WO2017043853A1 - 카메라 화각 테스트 장치 - Google Patents

카메라 화각 테스트 장치 Download PDF

Info

Publication number
WO2017043853A1
WO2017043853A1 PCT/KR2016/010004 KR2016010004W WO2017043853A1 WO 2017043853 A1 WO2017043853 A1 WO 2017043853A1 KR 2016010004 W KR2016010004 W KR 2016010004W WO 2017043853 A1 WO2017043853 A1 WO 2017043853A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
width
image sensor
view
angle
Prior art date
Application number
PCT/KR2016/010004
Other languages
English (en)
French (fr)
Inventor
류대상
박경찬
이용수
임형석
Original Assignee
엘지이노텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지이노텍 주식회사 filed Critical 엘지이노텍 주식회사
Priority to CN201680051721.2A priority Critical patent/CN108027552B/zh
Priority to US15/758,628 priority patent/US10349047B2/en
Publication of WO2017043853A1 publication Critical patent/WO2017043853A1/ko
Priority to US16/423,990 priority patent/US10715797B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N17/00Diagnosis, testing or measuring for television systems or their details
    • H04N17/002Diagnosis, testing or measuring for television systems or their details for television cameras
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B43/00Testing correct operation of photographic apparatus or parts thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B37/00Panoramic or wide-screen photography; Photographing extended surfaces, e.g. for surveying; Photographing internal surfaces, e.g. of pipe

