WO2012020932A2 - 결함 검사장치 및 이를 이용한 결함 검사방법 - Google Patents

결함 검사장치 및 이를 이용한 결함 검사방법 Download PDF

Info

Publication number
WO2012020932A2
WO2012020932A2 PCT/KR2011/005427 KR2011005427W WO2012020932A2 WO 2012020932 A2 WO2012020932 A2 WO 2012020932A2 KR 2011005427 W KR2011005427 W KR 2011005427W WO 2012020932 A2 WO2012020932 A2 WO 2012020932A2
Authority
WO
WIPO (PCT)
Prior art keywords
optical unit
light
inspection
inspection position
image
Prior art date
Application number
PCT/KR2011/005427
Other languages
English (en)
French (fr)
Other versions
WO2012020932A3 (ko
Inventor
이제선
김경덕
김종우
장기수
이종식
Original Assignee
주식회사 쓰리비 시스템
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 쓰리비 시스템 filed Critical 주식회사 쓰리비 시스템
Publication of WO2012020932A2 publication Critical patent/WO2012020932A2/ko
Publication of WO2012020932A3 publication Critical patent/WO2012020932A3/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
    • G01B11/303Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces using photoelectric detection means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/18Arrangements with more than one light path, e.g. for comparing two specimens
    • G02B21/20Binocular arrangements
    • G02B21/22Stereoscopic arrangements

