace and a straight ring body electric furnace; the ring plane of the ring plane electric furnace and the inner peripheral wall of the straight ring body electric furnace are respectively arranged a set of electric heating elements; in the annular groove of the cylindrical electric furnace combined with the multi-layer region, a set of electric heating elements are wound every 2-8 layers, preferably a group of electric heating elements are wound every 5-8 layers; A stepped electric furnace winds a set of electric heating elements on every 2 ⁇ 8 layers of stepped platform surface, preferably a set of electric heating elements is wound every 5-8 layers; the outer cover of the round table step electric furnace has an inner wall of the inner cylinder head piece
  • the structure is matched with a uniform head-shaped heating structure; each set of electric heating elements in the precision controlled internal heating electric furnace of the new structure is respectively connected to a temperature control system.
  • the temperature control system is configured to regulate a heating temperature of the electric heating element connected thereto, and includes a temperature measuring component and a temperature controller, wherein the temperature measuring component is matched with a set of electric heating components, and is disposed in the heating region of the heating element of the group
  • the utility model is configured to detect a heating temperature of the inner cavity of the can body in the heating region of the group of electric heating elements and emit a temperature signal; the temperature controller is disposed outside the heat insulating tube of the precision controlled internal heating electric furnace, and the temperature measuring component and The temperature measuring component is connected to the electric heating component, and the temperature controller stores a preset temperature or temperature control curve for receiving the temperature signal of the temperature measuring component, and adjusting the electric heating component after comparing with the preset temperature or the temperature control curve. Heating temperature.
  • each group of heating elements is independently matched to a temperature control system, the heating power of each group of heating elements can be independently adjusted.
  • the temperature controller can be equipped with an intelligent temperature program control/regulation/recorder to accurately implement temperature preset, temperature control and automatic recording.
  • the overall structural shape of the main body heating electric furnace is matched with the modeling structure of the new inner cylinder body of the can body, and the ring body electric furnace, the multi-zone combined cylindrical electric furnace and the round step trapezoidal electric furnace respectively correspond to the new one.
  • the flange of the inner barrel is flanged, straight and inner.
  • the annular body electric furnace in the main body heating electric furnace, the cylindrical electric furnace combined in the multi-layer area, and the circular step trapezoidal electric furnace have different requirements for the thickness of the steel plate and the heat capacity of the structural components of the new inner cylinder.
  • the electric heating element, the electric heating element in the cylindrical electric furnace combined with the multi-layer area, and the electric heating element in the circular step trapezoidal electric furnace are made of heat-resistant steel, and the heating structure of the head-shaped heating structure is directly different according to the required electric heating power.
  • the glass layer of heat radiating to the inner wall of the new inner cylinder body and the large flange surface of the flange and the flange surface of the discharge port is subjected to the same heating temperature and is integrally fired.
  • the can body of the new glass-lined reaction tank is placed on the main heating electric furnace, and the can body is fired into a new planar electric furnace at the bottom of the rotor of the hanger, a ring-shaped electric furnace, a multi-zone combined cylindrical electric furnace and
  • the round-step trapezoidal electric furnace corresponds to the flange surface of the discharge port of the new inner cylinder of the new glass reactor, and the closing part of the inner ring of the outer jacket head, the large flange surface of the body and the outer structure of the outer side.
  • the can body is fired into a hanger and rotates slowly during the whole process of firing the new glass reactor.
  • the material of the heat insulating cylinder is made of aluminum silicate fiber.
  • the precision controlled internal heat type electric furnace with the combination of intelligent temperature program control/regulation/recorder and new structure, the temperature control precision of the system is src, in the multi-pass firing process of each glass-lined reaction tank, Accurately set the temperature program control, adjust and automatically record the heating temperature curve of heating, heat preservation and cooling in each specific temperature range of each stage of controlled simmering, and improve the overall quality of the glass-lined reaction tank with high efficiency and high quality.
  • the thickness of the steel plate of each structural component of the new glass-lined reaction tank is different, the heat capacity is different, and the required heating power
  • the multi-component combination, unit group temperature control system, the application of intelligent temperature program control / adjustment / recorder and the new structure combination of precision controlled internal heating electric furnace, its electric heating power can be set according to actual needs, combined ring
  • the body plane electric furnace lifting member is precisely adjusted to realize the same heating temperature of the inner glass layer of each component, and is integrally fired in synchronization.
  • the thickness of the steel plate of the first reinforcing ring body on the flange of the flange is very different from the thickness of the steel plate of the new inner cylinder, and the required heat capacity is also different, so the heating power required is also different.
  • unit group temperature control system, precision controlled internal heating type electric furnace combined with intelligent temperature program control / adjustment / recorder and new structure the system temperature control accuracy is src, scientific and precise comprehensive implementation of medium temperature pre-burning, high temperature burning
  • the "core technology" of the system, heat preservation and staged controlled smoldering can strictly follow the physical and chemical reactions of the steel itself, steel and enamel glass glaze, enamel glass glaze and enamel glass glaze, enamel glass glaze and enamel glass. The best and most perfect physicochemical reaction between the glazes. To maximize the complete elimination of various defects in the glass layer, including the highest quality index of the number of pinholes, the overall quality and service life of the glass-lined reactor can be greatly improved.
  • the combination of the new structure and the precision controlled internal heating electric furnace combined with the intelligent temperature program control/adjustment/recorder both of which are perfectly matched to greatly promote the deepening development of the manufacturing method of the new glass reactor, and perfectly improve the can body method.
  • Lan Gong said the pressure and the sealing performance of the tank mouth, and innovatively introduced a glass-lined reaction tank that fully complies with the three types of pressure vessels, and develops to the maximum quality index of all kinds of hidden defects including the number of pinholes to the maximum extent. Improve the overall quality and service life of the new glass reactor.
  • the glass-lined reaction tank prepared by the method of the invention not only can perfectly improve the nominal pressure of the large flange of the can body and the density of the tank
  • the sealing performance is developed in the current GB25025-2010 "Technical Conditions for Glass-lined Equipment".
  • the development of the highest quality index of the dimensional tolerance of the glass-lined parts can not only obtain the glass-lined reaction tank that meets the requirements of the second-class pressure vessel, but also achieve full compliance.
  • the use of a precision controlled internal heating electric furnace with a combination of intelligent temperature program control/regulation/recorder and new structure for the firing of a new glass reactor has the following advantages: (1) To completely eliminate the bismuth glass reaction In the heating of the external electric furnace, the structural components are unevenly heated due to heat, and the temperature difference is large, and the formed burnt or unfired, and defects such as dark bubbles, cracks, flow porcelain, and blasting occur, including pinhole eradication.
  • the invention belongs to the deep development of the "technical standard" for the one-time processing and forming of the can body iron embryo, and successfully breaks through three serious quality problems involved in the secondary molding of the can body iron embryo: the inner tube body is firstly vigorously shaped , post-welding high-temperature thermal shock and weld stress caused by the micro-cracks of the glass layer; the external thermal furnace is measured and controlled by the furnace temperature and low precision, as well as the firing bracket or hanger, high The thickness of the neck flange is more than twice the thickness of the inner cylinder steel plate, resulting in various hidden defects caused by uneven heating and temperature difference of the inner glass body; the glass layer of the reaction tank cannot be repaired and reused after being damaged. As a pressurized container.
  • the invention innovates and reforms the overall structure of the large flange of the can body flange, and replaces the current high neck large flange structural member to ensure the sealing performance of the can mouth meets the practical production requirements.
  • the tank body and the tank cover are matched with each other, which greatly enhances the mechanical properties of the large flange surface against high temperature and deformation, perfectly improves the nominal pressure of the large flange and the sealing performance of the tank mouth, and avoids excessively vigorously tightening the clamp to cause the large flange surface.
  • the problem of cracking of the glass layer promotes green environmental protection and guarantees safe production.
  • the invention innovates a high-end high-quality neodymium glass reaction tank which fully complies with the three types of pressure vessels which are suitable for the chemical reaction of extremely high and high toxicity medium and flammable or toxic degree medium moderate hazardous medium materials, and promotes the development of the chemical pharmaceutical industry. , a major breakthrough in the history of the development of the glass industry.
  • the invention adopts a novel controlled combination internal heat type electric furnace and an intelligent temperature program control/adjustment/recorder, and combines the slow rotation of the can body in the firing process, and the temperature control precision of the system is src, to maximize the implementation.
  • the whole barrel The new technology of controlled enamel "core technology", which is 100% of the same heating temperature of the enamel glass layer, completely eliminates all kinds of hidden defects such as dark bubbles, cracks, flowing porcelain and blasting in the enamel glass layer. The highest quality indicators including the number of pinholes are deepened. Greatly improved the overall quality of the new glass reactor, and significantly increased the service life of the product, which is a major breakthrough in the history of the glass industry.
  • the present invention completely eliminates the residual stress and hairline defects of the bismuth glass layer.
  • the can body of the last calcined glass reactor is set to a specific temperature range in which the glass glaze layer is softened and converted into a solidified state, and the cooling curve is slowly cooled with the furnace to effectively eradicate the residual stress of the glass layer of the can body. And hairline.
  • the invention is applicable to industrial glass-lined reaction tanks of various specifications, in particular, glass-lined reaction tanks having a volume of 500-60000L or more.
  • the glass layer of the reaction can of the present invention can be reused and repaired after being damaged.
  • Glass-lined reaction tanks are high-value consumables, which are generally used for 1-2 years and sometimes damaged for several months.
  • the damage rate of the glass layer of a considerable number of reaction tanks is only 0.05% of the total area, and there are only a few small areas of damage.
  • the enamel glass layer can not be repaired after being damaged and used as a pressurized container to be scrapped. The steel is wasted and the capital loss is serious.
  • the overall quality of the new glass-lined reaction tank of the invention is significantly better than that of foreign high-end products (the sales price of such products abroad is 6 to 7 times that of China), the service life is doubled, and the glass layer of the can body is damaged, as long as The thickness of the steel plate of the can body has been tested and fully complies with the design and manufacturing standards of the glass-lined pressure vessel. It can be repaired more than three times. The repair price is 30% of the new price, and the economy can be 200% after three repairs. It can be seen that: Compared with the traditional glass-lined reaction tank, a high-end high-quality new glass reactor can provide users with an economic benefit of 300% ⁇ 400%. The steel savings are 4 ⁇ 5 times of the weight of the tank itself. . The nationwide promotion of the project can save the country tens of thousands of tons of steel per year, which can save hundreds of millions of dollars every year. It is a major breakthrough in the history of the development of the glass industry.
  • the invention aims to create a "technical standard" for the secondary processing and molding of the can body iron preform of the leading external heat type electric furnace, the quality of the whole glass-lined reaction tank is low, the service life is not long, the deformation of the large flange of the equipment and the sealing performance of the tank mouth are difficult to meet.
  • the actual production demand, the controlled "burning core technology" carried out abroad is unevenly heated, the temperature difference is large, and the glass-lined layer of the reaction tank can not be repaired and then used as a pressurized container.
  • FIG. 1 Schematic diagram of the can body and can lid of the new glass reactor
  • Figure 2 is a schematic view of the overall structure of the can body of the new glass reactor
  • Figure 2a is a schematic view of multiple sets of symmetric reinforcing steel plates
  • Figure 2al is a partial enlarged view of the overall structure of the canopy large flange, which is a circumferentially welded group of symmetrical reinforced reinforcing steel plates with the inner flange of the inner flange and the outer flange of the outer flange.
  • Figure 2a2 shows the first reinforcing ring body with a curved neck and a plurality of sets of symmetric reinforcing steel plates welded circumferentially along the outer side of the straight barrel.
  • Figure 3 is a schematic view of the overall large flange structure of the new inner cylinder
  • Figure 3a is a partially enlarged schematic view of the circumferential two sets of circumferential welded joints of the first reinforcing annular body and the inner cylinder straight portion.
  • Figure 3b is a schematic view of the first reinforcing annular body with curved necks.
  • Figure 3c is a schematic view of the new inner cylinder body flange
  • Figure 4 is a schematic view of the overall structure of the new outer jacket
  • Figure 5 is a schematic view of the overall structure of the can lid
  • Figure 5a is a schematic view of the structure of the flange of the can lid
  • Figure 5b is a schematic view of the can lid cylinder
  • Figure 5c is a schematic view of a second reinforcing torus with a curved neck
  • Figure 5cl is a partial enlarged view of the circumferential two sets of circumferentially welded joints between the second reinforcing annular body and the straight portion of the can lid and the second large flange of the can lid.
  • Figure 5c2 shows the circumferentially welded sets of symmetric reinforcing steel plates for the second reinforcing annular body of the can lid and the outer part of the straight body of the can lid.
  • Figure 5c3 is a partial enlarged view of the second reinforcing ring body and the symmetric reinforcing steel plate for welding the second large flange of the can lid and the straight body of the can lid
  • Figure 5d is a schematic diagram of multiple sets of symmetric reinforcing steel plates for the can lid
  • Figure 6 is a schematic diagram of a precision controlled internal heating electric furnace with intelligent temperature program control/regulation/recorder and new structure.
  • Figure 6a is a schematic diagram of the combination of intelligent temperature program control/regulation/recorder 18 and temperature measuring element 13.
  • Fig. 7 is a schematic view showing the firing structure of the can body of the new glass-lined reaction tank using a new structure combined precision controlled internal heat type electric furnace:
  • 2al-2a8 is a circumferentially welded group of symmetric reinforcing steel plates for the first reinforcement ring body of the inner cylinder body and the outer side of the straight cylinder body
  • 5dl-5d8 circumferentially welding multiple sets of symmetric reinforcing bars for the second reinforcing ring body of the can lid and the outer part of the straight body of the can lid 6: Precision controlled internal heating furnace
  • 12. 1-12. 16 is a heating element on a cylindrical electric furnace with a multi-layer area combination
  • Each group of temperature measuring components corresponds to each group of heating elements 12. 1-12. 20 14: Insulation cylinder
  • the one-time processing molding according to the present invention means that the inner cylinder body and the outer jacket of the can body have been integrally formed before firing the glass layer on the can body, and the glass layer is not required to be fired. Process again.
  • the three types of pressure vessels described in the present invention comply with the Chinese "Pressure Vessel Safety Technical Supervision Regulations", the degree of adaptation toxicity is extremely high and highly hazardous medium and the flammable or toxic degree is moderately hazardous medium materials.