Definitions

  • the present invention relates to a camera angle of view test apparatus, and more particularly to a vehicle camera angle of view test apparatus.
  • an angle of view test of a camera is performed by checking whether or not light received at a specific angle is received at some point of an image sensor housed in a camera module.
  • Cameras mounted on a vehicle are generally supplied in the form of a module in which an image sensor and a lens are assembled. If the focus and optical axis between the lens and the image sensor are not precisely aligned, it is difficult to realize a desired high performance camera. That is, when shooting the image with the camera, the light of the subject coming through the lens should be formed on the image sensor along the correct focus and optical axis to produce a clear and clear image, the lens and the image sensor is not aligned properly When assembled in a state, the image is blurred, and as a result, the reliability of the camera is greatly reduced.
  • a vehicle camera has a horizontal angle of view more important than a vertical angle of view
  • the conventional angle of view test device is to measure not only the horizontal but also the vertical angle of view. Therefore, in order to measure the angle of view of a vehicle camera through a conventional angle of view test device, A light source should be provided.
  • the present invention is to solve the conventional problems as described above, an object of the present invention, when setting the light source for the angle of view test of the lens, the number of the light source to prevent physical interference between the light sources It is to provide a reduced camera angle of view test device.
  • the vertical angle of view of the lens is a light source
  • the horizontal angle of view of the lens provides a camera angle of view test apparatus that can test the ultra-wide horizontal angle of view of more than 180 degrees by placing a plurality of light sources. It is.
  • Still another object of the present invention is to provide a camera angle of view test apparatus capable of adjusting the focus of light received by the image sensor by correcting a distortion or tilt of the image sensor while simultaneously measuring an angle of view of the lens.
  • the camera angle of view test apparatus is disposed to face the image sensor, the first width and the second width relatively longer than the first width A first light source having; And a second light source and a third light source respectively disposed on both sides of the first light source along a length direction of the first width with respect to the image sensor.
  • the image sensor of the first width when the image sensor is divided into 0 to 1 field from the center of the light receiving area of the image sensor to the furthest point, the image sensor of the first width
  • the light emitted from the first light source may be received in the 0 to 0.7 field in the longitudinal direction, and the light emitted from the first light source may be received in the 0 to 0.5 field in the longitudinal direction of the second width.
  • the image sensor has a third width and a fourth width shorter than the third width, the direction of the first width and the direction of the third width In response, the direction of the second width may correspond to the direction of the fourth width.
  • the longitudinal direction of the first width and the longitudinal direction of the second width may be perpendicular to each other.
  • the first light source may be located in parallel with the image sensor.
  • the second light source or the third light source may be disposed more than 180 ° along the longitudinal direction of the first width around the image sensor.
  • the first to third light sources may be disposed on the contact surface of the virtual sphere having the same radius.
  • the second light source and the third light source may be formed in a length in the longitudinal direction of the second width is shorter than the length of the second width.
  • the second light source and the third light source may be formed such that the length in the longitudinal direction of the second width is the same as the length of the second width.
  • any one or more of the first to third light sources may include an LED lamp.
  • a camera angle of view test apparatus comprising: a first light source disposed to face an image sensor; And a second light source, a third light source, a fourth light source, and a fifth light source disposed diagonally from the center of the first light source, wherein one of the diagonals of the first light source, the second light source, and the fourth light source includes: One of the virtual semicircles around the image sensor may be in contact with each other, and the other diagonal line of the first light source and the third and fifth light sources may be in contact with another virtual semicircle around the image sensor.
  • each of the second to fifth light sources may be disposed on a virtual semicircle around the image sensor.
  • the present invention can prevent the interference between the light source or the bracket supporting the light source and the light source by reducing the number of light sources.
  • the time required to adjust the distance between the light source and the image sensor can be drastically reduced, which makes it easy to manage, test the angles of view of various cameras as well as specific cameras, and is suitable for ultra wide angle tests that measure horizontal angles of view of more than 180 °.
  • FIG. 1 is a schematic conceptual view of a camera angle of view test apparatus according to a first embodiment of the present invention in a perspective view.
  • FIG. 2 is a schematic plan view of an image sensor disposed in a camera angle of view test apparatus according to a first embodiment of the present invention.
  • FIG. 3 is a schematic conceptual view of a camera angle of view test apparatus according to a first embodiment of the present invention in cross-sectional view.
  • FIG. 4 is a schematic conceptual diagram illustrating a modification of FIG. 3.
  • FIG. 5 is a schematic conceptual view of a camera angle of view test apparatus according to a second embodiment of the present invention in a perspective view.
  • FIG. 6 is a schematic conceptual view of a camera angle of view test apparatus according to a third embodiment of the present invention in a perspective view.
  • FIG. 7 is a diagram illustrating a modification of FIG. 6.
  • first, second, A, B, (a), and (b) may be used. These terms are only for distinguishing the components from other components, and the nature, order or order of the components are not limited by the terms. If a component is listed as being “connected”, “coupled” or “connected” to another component, that component may be directly connected or connected to that other component, but there is another component between each component. It should be understood that may be “connected”, “coupled” or “connected”.
  • FIG. 1 is a schematic conceptual view showing a camera angle of view test apparatus according to a first embodiment of the present invention in a perspective view
  • Figure 3 is a schematic conceptual view showing a camera angle of view test apparatus according to a first embodiment of the present invention in a cross-sectional view 4 is a schematic conceptual diagram illustrating a modification of FIG. 3.
  • the camera angle of view test apparatus may include first to third light sources 210, 220, and 230.
  • the first to third light sources 210, 220, and 230 may include LED lamps.
  • only a part of the first to third light sources 210, 220, and 230 may be configured as LED lamps, or may be formed to include a plurality of LED lamps, respectively.
  • the first light source 210 may be formed to be larger than the combined area of the second light source 220 and the third light source 230, and the first light source 210 may include the second light source 220 and the third light source ( It may be formed to have an area covering 230.
  • FIG. 1 is a view illustrating an arrangement of the image sensor 100 and the first to third light sources 210, 220, and 230. It should be assumed that the lens 10 exists between the first to third light sources 210, 220, 230 and the image sensor 100 (see FIGS. 3 and 4).
  • the size of the image sensor 100 is exaggerated to show the size of the first embodiment of the present invention to assist in understanding.
  • a frame (not shown) or a bracket (not shown) for supporting the first to third light sources 210, 220, and 230 may be provided to provide the first to third light sources 210, 220, and 230.
  • Position can be adjusted.
  • the first light source 210 may be disposed to face the image sensor 100, which will be described later, to irradiate light toward the image sensor 100. In other words, the first light source 210 may be disposed to face the image sensor 100 in parallel with each other. Although the first light source 210 is illustrated in a rectangular or rectangular shape, the first light source 210 may have various shapes without being limited thereto. Referring to FIG. 1, the first light source 210 may have a first width 211 and a second width 212. The first width 211 and the second width 212 may be perpendicular to each other, and the first width 211 may be shorter than the second width 212.
  • the second width 212 is formed longer than the first width 211 so that the first light source 210 can measure the vertical angle of view of the lens 10 to be described later, so that the lens 10 of the lens 10 on the image sensor 100 can be measured. Vertical angle of view can be measured.
  • the second light source 220 and the third light source 230 may be disposed to be symmetrical with respect to both sides of the first light source 210. That is, the second light source 220 and the third light source 230 may be disposed in the longitudinal direction of the first width 211 around the first light source 210. In other words, the second light source 220 and the third light source 230 may be symmetrically disposed on the optical axis of the lens module or the camera module to be tested, and are symmetric about a straight line perpendicular to the upper surface of the image sensor 100. Can be arranged.