Definitions

  • the present invention relates to a defect inspection apparatus and a defect inspection method using the same, and more particularly, to a defect inspection apparatus for inspecting a defect by irradiating an edge of a pair of light to the inspection object and a defect inspection method using the same.
  • Defects in copper clad laminates, substrates in flat panel displays, films used in industrial materials, wire rods / steel plates, etc. have been thoroughly inspected for defects in finished products.
  • As a method for inspecting these defects light was irradiated to the inspection object and the light reflected or transmitted from the inspection object was imaged, and it was determined as a defect when the brightness of the image to be captured exceeds or falls short of the reference value.
  • the inspection object is a steel product such as a plate or a wire
  • the reflectance on the surface is high, so it reacts sensitively to the difference of minute lighting conditions, which makes it difficult to accurately inspect the defects.
  • the inspection object is a wire rod
  • the surface of the wire rod is curved and bright on some surfaces and dark on other surfaces, making it difficult to determine surface defects in photographed images. Difficulties in setting the field of view and focus had limitations in obtaining a clear image, which made it difficult to accurately inspect surface defects.
  • an object of the present invention is to solve such a conventional problem, and the edge of a pair of light is irradiated to overlap the inspection object, and such overlapping light is irradiated alternately in both directions of the inspection object to cause defects on the inspection object.
  • the present invention provides a defect inspection apparatus capable of easily detecting a defect on an inspection object and a defect inspection method using the same.
  • the defect inspection apparatus of the present invention collimates a pair of lights to irradiate the inspection position of the inspection object, and the overlapping region formed by overlapping edge portions of the pair of lights is the inspection position.
  • a first optical unit to irradiate the light
  • a control unit which controls the first optical unit and the second optical unit to light up alternately;
  • a camera for capturing an image of the inspection position by using light emitted from the first optical unit or the second optical unit and reflected from the inspection position.
  • a defect inspection apparatus Preferably, the third optical unit for irradiating light to the inspection position; And a retroreflective plate which is irradiated with light emitted from the third light unit at the inspection position, and retroreflects the incident light back to the inspection position in the same direction as the incident direction.
  • An image of the inspection position is captured by further using light that is retroreflected and reflected by the inspection position.
  • each of the first light unit and the second light unit comprises a pair of light sources, a condenser lens for condensing light emitted from the light source, and an optical axis of And a collimating lens spaced apart from the optical axis of the light source and the condensing lens and collimating the light incident from the condensing lens to advance the light inclined with respect to the optical axis toward the inspection position.
  • each of the first light unit and the second light unit is disposed in an optical path between the condensing lens and the collimating lens, and through-holes through which light passes.
  • the diaphragm may further include an aperture formed such that an opening area is narrower from the center to the left and right directions.
  • the aperture is rotatable about an optical axis of the condenser lens.
  • the overlapping region of the cross section of the light which is disposed between the first and second light units and the inspection object and is irradiated from the first or second light unit.
  • a slit member having a pair of slits for passing a portion forming the portion and blocking a portion not forming the overlapping region.
  • the defect inspection method of the present invention uses the defect inspection apparatus according to claim 1, maintains the lighting state of the first optical unit, and irradiates from the first optical unit A first imaging step of capturing an image of the inspection position by using light reflected from the inspection position; A moving step of moving the inspection object by the height of the scan line of the camera; A first control step of turning off the first optical unit and lighting the second optical unit through the control unit; A second imaging step of maintaining the lighting state of the second optical unit and capturing an image of the inspection position by using light irradiated from the second optical unit and reflected from the inspection position; A moving step of moving the inspection object by the height of the scan line of the camera; And a second control step of turning off the second optical unit through the control unit and lighting the first optical unit, and repeatedly performing the first imaging step to the second control step. And detecting a defect on the inspection object by sequentially merging the image acquired through the first image capturing step or the image obtained through the second image capturing step along a
  • the defect inspection method of the present invention uses the defect inspection apparatus according to claim 1, maintains the lighting state of the first optical unit, and irradiates from the first optical unit.
  • a detection step of detecting defects on the inspection object by merging the images acquired through the first imaging step and the second imaging step for each scan line.
  • the defect inspection apparatus and the defect inspection method of the present invention by using the edge portion of the light as the inspection illumination, it is possible to maximize the shadow effect.
  • the light using the retroreflective plate can also be utilized while irradiating the light alternately in both directions of the inspection object, thereby improving compatibility that can cope with various inspection conditions.
  • the diaphragm is rotatably installed, it is possible to obtain a clear image of the defect even if the position of the illumination is changed with respect to the traveling direction of the inspection object.
  • FIG. 1 is a view showing a defect inspection apparatus according to an embodiment of the present invention.
  • FIG. 2 is a view showing an optical path in the first optical unit or the second optical unit of the defect inspection apparatus of FIG.
  • 3 is a view showing various shapes of the aperture through-hole.
  • FIG. 4 is a diagram illustrating a light amount distribution when light passing through an aperture overlaps
  • FIG. 5 is a view showing a state in which the aperture is rotated.
  • FIG. 1 is a view showing a defect inspection apparatus according to an embodiment of the present invention
  • Figure 2 is a view showing the optical path in the first optical unit or the second optical unit of the defect inspection apparatus of Figure 1
  • Figure 3 is a view illustrating various shapes of the aperture through hole
  • FIG. 4 is a view illustrating a light quantity distribution when light passing through the aperture overlaps
  • FIG. 5 is a view illustrating a state in which the aperture is rotated.
  • the defect inspection apparatus 100 of the present embodiment may obtain a clear image of a defect by irradiating the inspection object so that the edge portions of the pair of lights overlap each other.
  • the first light unit 110 collimates a pair of light, respectively, and the edges overlap each other to irradiate the inspection position of the inspection object, a pair of light sources 111 and a pair of condenser lenses 112. ), A pair of collimating lenses 113, and a pair of apertures 114.
  • a high power LED light is used as the light source 111, and the light source 111 is coaxially disposed on the optical axis LA1 of the condensing lens 112 and from the light source 111.
  • the irradiated light is collected by the condenser lens 112.
  • a collimating lens 113 for collimating light passing through the condenser lens 112 is disposed on the downstream side of the condenser lens 112.
  • the optical axis LA2 of the collimating lens 113 is spaced apart from and parallel to the optical axis LA1 of the light source 111 and the condenser lens 112, so that the light passing through the condenser lens 112 is collimated.
  • a pair of light sources 111, a pair of condenser lenses 112, and a pair of collimating lenses 113 are arranged symmetrically with respect to the central axis CL shown in FIG. 2, thereby collimating lenses 113.
  • Each light emitted from the beam toward the inspection position IP proceeds to be inclined in opposite directions with respect to the optical axis LA2 of the collimating lens 113, and the pair of lights 10 on the inspection position IP
  • the overlapping area OR where the edge portions overlap each other is formed. That is, the overlapped area OR is irradiated to the inspection position IP.
  • the edge of the light is used as inspection illumination.
  • the edge of the light has a lower light intensity than the central portion. Therefore, as shown in FIG. 2, by overlapping the edge portions of the pair of lights 10 and causing the overlapping area OR to be irradiated to the inspection position IP, the intensity of the light intensity generated by using the edge portions of the light The degradation can be compensated for.
  • the diaphragm 114 is disposed in the optical path between the condenser lens 112 and the collimating lens 113, the through hole through which the light passes is formed such that the opening area becomes narrower from the center to the left and right directions.
  • the through hole 114a may be formed in a trapezoidal shape, and as illustrated in FIG. 3B, the through hole 114b may be formed in an elliptic shape.
  • the through holes 114a and 114b are formed such that the openings become narrower from the center to the left and right directions, so that the amount of light in the region where the light does not overlap and the amount of light in the overlapping region OR where the pair of lights 10 overlap each other. This is to maintain the uniformity to some extent.
  • the through hole has a constant opening area in the left and right directions
  • the light amount of the overlapped area OR in which the pair of lights 10 overlaps is considerably higher than the light amount in the region where the light does not overlap.
  • the through-hole 114a is formed to have a narrower opening area from the center portion to the left-right direction
  • the area of the overlapping area OR, where the pair of lights 10 overlap becomes smaller.
  • the amount of light in the overlapped area OR may be maintained to be somewhat uniform with the amount of light in the area where the light does not overlap.
