WO2017043931A1 - 하이브리드 절삭장치 및 이를 이용한 그루브 절삭방법 - Google Patents

하이브리드 절삭장치 및 이를 이용한 그루브 절삭방법 Download PDF

Info

Publication number
WO2017043931A1
WO2017043931A1 PCT/KR2016/010199 KR2016010199W WO2017043931A1 WO 2017043931 A1 WO2017043931 A1 WO 2017043931A1 KR 2016010199 W KR2016010199 W KR 2016010199W WO 2017043931 A1 WO2017043931 A1 WO 2017043931A1
Authority
WO
WIPO (PCT)
Prior art keywords
grooving
groove
moving
cutting device
cutting
Prior art date
Application number
PCT/KR2016/010199
Other languages
English (en)
French (fr)
Inventor
박종권
덴케나베렌드
베르트람올리버
달만도미니크
Original Assignee
한국기계연구원
고트프리트 빌헬름 라이프니츠 우니베르지태트 하노버
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150128161A external-priority patent/KR101692249B1/ko
Priority claimed from KR1020160045508A external-priority patent/KR101934691B1/ko
Application filed by 한국기계연구원, 고트프리트 빌헬름 라이프니츠 우니베르지태트 하노버 filed Critical 한국기계연구원
Priority to EP16844747.2A priority Critical patent/EP3321021B1/en
Priority to US15/573,991 priority patent/US10391564B2/en
Publication of WO2017043931A1 publication Critical patent/WO2017043931A1/ko

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B41/00Boring or drilling machines or devices specially adapted for particular work; Accessories specially adapted therefor
    • B23B41/12Boring or drilling machines or devices specially adapted for particular work; Accessories specially adapted therefor for forming working surfaces of cylinders, of bearings, e.g. in heads of driving rods, or of other engine parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B29/00Holders for non-rotary cutting tools; Boring bars or boring heads; Accessories for tool holders
    • B23B29/03Boring heads
    • B23B29/034Boring heads with tools moving radially, e.g. for making chamfers or undercuttings
    • B23B29/03403Boring heads with tools moving radially, e.g. for making chamfers or undercuttings radially adjustable before starting manufacturing
    • B23B29/03428Boring heads with tools moving radially, e.g. for making chamfers or undercuttings radially adjustable before starting manufacturing by means of an eccentric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B29/00Holders for non-rotary cutting tools; Boring bars or boring heads; Accessories for tool holders
    • B23B29/03Boring heads
    • B23B29/034Boring heads with tools moving radially, e.g. for making chamfers or undercuttings
    • B23B29/03432Boring heads with tools moving radially, e.g. for making chamfers or undercuttings radially adjustable during manufacturing
    • B23B29/03478Boring heads with tools moving radially, e.g. for making chamfers or undercuttings radially adjustable during manufacturing by means of an eccentric
    • B23B29/03485Grooving tool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D79/00Methods, machines, or devices not covered elsewhere, for working metal by removal of material
    • B23D79/02Machines or devices for scraping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D79/00Methods, machines, or devices not covered elsewhere, for working metal by removal of material
    • B23D79/02Machines or devices for scraping
    • B23D79/04Machines or devices for scraping with rotating cutting-tool, e.g. for smoothing linings of bearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P13/00Making metal objects by operations essentially involving machining but not covered by a single other subclass
    • B23P13/02Making metal objects by operations essentially involving machining but not covered by a single other subclass in which only the machining operations are important
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P17/00Metal-working operations, not covered by a single other subclass or another group in this subclass
    • B23P17/02Single metal-working processes; Machines or apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q15/00Automatic control or regulation of feed movement, cutting velocity or position of tool or work
    • B23Q15/20Automatic control or regulation of feed movement, cutting velocity or position of tool or work before or after the tool acts upon the workpiece
    • B23Q15/22Control or regulation of position of tool or workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/22Arrangements for observing, indicating or measuring on machine tools for indicating or measuring existing or desired position of tool or work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q5/00Driving or feeding mechanisms; Control arrangements therefor
    • B23Q5/02Driving main working members
    • B23Q5/04Driving main working members rotary shafts, e.g. working-spindles
    • B23Q5/20Adjusting or stopping working-spindles in a predetermined position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2229/00Details of boring bars or boring heads
    • B23B2229/16Boring, facing or grooving heads with integral electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2260/00Details of constructional elements
    • B23B2260/076Harmonic drive gearboxes, i.e. reduction gearing including wave generator, flex spline and a circular spline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2260/00Details of constructional elements
    • B23B2260/108Piezoelectric elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2260/00Details of constructional elements
    • B23B2260/128Sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B29/00Holders for non-rotary cutting tools; Boring bars or boring heads; Accessories for tool holders
    • B23B29/03Boring heads
    • B23B29/034Boring heads with tools moving radially, e.g. for making chamfers or undercuttings
    • B23B29/03432Boring heads with tools moving radially, e.g. for making chamfers or undercuttings radially adjustable during manufacturing
    • B23B29/03435Boring heads with tools moving radially, e.g. for making chamfers or undercuttings radially adjustable during manufacturing by means of screws and nuts
    • B23B29/03442Grooving tool
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T82/00Turning
    • Y10T82/12Radially moving rotating tool inside bore
    • Y10T82/125Tool simultaneously moving axially