  • the second light source 220 and the third light source 230 may be disposed not parallel to the optical axis, and the second light source 220 and the third light source 230 may be inclined with respect to the optical axis.
  • the second light source 220 and the third light source 230 have a smaller size than the first light source 210.
  • the second light source 220 and the third light source 230 are illustrated in a square shape in FIG. 1, the present invention is not limited thereto, and the second light source 220 and the third light source 230 may be used to determine the horizontal angle of view of the lens 10. It may be disposed in the longitudinal direction of the first width 211 of the first light source 210 to be measurable.
  • the horizontal angle of view of the lens that can be measured may vary according to the arrangement of the second light source 220 and the third light source 230.
  • the lens 10 may have an angle of view of 180 ° or more corresponding to the ultra wide angle, and accordingly, the second light source 220 and the third light source to measure the angle of view of the lens 10.
  • the reference numeral 230 may be disposed at 180 ° or more with the user's selection around the image sensor 100 (see FIG. 4).
  • the second light source 220 and the third light source 230 may be disposed in contact with the first light source 210, which may be in accordance with the user's intention to measure the angle of view of the lens.
  • FIG. 2 is a schematic plan view of the image sensor 100 of the camera angle of view test apparatus according to a first embodiment of the present invention.
  • the image sensor 100 of the camera angle of view test apparatus may have a rectangular shape and has a third width 120 and a fourth width 130.
  • the third width 120 and the fourth width 130 may have the same length or different lengths.
  • the third width 120 may be longer than the fourth width 130.
  • the third width 120 may correspond to the first width 211 of the first light source 210 to be parallel to the direction of the first width 211, and the fourth width 130 may be the first light source.
  • Corresponding to the second width 212 of 210 may be formed parallel to the direction of the second width (212).
  • the image sensor 100 is provided with a light receiving area 110 capable of receiving light from a light source on one surface thereof, and from 0 to below, from the center of the light receiving area 110 to the furthest point of the light receiving area 110.
  • the field is divided into one field, and the field is described as including an area (that is, a concentric circle) by the same distance from the center of the light receiving area 110.
  • the first light source 210 is used to measure a vertical angle of view of a lens (not shown), which is irradiated in an area from 0 field to 0.5 field (a) of the image sensor 100. It has a length of second width 212 to receive light.
  • the light receiving area 110 of the image sensor 100 may not receive light in the remaining areas, but in the first embodiment of the present invention, the horizontal angle of view is more important than the vertical angle of view of the lens of the vehicle camera. Therefore, it is not necessary to measure all the vertical angles of view.
  • the image sensor 100 is rectangular, light irradiated to an area of up to 0.5 fields may cover an area in the fourth width 130 direction from the center of the light receiving area 110.
  • the second light source 220 and the third light source 230 are used to measure the horizontal angle of view of the lens, and the first light source 210 having the first width 211 does not irradiate the lens 10 with light. It may be placed in a poor location. In other words, the second light source 220 and the third light source 230 are disposed symmetrically about the optical axis according to a user's selection, or are disposed along the longitudinal direction of the first width 211 of the first light source 210. The wider angle of view of the second light source 220 and the third light source 230 may be measured with respect to the lens 10.
  • the horizontal angle of view may be measured from the 0 field to the 0.7 field (b) in the light receiving area 110 of the image sensor 100 with the light emitted from the second light source 220 and the third light source 230.
  • a wider area (0 to 0.5 fields) is measured than the vertical angle of view of the lens.
  • light from the first to third light sources 210, 220, and 230 may be received from the center of the light receiving region 110 in the longitudinal region of the third width 120, wherein the light is It may cover up to a fourth width 130 corresponding to the vertical angle of view.
  • light may not be received in the remaining areas of the light receiving area 110 except for the 0 to 0.7 fields.
  • the first to third light sources 210, 220, and 230 may be located on a single spherical surface. That is, the distances from each of the first to third light sources 210, 220, and 230 to the lens 10 are all equal to L, and the lenses 10 are respectively from the first to third light sources 210, 220, and 230.
  • the radius of the sphere may be formed to meet each other at the center of the sphere having the first to third light sources 210, 220, and 230 in contact with each other.
  • the lens 10 of the first to third light sources 210, 220, 230 with respect to the straight line formed at the shortest distance from the center of the image sensor 100 to the first to third light sources 210, 220, 230.
  • the first to third light sources 210, 220, and 230 may be disposed to form a repair line on the surface facing the light source.
  • the second light source 220 and the third light source 230 may be arranged according to an angle of view to be measured according to a user's selection.
  • the second light source 220 and the third light source 230 may be disposed to be extended at least 180 ° from the center of the virtual sphere. That is, reference numeral ⁇ shown in FIG. 4 represents an angle of 180 ° or more.
  • FIG. 5 is a schematic conceptual view of a camera angle of view test apparatus according to a second embodiment of the present invention in a perspective view.
  • the light source 300 includes first to third light sources 310, 320, and 330, and the second light source 320 and the second light source 320.
  • the third light source 330 is disposed in the longitudinal direction of the first width 311 of the first light source 310, and has a length in the longitudinal direction of the second width 312 of the second light source 320 and the third light source 330. May be equal to the length of the second width 312 of the first light source 310.
  • the second light source 320 and the third light source 330 are disposed in contact with both sides in the direction of the first width 311 of the first light source 310, the present invention is not limited thereto. Accordingly, as in the first exemplary embodiment, the second light source 320 and the third light source 330 may be spaced apart from the first light source 310 to measure the horizontal angle of view of the lens.
  • the lens is formed to have an angle of view corresponding to the ultra-wide angle of more than 180 °, when measuring the angle of view of the lens, it may be arranged to be opened by more than 180 ° around the image sensor (not shown).
  • the image sensor not shown
  • FIG. 6 is a schematic conceptual view of a camera angle of view test apparatus according to a third embodiment of the present invention in a perspective view
  • FIG. 7 is a view showing a modification of FIG. 6.
  • the light source 400 may include first to fifth light sources 410, 420, 430, 440, and 450, and the second to fifth light sources 420, 430, 440, and 450 may be
  • the first light source 410 may be disposed in a radially unfolded form. That is, the second to fifth light sources 420, 430, 440, and 450 are formed on a plane including a straight line that is formed in a rectangular shape and formed diagonally from the center of the first light source 410. The center of can be located. For example, one diagonal line of the first light source 410, the second light source 420, and the fourth light source 440 may be in contact with one virtual semi-circle around the image sensor 100.
  • another diagonal line of the first light source 410, the third light source 430, and the fifth light source 450 may be in contact with another virtual semi-circle around the image sensor 100.
  • other light sources may be further disposed according to a user's intention.
  • a plurality of second to fifth light sources 420, 430, 440, and 450 may be formed. That is, a plurality of second to fifth light sources 420, 430, 440, and 450 may be disposed on a virtual semicircle around the image sensor 100, respectively.
  • the plurality of second light sources 420 and the plurality of fourth light sources 440 are disposed on one semicircle around the image sensor 100, and the plurality of third light sources 430 and the plurality of fifth light sources are arranged.
  • 450 is disposed on another semicircle around the image sensor 100, the number of light sources is not limited as long as it is arranged to measure the angle of view according to a user's intention.
  • the first to third embodiments of the camera angle of view test apparatus of the present invention mentioned above not only measures the angle of view of the camera, but also performs a function of focusing light received by the image sensor 100. That is, when a twist or tilt phenomenon of the image sensor 100 occurs in the process of assembling the camera module, the first light sources 210 and 310 arranged to be perpendicular to the optical axis of the image sensor 100 are irradiated. It is possible to precisely focus the received light by adjusting the position of the image sensor 100 according to the light.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Studio Devices (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