  • the various index standards involved in the paper are determined according to the principle of thickness of steel plate for metal substrate of 7.1.4 ⁇ glass equipment specified in GB25025-2010 “Technical Conditions for Glass-lined Equipment”; 10.3 Hydraulic test of cavity according to GB/T 7994; The airtightness test of the equipment shall be carried out according to GB/T 7995; 6.4.2 The physical and chemical properties of the glass layer shall be evaluated after the test pieces are prepared according to HG/T 3105. The performance shall be in accordance with Table 3; According to GB/T 7993, 2KV DC high voltage electric inspection
  • the glass-lined reaction tank shown in Fig. 1 comprises a can body 2 and a can lid 5; both the can body and the can lid are inspected and qualified.
  • the can body 2 is of a unitary structure, comprising an inner cylinder body 3 and an outer jacket body 4, wherein the inner cylinder body and the outer jacket are both newly-tested and qualified products;
  • the inner cylinder 3 includes a first reinforcing annular body 3b, a straight cylinder 3al, a head piece 3a2, and a discharge port flange 3a3, and the upper body of the straight body 3al is turned over.
  • first reinforcing annular body 3b Forming a first large flange 3a4, the first reinforcing annular body 3b is closely matched with the outer circumference of the straight body 3al and welded under the first large flange 3a4, the straight body 3al and the head piece 3a2 is connected, the discharge port flange 3a3 is disposed at a lower mouth of the head piece 3a2, and the straight body 3al, the head piece 3a2, the discharge port flange 3a3, and the first reinforcing ring body 3b are as shown in the figure
  • the welding shown in Figure 3 is combined into a unitary structure.
  • the outer jacket 4 includes a jacket body 4.1 with a closing mouth 4.1.1 and an outer jacket head member 4.2 with an inner ring type closing structure 4. 2. 1
  • the jacket body 4.1 and the outer jacket head member 4.2 with the inner ring-shaped closing structure are welded and combined into a unitary structure.
  • the outer jacket 4 is welded to the outer cylinder 3 and integrated with the inner cylinder body.
  • the outer jacket 4 and the inner cylinder 3 are a cavity 20;
  • the inner wall of the inner cylinder 3, the flange surface of the discharge port, the inner wall of the can lid 5, the flange faces of the upper portion of the can lid, the outer wall of the inner cylinder 3, and the inner wall of the outer jacket are all sprayed with a glazed glass glaze.
  • Layer 19
  • the large flange of the can body generally adopts the practice of welding a high neck and a large flange.
  • the inventors have found that the use of a high-necked large flange can reduce the degree of deformation of the large flange surface when the high-temperature sintered glass glaze layer is sintered, but the geometric deformation and sealing performance of the can end can hardly satisfy the product in practical installation and use, excessively tightening When the clip is inserted, it is easy to cause the glass layer of the large flange to crack.
  • the invention directly bends the straight body to form a large flange, and cooperates with the method of reinforcing the torus.
  • the thickness of the steel plate of the reinforcing ring body can be adjusted and thickened according to the nominal diameter of the can body, the lifting and strengthening are greatly enhanced.
  • the large flange faces the mechanical properties against high temperature deformation, significantly improving the nominal pressure of the large flange and the sealing performance of the can.
  • the nominal diameter of the can body is increased, which increases the thickness of the steel plate of the torus. As a result, the nominal pressure and the can seal performance of the large flange face of the glass-lined reactor are perfectly improved.
  • the first reinforcing annular body has a curved neck to facilitate the clamping of the clip.
  • the present invention is sprayed with a enamel glass enamel layer on the outer wall of the inner cylinder and the inner wall of the outer jacket to enhance the bismuth glass reaction tank during multiple high temperature firing and long-term use. Oxidized and corroded.
  • the thickness of the steel plate of the straight body 3al, the head piece 3a2 and the outer jacket 4 can be thickened by 2 to 10 mm according to the standard design and manufacture standard of the glass pressure vessel.
  • a first set of circumferential welded joints 2b is circumferentially welded between the first reinforcing annular body 3b of the can body 2 and the outer circumference of the straight body 3al, and the first reinforcing annular body 3b
  • a set of circumferential welded joints 2b is also circumferentially welded to the first large flange 3a4.
  • the can body further includes a plurality of sets of reinforcing first reinforcing steel plates 2a, and the plurality of sets of reinforcing first reinforcing steel plates 2a are arranged along the inner tubular body.
  • the outer circumference of the straight body 3al is symmetrically distributed between the first reinforcing annular body 3b and the closing portion 4.1.1 of the jacket body 4.1 with the cuff, and the first reinforcing plate 2a is welded to the inner cylinder 3
  • the outer circumference is welded to the first reinforcing annular body 3b, and the first reinforcing steel plate 2a is 8-36 pieces.
  • the design of the first steel plate can further improve the nominal pressure of the large flange and the sealing performance of the can.
  • the can lid 5 includes a can lid straight body 5b, and the lower mouth of the can lid straight body 5b is turned into a second large flange 5b l, the second large flange 5b l is welded with a second reinforcing annular body 5c which is closely matched with the outer circumference of the can lid straight cylinder 5b.
  • the second reinforcing annular body 5c and the outer circumference of the can lid straight body 5b are circumferentially welded with a set of circumferential welded joints 5cl, and the second reinforcing annular body 5c A set of circumferential welded joints 5cl is also circumferentially welded to the second large flange 5b.
  • the second reinforcing annular body 5c is further welded with a plurality of reinforcing second reinforcing steel plates 5d, and the plurality of groups serve as reinforcing second.
  • the steel plate 5d is symmetrically distributed along the outer circumference of the can lid straight cylinder 5b, and the second steel plate 5d is 8 to 36 pieces.
  • the inner wall of the can lid, the large flange surface and the flange surface of the upper part of the can lid are coated with a enamel glass glaze layer.
  • the second reinforcing annular body 5c has a curved neck.
  • the second reinforcing annular body 5c and the second reinforcing plate 5d function similarly to the first reinforcing annular body 3b and the first reinforcing plate 2a which are added to the can body.
  • the straight body 3al, the head piece 3a2 and the discharge port flange 3a3, which are turned upside down into the first large flange 3a4, respectively, are made; the straight body 3al, the head piece 3a2 and the discharge port flange 3a3 are welded into the inside The barrel structure member 3a;
  • the straight body 3al and the head member 3a2 are increased by 2 to 10 mm according to the design and manufacture standard of the glass-lined pressure vessel;
  • the longitudinal welded joint 3a5 on the straight body 3a1 and the lower butt joint welded joint 3a6 between the straight body 3al and the head piece 3a2 are respectively subjected to X-ray inspection to obtain a qualified inner tubular structural member.
  • the weld seam is X-rayed according to the Chinese standard JB/T 4730 “Non-destructive testing of pressure equipment”.
  • the qualified inner tubular structural member refers to: the inner tubular structural member that meets the requirements of the X-ray flaw detection test result.
  • the X-ray flaw detection test results meet the requirements of the corresponding Class II pressure vessels in the Pressure Vessel Safety Technical Supervision Regulations.
  • a first reinforcing annular body 3b is welded to a lower portion of the first large flange 3a4 of the inner tubular member, and the first reinforcing annular body 3b is closely matched with the outer circumference of the straight cylindrical body 3al, in the can body
  • Between the first reinforcing annular body 3b of 2 and the outer circumference of the straight body 3al is circumferentially welded with a set of circumferential welded joints 2b, in the first reinforcing annular body 3b and the first large flange 3a4
  • a set of circumferential welded joints 2b is also circumferentially welded to obtain an inner tubular body 3 of a unitary structure.
  • the thickness of the steel plate of the first reinforcing annular body 3b can be adjusted and thickened according to the size of the nominal diameter of the can body. The larger the nominal diameter of the can body, the greater the thickness of the first reinforcing annular body.
  • the thickness of the steel plate of the outer jacket is increased by 2 ⁇ 10 mm according to the design and manufacture standard of the glass pressure vessel;
  • 100% X-ray inspection of the weld can be carried out according to the Chinese standard JB/T 4730 “Non-destructive testing of pressure equipment”.
  • the qualified outer jacket refers to: an outer jacket that meets the requirements of the X-ray flaw detection test result.
  • the X-ray inspection results should meet the requirements of the corresponding Class II pressure vessels in the Pressure Vessel Safety Technical Supervision Regulations.
  • the bismuth glass glaze slurry uses a enamel glass glaze layer used in a conventional bismuth glass reaction tank. It should meet the physical and chemical performance indexes of HG/T 3105, Table 3, glass layer.
  • the first reinforcing annular body 3b and the closed portion 4.1.1 of the jacketed body 4.1 with a closed mouth are circumferentially welded with a plurality of symmetrically distributed first reinforcing bars
  • the plate 2a obtains the can body 2, and the can body is a single-piece forming overall structure;
  • the glazed glaze slurry used in this step uses a enamel glass glaze layer used in a conventional bismuth glass reaction tank.
  • the can body coated with the glazed glaze slurry is fired by a precision controlled internal heat type electric furnace, and the parts of the enamel glass glaze layer which are sprayed on the inner wall are controlled to be uniformly heated and simultaneously fired;
  • step 9 using the firing method of step 9), repeatedly firing the can body for a plurality of times, and spraying the inner wall of the inner cylinder body, the first large flange surface and the flange surface of the discharge port before each burning Glass glaze slurry;
  • the firing uses a controlled core "core technology”. It can be used in medium-temperature calcination, high-temperature sintering, heat preservation, and staged controlled firing in the inner wall of the can body.
  • the firing temperature is room temperature -900 °C, and the firing time is 5.5 ⁇ . 6h.
  • the room temperature -15 CTC when firing, it can be slowly heated at room temperature -15 CTC, then preheated and kept at 150 ° C -40 CTC, then preheated and kept at 400 ° C -60 CTC, wherein the room temperature -60 CTC temperature section is fired.
  • the total time is 4 hours, then fired and insulated at 600 ° C -900 ° C, 600 ° C -90 (TC high temperature firing and holding time for a total of 1.5-2 hours.
  • the number of times that the new glass reactor can be repeatedly burned can reach 6-7 times.
  • the last fired can body is cooled with the furnace, and the chamber 20GB/T 7994 standard between the inner cylinder body 3 and the outer jacket 4 is subjected to a hydraulic test to obtain the can body of the glass-lined reaction tank;
  • the bottom cover of the can lid straight body 5b is formed into a can lid 5 of the second large flange 5b l, and a portion of the second large flange 5b l is welded to the outer circumference of the can lid straight body 5b.
  • a second reinforcing annular body 5c of the curved neck, the second reinforcing annular body 5c and the outer circumference of the can lid straight body 5b are circumferentially welded with a set of circumferential welded joints 5cl, the second A pair of circumferential welded joints 5c l are also circumferentially welded between the reinforcing annular body 5c and the second large flange 5b l, and the second reinforcing annular body 5c is further welded with a plurality of sets of the outer side of the can body straight body 5b.
  • a second reinforced steel plate 5d symmetrically distributed, obtaining a can structural member of the can lid, spraying and firing the glazed glaze slurry on the inner wall of the inner structural member of the can lid and the flange surface of the upper portion of the can lid to obtain the raft
  • the can lid 5 of the glass reaction tank
  • the second large flange surface of the can lid is also coated with a enamel glass layer.
  • the glazed glaze slurry used in this step uses a enamel glass glaze layer used in a conventional bismuth glass reaction tank.
  • the firing of the can lid can be carried out by a conventional can lid glass layer firing process.
  • the step 9) the precision controlled internal heat type electric furnace is as shown in FIG. 6 and FIG. 7 , and includes a heat insulating cylinder 14 , and a top of the heat insulating cylinder 14 is provided with a set of openable and insulated furnace top doors 15;
  • the top door 15 of the holding furnace is provided with a rotating body hanger rotating member 16 extending through the top door of the holding furnace;
  • the bottom of the rotating body of the can body burning hanger is further provided with a plane electric furnace 11, and a bottom surface of the flat electric furnace is provided with a set
  • the precision controlled internal heat type electric furnace further comprises a main body heating electric furnace 7 located in the heat insulating cylinder body 14;
  • the main body heating electric furnace 7 includes a ring body plane electric furnace 10 and a multi-layer area combined cylinder from bottom to top.
  • the ring plane of the ring-shaped electric furnace 10a is provided with a plurality of concentric circular grooves having different diameters; the concentric circular groove is wound with a set of electric heating elements 12.18; the inner peripheral wall of the straight ring electric furnace 10b By the next a plurality of annular grooves are disposed; the annular groove is wound with a set of electric heating elements 12.19; the cylindrical electric furnace 8 of the multi-layered area is superposed by a plurality of circular plates 8a having the same diameter and coincident central axes.
  • the inner peripheral wall of the circular plate is provided with an annular groove, and a set of electric heating elements is wound in each of the annular grooves of the 2-8 layers of circular plates. 1 ⁇ 12.
  • the circular stepped trapezoidal electric furnace 9 is formed by stacking a plurality of circular flat plates 9a having different diameters and overlapping central axes, and the circular flat plates 9a are sequentially reduced in diameter from bottom to top.
  • the peripheral cover has a head-shaped heating structural member 9b which is matched with the inner wall structure of the inner cylinder head member 3a2, and the head-shaped heating structural member is made of heat-resistant steel; each group in the precision controlled internal heat type electric furnace
  • the heating elements are each connected to a temperature control system.
  • the overall outer shape of the cylindrical electric furnace 8 and the round stepped trapezoidal electric furnace 9 combined in a multi-layer area is the same as the inner wall structure of the inner cylinder 3 of the can body.
  • the matching is consistent.
  • the ring-shaped planar electric furnace 10 Corresponding to the outer side of the first large flange 3a4 of the inner cylinder 3 and the outer side of the first large flange end of the can body 2, the straight body 3al and the inner head piece 3a2, the can body is fired to form a flat electric furnace at the bottom of the rotator
  • the inner ring-type closing structure of the heating outlet spout flange 3a3 and the outer jacket head member 4.2 is 4. 2.
  • the temperature control system is configured to regulate a heating temperature of the electric heating element connected thereto, and includes: a temperature measuring element 13: matched with a set of electric heating elements, and disposed in a heating area of the electric heating element of the group , for detecting the heating temperature of the inner cavity of the can body in the heating region of the group of electric heating elements, and emitting a temperature signal;
  • a temperature controller 18 disposed on the heat-insulating cylinder 14 of the precision controlled internal heat type electric furnace, connected to the temperature measuring element and an electric heating element matched with the temperature measuring element (not shown), the temperature
  • the controller stores a preset temperature or temperature control curve for receiving the temperature signal of the temperature measuring component, and adjusting the heating temperature of the heating element after comparing with the preset temperature or the temperature control curve.
  • each set of electric heating elements 12.1-12. 20 is matched with one temperature measuring element 13.1 ⁇ 13.20, and the temperature measuring elements matched with the set of electric heating elements are set in the same heating of the set of electric heating elements.
  • each group of heating elements is independently controlled by an independent temperature controller based on the temperature measured by the matching temperature measuring element and the preset temperature curve.
  • the temperature controller belongs to the prior art, and the intelligent temperature controller can accurately control the working state of the electric heating element according to the design requirement.
  • the invention can accurately control and implement the same heating temperature of the can body 2 and the same heating temperature, and integrate one another. Burnt.
  • the intelligent temperature control device that integrates temperature program control, adjustment and recording is a mature existing technology, such as PID type intelligent temperature program control/regulation/recorder. With such intelligent temperature control device, it can be accurately set. And control the temperature, adjust and automatically print the record.
  • a glass-lined reaction tank having a volume of 500 L and a glass-lined reaction tank having a volume of 60,000 L were separately prepared as described above.
  • the glass-lined DC high-voltage electrical performance test method is adopted.
  • the 20KV DC high-voltage detection is used to detect the non-conductivity of the whole glass layer in the inner cylinder.
  • the gas-tightness test of the reaction tank was carried out according to the GB/T 7995 standard, and the test results showed that no leakage occurred.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Furnace Details (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Abstract