  • the second optical unit 120 collimates a pair of lights 10, respectively, and makes the edges overlap each other to irradiate the inspection position IP of the inspection object 1, and the first optical unit 110.
  • a pair of light sources 121, a pair of condenser lenses (not shown), a pair of collimating lenses (not shown), and a pair of apertures (not shown) are provided.
  • the light source 121, the condenser lens, the collimating lens, and the aperture of the second light unit 120 may include the light source 111, the condenser lens 112, the collimating lens 113, and the aperture of the first light unit 110. Since the configuration is the same as that of 114 and performs the same function, detailed description thereof will be omitted.
  • the diaphragm 114 is rotatably installed around the optical axis LA1 of the condenser lens 113.
  • the first light does not cross the virtual line VL that virtually connects the first optical unit 110 and the second optical unit 120 and the inspection object 1 to be perpendicular to each other.
  • the unit 110 and the second optical unit 120 may be disposed.
  • the overlapping area OR of the pair of lights 10 is reduced. It can be adjusted to be positioned on the virtual line VL.
  • the pair of light 10 passing through the diaphragm 114 having the through-hole 114a formed to narrow the opening area toward the left and right in the center portion does not overlap each other because the edge portions do not overlap each other.
  • the problem that the area OR does not occur may occur.
  • the controller 130 controls the first optical unit 110 and the second optical unit 120 to alternately light up.
  • the pair of light 10 irradiated from the first optical unit 110 overlaps an edge portion thereof.
  • the pair of light irradiated from the second optical unit 120 is turned on. 10
  • the edge portions overlap each other and are irradiated to the inspection position IP.
  • the third optical unit 140 irradiates light to the inspection position IP.
  • a high power LED light is used as the light source 141 of the third light unit 130, and the light is reflected by the reflection mirror 142 and irradiated to the inspection position IP.
  • the incident angle of the light of the third optical unit 140 is smaller than the incident angle of the light of the first optical unit 110 or the second optical unit 120.
  • the retroreflective plate 150 is a member that retroreflects incident light in the same direction as the incident direction.
  • the light irradiated from the third light unit 140 is reflected at the inspection position IP of the inspection object 1 and is incident on the retroreflective plate 150, and the light incident on the retroreflective plate 150 is the same direction as the incident direction. Is reflected back to the inspection position IP.
  • the third optical unit 140 is always turned on while the first optical unit 110 and the second optical unit 120 are alternately turned on by the controller 130 according to the type of the inspection object 1 or the inspection conditions. You can keep it in the off state, or it can stay off all the time.
  • the camera 160 acquires a defect image on the inspection object 1 by capturing an image of the inspection position IP, and is disposed on an optical path of the third light unit 140.
  • the retroreflected light from the retroreflective plate 150 is incident to the inspection object 1 side, and the light is reflected by the inspection object 1 and incident to the camera 160.
  • the light irradiated from the first optical unit 110 or the second optical unit 120 is also incident to the inspection object 1 side, the light is reflected by the inspection object 1 and incident on the camera 160.
  • an image at the inspection position IP of the inspection object 1 may be acquired. Can be.
  • a line scan camera or the like is generally used as the camera 160, and various image capturing means used in a defect inspection apparatus may be used.
  • the slit member 170 is to reduce interference of light, and is disposed between the first and second light units 110 and 120 and the inspection object 1. Referring to FIG. 2, the slit member 170 is provided with a pair of slits 171. A portion 11 of the cross section of the light of the first optical unit 110 that forms the overlap region OR passes through the slit 171 and forms an overlap region OR of the cross section of the light of the first optical unit 110. The slit member 170 is disposed so that the portion 12 is not blocked by the slit 171.
  • the slit member disposed between the second optical unit 120 and the inspection object 1 is also configured in the same way and performs the same function, the detailed description thereof will be omitted.
  • FIGS. 1 to 5 an embodiment of a defect inspection method using the defect inspection apparatus 100 according to the present invention configured as described above will be schematically described with reference to FIGS. 1 to 5.
  • the defect inspection method of this embodiment includes a first imaging step, a moving step, a first control step, a second imaging step, a moving step, a second control step, and a detection step.
  • the lighting state of the first optical unit 110 is maintained, and light is emitted from the first optical unit 110 and reflected at the inspection position IP to be incident on the camera 160. An image of a defect at the inspection position IP is picked up.
  • the light irradiated from the first optical unit 110 is in the form of a pair of light 10 whose edge portions overlap each other, and the overlapping area OR is irradiated to the inspection position IP of the inspection object 1.
  • the inspection object 1 is moved by the height of the scan line of the camera 160.
  • a line scan camera is used as the camera 160 of the present embodiment, which moves the inspection object 1 by the height of the scan line of the line scan camera, and captures an image with the camera 160 in the next scan line. Be prepared.
  • the first optical unit 110 is turned off through the control unit 130 and the second optical unit 120 is turned on.
  • the lighting state of the second light unit 120 is maintained, and the light irradiated from the second light unit 120 and reflected at the inspection position IP is incident on the camera 160. An image of a defect at the inspection position IP is picked up.
  • the light irradiated from the second light unit 120 is in the form of a pair of light 10 whose edge portions overlap each other, and the overlapping area OR is irradiated to the inspection position IP of the inspection object 1.
  • the inspection object 1 is moved by the height of the scan line of the camera 160, and the camera 160 prepares to capture an image in the next scan line.
  • the second optical unit 120 is turned off through the control unit 130 and the first optical unit 110 is turned on.
  • an image is acquired through the first imaging step or the second imaging step.
  • an image is acquired through a first imaging step in a scan line of the camera 160, the inspection object 1 is moved by the height of the scan line of the camera 160, and the next scan of the camera 160 is performed.
  • Acquire an image through the second imaging step in the line move the inspection object 1 by the height of the scan line of the camera 160, and take an image through the first imaging step in the next scan line of the camera 160.
  • an image is obtained by alternately using the first imaging step and the second imaging step while advancing each scan line.
  • the defects on the inspection object 1 are detected by sequentially merging the images acquired through the first imaging step or the images acquired through the second imaging step along the scan line of the camera 160.
  • the images acquired through the first imaging step and the images acquired through the second imaging step may be merged separately, or the images acquired through the first imaging step and the second imaging step. It is also possible to merge images at once while crossing the images acquired through.
  • FIGS. 1 to 5 Another embodiment of a defect inspection method using the defect inspection apparatus 100 according to the present invention will be described with reference to FIGS. 1 to 5.
  • the defect inspection method of this embodiment includes a first imaging step, a first control step, a second imaging step, a moving step, a second control step, and a detection step.
  • the first imaging step is to maintain the lighting state of the first optical unit 110, by using the light irradiated from the first optical unit 110 and reflected at the inspection position (IP) incident on the camera 160 An image of a defect at the inspection position IP is picked up.
  • the light irradiated from the first optical unit 110 is in the form of a pair of light 10 whose edge portions overlap each other, and the overlapping area OR is irradiated to the inspection position IP of the inspection object 1.
  • the first optical unit 110 is turned off through the control unit 130 and the second optical unit 120 is turned on.
  • the lighting state of the second light unit 120 is maintained, and the light irradiated from the second light unit 120 and reflected at the inspection position IP is incident on the camera 160. An image of a defect at the inspection position IP is picked up.
  • the light irradiated from the second light unit 120 is in the form of a pair of light 10 whose edge portions overlap each other, and the overlapping area OR is irradiated to the inspection position IP of the inspection object 1.
  • the inspection object 1 is moved by the height of the scan line of the camera 160.
  • a line scan camera is used as the camera 160 of the present embodiment.
  • the inspection object 1 is moved by the height of the scan line of the line scan camera, and the camera 160 is ready for imaging in the next scan line.
  • the second optical unit 120 is turned off through the control unit 130 and the first optical unit 110 is turned on.
  • an image is acquired through the first imaging step or the second imaging step.
  • an image is acquired through a first imaging step in a scan line of the camera 160, and an image is acquired again through a second imaging step in the same scan line, and inspected by the height of the scan line of the camera 160.
  • the object 1 is moved, an image is acquired through the first imaging step in the next scan line of the camera 160, and an image is acquired again through the second imaging step in the same scan line.
  • an image is obtained by alternately using the first imaging step and the second imaging step for each scan line.
  • the defects on the inspection object 1 are detected by merging the images acquired through the first imaging step and the second imaging step for each scan line of the camera 160.
  • the images acquired through the first imaging step and the images acquired through the second imaging step are merged for each scan line of the camera 1, and the images are merged again over the entire scan line.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