본 발명은 카메라 화각 테스트 장치에 관한 것으로, 본 발명은 이미지 센서와 대향하도록 배치되며, 제1 폭 및 상기 제1 폭 보다 긴 제2 폭을 갖는 제1 광원; 상기 이미지 센서를 중심으로 하여, 상기 제1 폭의 방향으로 양측에 각각 배치되는 제2 광원 및 제3 광원을 포함할 수 있다. 본 발명은 광원의 개수를 줄임으로써 광원 또는 상기 광원을 지지하는 브라켓의 간섭을 방지할 수 있다. 그리고 광원을 절감하여 카메라의 화각을 측정하는 것이 가능하므로 카메라 화각 테스트 장치의 제작 비용을 줄일 수 있다.

Description

카메라 화각 테스트 장치
본 발명은 카메라 화각 테스트 장치에 관한 것으로, 더욱 자세하게는 차량용 카메라 화각 테스트 장치에 관한 것이다.
일반적으로 카메라의 화각 테스트는 카메라 모듈에 수용되어 있는 이미지 센서의 어느 일부 지점에서 특정각도로 입사되는 광의 수신 여부를 확인하여 이루어진다.
차량에 장착되는 카메라는 일반적으로 이미지센서와 렌즈 등이 조립된 하나의 모듈 형태로 공급되는데, 이때 렌즈와 이미지센서 간의 초점과 광축이 정밀하게 정렬되지 못하면 원하는 고성능 카메라의 기능을 구현하기가 어렵다. 즉, 카메라로 화상을 촬영할 때, 렌즈를 통해 들어온 피사체의 빛이 이미지센서 상에 정확한 초점과 광축을 따라 맺혀야 깨끗하고 선명한 화상을 찍어낼 수 있게 되는데, 상기 렌즈와 이미지센서가 제대로 정렬되지 못한 상태로 조립이 되면 화상이 흐려지게 되고, 결과적으로 카메라의 신뢰도가 크게 떨어지게 된다.
또한 차량용 카메라는 그 특성상 수직적인 화각보다 수평적인 화각이 더욱 중요하며, 종래의 화각 테스트 장치는 수평 뿐만 아니라 수직 화각까지 측정하기 위한 것이므로 종래의 화각 테스트 장치를 통해 차량용 카메라의 화각을 측정하기 위해서는 수많은 광원을 구비하여야 하였다.
더불어 최근에는 넓은 시야를 확인할 수 있도록 화각이 180°가 넘는 초광각 카메라가 개발되고 있는데, 이를 적용한 차량용 카메라의 화각을 측정하기에는 종래의 화각 테스트 장치로는 부족함이 있다.
본 발명은 상기한 바와 같은 종래의 문제점을 해결하기 위한 것으로서, 본 발명의 목적은, 렌즈의 화각 테스트를 하기 위해 광원을 세팅하는 경우, 상기 광원끼리 서로 물리적인 간섭을 방지하기 위해 광원의 개수를 줄인 카메라 화각 테스트 장치를 제공하는 것이다.
본 발명의 다른 목적은, 렌즈의 수직 화각은 하나의 광원으로, 상기 렌즈의 수평 화각은 복수 개의 광원을 배치하여 화각이 180°를 넘는 초광각적인 수평 화각을 테스트할 수 있는 카메라 화각 테스트 장치를 제공하는 것이다.
본 발명의 또 다른 목적은, 렌즈의 화각을 측정함과 동시에 이미지 센서의 비틀어짐 또는 틸트(Tilt) 현상을 바로 잡아 이미지 센서에 수신되는 광의 초점을 조절할 수 있는 카메라 화각 테스트 장치를 제공하는 것이다.
상기한 바와 같은 본 발명의 목적을 달성하기 위하여, 본 발명의 일실시예에 따른 카메라 화각 테스트 장치는 이미지 센서와 대향하도록 배치되며, 제1 폭 및 상기 제1 폭 보다 상대적으로 긴 제2 폭을 갖는 제1 광원; 및 상기 이미지 센서를 중심으로 하여, 상기 제1 폭의 길이방향을 따라 상기 제1 광원의 양측에 각각 배치되는 제2 광원 및 제3 광원을 포함할 수 있다.
본 발명의 일실시예에 따른 카메라 화각 테스트 장치에 있어서, 상기 이미지 센서의 광수신 영역의 중심부터 가장 먼 지점까지 0 내지 1 필드(Field)로 구분하였을 때, 상기 이미지 센서는 상기 제1 폭의 길이방향으로 0 내지 0.7필드에서 상기 제1 광원으로부터 출사되는 광을 수신하고, 상기 제2 폭의 길이방향으로 0 내지 0.5 필드에서 상기 제1 광원으로부터 출사되는 광을 수신할 수 있다.
본 발명의 일실시예에 따른 카메라 화각 테스트 장치에 있어서, 상기 이미지 센서는, 제3 폭 및 상기 제3 폭보다 짧은 제4 폭을 가지며, 상기 제1 폭의 방향은 상기 제3 폭의 방향과 대응하고, 상기 제2 폭의 방향은 상기 제4폭의 방향과 대응할 수 있다.
본 발명의 일실시예에 따른 카메라 화각 테스트 장치에 있어서, 상기 제1 폭의 길이방향과 상기 제2 폭의 길이방향은 서로 직교할 수 있다.
본 발명의 일실시예에 따른 카메라 화각 테스트 장치에 있어서, 상기 제1 광원은 상기 이미지 센서와 평행하게 위치할 수 있다.
본 발명의 일실시예에 따른 카메라 화각 테스트 장치에 있어서, 상기 제2 광원 또는 제3 광원은 상기 이미지 센서를 중심으로 제1 폭의 길이방향을 따라 180°이상으로 배치될 수 있다.
본 발명의 일실시예에 따른 카메라 화각 테스트 장치에 있어서, 상기 제1 내지 제3 광원은 반지름이 동일한 가상의 구면의 접면에 배치될 수 있다.
본 발명의 일실시예에 따른 카메라 화각 테스트 장치에 있어서, 상기 제2 광원 및 제3 광원은 상기 제2 폭의 길이방향의 길이가 상기 제2 폭의 길이보다 짧게 형성될 수 있다.
본 발명의 일실시예에 따른 카메라 화각 테스트 장치에 있어서, 상기 제2 광원 및 제3 광원은 상기 제2 폭의 길이방향의 길이가 상기 제2 폭의 길이와 동일하게 형성될 수 있다.
본 발명의 일실시예에 따른 카메라 화각 테스트 장치에 있어서, 상기 제1 내지 제3 광원 중 어느 하나 이상은 LED 램프를 포함할 수 있다.
본 발명의 일실시예에 따른 카메라 화각 테스트 장치에 있어서, 이미지 센서와 대향하도록 배치되는 제1 광원; 및 상기 제1 광원의 중심으로부터 대각선방향으로 배치되는 제2 광원, 제3광원, 제4광원 및 제5광원을 포함하고, 상기 제1 광원의 어느 한 대각선과 상기 제2 광원 및 제4 광원은 상기 이미지 센서를 중심으로 하는 어느 한 가상의 반원상에 접하며, 상기 제1 광원의 다른 대각선과 상기 제3 광원 및 제5 광원은 상기 이미지 센서를 중심으로 하는 다른 가상의 반원상에 접할 수 있다.
본 발명의 일실시예에 따른 카메라 화각 테스트 장치에 있어서, 상기 제2 내지 제5광원은 각각 복수 개가 이미지 센서를 중심으로 하는 가상의 반원상에 배치될 수 있다.
본 발명은 광원의 개수를 줄임으로써 광원 또는 상기 광원을 지지하는 브라켓과 상기 광원 사이의 간섭을 방지할 수 있다. 그리고 광원을 절감하여 카메라의 화각을 측정하는 것이 가능하므로 카메라 화각 테스트 장치의 제작 비용을 줄일 수 있다.
또한 광원과 이미지 센서와의 거리를 조절하는 시간을 대폭 줄일 수 있어 관리가 용이하고, 특정 카메라 뿐만 아닌 다양한 카메라의 화각을 테스트할 수 있으며, 180°이상의 수평 화각을 측정하는 초광각 테스트에 적합하다.
도 1은 본 발명의 제1 실시예에 따른 카메라 화각 테스트 장치를 사시도 형태로 나타낸 개략적인 개념도이다.
도 2는 본 발명의 제1 실시예에 따른 카메라 화각 테스트 장치에 배치되는 이미지 센서를 나타낸 개략적인 평면도이다.
도 3은 본 발명의 제1 실시예에 따른 카메라 화각 테스트 장치를 단면도 형태로 나타낸 개략적인 개념도이다.
도 4는 도 3의 변형예를 나타낸 개략적인 개념도이다.
도 5는 본 발명의 제2 실시예에 따른 카메라 화각 테스트 장치를 사시도 형태로 나타낸 개략적인 개념도이다.
도 6은 본 발명의 제3 실시예에 따른 카메라 화각 테스트 장치를 사시도 형태로 나타낸 개략적인 개념도이다.
도 7은 도 6의 변형예를 나타낸 도면이다.
이하, 본 발명의 일부 실시예들을 예시적인 도면을 통해 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명의 실시예를 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 실시예에 대한 이해를 방해한다고 판단되는 경우에는 그 상세한 설명은 생략한다.