一种搪玻璃反应罐及其制造方法,属于受压容器设备领域,用于化工、制药工业。搪玻璃反应罐的铁胚制造一次成型技术标准,创新罐身翻边大法兰整体结构和与之相配套的罐盖,提升大法兰公称压力和罐口密封性能。应用结构组合的精密受控内热式电炉和智能温度程序控制/调节/记录仪,精确控制罐身内壁整体搪玻璃层同一受热温度,同步一体烧成的受控搪烧核心技术。改善了外热式电炉其罐身铁胚制造二次成型,导致受控搪烧受热不均匀,反应罐的搪玻璃层损坏后绝不能修复后再用作受压容器的问题。

Description

一种新搪玻璃反应罐及其制造方法
技术领域
本发明涉及一种化工、 制药工业用新搪玻璃反应罐及其制造方法, 属于化工、 制药工业 用的受压容器设备领域。 背景技术
搪玻璃反应罐属二类受压容器的反应设备。 其罐身是由内筒身 (内壁喷涂烧成搪玻璃釉 层) 和外夹套所组合。 当前国内外搪玻璃反应罐的烧成全部为外热式电炉, 其铁胚制造全部 二次加工成型。 先烧成带有上、 下接环 (外夹套过渡结构件) 的内筒身内壁的搪玻璃层, 再 焊接组装外夹套, 其上接环处加衬板的单面对接环焊缝。 我国 2002年 1月 24 日 HG2432— 2001 《搪玻璃设备技术条件》 规定对该处环焊缝可免做无损检测, 显然是不符合受压容器制 造规范, 致使我国搪玻璃反应罐的制造 "技术标准" 不为世界各国所认可。 为此, 我国 2010年 9月 2日 GB25025-2010《搪玻璃设备技术条件》 的规定对该处环焊缝要做表面无损 检测。
罐身铁胚制造二次加工成型, 由此涉及三大严重产品质量等问题决难突破解决, 带有 上、 下接环的单层钢板组合的内筒身, 经 900° C左右 6〜8次高温焙烧后导致基体整体变形 呈扭曲裙式变形, 上接环与夹套筒身焊接组装时, 先大力整形, 后电焊高温热冲击和焊缝应 力所导致的搪玻璃层细微裂纹等隐患, 严重影响搪玻璃层的整体质量。
外热式电炉, 其电加热功率所释放的热量, 先辐射至内筒身钢板的外壁, 再传导至内壁 的搪玻璃层。 由此可见其所测量和控制的是炉体温度, 还有内筒身上的高颈大法兰钢板厚度 为直筒身的 2.5倍, 其所需热容量要大, 以及内筒身的外侧有一组上、 下接环结构件和制品 烧成的支撑架或吊架, 均为外热式电炉加热的挡火物, 上述部位内壁搪玻璃层受热温度显著 低于其它部位, 致使外热式电炉所执行的受控搪烧 "核心技术"不是搪玻璃层的真实受热温 度, 且受热不均匀, 温差大, 直接影响产品整体质量更为显著的提升。
搪玻璃反应罐在外热式电炉多次高温烧成中, 由基体变形引起设备大法兰的整体变形, 直接关联反应罐罐口的密封性能, 致使罐内反应介质气体泄漏, 涉及绿色环保和安全生产。 使用时只得过度大力拧紧卡子, 导致大法兰面上的搪玻璃釉层崩裂。 国家新规定标准 GB25025-2010 《搪玻璃设备技术条件》, 设备法兰的最大最小直径差在 DN 1000mm 时, 6mm; 在 DN〉1000mm时, 10mm。 平面度公差: 在 DN 1000mm时, 2mm; 在 DN〉 1000mm 时, 5mm。 设备法兰的压紧面宽度 15mm。 对损坏反应罐的搪玻璃层的修复, 在原上下接环过渡件与外夹套的焊接处, 须氧、 乙炔 火焰割除外夹套, 待搪玻璃层多次烧成检验合格后, 再复焊不平直、 弯曲的加衬板的单面对 接环向焊接接头和下接环的焊接组成罐身, 不符合受压容器的修复规范。 据报道曾有爆炸事 故发生。
搪玻璃反应罐属高值易耗品, 一般使用 1~2年就损坏。 应当指出: 有相当数量反应罐的 搪玻璃层损坏率仅占总面积的 0.05%, 有的只有几处小点面积的损坏。 全国每年有大量价值 达数亿元, 钢材用量高达几万吨反应罐的搪玻璃层因损坏不能修复再用作受压容器而报废, 钢材浪费极大、 资金损耗严重。
因此, 本发明深化发展搪玻璃反应罐的罐身铁胚制造一次加工成型 "技术标准", 开创 制造拥有我国先驱独创自主知识产权, 整体质量优于国际领先水平的高端新搪玻璃反应罐, 推动当代世界搪玻璃工业的大革命。
CN201110287709. 0公开了一种采用内热式电炉烧制的搪玻璃反应罐, 但是该搪玻璃反应 罐仍不能最大限度的彻底根除整体搪玻璃层各类隐患缺陷, 罐口大法兰的公称压力和罐口密 封性能仍不能完美的提升, 难能制造出台全面符合三类压力容器要求的搪玻璃反应罐。 发明内容
本发明的目的: 开创一种新搪玻璃反应罐及其制造方法。 继续深化发展, 开创罐身铁胚 制造一次加工成型 "技术标准", 以全方位的优势取代现行搪玻璃反应罐及其制造方法。 克 服现行罐身铁胚制造二次加工成型 "技术标准"所存在的设备大法兰变形和罐口密封性能 差; 搪玻璃层隐患缺陷多; 产品使用寿命不长; 反应罐的搪玻璃釉层损坏后, 绝不能修复再 用作受压容器; 钢材浪费严重; 资金损耗极大等问题。
本发明采用一次加工成型 "技术标准"来实施搪玻璃反应罐的罐身的铁胚制造。
本发明的新搪玻璃反应罐的罐身包括新内筒身和新外夹套, 所述新内筒身包括直筒身、 连接直筒身的封头件以及出料口法兰。 所述新内筒身的直筒身的上口翻边形成第一大法兰, 并在其下部焊接一件与之相精密配作的第一增强圆环体。 所述第一增强圆环体的钢板厚度可 按罐身公称直径的大小设定调整增厚, 以极大的提升增强大法兰面抗高温绝不变形的机械性 能, 显著提升大法兰的公称压力和罐口密封性能。 所述新内筒身的下部为出料口法兰。 所述 的新外夹套为由带有收口的夹套身和带内环收口结构的封头件焊接而成的整体结构。 所述新 内筒身和新外夹套全部按标准 JB/T 4730的方法检测符合 《压力容器安全技术监察规程》 中 关于第二类压力容器的要求后, 焊接为整体结构的罐身, 新内筒身和新外夹套之间为腔体。 所述的新内筒身的内壁、 新内筒身的外壁、 新外夹套的内壁上均喷涂烧成有搪玻璃釉层。 进一步的, 所述新内筒身的内壁、 大法兰面、 出料口法兰面、 新内筒身的外壁、 新外夹 套的内壁均喷涂烧成搪玻璃层。
进一步的, 新内筒身及新外加套的钢板厚度按现行按搪玻璃压力容器设计制造标准增厚 本发明新搪玻璃反应罐的罐身, 其筒身和外夹套的钢板厚度按搪玻璃压力容器设计制造 标准增厚 2-10mm, 并在内筒身的外壁和外加套的内壁喷涂烧成搪玻璃釉层。 该设计的目的 是: 弥补因罐身多次高温烧成导致铁胚表面被氧化, 以及实际生产使用过程中钢板被腐蚀而 导致的减薄。 本发明的反应罐的搪玻璃层损坏后, 只要罐身的钢板厚度经检验全面符合二类 压力容器设计制造标准, 可多次实施带夹套整体修复再利用, 修复工艺全面符合二类压力容 器规范, 且修复后的质量达新品标准。
进一步的, 所述罐身还包括多组对称加强钢筋板; 所述多组加强钢筋板设于罐身的第一 增强圆环体及带收口的夹套身的收口部位之间, 并沿罐身的圆周呈多组对称组合焊接而成, 显著提升大法兰公称压力和罐口密封性能。
本发明的新搪玻璃反应罐的罐盖包括罐盖直筒体, 所述罐盖直筒身下口翻边成第二大法 兰, 所述第二大法兰的上部焊接一件与罐盖直筒体圆周相精密配作的第二增强圆环体, 较佳 的, 该第二增强圆环体带有弧形颈。 所述的第二增强圆环体其钢板厚度, 可按罐盖的公称直 径的大小设定调整增厚。 罐盖公称直径越大, 其第二增强圆环体的钢板厚度越大。 所述第二 增强圆环体沿罐盖直筒身部位呈圆周焊接组成罐盖整体结构, 以极大的提升大法兰对公称压 力和罐口密封性能。 所述第二增强圆环体上还焊接有多组起加强作用的第二钢筋板; 罐盖内 壁、 第二大法兰面以及罐盖上部各法兰面上均喷涂烧有搪玻璃釉层。
较佳的, 所述罐身和罐盖各自多组对称加强钢筋板的件数为 8-36件。
本发明对罐身整体结构件与相配套的罐盖结构件的结构进行了改革, 可确保经多次高温 烧成后, 大法兰面绝不变形, 完美提升大法兰面公称压力和罐口整体密封性能, 经内壁搪玻 璃层烧成经检验合格后, 可得到全面符合三类压力容器要求的搪玻璃反应罐。
本发明应用智能温度程序控制 /调节 /记录仪配合新结构组合的精密受控内热式电炉, 实 施受控搪烧 "核心技术", 以精确的控制对罐身的整体搪玻璃层实施同一受热温度、 同步一 体烧制, 以最大限度的彻底根除反应罐搪玻璃层中各类隐患缺陷, 实现了包括针孔数为 0的 最高质量指标。
本发明的新搪玻璃反应罐的制造方法, 具体包括如下步骤: 1 ) 制作内筒身构件, 并对新内筒身上的纵向焊接接头和环向焊接接头按 JB/T4730进行 X 射线探伤, 获得符合第二类压力容器安全技术监察规程的新内筒身。 新内筒身的钢板厚 度, 按现行按搪玻璃压力容器设计制造标准增厚 2~10mm;
2 ) 制作内筒身整体结构: 新内筒身翻边第一大法兰的下部焊接一件与新内筒身外圆直 径相精密配作的外侧带有弧形颈的第一增强圆环体, 两者之间呈圆周焊接两组环向焊接接 头, 组合成整体结构的内筒身。 所述的第一增强圆环体为确保大法兰面在多次高温烧成中不 变形, 其钢板厚度可按罐身的公称直径的大小设定调整增厚。
3 ) 分别制作带收口的夹套身和带内环式收口结构的外夹套封头件, 并焊接成整体结 构, 得到整体结构的新外夹套。 较佳的, 所述新外夹套钢板厚度按现行按搪玻璃压力容器的 设计制造标准增厚 2~10mm;
4) 对新外夹套上的纵向焊接接头和环向焊接接头按 JB/T4730进行 X射线探伤, 获得符 合第二类压力容器安全技术监察规程的新外夹套;
5) 对新内筒身的外壁和新外夹套的内壁均喷涂搪玻璃釉浆;
6 ) 将新内筒身和新外夹套焊接成整体结构, 得到符合二类压力容器安全监察法规的罐 身;
7 ) 在经检验合格的新内筒身的第一增强圆环体和新外夹套的收口部位之间焊接多组对 称加强钢筋板, 所述多组对称加强钢筋板沿罐身圆周呈多组对称组合焊接。 所述的第一增强 圆环体和多组对称加强钢筋板可完美提升罐身大法兰公称压力和罐口密封性能。
8 ) 对新内筒身的内壁进行搪玻璃釉浆的喷涂。 进一步的, 还可对新内筒身的翻边大法 兰面、 出料口法兰面进行搪玻璃釉浆的喷涂, 得到内壁喷涂搪玻璃釉浆的罐身。
9) 应用具有智能温度程序控制 /调节 /记录仪与新结构组合的精密受控内热式电炉, 将罐 身内壁和翻边大法兰面、 出料口法兰面喷涂的搪玻璃釉层, 实施受控搪烧 "核心技术", 促 成钢板与搪玻璃底釉之间形成最佳最坚固丝网状结构的密着层。 为之后精确控制搪玻璃底釉 与搪玻璃面釉, 搪玻璃面釉与搪玻璃面釉之间实施同一受热温度, 同步一体烧成打下基础。 以最大限度的彻底根除各类隐患缺陷, 达到包括针孔数为 0的最高质量指标。
10) 将反应罐的罐身采用结合有智能温度程序控制 /调节 /记录仪的新结构组合的精密受 控内热式电炉对所述罐身反复多次搪烧, 且每次搪烧前均先对新内筒身的内壁和翻边大法兰 面、 出料口法兰面进行搪玻璃釉层的喷涂后再烧成。