본 발명은 결함 검사장치에 관한 것으로서, 한 쌍의 광을 각각 콜리메이팅하여 검사대상물의 검사위치로 조사하고, 상기 한 쌍의 광의 가장자리부가 서로 겹쳐져 형성된 중첩영역이 상기 검사위치에 조사되도록 하는 제1광유닛; 한 쌍의 광을 각각 콜리메이팅하여 상기 검사위치로 조사하고, 상기 한 쌍의 광의 가장자리부가 서로 겹쳐져 형성된 중첩영역이 상기 검사위치에 조사되도록 하는 제2광유닛; 상기 제1광유닛과 상기 제2광유닛이 교대로 점등되도록 제어하는 제어부; 및 상기 제1광유닛 또는 상기 제2광유닛으로부터 조사되어 상기 검사위치에서 반사되어 입사되는 광을 이용하여 상기 검사위치의 영상을 촬상하는 카메라;를 포함하는 것을 특징으로 한다.

Description

결함 검사장치 및 이를 이용한 결함 검사방법
본 발명은 결함 검사장치 및 이를 이용한 결함 검사방법에 관한 것으로서, 보다 상세하게는 검사대상물에 한 쌍의 광의 가장자리부가 중첩되게 조사하여 결함을 검사하는 결함 검사장치 및 이를 이용한 결함 검사방법에 관한 것이다.
구리 클래드 적층판(Copper Clad Laminate), 평판 디스플레이의 기판, 산업용 재료로 쓰이는 필름, 선재/철판 등에서의 결함은 완제품의 불량을 초래하기 때문에 이들에 대한 검사를 철저히 하여 왔다. 이들의 결함을 검사하기 위한 방법으로 검사대상물에 광을 조사하고 검사대상물로부터 반사 또는 투과되는 빛을 촬상하고, 촬상되는 영상의 밝기가 기준값을 초과하거나 미달하는 경우에 결함으로 판정하였다.
그러나, 검사대상물이 판재(板材), 선재(線材)와 같은 철강제품인 경우, 표면에서의 반사율이 높아 미세한 조명 조건의 차이에도 민감하게 반응하여 정확한 결함 검사가 어려운 문제점이 있었다.
특히 검사대상물이 선재인 경우, 선재의 표면은 곡면이어서 일부 표면에서는 밝고, 또 다른 일부 표면에서는 어두워 촬영화상에서 표면 결함 판정이 어려웠으며, 특히 다양한 크기를 갖는 다수개의 선재에 대하여 조명 조건, 카메라의 시야 및 초점을 설정하는데 어려움이 있어 선명한 화상을 획득하는데 한계가 있었으며, 이로써 정확한 표면 결함 검사가 어려운 문제점이 있었다.
따라서, 본 발명의 목적은 이와 같은 종래의 문제점을 해결하기 위한 것으로서, 검사대상물에 한 쌍의 광의 가장자리부가 중첩되게 조사하며 이러한 중첩된 광을 검사대상물의 양 방향에서 교대로 조사하여 검사대상물 상의 결함에 대한 선명한 영상을 획득함으로써, 검사대상물 상의 결함을 용이하게 감지할 수 있는 결함 검사장치 및 이를 이용한 결함 검사방법을 제공함에 있다.
상기와 같은 목적을 달성하기 위하여 본 발명의 결함 검사장치는, 한 쌍의 광을 각각 콜리메이팅하여 검사대상물의 검사위치로 조사하고, 상기 한 쌍의 광의 가장자리부가 서로 겹쳐져 형성된 중첩영역이 상기 검사위치에 조사되도록 하는 제1광유닛; 한 쌍의 광을 각각 콜리메이팅하여 상기 검사위치로 조사하고, 상기 한 쌍의 광의 가장자리부가 서로 겹쳐져 형성된 중첩영역이 상기 검사위치에 조사되도록 하는 제2광유닛; 상기 제1광유닛과 상기 제2광유닛이 교대로 점등되도록 제어하는 제어부; 및 상기 제1광유닛 또는 상기 제2광유닛으로부터 조사되어 상기 검사위치에서 반사되어 입사되는 광을 이용하여 상기 검사위치의 영상을 촬상하는 카메라;를 포함하는 것을 특징으로 한다.
본 발명에 따른 결함 검사장치에 있어서, 바람직하게는, 상기 검사위치에 광을 조사하는 제3광유닛; 상기 제3광유닛으로부터 조사된 광이 상기 검사위치에서 반사되어 입사되며, 입사된 광을 입사 방향과 동일하게 상기 검사위치로 재귀 반사시키는 재귀 반사판;을 더 포함하며, 상기 카메라는 상기 재귀 반사판에서 재귀 반사되고 상기 검사위치에서 반사되어 입사되는 광을 더 이용하여 상기 검사위치의 영상을 촬상한다.
본 발명에 따른 결함 검사장치에 있어서, 바람직하게는, 상기 제1광유닛 및 상기 제2광유닛 각각은, 한 쌍의 광원과, 상기 광원으로부터 조사된 광을 집광하는 집광렌즈와, 광축이 상기 광원 및 상기 집광렌즈의 광축으로부터 이격되어 평행하게 배치되며 상기 집광렌즈로부터 입사된 광을 콜리메이팅하여 상기 검사위치를 향해 상기 광축에 대하여 경사지게 광을 진행시키는 콜리메이팅 렌즈를 더 포함한다.
본 발명에 따른 결함 검사장치에 있어서, 바람직하게는, 상기 제1광유닛 및 상기 제2광유닛 각각은, 상기 집광렌즈와 상기 콜리메이팅 렌즈 사이의 광경로에 배치되며, 광이 통과하는 관통홀은 중앙부에서 좌우방향으로 갈수록 개구된 면적이 좁아지게 형성된 조리개;를 더 포함한다.
본 발명에 따른 결함 검사장치에 있어서, 바람직하게는, 상기 제1광유닛과 상기 제2광유닛을 가상적으로 연결하는 가상선과 상기 검사대상물의 이동방향이 직교하지 않는 경우, 상기 조리개를 통과하는 광의 방향을 변경하기 위하여, 상기 조리개는 상기 집광렌즈의 광축을 중심으로 회전 가능하다.
본 발명에 따른 결함 검사장치에 있어서, 바람직하게는, 상기 제1,2광유닛 및 상기 검사대상물 사이에 배치되며, 상기 제1광유닛 또는 상기 제2광유닛으로부터 조사되는 광의 단면 중 상기 중첩영역을 형성하는 부분은 통과시키고 상기 중첩영역을 형성하지 않는 부분은 차단하는 한 쌍의 슬릿을 구비하는 슬릿부재;를 더 포함한다.
한편, 상기와 같은 목적을 달성하기 위하여 본 발명의 결함 검사방법은, 청구항 제1항에 기재된 결함 검사장치를 이용하며, 상기 제1광유닛의 점등상태를 유지하며, 상기 제1광유닛으로부터 조사되고 상기 검사위치에서 반사되어 입사되는 광을 이용하여 상기 검사위치의 영상을 촬상하는 제1촬상단계; 상기 카메라의 스캔라인의 높이만큼 상기 검사대상물을 이동시키는 이동단계; 상기 제어부를 통해 상기 제1광유닛을 소등하고, 상기 제2광유닛을 점등하는 제1제어단계; 상기 제2광유닛의 점등상태를 유지하며, 상기 제2광유닛으로부터 조사되고 상기 검사위치에서 반사되어 입사되는 광을 이용하여 상기 검사위치의 영상을 촬상하는 제2촬상단계; 상기 카메라의 스캔라인의 높이만큼 상기 검사대상물을 이동시키는 이동단계; 상기 제어부를 통해 상기 제2광유닛을 소등하고, 상기 제1광유닛을 점등하는 제2제어단계;를 포함하고, 상기 제1촬상단계부터 상기 제2제어단계까지 반복적으로 수행한 후, 상기 카메라의 스캔라인을 따라 상기 제1촬상단계를 통해 획득된 영상 또는 상기 제2촬상단계를 통해 획득된 영상을 순차적으로 병합하여 상기 검사대상물 상의 결함을 검출하는 검출단계;를 포함하는 것을 특징으로 한다.
또한, 상기와 같은 목적을 달성하기 위하여 본 발명의 결함 검사방법은, 청구항 제1항에 기재된 결함 검사장치를 이용하며, 상기 제1광유닛의 점등상태를 유지하며, 상기 제1광유닛으로부터 조사되고 상기 검사위치에서 반사되어 입사되는 광을 이용하여 상기 검사위치의 영상을 촬상하는 제1촬상단계; 상기 제어부를 통해 상기 제1광유닛을 소등하고, 상기 제2광유닛을 점등하는 제1제어단계; 상기 제2광유닛의 점등상태를 유지하며, 상기 제2광유닛으로부터 조사되고 상기 검사위치에서 반사되어 입사되는 광을 이용하여 상기 검사위치의 영상을 촬상하는 제2촬상단계; 상기 카메라의 스캔라인의 높이만큼 상기 검사대상물을 이동시키는 이동단계; 상기 제어부를 통해 상기 제2광유닛을 소등하고, 상기 제1광유닛을 점등하는 제2제어단계;를 포함하고, 상기 제1촬상단계부터 상기 제2제어단계까지 반복적으로 수행한 후, 상기 카메라의 스캔라인마다 상기 제1촬상단계 및 상기 제2촬상단계를 통해 획득된 영상을 병합하여 상기 검사대상물 상의 결함을 검출하는 검출단계;를 포함하는 것을 특징으로 한다.
본 발명의 결함 검사장치 및 결함 검사방법에 따르면, 광의 가장자리부를 검사 조명으로 이용함으로써, 그림자 효과를 극대화할 수 있다.
또한, 본 발명의 결함 검사장치 및 결함 검사방법에 따르면, 광을 검사대상물의 양 방향에서 교대로 조사하면서 재귀 반사판을 이용한 광 역시 활용 가능함으로써, 다양한 검사 조건에 대응할 수 있는 호환성을 높일 수 있다.