Definitions

  • the present invention relates to a hybrid cutting device capable of precisely cutting an oil groove on a cylinder bore, which is a workpiece, and a groove cutting method using the same.
  • the cylinder bore surface for the engine secures a certain level of surface roughness through honing.
  • the mesh bore surface is formed on the honed cylinder bore surface, and the oil surface is formed on the bore surface by the mesh pattern to minimize friction during piston movement.
  • Oil grooves formed on the cylinder bore surface are generally classified into a laser processing method and a mechanical processing method.
  • the laser processing method is to process oil grooves on the cylinder bore surface using a pulse laser after the honing process.
  • This laser processing method is not only expensive for equipment, but also difficult to install due to its large size and volume.
  • Mechanical processing is a method of physically forming oil grooves on the cylinder bore surface by inserting a cutting tool into the honed cylinder bore and then contacting it.
  • the entire cylinder bore It is required that the axis of rotation of the cutting tool be exactly coincident with the central axis of the cylinder bore so that a groove of constant depth is formed in the face.
  • One aspect of the present invention is to provide a hybrid cutting device capable of precise grooving while automatically controlling the position of the grooving frame in proportion to the displacement of the cutting surface.
  • a honing tool and a grooving are integrally provided to provide a hybrid cutting device capable of performing both honing and grooving.
  • Another aspect of the present invention is to provide a groove cutting method using the hybrid cutting device described above.
  • Hybrid cutting apparatus the main body connected to the rotating shaft of the machine tool; Grooving coupled to one side of the main body, for forming a groove on the inner peripheral surface of the workpiece; And frame position control means for controlling the position of the grooving so as to be positioned at the cutting surface position of the workpiece.
  • the frame position control means may include a moving unit for moving the grooving so that the cutting tip of the grooving frame reaches the groove depth of the workpiece.
  • the mobile unit the drive motor; And one end is connected concentrically with the axis of the drive motor, and the other end is provided with groove eccentrically with the axis of the drive motor. It may include a cam member to be connected.
  • the mobile unit may include a piezo actuator.
  • the position control means for measuring the distance between the cutting tip of the grooving mold and the cutting surface; And according to the value measured by the distance sensor, the mobile unit may further include a control unit for automatically controlling the degree of moving the grooving.
  • the distance sensor may detect whether the rotation axis coincides with the center of the workpiece.
  • the position control means may include: a first moving unit for moving the cutting tip of the grooved groove from a current position to a first set position close to the workpiece; And it may include a second moving unit for moving up to the machining depth of a groove segment of the grooving from the first "set position.
  • Hybrid cutting apparatus disposed on one side of the grooving, may further include a honing for honing the inner peripheral surface of the workpiece.
  • the honing teeth are connected in line with the grooving teeth and can be bound to the body together with the grooving teeth by a common housing.
  • the honing is a forward and backward shaft which is installed to be forward and backward in the axial direction;
  • a whetstone holder disposed radially outside of the forward and backward shafts and arranged to be elastically pressed toward the forward and backward shafts by a ring spring; And it may include a whetstone is installed on the outer surface of the whetstone holder.
  • the forward and backward shafts may be formed in a cone shape, the outer diameter of which gradually decreases toward the tip portion, and an inner surface of the grinding wheel holder that is in close contact with the forward and backward shafts may have an inclined slope with the cone shape.
  • the forward and backward shafts may be moved by hydraulic oscillation of the hydraulic plunger provided inside the main body.
  • the forward and backward shaft is when the hydraulic oscillation of the hydraulic plunger is stopped It may be reversed by the elastic pressing force of the ring spring.
  • a locking portion and a relative locking portion may be formed to stop at a predetermined point when the forward and backward shafts are reversed.
  • a method for processing grooving on a cylinder bore surface using the hybrid cutting device comprising: an installation step of installing the grooving in a cylinder bore; A distance measuring step of measuring a distance between the cutting tip of the grooving and the cylinder bore; A moving position setting step of setting a moving position of the grooving in proportion to the measured distance and moving the grooving to the set moving position; And a groove processing step of rotating the hybrid cutting device to process grooves in the cylinder bore by the grooves.
  • the moving position setting step may include: a first moving step of moving the grooving mold to a first setting position proximate to the cylinder bore; And a second movement step of moving the cutting tip of the groove to the processing depth of the groove at the first setting position.
  • the method may further include a machining result derivation step of deriving an optimum machining result value according to a condition value for processing the groove, and reflecting the machining result value to the groove machining step.
  • the position of the rotation center axis may be adjusted.
  • the groove is changed according to the change of the distance between the tip of the tip and the inner surface of the cylinder bore. Accurate and effective grooving is possible by allowing the ice roller position to be proportionally controlled.
  • 1 is an exemplary view of a workpiece processed by the hybrid cutting device of the present invention.
  • FIG. 2 is a perspective view of a hybrid cutting device according to an embodiment of the present invention.
  • FIG 3 is an exploded perspective view of a hybrid cutting device according to a first embodiment of the present invention.
  • FIG 4 is an assembled sectional view of the hybrid cutting device according to the first embodiment of the present invention.
  • FIG. 5 is a sectional view of principal parts of a hybrid cutting device according to a first embodiment of the present invention.
  • FIG. 6 is a position control diagram of the grooving groove relative to the cylinder bore.
  • FIG. 8 is a control block diagram of a control unit.
  • FIG. 9 is a flowchart illustrating a groove cutting method by a hybrid cutting device according to a first embodiment of the present invention.
  • FIG. 10 is an exemplary view for explaining a step of deriving a machining result in the groove cutting method by the hybrid cutting device according to the first embodiment of the present invention.
  • 11 is an exploded perspective view of a hybrid cutting device according to a second embodiment of the present invention
  • Figure 12 is a hybrid cutting device according to a second embodiment of the present invention.
  • FIG. 13 is an assembled perspective view of a hybrid cutting device according to a second embodiment of the present invention, which is a vertical cross-sectional view.
  • FIG. 14 is an assembled perspective view of a hybrid cutting device according to a second embodiment of the present invention.
  • FIG. 1 is an illustration of a workpiece processed by the hybrid cutting device of the present invention
  • Figure 2 is a perspective view of a hybrid cutting device according to a first embodiment of the present invention
  • Figure 3 is a hybrid cutting according to a first embodiment of the present invention
  • 4 is an exploded perspective view of the hybrid cutting device according to the first embodiment of the present invention
  • FIG. 5 is an essential part of the hybrid cutting device according to the first embodiment of the present invention. It is a cross section.
  • the hybrid cutting apparatus 100 may include a main body 200, a grooving 300, and a position control means 400.
  • the main body 200 is a holder coupled to a rotating shaft (not shown) of the machine tool, and the grooving 300 is coupled thereto.
  • the 'rotation axis' of the machine tool may mean the spindle black or the main axis.
  • the groove 300 is for cutting the groove g serving as an oil pocket on the cylinder bore 1, as shown in FIG.
  • Grooving 300 is shown in Figures 4 and 5.
  • a groove (g) is formed in the cylinder bore (1) with the frame support (310), the e-holder (320) installed on the support (310) so as to be moved forward and backward, and the one end of the e-holder (320). It may be composed of a cutting tip 330 for cutting.
  • the position control means 400 serves to control the degree of protrusion to the outside of the grooving frame 300, based on the cutting surface position of the cylinder bore (1).
  • the first mobile unit 410 and the second mobile unit 420 may be included.
  • the low U moving unit 410 moves the tip of the cutting tip 330 of the grooving frame 300 from the current position to the primary setting position P1 close to the cylinder bore 1, as shown in FIG. 6.
  • the primary setting position P1 means a position spaced apart from the machining surface of the cylinder bore 1 by a predetermined interval.
  • the first moving unit 410 is a drive motor 411 embedded in the main body 200, one end is connected concentrically with the axis of the drive motor 411, the other end opposite to the one end is the drive motor
  • the cam member 412 is configured to be eccentric with the shaft of the 411, and the linear reciprocating motion in accordance with the cam motion of the other end while being slidably connected to the other end of the cam member 412 by a bearing (b), Grooving may be composed of a connector 413 that is connected to the (300).
  • the connecting member 413 has a grooving of the cutting tip 330 of the (300)
  • a distance sensor 414 for measuring the distance between the tip and the cylinder bore 1 may be provided.
  • the grooving 300 can be moved to the primary setting position P1.
  • the cam member 412 is rotated by the driving motor 411, the other end 412b of the cam member 412 is eccentrically rotated, and the other end 412b and the bearing b of the cam member are rotated.
  • the connecting member 413 connected by the housing 600 is linearly moved in an unconstrained direction because both sides are restrained by the housing 600, and the groove 300 coupled with the connecting member 413 is also illustrated. In the same way as the connector 413 can be moved to the primary setting position (P1).
  • a harmonic drive 416 may be installed between the driving motor 411 and the cam member 412 to reduce the rotational power transmitted from the driving motor 411 to the cam member 412.
  • FIG. 7 is a position control diagram of the grooved portion by the cam member.
  • FIG. 7 illustrates a change in position of the grooving frame 300 for each angle when the cam member 412 is rotated 360 ° by the driving motor 411, and the other end 412b of the cam member 412.
  • the 90 ° rotation of the cutting tip 330 of the grooving 300 is moved the most, and when the rotation of 270 ° in the initial state, the cutting tip 330 is most retracted. Therefore, when the rotation angle of the cam member 412 is adjusted, the degree of movement of the cutting tip 330 can be adjusted, so that the alignment can be made according to the inner diameter of the cylinder bore 1.
  • the degree of movement of the grooving 300 can be adjusted.
  • the second moving unit 420 moves the cutting tip 330 of the grooving frame 300 from the primary setting position P1 to the processing depth P2 of the groove g as shown in FIG. It plays a role of cutting.
  • the crab 2 mobile unit 420 may include, for example, a piezo S actuator.
  • the piezo actuator serves to move only the holder 320 including the cutting tip 330 finely while leaving the groove 310 of the groove 300 as it is.
  • the reason for moving the grooving 300 in two steps is that the moving length of the piezo actuator is extremely fine. Therefore, large distance movements, that is, primary movements, should be assisted by the system 1 mobile unit 410 .
  • heat dissipation means may be provided in the eul holder 320 to dissipate the generated heat to the outside.
  • the frame holder 320 may be formed with a hole that communicates with the outside, and the air generated through the hole to the outside to dissipate the heat generated by the S actuator.
  • the heat dissipation means is not limited thereto, and may be formed in various configurations in addition to the hole through which air is communicated to dissipate heat generated from the piezo actuator to the outside.