11 ) 将末次烧制好的新搪玻璃反应罐的罐身按特定降温曲线随炉冷却后, 对内筒身与外 夹套之间的腔体进行液压试验, 得到所述搪玻璃反应罐的罐身。 12) 制作罐盖: 制作罐盖直筒体的下口翻边成第二大法兰的罐盖,在罐盖翻边第二大法 兰的上部焊接一件与罐盖直筒体外侧圆周相紧密配作的带有弧形颈第二增强圆环体, 呈圆周 焊接二组环向焊接接头。 所述的第二增强圆环体的钢板厚度可按罐盖的公称直径的大小设定 调整增厚, 罐盖的公称直径越大, 其第二增强圆环体的钢板厚度越厚。 所述的多组对称加强 钢筋板与第二增强圆环体, 沿罐盖的直筒体部位呈圆周焊接组合成罐盖整体结构件, 以极大 的提升罐盖大法兰公称压力和罐口的密封性能。 在所述罐盖整体结构件内壁、 第二大法兰面 以及罐盖上部各法兰面上进行搪玻璃釉浆的喷涂及烧制, 获得所述新搪玻璃反应罐的罐盖。
步骤 5)、 8)、 12) 所用的搪玻璃釉浆为现有技术中常规的釉或按罐内反应介质的需求提 供特种搪玻璃釉的釉浆。 较佳的, 可应用全自动喷涂釉浆设备喷涂搪玻璃釉浆。
步骤 11 ) 中, 所述新搪玻璃反应罐的罐身在末次烧成后, 可按搪玻璃釉层软化态转化为 固化态的特定温度段设定降温曲线, 随炉缓慢冷却, 以有效的根除罐身搪玻璃层的残余应力 和发纹的产生。
优选的, 所述随炉缓慢冷却的降温速度可控制在 6~8h由炉温 65CTC缓慢冷却至 15CTC。 步骤 9)中, 所述的受控搪烧 "核心技术"是指, 在罐身内壁搪玻璃底釉烧制时, 实施中 温预烧、 高温烧结、 保温阶段的受控搪烧工艺。 烧成温度可为室温 -900°C, 全部烧成时间为
5~6h。
步骤 9) 和 10) 中, 应用具有智能温度程序控制 /调节 /记录仪与新结构组合的精密受控 内热式电炉, 系统的测量、 控制精度可达士 rc, 可全面精确控制并实现搪玻璃反应罐的最 佳搪烧工艺。 严格遵循受控搪烧 "核心技术", 对升温、 保温、 降温的每一个阶段的特定温 度进行精确的控制, 由计算机执行搪烧工艺曲线, 记录、 打印、 存档。
步骤 9) 罐身搪烧用的新结构组合的精密受控内热式电炉包括多处改革:
所述新结构组合的精密受控内热式电炉的结构改革之一为: 在原环平面电炉上增设一组 温度可调控的直环体电炉, 用于对罐身结构件大法兰外侧的整体结构件部位的辅助加热, 以 有效的控制罐身的内筒身大法兰面的搪玻璃层与整体内壁搪玻璃层的同一受热温度, 同步一 体烧成。
所述新结构组合的精密受控内热式电炉的结构改革之二为: 所述的在圆台阶梯电炉的外 围增设一件由耐热钢制作的与新内筒身封头件内壁结构匹配一致的封头形加热结构件, 以有 效的提升封头形加热结构件的均匀发热, 精确控制罐身的内筒身封头件内壁的搪玻璃层与整 体内壁搪玻璃层同一受热温度, 同步一体烧成。
所述新结构组合的精密受控内热式电炉的结构改革之三为: 所述搪玻璃反应罐的罐身倒 置于主体加热电炉上, 在罐身的烧成吊架自转件底部增设一组加大圆平面电炉直径的温度可 调控的新平面电炉, 用于对应于罐身的外夹套带内环的收口部位的辅助加热, 以有效的控制 该处内壁搪玻璃层的同一受热温度, 同步一体烧成。
具体的, 步骤 9 ) 和步骤 10 ) 中, 所述新结构组合的精密受控内热式电炉包括保温筒 体, 所述保温筒体顶部设有一组可开合的保温炉顶门, 所述保温炉顶门上设有贯穿保温炉顶 门的罐身烧成吊架自转件, 所述罐身烧成吊架自转件的底部还设有新平面电炉; 所述新结构 组合的精密受控内热式电炉还包括位于保温筒体内的主体加热电炉, 所述主体加热电炉由下 而上依次包括环体平面电炉、 多层区域组合的圆柱体电炉和圆台阶梯形电炉; 所述环体平面 电炉之下还设有环体平面炉升降件; 所述的环体平面电炉由环平面电炉和直环体电炉所组 成; 所述环平面电炉的环平面上以及所述的直环体电炉的内侧周壁上各设一组电热元件; 所 述多层区域组合的圆柱体电炉的圆环凹槽内, 每 2-8层绕制一组电热元件, 优选每 5-8层绕 制一组电热元件; 所述圆台阶梯形电炉每 2~8 层阶梯平台面上绕制一组电热元件, 优选每 5-8 层绕制一组电热元件; 所述的圆台阶梯电炉的外围罩有一与内筒身封头件内壁结构匹配 一致的封头形加热结构件; 所述新结构组合的精密受控内热式电炉内的各组电热元件均分别 与一控温系统连接。
所述控温系统用于调控与之相连的电热元件的加热温度, 包括一测温元件和一温控仪, 一测温元件与一组电热元件匹配, 并设于该组电热元件的加热区域内, 用于检测该组电热元 件加热区域内的罐身内腔受热温度, 并发出温度信号; 温控仪设于所述精密受控内热式电炉 的保温筒体外, 与所述测温元件及与该测温元件匹配的电热元件相连, 所述温控仪存储有一 预设温度或温控曲线, 用于接收测温元件的温度信号, 在与预设温度或温控曲线比较后调控 电热元件的加热温度。
由于每组电热元件均独立匹配一温控系统, 因此各组电热元件的加热功率均可独立调 控。
所述温控仪可选用智能温度程序控制 /调节 /记录仪, 以精确的实现温度预设、 温度控制 与自动记录。
所述主体加热电炉的整体结构造型与所述罐身的新内筒身的造型结构相匹配一致, 所述 环体平面电炉、 多层区域组合的圆柱体电炉和圆台阶梯形电炉分别对应于新内筒身的翻边大 法兰、 直筒身和内封头件。
所述主体加热电炉中的环体平面电炉、 多层区域组合的圆柱体电炉和圆台阶梯形电炉按 组合新内筒身各结构部件不相同的钢板厚度、 其热容量的需求也不相同。 环体平面电炉中的 电热元件、 多层区域组合的圆柱体电炉中的电热元件、 以及圆台阶梯形电炉中的电热元件由 耐热钢制作的封头形加热结构件, 分别根据所需求的不相同电加热功率, 直接热辐射至新内 筒身内壁和翻边大法兰面、 出料口法兰面的搪玻璃层, 实施同一受热温度, 同步一体烧成。
烧制过程中, 所述新搪玻璃反应罐的罐身倒置于主体加热电炉上, 罐身烧成吊架自转件 底部的新平面电炉、 环体平面电炉、 多层区域组合的圆柱体电炉和圆台阶梯形电炉分别对应 于新搪玻璃反应罐的新内筒身的出料口法兰面以及外夹套封头件带内环的收口部位、 罐身翻 边大法兰面及其外侧整体结构件、 直筒身和内封头件内壁的搪玻璃层。 罐身烧成吊架自转件 在新搪玻璃反应罐的烧成全过程中缓慢自转。 所述保温筒体的材料采用硅酸铝纤维。
所述具有智能温度程序控制 /调节 /记录仪与新结构组合的精密受控内热式电炉, 系统的 控温精度为士 rc, 在每一台搪玻璃反应罐的多遍烧制过程中, 可精确地设定温度程序控 制, 调节并自动记录每一遍分阶段受控搪烧各特定温度段的升温、 保温、 降温全过程烧制温 度曲线, 高效优质的提升搪玻璃反应罐的整体质量。
应用所述具有智能温度程序控制 /调节 /记录仪与新结构组合的精密受控内热式电炉, 按 新搪玻璃反应罐各结构部件的钢板厚度不相同, 其热容量不相同, 所需的加热功率也不相 同, 采用多元组合、 单元分组控温系统、 应用智能温度程序控制 /调节 /记录仪与新结构组合 的精密受控的内热式电炉, 其电加热功率可根据实际需要设定, 结合环体平面电炉升降件, 精确调整实现各部件内壁搪玻璃层的同一受热温度, 同步一体烧成。 如翻边大法兰上第一增 强圆环体的钢板厚度, 与新内筒身的钢板厚度差距很大, 其所需的热容量亦不相同, 因此所 需加热的功率也不相同, 采用多元组合、 单元分组控温系统、 由智能温度程序控制 /调节 /记 录仪与新结构组合的精密受控内热式电炉, 系统的控温精度为士 rc, 科学精确的全面的实 施中温预烧、 高温烧制、 保温、 分阶段受控搪烧的 "核心技术", 可严格遵循钢材自身的物 理化学反应, 钢材与搪玻璃底釉、 搪玻璃底釉与搪玻璃面釉、 搪玻璃面釉与搪玻璃面釉之间 的最佳、 最完美的物理化学反应的实现。 以最大限度的彻底根除搪玻璃层中各类缺陷包括针 孔数为 0的最高质量指标, 极大地提高搪玻璃反应罐的整体质量和使用寿命。
所述的新结构组合的精密受控内热式电炉结合智能温度程序控制 /调节 /记录仪, 二者精 密完美配作极大的推动新搪玻璃反应罐制造方法的深化发展, 完美提升罐身大法兰公称压力 和罐口密封性能, 创新出台全面符合三类压力容器的搪玻璃反应罐, 向着最大限度彻底根除 搪玻璃层各类隐患缺陷包括针孔数为 0的最高质量指标发展, 以极大的提升新搪玻璃反应罐 的整体质量和使用寿命。
经本发明的方法制备的搪玻璃反应罐, 不仅可以完美提升罐身大法兰公称压力和罐口密 封性能向着现行 GB25025-2010 《搪玻璃设备技术条件》 中搪玻璃件的形位公差免检的最高 质量指标发展, 不仅可以获得符合二类压力容器要求的搪玻璃反应罐, 甚至还可获得全面符 合适应毒性程度为极度和高度危害介质以及易燃或毒性程度为重度危害介质物料的化学反应 的三类压力容器要求的新搪玻璃反应罐。
应用具有智能温度程序控制 /调节 /记录仪与新结构组合的精密受控内热式电炉对新搪玻 璃反应罐的烧制, 总体而言具有以下优点: (1 ) 以最大限度彻底根除搪玻璃反应罐在外热式 电炉加热中, 各结构部件因受热不均匀, 温差大, 所形成的过烧或未烧透, 发生的暗泡、 裂 纹、 流瓷、 爆瓷等缺陷, 包括针孔根除。 (2) 可完整的促成钢板与搪玻璃底釉之间, 相互镶 嵌, 犬牙交叉, 充分渗透, 致密结合最佳最坚固的丝网状结构的密着层; 搪玻璃底釉与搪玻 璃面釉, 搪玻璃面釉与搪玻璃面釉之间充分熔融, 牢固结合, 致密光滑。 (3 ) 罐身的内筒身 和外夹套的钢板分别增厚, 以及在新内筒身的外壁和新外加套的内壁分别喷涂烧结搪玻璃釉 层。 为弥补罐身在多次高温烧成和长期生产使用过程中钢板改薄, 只要罐身的钢板厚度经检 验全面符合二类压力容器设计制造标准, 可实现多次修复后再利用, 且修复后的质量达到新 品标准。
总体而言, 本发明的有益效果如下:
本发明属于罐身铁胚制造一次加工成型的 "技术标准" 的深化发展, 成功的突破了罐身 铁胚制造二次成型所涉及的三大严重质量问题: 内筒身上接环处先大力整形, 后电焊高温热 冲击和焊缝应力所导致的搪玻璃层细微裂纹等隐患; 外热式电炉其所测量和控制的是炉体温 度且精度低, 还有烧成支撑架或吊架, 高颈大法兰的厚度为内筒身钢板的 2倍以上, 致使内 筒身整体搪玻璃层受热不均匀、 温差大所导致的各类隐患缺陷; 反应罐的搪玻璃层损坏后绝 不能修复再用作受压容器。
本发明创新改革罐身翻边大法兰整体结构, 取代现行高颈大法兰结构件, 确保罐口密封 性能满足实践生产需求。 同时罐身与罐盖整体结构相配套, 极大的增强了大法兰面抗高温不 变形的机械性能, 完美提升了大法兰公称压力和罐口密封性能, 规避了过度大力拧紧卡子导 致大法兰面搪玻璃层崩裂的问题, 推动绿色环保, 保障安全生产。 本发明创新出台全面符合 适应毒性程度为极度和高度危害介质以及易燃或毒性程度为中度危害介质物料的化学反应的 三类压力容器的高端优质新搪玻璃反应罐, 推动化工制药行业大发展, 属于搪玻璃工业发展 史上的重大突破。