또한, 본 발명의 결함 검사장치 및 결함 검사방법에 따르면, 조리개가 회전 가능하게 설치됨으로써, 검사대상물의 진행방향에 대하여 조명의 배치 위치가 변경되어도 결함의 영상을 선명하게 획득할 수 있다.
도 1은 본 발명의 일 실시예에 따른 결함 검사장치를 나타내는 도면.
도 2는 도 1의 결함 검사장치의 제1광유닛 또는 제2광유닛에서의 광경로를 도시한 도면.
도 3은 조리개 관통홀의 다양한 형상을 도시한 도면.
도 4는 조리개를 통과한 광이 중첩되는 경우 광량 분포를 도시한 도면.
도 5는 조리개를 회전시킨 모습을 도시한 도면.
이하, 본 발명에 따른 결함 검사장치의 실시예들을 첨부된 도면을 참조하여 상세히 설명한다.
도 1은 본 발명의 일 실시예에 따른 결함 검사장치를 나타내는 도면이고, 도 2는 도 1의 결함 검사장치의 제1광유닛 또는 제2광유닛에서의 광경로를 도시한 도면이고, 도 3은 조리개 관통홀의 다양한 형상을 도시한 도면이고, 도 4는 조리개를 통과한 광이 중첩되는 경우 광량 분포를 도시한 도면이고, 도 5는 조리개를 회전시킨 모습을 도시한 도면이다.
도 1 내지 도 5를 참조하면, 본 실시예의 결함 검사장치(100)는, 한 쌍의 광의 가장자리부가 중첩되도록 검사대상물에 조사하여 결함에 대한 선명한 영상을 획득할 수 있는 것으로서, 제1광유닛(110)과, 제2광유닛(120)과, 제어부(130)와, 제3광유닛(140)과, 재귀 반사판(150)과, 카메라(160)와, 슬릿부재(170)를 포함한다.
상기 제1광유닛(110)은, 한 쌍의 광을 각각 콜리메이팅하고 가장자리부가 서로 중첩되게 하여 검사대상물의 검사위치로 조사하며, 한 쌍의 광원(111)과, 한 쌍의 집광렌즈(112)와, 한 쌍의 콜리메이팅 렌즈(113)와, 한 쌍의 조리개(114)를 구비한다.
도 2를 참조하면, 본 실시예에서 광원(111)으로는 고출력의 LED 조명을 이용하며, 광원(111)은 집광렌즈(112)의 광축(LA1)에 동축적으로 배치되고 광원(111)으로부터 조사된 광은 집광렌즈(112)에 의해 집광된다. 집광렌즈(112)의 하류 측에는 집광렌즈(112)를 통과한 광을 콜리메이팅하는 콜리메이팅 렌즈(113)가 배치된다. 이때, 콜리메이팅 렌즈(113)의 광축(LA2)은 광원(111) 및 집광렌즈(112)의 광축(LA1)으로부터 이격되어 평행하게 배치됨으로써, 집광렌즈(112)를 통과한 광은 콜리메이팅 렌즈(113)의 광축(LA2)을 중심으로 대칭으로 입사되지 않고, 콜리메이팅 렌즈(113)의 일측으로 입사된다. 이와 같이 입사된 광은 콜리메이팅 렌즈(113)의 광축(LA2)에 대하여 경사지게 진행하여, 최종적으로 검사대상물(1)의 검사위치(IP)에 조사된다.
도 2에 도시된 중심축(CL)을 기준으로 한 쌍의 광원(111), 한 쌍의 집광렌즈(112), 한 쌍의 콜리메이팅 렌즈(113)가 대칭으로 배치됨으로써, 콜리메이팅 렌즈(113)로부터 출사되어 검사위치(IP)로 향하는 각각의 광은 콜리메이팅 렌즈(113)의 광축(LA2)에 대하여 서로 반대 방향으로 경사지게 진행하고, 검사위치(IP)상에서 한 쌍의 광(10)은 가장자리부가 서로 겹쳐진 중첩영역(OR)을 형성하게 된다. 즉, 중첩영역(OR)이 검사위치(IP)에 조사된다.
본 실시예에서는 그림자 효과를 극대화하기 위하여 광의 가장자리부를 검사 조명으로 이용한다. 한편, 상술한 광의 가장자리부를 이용하는 장점에도 불구하고, 광의 가장자리부는 중심부보다 광강도가 낮다. 따라서, 도 2에 도시된 바와 같이, 한 쌍의 광(10)의 가장자리부를 서로 겹치게 하고 중첩영역(OR)이 검사위치(IP)에 조사되도록 함으로써, 광의 가장자리부를 이용함으로 인해 발생하는 광강도의 저하를 보충할 수 있다.
상기 조리개(114)는 집광렌즈(112)와 콜리메이팅 렌즈(113) 사이의 광경로에 배치되며, 광이 통과하는 관통홀은 중앙부에서 좌우방향으로 갈수록 개구된 면적이 좁아지게 형성된다. 도 3의 (a)에 도시된 바와 같이 관통홀(114a)이 사다리꼴 형상으로 형성될 수도 있고, 도 3의 (b)에 도시된 바와 같이 관통홀(114b)이 타원 형상으로 형성될 수도 있다.
이와 같이 중앙부에서 좌우방향으로 갈수록 개구된 면적이 좁아지게 관통홀(114a,114b)을 형성하는 것은, 광이 겹치지 않는 영역의 광량과 한 쌍의 광(10)이 겹치는 중첩영역(OR)의 광량을 어느 정도 균일하게 유지하기 위함이다.
만약, 관통홀이 좌우방향으로 일정한 개구 면적을 가진다면, 한 쌍의 광(10)이 겹치는 중첩영역(OR)의 광량은 광이 겹치지 않는 영역의 광량보다 상당히 높게 된다. 그러나, 도 4에 도시된 바와 같이, 관통홀(114a)이 중앙부에서 좌우방향으로 갈수록 개구 면적이 좁아지게 형성되면, 한 쌍의 광(10)이 겹치게 되는 중첩영역(OR)의 면적이 작아지게 되고, 중첩영역(OR)의 광량은 광이 겹치지 않는 영역의 광량과 어느 정도 균일한 크기를 유지할 수 있다.
상기 제2광유닛(120)은, 한 쌍의 광(10)을 각각 콜리메이팅하고 가장자리부가 서로 중첩되게 하여 검사대상물(1)의 검사위치(IP)로 조사하며, 제1광유닛(110)과 마찬가지로 한 쌍의 광원(121)과, 한 쌍의 집광렌즈(미도시)와, 한 쌍의 콜리메이팅 렌즈(미도시)와, 한 쌍의 조리개(미도시)를 구비한다.
제2광유닛(120)의 광원(121), 집광렌즈, 콜리메이팅 렌즈, 조리개는, 제1광유닛(110)의 광원(111), 집광렌즈(112), 콜리메이팅 렌즈(113), 조리개(114)와 동일하게 구성되고, 동일한 기능을 수행하므로, 더이상의 상세한 설명은 생략한다.
한편, 조리개(114)는 집광렌즈(113)의 광축(LA1)을 중심으로 회전 가능하게 설치된다.
도 5에 도시된 바와 같이, 제1광유닛(110)과 제2광유닛(120)을 가상적으로 연결하는 가상선(VL)과 검사대상물(1)의 이동방향이 직교하지 않게, 제1광유닛(110)과 제2광유닛(120)이 배치될 수 있다. 이러한 경우, 집광렌즈(112)의 광축(LA1)을 중심으로 조리개(114)를 회전시켜 조리개(114)를 통과하는 광의 방향을 변경함으로써, 한 쌍의 광(10)의 중첩영역(OR)이 가상선(VL)상에 위치하도록 조정할 수 있다. 조리개(114)가 회전하지 않으면, 중앙부에서 좌우방향으로 갈수록 개구된 면적이 좁아지게 형성된 관통홀(114a)을 가지는 조리개(114)를 통과한 한 쌍의 광(10)은 가장자리부가 서로 겹치지 않아 중첩영역(OR)이 생기지 않게 되는 문제가 발생할 수 있다.
상기 제어부(130)는, 제1광유닛(110)과 제2광유닛(120)이 교대로 점등되도록 제어한다. 제어부(130)에 의해 제1광유닛(110)이 점등되고 제2광유닛(120)이 소등되면, 제1광유닛(110)으로부터 조사되는 한 쌍의 광(10)은 가장자리부가 서로 중첩되어 검사위치(IP)에 조사되고, 제어부(130)에 의해 제1광유닛(110)이 소등되고 제2광유닛(120)이 점등되면, 제2광유닛(120)으로부터 조사되는 한 쌍의 광(10)은 가장자리부가 서로 중첩되어 검사위치(IP)에 조사된다.
상기 제3광유닛(140)은, 검사위치(IP)에 광을 조사한다. 도 1을 참조하면, 제3광유닛(130)의 광원(141)으로는 고출력의 LED 조명을 이용하며, 광은 반사미러(142)에 의해 반사되어 검사위치(IP)로 조사된다. 제3광유닛(140)의 광의 입사각은 제1광유닛(110) 또는 제2광유닛(120)의 광의 입사각보다 작게 형성된다.
상기 재귀 반사판(150)은, 입사되는 광을 입사 방향과 동일한 방향으로 재귀 반사시키는 부재이다. 제3광유닛(140)으로부터 조사된 광은 검사대상물(1)의 검사위치(IP)에서 반사되어 재귀 반사판(150)으로 입사되며, 재귀 반사판(150)에 입사된 광은 입사 방향과 동일한 방향으로 검사위치(IP)로 재귀 반사된다.
검사대상물(1)의 종류 또는 검사 조건 등에 따라, 제어부(130)에 의해 제1광유닛(110)과 제2광유닛(120)이 교대로 점등되는 동안 제3광유닛(140)은 항상 점등된 상태를 유지할 수도 있고, 항상 소등된 상태를 유지할 수도 있다.