또한, 본 발명의 실시예의 구성 요소를 설명하는 데 있어서, 제1 , 제2 , A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다. 어떤 구성 요소가 다른 구성요소에 “연결”, “결합” 또는 “접속”된다고 기재된 경우, 그 구성 요소는 그 다른 구성요소에 직접적으로 연결되거나 접속될 수 있지만, 각 구성 요소 사이에 또 다른 구성 요소가 “연결”, “결합” 또는 “접속”될 수도 있다고 이해되어야 할 것이다.
<제1 실시예>
이하에서는, 도면을 참조하여 본 발명의 제1 실시예에 따른 카메라 화각 테스트 장치의 구성을 설명한다.
도 1은 본 발명의 제1 실시예에 따른 카메라 화각 테스트 장치를 사시도 형태로 나타낸 개략적인 개념도이고, 도 3은 본 발명의 제1 실시예에 따른 카메라 화각 테스트 장치를 단면도 형태로 나타낸 개략적인 개념도이며, 도 4는 도 3의 변형예를 나타낸 개략적인 개념도이다.
도 1을 참조하면, 본 발명의 제1 실시예에 따른 카메라 화각 테스트 장치는 제1 내지 제3 광원(210, 220, 230)을 포함할 수 있다. 제1 내지 제3 광원(210, 220, 230)은 LED 램프를 포함할 수 있다. 예컨대, 제1 내지 제3 광원(210, 220, 230)은 일부만 LED 램프로 구성되거나, 각각 복수 개의 LED 램프를 포함하여 형성될 수 있다. 그리고, 제1 광원(210)은 제2 광원(220) 및 제3 광원(230)을 합친 면적보다도 크게 형성될 수 있고, 제1 광원(210)이 제2 광원(220) 및 제3 광원(230)을 커버하는 면적을 가지도록 형성될 수도 있다. 아울러, 도면에는 도시하지 않았으나, 제1 내지 제3 광원(210, 220, 230)과 렌즈(10) 사이에는 미리 정해진 형상의 패턴이 형성된 구조체가 마련되고, 상기 구조체에 의하여 이미지 센서(100)에 수광되는 빛이 상기 패턴을 가짐으로써 이미지 센서(100)가 빛을 감지하는 것을 테스트 할 수 있다. 또한, 도 1에는 카메라 모듈의 구성 중 렌즈(10)를 도시하지 않았으나, 도 1은 이미지 센서(100)와 제1 내지 제3 광원(210, 220, 230)의 배치 모습을 나타내기 위한 것으로, 렌즈(10)가 제1 내지 제3 광원(210, 220, 230)과 이미지 센서(100) 사이에 존재한다고 가정하여야 할 것이다(도 3 및 도 4 참조). 또한 이미지 센서(100)의 크기는 본 발명의 제1 실시예의 이해를 돕기 위해 그 크기를 과장하여 도시한 것으로 이해되어야 할 것이다. 또한, 도면에 도시하지 않았지만, 제1 내지 제3 광원(210, 220, 230)을 지지하는 프레임(미도시) 또는 브라켓(미도시) 등이 마련되어 제1 내지 제3 광원(210, 220, 230)의 위치를 조정할 수 있다.
도 3 내지 도 4를 참조하면, 제1 광원(210)은 후술하는 이미지 센서(100)와 대향하도록 배치되어 이미지 센서(100)를 향해 광을 조사할 수 있다. 다시 말하면, 제1 광원(210)은 이미지 센서(100)와 서로 마주보며 평행하게 배치될 수 있다. 제1 광원(210)은 장방형 또는 직사각 형상으로 도시되었으나, 이에 한정하지 않고 다양한 형상을 가질 수도 있다. 도 1을 참조하면, 제1 광원(210)은 제1 폭(211)과 제2 폭(212)을 가질 수 있다. 제1 폭(211)과 제2 폭(212)은 서로 직교할 수 있으며, 제1 폭(211)은 제2 폭(212)보다 짧게 형성될 수 있다. 즉, 제1 광원(210)이 후술하는 렌즈(10)의 수직 화각을 측정가능하도록 제2 폭(212)은 제1 폭(211)보다 길게 형성되어 이미지 센서(100)상에서 렌즈(10)의 수직 화각을 측정할 수 있다.
제2 광원(220)과 제3 광원(230)은 제1 광원(210)의 양측에 서로 대칭되도록 배치될 수 있다. 즉, 제2 광원(220)과 제3 광원(230)은 제1 광원(210)을 중심으로 제1 폭(211)의 길이방향으로 배치될 수 있다. 다시 말하면, 제2 광원(220)과 제3 광원(230)은 테스트 하고자 하는 렌즈 모듈 또는 카메라 모듈의 광축에 대칭되게 배치될 수 있고, 이미지 센서(100)의 상면과 수직한 직선을 중심으로 대칭되게 배치될 수 있다. 따라서 제2 광원(220)과 제3 광원(230)은 광축과 평행하지 않도록 배치될 수 있으며, 제2 광원(220)과 제3 광원(230)은 광축에 대하여 기울어져 배치될 수 있다. 제2 광원(220)과 제3 광원(230)은 제1 광원(210)에 비해 상대적으로 작은 크기를 갖는다. 도 1에는 제2 광원(220)과 제3 광원(230)이 정사각 형상으로 도시되었으나, 이에 한정하지 않으며, 제2 광원(220)과 제3 광원(230)은 렌즈(10)의 수평 화각을 측정가능하도록 제1 광원(210)의 제1 폭(211)의 길이방향으로 배치될 수 있다. 더 자세하게는 제2 광원(220)과 제3 광원(230)의 배치 모습에 따라 측정할 수 있는 상기 렌즈의 수평 화각이 달라질 수 있다. 예컨대, 본 발명의 제1 실시예에서는 렌즈(10)가 초광각에 해당하는 180°이상의 화각을 가질 수 있고, 그에 따라 렌즈(10)의 화각을 측정하기 위해 제2 광원(220)과 제3 광원(230)도 이미지 센서(100)를 중심으로 180°이상(α)으로 사용자의 선택에 따라 배치될 수 있다(도 4 참조). 또한 제2 광원(220)과 제3 광원(230)은 제1 광원(210)과 접하게 배치될 수 있고, 이는 렌즈의 화각을 측정하고자 하는 사용자의 의도에 따를 수 있다.
도 2는 본 발명의 제1 실시예에 따른 카메라 화각 테스트 장치의 이미지 센서(100)를 나타낸 개략적인 평면도이다.
도 2를 참조하면, 본 발명의 제1 실시예에 따른 카메라 화각 테스트 장치의 이미지 센서(100)는 직사각 형상일 수 있으며, 제3 폭(120)과 제4 폭(130)을 갖는다. 이때, 제3 폭(120)과 제4 폭(130)은 서로 같은 길이 또는 서로 다른 길이를 가질 수 있다. 예컨대, 제3 폭(120)은 제4 폭(130)보다 길게 형성될 수 있다. 또한 제3 폭(120)은 제1 광원(210)의 제1 폭(211)과 대응하여 제1 폭(211)의 방향과 평행하게 형성될 수 있고, 제4 폭(130)은 제1 광원(210)의 제2 폭(212)과 대응하여 제2 폭(212)의 방향과 평행하게 형성될 수 있다. 이미지 센서(100)는 일면에 광원으로부터 광을 수신할 수 있는 광수신 영역(110)이 마련되며, 이하에서는 광수신 영역(110)의 중심으로부터 광수신 영역(110)의 가장 먼 지점까지 0 ∼ 1필드(Field)로 구분하고, 상기 필드는 광수신 영역(110) 중심으로부터 같은 거리만큼의 영역(즉, 동심원)을 포함하는 것으로 설명한다.
도 1과 도 2를 참조하면, 제1 광원(210)은 렌즈(미도시)의 수직 화각을 측정하기 위한 것으로, 이미지 센서(100)의 0필드부터 0.5필드(a)까지의 영역에서 조사하는 광을 수신하도록 제2 폭(212)의 길이를 갖는다. 물론 이미지 센서(100)의 광수신 영역(110) 중 나머지 영역에서도 광을 수신하지 못하는 것은 아니지만, 본 발명의 제1 실시예는 차량용 카메라의 특성상, 상기 렌즈의 수직 화각보다 수평 화각이 더욱 중요하므로, 수직 화각을 모두 측정할 필요가 없다. 그러나 이미지 센서(100)가 직사각형일 경우 0.5필드까지의 영역에 조사하는 광이 광수신 영역(110)의 중심으로부터 제4 폭(130)방향의 영역을 커버할 수 있다.