  • the position control means 400 may further include a control unit 430 for automatically controlling the first and second mobile units (410, 420).
  • the controller 430 primarily measures the distance between the tip of the cutting tip 330 of the cutting edge 330 and the cylinder bore 1, which is received from the distance sensor 414. Based on the first moving unit 410, the grooving is controlled so that the tip of the cutting tip 330 of the 300 is moved to the first set position P1, and secondly, the distance sensor ( On the basis of the measured value measured in real time at 414), the second moving unit 420 serves to automatically control the movement from the primary setting position of the secondary setting position (P2) to the machining depth of the groove.
  • the frame position control means 400 is the groove (g) of the cylinder bore (1) is the front end of the grooving frame 300 with only one moving unit, instead of the first and second moving units (410, 420) as described above The grooving may be moved all the way to 300 until the machining depth is reached.
  • the central axis of rotation (center line of the rotary axis of the machine tool, hereinafter the central axis of rotation) can deviate from the centerline of the workpiece, for example, the cylinder bore 1.
  • the central axis of rotation can deviate from the centerline of the workpiece, for example, the cylinder bore 1.
  • the rotating shaft is tilted due to the load of the cutting device, and the center line of the rotating shaft There is a possibility of inconsistency. Referring to FIG.
  • the tilt of the rotating shaft may be sensed through the above-described measurement value of the distance sensor 414, and the machine tool for rotating the central axis of rotation of the hybrid cutting apparatus, that is, the cutting apparatus, may be detected based on the detected information. You can adjust the position of the axis of dilution.
  • the distance value measured by the distance sensor 414 is not constant when the cutting device rotates.
  • the distance sensor 414 can measure the distance from the center of rotation of the cutting device to the cutting surface of the workpiece, and can be connected to the rotation axis adjusting means of the machine tool. Accordingly, the position of the rotation axis of the machine tool may be adjusted based on the distance value measured by the distance sensor 414 so that the rotation center axis of the cutting device is close to the center line of the workpiece.
  • the distance sensor 414 may be configured as one as shown in the figure.
  • the main body 200 may be provided with an encoder, and the distance from the center of rotation of the cutting device to the cutting surface of the workpiece may be measured while detecting the angle of the rotating shaft rotated by the encoder.
  • the measured value of the distance sensor 414 can detect whether the rotational center axis of the cutting device is out of the centerline of the workpiece and the inclination of the rotational center axis of the cutting device.
  • the inclination detection method of the central axis of rotation of the cutting device through the distance sensor 414 is not limited thereto, and the distance sensor 414 may be configured with two or more.
  • the measured values of the two distance sensors are different when the central axis of inclination is tilted.
  • the angle of inclination of the rotation axis can be calculated.
  • the rotation axis of the machine tool can be adjusted such that the rotation center axis of the cutting device is close to the centerline of the workpiece.
  • the distance sensor is installed on the outside of the connecting body 413 as shown in Figures 4 and 5, the two distance sensors are disposed in opposite directions to each other in a direction perpendicular to the rotation center axis of the cutting device.
  • the rotational axis of the cutting device is leaned, the measured values of the two distance sensors 414 are different from each other, and the degree of inclination of the rotational axis of the cutting device is inclined through the difference between the two measured values. Can be calculated.
  • the rotation axis of the machine tool can be adjusted such that the rotation center axis of the cutting device is close to the centerline of the workpiece.
  • the hybrid cutting device may not only adjust the moving distance of the groove of the cutting device through the distance sensor 414.
  • the measured value of the distance sensor 414 it is possible to detect that the rotational center axis of the cutting device is inclined away from the centerline of the workpiece, and the rotational center axis of the cutting device by using the measured value information of the distance sensor 414.
  • by adjusting the position of the central axis of the machine tool can prevent machining failure.
  • FIG. 9 is a flow chart for explaining a groove cutting method by a hybrid cutting device according to a first embodiment of the present invention.
  • step 1 the grooving of the hybrid cutting device is installed in the cylinder bore (S10).
  • the first step is to install the grooving 300 in the center of the cylinder bore (1) as a workpiece accurately.
  • the center line of the cylinder bore 1 and the rotation center axis of the hybrid cutting device 100 are arranged in a straight line.
  • Step 2 measure the distance between the tip of the grooving of the hybrid cutting machine and the cylinder bore (S20).
  • a distance sensor 414 is installed on a predetermined portion of the hybrid cutting device 100, for example, the connecting body 413, and the groove is placed at the front end of the 300 and the cylinder bore (1). After the distance is measured, the measured value is transmitted to the controller 430.
  • the first step includes adjusting the rotation axis. At this time, if the rotation axis is not tilted, it can proceed to the following three steps.
  • Step 3 the moving position of the grooving frame is set in proportion to the measured distance, and the grooving 300 is moved to the set moving position (S30).
  • the grooving 300 is moved to the set moving position (S30).
  • the cylinder bore 1 is elliptical
  • grooving is carried out to a set point close to the cylinder bore 1 when the cutting tip 330 of the 300 is directed in the long diameter direction. While relatively far away, when the cutting tip 330 is facing in the flow direction, the distance to the set point close to the cylinder bore 1 becomes relatively close.
  • the moving length of the grooving 300 has to be long in the long diameter direction, and the grooving 300 has to be moved relatively short in the simple diameter direction.
  • the grooving is performed as in the above example.
  • the position of the grooving frame 300 is proportionally controlled according to the distance between the frame 300 and the cylinder bore 1.
  • the movement operation of the grooving 300, the first movement step for moving the entire grooving frame 300 from the current position to the primary setting position (P1) close to the cylinder bore (1) (S31) and the grooving can be divided into a second movement step (S32) for moving the cutting tip of the 300 from the primary setting position (P1) to the processing depth of the groove (g).
  • step 4 the hybrid cutting machine is rotated to process the groove in the cylinder bore by grooving (S50).
  • step 4 as described in the previous step 3 in the process of rotating the hybrid cutting device 100, grooving is performed by changing the distance between the groove 300 and the cylinder bore 1. By machining the groove (g) while varying the position of, the precision machining becomes possible.
  • step 4 may further include a processing result derivation step (S40) for deriving the optimum processing result value according to the condition value for processing the groove, wherein the processing result value is derived from the groove processing Can be reflected in the steps.
  • S40 processing result derivation step
  • the processing result derivation step by using a computer or mobile dedicated program, when inputting a condition value for the groove processing, the final machining result is automatically calculated and derived, the derivation The groove is processed using the value.
  • conditional parameters include the inner diameter and length of the cylinder bore 1, the diameter of the cutting tip 330, the forward and backward speeds of the piezo actuator, and the width of the grooving g. And a longitudinal length and a distribution density, and a factor of the result value is the forward and backward speed of the grooving frame 300.
  • the amplitude and initial position of the piezo actuator, the size of the grooving, the depth, and the pitch may be configured, but are not limited thereto.
  • FIG. 11 is a perspective view of a hybrid cutting device according to a second embodiment of the present invention.
  • FIG. 12 is an exploded perspective view of a hybrid cutting device according to a second embodiment of the present invention.
  • FIGS. 13 and 31b are views according to a second embodiment of the present invention.
  • Assembly perspective view of the hybrid cutting device, Fig. 15 is an operating state diagram of the honing furnace.
  • the hybrid cutting device 100 may include a main body 200, grooving 300, frame position control means 400 and honing 500. have.
  • the honing 500 is for honing the inner surface of the cylinder bore 1, and may be disposed on one side of the grooving frame 300 of the hybrid cutting device 100 of the second embodiment. Referring to FIG. 11, the honing groove 500 may be disposed in front of the grooving frame 300 and arranged in a line with the grooving 300.
  • the honing frame 500 has a forward and backward shaft 510 which is capable of forward and backward in the axial direction, and a plurality of whetstone holders 520 radially disposed outside the forward and backward shaft 510 and provided with a whetstone 521 on an outer surface thereof. It may include.
  • the outer shape of the forward and backward shaft 510 forms a cone shape whose outer diameter gradually decreases toward the tip portion, and the inner surface of the grinding wheel holder 520 that is in close contact with the forward and backward shaft 510 is the cone.
  • a slope 522 is formed which is opposed to the shape.
  • the cone shape and the slope may be formed in one or more in the axial direction.
  • the honing mold 500 it can be adjusted to the size of the inner diameter of the workpiece. That is, when the hydraulic pressure is oscillated in the hydraulic plunger 210 installed in the main body 200, the hydraulic pressure is driven by the hydraulic force to the forward and backward shaft 510 in the hydraulic flow path 211 shown in FIG. Push Advance
  • the cone of the forward and backward shaft 510 slides along the slope 523 of the grinding wheel holder 520, and the grinding wheel holder 520 as shown in FIG. 15 below.
  • Push outward so that the grinding wheel holder 520 protrudes outward. Therefore, when the inner diameter of the workpiece is large, smooth honing can be achieved by enlarging the outer diameter of the revolving holder 520 accordingly.
  • the front and rear ends of the grinding wheel holder 520 is provided with a spring hook 524 for fixing the ring spring 530.
  • the ring spring 530 elastically presses the whetstone holder 520 in the direction of the forward and backward axis 510.
  • the ring spring 530 is utilized when it is necessary to reduce the outer diameter of the grindstone holder 520. That is, when the hydraulic oscillation amount of the hydraulic plunger 210 is reduced or blocked, the forward force of the forward and backward shaft 510 is removed, so that the grinding wheel holder 520 lifts the cone by the elastic pressing force of the ring spring 530. As it reverses, the diameter becomes smaller.
  • a latching portion (a) and a relative locking portion (b) are provided on the contact surfaces of the forward and backward shaft 510 and the whetstone holder 520 to stop at a predetermined point when the forward and backward shaft 510 is retracted. Can be formed. That is, when the forward and backward shaft 510 is retracted, the forward and backward axis 510 is engaged with the relative engaging portion (b) of the whetstone holder 520 as the locking portion (a) of the forward and backward shaft 210 is engaged. It serves as a stopper to prevent the shaft 510 from retracting.
  • the honing mold 500 and the grooving mold 300 are bound to the front end of the main body 200 by a common housing 600. That is, the front of the housing 600 covers the honing 500, and the rear of the housing 600 is provided with an insertion space 610 into which the grooving 300 is inserted. 300 is fitted, the rear end of the housing 600 is provided with a flange portion 620 is fastened by a bolt while being in close contact with the front end of the main body 200.
  • the honing furnace 500 and the grooving furnace 300 are integrally connected by one housing 600.
  • Hybrid cutting device 200 Main body
  • Connector 414 Distance sensor