상기 카메라(160)는, 검사위치(IP)의 영상을 촬상하여 검사대상물(1) 상의 결함 이미지를 획득하며, 제3광유닛(140)의 광경로 상에 배치된다. 재귀 반사판(150)에서 재귀 반사된 광은 검사대상물(1) 측으로 입사되고 그 광은 다시 검사대상물(1)에 의해 반사되어 카메라(160)에 입사된다. 또한 제1광유닛(110) 또는 제2광유닛(120)으로부터 조사된 광 역시 검사대상물(1) 측으로 입사되고 그 광은 검사대상물(1)에 의해 반사되어 카메라(160)에 입사된다. 재귀 반사판(150)에서 재귀 반사된 광, 제1광유닛(110)의 광 또는 제2광유닛(120)의 광을 이용하여 검사대상물(1)의 검사위치(IP)에서의 영상을 획득할 수 있다.
카메라(160)로는 라인스캔 카메라(line camera) 등이 이용되는 것이 일반적이고, 이외 결함 검사장치에 사용되는 다양한 이미지 캡쳐수단이 이용될 수 있다.
상기 슬릿부재(170)는, 광의 간섭을 줄이기 위한 것으로서, 제1,2광유닛(110,120) 및 검사대상물(1) 사이에 배치된다. 도 2를 참조하면, 슬릿부재(170)에는 한 쌍의 슬릿(171)이 마련된다. 제1광유닛(110)의 광의 단면 중 중첩영역(OR)을 형성하는 부분(11)은 슬릿(171)을 통과하고, 제1광유닛(110)의 광의 단면 중 중첩영역(OR)을 형성하지 않는 부분(12)은 슬릿(171)에 의해 차단되도록 슬릿부재(170)가 배치된다.
제2광유닛(120)과 검사대상물(1) 사이에 배치되는 슬릿부재 역시 동일하게 구성되고, 동일한 기능을 수행하므로, 더이상의 상세한 설명은 생략한다.
이하, 상술한 바와 같이 구성된 본 발명에 따른 결함 검사장치(100)를 이용한 결함 검사방법의 일 실시예에 대하여, 도 1 내지 도 5를 참조하면서 개략적으로 설명하기로 한다.
본 실시예의 결함 검사방법은, 제1촬상단계와, 이동단계와, 제1제어단계와, 제2촬상단계와, 이동단계와, 제2제어단계와, 검출단계로 구성된다.
상기 제1촬상단계에서는, 제1광유닛(110)의 점등상태를 유지하며, 제1광유닛(110)으로부터 조사되고 검사위치(IP)에서 반사되어 카메라(160)에 입사되는 광을 이용하여 검사위치(IP)에서의 결함의 영상을 촬상한다. 이때, 제1광유닛(110)으로부터 조사되는 광은 가장자리부가 서로 중첩되는 한 쌍의 광(10) 형태이며, 중첩영역(OR)은 검사대상물(1)의 검사위치(IP)로 조사된다.
상기 이동단계에서는, 카메라(160)의 스캔라인의 높이만큼 검사대상물(1)을 이동시킨다. 본 실시예의 카메라(160)로는 라인스캔 카메라(line camera)가 이용되는데, 라인스캔 카메라의 스캔라인의 높이만큼 검사대상물(1)을 이동시키고, 다음 스캔라인에서 카메라(160)로 이미지를 촬상할 준비를 한다.
상기 제1제어단계에서는, 제어부(130)를 통해 제1광유닛(110)을 소등하고, 제2광유닛(120)을 점등한다.
상기 제2촬상단계에서는, 제2광유닛(120)의 점등상태를 유지하며, 제2광유닛(120)으로부터 조사되고 검사위치(IP)에서 반사되어 카메라(160)에 입사되는 광을 이용하여 검사위치(IP)에서의 결함의 영상을 촬상한다. 이때, 제2광유닛(120)으로부터 조사되는 광은 가장자리부가 서로 중첩되는 한 쌍의 광(10) 형태이며, 중첩영역(OR)은 검사대상물(1)의 검사위치(IP)로 조사된다.
상기 이동단계에서는, 카메라(160)의 스캔라인의 높이만큼 검사대상물(1)을 이동시키고, 다음 스캔라인에서 카메라(160)로 이미지를 촬상할 준비를 한다.
상기 제2제어단계는, 제어부(130)를 통해 제2광유닛(120)을 소등하고, 제1광유닛(110)을 점등한다.
이후, 제1촬상단계부터 제2제어단계까지 반복적으로 수행하면서, 제1촬상단계 또는 제2촬상단계를 통해 영상을 획득한다. 예를 들어, 카메라(160)의 어떤 스캔라인에서 제1촬상단계를 통해 영상을 획득하고, 카메라(160)의 스캔라인의 높이만큼 검사대상물(1)을 이동시키고, 카메라(160)의 다음 스캔라인에서 제2촬상단계를 통해 영상을 획득하고, 카메라(160)의 스캔라인의 높이만큼 검사대상물(1)을 이동시키고, 카메라(160)의 그 다음 스캔라인에서 제1촬상단계를 통해 영상을 획득한다. 이와 같이, 각각의 스캔라인을 진행시키면서 제1촬상단계와 제2촬상단계를 교대로 이용하여 영상을 획득한다.
상기 검출단계에서는, 카메라(160)의 스캔라인을 따라 제1촬상단계를 통해 획득된 영상 또는 제2촬상단계를 통해 획득된 영상을 순차적으로 병합하여 검사대상물(1) 상의 결함을 검출한다. 영상을 병합하는 방법으로는, 제1촬상단계를 통해 획득한 영상들과 제2촬상단계를 통해 획득한 영상들을 별도로 병합할 수도 있고, 제1촬상단계를 통해 획득한 영상들과 제2촬상단계를 통해 획득한 영상들을 교차하면서 한꺼번에 병합할 수도 있다.
한편, 본 발명에 따른 결함 검사장치(100)를 이용한 결함 검사방법의 다른 실시예에 대하여, 도 1 내지 도 5를 참조하면서 개략적으로 설명하기로 한다.
본 실시예의 결함 검사방법은, 제1촬상단계와, 제1제어단계와, 제2촬상단계와, 이동단계와, 제2제어단계와, 검출단계로 구성된다.
상기 제1촬상단계는, 제1광유닛(110)의 점등상태를 유지하며, 제1광유닛(110)으로부터 조사되고 검사위치(IP)에서 반사되어 카메라(160)에 입사되는 광을 이용하여 검사위치(IP)에서의 결함의 영상을 촬상한다. 이때, 제1광유닛(110)으로부터 조사되는 광은 가장자리부가 서로 중첩되는 한 쌍의 광(10) 형태이며, 중첩영역(OR)은 검사대상물(1)의 검사위치(IP)로 조사된다.
상기 제1제어단계에서는, 제어부(130)를 통해 제1광유닛(110)을 소등하고, 제2광유닛(120)을 점등한다.
상기 제2촬상단계에서는, 제2광유닛(120)의 점등상태를 유지하며, 제2광유닛(120)으로부터 조사되고 검사위치(IP)에서 반사되어 카메라(160)에 입사되는 광을 이용하여 검사위치(IP)에서의 결함의 영상을 촬상한다. 이때, 제2광유닛(120)으로부터 조사되는 광은 가장자리부가 서로 중첩되는 한 쌍의 광(10) 형태이며, 중첩영역(OR)은 검사대상물(1)의 검사위치(IP)로 조사된다.
상기 이동단계에서는, 카메라(160)의 스캔라인의 높이만큼 검사대상물(1)을 이동시킨다. 본 실시예의 카메라(160)로는 라인스캔 카메라(line camera)가 이용되는데, 라인스캔 카메라의 스캔라인의 높이만큼 검사대상물(1)을 이동시키고, 다음 스캔라인에서 촬상할 준비를 한다.
상기 제2제어단계에서는 제어부(130)를 통해 제2광유닛(120)을 소등하고, 제1광유닛(110)을 점등한다.
이후, 제1촬상단계부터 제2제어단계까지 반복적으로 수행하면서, 제1촬상단계 또는 제2촬상단계를 통해 영상을 획득한다. 예를 들어, 카메라(160)의 어떤 스캔라인에서 제1촬상단계를 통해 영상을 획득하고 동일한 스캔라인에서 제2촬상단계를 통해 영상을 다시 획득하며, 카메라(160)의 스캔라인의 높이만큼 검사대상물(1)을 이동시키고, 카메라(160)의 다음 스캔라인에서 제1촬상단계를 통해 영상을 획득하고 동일한 스캔라인에서 제2촬상단계를 통해 영상을 다시 획득한다. 이와 같이, 각각의 스캔라인마다 제1촬상단계와 제2촬상단계를 교대로 이용하여 영상을 획득한다.
상기 검출단계에서는, 카메라(160)의 스캔라인마다 제1촬상단계 및 제2촬상단계를 통해 획득된 영상을 병합하여 검사대상물(1) 상의 결함을 검출한다. 영상을 병합하는 방법으로는, 카메라(1)의 스캔라인마다 제1촬상단계를 통해 획득한 영상과 제2촬상단계를 통해 획득한 영상을 병합하고, 전체 스캔라인에 걸쳐 재차 영상을 병합한다.
본 발명의 권리범위는 상술한 실시예 및 변형례에 한정되는 것이 아니라 첨부된 특허청구범위 내에서 다양한 형태의 실시예로 구현될 수 있다. 특허청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 누구든지 변형 가능한 다양한 범위까지 본 발명의 청구범위 기재의 범위 내에 있는 것으로 본다.