本发明应用新结构组合的精密受控内热式电炉和智能温度程序控制 /调节 /记录仪, 结合 罐身在烧成过程中的缓慢自转, 系统的控温精度为士 rc, 以最大限度的实施内筒身的整体 搪玻璃层百分之百同一受热温度, 同步一体烧成的受控搪烧 "核心技术"新工艺, 向着最大 限度的彻底根除搪玻璃层中暗泡、 裂纹、 流瓷、 爆瓷等各类隐患缺陷, 包括针孔数为 0的最 高质量指标深化发展。 极大的提升了新搪玻璃反应罐的整体质量, 显著增长产品的使用寿 命, 这又属于搪玻璃工业发展史上的重大突破。
本发明彻底根除了搪玻璃层残余应力和发纹缺陷。 将末次烧成新搪玻璃反应罐的罐身, 按搪玻璃釉层软化态转化为固化态的特定温度段设定降温曲线, 随炉缓慢冷却, 以有效的根 除罐身搪玻璃层的残余应力和发纹。
本发明适用于各种规格的工业用搪玻璃反应罐, 尤其是容积为 500-60000L 以上的搪玻 璃反应罐。
本发明的反应罐搪玻璃层损坏后可多次修复的再利用。 搪玻璃反应罐属高值易耗品, 一 般使用 1~2年、 有的使用几个月就损坏。 有相当数量反应罐的搪玻璃层损坏率仅占总面积的 0.05% , 有的只有几处小点面积的损坏, 全国每年有大量价值达数亿元, 钢材用量高达几万 吨的反应罐的搪玻璃层因损坏后不能修复再用作受压容器而报废, 钢材浪费大、 资金损耗严 重。
本发明新搪玻璃反应罐的整体质量显著优于国外高端产品 (这类产品国外的销售价为我 国的 6〜7 倍) 其使用寿命成倍提升, 且罐身的搪玻璃层损坏后, 只要罐身的钢板厚度经检 验全面符合搪玻璃压力容器设计制造标准, 可进行三次以上的修复, 修复价为新品价的 30% , 经三次修复的经济实惠可达到 200%。 由此可见: 一台高端优质的新搪玻璃反应罐与 传统搪玻璃反应罐相比较, 可为用户显著获得 300%〜400%以上的经济实惠, 钢材节约为罐 身自身重量的 4〜5 倍。 项目全国推广, 可为国家每年节约几万吨钢材, 可为用户每年节约 几亿元资金。 更是搪玻璃工业发展史上的重大突破。
本发明向着创新领先外热式电炉其罐身铁胚制造二次加工成型 "技术标准", 整体搪玻 璃反应罐的质量低, 使用寿命不长, 设备大法兰变形和罐口密封性能难能满足实际生产的需 求, 国外所执行的受控搪烧 "核心技术"受热不均匀, 温差大, 反应罐的搪玻璃层损坏后绝 不能修复后再用作受压容器之现状跨越发展。 开创制造拥有我国先驱独创自主知识产权的高 端优质新搪玻璃反应罐, "制造技术新标准专利化、 专利标准国际化", 创新罐身铁胚制造一 次加工成型的新 "技术标准", 罐身大法兰的公称压力和罐口密封性能的完美提升 。 受控搪 烧 "核心技术"所执行的系统,测量和控制罐身整体搪玻璃层的真实受热温度的精度为士 1 V, 应用计算机全自动数据程序控制, 结合大容量 K型复合式搪玻璃反应罐和高效统体传热 搪玻璃反应罐的开发, 将代表 "中国创造"具有鲜明特色的品质优良, 功能齐全、 容量大型 化、 类型系列化、 隆重推出全面符合三类压力容器、 全方位显著领先国际先进水平的 500〜 60000L 高端优质的新搪玻璃反应罐, 反应罐的搪玻璃层损坏后可多次修复再利用, 且修复 后的质量达新品标准。 以强有力的推动当代世界搪玻璃工业的大革命。 附图说明
图 1.新搪玻璃反应罐的罐身和罐盖结构示意图
图 2为新搪玻璃反应罐的罐身整体结构示意图
图 2a为多组对称加强钢筋板示意图
图 2al 为内筒身翻边大法兰结构件与外夹套收口部位呈圆周焊接多组对称加强钢筋板的 罐口大法兰整体结构局部放大示意图
图 2a2 为带有弧形颈第一增强圆环体与多组对称加强钢筋板沿直筒身外侧呈圆周焊接示 意图
图 3为新内筒身整体大法兰结构示意图
图 3a为第一增强圆环体与内筒身直筒部位呈圆周二组环向焊接接头局部放大示意图 图 3b为带有弧形颈第一增强圆环体示意图
图 3c为新内筒身翻边大法兰示意图
图 4为新外夹套整体结构示意图
图 5为罐盖整体结构示意图
图 5a为罐盖翻边大法兰结构示意图
图 5b为罐盖筒体示意图
图 5c为带有弧形颈第二增强圆环体示意图
图 5cl 为第二增强圆环体与罐盖直筒部位和罐盖第二大法兰之间呈圆周二组环向焊接接 头局部放大示意图
图 5c2 为罐盖第二增强圆环体与罐盖直筒体外侧部位呈圆周焊接多组对称加强钢筋板示 意图
图 5c3 为罐盖第二大法兰与罐盖直筒体部位焊接第二增强圆环体与对称加强钢筋板局部 放大示意图
图 5d为罐盖多组对称加强钢筋板示意图
图 6为具有智能温度程序控制 /调节 /记录仪与新结构组合的精密受控内热式电炉示意图 图 6a为智能温度程序控制 /调节 /记录仪 18与测温元件 13组合示意图 图 7为应用新结构组合精密受控内热式电炉对新搪玻璃反应罐的罐身烧成结构示意图 附图标记:
1: 搪玻璃反应罐的罐身与罐盖
: 罐身
a: 第一钢筋板
b: 环向焊接接头
2al-2a8 为内筒身第一增强圆环体与直筒身外侧呈圆周焊接多组对称加强钢筋板
3: 内筒身
3a: 内筒身结构件
3al: 内筒身的直筒身
3a2: 内筒身的封头件
3a3: 出料口法兰
3a4: 第一大法兰
3a5: 纵向焊接接头
3a6: 环向焊接接头
3b: 第一增强圆环体
4: 外夹套
4.1: 带收口的夹套身
4.1.1: 收口
4.2: 带内环式收口结构的外夹套封头件
4.2.1: 内环式收口结构
4. la: 外夹套上的纵向焊接接头
4.2a: 外夹套上的环向焊接接头
5: 罐盖
5b: 罐盖直筒体
5b 1 : 第二大法兰
5c: 第二增强圆环体
5cl : 环向焊接接头
5d: 第二钢筋板
5dl-5d8: 为罐盖第二增强圆环体与罐盖直筒体外侧部位呈圆周焊接多组对称加强钢筋 6: 精密受控内热式电炉
7: 主体加热电炉
8: 多层区域组合的圆柱体电炉
8a: 多层区域组合的圆柱体电炉的圆平板
9: 圆台阶梯形电炉
9a: 圆台阶梯形电炉的圆平板
%: 封头形加热结构件
10: 环体平面电炉
10a: 环平面电炉
10b: 直环体电炉
11: 平面电炉
12. 1-12. 16为多层区域组合的圆柱体电炉上的电热元件
12. 17: 为圆台阶梯形电炉上的电热元件
12. 18: 环平面电炉上的电热元件
12. 19: 直环体电炉上的电热元件
12. 20: 为平面电炉上的电热元件
12. 1-12. 20的电热元件均为电热带
13: 测温元件, 为热电偶
13. 1-13. 20每组测温元件分别相对应于各组电热元件 12. 1-12. 20 14: 保温筒体
15: 可开合的保温炉顶门
16: 罐身烧成吊架自转件
17: 环体平面炉升降件
18: PID智能温度程序控制 /调节 /记录仪
19: 搪玻璃层
20: 内筒身和外夹套之间的腔体。 具体实施方式
术语解释: 一次加工成型: 本发明所述的一次加工成型是指, 在对罐身烧成搪玻璃层前, 所述罐身 的内筒身和外夹套已经整体加工成型, 搪玻璃层烧成后无需再次加工。
关于三类压力容器: 本发明中所述的三类压力容器符合中国 《压力容器安全技术监察规 程》 记载的适应毒性程度为极度和高度危害介质以及易燃或毒性程度为中度危害介质物料的 化学反应的三类压力容器。
文中所涉及各项指标标准, 分别按 GB25025-2010《搪玻璃设备技术条件》 中所规定的 7.1.4搪玻璃设备金属基体用钢板厚度确定原则; 10.3腔体液压试验按 GB/T 7994; 10.4设备 气密性试验按 GB/T 7995; 6.4.2搪玻璃层的理化性能指标按 HG/T 3105规定制成试件后进行 评定, 其性能应符合表 3 ; 搪玻璃层耐直流高电压性能按 GB/T 7993, 2KV 直流高压电检
请参阅图 1至图 7。 须知, 本说明书所附图式所绘示的结构、 比例、 大小等, 均仅用以 配合说明书所揭示的内容, 以供熟悉此技术的人士了解与阅读, 并非用以限定本发明可实施 的限定条件, 故不具技术上的实质意义, 任何结构的修饰、 比例关系的改变或大小的调整, 在不影响本发明所能产生的功效及所能达成的目的下, 均应仍落在本发明所揭示的技术内容 得能涵盖的范围内。 同时, 本说明书中所引用的如"上"、 "下"、 "左"、 "右"、 "中间 "及"一" 等的用语, 亦仅为便于叙述的明了, 而非用以限定本发明可实施的范围, 其相对关系的改变 或调整, 在无实质变更技术内容下, 当亦视为本发明可实施的范畴。 如图 1所示的搪玻璃反应罐, 包括罐身 2和罐盖 5 ; 所述罐身和罐盖均为经检验的合格 品。 所述罐身 2为整体结构, 包括内筒身 3和外夹套 4, 所述内筒身和外夹套均为新制的经 检验的合格品;
如图 3和图 3c所示, 所述的内筒身 3包括第一增强圆环体 3b、 直筒身 3al、 封头件 3a2和出料口法兰 3a3, 所述直筒身 3al 的上口翻边形成第一大法兰 3a4, 所述第一增强圆 环体 3b与所述直筒身 3al外侧圆周相紧密配作且焊接于所述第一大法兰 3a4下, 所述直筒 身 3al与封头件 3a2连接, 所述出料口法兰 3a3设于所述封头件 3a2 的下口, 所述直筒身 3al、 封头件 3a2、 出料口法兰 3a3、 第一增强圆环体 3b如图 3所示焊接组合成整体结构。
如图 4所示, 所述外夹套 4包括带收口 4. 1. 1的夹套身 4.1和带内环式收口结构 4. 2. 1 的外夹套封头件 4.2, 所述带收口的夹套身 4.1和带内环式收口结构的外夹套封头件 4.2焊接 组合成整体结构。 如图 1和图 2所示, 所述外夹套 4焊接于内筒身 3外, 并与内筒身成一体结构, 外夹套 4与内筒身 3之间为腔体 20; 所述的内筒身 3的内壁、 出料口法兰面、 罐盖 5的内壁、 罐盖 上部各法兰面、 内筒身 3的外壁、 外夹套的内壁上均喷涂烧成有搪玻璃釉层 19。
现有技术中, 罐身的大法兰一般采用焊接高颈大法兰的做法。 发明人发现, 高颈大法兰 的使用虽然可以降低高温烧结搪玻璃釉层时大法兰面变形的程度, 但是罐口的几何变形和密 封性能难能满足产品在实践安装生产使用中, 过度大力拧紧卡子时, 易导致大法兰面搪玻璃 层崩裂。 本发明将直筒身直接翻边形成大法兰, 并配合增强圆环体的方式, 由于增强圆环体 的钢板厚度可按罐身公称直径的大小设定调整增厚, 因此极大的提升并增强大法兰面对抗高 温变形的机械性能, 显著提升大法兰的公称压力和罐口密封性能。 罐身公称直径增大, 其增 强圆环体的钢板厚度越大。 因此完美地提升了搪玻璃反应罐大法兰面的公称压力和罐口密封 性能。
较佳的, 如图 3b所示, 所述第一增强圆环体带有弧形颈, 以便于卡子固定。
作为对现有技术的进一步改革, 本发明在内筒身的外壁、 外夹套的内壁上均喷涂烧成搪 玻璃釉层以增强搪玻璃反应罐在多次高温烧成和长期使用过程中被氧化和被腐蚀。
进一步的, 所述直筒身 3al、 封头件 3a2和外夹套 4的钢板厚度可按标准按搪玻璃压力 容器设计制造标准增厚 2〜10mm。
如图 3a所示, 所述罐身 2的第一增强圆环体 3b与所述直筒身 3al外侧圆周之间呈圆周 焊接一组环向焊接接头 2b, 所述的第一增强圆环体 3b与所述第一大法兰 3a4之间也呈圆周 焊接一组环向焊接接头 2b。