Abstract

하이브리드 절삭장치 및 그루브 절삭방법이 개시되어 있다. 본 발명의 일 실시예에 따른 하이브리드 절삭장치는, 공작기계의 회전축에 연결되는 본체; 상기 본체의 일측에 결합되며, 피절삭물의 내주면에 그루브를 형성하기 위한 그루빙 툴; 및 상기 피절삭물의 절삭면 위치에 대응되도록 상기 그루빙 틀의 위치를 제어하는 툴위치 제어수단;을 포함한다.

Description

【명세서】
【발명의 명칭】
하이브리드 절삭장치 및 이를 이용한 그루브 절삭방법 【기술분야】
본 발명은 피절삭물인 실린더 보어에 오일 그루브를 정밀하게 절삭 가공할 수 있는 하이브리드 절삭장치 및 이를 이용한 그루브 절삭방법에 관한 것이다. 【배경기술】
엔진용 실린더 보어면은 호닝 (honing)가공을 통해 일정 수준의 표면 조도를 확보하게 된다. 호닝 가공된 실린더 보어면에는 그물망 형태의 메쉬 패턴이 형성되며, 이러한 메쉬 패턴에 의해 보어면에는 오일 유막이 형성되어 피스톤 운동시 마찰을 최소화하는 기능을 수행하게 된다.
한편,피스톤 운동이 지속되면, 메쉬 패턴에 변형이 발생될 수 있는더】, 이러한 변형은 피스톤 운동시 실린더 보어면에서의 오일 밀림 현상을 유발하여 피스톤 링과 실린더 보어면 사이의 마찰이 증대되므로 엔진 효율을 크게 저하시키게 된다.
상술한 문제점은 호닝 가공된 실린더 보어면에 오일이 층진되는 오일 그루브 (예컨대 10 이하)을 추가적으로 형성시킴으로써 해결될 수 있다. 실린더 보어면에 형성되는 오일 그루브를 가공하는 방법으로는 일반적으로 레이저 가공방법과 기계적 가공방법으로 나뉜다.
레이저 가공방법은 호닝 가공 후에 펄스 레이저를 이용하여 실린더 보어면에 오일 그루브를 가공하는 방법인데, 이러한 레이저 가공방법은 가공을 위한 설비가 고가일 뿐만 아니라, 크기 및 부피가 커서 설치가 용이하지 못한 문제가 있고, 레이저 범의 미세한 출력 변화 때문에 오일 그루브를 일정한 깊이로 가공하는 것이 매우 어렵다는 문제도 있다.
기계적 가공방법은 호닝 가공된 실린더 보어에 절삭 공구를 삽입한 후 접촉시켜 물리적으로 실린더 보어면에 오일 그루브를 형성시키는 방법이다. 이러한 기계적 가공방법을 이용하는 경우에는 실린더 보어의 전체 면에 일정한 깊이의 홈이 형성되도록 절삭 공구의 회전축이 실린더 보어의 중심축에 정확하게 일치되는 것이 요구된다.
상술한 축 위치 설정을 위해서는 별도의 측정장비가 도입되어 측정을 위한 과정이 실시되어야 한다. 이는 전체적인 가공시간을 증대시키는 요인이 된다. 또한, 측정장비로 축 위치를 정밀하게 측정하여 가공하더라도 형성되어야 하는 오일 그루브의 깊이 ( 10 이하)가 매우 미세하기 때문에, 측정이 미세하게 틀어지는 경우, 실린더 보어의 전체 면에 형성되는 오일 그루브의 깊이가 일정하지 않게 형성되는 문제점이 있다. 【발명의 상세한 설명】
【기술적 과제】
본 발명의 일 측면은 절삭면의 변위에 대웅하여 그루빙 틀의 위치가 자동으로 비례 제어되면서 정밀한 그루빙 가공이 가능한 하이브리드 절삭장치를 제공하고자 한다.
또한, 호닝 툴과, 그루빙 를이 일체로 구성되어 호닝 가공 및 그루브 가공을 병행할 수 있는 하이브리드 절삭장치를 제공하고자 한다.
본 발명의 다른 측면은 상기한 하이브리드 절삭장치를 이용한 그루브 절삭방법을 제공하고자 한다. 【기술적 해결방법】
본 발명의 일 실시예예 따른 하이브리드 절삭장치는, 공작기계의 회전축에 연결되는 본체; 상기 본체의 일측에 결합되며, 피절삭물의 내주면에 그루브를 형성하기 위한 그루빙 를; 및 상기 피절삭물의 절삭면 위치에 대웅되도록 상기 그루빙 를의 위치를 제어하는 틀위치 제어수단;을 포함한다.
상기 틀위치 제어수단은, 상기 그루빙 틀의 절삭팁이 피절삭물의 그루브 가공깊이에 이르도록 그루빙 를을 이동시키는 이동유닛을 포함할 수 있다.
상기 이동유닛은, 구동모터; 및 일단은 상기 구동모터의 축과 동심으로 연결되고, 타단은 상기 구동모터의 축과 편심되게 그루빙 를과 연결되는 캠부재를 포함할 수 있다.
상기 구동모터 및 상기 캠부재 사이에 설치되어, 구동모터로부터 캠부재로 전달되는 회전동력을 감속시켜주는 하모닉 드라이브를 더 포함할 수 있다.
상기 이동유닛은 피에조 액츄에이터를 포함할 수 있다.
상기 를위치 제어수단은, 상기 그루빙 틀의 절삭팁과 상기 피절삭물 절삭면 사이의 거리를 측정하기 위한 거리센서; 및 상기 거리센서에서 측정된 값에 따라, 상기 이동유닛이 상기 그루빙 를을 이동시키는 정도를 자동으로 제어하는 제어부를 더 포함할 수 있다.
상기 거리센서는 상기 회전축과 상기 피절삭물의 중심과의 일치 여부를 감지할 수 있다.
상기 를위치 제어수단은, 상기 그루빙 를의 절삭팁을 현재 위치에서 상기 피절삭물에 근접하는 1차 설정위치까지 이동시키는 게 1 이동유닛; 및 상기 그루빙 를의 절삭팁을 상기 1차' 설정위치로부터 그루브의 가공깊이까지 이동시키는 제 2 이동유닛을 포함할 수 있다.
본 발명의 다른 실시예에 따른 하이브리드 절삭장치는, 상기 그루빙 를의 일측에 배치되며, 상기 피절삭물의 내주면을 호닝 가공하기 위한 호닝 를을 더 포함할 수 있다.
상기 호닝 를은 상기 그루빙 를과 일렬로 연결되며, 공통의 하우징에 의해 그루빙 를과 함께 상기 본체에 결속될 수 있다.
상기 호닝 를은, 축방향으로 전후진이 가능하게 설치되는 전후진 축; 상기 전후진 축의 외부에 방사상으로 배치되되, 링 스프링에 의해 전후진 축을 향해 탄성 가압되도록 배치되는 숫돌홀더; 및 상기 숫돌홀더의 외면에 설치되는 숫돌을 포함할 수 있다.
상기 전후진 축은 선단부로 갈수록 그 외경이 점차 작아지는 콘 형태로 이루어지며, 상기 숫돌홀더의 상기 전후진 축과 밀접하는 내면은 상기 콘 형태와 대웅되는 사면이 형성될 수 있다.
상기 전후진 축은 상기 본체의 내부에 구비되는 유압플런저의 유압발진에 의해 의해 이동될 수 있다.
상기 전후진 축은 상기 유압 플런저의 유압발진이 중지되었을 때 상기 링 스프링의 탄성 가압력에 의해 후진될 수 있다.
상기 전후진 축 및 상기 숫돌홀더의 접촉면에, 상기 전후진 축이 후진될 때 소정지점에서 정지되도록 하기 위한 걸림부 및 상대 걸림부가 형성될 수 있다.
상기 하이브리드 절삭장치를 이용하여 실린더 보어면에 그루빙을 가공하기 위한 방법으로, 상기 그루빙 를을 실린더 보어 내에 설치하는 설치단계; 상기 그루빙 를의 절삭팁과 실린더 보어 사이의 거리를 측정하는 거리측정단계; 상기 측정된 거리에 비례하여 상기 그루빙 를의 이동위치를 설정하고, 상기 설정된 이동위치로 그루빙 를을 이동시키는 이동위치 설정단계; 및 상기 하이브리드 절삭장치를 회전시켜서 상기 그루빙 를에 의해 실린더 보어에 그루브를 가공하는 그루브 가공단계;를 포함할 수 있다.
상기 이동위치 설정단계는, 상기 그루빙 틀을 상기 실린더 보어에 근접하는 1차 설정위치까지 이동시키는 1차 이동단계; 및 상기 그루빙 를의 절삭팁을 상기 1차 설정위치에서 상기 그루브의 가공깊이까지 이동시키는 2차 이동단계를 포함할 수 있다.
상기 그루빙 가공단계 이전에, 그루브를 가공하기 위한 조건값에 따른 최적의 가공 결과값을 도출하는 가공 결과값 도출단계를 더 포함하여, 상기 가공 결과값을 상기 그루브 가공단계에 반영할 수 있다.
상기 이동위치 설정단계 이전에, 상기 절삭장치의 회전 중심축이 기울어진 경우 상기 회전 중심축의 위치를 조절할 수 있다.
【유리한 효과】
본 발명의 일 실시예에 따르면, 피절삭물인 실린더 보어가 정원이 아니더라도, 또는 그루빙 를이 실린더 보어의 중심에 정확하게 인입되지 않았더라도, 팁의 선단과 실린더 보어 내면 간 거리의 변화에 따라, 그루빙 를의 위치가 비례 제어되도록 함으로써 정밀하고 효과적인 그루빙 가공이 가능하다.
또한, 본 발명의 일 실시예에 따르면, 호닝 를과 그루빙 를을 일체화함으로써 를의 교체 없이 호닝 작업과 그루빙 작업을 연속적으로 시행할 수 있어서 작업의 효율성을 높일 수 있고, 나아가 생산성이 향상될 수 있다.
【도면의 간단한 설명】
도 1은 본 발명의 하이브리드 절삭장치에 의해 가공되는 가공물의 예시도이다.
도 2는 본 발명의 게 1 실시예에 따른 하이브리드 절삭장치의 사시도이다.
도 3은 본 발명의 제 1 실시예에 따른 하이브리드 절삭장치의 분해 사시도이다.
도 4는 본 발명의 제 1 실시예에 따른 하이브리드 절삭장치의 조립 단면도이다.
도 5는 본 발명의 제 1 실시예에 따른 하이브리드 절삭장치의 요부 단면도이다.
도 6은 실린더 보어에 대한 그루빙 를의 위치 제어도이다.
도 7은 캠부재에 의한 그루빙 틀의 위치 제어도이다.
도 8은 제어부의 제어 블록도이다.
도 9는 본 발명의 제 1 실시예에 따른 하이브리드 절삭장치에 의한 그루브 절삭방법을 설명하기 위한 흐름도이다.
도 10은 본 발명의 제 1 실시예에 따른 하이브리드 절삭장치에 의한 그루브 절삭방법에서 가공 결과값 도출단계를 설명하기 위한 예시도이다. 도 11은 본 발명의 제 2 실시예에 따른 하이브리드 절삭장치의 도 12는 본 발명의 게 2 실시예에 따른 하이브리드 절삭장치의 분해 사시도이다.
도 13은 본 발명의 제 2 실시예에 따른 하이브리드 절삭장치의 조립 사시도로서, 수직단면도이다.
도 14는 본 발명의 제 2 실시예에 따른 하이브리드 절삭장치의 조립 사시도로서, 수평단면도이다.
도 15는 호닝 를의 작동상태도이다. 【발명의 실시를 위한 최선의 형태】
이하, 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조부호를 붙였다.
명세서 전체에서, 어떤 부분이 다른 부분과 "연결 "되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 만 아니라, 다른 부재를 사이에 두고 "간접적으로 연결' '된 것도 포함한다. 또한, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
본 발명에서 사용되는 용어들은 본 발명에서의 기능올 고려하여 정의된 용어들로서, 이는 사용자, 운용자의 의도 또는 관례에 따라 달라질 수 있으므로, 이러한 용어들에 대한 정의는 본 발명의 기술적 사항에 부합되는 의미와 개념으로 해석되어야 할 것이다.