Claims (8)

  1. 한 쌍의 광을 각각 콜리메이팅하여 검사대상물의 검사위치로 조사하고, 상기 한 쌍의 광의 가장자리부가 서로 겹쳐져 형성된 중첩영역이 상기 검사위치에 조사되도록 하는 제1광유닛;
    한 쌍의 광을 각각 콜리메이팅하여 상기 검사위치로 조사하고, 상기 한 쌍의 광의 가장자리부가 서로 겹쳐져 형성된 중첩영역이 상기 검사위치에 조사되도록 하는 제2광유닛;
    상기 제1광유닛과 상기 제2광유닛이 교대로 점등되도록 제어하는 제어부; 및
    상기 제1광유닛 또는 상기 제2광유닛으로부터 조사되어 상기 검사위치에서 반사되어 입사되는 광을 이용하여 상기 검사위치의 영상을 촬상하는 카메라;를 포함하는 것을 특징으로 하는 결함 검사장치.
  2. 제1항에 있어서,
    상기 검사위치에 광을 조사하는 제3광유닛;
    상기 제3광유닛으로부터 조사된 광이 상기 검사위치에서 반사되어 입사되며, 입사된 광을 입사 방향과 동일하게 상기 검사위치로 재귀 반사시키는 재귀 반사판;을 더 포함하며,
    상기 카메라는 상기 재귀 반사판에서 재귀 반사되고 상기 검사위치에서 반사되어 입사되는 광을 더 이용하여 상기 검사위치의 영상을 촬상하는 것을 특징으로 하는 결함 검사장치.
  3. 제1항에 있어서,
    상기 제1광유닛 및 상기 제2광유닛 각각은,
    한 쌍의 광원과, 상기 광원으로부터 조사된 광을 집광하는 집광렌즈와, 광축이 상기 광원 및 상기 집광렌즈의 광축으로부터 이격되어 평행하게 배치되며 상기 집광렌즈로부터 입사된 광을 콜리메이팅하여 상기 검사위치를 향해 상기 광축에 대하여 경사지게 광을 진행시키는 콜리메이팅 렌즈를 더 포함하는 것을 특징으로 하는 결함 검사장치.
  4. 제3항에 있어서,
    상기 제1광유닛 및 상기 제2광유닛 각각은,
    상기 집광렌즈와 상기 콜리메이팅 렌즈 사이의 광경로에 배치되며, 광이 통과하는 관통홀은 중앙부에서 좌우방향으로 갈수록 개구된 면적이 좁아지게 형성된 조리개;를 더 포함하는 것을 특징으로 하는 결함 검사장치.
  5. 제4항에 있어서,
    상기 제1광유닛과 상기 제2광유닛을 가상적으로 연결하는 가상선과 상기 검사대상물의 이동방향이 직교하지 않는 경우, 상기 조리개를 통과하는 광의 방향을 변경하기 위하여, 상기 조리개는 상기 집광렌즈의 광축을 중심으로 회전 가능한 것을 특징으로 하는 결함 검사장치.
  6. 제1항에 있어서,
    상기 제1,2광유닛 및 상기 검사대상물 사이에 배치되며, 상기 제1광유닛 또는 상기 제2광유닛로부터 조사되는 광의 단면 중 상기 중첩영역을 형성하는 부분은 통과시키고 상기 중첩영역을 형성하지 않는 부분은 차단하는 한 쌍의 슬릿을 구비하는 슬릿부재;를 더 포함하는 것을 특징으로 하는 결함 검사장치.
  7. 제1항에 기재된 결함 검사장치를 이용하며,
    상기 제1광유닛의 점등상태를 유지하며, 상기 제1광유닛으로부터 조사되고 상기 검사위치에서 반사되어 입사되는 광을 이용하여 상기 검사위치의 영상을 촬상하는 제1촬상단계;
    상기 카메라의 스캔라인의 높이만큼 상기 검사대상물을 이동시키는 이동단계;
    상기 제어부를 통해 상기 제1광유닛을 소등하고, 상기 제2광유닛을 점등하는 제1제어단계;
    상기 제2광유닛의 점등상태를 유지하며, 상기 제2광유닛으로부터 조사되고 상기 검사위치에서 반사되어 입사되는 광을 이용하여 상기 검사위치의 영상을 촬상하는 제2촬상단계;
    상기 카메라의 스캔라인의 높이만큼 상기 검사대상물을 이동시키는 이동단계;
    상기 제어부를 통해 상기 제2광유닛을 소등하고, 상기 제1광유닛을 점등하는 제2제어단계;를 포함하고,
    상기 제1촬상단계부터 상기 제2제어단계까지 반복적으로 수행한 후,
    상기 카메라의 스캔라인을 따라 상기 제1촬상단계를 통해 획득된 영상 또는 상기 제2촬상단계를 통해 획득된 영상을 순차적으로 병합하여 상기 검사대상물 상의 결함을 검출하는 검출단계;를 포함하는 것을 특징으로 하는 결함 검사방법.
  8. 제1항에 기재된 결함 검사장치를 이용하며,
    상기 제1광유닛의 점등상태를 유지하며, 상기 제1광유닛으로부터 조사되고 상기 검사위치에서 반사되어 입사되는 광을 이용하여 상기 검사위치의 영상을 촬상하는 제1촬상단계;
    상기 제어부를 통해 상기 제1광유닛을 소등하고, 상기 제2광유닛을 점등하는 제1제어단계;
    상기 제2광유닛의 점등상태를 유지하며, 상기 제2광유닛으로부터 조사되고 상기 검사위치에서 반사되어 입사되는 광을 이용하여 상기 검사위치의 영상을 촬상하는 제2촬상단계;
    상기 카메라의 스캔라인의 높이만큼 상기 검사대상물을 이동시키는 이동단계;
    상기 제어부를 통해 상기 제2광유닛을 소등하고, 상기 제1광유닛을 점등하는 제2제어단계;를 포함하고,
    상기 제1촬상단계부터 상기 제2제어단계까지 반복적으로 수행한 후,
    상기 카메라의 스캔라인마다 상기 제1촬상단계 및 상기 제2촬상단계를 통해 획득된 영상을 병합하여 상기 검사대상물 상의 결함을 검출하는 검출단계;를 포함하는 것을 특징으로 하는 결함 검사방법.
PCT/KR2011/005427 2010-08-10 2011-07-22 결함 검사장치 및 이를 이용한 결함 검사방법 WO2012020932A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0076935 2010-08-10
KR1020100076935A KR101211438B1 (ko) 2010-08-10 2010-08-10 결함 검사장치