한편 제2 광원(220)과 제3 광원(230)은 상기 렌즈의 수평 화각을 측정하기 위한 것으로, 제1 폭(211)을 갖는 제1 광원(210)이 렌즈(10)에 광을 조사하지 못하는 위치에 배치될 수 있다. 다시 말하면, 제2 광원(220)과 제3 광원(230)은 사용자의 선택에 따라 광축을 중심으로 대칭되게 배치되거나, 제1 광원(210)의 제1 폭(211)의 길이방향을 따라 배치될 수 있으며, 렌즈(10)를 중심으로 제2 광원(220)과 제3 광원(230)의 배치 각도가 넓을수록 더 넓은 수평 화각을 측정할 수 있다. 이때, 제2 광원(220)과 제3 광원(230)에서 조사하는 광을 이미지 센서(100)의 광수신 영역(110)에서는 0필드부터 0.7필드(b)까지에서 수평 화각을 측정할 수 있다. 상기에서 언급한 것처럼, 본 발명의 제1 실시예는 차량용 카메라의 특성상, 상기 렌즈의 수직 화각보다 수평 화각이 중요하므로, 상기 수직 화각을 측정하는 영역(0 내지 0.5필드)보다 더 넓은 영역(0 내지 0.7필드)에서 측정할 수 있다. 다시 말하면, 광수신 영역(110)의 중심으로부터 제3 폭(120)의 길이방향의 영역에서 제1 내지 제3 광원(210, 220, 230)으로부터의 광을 수신할 수 있고, 이때 상기 광은 수직 화각에 해당하는 제4 폭(130)까지 커버할 수 있다. 물론, 광수신 영역(110) 중 0 내지 0.7필드를 제외한 나머지 영역에서 광을 수신할 수 없는 것은 아니다.
도 3과 도 4를 참조하면, 본 발명의 제1 실시예에 따른 카메라 화각 테스트 장치는 제1 내지 제3 광원(210, 220, 230)은 하나의 구면상에 접면으로 위치할 수 있다. 즉, 제1 내지 제3 광원(210, 220, 230) 각각으로부터 렌즈(10)까지의 거리가 ℓ로 모두 동일하고, 제1 내지 제3 광원(210, 220, 230) 각각으로부터 렌즈(10)까지 가장 가까운 거리를 연장하면 제1 내지 제3 광원(210, 220, 230)을 접면으로 하는 구의 중심에서 서로 만나 상기 구의 반지름을 형성할 수 있다. 또한 이미지 센서(100)의 중심으로부터 제1 내지 제3 광원(210, 220, 230)까지 최단거리로 형성되는 직선에 대하여, 제1 내지 제3 광원(210, 220, 230)의 렌즈(10)를 바라보는 면에 수선이 형성되도록 제1 내지 제3 광원(210, 220, 230)는 배치될 수 있다.
그리고 제2 광원(220)과 제3 광원(230)은 사용자의 선택에 따라 측정하고자 하는 화각에 맞추어 배치가 가능하다. 예컨대, 도 4에 도시된 것처럼, 제2 광원(220)과 제3 광원(230)은 상기 가상의 구의 중심으로부터 180°이상 벌어져서 배치될 수 있다. 즉, 도 4에 도시된 미설명 부호 α는 180°이상의 각도를 나타낸다.
<제2 실시예>
이하에서는, 도면을 참조하여 본 발명의 제2 실시예에 따른 카메라 화각 테스트 장치의 구성을 설명한다.
도 5는 본 발명의 제2 실시예에 따른 카메라 화각 테스트 장치의 사시도 형태로 나타낸 개략적인 개념도이다.
도 5를 참조하면, 본 발명의 제2 실시예에 따른 카메라 화각 테스트 장치는 광원(300)이 제1 내지 제3 광원(310, 320, 330)을 포함하고, 제2 광원(320)과 제3 광원(330)이 제1 광원(310)의 제1 폭(311)의 길이방향으로 배치되되, 제2 광원(320)과 제3 광원(330)의 제2 폭(312) 길이방향의 길이는 제1 광원(310)의 제2 폭(312)의 길이와 동일할 수 있다. 이는 렌즈(미도시)의 수평 화각 뿐만 아니라 수직 화각까지도 측정하기 위한 것으로, 제2 광원(320)과 제3 광원(330)의 제2 폭(312) 방향의 길이를 제외한 나머지는 제1 실시예와 동일하다. 또한 도 5에는 제2 광원(320)과 제3 광원(330)이 제1 광원(310)의 제1 폭(311) 방향으로 양측에 접하여 배치된 것으로 도시되었으나, 이에 한정하지 않고 사용자의 선택에 따라 제1 실시예와 같이 제2 광원(320)과 제3 광원(330)이 상기 렌즈의 수평 화각 측정을 위해 제1 광원(310)과 이격되어 배치되는 것도 가능하다. 아울러 상기 렌즈가 180°이상의 초광각에 해당하는 화각을 갖도록 형성되어 상기 렌즈의 화각을 측정할 때, 이미지 센서(미도시)를 중심으로 180°이상 벌어져서 배치될 수 있다. 이하, 제2 실시예에 관한 다른 내용은 제1 실시예를 통해 유추될 수 있으므로 생략하기로 한다.
<제3 실시예>
이하에서는, 도면을 참조하여 본 발명의 제3 실시예에 따른 카메라 화각 테스트 장치의 구성을 설명한다.
도 6은 본 발명의 제3 실시예에 따른 카메라 화각 테스트 장치의 사시도 형태로 나타낸 개략적인 개념도이고, 도 7은 도 6의 변형예를 나타낸 도면이다.
도 6을 참조하면, 광원(400)은 제1 내지 제5 광원(410, 420, 430, 440, 450)을 포함할 수 있고, 제2 내지 제5 광원(420, 430, 440, 450)은 제1 광원(410)을 중심으로 하고 방사상으로 펼쳐진 형태로 배치될 수 있다. 즉, 제1 광원(410)이 사각으로 형성되고, 제1 광원(410)의 중심으로부터 대각선 방향으로 형성되는 직선을 포함하는 평면상에 제2 내지 제5 광원(420, 430, 440, 450)의 중심이 위치할 수 있다. 예컨대, 제1 광원(410)의 어느 한 대각선과 제2 광원(420) 및 제4 광원(440)은 이미지 센서(100)를 중심으로 하는 어느 한 가상의 반원상에 접할 수 있다. 그리고, 제1 광원(410)의 다른 대각선과 제3 광원(430) 및 제5 광원(450)은 이미지 센서(100)를 중심으로 하는 다른 가상의 반원상에 접할 수 있다. 또한, 도면에 도시하지 않았지만, 본 발명의 제3 실시예에서 제2 내지 제5 광원(420, 430, 440, 450) 외에도 사용자의 의도에 따라 기타의 광원이 더 배치될 수 있음은 물론이다.
도 7을 참조하면, 제2 내지 제5 광원(420, 430, 440, 450)은 각각 복수 개가 형성될 수 있다. 즉, 제2 내지 제5광원(420, 430, 440, 450)은 각각 복수 개가 이미지 센서(100)를 중심으로 하는 가상의 반원상에 배치될 수 있다. 이때, 복수 개의 제2 광원(420)과 복수 개의 제4광원(440)이 이미지 센서(100)를 중심으로 하나의 반원상에 배치되고, 복수 개의 제3 광원(430)과 복수 개의 제5 광원(450)이 이미지 센서(100)를 중심으로 다른 반원상에 배치되었으나, 사용자의 의도에 따라 화각을 측청하기 위한 배치라면 광원의 개수를 제한하지 않는다.
상기에서 언급한 본 발명의 카메라 화각 테스트 장치의 제1 내지 제3 실시예는 카메라의 화각을 측정하는 것만이 아니라, 이에 더하여 이미지 센서(100)에 수신되는 광의 초점을 맞추는 기능도 수행한다. 즉, 카메라 모듈을 조립하는 과정에서 이미지 센서(100)의 비틀어짐 또는 틸트(Tilt) 현상이 발생하면, 이미지 센서(100)의 광축에 수직하도록 배열된 제1 광원(210, 310)이 조사하는 광에 따라 이미지 센서(100)의 위치를 조정하여 수신되는 광의 초점을 정확히 맞추는 것이 가능하다.
이상에서 설명한 것은 본 발명에 따른 카메라 화각 테스트 장치를 실시하기 위한 실시예에 불과한 것으로서, 본 발명은 상기한 실시예에 한정되지 않고, 이하 특허청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 누구든지 다양하게 변경하여 실시가능한 범위까지 본 발명의 기술적 정신이 있다고 할 것이다.