그리고, 아래 실시예에서의 선택적인 용어는 하나의 구성요소를 다른 구성요소로부터 구별하기 위해 사용되는 것으로서, 구성요소가 상기 용어들에 의해 제한되는 것은 아니다. 이하, 본 발명을 설명함에 있어서, 본 발명의 요지를 불필요하게 흐릴 수 있는 관련된 공지기술에 대한 상세한 설명은 생략한다.
이하, 본 발명의 구체적인 실시예를 설명한다.
[제 1 실시예]
도 1은 본 발명의 하이브리드 절삭장치에 의해 가공되는 가공물의 예시도, 도 2는 본 발명의 계 1 실시예에 따른 하이브리드 절삭장치의 사시도, 도 3은 본 발명의 제 1 실시예에 따른 하이브리드 절삭장치의 분해 사시도, 도 4는 본 발명의 제 1 실시예에 따른 하이브리드 절삭장치의 조립 단면도, 도 5는 본 발명의 제 1 실시예에 따른 하이브리드 절삭장치의 요부 단면도이다.
도 1 내지 5를 참조하면, 계 1 실시예에 따른 하이브리드 절삭장치 (100)는 본체 (200), 그루빙 를 (300) 및 를위치 제어수단 (400)을 포함할 수 있다.
본체 (200)는 공작 기계의 회전축 (미도시 )에 결합되어 회전되는 부분으로서, 그루빙 를 (300)이 결합되는 홀더이다. 본 명세서에서 공작 기계의 '회전축'은 스핀들 흑은 주축을 의미할 수 있다.
그루빙 를 (300)은 도 1에서와 같이, 실린더 보어 (1)에 오일포켓 역할을 하는 그루브 (g)를 절삭 가공하기 위한 것이다.
그루빙 를 (300)은 도 4 및 5에서와 같이, . 세부적으로 틀 지지체 (310)과, 상기 를 지지체 (310)에 진퇴 가능하게 설치되는 를홀더 (320)와, 상기 를홀더 (320)의 일단에 설치된 채 실린더 보어 (1)에 그루브 (g)를 절삭가공하는 절삭팁 (330)으로 구성될 수 있다.
를위치 제어수단 (400)은 도 4 및 5에서와 같이, 상기 실린더 보어 (1)의 절삭면 위치에 대웅하여, 상기 그루빙 틀 (300)의 외부으로 돌출정도를 제어하는 역할을 하는 것으로 게 1 이동유닛 (410) 및 제 2 이동유닛 (420)를 포함할 수 있다.
도 6은 실린더 보어에 대한 그루빙 틀의 위치 제어도이다. 저 U 이동유닛 (410)은 도 6에서와 같이, 상기 그루빙 틀 (300)의 절삭팁 (330)의 선단을 현재 위치에서 상기 실린더 보어 ( 1)에 근접하는 1차 설정위치 (P1)까지 이동시켜주는 역할을 하는 것으로, 여기서 , 1차 설정위치 (P1)는 실린더 보어 (1)의 가공면으로부터 소정간격으로 이격된 위치를 의미한다.
상기 제 1 이동유닛 (410)은 상기 본체 (200)에 내장되는 구동모터 (411)와, 일단은 상기 구동모터 (411)의 축과 동심으로 연결되고, 상기 일단과 반대되는 타단은 상기 구동모터 (411)의 축과 편심되게 구성되는 캠부재 (412)와, 상기 캠부재 (412)의 타단에 베어링 (b)에 의해 슬립 가능하게 연결된 채 상기 타단의 캠운동에 따라 직선왕복운동되며, 상기 그루빙 를 (300)과 연결되어 있는 연결체 (413)로 구성될 수 있다.
여기서, 상기 연결체 (413)에는 그루빙 를 (300)의 절삭팁 (330)의 선단과 실린더 보어 (1) 사이의 거리를 측정하기 위한 거리센서 (414)가 설치될 수 있다.
따라서, 거리센서 (414)의 측정값을 통해, 그루빙 를 (300)을 1차 설정위치 (P1)까지 이동시킬 수 있다. 상세히 설명하면, 상기 구동모터 (411)에 의해 캠부재 (412)가 회전되면, 캠부재 (412)의 타단 (412b)은 편심회전되며 , 이 캠부재의 타단 (412b)과 베어링 (b)에 의해 연결되는 연결체 (413)는 그 하우징 (600)에 의해 양쪽이 구속된 상태이므로 구속되지 않은 방향으로 직선운동되고, 이와 함께 연결체 (413)와 결합되어 있는 상기 그루빙 를 (300)도 연결체 (413)와 동일하게 직선운동되면서 1차 설정위치 (P1)까지 이동할 수 있게 된다.
한편, 상기 구동모터 (411)와 캠부재 (412) 사이에는 구동모터 (411)로부터 캠부재 (412)로 전달되는 회전동력을 감속시키기 위한 하모닉 드라이브 (416)가 설치될 수 있다.
도 7은 캠부재에 의한 그루빙 를의 위치제어도이다. 여기서, 도 7은 구동모터 (411)에 의해 캠부재 (412)가 360° 회전하였을 때, 각도별 그루빙 틀 (300)의 위치변화를 도시한 것으로, 캠부재 (412)의 타단 (412b)이 최초 상태에서 90° 회전하게 되면 그루빙 를 (300)의 절삭팁 (330)이 외부로 가장 많이 이동되고, 최초 상태에서 270° 회전하게 되면 절삭팁 (330)이 가장 후퇴되는 상태가 된다. 따라서, 캠부재 (412)의 회전각도를 조절하게 되면 절삭팁 (330)의 이동 정도를 조절할 수 있으므로 실린더 보어 (1)의 내경 크기에 맞는 위치맞춤이 가능하게 된다. 이 때, 거리센서 (414)의 측정값을 통해, 절삭팁 (330)의 선단과 실린더 보어 (1) 사이의 거리를 측정할 수 있으므로, 그루빙 를 (300)의 이동 정도를 조절할 수 있다.
제 2 이동유닛 (420)은 상기 그루빙 틀 (300)의 절삭팁 (330)을 상기 도 6에서와 같이, 1차 설정위치 (P1)로부터 그루브 (g)의 가공깊이 (P2)까지 이동시켜서 절삭을 행하는 역할을 한다.
상기 게 2 이동유닛 (420)은 예컨대, 피에 S 액츄에이터를 포함할 수 있다. 이 피에조 액츄에이터는 그루빙 를 (300)의 를지지체 (310)는 그대로 둔 채, 절삭팁 (330)을 포함하고 있는 상기 를홀더 (320) 만을 미세하게 이동시키는 역할을 한다. 이와 같이, 그루빙 를 (300)을 2단계에 걸쳐 이동시키는 이유는 피에조 액츄에이터의 이동길이가 극히 미세하기 때문이다. 따라서, 큰 거리의 이동, 즉 1차 이동은 계 1 이동유닛 (410)의 도움을 받아야 한다ᅳ
전술한 피에조 액츄에이터는 상기 틀홀더 (320)를 미세하게 이동시키는 동안 열이 발생할 수 있으므로, 발생된 열을 외부로 발산할 수 있도록 를홀더 (320)에 열발산 수단이 구비될 수 있다. 예를 들어, 틀홀더 (320)에는 외부로 연통되는 구멍이 형성될 수 있으며, 구멍을 통해 공기가 연통됨으로써 피에 S 액츄에이터에서 발생되는 열을 외부로 발산시킬 수 있다. 그러나 열발산 수단은 이에 한정되는 것은 아니며 피에조 액츄에이터에서 발생되는 열을 외부로 발산시킬 수 있도록 공기가 연통되는 구멍 외에 다양한 구성으로 형성될 수 있다.
한편,상기 를위치 제어수단 (400)은 상기 제 1, 2이동유닛 (410, 420)을 자동으로 제어하는 제어부 (430)를 더 포함할 수 있다.
도 8은 제어부의 제어 블록도이다. 상기 제어부 (430)는 도 8에서와 같이, 1차적으로, 상기 거리센서 (414)로부터 전달받은 그루빙 를 (300)의 절삭팁 (330)의 선단과 실린더 보어 ( 1) 사이의 거리측정값에 근거하여, 제 1 이동유닛 (410)에 의해 그루빙 를 (300)의 절삭팁 (330)의 선단이 상기 1차 설정위치 (P1)까지 이동되도록 제어하고, 2차적으로, 상기 거리센서 (414)에서 실시간으로 측정되는 측정값에 근거하여, 제 2 이동유닛 (420)에 의해 2차 설정위치 (P2)인 1차 설정위치로부터 그루브의 가공깊이까지 이동되게 자동 제어하는 역할을 한다.
한편, 상기 틀위치 제어수단 (400)은 앞서와 같이 제 1, 2이동유닛 (410, 420) 대신, 하나의 이동유닛 만으로 그루빙 틀 (300)의 선단이 실린더 보어 ( 1)의 그루브 (g) 가공깊이에 이를때까지 그루빙 를 (300) 전체를 이동시켜줄 수도 있다.
한편, 전술한 하이브리드 절삭장치는 회전 중심축 (공작기계의 회전축의 중심선, 이하, 회전 중심축)이 피절삭물, 예를 들어 실린더 보어 ( 1)의 중심선에서 벗어날 수가 있다. 예를 들어 캔틸레버 (cant i lever ) 타입의 공작기계일 경우에 절삭가공이 진행됨에 따라, 절삭장치의 하중 등에 의하여 회전축이 기을어져서 회전축의 중심선이 피절삭물의 중심선과 일치하지 않게 될 가능성이 있다. 도 8을 참조하면, 이러한 경우 전술한 거리센서 (414)의 측정값올 통해서 회전축의 기울어짐을 감지할 수 있고, 감지된 정보를 통해 하이브리드 절삭장치의 회전 중심축, 다시 말해 절삭장치를 회전시키는 공작기계의 희전축의 위치를 조절할 수 있다.
보다 상세히 설명하면, 절삭장치의 회전 중심축이 피절삭물의 중심선에서 벗어나는 경우에는, 절삭장치가 회전할 때 거리센서 (414)에서 측정한 거리값이 일정하지 않고 변화하게 된다. 이 때, 거리센서 (414)는 절삭장치의 회전 중심축에서 피절삭물의 절삭면까지의 거리를 측정할 수 있고, 공작기계의 회전축 조절 수단과 연결될 수 있다. 이에 따라 거리센서 (414)에서 측정한 거리값에 근거하여 공작기계의 회전축의 위치를 조절하여 절삭장치의 회전 중심축이 피절삭물의 중심선에 근접하도록 조절할 수 있다.
이 때 , 거리센서 (414)는 도면에 도시된 바와 같이 하나로 구성될 수 있다. 예를 들어 , 본체 (200)에는 엔코더가 구비될 수 있고, 엔코더에 의하여 회전하는 회전축의 각도를 검출하면서 절삭장치의 회전 중심축에서 피절삭물의 절삭면까지의 거리를 측정할 수 있다. 거리센서 (414)의 측정값을 통해 절삭장치의 회전 중심축이 피절삭물의 중심선에서 벗어났는지 여부와 절삭장치의 회전 중심축의 기울어짐을 감지할 수 있다. 다만, 거리센서 (414)를 통한 절삭장치의 회전 중심축의 기울어짐 감지 방식이 이에 한정되는 것은 아니며, 거리센서 (414)가 두 개 이상의 복수 개로 구성될 수 있다. 예를 들어, 거리센서가 절삭장치의 회전 중심축 상에 나란하게 두 개가 배치되는 경우, 회전 중심축이 기울어지면 두 거리센서의 측정값이 서로 달라지게 되며, 두 측정값을. 연산하여 회전축이 기울어진 각도를 산출할 수 있게 된다. 이를 통해 공작기계의 회전축을 조절하여 절삭장치의 회전 중심축이 피절삭물의 중심선에 근접하도록 조절할 수 있다. 또한, 다른 형태로서 거리센서가 도 4 및 5에 도시된 바와 같이 연결체 (413)의 외측에 설치되되, 두 개의 거리센서가 절삭장치의 회전 중심축과 수직한 방향으로 서로 반대 방향에 배치되는 경우, 절삭장치의 회전 중심축이 기을어지면 두 거리센서 (414)의 측정값이 서로 달라지게 되며, 두 측정값의 차이를 통해 절삭장치의 회전 중심축이 기울어진 정도를 산출할 수 있게 된다. 이를 통해 공작기계의 회전축을 조절하여 절삭장치의 회전 중심축이 피절삭물의 중심선에 근접하도록 조절할 수 있다.