Publications (2)

Publication Number Publication Date
WO2012020932A2 true WO2012020932A2 (ko) 2012-02-16
WO2012020932A3 WO2012020932A3 (ko) 2012-05-31

Family

ID=45568006

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/005427 WO2012020932A2 (ko) 2010-08-10 2011-07-22 결함 검사장치 및 이를 이용한 결함 검사방법

Country Status (2)

Country Link
KR (1) KR101211438B1 (ko)
WO (1) WO2012020932A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015088089A1 (ko) * 2013-12-11 2015-06-18 주식회사 포스코 강판의 결함 탐상 장치 및 방법

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101446984B1 (ko) * 2013-08-08 2014-10-07 이영우 결함 검사장치
KR101584305B1 (ko) * 2014-05-30 2016-01-11 이영우 오목 반사체를 이용한 기판 검사장치
KR101714625B1 (ko) * 2015-09-21 2017-03-09 주식회사 온비젼 슬릿조명을 구비한 비젼검사시스템 및 비젼검사방법
KR102082204B1 (ko) * 2018-10-30 2020-02-27 이영우 커버 글라스의 곡면부 검사장치
KR102244724B1 (ko) * 2019-12-17 2021-05-06 주식회사 휴비츠 대형 샘플 검사용 단층촬영 장치
KR20230020728A (ko) 2021-08-04 2023-02-13 주식회사 온옵틱스 봉체의 표면크랙 검사장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020061476A (ko) * 2001-01-15 2002-07-24 주식회사 브이텍 패널 검사장치 및 패널 검사방법
JP2008216059A (ja) * 2007-03-05 2008-09-18 Kurabo Ind Ltd プリント配線板の検査装置
JP2009097977A (ja) * 2007-10-17 2009-05-07 Hitachi Computer Peripherals Co Ltd 外観検査装置
JP2010139249A (ja) * 2008-12-09 2010-06-24 Futec Inc 長寿命光源を有する検査装置およびその制御方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020061476A (ko) * 2001-01-15 2002-07-24 주식회사 브이텍 패널 검사장치 및 패널 검사방법
JP2008216059A (ja) * 2007-03-05 2008-09-18 Kurabo Ind Ltd プリント配線板の検査装置
JP2009097977A (ja) * 2007-10-17 2009-05-07 Hitachi Computer Peripherals Co Ltd 外観検査装置
JP2010139249A (ja) * 2008-12-09 2010-06-24 Futec Inc 長寿命光源を有する検査装置およびその制御方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015088089A1 (ko) * 2013-12-11 2015-06-18 주식회사 포스코 강판의 결함 탐상 장치 및 방법
US10088453B2 (en) 2013-12-11 2018-10-02 Posco Apparatus and method of detecting defect of steel plate

Also Published As

Publication number Publication date
KR20120014765A (ko) 2012-02-20
WO2012020932A3 (ko) 2012-05-31
KR101211438B1 (ko) 2012-12-12

Similar Documents

Publication Publication Date Title
WO2012020932A2 (ko) 결함 검사장치 및 이를 이용한 결함 검사방법
CN102023164B (zh) 用于检测透明平板的局部缺陷的装置和方法
WO2011087337A2 (ko) 기판 검사장치
WO2016200096A1 (ko) 3차원 형상 측정장치
WO2010104265A2 (ko) 결점 검사를 위한 검사장치
WO2013048093A2 (ko) 비접촉식 부품검사장치 및 부품검사방법
CN107000334B (zh) 对复合结构的在线检验
WO2017150948A1 (ko) 패턴광 조사 장치 및 방법
WO2012121558A1 (ko) 영상 선명도가 개선된 비전검사장치
WO2015080480A1 (ko) 웨이퍼 영상 검사 장치
WO2011083989A2 (ko) 결점 검사장치
WO2016099154A1 (ko) 부품이 실장된 기판 검사방법 및 검사장치
CN104330419A (zh) 菲林检测方法及装置
WO2017200226A1 (ko) 다파장 광 주사 간섭계를 이용한 3차원 형상 측정장치
WO2020232618A1 (zh) 一种基于密集独立光源的表面瑕疵检测设备
WO2016024648A1 (ko) 대면적 평면 검사 장치
WO2019059613A1 (ko) 투과 광학계 검사 장치 및 이를 이용한 필름 결함 검사 방법
KR101447857B1 (ko) 렌즈 모듈 이물 검사 시스템
CN110118787B (zh) 图像检查装置
JP4910637B2 (ja) 基板検査装置及び基板検査方法
JP2007147547A (ja) 濃度ムラ検査装置
WO2022234950A1 (ko) 공초점 센싱 시스템
JPH01303721A (ja) 面傾き検出装置
JP2019138893A (ja) 画像検査装置および照明装置
JP2000295639A (ja) 固体撮像素子検査用照明装置及びそれに用いる調整工具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11816548

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11816548

Country of ref document: EP

Kind code of ref document: A2