如图 2、 图 2a、 图 2al、 图 2a2所示, 所述罐身还包括多组起加强作用的第一钢筋板 2a, 所述多组起加强作用的第一钢筋板 2a沿内筒身的直筒身 3al 的外侧圆周对称分布, 位 于所述第一增强圆环体 3b及带收口的夹套身 4.1的收口部位 4.1.1之间, 所述第一钢筋板 2a 焊接于内筒身 3外侧圆周, 并与第一增强圆环体 3b焊接, 所述第一钢筋板 2a为 8-36件。 第一钢筋板的设计, 可进一步提升大法兰公称压力和罐口密封性能。
如图 5、 图 5a、 图 5b所示, 所述罐盖 5包括罐盖直筒体 5b, 所述罐盖直筒体 5b的下 口翻边成第二大法兰 5b l, 所述第二大法兰 5b l 上焊接有与罐盖直筒体 5b外侧圆周相紧密 配作的第二增强圆环体 5c。
如图 5c l所示, 所述的第二增强圆环体 5c与所述罐盖直筒体 5b外侧圆周之间呈圆周焊 接一组环向焊接接头 5cl, 所述的第二增强圆环体 5c与所述第二大法兰 5b l之间也呈圆周焊 接一组环向焊接接头 5cl。 如图 5、 图 5c2、 图 5c3、 图 5d所示, 所述第二增强圆环体 5c上还焊接有多组起加强 作用的第二钢筋板 5d, 所述多组起加强作用的第二钢筋板 5d沿罐盖直筒体 5b外侧圆周对 称分布, 所述的第二钢筋板 5d为 8~36件。
如图 1 所示, 所述罐盖内壁、 大法兰面以及罐盖上部各法兰面上涂烧有搪玻璃釉层
19。
较佳的, 如图 5c所示, 所述第二增强圆环体 5c带有弧形颈。 第二增强圆环体 5c和第 二钢筋板 5d的作用与罐身上增设的第一增强圆环体 3b和第一钢筋板 2a类似。
按下列步骤制造搪玻璃反应罐:
1 ) 制作内筒身构件:
分别制作上口翻边成第一大法兰 3a4的直筒身 3al、 封头件 3a2和出料口法兰 3a3 ; 将所述直筒身 3al、 封头件 3a2和出料口法兰 3a3焊接成内筒身结构件 3a;
所述内筒身结构件中, 直筒身 3al、 封头件 3a2 按搪玻璃压力容器设计制造标准增 厚 2〜10mm;
分别对直筒身 3al上的纵向焊接接头 3a5、 以及直筒身 3al与封头件 3a2之间的下 对接环向焊接接头 3a6, 并对焊缝进行 X射线探伤, 获得合格的内筒身结构件。
具体的, 按中国标准 JB/T 4730 《承压设备无损检测》 对焊缝进行 X射线探伤。 所 述合格的内筒身结构件是指: X射线探伤检测结果符合要求的内筒身结构件。 具体的, X 射线探伤检测结果符合 《压力容器安全技术监察规程》 中对应二类压力容器的要求。
2 ) 制作内筒身 3整体结构:
在所述内筒身构件的第一大法兰 3a4下部焊接第一增强圆环体 3b, 所述第一增强圆 环体 3b与所述直筒身 3al外侧圆周相紧密配作, 在所述罐身 2的第一增强圆环体 3b与 所述直筒身 3al外侧圆周之间呈圆周焊接一组环向焊接接头 2b, 在所述的第一增强圆环 体 3b与所述第一大法兰 3a4之间也呈圆周焊接一组环向焊接接头 2b, 得到整体结构的 内筒身 3。
所述的第一增强圆环体 3b的钢板厚度可按罐身的公称直径的大小设定调整增厚。 罐 身公称直径越大, 所述第一增强圆环体的厚度越大。
3 ) 分别制作带收口的夹套身 4.1 和带内环的封头件 4.2, 并焊接成整体结构, 得到整体 结构的外夹套 4 ;
所述的外夹套的钢板厚度按搪玻璃压力容器设计制造标准增厚 2〜10mm;
4 ) 对外夹套上的纵向焊接接头 4. la和环向焊接接头 4. 2a进行 X射线探伤, 获得合格 的外夹套 4;
具体的, 可按中国标准 JB/T 4730 《承压设备无损检测》 对焊缝进行 100%X射线探 伤。 所述合格的外夹套是指: X射线探伤检测结果符合要求的外夹套。 具体的, X射线探 伤检测结果应符合 《压力容器安全技术监察规程》 中对应二类压力容器的要求。
5) 对内筒身 3的外壁和外夹套 4的内壁均喷涂搪玻璃釉浆, 经步骤 9和 10的烧制后, 形成搪玻璃釉层 19。
所述搪玻璃釉浆采用常规搪玻璃反应罐所用搪玻璃釉层。 应符合 HG/T 3105, 表 3搪玻 璃层各项理化性能指标。
6) 将内筒身 3与外夹套 4组合焊接成罐身 2。
7 ) 在罐身 2外侧, 所述的第一增强圆环体 3b与带收口的夹套身 4.1的收口部位 4.1.1之 间沿圆周焊接多组呈对称分布的起加强作用的第一钢筋板 2a, 获得罐身 2, 该罐身为一 次加工成型整体结构;
8 ) 对内筒身 3的内壁、 第一大法兰面及出料口法兰面进行搪玻璃釉浆的喷涂, 得到内壁 喷涂搪玻璃釉浆的罐身 2;
本步骤所采用搪玻璃釉浆采用常规搪玻璃反应罐所用搪玻璃釉层。
9 ) 采用精密受控内热式电炉将喷涂有搪玻璃釉浆的罐身进行烧制, 控制内壁喷涂的搪玻 璃釉层各部位受热温度一致、 同步一体烧制;
10 ) 采用步骤 9 ) 的烧制方法, 对所述罐身反复搪烧多次, 且每次搪烧前均先对内筒身 的内壁、 第一大法兰面及出料口法兰面喷涂搪玻璃釉浆;
烧制采用受控搪烧 "核心技术"。 可在罐身内壁搪玻璃底釉烧制时采用中温预烧、 高 温烧结、 保温、 分阶段受控烧制的搪烧工艺, 烧成温度为室温 -900 °C, 全部烧成时间为 5.5~6h。
具体的, 烧制时, 可先采用室温 -15CTC 缓慢升温, 再 150°C -40CTC升温预烧并保 温, 再采用 400°C -60CTC升温预烧并保温, 其中室温 -60CTC温度段的烧制时间总共为 4 小时, 然后采用 600°C -900°C高温烧制并保温, 600°C-90(TC高温烧制和保温的时间总共 1.5-2小时。
一般情况下, 新搪玻璃反应罐反复搪烧的遍数可达 6-7遍。
11 ) 将末次烧成的罐身随炉冷却, 对内筒身 3与外夹套 4之间的腔体 20GB/T 7994标准 进行液压试验, 得到所述搪玻璃反应罐的罐身;
12 ) 制作罐盖: 制作罐盖直筒体 5b的下口翻边成第二大法兰 5b l的罐盖 5,在第二大法兰 5b l的上部 焊接一件与罐盖直筒体 5b 外侧圆周相紧密配作的带有弧形颈的第二增强圆环体 5c, 所 述的第二增强圆环体 5c与所述罐盖直筒体 5b外侧圆周之间呈圆周焊接一组环向焊接接 头 5cl, 所述的第二增强圆环体 5c与所述第二大法兰 5b l之间也呈圆周焊接一组环向焊 接接头 5c l, 所述第二增强圆环体 5c上还焊接多组沿罐身直筒体 5b外侧圆周对称分布 的第二钢筋板 5d, 获得罐盖整体结构件, 在所述罐盖整体结构件内壁以及罐盖上部各法 兰面上进行搪玻璃釉浆的喷涂及烧制, 获得所述搪玻璃反应罐的罐盖 5。
进一步的, 所述罐盖的第二大法兰面上也涂烧有搪玻璃层。
本步骤所采用搪玻璃釉浆采用常规搪玻璃反应罐所用搪玻璃釉层。
罐盖的烧制可采用常规罐盖搪玻璃层烧制工艺。
具体的, 步骤 9 ) 所述精密受控内热式电炉如图 6和图 7所示, 包括保温筒体 14, 所述 保温筒体 14顶部设有一组可开合的保温炉顶门 15 ; 所述保温炉顶门 15上设有贯穿保温炉 顶门的罐身烧成吊架自转件 16; 所述罐身烧成吊架自转件的底部还设有平面电炉 11, 所述 平面电炉的底面设有一组电热元件; 所述精密受控内热式电炉还包括位于保温筒体 14 内的 主体加热电炉 7 ; 所述主体加热电炉 7由下而上依次包括环体平面电炉 10、 多层区域组合的 圆柱体电炉 8 和圆台阶梯形电炉 9 ; 所述环体平面电炉 10 之下还设有环体平面炉升降件 17; 所述的环体平面电炉 10 由环平面电炉 10a和直环体电炉 10b所组成; 所述环平面电炉 10a 的环平面上设有多圈直径不相同的同心圆凹槽; 所述同心圆凹槽内绕制一组电热元件 12.18; 所述的直环体电炉 10b 的内侧周壁由下而上设有多个环形凹槽; 所述环形凹槽中绕 制一组电热元件 12. 19 ; 所述多层区域组合的圆柱体电炉 8 由多层直径相同且中心轴重合的 圆平板 8a叠加而成, 所述圆平板的外侧周壁设有环形凹槽, 每 2-8层圆平板的环形凹槽内 绕制一组电热元件 12. 1~12. 16, 优选每 5-8 层圆平板的环形凹槽内绕制一组电热元件; 所 述圆台阶梯形电炉 9由多块直径不相同且中心轴重合的圆平板 9a叠加而成, 所述圆平板 9a 自下而上直径依次减小, 形成阶梯式圆形平台, 每 2~8 层阶梯平台面上绕制一组电热元件 12.17, 优选每 5-8层阶梯平台面上绕制一组电热元件 12.17, 所述的圆台阶梯电炉 9的外围 罩有一与内筒身封头件 3a2 内壁结构匹配一致的封头形加热结构件 9b, 所述封头形加热结 构件由耐热钢制作; 所述精密受控内热式电炉内的各组电热元件均均各连接一控温系统。
所述精密受控内热式电炉的主体加热电炉 7中, 由多层区域组合的圆柱体电炉 8和圆台 阶梯形电炉 9构成的整体外型与所述罐身的内筒身 3的内壁结构相匹配一致, 在烧制时, 如 图 Ί所示, 所述环体平面电炉 10、 多层区域组合的圆柱体电炉 8和圆台阶梯形电炉 9分别 对应加热内筒身 3的第一大法兰 3a4和罐身 2第一大法兰端整体结构的外侧、 直筒身 3al和 内封头件 3a2, 所述的罐身烧成吊装自转件底部的平面电炉 11 对应加热出料口法兰 3a3和 外夹套封头件 4.2的内环式收口结构 4. 2. 1。
如图 6a所示, 所述控温系统用于调控与之相连的电热元件的发热温度, 包括: 一测温元件 13: 与一组电热元件匹配, 并设于该组电热元件的加热区域内, 用于检测 该组电热元件加热区域内的罐身内腔受热温度, 并发出温度信号;
一温控仪 18: 设于所述精密受控内热式电炉的保温筒体 14 夕卜, 与所述测温元件及与 该测温元件匹配的电热元件相连 (未示出), 所述温控仪存储有一预设温度或温控曲线, 用 于接收测温元件的温度信号, 在与预设温度或温控曲线比较后调控电热元件的发热温度。
如图 6所示, 每一组电热元件 12. 1-12. 20均匹配一个测温元件 13.1~13. 20, 与该组电 热元件相匹配的测温元件设于该组电热元件的同一加热区域内, 每组电热元件均由独立的温 控仪根据与其相匹配的测温元件所测得的温度与预设的温度曲线独立调控。
温控仪属于现有技术, 智能型的控温仪可根据设计要求精确控制电热元件的工作状态, 应用于本发明即可精确控制并实施罐身 2整体搪玻璃层 19 同一受热温度, 同步一体烧成。 集温度程序控制、 调节、 记录为一体的智能型控温装置已为成熟现有技术, 如 PID型智能温 度程序控制 /调节 /记录仪, 采用这样的智能型控温装置, 可精确地设定并控制温度, 调节并 全程自动打印记录。
分别按上述方法分别制备容积为 500L 的搪玻璃反应罐和容积为 60000L 的搪玻璃反应 罐。 按 GB25025-2010 GB/T 7993中的搪玻璃层直流高压电性能检测方法, 采用 20KV直流 高压电检测内筒身内的整体搪玻璃层不导电。 对三类压力容器的搪玻璃反应罐, 按 GB/T 7995标准对反应罐进行气密性检验, 检测结果显示未发生泄漏。