Claims (12)

  1. 이미지 센서와 대향하도록 배치되며, 제1 폭 및 상기 제1 폭 보다 상대적으로 긴 제2 폭을 갖는 제1 광원;
    상기 이미지 센서를 중심으로 하여, 상기 제1 폭의 길이방향을 따라 상기 제1 광원의 양측에 각각 배치되는 제2 광원 및 제3 광원을 포함하는 카메라 화각 테스트 장치.
  2. 제1항에 있어서,
    상기 이미지 센서의 광수신 영역의 중심부터 가장 먼 지점까지 0 내지 1 필드(Field)로 구분하였을 때,
    상기 이미지 센서는 상기 제1 폭의 길이방향으로 0 내지 0.7필드에서 상기 제1 광원으로부터 출사되는 광을 수신하고, 상기 제2 폭의 길이방향으로 0 내지 0.5 필드에서 상기 제1 광원으로부터 출사되는 광을 수신하는 카메라 화각 테스트 장치.
  3. 제2항에 있어서,
    상기 이미지 센서는, 제3 폭 및 상기 제3 폭보다 상대적으로 짧은 제4 폭을 가지며,
    상기 제1 폭의 방향은 상기 제3 폭의 방향과 대응하고, 상기 제2 폭의 방향은 상기 제4폭의 방향과 대응하는 카메라 화각 테스트 장치.
  4. 제1항에 있어서,
    상기 제1 폭의 길이방향과 상기 제2 폭의 길이방향은 서로 직교하는 카메라 화각 테스트 장치.
  5. 제1항에 있어서,
    상기 제1 광원은 상기 이미지 센서와 평행하게 위치하는 카메라 화각 테스트 장치.
  6. 제1항에 있어서,
    상기 제2 광원 또는 제3 광원은 상기 이미지 센서를 중심으로 제1 폭의 길이방향을 따라 180°이상으로 배치되는 카메라 화각 테스트 장치.
  7. 제1항에 있어서,
    상기 제2 광원 및 제3 광원은 반지름이 동일한 가상의 구면의 접면에 배치된 카메라 화각 테스트 장치.
  8. 제1항에 있어서,
    상기 제2 광원 및 제3 광원은 상기 제2 폭의 길이방향의 길이가 상기 제2 폭의 길이보다 짧게 형성된 카메라 화각 테스트 장치.
  9. 제1항에 있어서,
    상기 제2 광원 및 제3 광원은 상기 제2 폭의 길이방향의 길이가 상기 제2 폭의 길이와 동일하게 형성된 카메라 화각 테스트 장치.
  10. 제1항에 있어서,
    상기 제1 내지 제3 광원 중 어느 하나 이상은 LED 램프를 포함하는 카메라 화각 테스트 장치.
  11. 이미지 센서와 대향하도록 배치되는 제1 광원;
    상기 제1 광원의 중심으로부터 대각선방향으로 배치되는 제2 광원, 제3광원, 제4광원 및 제5광원을 포함하고,
    상기 제1 광원의 어느 한 대각선과 상기 제2 광원 및 제4 광원은 상기 이미지 센서를 중심으로 하는 어느 한 가상의 반원상에 접하며,
    상기 제1 광원의 다른 대각선과 상기 제3 광원 및 제5 광원은 상기 이미지 센서를 중심으로 하는 다른 가상의 반원상에 접하는 카메라 화각 테스트 장치.
  12. 제11항에 있어서,
    상기 제2 내지 제5광원은 각각 복수 개가 이미지 센서를 중심으로 하는 가상의 반원상에 배치되는 카메라 화각 테스트 장치.
PCT/KR2016/010004 2015-09-08 2016-09-07 카메라 화각 테스트 장치 WO2017043853A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680051721.2A CN108027552B (zh) 2015-09-08 2016-09-07 用于测定相机的视角的装置
US15/758,628 US10349047B2 (en) 2015-09-08 2016-09-07 Device for testing angle of view of camera
US16/423,990 US10715797B2 (en) 2015-09-08 2019-05-28 Device for testing angle of view of camera