이와 같이 , 본 발명의 제 1 실시예에 따른 하이브리드 절삭장치는 거리센서 (414)를 통해 절삭장치의 그루빙 를의 이동 거리를 조절할 수 있을 뿐만 아니라. 거리센서 (414)의 측정값을 이용하여 절삭장치의 회전 중심축이 피절삭물의 중심선에서 벗어나서 기울어지는 것을 감지할 수 있으며, 거리센서 (414)의 측정값 정보를 이용하여 절삭장치의 회전 중심축, 즉 공작기계의 중심축의 위치를 조절하여 가공 불량를 방지할 수 있다.
이하에서는 상기한 제 1 실시예에 따른 하이브리드 절삭장치의 제어방법에 대해 기술한다.
도 9는 본 발명의 제 1 실시예에 따른 하이브리드 절삭장치에 의한 그루브 절삭방법을 설명하기 위한흐름도이다.
도 9를 참조하면, 1단계, 하이브리드 절삭장치의 그루빙 를을 실린더 보어 내에 설치한다 (S10) .
상기 1 단계는, 가공물인 실린더 보어 (1)의 중심에 그루빙 를 (300)이 정확하게 인입되도록 설치하는 단계이다. 이 때, 실린더 보어 ( 1)의 중심선과 하이브리드 절삭장치 (100)의 회전 중심축이 일직선 상에 배열되도록 한다.
2 단계, 하이브리드 절삭장치의 그루빙 를의 선단과 실린더 보어 ( 1) 사이의 거리를 측정한다 (S20) .
상기 2단계는,하이브리드 절삭장치 (100)의 소정부위, 예컨대,상기한 연결체 (413) 상에 거리센서 (414)를 설치하여, 상기 그루빙 를 (300)의 선단과 실린더 보어 (1) 사이의 거리를 측정한 후, 이 측정값을 상기 제어부 (430)로 전송하는 단계이다.
상기 2 단계에서 거리센서 (414)의 측정값을 통해 공작기계의 회전축의 기울어짐 여부를 감지할 수 있으므로, 회전축이 기울어진 경우에는 1 단계로 돌아가서 회전축을 조절하는 과정을 거칠 수 있다. 즉, 전술한 1 단계는 회전축을 조절하는 과정을 포함한다. 이 때, 회전축이 기울어지지 않은 경우라면, 이하의 3 단계로 진행될 수 있다.
3 단계, 측정된 거리에 비례하여 상기 그루빙 틀의 이동위치를 설정하고, 이 설정된 이동위치로 그루빙 를 (300)을 이동시킨다 (S30) . 상기 3 단계는, 예컨대, 실린더 보어 (1)가 타원형이라고 가정하면, 그루빙 를 (300)의 절삭팁 (330)이 장지름 방향을 향하고 있을 경우는 실린더 보어 (1)에 근접하는 설정지점까지 상대적으로 먼 반면, 절삭팁 (330)이 단지름 방향을 향하고 있을 경우는 실린더 보어 (1)에 근접하는 설정지점까지의 거리는 상대적으로 가깝게 된다.
따라서, 장지름 방향에서는 그루빙 를 (300)의 이동길이가 길어져야 하고, 단지름 방향에서는 그루빙 를 (300)이 상대적으로 짧게 이동해야 하는데, 3 단계에서는 상기한 예에서와 같이, 그루빙 틀 (300)과 실린더 보어 (1)의 사이거리에 따라 그루빙 틀 (300)의 위치를 비례제어한다.
여기서, 상기 그루빙 를 (300)의 이동동작은, 상기 그루빙 틀 (300) 전체를 현재 위치에서 상기 실린더 보어 (1)에 근접하는 1차 설정위치 (P1)까지 이동시켜주는 1차 이동단계 (S31)와, 상기 그루빙 를 (300)의 절삭팁을 1차 설정위치 (P1)에서 상기 그루브 (g)의 가공깊이까지 이동시켜주는 2차 이동단계 (S32)로 구분될 수 있다.
4 단계는, 하이브리드 절삭장치를 회전시켜서 그루빙 를에 의해 실린더 보어에 그루브를 가공하게 된다 (S50) .
상기 4 단계는, 하이브리드 절삭장치 (100)를 회전시키는 과정에서 앞서의 3단계에서 설명한 바 있듯이, 그루빙 를 (300)과 실린더 보어 ( 1)사이 거리의 변화에 대웅하여 그루빙 를 (300)의 위치를 가변시켜 가면서 그루브 (g)를 가공함으로써 정밀 가공이 가능하게 된다.
한편, 상기 4 단계 이전에, 그루브를 가공하기 위한 조건값에 따른 최적의 가공 결과값을 도출하는 가공 결과값 도출단계 (S40)를 더 포함할 수 있으며, 여기서 도출된 가공 결과값은 상기 그루브 가공단계에 반영될 수 있다.
부연하면, 상기 가공 결과값 도출단계는, 도 10에서와 같이, 컴퓨터 또는 모바일 전용 프로그램을 이용하여, 그루브 가공을 위한 조건값을 입력하면, 최종의 가공 결과값이 자동으로 연산되어 도출됨으로써 그 도출값을 이용하여 그루브를 가공하는 것이다.
참고로, 상기 조건값의 인자는 실린더 보어 ( 1)의 내경 및 길이, 절삭팁 (330)의 직경 및 피에조 액츄에이터의 전후진 속도, 그루빙 (g)의 가로 세로길이 및 분포밀도로 구성될 수 있고, 결과값의 인자는 상기 그루빙 틀 (300)의 전후진 속도, 상기. 피에조 액츄에이터의 진폭 및 초기위치, 그루빙의 크기, 깊이,피치로 구성될 수 있으나, 이에 한정하는 것은 아니다.
[제 2 실시예]
도 11은 본 발명의 제 2 실시예에 따른 하이브리드 절삭장치의 사시도 도 12는 본 발명의 제 2 실시예에 따른 하이브리드 절삭장치의 분해 사시도, 도 13 , 31b는 본 발명의 제 2 실시예에 따른 하이브리드 절삭장치의 조립 사시도, 도 15는 호닝 를의 작동상태도이다.
위 도면에 따르면, 본 발명의 제 2 실시예에 따른 하이브리드 절삭장치 ( 100)는 본체 (200) , 그루빙 를 (300), 틀위치 제어수단 (400) 및 호닝 를 (500)을 포함할 수 있다.
본체 (200), 그루빙 틀 (300), 를위치 제어수단 (400)은 앞서 설명한 바 있으므로 생략하고, 호닝 를 (500)에 대해서 상세히 설명한다.
상기 호닝 를 (500)은 실린더 보어 (1)의 내부면을 호닝 (honing) 가공하기 위한 것으로, 게 2 실시예의 하이브리드 절삭장치 ( 100)의 그루빙 틀 (300)의 일측에 배치될 수 있다. 도 11을 참조하면, 호닝 를 (500)은 그루빙 틀 (300)의 앞쪽에 배치되어 그루빙 를 (300)과 일렬로 배열될 수 있다.
이러한 호닝 틀 (500)은 축방향으로 전후진이 가능한 전후진 축 (510)과, 상기 전후진 축 (510)의 외부에 방사상으로 배치되며 외면에는 숫돌 (521)이 설치된 다수의 숫돌홀더 (520)를 포함할 수 있다.
이때, 상기 전후진 축 (510)의 외형은 선단부로 갈수록 그 외경이 점차 작아지는 콘 (cone) 형태를 이루며, 상기 숫돌홀더 (520)의 상기 전후진 축 (510)과 밀접하는 내면은 상기 콘 형태와 대웅되는 사면 (斜面 ) (522)이 형성된다. 여기서, 콘형태와사면은 축방향으로 1개 또는 그 이상 형성될 수 있다.
이러한 호닝 틀 (500)의 형태에 따라, 피가공물의 내경 크기에 맞게 조절할 수 있다. 즉, 상기 본체 (200)의 내부에 설치되는 유압플런저 (210)에서 유압이 발진되면, 이 유압은 도 14에 도시된 유압유로 (211)를 타고 상기 전후진 축 (510)을 유압력에 의해 밀어 전진시켜준다.
전후진 축 (510)이 유압력에 의해 전진하게 되면, 전후진 축 (510)의 콘이 숫돌홀더 (520)의 사면 (523)을 따라 슬라이딩하게 되면서 도 15의 아래 도면과 같이 숫돌홀더 (520)를 외향으로 밀게 되므로 숫돌홀더 (520)가 외향으로 돌출된다. 따라서, 피가공물의 내경이 큰 경우에 이에 맞게 슷돌홀더 (520)의 외경을 확대함으로써 원활한 호닝 가공이 가능하게 된다. 한편, 상기 숫돌홀더 (520)의 선단과 후단에는 링 스프링 (530)을 고정하기 위한 스프링 후크 (524)가 마련되어 있다. 상기 링 스프링 (530)은 숫돌홀더 (520)를 상기 전후진 축 (510) 방향으로 탄성 가압하는 역할을 한다. 이러한 링 스프링 (530)은 상기 숫돌홀더 (520)의 외경을 줄일 필요가 있을 때 활용된다. 즉, 상기 유압플런저 (210)의 유압발진량을 줄이거나 또는 차단하게 되면 전후진 축 (510)의 전진력이 제거되므로, 링 스프링 (530)의 탄성 가압력에 의해 숫돌홀더 (520)가 콘을 따라 후진되면서 직경이 작아지게 된다.
그리고, 상기 전후진 축 (510) 및 숫돌홀더 (520)의 접촉면에는, 상기 전후진 축 (510)이 후퇴될 때 소정지점에서 정지되도록 하기 위한 걸림부 (a) 및 상대 걸림부 (b)가 형성될 수 있다. 즉, 상기 전후진 축 (510)이 후진할 때, 상기 숫돌홀더 (520)의 상대 걸림부 (b)에 전후진 축 (210)의 걸림부 (a)가 걸림에 따라 그 이상의 영역으로 전후진 축 (510)이 후퇴되는 것을 방지하는 스토퍼의 역할을 한다.
한편, 호닝 틀 (500)과 그루빙 틀 (300)은 공통의 하우징 (600)에 의해 상기 본체 (200)의 선단에 결속된다. 즉, 상기 하우징 (600)의 전방은 상기 호닝 를 (500)을 커버링 하고 있고, 하우징 (600)의 후방에는 상기 그루빙 를 (300)이 삽입되는 삽입 공간 (610)이 구비되어, 이에 그루빙 를 (300)이 끼워지며, 하우징 (600)의 후단에는 상기 본체 (200)의 선단에 밀착된 채 볼트에 의해 체결되는 플랜지부 (620)가 구비되어 있다. 따라서, 호닝 를 (500) 및 그루빙 를 (300)은 하나의 하우징 (600)에 의해 일체로 연결된다. 이상 본 발명을 구체적인 실시예를 통하여 상세하게 설명하였으나, 이는 본 발명을 구체적으로 설명하기 위한 것으로, 본 발명은 이에 한정되지 않으며, 본 발명의 기술적 사상 내에서 당 분야의 통상을 지식을 가진 자에 의해 그 변형이나 개량이 가능함이 명백하다.
본 발명의 단순한 변형 내지 변경은 모두 본 발명의 범주에 것으로 본 발명의 구체적인 보호 범위는 첨부된 특허청구범위에 명확해질 것이다.
- 부호의 설명 -
1 : 실린더 보어 g : 그루브
100 : 하이브리드 절삭장치 200 : 본체
300 : 그루빙 를 310 : 틀 지지체
320 : 틀홀더 330 : 절삭팁
400 : 를위치 제어수단 410 : 게 1 이동유닛
411 : 구동모터 412 : 캠부재
413 : 연결체 414 : 거리센서
416 : 하모닉 드라이브 420 : 제 2 이동유닛
500 : 호닝 를 510 : 전후진 축
520 : 숫돌홀더 530 : 링 스프링