Claims

权利要求书
1. 一种搪玻璃反应罐, 包括罐身 (2) 和罐盖 (5); 所述罐身 (2) 为整体结构, 包括内筒 身 (3) 和外夹套 (4), 其特征在于, 所述的内筒身 (3) 包括第一增强圆环体 (3b)、 直 筒身 (3al)、 封头件 (3a2) 和出料口法兰 (3a3), 所述直筒身 (3al) 的上口翻边形成 第一大法兰 (3a4), 所述第一增强圆环体 (3b) 与所述直筒身 (3al) 外侧圆周相紧密配 作且焊接于所述第一大法兰 (3a4) 下, 所述直筒身 (3al) 与封头件 (3a2) 连接, 所述 出料口法兰 (3a3) 设于所述封头件 (3a2) 的下口, 所述直筒身 ( 3al )、 封头件
(3a2)、 出料口法兰 (3a3)、 第一增强圆环体 (3b) 焊接组合成整体结构; 所述外夹套 (4) 包括带收口 (4.1.1) 的夹套身 (4.1) 和带内环式收口结构(4.2.1)的外夹套封头件 (4.2), 所述带收口的夹套身 (4.1) 和带内环式收口结构的外夹套封头件 (4.2) 焊接组 合成整体结构; 所述外夹套 (4) 焊接于内筒身 (3) 夕卜, 并与内筒身成一体结构, 外夹 套 (4) 与内筒身 (3) 之间为腔体 (20); 所述的内筒身 (3) 的内壁、 第一大法兰面、 出料口法兰面、 内筒身 (3) 的外壁、 外夹套的内壁、 罐盖 (5) 的内壁及法兰面上均喷 涂烧成有搪玻璃釉层 (19)。
2. 如权利要求 1所述的搪玻璃反应罐, 其特征在于, 所述直筒身 (3al)、 封头件 (3a2) 和 外夹套 (4) 的钢板厚度按搪玻璃压力容器设计制造标准增厚 2〜10mm。
3. 如权利要求 1 所述的搪玻璃反应罐, 其特征在于, 所述的第一增强圆环体 (3b) 的钢板 厚度按罐身的公称直径的大小设定调整增厚。
4. 如权利要求 1 所述的搪玻璃反应罐, 其特征在于, 所述罐身 (2) 的第一增强圆环体
(3b) 与所述直筒身 (3al) 外侧圆周之间呈圆周焊接一组环向焊接接头 (2b), 所述的 第一增强圆环体 (3b) 与所述第一大法兰 (3a4) 之间也呈圆周焊接一组环向焊接接头 (2b)0
5. 如权利要求 1所述的搪玻璃反应罐, 其特征在于, 所述罐身 (2) 还包括多组起加强作用 的第一钢筋板 (2a), 所述多组起加强作用的第一钢筋板 (2a) 沿内筒身的直筒身
(3al) 的外侧圆周对称分布, 并位于所述第一增强圆环体 (3b) 及带收口的夹套身 (4.1) 的收口部位之间, 所述第一钢筋板 (2a) 焊接于内筒身 (3) 外侧圆周, 并与第一 增强圆环体 (3b) 焊接, 所述第一钢筋板 (2a) 为 8-36件。
6. 如权利要求 5 所述的搪玻璃反应罐, 其特征在于, 所述罐身 (2) 的内筒身第一大法兰
(3a4)、 第一增强圆环体 (3b) 和多组对称加强第一钢筋板 (2a) 与外夹套 (4) 的收口 部位之间焊接成罐口大法兰整体结构, 所述的罐口大法兰整体结构具有极大的抗高温不 变形的机械强度, 完美提升大法兰的公称压力和罐口密封性能, 经多次罐身 (2) 内壁搪 玻璃层 (19) 的烧成, 经检验合格后, 可得到全面符合三类压力容器的搪玻璃反应罐。
7. 如权利要求 1 所述的搪玻璃反应罐, 其特征在于, 所述罐盖 (5) 包括罐盖直筒体
(5b), 所述罐盖直筒体 (5b) 的下口翻边成第二大法兰 (5bl), 所述第二大法兰 (5bl) 上焊接有与罐盖直筒体 (5b) 外侧圆周相紧密配作的第二增强圆环体 (5c), 所 述的第二增强圆环体 (5c) 与所述罐盖直筒体 (5b) 外侧圆周之间呈圆周焊接一组环向 焊接接头 (5cl), 所述的第二增强圆环体 (5c) 与所述第二大法兰 (5bl) 之间也呈圆周 焊接一组环向焊接接头 (5cl), 所述第二增强圆环体 (5c) 上还焊接有多组起加强作用 的第二钢筋板 (5d), 所述多组起加强作用的第二钢筋板 (5d) 沿罐盖直筒体 (5b) 外侧 圆周对称分布, 所述的第二钢筋板 (5d) 为 8~36件, 所述罐盖内壁、 第二大法兰面以及 罐盖上部各法兰面上均涂烧有搪玻璃釉层。
8. 如权利要求 7 所述的搪玻璃反应罐, 其特征在于, 所述第一增强圆环体 (3b) 及第二增 强圆环体 (5c) 均带有弧形颈。
9. 如权利要求 1所述的搪玻璃反应罐, 其特征在于, 所述的罐身 (2) 为一次加工成型的整 体结构, 是由内筒身 (3) 和外夹套 (4) 焊接成整体结构后, 在内筒身 (3) 内壁喷涂烧 成搪玻璃釉层 (19)。
10.如权利要求 1 所述的搪玻璃反应罐, 其特征在于, 所述搪玻璃反应罐应用结构组合的精 密受控内热式电炉 (6) 与智能温度程序控制 /调节 /记录仪 (18) 相组合的制造方法制 备, 其特征在于, 智能温度程序控制 /调节 /记录仪 (18) 系统的控温精度为士 C, 其所 测量和控制是搪玻璃层 (19) 的真实受热温度, 与所述的结构组合的精密受控内热式电 炉 (6) 相组合, 其所执行的受控搪烧 "核心技术", 可精密的调控中温预烧、 保温、 高 温烧制的受控搪烧工艺, 完美的实施罐身 (2) 整体搪玻璃层 (19) 同一受热温度, 同步 一体烧成。
11.如权利要求 1-10任一所述的搪玻璃反应罐的制造方法, 具体包括如下步骤:
1) 制作内筒身构件: 分别制作上口翻边成第一大法兰 (3a4) 的直筒身 (3al)、 封头件 (3a2) 和出料口法兰 (3a3); 将所述直筒身 (3al)、 封头件 ( 3a2 ) 和出料口法兰 (3a3) 焊接成内筒身结构件 (3a); 分别对直筒身 (3al) 上的纵向焊接接头 (3a5)、 以 及直筒身 (3al) 与封头件 (3a2) 之间的下对接环向焊接接头 (3a6), 对各焊接接头进 行 X射线探伤, 获得合格的内筒身结构件; 2) 制作内筒身 (3) 整体结构: 在所述内筒身构件的第一大法兰 (3a4) 下部焊接第一增 强圆环体 (3b), 所述第一增强圆环体 (3b) 与所述直筒身 (3al) 外侧圆周相紧密配 作, 在所述罐身 (2) 的第一增强圆环体 (3b) 与所述直筒身 (3al) 外侧圆周之间呈圆 周焊接一组环向焊接接头 (2b), 在所述的第一增强圆环体 (3b) 与所述第一大法兰
(3a4) 之间也呈圆周焊接一组环向焊接接头 (2b), 得到整体结构的内筒身 (3);
3) 分别制作带收口的夹套身 (4.1) 和带内环式收口结构的外夹套封头件 (4.2), 并焊接 成整体结构, 得到整体结构的外夹套 (4);
4) 对外夹套上的纵向焊接接头 (4.1a) 和环向焊接接头 (4.2a)进行 X 射线探伤, 获得 合格的外夹套 (4);
5) 对内筒身 (3) 的外壁和外夹套 (4)的内壁均喷涂搪玻璃釉浆;
6) 将内筒身 (3) 与外夹套 (4) 组合焊接成整体结构;
7) 在罐身 (2) 外侧, 所述的第一增强圆环体 (3b) 与带收口的夹套身 (4.1) 的收口部 位 (4丄 1) 之间沿圆周焊接多组呈对称分布的起加强作用的第一钢筋板 (2a), 获得罐身
(2);
8) 对内筒身 (3) 的内壁、 第一大法兰面及出料口法兰面进行搪玻璃釉浆的喷涂, 得到 喷涂有搪玻璃釉浆的罐身 (2);
9) 采用精密受控内热式电炉将喷涂有搪玻璃釉浆的罐身进行烧制, 控制内壁喷涂的搪玻 璃釉浆层各部位受热温度一致、 同步一体烧制;
10) 采用步骤 9) 的烧制方法, 对所述罐身反复搪烧多次, 且每次搪烧前均先对内筒身 的内壁喷涂搪玻璃釉层;
11) 将末次烧成的罐身随炉冷却后, 对内筒身 (3) 与外夹套 (4) 之间的腔体 (20) 进 行液压试验, 得到所述搪玻璃反应罐的罐身;
12) 制作罐盖: 制作罐盖直筒体 (5b) 的下口翻边成第二大法兰 (5bl) 的罐盖 (5) ,在 第二大法兰 (5bl) 的上部焊接一件与罐盖直筒体 (5b) 外侧圆周相紧密配作的第二增强 圆环体 (5c) , 所述的第二增强圆环体 (5c) 与所述罐盖直筒体 (5b) 外侧圆周之间呈 圆周焊接一组环向焊接接头 (5cl), 所述的第二增强圆环体 (5c) 与所述第二大法兰
(5bl) 之间也呈圆周焊接一组环向焊接接头 (5cl), 所述第二增强圆环体 (5c) 上还焊 接多组沿罐身直筒体 (5b) 外侧圆周对称分布的第二钢筋板 (5d), 获得罐盖整体结构 件, 在所述罐盖整体结构件内壁、 第二大法兰面以及罐盖上部各法兰面上进行搪玻璃釉 浆的喷涂及烧制, 获得所述搪玻璃反应罐的罐盖 (5)。 如权利要求 11所述的搪玻璃反应罐的制造方法, 其特征在于, 所述步骤 9) 中, 新结构 组合的精密受控内热式电炉 (6) 结合有智能温度程序控制 /调节 /记录仪 (18), 在罐身
(2) 外侧电焊焊接的大法兰整体结构与外夹套的封头件 (4.1) 收口部位之间设置一组温 度可调控的辅助加热电炉以及在主体加热电炉上的阶梯电炉 (9) 的外围覆罩一件耐热钢 制作的封头形加热结构件 (9b), 还有在罐身烧成吊架自转件 (16) 底部增设一组加大原 平面电炉直径的温度可调控的平面电炉 (11), 对应于罐身的外夹套的内环式收口结构
(4.2.1) 的辅助加热, 以精确的实施上述部位的搪玻璃层 (19) 与罐身 (2) 的内筒身
(3) 整体搪玻璃层 (19) 的同一受热温度、 同步一体烧成。
如权利要求 11所述的搪玻璃反应罐的制造方法: 其特征在于, 步骤 9) 所述精密受控内 热式电炉 (6) 包括保温筒体 (14), 所述保温筒体 (14) 顶部设有一组可开合的保温炉 顶门 (15); 所述保温炉顶门 (15) 上设有贯穿保温炉顶门的罐身烧成吊架自转件
(16); 所述罐身烧成吊架自转件的底部还设有平面电炉 (11), 所述平面电炉的底面设 有一组电热元件 (12.20); 所述精密受控内热式电炉 (6) 还包括位于保温筒体 (14) 内 的主体加热电炉 (7); 所述主体加热电炉 (7) 由下而上依次包括环体平面电炉 (10)、 多层区域组合的圆柱体电炉 (8) 和圆台阶梯形电炉 (9); 所述环体平面电炉 (10) 之下 还设有环体平面炉升降件 (17); 所述的环体平面电炉 (10) 由环平面电炉 (10a) 和直 环体电炉 (10b) 所组成; 所述环平面电炉 (10a) 的环平面上设有多圈直径不相同的同 心圆凹槽; 所述同心圆凹槽内绕制一组电热元件 (12.18); 所述的直环体电炉 (10b) 的内 侧周壁由下而上设有多个环形凹槽; 所述环形凹槽中绕制一组电热元件 (12.19); 所述 多层区域组合的圆柱体电炉 (8) 由多层直径相同且中心轴重合的圆平板 (8a) 叠加而 成, 所述圆平板的外侧周壁设有环形凹槽, 每 2-8层圆平板的环形凹槽内绕制一组电热元 件(12.1~12.16) ; 所述圆台阶梯形电炉 (9) 由多块直径不相同且中心轴重合的圆平板
(9a) 叠加而成, 所述圆平板 (9a) 自下而上直径依次减小, 形成阶梯式圆形平台, 每 2-8 层阶梯平台面上绕制一组电热元件 (12.17), 所述的圆台阶梯电炉 (9) 的外围罩有 一与内筒身封头件 (3a2)内壁结构匹配一致的封头形加热结构件 (9b) , 所述封头形加热 结构件由耐热钢制作; 所述精密受控内热式电炉 (6) 内的各组电热元件均各连接一控温 系统。
如权利要求 13所述的搪玻璃反应罐的制造方法, 其特征在于, 所述精密受控内热式电炉
(6) 的主体加热电炉 (7) 中, 由多层区域组合的圆柱体电炉 (8) 和圆台阶梯形电炉 (9) 组合构成的整体外型与所述罐身的内筒身 (3) 的内壁结构相匹配一致, 在烧制 时, 所述环体平面电炉 (10)、 多层区域组合的圆柱体电炉 (8) 和圆台阶梯形电炉 (9) 分别对应加热内筒身 (3) 的第一大法兰 (3a4) 和罐身 (2) 第一大法兰端的整体外侧、 直筒身 (3al) 和内封头件 (3a2), 所述的罐身烧成吊装自转件底部的平面电炉 (11) 对 应加热出料口法兰 (3a3) 和外夹套封头件 (4.2) 的内环式收口结构 (4.2.1)。
如权利要求 13所述的搪玻璃反应罐的制造方法, 其特征在于, 所述控温系统用于调控与 之相连的电热元件的发热温度, 包括:
一测温元件: 与一组电热元件匹配, 并设于该组电热元件的加热区域内, 用于检测该组 电热元件加热区域内的罐身内壁受热温度, 并发出温度信号;
一温控仪: 设于所述精密受控内热式电炉 (6) 的保温筒体 (14) 夕卜, 与所述测温元件 及与该测温元件匹配的电热元件相连, 所述温控仪存储有一预设温度或温控曲线, 用于 接收测温元件的温度信号, 在与预设温度或温控曲线比较后调控电热元件的发热温度。 如权利要求 15 所述的制造方法, 其特征在于, 所述温控仪用以精确控制并实施罐身
(2) 内壁整体搪玻璃层 (19) 同一受热温度, 同步一体烧成, 并执行烧成过程自动打印 记录。
PCT/CN2014/074772 2014-04-04 2014-04-04 一种新搪玻璃反应罐及其制造方法 WO2015149342A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480068486.0A CN106457195B (zh) 2014-04-04 2014-04-04 一种新搪玻璃反应罐及其制造方法
US15/026,862 US9975102B2 (en) 2014-04-04 2014-04-04 Glass-lined reactor and manufacturing method thereof
PCT/CN2014/074772 WO2015149342A1 (zh) 2014-04-04 2014-04-04 一种新搪玻璃反应罐及其制造方法
US15/953,478 US10350571B2 (en) 2014-04-04 2018-04-15 Glass-linked reactor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/074772 WO2015149342A1 (zh) 2014-04-04 2014-04-04 一种新搪玻璃反应罐及其制造方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/026,862 A-371-Of-International US9975102B2 (en) 2014-04-04 2014-04-04 Glass-lined reactor and manufacturing method thereof
US15/953,478 Division US10350571B2 (en) 2014-04-04 2018-04-15 Glass-linked reactor and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2015149342A1 true WO2015149342A1 (zh) 2015-10-08