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150127250A KR102384591B1 (ko) 2015-09-08 2015-09-08 카메라 화각 테스트 장치
KR10-2015-0127250 2015-09-08

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/758,628 A-371-Of-International US10349047B2 (en) 2015-09-08 2016-09-07 Device for testing angle of view of camera
US16/423,990 Continuation US10715797B2 (en) 2015-09-08 2019-05-28 Device for testing angle of view of camera

Publications (1)

Publication Number Publication Date
WO2017043853A1 true WO2017043853A1 (ko) 2017-03-16

Family

ID=58240882

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/010004 WO2017043853A1 (ko) 2015-09-08 2016-09-07 카메라 화각 테스트 장치

Country Status (4)

Country Link
US (2) US10349047B2 (ko)
KR (1) KR102384591B1 (ko)
CN (1) CN108027552B (ko)
WO (1) WO2017043853A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102384591B1 (ko) * 2015-09-08 2022-04-08 엘지이노텍 주식회사 카메라 화각 테스트 장치
TWM574226U (zh) * 2018-09-04 2019-02-11 九驊科技股份有限公司 一種光學檢測裝置
CN111678677B (zh) * 2020-07-13 2022-08-05 深圳惠牛科技有限公司 一种测量装置和光学参数测量方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100780190B1 (ko) * 2006-07-20 2007-11-27 삼성전기주식회사 화각 측정장치 및 화각 측정방법
KR100808019B1 (ko) * 2006-10-20 2008-02-28 삼성전기주식회사 테스트 장치 및 그 제어 방법
KR20100134326A (ko) * 2009-06-15 2010-12-23 박윤상 카메라의 이미지센서 테스트장치
US20140240518A1 (en) * 2013-02-25 2014-08-28 Teradyne, Inc. Rotatable camera module testing system
JP2015099041A (ja) * 2013-11-18 2015-05-28 リーダー電子株式会社 カメラの検査装置及び該検査装置を用いたカメラの検査方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2827680B1 (fr) * 2001-07-20 2003-10-10 Immervision Internat Pte Ltd Procede de capture d'une image panoramique au moyen d'un capteur d'image de forme rectangulaire
JP3624288B2 (ja) * 2001-09-17 2005-03-02 株式会社日立製作所 店舗管理システム
CN100545746C (zh) * 2006-12-01 2009-09-30 鸿富锦精密工业(深圳)有限公司 光学视角测量系统及其测量方法
CN101673043B (zh) * 2008-09-10 2012-08-29 鸿富锦精密工业(深圳)有限公司 广角畸变测试系统及方法
JP5401351B2 (ja) * 2009-03-23 2014-01-29 日本碍子株式会社 ハニカム構造体の検査方法
CN202582764U (zh) * 2012-05-10 2012-12-05 科瑞自动化技术(深圳)有限公司 一种用于手机摄像头检测的照度、温度测量系统
CN202889534U (zh) * 2012-11-12 2013-04-17 中国航空工业集团公司上海航空测控技术研究所 一种摄像头可视角度测试装置
CN104767927A (zh) * 2014-01-07 2015-07-08 三亚中兴软件有限责任公司 一种对云台摄像设备进行方位控制的方法和装置
KR102384591B1 (ko) * 2015-09-08 2022-04-08 엘지이노텍 주식회사 카메라 화각 테스트 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100780190B1 (ko) * 2006-07-20 2007-11-27 삼성전기주식회사 화각 측정장치 및 화각 측정방법
KR100808019B1 (ko) * 2006-10-20 2008-02-28 삼성전기주식회사 테스트 장치 및 그 제어 방법
KR20100134326A (ko) * 2009-06-15 2010-12-23 박윤상 카메라의 이미지센서 테스트장치
US20140240518A1 (en) * 2013-02-25 2014-08-28 Teradyne, Inc. Rotatable camera module testing system
JP2015099041A (ja) * 2013-11-18 2015-05-28 リーダー電子株式会社 カメラの検査装置及び該検査装置を用いたカメラの検査方法

Also Published As

Publication number Publication date
US10349047B2 (en) 2019-07-09
CN108027552B (zh) 2021-05-18
US20180249152A1 (en) 2018-08-30
KR102384591B1 (ko) 2022-04-08
CN108027552A (zh) 2018-05-11
KR20170029985A (ko) 2017-03-16
US20190281283A1 (en) 2019-09-12
US10715797B2 (en) 2020-07-14

Similar Documents

Publication Publication Date Title
WO2011068281A1 (en) Integrating sphere photometer and measuring method of the same
WO2017043853A1 (ko) 카메라 화각 테스트 장치
WO2011087337A2 (ko) 기판 검사장치
WO2012121558A1 (ko) 영상 선명도가 개선된 비전검사장치
KR20170070296A (ko) 카메라 모듈의 검사 장치
WO2011083989A2 (ko) 결점 검사장치
WO2012134146A1 (ko) 스테레오 비전과 격자 무늬를 이용한 비전검사장치
CN112824874A (zh) 线缆检测设备
WO2012020932A2 (ko) 결함 검사장치 및 이를 이용한 결함 검사방법
WO2016099154A1 (ko) 부품이 실장된 기판 검사방법 및 검사장치
CN108924545A (zh) 摄像头模组的杂光检测装置及检测方法
WO2015115764A1 (ko) 카메라 모듈
WO2015167104A1 (en) Apparatus and method of detecting foreign material on upper surface of transparent substrate using polarized light
US11394955B2 (en) Optics device for testing cameras useful on vehicles
WO2020040468A1 (ko) 유기발광소자의 혼색 불량 검출장치 및 검출방법
WO2014192999A1 (ko) 불규칙 패턴을 가지는 대상물을 검사하는 불량 검사 시스템
WO2012150782A1 (ko) 편광판과 다중 격자 무늬를 이용한 비전검사장치
WO2016003106A2 (ko) 멀티 애퍼처 카메라의 센서 어레이
WO2018105853A1 (ko) 스폿 용접건의 용접팁 검사장치
CN217425232U (zh) 应用于表面检测的亮暗场视觉装置及检测设备
WO2012134145A1 (ko) 서로 다른 색깔의 다중 격자 무늬를 이용한 비전검사장치
CN103926237A (zh) 一种干化学检测装置
KR20130064479A (ko) 피검체 검사용 렌즈 장치 및 이를 구비한 머신 비전 시스템
WO2017069389A1 (ko) 레이저 가공장치의 광학계 정렬 장치 및 광학계 정렬 방법
WO2016190459A1 (ko) 디스플레이 패널 검사 카메라

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16844671

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15758628

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16844671

Country of ref document: EP

Kind code of ref document: A1