Claims

【청구의 범위】
【청구항 1】
공작기계의 회전축에 연결되는 본체;
상기 본체의 일측에 결합되며, 피절삭물의 내주면에 그루브를 형성하기 위한 그루빙 를; 및
상기 피절삭물의 절삭면 위치에 대웅되도록 상기 그루빙 틀의 위치를 제어하는 를위치 제어수단;
을 포함하는, 하이브리드 절삭장치.
【청구항 2】
제 1 항에 있어서,
상기 틀위치 제어수단은,
상기 그루빙 를의 절삭팁이 피절삭물의 그루브 가공깊이에 이르도록 그루빙 를을 이동시키는 이동유닛을 포함하는, 하이브리드 절삭장치.
【청구항 3]
제 2 항에 있어서,
상기 이동유닛은,
구동모터; 및
일단은 상기 구동모터의 축과 동심으로 연결되고, 타단은 상기 구동모터의 축과 편심되게 그루빙 를과 연결되는 캠부재를 포함하는, 하이브리드 절삭장치 .
【청구항 4]
제 3 항에 있어서,
상기 구동모터 및 상기 캠부재 사이에 설치되어, 구동모터로부터 캠부재로 전달되는 회전동력을 감속시켜주는 하모닉 드라이브를 더 포함하는, 하이브리드 절삭장치 .
【청구항 5】 제 2 항에 있어서,
상기 이동유닛은 피에조 액츄에이터를 포함하는, 하이브리드 절삭장치 .
【청구항 6】
제 2 항에 있어서,
상기 틀위치 제어수단은,
상기 그루빙 를의 절삭팁과 상기 피절삭물 절삭면 사이의 거리를 측정하기 위한 거리센서; 및
상기 거리센서에서 측정된 값에 따라, 상기 이동유닛이 상기 그루빙 를을 이동시키는 정도를 자동으로 제어하는 제어부를 더 포함하는, 하이브리드 절삭장치 .
【청구항 7]
제 6 항에 있어서,
상기 거리센서는 상기 회전축의 기울어짐을 감지하는, 하이브리드 절삭장치 .
【청구항 8]
제 1 항에 있어서,
상기 를위치 제어수단은,
상기 그루빙 를의 절삭팁을 현재 위치에서 상기 피절삭물에 근접하는 1차 설정위치까지 이동시키는 제 1 이동유닛; 및
상기 그루빙 를의 절삭팁을 상기 1차 설정위치로부터 그루브의 가공깊이까지 이동시키는 제 2 이동유닛을 포함하는, 하이브리드 절삭장치.
【청구항 9】
거 1 1 항에 있어서,
상기 그루빙 를의 일측에 배치되며, 상기 피절삭물의 내주면을 호닝 가공하기 위한 호닝 를을 더 포함하는, 하이브리드 절삭장치 .
【청구항 10】
제 9 항에 있어서 ,
상기 호닝 툴은 상기 그루빙 를과 일렬로 연결되며, 공통의 하우징에 의해 그루빙 를과 함께 상기 본체에 결속되는, 하이브리드 절삭장치.
【청구항 11】
제 9 항에 있어서,
상기 호닝 틀은,
축방향으로 전후진이 가능하게 설치되는 전후진 축;
상기 전후진 축의 외부에 방사상으로 배치되되, 링 스프링에 의해 전후진 축을 향해 탄성 가압되도록 배치되는 숫돌홀더; 및
상기 슷돌홀더의 외면에 설치되는 슷돌을 포함하는, 하이브리드 절삭장치ᅳ
【청구항 12]
제 11 항에 있어서,
상기 전후진 축은 선단부로 갈수록 그 외경이 점차 작아지는 콘 형태로 이루어지며,
상기 슷돌홀더의 상기 전후진 축과 밀접하는 내면은 상기 콘 형태와 대웅되는 사면이 형성된, 하이브리드 절삭장치 .
【청구항 13]
제 11 항에 있어서,
상기 전후진 축은 상기 본체의 내부에 구비되는 유압플런저의 유압발진에 의해 의해 이동되는, 하이브리드 절삭장치.
【청구항 14]
제 13 항에 있어서,
상기 전후진 축은 상기 유압 플런저의 유압발진이 중지되었을 때 상기 링 스프링의 탄성 가압력에 의해 후진되는, 하이브리드 절삭장치 .
【청구항 15]
게 11 항에 있어서,
상기 전후진 축 및 상기 숫돌홀더의 접촉면에, 상기 전후진 축이 후진될 때 소정지점에서 정지되도록 하기 위한 걸림부 및 상대 걸림부가 형성되는, 하이브리드 절삭장치.
【청구항 16]
제 1 항 내지 제 15 항에 따른 하이브리드 절삭장치를 이용하여 실린더 보어면에 그루빙을 가공하기 위한 방법으로,
상기 그루빙 를을 실린더 보어 내에 설치하는 설치단계;
상기 그루빙 를의 절삭팁과 실린더 보어 사이의 거리를 측정하는 거리측정단계;
상기 측정된 거리에 비례하여 상기 그루빙 를의 이동위치를 설정하고, 상기 설정된 이동위치로 그루빙 를을 이동시키는 이동위치 설정단계; 및
상기 하이브리드 절삭장치를 회전시켜서 상기 그루빙 틀에 의해 실린더 보어에 그루브를 가공하는 그루브 가공단계;
를 포함하는, 그루브 절삭방법 .
【청구항 17】
제 16 항에 있어서,
상기 이동위치 설정단계는,,
상기 그루빙 를을 상기 실린더 보어에 근접하는 1차 설정위치까지 이동시키는 1차 이동단계 ; 및
상기 그루빙 를의 절삭팁을 상기 1차 설정위치에서 상기 그루브의 가공깊이까지 이동시키는 2차 이동단계를 포함하는, 그루브 절삭방법.
【청구항 18】
제 16 항에 있어서 상기 그루빙 가공단계 이전에, 그루브를 가공하기 위한 조건값에 따른 최적의 가공 결과값을 도출하는 가공 결과값 도출단계를 더 포함하여, 상기 가공 결과값을 상기 그루브 가공단계에 반영하는, 그루브 절삭방법 . 【청구항 19】
겨 1 16 항에 있어서 ,
상기 이동위치 설정단계 이전에, 상기 절삭장치의 회전 중심축이 기을어진 경우 상기 회전 중심축의 위치를 조절하는, 그루브 절삭방법.
PCT/KR2016/010199 2015-09-10 2016-09-09 하이브리드 절삭장치 및 이를 이용한 그루브 절삭방법 WO2017043931A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP16844747.2A EP3321021B1 (en) 2015-09-10 2016-09-09 Hybrid cutting apparatus and grooving method using same
US15/573,991 US10391564B2 (en) 2015-09-10 2016-09-09 Hybrid cutting apparatus and method of cutting groove using the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020150128161A KR101692249B1 (ko) 2015-09-10 2015-09-10 하이브리드 절삭장치
KR10-2015-0128161 2015-09-10
KR1020160045508A KR101934691B1 (ko) 2016-04-14 2016-04-14 하이브리드 절삭장치 및 이를 이용한 그루브 절삭방법
KR10-2016-0045508 2016-04-14