Family

ID=54239316

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/074772 WO2015149342A1 (zh) 2014-04-04 2014-04-04 一种新搪玻璃反应罐及其制造方法

Country Status (3)

Country Link
US (2) US9975102B2 (zh)
CN (1) CN106457195B (zh)
WO (1) WO2015149342A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108940171A (zh) * 2018-09-12 2018-12-07 杭州耕鑫生物科技有限公司 一种生物反应罐
CN112520773A (zh) * 2020-11-19 2021-03-19 衡阳鸿宇化工有限责任公司 一种气密性好的三氯化铝反应炉及其使用方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110656332B (zh) * 2019-11-09 2024-02-27 临沂宏业化工设备有限公司 一种搪玻璃容器整形装置
CN111020583B (zh) * 2019-12-16 2021-08-24 山东凯裕达新材料科技有限公司 一种反应釜生产制造工艺
CN114289723B (zh) * 2021-12-31 2024-04-09 四川一然新材料科技有限公司 一种耐腐蚀镍基硬质合金零件的制备方法
CN115138979B (zh) * 2022-08-29 2022-11-29 湖南三一工业职业技术学院 一种三体罐联体封头的成型方法
CN116984809B (zh) * 2023-09-25 2023-12-01 淄博中升机械有限公司 一种搪玻璃反应釜自动化生产系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3425582A (en) * 1966-11-07 1969-02-04 Ritter Pfaudler Corp Jacketed vessel
JPH05220387A (ja) * 1992-02-07 1993-08-31 Tama Ogasawara 石炭灰を利用した、排水の脱臭・脱色および高度処理剤
CN1460541A (zh) * 2003-03-28 2003-12-10 马玉田 一种反应釜封盖及其制造方法
CN101514455A (zh) * 2008-02-18 2009-08-26 朱文华 大容量k型复合式搪玻璃反应罐及其制造方法
CN102009804A (zh) * 2010-09-14 2011-04-13 胡永庆 钢罐内壁粘合四氟板载体加压的工艺方法
CN202105612U (zh) * 2011-04-25 2012-01-11 营口孚拉瑞斯塑料防腐设备有限公司 塑料搅拌罐罐体
CN102389758A (zh) * 2011-02-17 2012-03-28 朱文华 一种新搪玻璃反应罐及其制造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5220387A (en) 1975-08-09 1977-02-16 Mitsubishi Metal Corp Reactor
ITMI20051861A1 (it) * 2005-10-04 2007-04-05 Tycon Technoglass S R L Contenitore di miscelazione per sostanze liquide o simili
CN101509136A (zh) * 2008-02-13 2009-08-19 朱文华 多功能温控精密内热式电炉

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3425582A (en) * 1966-11-07 1969-02-04 Ritter Pfaudler Corp Jacketed vessel
JPH05220387A (ja) * 1992-02-07 1993-08-31 Tama Ogasawara 石炭灰を利用した、排水の脱臭・脱色および高度処理剤
CN1460541A (zh) * 2003-03-28 2003-12-10 马玉田 一种反应釜封盖及其制造方法
CN101514455A (zh) * 2008-02-18 2009-08-26 朱文华 大容量k型复合式搪玻璃反应罐及其制造方法
CN102009804A (zh) * 2010-09-14 2011-04-13 胡永庆 钢罐内壁粘合四氟板载体加压的工艺方法
CN102389758A (zh) * 2011-02-17 2012-03-28 朱文华 一种新搪玻璃反应罐及其制造方法
CN202105612U (zh) * 2011-04-25 2012-01-11 营口孚拉瑞斯塑料防腐设备有限公司 塑料搅拌罐罐体

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108940171A (zh) * 2018-09-12 2018-12-07 杭州耕鑫生物科技有限公司 一种生物反应罐
CN112520773A (zh) * 2020-11-19 2021-03-19 衡阳鸿宇化工有限责任公司 一种气密性好的三氯化铝反应炉及其使用方法
CN112520773B (zh) * 2020-11-19 2023-08-01 衡阳鸿宇化工有限责任公司 一种气密性好的三氯化铝反应炉及其使用方法

Also Published As

Publication number Publication date
CN106457195B (zh) 2018-11-30
CN106457195A (zh) 2017-02-22
US9975102B2 (en) 2018-05-22
US10350571B2 (en) 2019-07-16
US20170007979A1 (en) 2017-01-12
US20180229207A1 (en) 2018-08-16

Similar Documents

Publication Publication Date Title
WO2015149342A1 (zh) 一种新搪玻璃反应罐及其制造方法
CN102389758B (zh) 一种搪玻璃反应罐及其制造方法
CN100450689C (zh) 水轮发电机转子支架裂纹补焊方法
CN106122613B (zh) 一种耐蚀搪瓷复合管道及其制造方法
CN110421238B (zh) 一种高强度筒体对接焊的焊接工艺
CN105880951B (zh) 一种w型蓄热式辐射管的加工工艺
CN103464925A (zh) 一种电站高温耐热钢部件焊接修复方法
CN206803750U (zh) 一种实验室用箱式气氛炉
CN101514455A (zh) 大容量k型复合式搪玻璃反应罐及其制造方法
CN103212946A (zh) 燃气辐射管的加工方法
CN102174698A (zh) 搪瓷内胆快速修复工艺
CN201497368U (zh) 辊底炉用复合辊
US2959850A (en) Method of welding glass-lined vessels
CN209954122U (zh) 一种耐高温干式悬臂辊
CN209386778U (zh) 一种炉胆及回转炉炉管及回转筒及回转窑
CN201257382Y (zh) 大容量k型复合式搪玻璃反应罐
CN206974174U (zh) 一种节能工业电炉
CN206399183U (zh) 一种电磁感应熔铝炉
CN206670358U (zh) 一种热处理炉炉衬结构
CN110064350A (zh) 一种氧化反应器钛-钢复合板封头及其焊接方法
CN221028247U (zh) 一种高温炉炉盖
CN108069404A (zh) 焚硫炉及其热线管维修方法
CN101519780A (zh) 高效统体传热搪玻璃反应罐及其制造方法
CN210146975U (zh) 一种烤包器烧嘴防护装置快换结构
CN217560354U (zh) 一种高温窑炉高保温墙体结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14888416

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15026862

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14888416

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 06.03.2017)

122 Ep: pct application non-entry in european phase

Ref document number: 14888416

Country of ref document: EP

Kind code of ref document: A1