Publications (1)

Publication Number Publication Date
WO2017043931A1 true WO2017043931A1 (ko) 2017-03-16

Family

ID=58240237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/010199 WO2017043931A1 (ko) 2015-09-10 2016-09-09 하이브리드 절삭장치 및 이를 이용한 그루브 절삭방법

Country Status (3)

Country Link
US (1) US10391564B2 (ko)
EP (1) EP3321021B1 (ko)
WO (1) WO2017043931A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6867695B2 (ja) * 2018-07-24 2021-05-12 エンシュウ株式会社 孔加工機および孔加工機を用いた楕円孔および内径変化孔の加工方法
EP3628424A1 (en) * 2018-09-17 2020-04-01 Korea Institute of Machinery & Materials Cutting head operated by centrifugal force and cutting apparatus including the same
CN109397034B (zh) * 2018-11-19 2021-01-01 重庆大学 一种仿生肋状表面砂带磨削工艺及装置
KR102201173B1 (ko) * 2018-11-20 2021-01-13 한국생산기술연구원 공구 마모를 고려한 공구 위치 가변 가공 장치 및 이를 이용한 공구 위치 제어 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56119365A (en) * 1980-02-26 1981-09-18 Honda Motor Co Ltd Composite working device of boring and honing
JP2001353655A (ja) * 2000-06-09 2001-12-25 Makino J Kk ホーニング加工工具及びその工具を用いた加工方法
JP2009248292A (ja) * 2008-04-11 2009-10-29 Honda Motor Co Ltd 非円形穴開け加工装置
JP2011011293A (ja) * 2009-07-02 2011-01-20 Honda Motor Co Ltd ワークの内径加工方法及び装置
KR101341117B1 (ko) * 2011-10-24 2013-12-11 한국기계연구원 기계적 밀링가공과 방전가공이 융합된 하이브리드 절삭가공장치 및 절삭가공방법

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3405049A (en) * 1964-10-27 1968-10-08 Micromatic Hone Corp Cylindrical bore sizing and finishing device
DE2014690A1 (de) * 1970-03-26 1971-11-04 Emw Elektro Motoren Feinbauwer Nuteneinstechgerät
US4605346A (en) * 1984-06-04 1986-08-12 Schrader Machine & Tool, Inc. Tool wear compensator
JPH04365503A (ja) * 1991-06-13 1992-12-17 Sumitomo Electric Ind Ltd U軸ボーリングヘッド
JPH11254210A (ja) * 1998-03-12 1999-09-21 Nt Engineering Kk 道具位置調整構造および作業機械
DE102005042718A1 (de) * 2005-09-02 2007-03-08 MAPAL Fabrik für Präzisionswerkzeuge Dr. Kress KG Werkzeug zur spanenden Bearbeitung von Werkstückoberflächen
JP2008023596A (ja) * 2006-06-23 2008-02-07 Nissan Motor Co Ltd 微細凹部加工方法
CN101998889B (zh) * 2008-04-11 2012-11-14 本田技研工业株式会社 非圆形孔加工方法和非圆形孔加工装置
DE102010031606A1 (de) * 2010-07-21 2012-01-26 Federal-Mogul Wiesbaden Gmbh Strukturierte Gleitfläche einer Lagerschale

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56119365A (en) * 1980-02-26 1981-09-18 Honda Motor Co Ltd Composite working device of boring and honing
JP2001353655A (ja) * 2000-06-09 2001-12-25 Makino J Kk ホーニング加工工具及びその工具を用いた加工方法
JP2009248292A (ja) * 2008-04-11 2009-10-29 Honda Motor Co Ltd 非円形穴開け加工装置
JP2011011293A (ja) * 2009-07-02 2011-01-20 Honda Motor Co Ltd ワークの内径加工方法及び装置
KR101341117B1 (ko) * 2011-10-24 2013-12-11 한국기계연구원 기계적 밀링가공과 방전가공이 융합된 하이브리드 절삭가공장치 및 절삭가공방법

Also Published As

Publication number Publication date
EP3321021B1 (en) 2023-08-30
EP3321021A1 (en) 2018-05-16
US10391564B2 (en) 2019-08-27
EP3321021A4 (en) 2019-04-17
US20180290216A1 (en) 2018-10-11

Similar Documents

Publication Publication Date Title
WO2017043931A1 (ko) 하이브리드 절삭장치 및 이를 이용한 그루브 절삭방법
US9694473B2 (en) Method and device for machining a rotary tool with a plurality of cutting bodies
CN105729306B (zh) 用于机器人支持的磨料加工方法和设备
JP6337125B2 (ja) ロール研削装置およびロールを研削する方法
KR101934691B1 (ko) 하이브리드 절삭장치 및 이를 이용한 그루브 절삭방법
EP2921259B1 (en) Grinding wheel truing method and grinding machine
EP2960015A1 (en) A machining system having a tool for finishing airfoils
US9849492B2 (en) Skiving tool
US9914177B2 (en) Round hole machining method and round-hole machining device
KR20150032827A (ko) 연삭 가공 장치 및 그 제어 방법
KR101954225B1 (ko) 원심력으로 작동되는 절삭툴을 갖는 절삭헤드 및 이를 포함하는 절삭장치
US9399259B2 (en) Boring device
EP2801441A1 (en) Grinding machine
KR101985684B1 (ko) 공작기계용 호닝공구장치
CN103144033A (zh) 一种带检测功能的砂轮调心装置
KR101116564B1 (ko) 테이블 타입 면취기
KR102470445B1 (ko) 컵형 숫돌을 사용한 렌즈구면 가공방법 및 렌즈구면 가공장치
JP2004223570A (ja) 表面加工方法及び表面加工装置
JP2012187648A (ja) ワーク内面の研削方法
CN211220040U (zh) 一种单轴抛光机构
US20200206864A1 (en) Method and device for fine machining cylindrical workpiece surfaces
JP4678219B2 (ja) 微細凹部加工装置
KR20140101704A (ko) 면취기
KR101535832B1 (ko) 건드릴 연삭장치
KR100373763B1 (ko) 구면 가공장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16844747

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15573991

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE