WO2017043831A1 - Complex sheet for absorbing/extinguishing and shielding electromagnetic waves and highly dissipating heat from electronic device and manufacturing method therefor - Google Patents

Complex sheet for absorbing/extinguishing and shielding electromagnetic waves and highly dissipating heat from electronic device and manufacturing method therefor Download PDF

Info

Publication number
WO2017043831A1
WO2017043831A1 PCT/KR2016/009948 KR2016009948W WO2017043831A1 WO 2017043831 A1 WO2017043831 A1 WO 2017043831A1 KR 2016009948 W KR2016009948 W KR 2016009948W WO 2017043831 A1 WO2017043831 A1 WO 2017043831A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet
graphite
porous metal
metal sheet
fusion
Prior art date
Application number
PCT/KR2016/009948
Other languages
French (fr)
Korean (ko)
Inventor
주학식
Original Assignee
주학식
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160090511A external-priority patent/KR101749460B1/en
Priority claimed from KR1020160090512A external-priority patent/KR101749461B1/en
Application filed by 주학식 filed Critical 주학식
Priority to CN201680001577.1A priority Critical patent/CN108260366B/en
Priority to JP2016570243A priority patent/JP6393784B2/en
Priority to US15/317,154 priority patent/US11052636B2/en
Priority to ES16798613T priority patent/ES2746161T3/en
Priority to EP16798613.2A priority patent/EP3174375B1/en
Publication of WO2017043831A1 publication Critical patent/WO2017043831A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields

Definitions

  • the present invention is applied to electronic devices such as mobile phones, OLED TVs, LEDs, etc. and relates to a fusion sheet and a method of manufacturing the same to enable stable electromagnetic wave absorption extinction and shielding and also to ensure excellent heat dissipation characteristics of the electronic device.
  • EMBODIMENT OF THE INVENTION The present invention relates to an electromagnetic wave absorption extinction and shielding and a heat dissipation fusion sheet for ensuring high heat radiation.
  • electromagnetic waves refers to a phenomenon in which the electromagnetic field, whose intensity changes periodically, propagates through the space, and its frequency and wavelength, as well as its electromagnetic characteristics, are diverse and used in various fields such as electric, electronic or communication devices. It is used for.
  • the effects of electromagnetic waves on the human body are symptoms of VDT syndrome, which refers to symptoms such as headaches and visual impairments caused by heat generated by microwaves used in microwave ovens and mobile phones, and harmful electromagnetic waves emitted from computers and monitors. It can be seen through various symptoms identified by electromagnetic waves such as DisplayTerminal Syndrome.
  • a number of studies have been reported, such as increased cancer incidence of residents near power transmission lines and brain tumors of long-term users of mobile phones.
  • a conductive metal plate also called shield can
  • EMI ElectroMagnetic Interference
  • the mobile solution module (MSM) chip of a mobile phone has a high temperature rise when the chip's maximum temperature exceeds 80 °C when driven in full mode.
  • MSM mobile solution module
  • Claim 5 is a graphite heat dissipation sheet coated with a thermally conductive adhesive, graphite heat dissipation sheet formed in the form of a sheet of 0.5 to 60mm thickness;
  • the thermally conductive silicone coating is applied to one side of the graphite heat dissipating sheet, and the silicone pressure sensitive adhesive obtained by reacting 25 to 45% by weight of polydimethylsiloxane and 20 to 30% by weight of silicone resin under an alkali catalyst is formed by stirring 25 to 55% by weight of a thermally conductive pillar.
  • a thermally conductive adhesive coated graphite heat dissipating sheet comprising a coating solution consisting of a mixture consisting of 10% by weight of tetrabutyl titanate and 10% by weight of chloroplatinic acid in a 2% ethylhexanol solution.
  • Graphite heat dissipation sheet coated with a thermally conductive adhesive according to the prior art of such a configuration is easily adhered to a display product by applying a thermally conductive adhesive prepared by mixing polydimethylsiloxane, silicone resin and thermally conductive pillars on one side of the graphite heat dissipating sheet.
  • a thermally conductive adhesive prepared by mixing polydimethylsiloxane, silicone resin and thermally conductive pillars on one side of the graphite heat dissipating sheet.
  • the thermal conductivity is improved, and the other side of the graphite heat dissipation sheet is coated with a copolymer coating solution composed of methyl methacrylate-trialkoxysilane to prevent the graphite powder from flying.
  • the graphite heat dissipation sheet coated with the thermally conductive adhesive is to maintain the form by forming an adhesive layer and a copolymer coating solution on the outer surface of the graphite layer made of a sheet made by hardening natural or artificial graphite powder.
  • the graphite layer is easily cracked or damaged due to bending deformation or external force, heat dissipation performance is poor. Therefore, as the durability of the graphite layer in the powder-hardened state is very sensitive to external impacts, considerable care must be taken in handling during manufacture, transportation and storage, as well as when attaching to electronic devices such as displays. There was a problem that mass production is difficult.
  • the present invention has been made in order to solve the problems of the prior art as described above, and an object of the present invention is to use a porous substrate made of a porous metal sheet made of a metal having excellent thermal conductivity as a base, Press-molding the graphite substrate on one surface to press the high-pressure using a pressing device such as a press or a roller in a state in which the pseudo-structured graphite sheet in a state in which the crystal structure is incompletely laminated, resulting in a portion of the graphite substrate Strongly impregnated and bonded to the pores of the metal sheet, which can be combined in a physically and securely integrated state without using an existing adhesive resin or binder material, etc. To provide.
  • the present invention provides a fusion sheet for electromagnetic wave absorption and disappearance and shielding and high heat dissipation of electronic devices based on the technical theory that the micro-pore of the multi-porous metal sheet absorbs electromagnetic waves, converts and dissipates thermal energy through diffuse reflection. .
  • another embodiment of the present invention is a porous porous thin film having elasticity and durability by integrally attaching a composition containing graphite or an organic-inorganic resin or an aluminum-based metal to the surface of the porous porous sheet formed with pores It enables the molding in the form of a sheet, which makes it possible to apply to various electronic devices and suppresses damage such as the occurrence of cracks caused by external force, thereby increasing the product value of the applied product and producing large-area sheets such as large displays.
  • the present invention provides a fusion sheet for electromagnetic wave absorption extinction and shielding and high heat dissipation of an electronic device, and a method of manufacturing the same.
  • the electromagnetic wave absorption extinction and shielding and the high heat radiation fusion sheet for the electromagnetic wave in the electromagnetic wave absorption extinction and shielding fusion sheet, the graphite substrate in the form of a sheet Caustic graphite sheet formed in an incomplete state of crystal structure to have a density of 0.1 ⁇ 1.5g / cm 3;
  • the caustic graphite sheet is laminated on one surface and is integrally attached and bonded to have a density of 1.6 g / cm 3 to 6.0 g / cm 3 by pressure molding, and includes a multi-porous metal sheet formed by forming a plurality of voids connected to the upper and lower surfaces. It is characterized by being configured to.
  • the electromagnetic wave absorption extinction and shielding fusion sheet has a pore size of 0.01 mm to 0.5 mm of the porous metal sheet, and the multi-porous metal sheet of the high heat dissipation sheet has a plurality of 0.001 mm to 0.05 mm voids. It is characterized by.
  • the caustic graphite sheet is formed by compression-molding graphite or graphite powder, or using a graphite composition in which one or more of organic, inorganic, and ceramic groups are formed on graphite, or organic series on graphite. It is to be formed into any one of a mixture made by mixing a heat-dissipating resin of any one or more of the non-mechanical heat, ceramic series.
  • the multi-porous metal sheet is a copper, tin, zinc, aluminum, stainless-based metal powder having a particle size of 1 ⁇ m ⁇ 200 ⁇ m by heat sintering at a temperature of 10-30% lower than the melting temperature It is a sintered sheet made by pressing this.
  • the multi-porous metal sheet is formed by immersing a molding die made of a resin that is vaporized or liquefied at a high temperature in an electrolytic bath, and then electrodepositing metal to form an electrodeposition layer, and heating the mold to remove the resin. It is a metal electrolytic cell sheet.
  • the multi-porous metal sheet is a sheet member formed by forming a pore hole by punching, laser, and etching methods in a thin plate made of copper, tin, zinc, aluminum, or stainless steel.
  • the curved portion forming the surface and the curved surface with respect to one surface to which the pseudo-graphite graphite sheet is attached so as not to break the crystal structure in the state in which the pseudo-graphite sheet is attached by pressure molding, and proceeds inward from the curved portion. While it is configured to include an inclined surface portion is gently reduced in diameter.
  • the multi-porous metal sheet is a net sheet woven so as to cross a vertical wire and a horizontal wire made of a metal having a circular cross section.
  • the multi-porous metal sheet is integrally formed by pressing or applying or impregnating the other surface to which the graphite sheet is not attached, and a part of the multi-porous metal sheet is opposite to the other side through the pores formed on the surface of the multi-porous metal sheet.
  • heat dissipation layer of a metal and an organic-inorganic resin that is impregnated and bound to the graphite sheet side of the, wherein the heat dissipation layer is formed of any one or more of PVC, PC, urethane, silicone, ABS, UV on the surface
  • a method for manufacturing an electromagnetic wave absorbing extinction and shielding fusion sheet has a crystal structure having a graphite substrate having a density of 0.1 g / cm 3 to 1.5 g / cm 3.
  • a multi-porous metal sheet which is a porous porous sintered body having a pore of 0.05 mm to 3.0 mm by heating 10 minutes to 300 minutes under a condition of ⁇ 30% low temperature;
  • the pseudo-molded graphite sheet is laminated on one surface of the multi-porous metal sheet and press-molded to allow the graphite crystals constituting the graphite sheet to be integrally attached and bonded while being impregnated into the surface pores of the multi-porous metal sheet. It characterized in that it comprises a step of forming a fusion sheet having a size of 0.01mm ⁇ 0.5mm while the pressure molded to have a range of 1.6g / cm 3 ⁇ 6.0g / cm 3.
  • a method for manufacturing an electromagnetic wave absorbing extinction and shielding fusion sheet has a crystal structure having a graphite substrate having a density of 0.1 g / cm 3 to 1.5 g / cm 3.
  • Preparing a pseudo-graphite graphite sheet having an incomplete sheet form Applying a conductive solution to the outer surface of the plate-shaped molding frame formed of a resin that is vaporized or liquefied at a high temperature to form a conductive layer, and immersed and energized it in an electroforming tank to electrodeposit metal to form an electrodeposition layer, and then heating the mold.
  • the pseudo-molded graphite sheet is laminated on one surface of the multi-porous metal sheet and press-molded to allow the graphite crystals constituting the graphite sheet to be integrally attached and bonded while being impregnated into the surface pores of the multi-porous metal sheet. Characterized in that it comprises a; fusion sheet forming step having a size of 0.01mm ⁇ 0.5mm of the void while being press-molded to have a range of 1.6g / cm 3 ⁇ 6.0g / cm 3.
  • a method for manufacturing an electromagnetic wave absorbing extinction and shielding fusion sheet has a crystal structure having a graphite substrate having a density of 0.1 g / cm 3 to 1.5 g / cm 3.
  • a curved portion forming a curved shape with the surface is formed on the one surface to which the caustic graphite sheet is attached, and an inclined surface portion that gradually decreases in diameter while proceeding from the curved portion to the inside of the hole.
  • the pseudo-molded graphite sheet is laminated on one surface of the multi-porous metal sheet and press-molded to allow the graphite crystals constituting the graphite sheet to be integrally attached and bonded while being impregnated into the surface pores of the multi-porous metal sheet.
  • Characterized in that it comprises a; fusion sheet forming step having a size of 0.01mm ⁇ 0.5mm void while press-molded to have a range of 1.6g / cm 3 ⁇ 6.0g / cm 3.
  • a method for manufacturing an electromagnetic wave absorbing extinction and shielding fusion sheet the method for producing an electromagnetic wave absorbing extinction and shielding fusion sheet, the density of 0.1g graphite substrate
  • the pseudo-molded graphite sheet is laminated on one surface of the multi-porous metal sheet and then press-molded so that the graphite crystals constituting the graphite sheet are integrally attached and bonded together while being impregnated into the surface pores of the multi-porous metal sheet. It characterized in that it comprises a step of
  • a method for manufacturing a heat dissipating fusion sheet for an electronic device in which a crystal structure having a graphite substrate having a density of 0.1 g / cm 3 to 1.5 g / cm 3 is incomplete.
  • a multi-porous metal sheet which is a porous porous sintered body having pores of 0.001 mm to 3.0 mm pores by heating 10 minutes to 300 minutes under a condition of ⁇ 30% low temperature;
  • the pseudo-molded graphite sheet is laminated on one surface of the multi-porous metal sheet and press-molded to allow the graphite crystals constituting the graphite sheet to be integrally attached and bonded while being impregnated into the surface pores of the multi-porous metal sheet. It characterized in that it comprises a step of forming a fusion sheet having a size of 0.001mm ⁇ 0.05mm void while being press-molded to have a range of 1.6g / cm 3 ⁇ 6.0g / cm 3.
  • a method of manufacturing a high heat dissipation fusion sheet in which a crystal structure having a graphite substrate having a density of 0.1 g / cm 3 to 1.5 g / cm 3 is incomplete.
  • Preparing a pseudo-graphite sheet having a sheet form in a state Applying a conductive solution to the outer surface of the plate-shaped molding frame formed of a resin that is vaporized or liquefied at a high temperature to form a conductive layer, and immersed and energized it in an electroforming tank to electrodeposit metal to form an electrodeposition layer, and then heating the mold.
  • the pseudo-molded graphite sheet is laminated on one surface of the multi-porous metal sheet and press-molded to allow the graphite crystals constituting the graphite sheet to be integrally attached and bonded while being impregnated into the surface pores of the multi-porous metal sheet. Characterized in that it comprises a; fusion sheet forming step having a size of 0.001mm ⁇ 0.05mm void while being press-molded to have a range of 1.6g / cm 3 ⁇ 6.0g / cm 3.
  • a method of manufacturing a high heat dissipation fusion sheet for an electronic device in which a crystal structure having a graphite substrate having a density of 0.1 g / cm 3 to 1.5 g / cm 3 is incomplete.
  • a curved portion forming a curved shape with the surface is formed on the one surface to which the caustic graphite sheet is attached, and an inclined surface portion that gradually decreases in diameter while proceeding from the curved portion to the inside of the hole.
  • the pseudo-molded graphite sheet is laminated on one surface of the multi-porous metal sheet and press-molded to allow the graphite crystals constituting the graphite sheet to be integrally attached and bonded while being impregnated into the surface pores of the multi-porous metal sheet.
  • Characterized in that it comprises a; fusion sheet forming step having a size of 0.001mm ⁇ 0.05mm void while being press-molded to have a range of 1.6g / cm 3 ⁇ 6.0g / cm 3.
  • a method of manufacturing a high heat dissipation fusion sheet according to a fourth embodiment of the present invention in which a crystal structure having a graphite substrate having a density of 0.1 g / cm 3 to 1.5 g / cm 3 is incomplete.
  • Preparing a pseudo-graphite sheet having a sheet form in a state Preparing a pseudo-graphite sheet having a sheet form in a state; Forming a multi-porous metal sheet having a net shape in which a void is formed between the vertical wire and the horizontal wire in such a way that the vertical wire and the horizontal wire made of a metal having a circular cross section cross each other;
  • the pseudo-molded graphite sheet is laminated on one surface of the multi-porous metal sheet and then press-molded so that the graphite crystals constituting the graphite sheet are integrally attached and bonded together while being impregnated into the surface pores of the multi-porous metal sheet. It characterized in that it comprises a step of forming a fusion sheet having a size of 0.001mm ⁇ 0.05mm void while being press-molded to have a range of 1.6g / cm 3 ⁇ 6.0g / cm 3.
  • the method for producing an electromagnetic wave absorption extinction and shielding and high heat dissipation fusion sheet following the forming step of the multi-porous metal sheet is heated for 10 to 40 minutes at 500 °C ⁇ 600 °C Performing an amorphous metal sheet forming step to be amorphous, and further comprising the step of attaching the molded graphite sheet to the amorphous metal sheet by compression molding.
  • Another desirable feature by the method for producing an electromagnetic wave absorbing extinction and shielding and high heat dissipation of the electronic device according to the present invention pressurized or applied or impregnated to the other surface of the multi-porous metal sheet is attached to one side Forming a heat-dissipating film layer made of an organic-inorganic-based resin that is integrally formed by an impregnation to impregnate a portion of the graphite sheet on the opposite side through a gap formed on the surface of the porous metal sheet to generate a binding force;
  • aluminum is formed by attaching integrally to the other surface of the multi-porous metal sheet attached to one side by pressing, applying or impregnated to one side is impregnated into the air gap formed on the surface of the multi-porous metal sheet to create a binding force
  • it is configured to further comprise any one step of the heat radiation film layer forming step provided by a thin plate of aluminum alloy.
  • Electromagnetic wave absorption extinction and shielding fusion sheet according to the present invention and electronic device high heat dissipation fusion sheet a porous base metal sheet made of a porous porous metal as a base material, one side of the outer surface is molded in an incomplete crystal structure
  • the graphite substrate and the porous metal sheet are directly attached and connected, and thus physically solid without using an adhesive resin or a binder material.
  • a pseudo-graphite graphite sheet having an incomplete crystal structure is disposed on the surface of the porous porous metal sheet, which is a porous porous metal substrate having fine pores formed therein, in a stacked form, and is pressed at a high pressure by using a press device such as a press or a roller.
  • a press device such as a press or a roller.
  • the manufacturing process is simple and economical dissemination due to mass production
  • the graphite substrate is impregnated into the surface pores of the porous metal sheet by the pressing force, thereby maintaining a firm bonding state, it is possible to stably suppress the peeling phenomenon of the graphite substrate or the partial dropout caused by external force, thereby providing improved durability.
  • the pressing force since the graphite substrate is impregnated into the surface pores of the porous metal sheet by the pressing force, thereby maintaining a firm bonding state, it is possible to stably suppress the peeling phenomenon of the graphite substrate or the partial dropout caused by external force, thereby providing improved durability. There is an advantage to this.
  • the organic / inorganic / ceramic series / on the other side of the multi-porous metal sheet is not attached to the graphite sheet through the electromagnetic wave absorption extinction and shielding fusion sheet and high heat radiation fusion sheet and manufacturing method thereof according to the present invention It is possible to increase elasticity and durability by forming and integrating a resin-based composition such as graphite or a thin plate made of aluminum or aluminum alloy in a laminated form, and as a result, it is possible to apply to various electronic devices and to produce a large area sheet. There is this.
  • the manufacturing process is simple and economical dissemination is possible due to mass production, and in particular, the graphite substrate is impregnated into the surface pores of the porous metal sheet due to the pressing force, so that a firm bonding state is maintained, and therefore, due to the peeling phenomenon or the external force of the graphite substrate. Partial dropout can be stably suppressed, which provides an advantage of improved durability.
  • the electromagnetic wave absorption extinction and shielding fusion sheet according to another embodiment of the present invention and the high heat radiation fusion sheet for electronic devices is organic / inorganic / ceramic / graphite, etc. as the other side of the porous sheet metal sheet is not attached to the graphite sheet It is possible to secure excellent electromagnetic wave absorption extinction and shielding performance by stacking liquid heat dissipating resins or thin plates made of aluminum / aluminum alloy.
  • the multi-porous metal sheet in the present invention is formed of a metal material, not only thermal conductivity but also durability against cracking and fracture due to external force or bending deformation are excellent, and since the liquid heat-resistant resin including graphite is impregnated into the pores, It is possible to mold in the form of a porous porous sheet having durability, it is possible to apply to a variety of electronic devices, as well as to produce a large area sheet. Therefore, it is possible to increase the product value of the product as a result of ensuring the optimal performance of the product to which it is applied.
  • FIG. 1 is a cross-sectional view for explaining the configuration of the electromagnetic wave absorbing extinction and shielding fusion sheet and high heat radiation fusion sheet according to the present invention
  • FIGS. 2 to 5 are views showing various embodiments of the multi-porous metal sheet in the electromagnetic wave absorbing extinction and shielding melt sheet and high heat radiation fusion sheet of the electronic device according to the present invention
  • Figure 6 is a schematic cross-sectional view for explaining an application example of the electromagnetic wave absorption extinction and shielding fusion sheet and high heat radiation fusion sheet according to the present invention.
  • Figure 7 is an exemplary view for explaining the characteristics of the electromagnetic wave absorption and extinction and shielding fusion sheet and high heat radiation fusion sheet according to the present invention.
  • FIG. 8 to 11 is a schematic diagram for explaining a method for manufacturing the electromagnetic wave absorption and extinction shielding fusion sheet and a high heat radiation fusion sheet according to an embodiment of the present invention.
  • the electromagnetic wave absorption extinction and shielding fusion sheet and the high heat radiation fusion sheet of the electronic device in the present invention are both manufactured by the same configuration and manufacturing method, but there is a functional difference due to the difference in the size of the pores.
  • FIG. 1 is a cross-sectional view for explaining the configuration of the electromagnetic wave absorption and shielding and high heat radiation fusion sheet according to the present invention, in the case of the electromagnetic wave absorption and shielding fusion sheet is formed of a graphite substrate in the form of a sheet with a density of 0.1 Multi-porous metal formed by forming a plurality of voids having a size of 0.01 mm to 0.5 mm and a pseudo-graphite graphite sheet 10 having a crystal structure in an incomplete state with a range of ⁇ 1.5 g / cm 3.
  • the present invention relates to an electromagnetic wave absorption extinction and shielding fusion sheet and a high heat dissipation fusion sheet, but the same configuration and manufacturing process, but the fused sheet integrally pressurized the multi-pore pore sheet and graphite sheet Depending on the size of the pores formed in the electromagnetic wave absorbing and extinguishing, shielding fusion sheet and electronic device high heat dissipation fusion sheet.
  • the electromagnetic wave absorption extinction and shielding fusion sheet is characterized by the electromagnetic wave absorption extinction and shielding by being manufactured by integrally forming a graphite sheet on a multi-porous metal sheet having a pore size of 0.01 mm to 0.5 mm.
  • the high heat dissipation sheet for electronic devices has a pore size of 0.001 mm to 3.0 mm in the porous metal sheet, and finally a pore size of 0.001 mm to 0.05 mm by press molding integrally with the graphite sheet. It is attached to the electronic device by being molded to have a high heat dissipation characteristics.
  • FIG. 2 is a view schematically illustrating a porous metal sheet provided as a sintered sheet according to the first embodiment in the electromagnetic wave absorbing extinction and shielding and high heat dissipation fusion sheet according to the present invention.
  • a copper, tin, zinc, aluminum, stainless-based metal powder having a particle size of 1 ⁇ m to 200 ⁇ m is sintered by heating at a temperature of 10 to 30% lower than the melting temperature and sintered and pressurized.
  • the multi-porous metal sheet is provided as shown, wherein the sintered sheet 21 is a particle size of 1 ⁇ m ⁇ 200 of copper series, tin series, zinc series, aluminum series, stainless series having a melting temperature of 300 °C ⁇ 1800 °C A metal powder having a size of ⁇ m was heated for 10 minutes to 300 minutes under conditions of a temperature of 10 to 30% lower than the melting temperature.
  • the electromagnetic wave absorption and extinction shielding fusion sheet has a pore 20a of 0.05 mm to 3.0 mm. It is molded to have, the electronic heat dissipation fusion sheet is molded to have a gap (20a) of 0.001mm ⁇ 3.0mm.
  • FIG. 3 is a view schematically illustrating a multi-porous metal sheet provided as a metal electroplating sheet according to a second embodiment in the electromagnetic wave absorbing extinction and shielding and high heat dissipation fusion sheet according to the present invention.
  • a plate-shaped mold formed of a resin that is vaporized or liquefied at high temperature is immersed in an electrolytic bath to conduct electricity to electrodeposit metal to form an electrodeposition layer, and the electrodeposition layer is formed.
  • the pores 20a are formed by heating the mold to remove the resin, and if necessary, pressurize about 1 to 10 times, and the porous metal sheet provided as a metal electroforming sheet 22 having a thickness of 0.01 mm to 50 mm formed into a sheet form. Is shown.
  • a plate-shaped mold formed of a resin that is evaporated or liquefied at high temperature is immersed in the electrolytic bath to conduct the electrode to electrodeposit metal to form an electrodeposition layer,
  • the mold was formed by heating the mold in which the electrodeposition layer was formed to remove the resin to form a void 20a having a size of 0.001 mm to 3.0 mm.
  • FIG. 4 is a view schematically illustrating a multi-porous metal sheet provided as a thin sheet according to the third embodiment in the fusion sheet for electromagnetic wave absorption and shielding and high heat radiation of the electronic device according to the present invention.
  • the fusion sheet for the absorption and shielding of electromagnetic waves is a sheet member formed by forming a pore hole by punching, laser, and etching method in a thin plate of copper, tin, zinc, aluminum, and stainless steel.
  • the voids have curved surfaces and curved surfaces that form curved surfaces with respect to one surface to which the pseudo graphite sheet is attached so that the crystal structure is not broken while the pseudo graphite sheet is attached by pressing.
  • the porous metal sheet which is a metal sheet sheet 23, is formed by forming an inclined surface portion whose diameter gradually decreases while moving inward from the portion.
  • the drawing shows pores having a size of 0.001 mm to 3.0 mm by punching, laser, and etching methods on a thin sheet of copper, tin, zinc, aluminum, and stainless steel.
  • a multi-porous metal sheet which is a metal thin sheet 23, is formed by forming a curved surface portion and an inclined surface portion which gradually decreases in diameter while proceeding inward from the curved portion.
  • FIG. 5 is a schematic view illustrating a multi-porous metal sheet provided as a net sheet 24 sheet according to a fourth embodiment in the electromagnetic wave absorbing extinction and shielding and high heat dissipation fusion sheet according to the present invention. .
  • the pores 20a are interwoven between the vertical wires 24a and the horizontal wires 24b made of a metal wire having a circular cross section so as to cross each other.
  • the multi-porous metal sheet is shown is a net sheet 24 is formed, the present invention is not only using a single metal wire to the vertical wire (24a) and the horizontal wire (24b) of the metal wire, It is also possible to weave more than one strand in the form of a net.
  • a multi-porous metal sheet, which is a sheet 24, is shown, and the present invention uses two or more strands in addition to using a single metal wire for the vertical wire 24a and the horizontal wire 24b which are the metal wire. It will be possible to weave in the form of a twisted net.
  • FIG. 6 is a cross-sectional view for explaining an application example of the electromagnetic wave absorbing extinction and shielding and high heat dissipation fusion sheet according to the present invention.
  • the porous metal sheet 20 made of a porous metal made of a metal having excellent thermal conductivity is used as a base, and the porous metal sheet 20 is formed as a base.
  • the electromagnetic wave absorbing extinction and shielding fusion sheet is formed by forming a heat radiation film layer 30 made of any one or one of the metal thin films formed therein, and an insulator 40 formed on the outer surface of the heat radiation film layer to contact an electric heat source. .
  • the porous base metal sheet 20 made of a porous metal made of a metal having excellent thermal conductivity is used as a base, and In a state in which a pseudo-graphite graphite sheet made of a graphite substrate having an incomplete crystal structure is laminated on one surface and pressed at high pressure by using a press device such as a press or a roller, part of the sheet penetrates into the porous metal sheet 20.
  • the heat dissipation layer for an electronic device which forms a heat dissipation layer 30 made of any one or one of the formed metal thin plates, and an insulator 40 for contacting an electric heat source on the outer surface of the heat dissipation layer 30 is shown. .
  • Figure 7 is an exemplary view for explaining the characteristics of the electromagnetic wave absorbing extinction and shielding and high heat dissipation fusion sheet according to the present invention.
  • the drawing shows a configuration example in which the heat source is located on the lower side and the display is located on the lower side of the electromagnetic wave absorption extinction and shielding fusion sheet of the present invention.
  • the transferred heat is a state in which the heat is diffused in the horizontal direction in the graphite sheet portion without being transferred to the upper side, and the fused sheet of the present invention is a net form in which a thin plate, wire, etc. are woven by sintering, metal electroforming, punching, etc.
  • the multi-porous metal sheet 20, and the caustic graphite sheet 10 is attached to the upper portion around the multi-porous metal sheet 20 integrally by pressure molding, and a part of the crystal grains is It is impregnated through the surface side voids 15 of the porous metal sheet 20, the lower portion of the porous metal sheet 20 is an insulator of an insulating composition or A heat dissipation film layer 30 made of any one of a complex or a soft metal thin plate is formed, and the lower surface of the heat dissipation film layer 30 includes an electromagnetic wave absorbing extinction and shielding fusion sheet composed of an insulator 40 for contacting an electric heat source. Is shown.
  • the drawing shows a configuration example in which a heat source is located on the lower side of the high heat dissipation fusion sheet for electronic devices of the present invention and a display is positioned on the upper side.
  • the fusion sheet of the present invention is provided in the form of a net, a thin plate, a wire by weaving, such as sintering, metal electroforming, punching
  • the multi-porous metal sheet 20 and the pseudo-molded graphite sheet 10 are integrally attached to the upper portion centered around the multi-porous metal sheet 20 by pressure molding, and a part of the crystal grains is formed by the multi-porous metal.
  • the lower portion of the multi-porous metal sheet 20 is an insulator or adhesive of an insulating composition or Query the metal heat-radiating film 30 is formed by any one of the thin plate, the lower face of the heat dissipating film layer 30 is made of insulating material and electronic device 40 for contact with the electric heat source thermally fused sheet is shown.
  • FIGS. 8 to 11 are block diagrams for explaining a method for manufacturing a fusion sheet for electromagnetic wave absorption and shielding and heat radiation of the electronic device according to the present invention.
  • FIG. 8 illustrates the provision of a pseudo-graphite graphite sheet 10 made of gparite substrate with an incomplete crystal structure and placing the metal powder on one surface of the multi-porous metal sheet 20 formed through a sintering process.
  • the present invention shows a method for manufacturing an electromagnetic wave absorption extinction and shielding and high heat dissipation fusion sheet using a multi-porous metal sheet prepared by attaching the metal sheet.
  • the multi-porous metal sheet 20 is heat dissipated for contact with a heating source on the other side.
  • the process of forming the membrane layer 30 is shown, wherein the heat dissipation membrane layer 30 is formed on the fused sheet formed by pressing the pseudo-molded graphite sheet 10 and the porous metal sheet 20, or caustic
  • the graphite sheet 10, the porous metal sheet 20, and the heat dissipation layer 30 may be laminated and integrally press-molded.
  • Fig. 9 is a moldable graphite sheet 10 made of a graphite substrate with an incomplete crystal structure having a density ranging from 0.1 g / cm 3 to 1.5 g / cm 3, and a plate-shaped mold formed of a resin vaporized or liquefied at high temperature.
  • the heat dissipation layer 30 is formed on the fusion sheet formed by pressing the pseudo-molded graphite sheet 10 and the porous metal sheet 20 or the flexible graphite sheet 10 and the porous metal sheet 20 And it can be formed by stacking the heat radiation film layer 30 and integrally press molding.
  • Fig. 10 shows a hole in which a pore hole is formed in a thin graphite plate made of a graphite substrate and a pseudo-type graphite sheet having an incomplete crystal structure having a density ranging from 0.1 g / cm 3 to 1.5 g / cm 3. It consists of a multi-porous metal sheet 20 made of a thin sheet consisting of a curved surface portion 23a formed to form a smooth surface with a silver surface and an inclined surface portion 23b extending from the curved surface portion 23a.
  • the multi-porous metal sheet of the graphite substrate is a crystal structure of the graphite substrate by the smooth curved portion 23a of the void 20a in the process of integrally attaching by pressing molding in a state in which the laminated sheet is laminated on one surface It is configured so as not to be broken and to increase the impregnation density by the inclined surface portion 23b.
  • Fig. 11 is a pseudo-graphite graphite sheet made of graphite substrate having an incomplete crystal structure having a density in the range of 0.1 g / cm 3 to 1.5 g / cm 3, and a vertical wire 24a and a horizontal wire 24b having a circular or elliptical cross section.
  • the crystal structure of the graphite substrate is not broken and is impregnated between the nets forming the voids 20a to be integrally attached and bonded to form a fusion sheet.
  • the electromagnetic wave absorbing extinction and shielding fusion sheet and the high heat dissipation fusion sheet of the electronic device according to the present invention will be described first, and then the electromagnetic wave absorption extinction and shielding fusion sheet will be described, and then for high heat radiation of the electronic device The fusion sheet will be described.
  • the electromagnetic wave absorbing extinction and shielding fusion sheet 1 is a porous metal sheet made of a metal material formed by forming a void 15 to have a curved surface without forming an edge so that the graphite crystal structure is not broken during pressurization (10) and being laminated on one surface of the multi-porous metal sheet 20 to form a graphite substrate in the form of a sheet but having a density of 0.1 to 1.5 g / cm 3, in a state in which the crystal structure is formed in an incomplete state.
  • It is laminated on one surface of the porous metal sheet 20 and is integrally attached to the surface of the porous sheet by the pressurizing process, and is provided on the other surface of the porous metal sheet 20 by pressing or coating or impregnation. It is integrally formed and impregnated to the side of the pseudo-graphite graphite sheet 10 on the opposite side through the gap formed in the surface of the porous metal sheet 20. It consists of a heat-radiating film 30 to the resin of the metal and the inorganic binding control sequences.
  • the present invention can be manufactured in two ways according to the physical properties of the heat radiation film layer 30, when the heat radiation film layer 30 is provided in a resin-based coating on one surface of the porous metal sheet 20
  • the multi-porous metal may be integrally formed by press molding in a state in which the dummy graphite sheet 10 is laminated on one surface of the multi-porous metal sheet 20 on which the plurality of voids 20a are formed.
  • it is provided as the laminated porous sheet 10 and the heat-radiating film layer 30 on one side and the other surface of the multi-porous metal sheet 20, respectively, to form them integrally by pressing molded at once There is a way.
  • Caustic graphite sheet 10 is a pseudo-molded graphite substrate having a sheet form, wherein the graphite substrate is one of the allotropes of carbon, compression-molded graphite or graphite powder produced in nature or artificially produced, or A mixture using graphite composition in which any one or at least one of organic, inorganic, and ceramic is formed in graphite, or a mixture of heat-dissipating resin in which at least one of organic, inorganic, and ceramic is formed in graphite. It may be provided in any one of.
  • the caustic graphite sheet 10 is formed by forming the sheet metal sheet 23 in the form of a sheet, and has a density of 0.1 to 1.5 g / cm 3, so that the crystal structure is not completely bonded and has an incomplete state. . This is to allow the crystal structure to be densely pressed by press molding in a state of being laminated on one surface of the porous metal sheet 20 to be described later. If the pseudo-molded graphite sheet 10 has a dense structure state, that is, a density of 1.6 g / cm 3 or more, it is determined by the pressing force when it is integrally pressed in a state laminated on the porous metal sheet 20 to be described later. Since the structure is broken, the thermal conductivity and thermal diffusivity in the plane direction of the graphite sheet are poor.
  • Multi-porous metal sheet 20 is a sheet material having a thickness of 0.01 ⁇ 0.5mm, formed by forming a gap (20a) consisting of fine holes or gaps connected to the upper and lower surfaces, the void 20a at this time is even It is distributed and has a size of 0.01mm ⁇ 3.0mm connected to upper and lower surfaces.
  • the multi-porous metal sheet 20 is preferably provided as a metal material having good thermal conductivity and elasticity against external force as a metal, and the metal has an absorbing and extinguishing function for electromagnetic waves when pores are formed.
  • the present invention proposes that the size of the pores 20a connected to the upper and lower surfaces of the multi-porous metal sheet 20 is 0.01 mm to 3.0 mm. It was.
  • the size of the pore 20a is less than 0.01 mm, the impregnation rate of the graphite substrate, which is a high-performance electromagnetic wave shielding material, is too low due to the micropores, and as a result, there is a closed end that the electromagnetic wave shielding performance is also lowered, and the size of the pore 20a is 3 mm. If it exceeds, the graphite substrate is impregnated to maintain a solid binding state and the closed end is removed or peeled off from the porous metal sheet 20.
  • the present invention proposes that the size of the pores 20a of the multi-porous metal sheet 20 is 0.01 mm to 3 mm, more preferably 0.05 mm to 1.0 mm.
  • the multi-porous metal sheet 20 may be a metal sheet of various forms as long as it has a feature of being provided with a metal sheet formed with a gap 20a formed of fine holes or gaps, but a pseudo-ply laminated on one surface.
  • the voids 20a to which the pseudo-graphite sheet 10 is in contact with the graphite sheet 10 so as not to break the crystal structure of the pseudo-graphite sheet 10 during pressurization have a rounded shape without a corner, that is, a smooth curved surface. It should be formed to have.
  • the multi-porous metal sheet 20 according to the present invention is manufactured by drilling a hole in the sintered sheet 21 manufactured by the sintering process, the metal electroplated sheet 22 manufactured by the metal electroforming method, and the metal thin plate.
  • Metal sheet sheet 23, which is to be provided as a net sheet 24 is produced by weaving a wire in the form of a net, and will be described briefly below the various manufacturing methods of the porous metal sheet 20.
  • the sintered sheet 21 is sintered so that the powders are connected to each other without being completely melted by heating a metal powder having a particle size of 1 ⁇ m to 200 ⁇ m at a temperature lower than the melting temperature. It is a sheet
  • the sintered sheet 21 is a metal powder of copper, tin-based, zinc-based, aluminum-based, stainless-based, such as copper having a melting temperature of 300 °C ⁇ 1800 °C while having a size of 1 ⁇ 200 ⁇ m, outside And then sintered by heating it at a temperature of about 10% to 30% lower than the melting temperature for 10 minutes to 300 minutes and then using a press or a pressurizing equipment such as a roller at a pressure of 30 MPa to 300 MPa once to several times It is manufactured in the form of a sheet by pressing and forming a plurality of pores (20a) having a size of 0.01mm to 3.0mm connected to the upper and lower surfaces having a thickness of 0.01 ⁇ 0.5mm.
  • the metal electrolytic aid sheet 22 is immersed in an electrolytic bath by immersing a plate-shaped mold formed of a resin that is vaporized or liquefied at a high temperature in an electrolytic bath to electrodeposit metal to form an electrodeposition layer.
  • the mold for forming the electrodeposition layer was heated to remove the resin to form the voids 20a. If necessary, the electrode was pressurized 1 to 10 times to provide a metal electroforming sheet 22 formed in a sheet form with a thickness of 0.01 mm to 50 mm. .
  • the metal sheet 23 is a sheet member formed by forming a hole in the thin plate made of copper, tin, zinc, aluminum, stainless-based metal material by punching, laser, etching method as shown in FIG.
  • the pore hole is a curved portion and a curved portion that forms a curved surface with the surface on one side to which the pseudo-graphite graphite sheet is attached so that the crystal structure is not broken while the pseudo-graphite sheet is attached by press molding.
  • It is provided as a multi-porous metal sheet, which is a metal sheet sheet 23 formed by forming an inclined surface portion which gradually decreases in diameter while advancing inward.
  • gap 20a is formed between the vertical wire
  • a multi-porous metal sheet is a net sheet 24, the present invention is a plurality of strands or more in addition to using a single metal wire for the vertical wire (24a) and the horizontal wire (24b) of the metal wire It is also possible to weave the vertical wires and the horizontal wires in the form of a twisted strand of wire.
  • the multi-porous metal sheet 20 manufactured by various manufacturing methods may be adjusted by pressing one or several times by using a pressing device such as a press or a roller.
  • the heat dissipation layer 30 is provided in a laminated form on the other side of the multi-porous metal sheet 20 opposite to the pseudo-molded graphite sheet 10 and is integrally formed by pressing, coating, or impregnation. A part of the metal and organic-inorganic resin is impregnated to the opposite side of the graphite sheet 10 through the gap formed on the surface of the multi-porous metal sheet 20 to generate a binding force.
  • the heat dissipation layer 30 is formed integrally attached to the surface of the multi-porous metal sheet 20, by coating an insulating resin composition of any one or more of PVC, PC, urethane, silicon, ABS, UV Either the formed insulating material or an adhesive formed by applying a resin having an adhesive component or an adhesive formed by attaching a double-sided tape, or a part thereof by pressure bonding with the porous metal sheet 20 while improving heat dissipation characteristics.
  • Any one of the metal thin plates formed by attaching a thin plate made of soft aluminum or an aluminum alloy impregnated into the surface pores 20a of the multi-porous metal sheet 20 may be used or may be composed of a plurality of layers.
  • the heat dissipation film layer 30 in the present invention is arranged in a stacked form on the lower surface side where a heat source (not shown) is located around the porous metal sheet 20, as shown in FIG. 30 may be provided in the form of a single layer of the resin-based insulator or adhesive or adhesive or aluminum sheet, as shown in Figure 6 and 7 as the lower surface of the porous metal sheet 20, the heat source is located
  • a heat insulating film layer 30 made of a resin series or a thin aluminum sheet is laminated, and an insulating material layer 40 formed by coating an insulating resin composition having one or more of PVC, PC, urethane, silicone, ABS, and UV on the bottom surface thereof. It is also possible to comprise a multilayer.
  • a method of manufacturing a fusion sheet for absorbing and shielding electromagnetic waves includes a caustic graphite sheet preparation step (s10) and a sintered sheet 21.
  • the caustic graphite sheet preparing step (s10) is a graphite-based graphite or graphite powder is compression-molded, or the graphite composition or graphite in which any one or more of organic, inorganic, ceramic-based to graphite, or organic-based,
  • a graphite substrate composed of a mixture obtained by mixing a heat-dissipating resin of one or more of inorganic and ceramic series is prepared, and the crystal structure having a density in the range of 0.1 g / cm 3 to 1.5 g / cm 3 is incomplete.
  • Caustic in sheet form In this case, the caustic molding method may be manufactured by various known methods, and thus detailed description thereof will be omitted.
  • the multi-porous metal sheet forming step (s20) first, a copper-based, tin-based, zinc-based, aluminum-based, stainless-based metal powder having a melting temperature of 300 ° C. to 1800 ° C. is prepared, but the particle size of the metal powder is The thing which has the magnitude
  • the graphite crystals constituting the graphite sheet are pressed by pressing the dummy graphite sheet 10 on one surface of the multi-porous metal sheet 20 so that the polycrystalline metal is Impregnated and bonded integrally while being impregnated into the surface voids of the sheet, while being press-molded to have a density of 1.6 g / cm 3 to 6.0 g / cm 3, it is molded to have a size of 0.01 mm to 0.5 mm.
  • the multi-porous metal sheet 20 which is the sintered sheet 21, and the pseudo-molded graphite sheet 10 laminated on one surface thereof using a pressurizing device 1 to 20 times at a pressure of 30 MPa to 300 MPa. As a result, it is pressed to a thickness of 0.01mm ⁇ 50mm to form a fusion sheet.
  • various pressing apparatuses may be used as a pressing method for the laminated structure of the multi-porous metal sheet 20 and the caustic graphite sheet 10, which is the sintered sheet 21, and in the present invention, a press machine or a roller pressing method It is suggested that rolling and rolling mills be used, and may be repeated 1 to 20 times depending on the requirements of the resultant and the performance of the press.
  • the fusion sheet press-molded by the press or roller pressing / rolling press is preferably pressed to flatten the upper and lower surfaces.
  • the bonding force between the metal powders increases.
  • durability and elasticity are increased.
  • the process may be performed at room temperature, but is preferably performed at a low temperature of 40% or less based on the sintering temperature of the metal powder.
  • the amorphous metal sheet forming process of heating and amorphous for 10 to 40 minutes at 500 °C to 600 °C in the process before attaching the caustic graphite sheet 10 to the multi-porous metal sheet 20 of the sintered sheet 21 It is also possible to perform a further, it may be possible to be carried out by attaching the pseudo-molded graphite sheet to the amorphous metal sheet after the molding process by compression molding.
  • the heat radiation film layer forming step (s40) is a process of stacking the heat radiation film layer on the other surface of the multi-porous metal sheet 20, that is, on the opposite side to which the caustic graphite sheet 10 is not attached.
  • the heat dissipation layer 30 is integrally formed by pressing or applying or impregnating in the state of being laminated on the other surface of the multi-porous metal sheet 20, and part of the heat-radiating layer 30 is impregnated with a gap formed on the surface of the multi-porous metal sheet.
  • An organic-inorganic resin or a thin plate made of aluminum or an aluminum alloy is used to attach to the opposite graphite sheet to generate a binding force integrally.
  • the heat dissipation layer may be a composition comprising one or more of organic, inorganic, and ceramic, a graphite composition mixed with some graphite, or a thin sheet of soft aluminum or aluminum alloy. In accordance with the properties of the material used, it can be integrally formed in the multi-porous metal sheet through the method of coating, impregnation, spray, pressure.
  • the present embodiment illustrates that the heat-resistant film layer 30 is formed on the fusion sheet integrally bonded by pressing the multi-porous metal sheet 20 and the caustic graphite sheet 10 which are the sintered sheets 21 to each other.
  • the present invention is not limited thereto, and the multi-porous metal sheet 20, the pseudo-graphite sheet 10, and the heat dissipation layer 30, which are the sintered sheet 21, may be laminated and integrally formed through a pressing process. It will be possible.
  • a method of manufacturing a fusion sheet for absorbing and shielding electromagnetic waves includes a step of preparing a pseudo-graphite graphite sheet (s11) and an electroforming sheet (22). It consists of a multi-porous metal sheet forming step (s21), a fusion sheet forming step (s31), a heat radiation thin film forming step (s41).
  • the provisional type graphite sheet preparing step (s11) is similar to the configuration of the first embodiment described above. That is, the graphite-based graphite or graphite powder is press-molded, or the graphite composition or graphite-based organic composition, inorganic series, ceramic series, or any one or more of organic series, inorganic group, ceramic series, or graphite.
  • a graphite substrate made of a mixture obtained by mixing at least one heat-dissipating resin is prepared, and this is temporarily molded in the form of a sheet having an incomplete crystal structure having a density in the range of 0.1 g / cm 3 to 1.5 g / cm 3.
  • the caustic molding method may be manufactured by various known methods, and thus detailed description thereof will be omitted.
  • a completed multi-porous metal sheet is manufactured by molding a caustic multi-porous metal sheet of a metal electroforming method and then pressing it several times through a pressing process. That is, when the multi-porous metal sheet forming step in the present embodiment will be described in detail, first, a current-carrying layer is formed by applying a current-carrying fluid to the outer surface of a plate-shaped mold formed from a resin that is vaporized or liquefied at a high temperature, thereby forming an electric current layer. Dip the mold into the electrolytic tank. Then, when the mold is formed with the conductive layer immersed in the electroforming tank, the metal is electrodeposited to form the electrodeposition layer.
  • the mold for which the electrodeposition layer is formed is taken out of the electroforming tank and heated to a predetermined temperature, the mold for molding of resin is removed while melting, resulting in a caustic porous metal sheet composed of an electrodeposition layer having voids formed thereon. Thereafter, by pressing the caustic multi-porous metal sheet by using a pressurizing device such as a roller or a press about 1-10 times to form a thickness of 0.01 mm to 50 mm, the molding of the multi-porous metal sheet is completed.
  • a pressurizing device such as a roller or a press about 1-10 times to form a thickness of 0.01 mm to 50 mm
  • the fusion sheet forming step (s31) is a graphite constituting the graphite sheet by pressing in a state in which the dummy graphite sheet 10 is laminated on one surface of the multi-porous metal sheet 20 manufactured by the electroforming method
  • the crystals are integrally attached and bonded while being impregnated into the surface pores of the multi-porous metal sheet, and are molded to have a size of 0.01 mm to 0.5 mm while being press-molded to have a density of 1.6 g / cm 3 to 6.0 g / cm 3. .
  • the pressure is applied to the multi-porous metal sheet 20, which is the electroformed cast sheet 22, and the pseudo-molded graphite sheet 10 laminated on one surface thereof using a pressurizing device 1 to 20 times at a pressure of 30 MPa to 300 MPa.
  • the resultant is pressurized to have a thickness of 0.01 mm to 50 mm to form a fusion sheet.
  • various pressing apparatuses may be used as a pressing method for the laminated structure of the multi-porous metal sheet 20 and the caustic graphite sheet 10 of the electroforming sheet 22, and in the present invention, a pressing machine or a roller pressing method. It is suggested that the in-rolling and rolling mill be used, and may be repeated 1 to 20 times depending on the requirements of the resultant and the performance of the press.
  • the fusion sheet press-molded by the press or roller pressing / rolling press is preferably pressed to flatten the upper and lower surfaces.
  • the process may be performed at room temperature, but is preferably performed at a low temperature of 40% or less based on the sintering temperature of the metal powder.
  • an amorphous metal sheet is formed by heating the amorphous porous sheet 10, which is the electroformed cast sheet 22, to an amorphous state by heating at 500 ° C to 600 ° C for 10 to 40 minutes in a process before attaching the pseudo-molded graphite sheet 10. It is also possible to perform the process further, it may also be carried out by attaching the pseudo-moulded graphite sheet to the amorphous metal sheet after the molding process by compression molding.
  • the heat dissipation layer forming step (s41) is a process of stacking the heat dissipation layer on the other surface of the porous metal sheet 20, that is, on the opposite side to which the caustic graphite sheet 10 is not attached.
  • the heat dissipation layer 30 is integrally formed by pressing or applying or impregnating in the state of being laminated on the other surface of the multi-porous metal sheet 20, and part of the heat-radiating layer 30 is impregnated with a gap formed on the surface of the multi-porous metal sheet.
  • An organic-inorganic resin or a thin plate made of aluminum or an aluminum alloy is used to attach to the opposite graphite sheet to generate a binding force integrally.
  • the heat dissipation layer is a composition of any one or more of organic, inorganic, ceramic-based, or a graphite composition in which some of the graphite is mixed in such a composition, or a thin plate made of soft aluminum or aluminum alloy. It can be used, and is integrally formed in the porous metal sheet through the method of coating, impregnation, spray, pressure depending on the physical properties of the material used.
  • the multi-porous metal sheet 20 and the pseudo-graphite graphite sheet 10, which are the electro-forming sheets 22, are formed by forming a heat-dissipating film layer 30 on the fusion sheet which is integrally bonded to each other by pressing the primary.
  • Exemplary embodiments of the present invention are not limited thereto, but the multi-porous metal sheet 20, the pseudo-graphite sheet 10, and the heat dissipation layer 30, which are the electroforming sheets 22, are laminated and integrally formed through a pressing process. It would be possible.
  • a method of manufacturing a fusion sheet for absorbing and shielding electromagnetic waves includes a caustic graphite sheet preparing step (s12) and a metal thin sheet (23). It consists of a multi-porous metal sheet forming step (s22), a fusion sheet forming step (s32), a heat radiation thin film forming step (s42).
  • the caustic graphite sheet preparation step (s12) is a compression-molded graphite or graphite powder as a substrate, or an organic series, inorganic to a graphite composition or graphite formed of one or more of organic, inorganic, and ceramic based on graphite.
  • a graphite substrate composed of a mixture of heat dissipating resins in which any one or more of the series and the ceramic series is formed is prepared, and the sheet having an incomplete crystal structure having a density in the range of 0.1 g / cm 3 to 1.5 g / cm 3 is prepared. Prune in shape.
  • the caustic molding method may be manufactured by various known methods, and thus detailed description thereof will be omitted.
  • a metal sheet sheet 23 formed by forming a hole in a metal sheet is used, and the metal sheet sheet 23 is made of copper, tin, zinc, aluminum, stainless-based metal materials. It is a sheet member formed by molding a hole for forming voids using any one of a punching, laser, and etching method on a thin plate made of steel.
  • the voids 25, which are holes formed in the metal thin sheet 23, should be provided so that their crystal structures are not broken in a state in which the caustic graphite sheet 10 is attached by pressure molding.
  • the curved portion 23a which forms a curved surface with the surface based on one surface to which the caustic graphite sheet 10 is attached, and an inclined surface that gradually decreases in diameter while proceeding to the inside of the hole in the curved portion 23b. It was proposed to form part 23b. That is, the metal thin sheet 23 may be used as a sheet metal sheet formed of a metal sheet having a gap (20a) formed of fine holes or gaps may be used in various forms, but only one surface Connected to the voids 20a and the voids 25 in which the pseudo-graphite sheet 10 is in contact with each other so as not to break the crystal structure of the pseudo-graphite sheet 10 in the pressurized process with the pseudo-type graphite sheet 10 laminated thereon.
  • the faces to be formed should be formed to have a rounded shape without a corner as a whole, that is, a smooth curved surface.
  • the graphite sheet is pressed by pressing the temporary graphite sheet 10 on one surface of the porous metal sheet 20 provided as the metal sheet 23.
  • the graphite crystals are integrally attached and bonded while being impregnated into the surface pores of the multi-porous metal sheet, and have a size of 0.01 mm to 0.5 mm while being press-molded to have a density of 1.6 g / cm 3 to 6.0 g / cm 3. It is molded to have. That is, the pressure is applied to the multi-porous metal sheet 20, which is the metal thin sheet 23, and the pseudo-molded graphite sheet 10 laminated on one surface thereof using a pressure device 1 to 20 times at a pressure of 30 MPa to 300 MPa.
  • the resultant is pressurized to have a thickness of 0.01 mm to 50 mm to form a fusion sheet.
  • various pressing apparatuses may be used as a pressing method for the laminated structure of the multi-porous metal sheet 20 and the caustic graphite sheet 10, which are the metal thin sheets 23, and in the present invention, a press machine or a roller pressing method. It is suggested that the in-rolling and rolling mill be used, and may be repeated 1 to 20 times depending on the requirements of the resultant and the performance of the press.
  • the fusion sheet press-molded by the press or roller pressing / rolling press is preferably pressed to flatten the upper and lower surfaces. As the pore density increases during the pressing process, the bonding force between the metal powders increases.
  • the process may be performed at room temperature, but is preferably performed at a low temperature of 40% or less based on the sintering temperature of the metal powder.
  • the amorphous metal sheet forming process of heating the amorphous metal sheet for 10 to 40 minutes at 500 ° C. to 600 ° C. in the step before attaching the pseudo-molded graphite sheet 10 to the multi-porous metal sheet that is the metal thin sheet 23 is further performed.
  • the amorphous metal sheet may be attached to the amorphous graphite sheet after the molding process, and may be carried out by compression molding.
  • the heat dissipation layer forming step (s42) is a process of stacking the heat dissipation layer on the other surface of the multi-porous metal sheet 20, that is, on the opposite side to which the caustic graphite sheet 10 is not attached.
  • the heat dissipation layer 30 is integrally formed by pressing or applying or impregnating in the state of being laminated on the other surface of the multi-porous metal sheet 20, and part of the heat-radiating layer 30 is impregnated with a gap formed on the surface of the multi-porous metal sheet.
  • An organic-inorganic resin or a thin plate made of aluminum or an aluminum alloy is used to attach to the opposite graphite sheet to generate a binding force integrally.
  • the heat dissipation layer is a composition of any one or more of organic, inorganic, ceramic, or a ceramic composition, or a graphite composition in which some of the graphite is mixed in such a composition, or a thin plate made of soft aluminum or aluminum alloy. It can be used, and is integrally formed in the porous metal sheet 20 through the method of coating, impregnation, spray, pressure depending on the physical properties of the material used.
  • the multi-porous metal sheet 20, which is the metal thin sheet 23, and the pseudo-molded graphite sheet 10 are primarily formed by forming a heat dissipation film layer 30 in a fusion sheet integrally bonded to each other.
  • Exemplary embodiments of the present invention are not limited thereto, but the multi-porous metal sheet 20, the pseudo-graphite sheet 10, and the heat dissipation layer 30, which are the metal thin sheet 23, are laminated and integrally formed through a pressing process. It would be possible.
  • a method of manufacturing a fusion sheet for absorbing and shielding electromagnetic waves includes a step of preparing a caustic graphite sheet (s13) and a metal thin sheet (23). It consists of a multi-porous metal sheet forming step (s23), a fusion sheet forming step (s33), a heat radiation thin film forming step (s43).
  • the caustic graphite sheet preparation step (s13) is a compression-molded graphite or graphite powder as a base material, or an organic series, inorganic to a graphite composition or graphite formed of any one or more of organic, inorganic, and ceramic based on graphite.
  • a graphite substrate composed of a mixture of heat dissipating resins in which any one or more of the series and the ceramic series is formed is prepared, and the sheet having an incomplete crystal structure having a density in the range of 0.1 g / cm 3 to 1.5 g / cm 3 is prepared. Prune in shape.
  • the caustic molding method may be manufactured by various known methods, and thus detailed description thereof will be omitted.
  • the multi-porous metal sheet forming step (s23) is made by weaving the vertical wire 24a and the horizontal wire 24b made of a metal having a circular cross section to cross each other, between the vertical wire 24a and the horizontal wire 24b.
  • a net sheet 24 in the form of a net or net in which voids are formed is used.
  • the vertical wire 24a and the horizontal wire 24b, which are the metal wires may also be braided into each other using a twisted wire made by twisting two or more strands together. It will be possible.
  • the net sheet 24 may further perform a pressing process using a roller or a press machine to reduce the thickness thereof.
  • the graphite sheet 10 is formed by pressing the dummy graphite sheet 10 on a surface of the multi-porous metal sheet 20 provided as the net sheet 24 in a state of being laminated.
  • the graphite crystals are impregnated in the surface pores of the multi-porous metal sheet to be integrally attached and bonded, and pressurized to have a density of 1.6 g / cm 3 to 6.0 g / cm 3 while having a size of 0.01 mm to 0.5 mm. Molded.
  • the fusion sheet press-molded by the press or roller pressing / rolling press is preferably pressed to flatten the upper and lower surfaces.
  • the bonding force between the metal powders increases.
  • durability and elasticity are increased.
  • the process may be performed at room temperature, but is preferably performed at a low temperature of 40% or less based on the sintering temperature of the metal powder.
  • the amorphous metal sheet forming process of heating the amorphous metal sheet 20 to 10-40 minutes at 500 ° C to 600 ° C in the process before attaching the pseudo-molded graphite sheet 10 to the multi-porous metal sheet 20 that is the net sheet 24 It is also possible to perform a further, it may be possible to be carried out by attaching the pseudo-molded graphite sheet to the amorphous metal sheet after the molding process by compression molding.
  • the heat dissipation layer forming step (s42) is a process of stacking the heat dissipation layer on the other surface of the multi-porous metal sheet 20, that is, on the opposite side to which the caustic graphite sheet 10 is not attached.
  • the heat dissipation layer 30 is integrally formed by pressing or applying or impregnating in the state of being laminated on the other surface of the multi-porous metal sheet 20, and part of the heat-radiating layer 30 is impregnated with a gap formed on the surface of the multi-porous metal sheet.
  • An organic-inorganic resin or a thin plate made of aluminum or an aluminum alloy is used to attach to the opposite graphite sheet to generate a binding force integrally.
  • the heat dissipation layer 30 may be a composition of any one or more of organic, inorganic, and ceramic, or a graphite composition in which some of the graphite is mixed into the composition, or a soft aluminum or aluminum alloy.
  • the thin plate may be used, and is integrally formed with the multi-porous metal sheet 20 by applying, impregnating, spraying, or pressing according to the properties of the material used.
  • an example in which the heat dissipation layer 30 is formed on the fusion sheet integrally bonded by pressing the multi-porous metal sheet 20 and the caustic graphite sheet 10 which are the net sheets 24 to each other is primarily illustrated.
  • the present invention is not limited thereto, and the multi-porous metal sheet 20, the pseudo-graphite sheet 10, and the heat dissipation film layer 30, which are the net sheets 24, may be laminated and integrally formed through a pressing process. It will be possible.
  • the manufacturing method of the electromagnetic wave absorption extinction and shielding fusion sheet applying the multi-porous metal sheet 20 manufactured by various manufacturing processes as described above is simple in the manufacturing process, and economical production is possible through mass production,
  • the graphite crystals constituting the temporary graphite sheet 10 may be formed of the porous metal sheet 20.
  • the heat dissipation layer 30 is also impregnated to the pseudo-graphite sheet 10 side through the air gap 25 so that the physically solid integration is achieved do.
  • the electronic device high heat dissipation fusion sheet 1 is a multi-porous metal sheet made of a metal material formed by forming a void 15 to have a curved surface without forming an edge so that the graphite crystal structure is not largely broken in the pressing process ( 10) to be laminated on one surface of the multi-porous metal sheet 20 to form a graphite substrate in the form of a sheet to have a density of 0.1 ⁇ 1.5g / cm 3 in the crystal structure is formed in an incomplete state in the state It is laminated on one surface of the metal sheet 20 and is integrally attached through a pressurizing process, and is provided with a pressurized graphite sheet 10 and optionally provided by being laminated on the other surface of the multi-porous metal sheet 20.
  • the impregnated graphite is formed integrally by impregnation, and a part thereof is formed on the surface of the multi-porous metal sheet 20 through the pores formed on the opposite side. It consists of the heat radiation film layer 30 which consists of a metal and organic-inorganic series resin impregnated and bound by the sheet
  • the multi-porous metal sheet 20 is integrally attached and bonded so as to have a density 1.6g / cm 3 ⁇ 6.0g / cm 3 with the pseudo-molded graphite sheet to form a plurality of 0.001mm ⁇ 0.05mm pores connected to the upper and lower surfaces Has characteristics.
  • the present invention can be manufactured in two ways according to the physical properties of the heat radiation film layer 30, when the heat radiation film layer 30 is provided in a resin-based coating on one surface of the porous metal sheet 20
  • the multi-porous metal may be integrally formed by press molding in a state in which the dummy graphite sheet 10 is laminated on one surface of the multi-porous metal sheet 20 on which the plurality of voids 20a are formed.
  • it is provided as the laminated porous sheet 10 and the heat-radiating film layer 30 on one side and the other surface of the multi-porous metal sheet 20, respectively, to form them integrally by pressing molded at once There is a way.
  • Caustic graphite sheet 10 is similar to the configuration of the above-described fusion sheet for absorbing and extinguishing electromagnetic waves, detailed description thereof will be omitted.
  • the multi-porous metal sheet 20 is a sheet member having a thickness of 0.01 mm to 50 mm, and is formed by forming a gap 20a formed of minute holes or gaps connected to the upper and lower surfaces, and the voids 20a at this time are evenly formed. It is distributed and has a size of 0.001mm ⁇ 3.0mm connected to the top and bottom.
  • the multi-porous metal sheet 20 is preferably provided as a metal material having good thermal conductivity and elasticity against external force as a metal, and the metal has an absorption and extinction function for electromagnetic waves when pores are formed, in particular, heat dissipation characteristics in the voids. The smaller the superior graphite substrate is, the more excellent the shielding performance can be secured in the low frequency band. Thus, in the present invention, the size of the pores 20a connected to the upper and lower surfaces of the multi-porous metal sheet 20 is increased. It proposed that it is 0.001mm-3.0mm.
  • the size of the pore 20a is less than 0.001mm, not only is it difficult to process due to micropores, but also the impregnation rate of the graphite substrate, which is a heat-dissipating material, is too low, and as a result, the heat dissipation performance is lowered. If the size exceeds 3mm, the graphite substrate is impregnated, and thus, a closed end may be caused to fall off or peel off from the porous metal sheet 20 without maintaining a solid binding state. Therefore, the present invention proposes that the size of the pore 20a of the multi-porous metal sheet 20 is 0.001 mm to 3 mm.
  • the multi-porous metal sheet 20 may be a metal sheet of various forms as long as it has a feature of being provided with a metal sheet formed with a gap 20a formed of fine holes or gaps, but a pseudo-ply laminated on one surface.
  • the voids 20a to which the pseudo-graphite sheet 10 is in contact with the graphite sheet 10 so as not to break the crystal structure of the pseudo-graphite sheet 10 during pressurization have a rounded shape without a corner, that is, a smooth curved surface. It should be formed to have.
  • the multi-porous metal sheet 20 according to the present invention is manufactured by drilling a hole in the sintered sheet 21 manufactured by the sintering process, the metal electroplated sheet 22 manufactured by the metal electroforming method, and the metal thin plate.
  • Metal sheet sheet 23, which is to be provided as a net sheet 24 is produced by weaving a wire in the form of a net, and will be described briefly below the various manufacturing methods of the porous metal sheet 20.
  • the sintered sheet 21 is sintered so that the powders are connected to each other without being completely melted by heating a metal powder having a particle size of 1 ⁇ m to 200 ⁇ m at a temperature lower than the melting temperature. It is a sheet
  • the sintered sheet 21 is a metal powder of copper, tin-based, zinc-based, aluminum-based, stainless-based, such as copper having a melting temperature of 300 °C ⁇ 1800 °C while having a size of 1 ⁇ 200 ⁇ m, outside And then sintered by heating it at a temperature of about 10% to 30% lower than the melting temperature for 10 minutes to 300 minutes and then using a press or a pressurizing equipment such as a roller at a pressure of 30 MPa to 300 MPa once to several times It is manufactured in the form of a sheet by pressing and forming a plurality of voids (20a) having a size of 0.001mm ⁇ 3.0mm connected to the upper and lower surfaces having a thickness of 0.01mm ⁇ 50mm.
  • the metal electrolytic aid sheet 22 is immersed in an electrolytic bath by immersing a plate-shaped mold formed of a resin that is vaporized or liquefied at a high temperature in an electrolytic bath to electrodeposit metal to form an electrodeposition layer.
  • the mold was formed by heating the mold in which the electrodeposition layer was formed to remove the resin to form a void 20a having a size of 0.001 mm to 3.0 mm. Shown is a porous metal sheet provided as electroforming sheet 22.
  • the metal sheet 23 is a hole having a size of 0.001 mm to 3.0 mm by punching, laser, and etching in a thin sheet of copper, tin, zinc, aluminum, or stainless steel based metal material.
  • the pore hole is formed on the surface and curved surface of the void based on one surface to which the pseudo-graphite graphite sheet is attached so that the crystal structure is not broken while the pseudo-graphite sheet is attached by pressing.
  • the perforated metal sheet which is a metal sheet sheet 23, is formed by forming a curved surface portion and an inclined surface portion which gradually decreases in diameter while proceeding inward from the curved portion.
  • the net sheet 24 has a length of 0.001 mm to 3.0 mm between the vertical wire 24a and the horizontal wire 24b made of a metal wire having a circular cross section so as to cross each other.
  • a multi-porous metal sheet is shown, which is a net sheet 24 in which a pore 20a having a size is formed.
  • the present invention uses a single metal wire for the vertical wire 24a and the horizontal wire 24b, which are the metal wires.
  • the multi-porous metal sheet 20 manufactured by various manufacturing methods may be pressurized once or several times using a pressing device such as a press or a roller to adjust the thickness and the size of the pores.
  • the heat dissipation layer 30 is provided in a laminated form on the other surface opposite to the pseudo-molded graphite sheet 10 stacked on one surface of the porous metal sheet 20 to be integrally attached and formed by pressure, coating, impregnation, etc. A part of the metal and organic-inorganic resin is impregnated to the opposite side of the graphite sheet 10 through the gap formed on the surface of the multi-porous metal sheet 20 to generate a binding force.
  • the heat dissipation layer 30 is formed integrally attached to the surface of the multi-porous metal sheet 20, by coating an insulating resin composition of any one or more of PVC, PC, urethane, silicon, ABS, UV Either the formed insulating material or an adhesive formed by applying a resin having an adhesive component or an adhesive formed by attaching a double-sided tape, or a part thereof by pressure bonding with the porous metal sheet 20 while improving heat dissipation characteristics.
  • Any one of the metal thin plates formed by attaching a thin plate made of soft aluminum or an aluminum alloy impregnated into the surface pores 20a of the multi-porous metal sheet 20 may be used or may be composed of a plurality of layers.
  • the method for manufacturing a high heat dissipation fusion sheet for an electronic device includes a caustic graphite sheet preparation step (s10) and a sintered sheet 21. It consists of a porous metal sheet forming step (s20), a fusion sheet forming step (s30), a heat radiation thin film forming step (s40).
  • the caustic graphite sheet preparing step (s10) is a graphite-based graphite or graphite powder is compression-molded, or the graphite composition or graphite in which any one or more of organic, inorganic, ceramic-based to graphite, or organic-based,
  • a graphite substrate composed of a mixture obtained by mixing a heat-dissipating resin of one or more of inorganic and ceramic series is prepared, and the crystal structure having a density in the range of 0.1 g / cm 3 to 1.5 g / cm 3 is incomplete.
  • Caustic in sheet form is a graphite-based graphite or graphite powder is compression-molded, or the graphite composition or graphite in which any one or more of organic, inorganic, ceramic-based to graphite, or organic-based.
  • the multi-porous metal sheet forming step (s20) first, a copper-based, tin-based, zinc-based, aluminum-based, stainless-based metal powder having a melting temperature of 300 ° C. to 1800 ° C. is prepared, but the particle size of the metal powder is The thing which has the magnitude
  • the graphite crystals constituting the graphite sheet are pressed by pressing the dummy graphite sheet 10 on one surface of the multi-porous metal sheet 20 so that the polycrystalline metal is Impregnated and bonded integrally while being impregnated into the surface voids of the sheet, the pressure is molded to have a range of density 1.6g / cm 3 ⁇ 6.0g / cm 3 while being molded to have a size of 0.001mm ⁇ 0.05mm of the voids.
  • the heat radiation film layer forming step (s40) is a process of stacking the heat radiation film layer on the other surface of the multi-porous metal sheet 20, that is, on the opposite side to which the caustic graphite sheet 10 is not attached.
  • the heat dissipation layer 30 is integrally formed by pressing or applying or impregnating in the state of being laminated on the other surface of the multi-porous metal sheet 20, and part of the heat-radiating layer 30 is impregnated with a gap formed on the surface of the multi-porous metal sheet.
  • An organic-inorganic resin or a thin plate made of aluminum or an aluminum alloy is used to attach to the opposite graphite sheet to generate a binding force integrally.
  • the method for manufacturing a high heat dissipation sheet for an electronic device includes a caustic graphite sheet preparation step (s11) and an electroforming sheet 22. It is composed of a multi-porous metal sheet forming step (s21), a fusion sheet forming step (s31), a heat radiation thin film forming step (s41).
  • the provisional type graphite sheet preparing step (s11) is similar to the configuration of the first embodiment described above. That is, the graphite-based graphite or graphite powder is press-molded, or the graphite composition or graphite-based organic composition, inorganic series, ceramic series, or any one or more of organic series, inorganic group, ceramic series, or graphite.
  • a graphite substrate made of a mixture obtained by mixing at least one heat-dissipating resin is prepared, and this is temporarily molded in the form of a sheet having an incomplete crystal structure having a density in the range of 0.1 g / cm 3 to 1.5 g / cm 3.
  • the caustic molding method may be manufactured by various known methods, and thus detailed description thereof will be omitted.
  • a completed multi-porous metal sheet is manufactured by molding a caustic multi-porous metal sheet of a metal electroforming method and then pressing it several times through a pressing process. That is, when the multi-porous metal sheet forming step in the present embodiment will be described in detail, first, a current-carrying layer is formed by applying a current-carrying fluid to the outer surface of a plate-shaped mold formed from a resin that is vaporized or liquefied at a high temperature, thereby forming an electric current layer. Dip the mold into the electrolytic tank. Then, when the mold is formed with the conductive layer immersed in the electroforming tank, the metal is electrodeposited to form the electrodeposition layer.
  • the mold for which the electrodeposition layer was formed was removed from the electroforming tank and heated to a predetermined temperature, the mold for molding was removed while the resin mold was melted, and as a result, a pseudo mold comprising an electrodeposition layer formed with voids having a size of 0.001 mm to 3.0 mm.
  • the perforated metal sheet is completed.
  • a pressurizing device such as a roller or a press about 1-10 times to form a thickness of 0.01 mm to 50 mm, the molding of the multi-porous metal sheet is completed.
  • the fusion sheet forming step (s31) is a graphite constituting the graphite sheet by pressing in a state in which the dummy graphite sheet 10 is laminated on one surface of the multi-porous metal sheet 20 manufactured by the electroforming method
  • the crystals are integrally attached and bonded while being impregnated into the surface pores of the multi-porous metal sheet, and are molded to have a size of 0.001 mm to 0.05 mm while being press-molded to have a density of 1.6 g / cm 3 to 6.0 g / cm 3. .
  • the pressure is applied to the multi-porous metal sheet 20, which is the electroformed cast sheet 22, and the pseudo-molded graphite sheet 10 laminated on one surface thereof using a pressurizing device 1 to 20 times at a pressure of 30 MPa to 300 MPa.
  • the resultant is pressurized to have a thickness of 0.01 mm to 50 mm to form a fusion sheet.
  • the heat dissipation layer forming step (s41) is a process of stacking the heat dissipation layer on the other surface of the porous metal sheet 20, that is, on the opposite side to which the caustic graphite sheet 10 is not attached.
  • the heat dissipation layer 30 is integrally formed by pressing or applying or impregnating in the state of being laminated on the other surface of the multi-porous metal sheet 20, and part of the heat-radiating layer 30 is impregnated with a gap formed on the surface of the multi-porous metal sheet.
  • An organic-inorganic resin or a thin plate made of aluminum or an aluminum alloy is used to attach to the opposite graphite sheet to generate a binding force integrally.
  • a method of manufacturing a high heat dissipation fusion sheet of an electronic device includes a caustic graphite sheet preparing step (s12) and a metal thin sheet (23).
  • the caustic graphite sheet preparation step (s12) is a compression-molded graphite or graphite powder as a substrate, or an organic series, inorganic to a graphite composition or graphite formed of one or more of organic, inorganic, and ceramic based on graphite.
  • a graphite substrate composed of a mixture of heat dissipating resins in which any one or more of the series and the ceramic series is formed is prepared, and the sheet having an incomplete crystal structure having a density in the range of 0.1 g / cm 3 to 1.5 g / cm 3 is prepared. Prune in shape.
  • the caustic molding method may be manufactured by various known methods, and thus detailed description thereof will be omitted.
  • a metal sheet sheet 23 formed by forming a hole in a metal sheet is used, and the metal sheet sheet 23 is made of copper, tin, zinc, aluminum, stainless-based metal materials. It is a sheet member formed by forming a hole for forming a void having a size of 0.001mm to 3.0mm by using any one of a punching, laser, and etching method on a thin plate made of a thin plate.
  • the graphite sheet is pressed by pressing the temporary graphite sheet 10 on one surface of the porous metal sheet 20 provided as the metal sheet 23.
  • the graphite crystals are integrally attached and bonded while being impregnated into the surface pores of the multi-porous metal sheet, and the size of the pores is 0.001 mm to 0.05 mm while being press-molded to have a density of 1.6 g / cm 3 to 6.0 g / cm 3. It is molded to have.
  • the pressure is applied to the multi-porous metal sheet 20, which is the metal thin sheet 23, and the pseudo-molded graphite sheet 10 laminated on one surface thereof using a pressure device 1 to 20 times at a pressure of 30 MPa to 300 MPa.
  • the resultant is pressurized to have a thickness of 0.01 mm to 50 mm to form a fusion sheet.
  • the heat dissipation layer forming step (s42) is a process of stacking the heat dissipation layer on the other surface of the multi-porous metal sheet 20, that is, on the opposite side to which the caustic graphite sheet 10 is not attached.
  • the heat dissipation layer 30 is integrally formed by pressing or applying or impregnating in the state of being laminated on the other surface of the multi-porous metal sheet 20, and part of the heat-radiating layer 30 is impregnated with a gap formed on the surface of the multi-porous metal sheet.
  • An organic-inorganic resin or a thin plate made of aluminum or an aluminum alloy is used to attach to the opposite graphite sheet to generate a binding force integrally.
  • a method of manufacturing a high heat dissipation fusion sheet of an electronic device includes a caustic graphite sheet preparation step (s13) and a metal thin sheet (23).
  • the caustic graphite sheet preparation step (s13) is a compression-molded graphite or graphite powder as a base material, or an organic series, inorganic to a graphite composition or graphite formed of any one or more of organic, inorganic, and ceramic based on graphite.
  • a graphite substrate composed of a mixture of heat dissipating resins in which any one or more of the series and the ceramic series is formed is prepared, and the sheet having an incomplete crystal structure having a density in the range of 0.1 g / cm 3 to 1.5 g / cm 3 is prepared. Prune in shape.
  • the caustic molding method may be manufactured by various known methods, and thus detailed description thereof will be omitted.
  • the multi-porous metal sheet forming step (s23) is made by weaving the vertical wire 24a and the horizontal wire 24b made of a metal having a circular cross section to cross each other, between the vertical wire 24a and the horizontal wire 24b.
  • a net sheet 24 in the form of a net or net in which voids are formed is used.
  • the graphite sheet 10 is formed by pressing the dummy graphite sheet 10 on a surface of the multi-porous metal sheet 20 provided as the net sheet 24 in a state of being laminated.
  • the graphite crystals are impregnated in the surface pores of the multi-porous metal sheet to be integrally attached to each other, and pressurized to have a density of 1.6 g / cm 3 to 6.0 g / cm 3 while having a size of 0.001 mm to 0.05 mm pore. Molded.
  • the heat dissipation layer forming step (s42) is a process of stacking the heat dissipation layer on the other surface of the multi-porous metal sheet 20, that is, on the opposite side to which the caustic graphite sheet 10 is not attached.
  • the heat dissipation layer 30 is integrally formed by pressing or applying or impregnating in the state of being laminated on the other surface of the multi-porous metal sheet 20, and part of the heat-radiating layer 30 is impregnated with a gap formed on the surface of the multi-porous metal sheet.
  • An organic-inorganic resin or a thin sheet of aluminum or aluminum alloy is used, which is attached to the graphite sheet on the opposite side to create a binding force integrally.
  • the manufacturing method of the electronic device high heat dissipation fusion sheet using the multi-porous metal sheet 20 manufactured by various manufacturing processes can be economically produced through mass production due to the simple manufacturing process.
  • the heat dissipation film layer 30 formed on the other surface of the multi-porous metal sheet 20 opposite to the caustic graphite sheet 10 also has its components impregnated toward the caustic graphite sheet 10 through the pores 25.
  • physically solid integration is achieved, thereby improving elasticity and durability, and as a result, sheet production of a large area is possible.

Abstract

Disclosed is a complex sheet for absorbing/extinguishing and shielding electromagnetic waves and highly dissipating heat from an electronic device. The complex sheet for absorbing/extinguishing and shielding electromagnetic waves and highly dissipating heat from an electronic device according to the present invention comprises: a temporarily molded graphite sheet obtained by molding a graphite substrate into a sheet, wherein the density of the sheet ranges from 0.1 to 1.5g/㎤ such that the crystal structure of the sheet is in an incomplete state; and a porous metallic sheet wherein the temporarily molded graphite sheet laminated on one side of the metallic sheet is integrally attached to the metallic sheet by press-molding so as to have a density of 1.6/㎤ to 6.0/㎤, and the metallic sheet has a plurality of pores formed therein, which are connected to the upper and lower surfaces thereof.

Description

전자파 흡수소멸과 차폐용 및 전자기기 고방열용 융합시트 및 그 제조방법Absorption and shielding of electromagnetic wave and high heat dissipation for electronic devices and manufacturing method
본 발명은 휴대폰, OLED TV, LED 등의 전자기기에 적용하여 안정적인 전자파 흡수소멸과 차폐를 가능하게 하고 아울러 전자기기의 우수한 방열특성을 보장하기 위한 융합시트 및 그 제조방법에 관한 것으로서, 더욱 상세하게는 그라파이트 기재를 가압 성형하여 결정구조가 불완전한 상태의 가성형 그라파이트시트를 준비하고 이의 일면에 소결 또는 전해주조 등의 공극을 형성한 다기공 금속시트를 부착 가압하여 일체로 결합 성형함으로써 경제적이면서 고효율의 전자파 흡수소멸과 차폐 그리고 방열특성을 보장하기 위한 전자파 흡수소멸과 차폐용 및 전자기기 고방열용 융합시트에 관한 것이다.The present invention is applied to electronic devices such as mobile phones, OLED TVs, LEDs, etc. and relates to a fusion sheet and a method of manufacturing the same to enable stable electromagnetic wave absorption extinction and shielding and also to ensure excellent heat dissipation characteristics of the electronic device. Prepares a pseudo-graphite graphite sheet in a state of incomplete crystal structure by pressing a graphite substrate, and attaches and presses a multi-porous metal sheet having voids such as sintering or electroforming to one surface thereof, thereby integrally joining and molding to achieve economic and high efficiency. EMBODIMENT OF THE INVENTION The present invention relates to an electromagnetic wave absorption extinction and shielding and a heat dissipation fusion sheet for ensuring high heat radiation.
최근 들어 고성능의 휴대용 무선정보 단말기를 비롯하여 유무선 통신망과 연계 운영되는 가전제품 등 각종 첨단 전자기기의 보급이 급속하게 늘어남에 따라 이들 기기들에 사용되는 전자소자의 고집적화 및 주파수의 광대역화 추세로 인하여 전자파의 발생원, 기기의 방열 필요성이 늘어나고 있는 추세에 있다. 즉, 고성능의 스마트폰과 태블릿 등의 무선정보 단말기를 비롯하여 유무선 통신망과 연계 운영되는 냉장고, 보일러, 감시기기 등을 비롯한 다양한 전자기기 혹은 전자기기의 제어를 받은 장치의 보급이 급속하게 늘어남에 따라 이들 기기들에 사용되는 전자소자의 고집적화 및 주파수의 광대역화 추세로 인하여 전자파의 발생원이 늘어나고 있는 추세에 있다.Recently, with the rapid increase of various high-tech electronic devices such as high-performance portable wireless information terminals and home appliances that are operated in conjunction with wired and wireless communication networks, the trend of high integration of electronic devices used in these devices and widening frequency of electromagnetic waves There is an increasing source of heat generation and the need for heat dissipation of equipment. In other words, as the spread of wireless information terminals such as high-performance smartphones and tablets, refrigerators, boilers, and monitoring devices connected to wired / wireless communication networks, various electronic devices or devices controlled by electronic devices are rapidly increasing. Sources of electromagnetic waves are increasing due to the high integration of electronic devices used in devices and the widening frequency of frequencies.
한편, 전자파(Electromagenetic Waves)는 주기적으로 세기가 변하는 전자기장이 공간을 통해 전파해 가는 현상을 말하며, 그 주파수 및 파장은 물론 전자기적 특성 또한 다양하여 각종 전기·전자기기나 통신기기등 다양한 분야와 용도에 이용되고 있다. 이러한 전자파의 인체에 대한 영향은 전자레인지나 휴대전화 등에 사용되는 마이크로파(Microwave)에 의한 열 작용이나, 컴퓨터, 모니터 등에서 방사되는 해로운 전자기파가 유발하는 두통, 시각장애 등의 증세를 말하는 VDT증후군(Video DisplayTerminal Syndrome) 등 전자파가 원인으로 규명된 각종 증상을 통하여 알 수 있으며, 이 외에도 송전선로 인근 주민의 암발생 증가와 휴대전화 장기 사용자의 뇌종양 발병 등 다수의 연구결과가 보고되고 있다.On the other hand, electromagnetic waves (electromagnetic waves) refers to a phenomenon in which the electromagnetic field, whose intensity changes periodically, propagates through the space, and its frequency and wavelength, as well as its electromagnetic characteristics, are diverse and used in various fields such as electric, electronic or communication devices. It is used for. The effects of electromagnetic waves on the human body are symptoms of VDT syndrome, which refers to symptoms such as headaches and visual impairments caused by heat generated by microwaves used in microwave ovens and mobile phones, and harmful electromagnetic waves emitted from computers and monitors. It can be seen through various symptoms identified by electromagnetic waves such as DisplayTerminal Syndrome. In addition, a number of studies have been reported, such as increased cancer incidence of residents near power transmission lines and brain tumors of long-term users of mobile phones.
특히, 이동통신 기술의 발달과 개인이동통신의 대중화로 인하여, 휴대전화 등의 이동통신기기에서 발생되는 고주파수의 전자파에 사용자가 무방비로 노출되고, 이러한 이동통신기기의 사용 중 두개골 부위의 체온이 상승하는 등 인체에 해로운 영향을 미칠 가능성에 대한 연구와 문제 제기가 계속되고 있다. 이러한 전자파는 인체에 대한 유해성 뿐만 아니라, 전파방해(EMI: Electro Magnetic Interference)로 인해 다른 전자파를 교란시켜 전기·전자기기 자체에 대하여도 기기장애를 유발하는 원인이 될 수 있으며, 특히 전기·전자기기가 소형화 및 집적화됨에 따라서, 외부 전자파는 물론 자체 발생 전자파에 의한 장애 및 오작동 가능성이 상존한다고 할 수 있다.In particular, due to the development of mobile communication technology and the popularization of personal mobile communication, the user is unprotected and exposed to high frequency electromagnetic waves generated from mobile communication devices such as mobile phones, and the temperature of the skull area increases during the use of such mobile communication devices. Research and questioning about the possibility of harmful effects on the human body continues. These electromagnetic waves may disturb other electromagnetic waves due to electromagnetic interference (EMI), as well as harmful to the human body, and may cause device failures for the electrical and electronic devices themselves. As is miniaturized and integrated, it can be said that the possibility of failure and malfunction due to self-generated electromagnetic waves as well as external electromagnetic waves exist.
이러한 전자파에 의한 기기의 영향을 차단하기 위하여 전기·전자기기의 케이스나 주요 회로에 도전성 금속판(일명 실드캔)을 부착하여 금속판의 형태로 전자파 차폐수단을 구성하거나, 전자파 차폐도료인 EMI(ElectroMagnetic Interference)차폐도료를 도포하여 또는 진공증착,스퍼터링등 건식도금)의 방법으로 불요 전자파를 차폐하는 방식이 일반적으로 사용되고 있다.In order to block the influence of the device by electromagnetic waves, a conductive metal plate (also called shield can) is attached to a case or main circuit of an electrical / electronic device to form an electromagnetic shielding means in the form of a metal plate, or EMI (ElectroMagnetic Interference) A method of shielding undesired electromagnetic waves is generally used by applying shielding paint or by vacuum plating or sputtering.
그러나, 휴대폰이나 스마트폰 등과 같은 휴대용 무선정보 단말기의 경우 일면은 디스플레이가 배치되어 있음에 따라 디스플레이 패널을 제외한 나머지 부분에 대한 차폐는 가능할 수 있겠으나 차폐된 전자파가 디스플레이 패널을 통해 방사되는 문제점이 있었다. However, in the case of a portable wireless information terminal such as a mobile phone or a smart phone, since the display is disposed, shielding of the remaining parts except for the display panel may be possible, but shielded electromagnetic waves are radiated through the display panel. .
현재 이러한 문제점을 해결하기 위한 방안으로 각 업체에서 방열시트와 EMI 시트 2종을 적용하여 해결하여 왔으나, 향후 생산원가 절감 및 효율성 차원에서 2가지 기능의 시트를 하나로 통합한 하이브리드 형태의 기능성 시트의 수요가 폭발적으로 증가할 것으로 예상된다. 일례로, 고발열 전자기기 중 하나인 LED 및 각종 반도체, 전자전기부품, 자동차 관련부품의 수요증가에 의해 방열부재는 2011년 대비 38.3% 증가된 4,219억엔, 방열소재는 3.4배 증가된 37억엔으로 보고되고 있다.In order to solve this problem, each company has applied two types of heat dissipation sheet and EMI sheet, but in the future, there is a demand for hybrid functional sheet integrating two functions into one sheet in order to reduce production cost and efficiency. Is expected to explode. For example, due to the increase in demand for LED, one of the high heat-generating electronic devices, various semiconductors, electronic and electric parts, and automobile-related parts, the heat dissipation member is reported to be 42.3 billion yen, an increase of 38.3% compared with 2011, and the heat dissipation material is 3.4 times, which is 3.4 times It is becoming.
또한, 휴대폰의 MSM(Mobile Solution Module) 칩의 경우 Full 모드로 구동시 칩의 최고온도가 80℃를 넘어설 정도로 온도 상승이 크다 휴대폰과 같이 슬림형디 지털기기에는 Heat Sink를 장착 할 공간적인 여유가 없기 때문에 열 확산기구를 사용하여 열집중점(Hot spot)의 온도를 전체 공간으로 퍼뜨려 평균 온도를 낮추는 방법이 가장 효과적이다 이에 따라 수평 방향으로의 열전도성이 높으면서 기존의 접착 필름과 같이 유연하고 접착성이 우수한 시트형태로 제조하는 기술개발이 필요하다. 이를 통해 확인할 수 있듯이 전자기기의 고 성능화에 따른 효과적인 전자파 흡수소멸과 차폐기술의 개발이 시급한 실정이다.In addition, the mobile solution module (MSM) chip of a mobile phone has a high temperature rise when the chip's maximum temperature exceeds 80 ℃ when driven in full mode.There is a space for heat sinks to be installed in slim digital devices such as mobile phones. Since the heat spreading mechanism is used to spread the temperature of the hot spot into the entire space to lower the average temperature, it is most effective. Therefore, the thermal conductivity in the horizontal direction is high and flexible and adhesive like the conventional adhesive film. There is a need for the development of technology for producing sheets having excellent properties. As can be seen through this, it is urgent to develop an effective electromagnetic wave absorption extinction and shielding technology according to the high performance of electronic devices.
또한, 전자기기의 고성능화에 따른 효과적인 방열기술의 개발 역시 시급한 실정이며, 이러한 문제점을 해결하고자 종래에는 대한민국 등록특허 제10-0755014호를 통해 열전도성 점착제가 도포된 그라파이트 방열시트가 제안된 바 있으며, 그 청구항 5에는 열전도성 점착제가 도포된 그라파이트 방열시트에 있어서, 두께가 0.5 내지 60mm의 시트형태로 형성된 그라파이트 방열시트와; 상기 그라파이트 방열시트의 일측면에 도포되되, 폴리디메틸실록산 25 내지 45중량%와 실리콘 레진 20 내지 30중량%를 알칼리 촉매하에 반응하여 얻어진 실리콘 점착제를 열전도성 필라 25 내지 55중량%와 교반 구성된 열전도성 점착제와; 열전도성 점착제의 상측에 부착된 이형지와; 상기 그라파이트 방열시트의 타측면에 도포되되, 메틸메타아크릴레이트 16.6 중량%와, 메타아크릴옥시프로 필트리메톡시실란 16.6중량%, 이소프로필알콜 32.2중량%, 부틸아세테이트 32.2중량% 및 과산화벤조일 0.4중량%로 구성된 혼합물을 테트라부틸티타네이트 10중량%와 2% 에틸헥산올 용액의 염화백금산 10중량%와 혼합 구성된 코팅용액으로 구성됨을 특징으로 하는 열전도성 점착제가 도포된 그라파이트 방열시트가 개시되어 있다.In addition, the development of effective heat dissipation technology in accordance with the high performance of the electronic device is also urgent situation, and in order to solve this problem, a graphite heat dissipation sheet coated with a thermally conductive adhesive has been proposed through the Republic of Korea Patent No. 10-0755014. Claim 5 is a graphite heat dissipation sheet coated with a thermally conductive adhesive, graphite heat dissipation sheet formed in the form of a sheet of 0.5 to 60mm thickness; The thermally conductive silicone coating is applied to one side of the graphite heat dissipating sheet, and the silicone pressure sensitive adhesive obtained by reacting 25 to 45% by weight of polydimethylsiloxane and 20 to 30% by weight of silicone resin under an alkali catalyst is formed by stirring 25 to 55% by weight of a thermally conductive pillar. An adhesive; Release paper attached to the upper side of the thermally conductive adhesive; It is applied to the other side of the graphite heat dissipation sheet, 16.6% by weight of methyl methacrylate, 16.6% by weight of methacryloxypropyltrimethoxysilane, 32.2% by weight of isopropyl alcohol, 32.2% by weight of butyl acetate and 0.4% of benzoyl peroxide A thermally conductive adhesive coated graphite heat dissipating sheet is disclosed, comprising a coating solution consisting of a mixture consisting of 10% by weight of tetrabutyl titanate and 10% by weight of chloroplatinic acid in a 2% ethylhexanol solution.
이와 같은 구성의 종래 기술에 따른 열전도성 점착제가 도포된 그라파이트 방열시트는 그라파이트 방열시트의 일측면에 폴리디메틸실록산과 실리콘 레진 및 열전도성 필라를 혼합 제조된 열전도성 점착제를 도포함으로써 디스플레이 제품에 쉽게 점착되면서도 열전도성을 개선하고, 또한 그라파이트 방열시트의 타측면에는 메틸메타아크릴레이트-트리알콕시실란로 구성된 공중합체 코팅용액을 도포함으로써 그라파이트 가루가 날리지 않도록 하고 있다.Graphite heat dissipation sheet coated with a thermally conductive adhesive according to the prior art of such a configuration is easily adhered to a display product by applying a thermally conductive adhesive prepared by mixing polydimethylsiloxane, silicone resin and thermally conductive pillars on one side of the graphite heat dissipating sheet. In addition, the thermal conductivity is improved, and the other side of the graphite heat dissipation sheet is coated with a copolymer coating solution composed of methyl methacrylate-trialkoxysilane to prevent the graphite powder from flying.
그러나, 상기 종래 기술에 따른 열전도성 점착제가 도포된 그라파이트 방열시트는 천연 또는 인공 흑연 분말을 굳혀서 만든 시트로 된 그라파이트 층의 외면에 점착층과 공중합체 코팅용액을 형성하여 그 형태를 유지되게 하는 것으로 휨변형이나 외력에 의해 그라파이트층이 쉽게 균열되거나 손상이 발생함에 따라 방열성능이 불량해지는 문제점이 있었다. 따라서, 분말을 굳힌 상태의 그라파이트 층의 내구성이 외부 충격에 상당히 민감함에 따라 제조 및 운반 및 보관 과정에서의 취급에 상당한 주의가 필요할 뿐만 아니라 디스플레이등의 전자기기에 부착시에도 상당한 주의를 기울여야 하며 특히 대면적으로 양산이 곤란한 문제점이 있었다.However, the graphite heat dissipation sheet coated with the thermally conductive adhesive according to the prior art is to maintain the form by forming an adhesive layer and a copolymer coating solution on the outer surface of the graphite layer made of a sheet made by hardening natural or artificial graphite powder. As the graphite layer is easily cracked or damaged due to bending deformation or external force, heat dissipation performance is poor. Therefore, as the durability of the graphite layer in the powder-hardened state is very sensitive to external impacts, considerable care must be taken in handling during manufacture, transportation and storage, as well as when attaching to electronic devices such as displays. There was a problem that mass production is difficult.
또한, 비교적 고가의 그라파이트를 대면적용 디스플레이 등과 같은 전자기기용으로 제작하기에는 기술적으로 난해할 뿐만 아니라 전용 설비를 갖춰야 하는 등 양산성이 불량함에 따라 경제적인 제조가 어려운 문제점이 있다. In addition, the production of relatively expensive graphite for electronic devices such as large-area display and the like is not only technically difficult, but it is difficult to economically manufacture due to poor mass production, such as having to provide a dedicated facility.
따라서, 그라파이트 시트를 단독으로 사용이 불가함에 따라 그 양면에 보호층을 덧대는 방법이 사용되고 있으나 이 경우 방열특성이 보호층의 물성 특성으로 인해 저감되는 문제점이 있으며 여전히 내구성이 낮은 폐단이 있다.Therefore, since the graphite sheet cannot be used alone, a method of applying a protective layer on both surfaces thereof is used, but in this case, there is a problem in that the heat dissipation characteristics are reduced due to the physical properties of the protective layer, and there is still a low end durability.
본 발명은 상기와 같은 종래 기술의 문제점을 해결하기 위하여 창출된 것으로서, 본 발명의 목적은 열전도가 우수한 금속으로 된 다기공성 메탈로 된 다기공 금속시트를 베이스 기재로 하고, 이 다기공 금속시트의 일측 표면에 그라파이트 기재를 가압 성형하여 결정구조가 불완전한 상태의 가성형 그라파이트시트를 적층 배치한 상태에서 프레스나 롤러 등의 가압기기를 이용하여 고압력으로 가압함으로써, 결과적으로 상기 그라파이트 기재의 일부가 다기공 금속시트의 공극에 강하게 함침되면서 결합되도록 하여 기존의 접착성 수지나 바인더 재 등을 사용하지 않고도 물리적으로 확실하게 일체화된 상태로 결합시킬 수 있는 전자파 흡수소멸과 차폐용 및 전자기기 고방열용 융합시트를 제공하는데 있다.The present invention has been made in order to solve the problems of the prior art as described above, and an object of the present invention is to use a porous substrate made of a porous metal sheet made of a metal having excellent thermal conductivity as a base, Press-molding the graphite substrate on one surface to press the high-pressure using a pressing device such as a press or a roller in a state in which the pseudo-structured graphite sheet in a state in which the crystal structure is incompletely laminated, resulting in a portion of the graphite substrate Strongly impregnated and bonded to the pores of the metal sheet, which can be combined in a physically and securely integrated state without using an existing adhesive resin or binder material, etc. To provide.
또한, 본 발명은 다기공 금속시트가 갖는 미세 공극이 전자파를 흡수, 난반사를 통한 열에너지를 변환, 소멸시키는 기술적 이론을 토대로 한 전자파 흡수소멸과 차폐용 및 전자기기 고방열용 융합시트를 제공하는데 있다.In addition, the present invention provides a fusion sheet for electromagnetic wave absorption and disappearance and shielding and high heat dissipation of electronic devices based on the technical theory that the micro-pore of the multi-porous metal sheet absorbs electromagnetic waves, converts and dissipates thermal energy through diffuse reflection. .
또한, 본 발명의 다른 실시례는 공극을 형성한 다기공 금속시트의 표면에 그라파이트를 포함하는 조성물 또는 유무기 계열의 수지나 알루미늄 계열의 금속을 일체로 부착 구성시킴으로써 탄성과 내구성을 갖는 다기공성 박막 시트 형태로의 성형을 가능하게 하여 다양한 전자기기에 대한 적용을 가능하게 하고 외력에 의한 균열발생 등의 손상을 억제함으로써 결과적으로 적용제품에 대한 상품가치를 높이고 대형 디스플레이 등과 같은 대면적 시트의 생산을 가능하게 하는 전자파 흡수소멸과 차폐용 및 전자기기 고방열용 융합시트 및 그 제조방법을 제공하는데 잇다.In addition, another embodiment of the present invention is a porous porous thin film having elasticity and durability by integrally attaching a composition containing graphite or an organic-inorganic resin or an aluminum-based metal to the surface of the porous porous sheet formed with pores It enables the molding in the form of a sheet, which makes it possible to apply to various electronic devices and suppresses damage such as the occurrence of cracks caused by external force, thereby increasing the product value of the applied product and producing large-area sheets such as large displays. The present invention provides a fusion sheet for electromagnetic wave absorption extinction and shielding and high heat dissipation of an electronic device, and a method of manufacturing the same.
상기의 목적을 실현하기 위한 본 발명의 바람직한 실시례에 따른 전자파 흡수소멸과 차폐용 및 전자기기 고방열용 융합시트는, 전자파 흡수소멸과 차폐용 융합시트에 있어서, 그라파이트 기재를 시트 형태로 성형하되 밀도 0.1~1.5g/㎤ 범위를 갖도록 하여 결정구조가 불완전한 상태로 형성된 가성형 그라파이트시트; 상기 가성형 그라파이트시트가 일면에 적층되어 가압 성형에 의해 밀도 1.6g/㎤~6.0g/㎤를 갖도록 일체로 부착 결합되는 것으로 상·하면으로 연결되는 공극을 복수 형성하여 된 다기공 금속시트를 포함하여 구성되는 것을 그 특징으로 한다.According to a preferred embodiment of the present invention for achieving the above object, the electromagnetic wave absorption extinction and shielding and the high heat radiation fusion sheet for the electromagnetic wave, in the electromagnetic wave absorption extinction and shielding fusion sheet, the graphite substrate in the form of a sheet Caustic graphite sheet formed in an incomplete state of crystal structure to have a density of 0.1 ~ 1.5g / cm 3; The caustic graphite sheet is laminated on one surface and is integrally attached and bonded to have a density of 1.6 g / cm 3 to 6.0 g / cm 3 by pressure molding, and includes a multi-porous metal sheet formed by forming a plurality of voids connected to the upper and lower surfaces. It is characterized by being configured to.
여기서 상기 전자파 흡수소멸과 차폐용 융합시트는 다기공 금속시트의 공극 크기가 0.01mm~0.5mm로 형성되고, 고방열용 융합시트에서의 다기공 금속시트는 0.001mm~0.05mm 공극을 복수 형성한 것을 특징으로 한다.Herein, the electromagnetic wave absorption extinction and shielding fusion sheet has a pore size of 0.01 mm to 0.5 mm of the porous metal sheet, and the multi-porous metal sheet of the high heat dissipation sheet has a plurality of 0.001 mm to 0.05 mm voids. It is characterized by.
본 발명의 한 특징으로서, 가성형 그라파이트시트는 흑연 또는 흑연분말을 압착 성형하거나, 또는 흑연에 유기계열, 무기계열, 세라믹계열 중 어느 하나 또는 하나 이상을 조성한 흑연조성물을 사용하거나 또는 그라파이트에 유기계열,무기계열,세라믹계열의 중 어느 하나 또는 하나 이상을 조성한 방열수지를 혼합하여 된 혼합물 중 어느 하나로 성형되는 것에 있다.As a feature of the present invention, the caustic graphite sheet is formed by compression-molding graphite or graphite powder, or using a graphite composition in which one or more of organic, inorganic, and ceramic groups are formed on graphite, or organic series on graphite. It is to be formed into any one of a mixture made by mixing a heat-dissipating resin of any one or more of the non-mechanical heat, ceramic series.
본 발명의 다른 특징으로서, 다기공 금속시트는 구리,주석,아연,알루미늄,스텐레스 계열의 금속분말을 1㎛~200㎛의 입도 크기로 하여 용융온도보다 낮은 10~30% 낮은 온도에서 가열 소결하고 이를 가압하여 된 소결시트인 것에 있다.As another feature of the present invention, the multi-porous metal sheet is a copper, tin, zinc, aluminum, stainless-based metal powder having a particle size of 1㎛ ~ 200㎛ by heat sintering at a temperature of 10-30% lower than the melting temperature It is a sintered sheet made by pressing this.
본 발명의 또 다른 특징으로서, 다기공 금속시트는 고온에서 기화 또는 액화되는 수지로 된 성형틀을 전해주조에 침지하여 통전 후 금속전착하여 전착층을 형성하고, 이 성형틀을 가열하여 수지를 제거한 금속전해주조 시트인 것에 있다.As another feature of the present invention, the multi-porous metal sheet is formed by immersing a molding die made of a resin that is vaporized or liquefied at a high temperature in an electrolytic bath, and then electrodepositing metal to form an electrodeposition layer, and heating the mold to remove the resin. It is a metal electrolytic cell sheet.
본 발명의 또 다른 특징으로서, 다기공 금속시트는 동,주석,아연,알루미늄,스텐레스 계열의 금속재로 된 박판에 펀칭,레이저,에칭공법으로 공극구멍을 형성하여 된 시트부재로서, 상기 공극구멍은 상기 가성형 그라파이트시트가 가압성형에 의해 부착된 상태에서 그 결정구조가 깨지지 않도록 상기 가성형 그라파이트시트가 부착되는 일측 표면을 기준으로 그 표면과 곡면 성형을 이루는 곡면부 및 이 곡면부에서 내측으로 진행하면서 지름이 완만하게 감소되는 경사면부를 포함하여 구성되는 것에 있다. As another feature of the present invention, the multi-porous metal sheet is a sheet member formed by forming a pore hole by punching, laser, and etching methods in a thin plate made of copper, tin, zinc, aluminum, or stainless steel. The curved portion forming the surface and the curved surface with respect to one surface to which the pseudo-graphite graphite sheet is attached so as not to break the crystal structure in the state in which the pseudo-graphite sheet is attached by pressure molding, and proceeds inward from the curved portion. While it is configured to include an inclined surface portion is gently reduced in diameter.
본 발명의 또 다른 특징으로서, 다기공 금속시트는 단면이 원형인 금속재로 된 세로줄 와이어와 가로줄 와이어를 서로 교차하도록 엮은 네트시트인 것에 있다.As another feature of the present invention, the multi-porous metal sheet is a net sheet woven so as to cross a vertical wire and a horizontal wire made of a metal having a circular cross section.
본 발명의 또 다른 특징으로서, 상기 다기공 금속시트는 상기 그라파이트시트가 부착되지 않는 타면에 가압 또는 도포 또는 함침에 의해 일체로 부착 형성되는 것으로 일부가 다기공 금속시트의 표면에 형성된 공극을 통해 반대편의 상기 그라파이트시트측으로 함침되어 결속되는 금속 및 유무기 계열의 수지로 된 방열막층을 더 구비하고, 상기 방열막층은 표면에 PVC, PC, 우레탄, 실리콘, ABS, UV 중 어느 하나 또는 하나 이상을 조성한 절연수지조성물을 코팅하여 형성된 절연물 또는 접착성분을 갖는 수지를 도포하여 된 점착물 또는 양면테이프를 부착하여 된 접착물 또는 알루미늄 또는 알루미늄 합금으로 된 박판을 부착하여 형성된 금속박판 중 어느 하나 또는 하나 이상이 적층 형성되는 것에 있다.As another feature of the present invention, the multi-porous metal sheet is integrally formed by pressing or applying or impregnating the other surface to which the graphite sheet is not attached, and a part of the multi-porous metal sheet is opposite to the other side through the pores formed on the surface of the multi-porous metal sheet. Further comprising a heat dissipation layer of a metal and an organic-inorganic resin that is impregnated and bound to the graphite sheet side of the, wherein the heat dissipation layer is formed of any one or more of PVC, PC, urethane, silicone, ABS, UV on the surface At least one of at least one of an insulating material formed by coating an insulating resin composition or an adhesive formed by applying a resin having an adhesive component or an adhesive formed by attaching a double-sided tape or a thin plate made of aluminum or aluminum alloy It is to be laminated | stacked.
상기의 목적을 실현하기 위한 본 발명의 바람직한 제1실시례에 따른 전자파 흡수소멸과 차폐용 융합시트의 제조방법은, 그라파이트 기재를 밀도 0.1g/㎤~1.5g/㎤의 범위를 갖는 결정구조가 불완전한 상태의 시트 형태를 갖는 가성형 그라파이트시트 준비단계; 300℃~1800℃의 용융 온도를 갖는 동계열, 주석 계열, 아연 계열, 알루미늄 계열, 스텐레스 계열의 금속분말로서, 금속 분말의 입도는 1㎛~200㎛의 크기를 갖는 금속 분말을 용융 온도 보다 10~30% 낮은 온도 분위기의 조건에서 10분~300분을 가열하여 0.05mm~3.0mm의 공극을 갖는 다기공성 소결체인 다기공 금속시트 성형단계; 상기 가성형 그라파이트시트를 상기 다기공 금속시트의 일 표면에 적층한 뒤 가압 성형하여 상기 그라파이트시트를 구성하는 그라파이트 결정이 상기 다기공 금속시트의 표면 공극에 함침되면서 일체로 부착 결합되게 하는 것으로, 밀도 1.6g/㎤~6.0g/㎤의 범위를 갖도록 가압 성형되면서 공극 0.01mm~0.5mm의 크기를 갖는 융합시트 형성단계를 포함하여 구성되는 것을 그 특징으로 한다.According to a first embodiment of the present invention for achieving the above object, a method for manufacturing an electromagnetic wave absorbing extinction and shielding fusion sheet has a crystal structure having a graphite substrate having a density of 0.1 g / cm 3 to 1.5 g / cm 3. Preparing a pseudo-graphite graphite sheet having an incomplete sheet form; Copper, tin-based, zinc-based, aluminum-based, stainless-based metal powders having a melting temperature of 300 ° C. to 1800 ° C., wherein the metal powder has a particle size of 1 μm to 200 μm that is higher than the melting temperature. Forming a multi-porous metal sheet which is a porous porous sintered body having a pore of 0.05 mm to 3.0 mm by heating 10 minutes to 300 minutes under a condition of ˜30% low temperature; The pseudo-molded graphite sheet is laminated on one surface of the multi-porous metal sheet and press-molded to allow the graphite crystals constituting the graphite sheet to be integrally attached and bonded while being impregnated into the surface pores of the multi-porous metal sheet. It characterized in that it comprises a step of forming a fusion sheet having a size of 0.01mm ~ 0.5mm while the pressure molded to have a range of 1.6g / cm 3 ~ 6.0g / cm 3.
상기의 목적을 실현하기 위한 본 발명의 바람직한 제2실시례에 따른 전자파 흡수소멸과 차폐용 융합시트의 제조방법은, 그라파이트 기재를 밀도 0.1g/㎤~1.5g/㎤의 범위를 갖는 결정구조가 불완전한 상태의 시트 형태를 갖는 가성형 그라파이트시트 준비단계; 고온에서 기화 또는 액화되는 수지로 성형된 판상의 성형틀 외면에 통전액을 도포하여 통전층을 형성하고, 이를 전해주조에 침지 및 통전시켜 금속을 전착하여 전착층을 형성한 뒤 상기 성형틀을 가열하여 수지를 제거하여 성형하여 된 가성형 다기공 금속시트 성형단계; 상기 가성형 다기공 금속시트를 두께 0.01mm~50mm가 되도록 1회~10회 가압하여 된 다기공 금속시트 성형단계; 상기 가성형 그라파이트시트를 상기 다기공 금속시트의 일 표면에 적층한 뒤 가압 성형하여 상기 그라파이트시트를 구성하는 그라파이트 결정이 상기 다기공 금속시트의 표면 공극에 함침되면서 일체로 부착 결합되게 하는 것으로, 밀도 1.6g/㎤~6.0g/㎤의 범위를 갖도록 가압 성형되면서 공극 0.01mm~0.5mm의 크기를 갖는 융합시트 형성단계;를 포함하여 구성되는 것을 그 특징으로 한다.According to a second preferred embodiment of the present invention for achieving the above object, a method for manufacturing an electromagnetic wave absorbing extinction and shielding fusion sheet has a crystal structure having a graphite substrate having a density of 0.1 g / cm 3 to 1.5 g / cm 3. Preparing a pseudo-graphite graphite sheet having an incomplete sheet form; Applying a conductive solution to the outer surface of the plate-shaped molding frame formed of a resin that is vaporized or liquefied at a high temperature to form a conductive layer, and immersed and energized it in an electroforming tank to electrodeposit metal to form an electrodeposition layer, and then heating the mold. Forming a pseudo-porous multi-porous metal sheet formed by removing resin; Forming the multi-porous metal sheet by pressing the caustic multi-porous metal sheet once to 10 times so as to have a thickness of 0.01 mm to 50 mm; The pseudo-molded graphite sheet is laminated on one surface of the multi-porous metal sheet and press-molded to allow the graphite crystals constituting the graphite sheet to be integrally attached and bonded while being impregnated into the surface pores of the multi-porous metal sheet. Characterized in that it comprises a; fusion sheet forming step having a size of 0.01mm ~ 0.5mm of the void while being press-molded to have a range of 1.6g / cm 3 ~ 6.0g / cm 3.
상기의 목적을 실현하기 위한 본 발명의 바람직한 제3실시례에 따른 전자파 흡수소멸과 차폐용 융합시트의 제조방법은, 그라파이트 기재를 밀도 0.1g/㎤~1.5g/㎤의 범위를 갖는 결정구조가 불완전한 상태의 시트 형태를 갖는 가성형 그라파이트시트 준비단계; 동,주석,아연,알루미늄,스텐레스 계열의 금속재로 된 박판에 펀칭,레이저,에칭공법으로 공극구멍을 형성한 시트 부재로서, 상기 공극구멍은 상기 가성형 그라파이트시트가 가압성형에 의해 부착된 상태에서 그 결정구조가 깨지지 않도록 상기 가성형 그라파이트시트가 부착되는 일측 표면을 기준으로 그 표면과 곡면 성형을 이루는 곡면부와 이 곡면부에서 구멍의 내측으로 진행하면서 지름이 완만하게 감소되는 경사면부를 형성하여 된 다기공 금속시트 성형단계; 상기 가성형 그라파이트시트를 상기 다기공 금속시트의 일 표면에 적층한 뒤 가압 성형하여 상기 그라파이트시트를 구성하는 그라파이트 결정이 상기 다기공 금속시트의 표면 공극에 함침되면서 일체로 부착 결합되게 하는 것으로, 밀도 1.6g/㎤~6.0g/㎤의 범위를 갖도록 가압 성형되면서 공극 0.01mm~0.5mm의 크기를 갖는 융합시트 형성단계;로 구성되는 것을 그 특징으로 한다.According to a third embodiment of the present invention for achieving the above object, a method for manufacturing an electromagnetic wave absorbing extinction and shielding fusion sheet has a crystal structure having a graphite substrate having a density of 0.1 g / cm 3 to 1.5 g / cm 3. Preparing a pseudo-graphite graphite sheet having an incomplete sheet form; A sheet member in which a pore hole is formed by punching, laser, or etching in a thin plate made of copper, tin, zinc, aluminum, or stainless steel, wherein the pore hole is attached to the pseudo-graphite sheet by pressing. In order to prevent the crystal structure from being broken, a curved portion forming a curved shape with the surface is formed on the one surface to which the caustic graphite sheet is attached, and an inclined surface portion that gradually decreases in diameter while proceeding from the curved portion to the inside of the hole. Forming a porous metal sheet; The pseudo-molded graphite sheet is laminated on one surface of the multi-porous metal sheet and press-molded to allow the graphite crystals constituting the graphite sheet to be integrally attached and bonded while being impregnated into the surface pores of the multi-porous metal sheet. Characterized in that it comprises a; fusion sheet forming step having a size of 0.01mm ~ 0.5mm void while press-molded to have a range of 1.6g / cm 3 ~ 6.0g / cm 3.
상기의 목적을 실현하기 위한 본 발명의 바람직한 제4실시례에 따른 전자파 흡수소멸과 차폐용 융합시트의 제조방법은, 전자파 흡수소멸과 차폐용 융합시트의 제조방법에 있어서, 그라파이트 기재를 밀도 0.1g/㎤~1.5g/㎤의 범위를 갖는 결정구조가 불완전한 상태의 시트 형태를 갖는 가성형 그라파이트시트 준비단계; 단면이 원형인 금속재로 된 세로줄 와이어와 가로줄 와이어를 서로 교차하도록 엮어서 된 것으로 상기 세로줄 와이어와 가로줄 와이어의 사이에 공극이 형성되는 네트 모양의 다기공 금속시트 성형단계; 상기 가성형 그라파이트시트를 상기 다기공 금속시트의 일 표면에 적층한 뒤 가압 성형하여 상기 그라파이트시트를 구성하는 그라파이트 결정이 상기 다기공 금속시트의 표면 공극에 함침되면서 일체로 부착결합되게 하는 것으로, 밀도 1.6g/㎤~6.0g/㎤의 범위를 갖도록 가압 성형되면서 공극 0.01mm~0.5mm의 크기를 갖는 융합시트 형성단계를 포함하여 구성되는 것을 그 특징으로 한다.In accordance with a fourth embodiment of the present invention for achieving the above object, a method for manufacturing an electromagnetic wave absorbing extinction and shielding fusion sheet, the method for producing an electromagnetic wave absorbing extinction and shielding fusion sheet, the density of 0.1g graphite substrate A step of preparing a pseudo-graphite graphite sheet having a sheet form in which a crystal structure having a range of / cm 3 to 1.5g / cm 3 is incomplete; Forming a multi-porous metal sheet having a net shape in which a void is formed between the vertical wire and the horizontal wire in such a way that the vertical wire and the horizontal wire made of a metal having a circular cross section cross each other; The pseudo-molded graphite sheet is laminated on one surface of the multi-porous metal sheet and then press-molded so that the graphite crystals constituting the graphite sheet are integrally attached and bonded together while being impregnated into the surface pores of the multi-porous metal sheet. It characterized in that it comprises a step of forming a fusion sheet having a size of 0.01mm ~ 0.5mm while the pressure molded to have a range of 1.6g / cm 3 ~ 6.0g / cm 3.
상기의 목적을 실현하기 위한 본 발명의 바람직한 제1실시례에 따른 전자기기 고방열용 융합시트의 제조방법은, 그라파이트 기재를 밀도 0.1g/㎤~1.5g/㎤의 범위를 갖는 결정구조가 불완전한 상태의 시트 형태를 갖는 가성형 그라파이트시트 준비단계; 300℃~1800℃의 용융 온도를 갖는 동계열, 주석 계열, 아연 계열, 알루미늄 계열, 스텐레스 계열의 금속분말로서, 금속 분말의 입도는 1㎛~200㎛의 크기를 갖는 금속 분말을 용융 온도 보다 10~30% 낮은 온도 분위기의 조건에서 10분~300분을 가열하여 0.001mm~3.0mm 공극의 공극을 갖는 다기공성 소결체인 다기공 금속시트 성형단계; 상기 가성형 그라파이트시트를 상기 다기공 금속시트의 일 표면에 적층한 뒤 가압 성형하여 상기 그라파이트시트를 구성하는 그라파이트 결정이 상기 다기공 금속시트의 표면 공극에 함침되면서 일체로 부착 결합되게 하는 것으로, 밀도 1.6g/㎤~6.0g/㎤의 범위를 갖도록 가압 성형되면서 공극 0.001mm~0.05mm의 크기를 갖는 융합시트 형성단계를 포함하여 구성되는 것을 그 특징으로 한다.According to a first aspect of the present invention, there is provided a method for manufacturing a heat dissipating fusion sheet for an electronic device, in which a crystal structure having a graphite substrate having a density of 0.1 g / cm 3 to 1.5 g / cm 3 is incomplete. Preparing a pseudo-graphite sheet having a sheet form in a state; Copper, tin-based, zinc-based, aluminum-based, stainless-based metal powders having a melting temperature of 300 ° C. to 1800 ° C., wherein the metal powder has a particle size of 1 μm to 200 μm that is higher than the melting temperature. Forming a multi-porous metal sheet which is a porous porous sintered body having pores of 0.001 mm to 3.0 mm pores by heating 10 minutes to 300 minutes under a condition of ˜30% low temperature; The pseudo-molded graphite sheet is laminated on one surface of the multi-porous metal sheet and press-molded to allow the graphite crystals constituting the graphite sheet to be integrally attached and bonded while being impregnated into the surface pores of the multi-porous metal sheet. It characterized in that it comprises a step of forming a fusion sheet having a size of 0.001mm ~ 0.05mm void while being press-molded to have a range of 1.6g / cm 3 ~ 6.0g / cm 3.
상기의 목적을 실현하기 위한 본 발명의 바람직한 제2실시례에 따른 전자기기 고방열용 융합시트의 제조방법은, 그라파이트 기재를 밀도 0.1g/㎤~1.5g/㎤의 범위를 갖는 결정구조가 불완전한 상태의 시트 형태를 갖는 가성형 그라파이트시트 준비단계; 고온에서 기화 또는 액화되는 수지로 성형된 판상의 성형틀 외면에 통전액을 도포하여 통전층을 형성하고, 이를 전해주조에 침지 및 통전시켜 금속을 전착하여 전착층을 형성한 뒤 상기 성형틀을 가열하여 수지를 제거하여 성형하여 된 가성형 다기공 금속시트 성형단계; 상기 가성형 다기공 금속시트를 두께 0.01mm~50mm가 되도록 1회~10회 가압하여 된 다기공 금속시트 성형단계; 상기 가성형 그라파이트시트를 상기 다기공 금속시트의 일 표면에 적층한 뒤 가압 성형하여 상기 그라파이트시트를 구성하는 그라파이트 결정이 상기 다기공 금속시트의 표면 공극에 함침되면서 일체로 부착 결합되게 하는 것으로, 밀도 1.6g/㎤~6.0g/㎤의 범위를 갖도록 가압 성형되면서 공극 0.001mm~0.05mm의 크기를 갖는 융합시트 형성단계;를 포함하여 구성되는 것을 그 특징으로 한다.According to a second aspect of the present invention, there is provided a method of manufacturing a high heat dissipation fusion sheet according to a second embodiment of the present invention, in which a crystal structure having a graphite substrate having a density of 0.1 g / cm 3 to 1.5 g / cm 3 is incomplete. Preparing a pseudo-graphite sheet having a sheet form in a state; Applying a conductive solution to the outer surface of the plate-shaped molding frame formed of a resin that is vaporized or liquefied at a high temperature to form a conductive layer, and immersed and energized it in an electroforming tank to electrodeposit metal to form an electrodeposition layer, and then heating the mold. Forming a pseudo-porous multi-porous metal sheet formed by removing resin; Forming the multi-porous metal sheet by pressing the caustic multi-porous metal sheet once to 10 times so as to have a thickness of 0.01 mm to 50 mm; The pseudo-molded graphite sheet is laminated on one surface of the multi-porous metal sheet and press-molded to allow the graphite crystals constituting the graphite sheet to be integrally attached and bonded while being impregnated into the surface pores of the multi-porous metal sheet. Characterized in that it comprises a; fusion sheet forming step having a size of 0.001mm ~ 0.05mm void while being press-molded to have a range of 1.6g / cm 3 ~ 6.0g / cm 3.
상기의 목적을 실현하기 위한 본 발명의 바람직한 제3실시례에 따른 전자기기 고방열용 융합시트의 제조방법은, 그라파이트 기재를 밀도 0.1g/㎤~1.5g/㎤의 범위를 갖는 결정구조가 불완전한 상태의 시트 형태를 갖는 가성형 그라파이트시트 준비단계; 동,주석,아연,알루미늄,스텐레스 계열의 금속재로 된 박판에 펀칭,레이저,에칭공법으로 공극구멍을 형성한 시트 부재로서, 상기 공극구멍은 상기 가성형 그라파이트시트가 가압성형에 의해 부착된 상태에서 그 결정구조가 깨지지 않도록 상기 가성형 그라파이트시트가 부착되는 일측 표면을 기준으로 그 표면과 곡면 성형을 이루는 곡면부와 이 곡면부에서 구멍의 내측으로 진행하면서 지름이 완만하게 감소되는 경사면부를 형성하여 된 다기공 금속시트 성형단계; 상기 가성형 그라파이트시트를 상기 다기공 금속시트의 일 표면에 적층한 뒤 가압 성형하여 상기 그라파이트시트를 구성하는 그라파이트 결정이 상기 다기공 금속시트의 표면 공극에 함침되면서 일체로 부착 결합되게 하는 것으로, 밀도 1.6g/㎤~6.0g/㎤의 범위를 갖도록 가압 성형되면서 공극 0.001mm~0.05mm의 크기를 갖는 융합시트 형성단계;로 구성되는 것을 그 특징으로 한다.According to a third aspect of the present invention, there is provided a method of manufacturing a high heat dissipation fusion sheet for an electronic device, in which a crystal structure having a graphite substrate having a density of 0.1 g / cm 3 to 1.5 g / cm 3 is incomplete. Preparing a pseudo-graphite sheet having a sheet form in a state; A sheet member in which a pore hole is formed by punching, laser, or etching in a thin plate made of copper, tin, zinc, aluminum, or stainless steel, wherein the pore hole is attached to the pseudo-graphite sheet by pressing. In order to prevent the crystal structure from being broken, a curved portion forming a curved shape with the surface is formed on the one surface to which the caustic graphite sheet is attached, and an inclined surface portion that gradually decreases in diameter while proceeding from the curved portion to the inside of the hole. Forming a porous metal sheet; The pseudo-molded graphite sheet is laminated on one surface of the multi-porous metal sheet and press-molded to allow the graphite crystals constituting the graphite sheet to be integrally attached and bonded while being impregnated into the surface pores of the multi-porous metal sheet. Characterized in that it comprises a; fusion sheet forming step having a size of 0.001mm ~ 0.05mm void while being press-molded to have a range of 1.6g / cm 3 ~ 6.0g / cm 3.
상기의 목적을 실현하기 위한 본 발명의 바람직한 제4실시례에 따른 전자기기 고방열용 융합시트의 제조방법은, 그라파이트 기재를 밀도 0.1g/㎤~1.5g/㎤의 범위를 갖는 결정구조가 불완전한 상태의 시트 형태를 갖는 가성형 그라파이트시트 준비단계; 단면이 원형인 금속재로 된 세로줄 와이어와 가로줄 와이어를 서로 교차하도록 엮어서 된 것으로 상기 세로줄 와이어와 가로줄 와이어의 사이에 공극이 형성되는 네트 모양의 다기공 금속시트 성형단계; 상기 가성형 그라파이트시트를 상기 다기공 금속시트의 일 표면에 적층한 뒤 가압 성형하여 상기 그라파이트시트를 구성하는 그라파이트 결정이 상기 다기공 금속시트의 표면 공극에 함침되면서 일체로 부착결합되게 하는 것으로, 밀도 1.6g/㎤~6.0g/㎤의 범위를 갖도록 가압 성형되면서 공극 0.001mm~0.05mm의 크기를 갖는 융합시트 형성단계를 포함하여 구성되는 것을 그 특징으로 한다.According to a fourth aspect of the present invention, there is provided a method of manufacturing a high heat dissipation fusion sheet according to a fourth embodiment of the present invention, in which a crystal structure having a graphite substrate having a density of 0.1 g / cm 3 to 1.5 g / cm 3 is incomplete. Preparing a pseudo-graphite sheet having a sheet form in a state; Forming a multi-porous metal sheet having a net shape in which a void is formed between the vertical wire and the horizontal wire in such a way that the vertical wire and the horizontal wire made of a metal having a circular cross section cross each other; The pseudo-molded graphite sheet is laminated on one surface of the multi-porous metal sheet and then press-molded so that the graphite crystals constituting the graphite sheet are integrally attached and bonded together while being impregnated into the surface pores of the multi-porous metal sheet. It characterized in that it comprises a step of forming a fusion sheet having a size of 0.001mm ~ 0.05mm void while being press-molded to have a range of 1.6g / cm 3 ~ 6.0g / cm 3.
본 발명에 따른 전자파 흡수소멸과 차폐용 및 전자기기 고방열용 융합시트의 제조방법에 의한 바람직한 한 특징으로서, 상기 다기공 금속시트의 성형단계에 이어서 500℃~600℃에서 10~40분간 가열하여 비정질화시키는 비정질 금속시트 성형단계를 수행하고, 상기 비정질 금속시트에 가성형 그라파이트시트를 부착하여 압착성형하는 단계를 더 포함하는 것에 있다.As a preferred feature of the method for producing an electromagnetic wave absorption extinction and shielding and high heat dissipation fusion sheet according to the present invention, following the forming step of the multi-porous metal sheet is heated for 10 to 40 minutes at 500 ℃ ~ 600 ℃ Performing an amorphous metal sheet forming step to be amorphous, and further comprising the step of attaching the molded graphite sheet to the amorphous metal sheet by compression molding.
본 발명에 따른 전자파 흡수소멸과 차폐용 및 전자기기 고방열용 융합시트의 제조방법에 의한 바람직한 다른 특징으로서, 상기 가성형 그라파이트시트가 일면에 부착된 다기공 금속시트의 타면에 가압 또는 도포 또는 함침에 의해 일체로 부착 형성되는 것으로 일부가 다기공 금속시트의 표면에 형성된 공극을 통해 반대편의 상기 그라파이트시트측으로 함침되어 일체로 결속력을 생성시키는 유무기 계열의 수지로 된 방열막층 형성단계; 또는 상기 가성형 그라파이트시트가 일면에 부착된 다기공 금속시트의 타면에 가압 또는 도포 또는 함침에 의해 일체로 부착 형성되는 것으로 일부가 다기공 금속시트의 표면에 형성된 공극으로 함침되어 결속력을 생성시키는 알루미늄 또는 알루미늄 합금으로 된 박판으로 구비되는 방열막층 형성단계 중 어느 하나의 단계를 더 포함하여 구성되는 것에 있다.Another desirable feature by the method for producing an electromagnetic wave absorbing extinction and shielding and high heat dissipation of the electronic device according to the present invention, pressurized or applied or impregnated to the other surface of the multi-porous metal sheet is attached to one side Forming a heat-dissipating film layer made of an organic-inorganic-based resin that is integrally formed by an impregnation to impregnate a portion of the graphite sheet on the opposite side through a gap formed on the surface of the porous metal sheet to generate a binding force; Or aluminum is formed by attaching integrally to the other surface of the multi-porous metal sheet attached to one side by pressing, applying or impregnated to one side is impregnated into the air gap formed on the surface of the multi-porous metal sheet to create a binding force Or it is configured to further comprise any one step of the heat radiation film layer forming step provided by a thin plate of aluminum alloy.
본 발명에 따른 전자파 흡수소멸과 차폐용 융합시트 및 전자기기 고방열용 융합시트는, 다기공성 메탈로 된 다기공 금속시트를 베이스 기재로 하고, 이의 일측 외표면에 결정구조가 불완전한 상태로 성형된 가성형 그라파이트 기재를 적층시킨 상태에서 고압력으로 가압하여 물리적으로 상호 일체로 결합되게 함으로써 그라파이트 기재와 다기공 금속시트가 직접 부착 연결됨에 따라 별도의 접착성 수지나 바인더재 등을 사용하지 않고 물리적으로 견고하고 확실하게 일체화됨에 따라 전자기기에서 발생하는 전자파에 대한 우수한 흡수소멸성능 및 차폐성능을 확보할 수 있어 결과적으로 전자기기의 고성능화에 따른 고효율의 전자파 흡수소멸과 차폐를 보장할 수 있는 효과가 기대되며, 아울러 이를 고방열 전자기기에 적용하는 경우 열원에서 전달된 열을 효율적으로 발산시키는 방열성능을 확보할 수 있으므로 전자기기의 고성능화에 따른 고방열 성능을 보장할 수 있는 효과가 기대된다.Electromagnetic wave absorption extinction and shielding fusion sheet according to the present invention and electronic device high heat dissipation fusion sheet, a porous base metal sheet made of a porous porous metal as a base material, one side of the outer surface is molded in an incomplete crystal structure By pressing at a high pressure in a laminated state of a caustic graphite substrate and physically bonding together, the graphite substrate and the porous metal sheet are directly attached and connected, and thus physically solid without using an adhesive resin or a binder material. As a result of this, it is possible to secure excellent absorption and extinction performance and shielding performance against electromagnetic waves generated by electronic equipments. In addition, when applied to high heat dissipation electronics, it is transmitted from a heat source It is possible to secure a heat radiation performance to effectively dissipate the heat which is effective and able to guarantee the heat radiation performance of the higher performance of the electronic device can be expected.
즉, 미세 기공인 공극을 형성한 다기공성 메탈 기재인 다기공 금속시트 표면에 결정구조가 불완전한 상태의 가성형 그라파이트시트를 적층 형태로 배치시키고, 이를 프레스나 롤러 등의 가압기기를 이용하여 고압력으로 가압함으로써 상기 가성형 그라파이트시트와 다기공 금속시트를 기존의 접착성 수지나 바인더재 등을 사용하지 않고도 물리적으로 확실하게 일체화시킬 수 있으며, 따라서, 제조공정이 간소하여 대량 양산에 따른 경제적인 보급이 가능하며, 특히 가압력에 의해 그라파이트 기재가 다기공 금속시트의 표면 공극에 함침되어 견고한 결합 상태가 유지되므로 그라파이트 기재의 박리 현상이나 외력에 의한 부분 탈락 현상을 안정적으로 억제할 수 있어 향상된 내구성을 제공할 수 있는 이점이 있다.That is, a pseudo-graphite graphite sheet having an incomplete crystal structure is disposed on the surface of the porous porous metal sheet, which is a porous porous metal substrate having fine pores formed therein, in a stacked form, and is pressed at a high pressure by using a press device such as a press or a roller. By pressurizing, the caustic graphite sheet and the porous metal sheet can be reliably physically integrated without using an existing adhesive resin or binder material. Therefore, the manufacturing process is simple and economical dissemination due to mass production In particular, since the graphite substrate is impregnated into the surface pores of the porous metal sheet by the pressing force, thereby maintaining a firm bonding state, it is possible to stably suppress the peeling phenomenon of the graphite substrate or the partial dropout caused by external force, thereby providing improved durability. There is an advantage to this.
또한, 본 발명에 따른 전자파 흡수소멸과 차폐용 융합시트 및 전자기기 고방열용 융합시트 및 그 제조방법을 통해서는 그라파이트시트가 부착되지 않은 다기공 금속시트의 타측면에 유기/무기/세라믹계열/그라파이트 등의 수지 계열의 조성물 또는 알루미늄이나 알루미늄 합금으로 된 박판을 적층 형태로 구성하여 일체화시킴으로써 탄성과 내구성을 높일 수 있어 결과적으로 다양한 전자기기에 대한 적용이 가능할 뿐만 아니라 대면적 시트의 생산이 가능한 이점이 있다.In addition, the organic / inorganic / ceramic series / on the other side of the multi-porous metal sheet is not attached to the graphite sheet through the electromagnetic wave absorption extinction and shielding fusion sheet and high heat radiation fusion sheet and manufacturing method thereof according to the present invention It is possible to increase elasticity and durability by forming and integrating a resin-based composition such as graphite or a thin plate made of aluminum or aluminum alloy in a laminated form, and as a result, it is possible to apply to various electronic devices and to produce a large area sheet. There is this.
따라서, 제조공정이 간소하여 대량 양산에 따른 경제적인 보급이 가능하며, 특히 가압력에 의해 그라파이트 기재가 다기공 금속시트의 표면 공극에 함침되어 견고한 결합 상태가 유지되므로 그라파이트 기재의 박리 현상이나 외력에 의한 부분 탈락 현상을 안정적으로 억제할 수 있어 향상된 내구성을 제공할 수 있는 이점이 있다. 또한, 본 발명의 다른 실시례에 따른 전자파 흡수소멸과 차폐용 융합시트 및 전자기기 고방열용 융합시트는 그라파이트시트가 부착되지 않은 다기공 금속시트의 타측면으로 유기/무기/세라믹계열/그라파이트 등의 액상 방열수지류나 알루미늄/알루미늄합금으로 된 박판을 적층하여 일체로 구성시킴으로서 우수한 전자파 흡수소멸과 차폐성능을 확보할 수 있다.Therefore, the manufacturing process is simple and economical dissemination is possible due to mass production, and in particular, the graphite substrate is impregnated into the surface pores of the porous metal sheet due to the pressing force, so that a firm bonding state is maintained, and therefore, due to the peeling phenomenon or the external force of the graphite substrate. Partial dropout can be stably suppressed, which provides an advantage of improved durability. In addition, the electromagnetic wave absorption extinction and shielding fusion sheet according to another embodiment of the present invention and the high heat radiation fusion sheet for electronic devices is organic / inorganic / ceramic / graphite, etc. as the other side of the porous sheet metal sheet is not attached to the graphite sheet It is possible to secure excellent electromagnetic wave absorption extinction and shielding performance by stacking liquid heat dissipating resins or thin plates made of aluminum / aluminum alloy.
또한, 본 발명에서의 다기공 금속시트는 금속재로 성형됨에 따라 열전도성 뿐만 아니라 외력이나 휨변형에 의한 균열 및 파단 등에 대한 내구성이 양호하며, 기공에 그라파이트를 포함한 액상 방열수지가 함침되어 있으므로 탄성과 내구성을 갖는 다기공성 박막 시트 형태로의 성형이 가능하여 다양한 전자기기에 대한 적용이 가능할 뿐만 아니라 대면적 시트의 생산이 가능한 이점이 있다. 따라서, 이를 적용한 제품이 최적의 성능을 확보하도록 하여 결과적으로 제품의 상품 가치를 높일 수 있는 효과가 있다.In addition, as the multi-porous metal sheet in the present invention is formed of a metal material, not only thermal conductivity but also durability against cracking and fracture due to external force or bending deformation are excellent, and since the liquid heat-resistant resin including graphite is impregnated into the pores, It is possible to mold in the form of a porous porous sheet having durability, it is possible to apply to a variety of electronic devices, as well as to produce a large area sheet. Therefore, it is possible to increase the product value of the product as a result of ensuring the optimal performance of the product to which it is applied.
도 1은 본 발명에 따른 전자파 흡수소멸과 차폐용 융합시트 및 전자기기 고방열용 융합시트의 구성을 설명하기 위한 단면도,1 is a cross-sectional view for explaining the configuration of the electromagnetic wave absorbing extinction and shielding fusion sheet and high heat radiation fusion sheet according to the present invention;
도 2 내지 도 5는 본 발명에 따른 전자파 흡수소멸과 차폐용 융압시트 및 전자기기 고방열용 융합시트에서 다기공 금속시트의 여러 실시례를 나타낸 도면,2 to 5 are views showing various embodiments of the multi-porous metal sheet in the electromagnetic wave absorbing extinction and shielding melt sheet and high heat radiation fusion sheet of the electronic device according to the present invention,
도 6은 본 발명에 따른 전자파 흡수소멸과 차폐용 융합시트 및 전자기기 고방열용 융합시트의 적용예를 설명하기 위해 개략적으로 나타낸 단면도.Figure 6 is a schematic cross-sectional view for explaining an application example of the electromagnetic wave absorption extinction and shielding fusion sheet and high heat radiation fusion sheet according to the present invention.
도 7은 본 발명에 따른 전자파 흡수소멸과 차폐용 융합시트 및 전자기기 고방열용 융합시트의 특성을 설명하기 위한 예시도.Figure 7 is an exemplary view for explaining the characteristics of the electromagnetic wave absorption and extinction and shielding fusion sheet and high heat radiation fusion sheet according to the present invention.
도 8 내지 도 11은 본 발명의 여러 실시례에 따른 전자파 흡수소멸과 차폐용 융합시트 및 전자기기 고방열용 융합시트의 제조방법을 설명하기 위한 모식도.8 to 11 is a schematic diagram for explaining a method for manufacturing the electromagnetic wave absorption and extinction shielding fusion sheet and a high heat radiation fusion sheet according to an embodiment of the present invention.
*도면부호의 설명* Explanation of Drawings
1 : 융합시트 10 : 가성형 그라파이트시트 1: Fusion Sheet 10: Caustic Graphite Sheet
20 : 다기공 금속시트 20a : 공극 21 : 소결시트 22 : 전해주조시트 23 : 금속박판시트 23a : 곡면부 23b : 경사면부 24 : 네트시트 24a : 세로줄 와이어20: multi-porous metal sheet 20a: void 21: sintered sheet 22: electroforming sheet 23: metal sheet 23a: curved portion 23b: inclined surface portion 24: net sheet 24a: vertical wire
24b : 가로줄 와이어 30 : 방열막층 33 : 접착물24b: horizontal wire 30: heat radiation layer 33: adhesive
35 : 금속박판 40 : 절연물35 metal foil 40 insulator
이하에서는 첨부한 도면을 참조하면서 본 발명에 따른 전자파 흡수소멸과 차폐용 융합시트 및 전자기기 고방열용 융합시트의 실시례에 대한 구성 및 작용을 상세하게 설명하되, 다만 본 발명을 특정한 개시형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. Hereinafter, with reference to the accompanying drawings will be described in detail the configuration and operation of the embodiment of the electromagnetic wave absorbing extinction and shielding fusion sheet and high heat dissipation fusion sheet according to the present invention, but the present invention in the specific disclosure It is not intended to be limited to the present invention, but should be understood to include all modifications, equivalents, and substitutes included in the spirit and scope of the present invention.
먼저, 본 발명에서의 전자파 흡수소멸과 차폐용 융합시트 및 전자기기 고방열용 융합시트는 양자 모두 동일한 구성과 제조방법에 의해 제조되며, 다만 공극의 크기가 상이한 것에 의한 기능상의 차이점이 있는 것이다.First, the electromagnetic wave absorption extinction and shielding fusion sheet and the high heat radiation fusion sheet of the electronic device in the present invention are both manufactured by the same configuration and manufacturing method, but there is a functional difference due to the difference in the size of the pores.
도 1은 본 발명에 따른 전자파 흡수소멸과 차폐용 및 전자기기 고방열용 융합시트의 구성을 설명하기 위한 단면도로서, 전자파 흡수소멸과 차폐용 융합시트의 경우 그라파이트 기재를 시트 형태로 성형하되 밀도 0.1~1.5g/㎤ 범위를 갖도록 하여 결정구조가 불완전한 상태로 형성된 가성형 그라파이트시트(10)와, 이 가성형 그라파이트시트(10)를 0.01mm~0.5mm 크기의 공극을 복수 형성하여 된 다기공 금속시트(20)의 일면에 부착하여 일체로 가압 성형하고, 그 외면으로 방열막층(30)을 형성하여 구성되고;, 전자기기 고방열용 융합시트의 경우 그라파이트 기재를 시트 형태로 성형하되 밀도 0.1~1.5g/㎤ 범위를 갖도록 하여 결정구조가 불완전한 상태로 형성된 가성형 그라파이트시트(10)와, 이 가성형 그라파이트시트(10)를 0.001mm~3.0mm 크기의 공극을 복수 형성하여 된 다기공 금속시트(20)의 일면에 부착하여 일체로 가압 성형하여 공극 0.001mm~0.05mm를 형성하고, 그 외면으로 방열막층(30)이 형성하여 이루어지는 구성이 도시되어 있다.1 is a cross-sectional view for explaining the configuration of the electromagnetic wave absorption and shielding and high heat radiation fusion sheet according to the present invention, in the case of the electromagnetic wave absorption and shielding fusion sheet is formed of a graphite substrate in the form of a sheet with a density of 0.1 Multi-porous metal formed by forming a plurality of voids having a size of 0.01 mm to 0.5 mm and a pseudo-graphite graphite sheet 10 having a crystal structure in an incomplete state with a range of ~ 1.5 g / cm 3. Attached to one surface of the sheet 20 and integrally press-molded, and forming a heat dissipation film layer 30 on the outer surface thereof; and, in the case of a high heat dissipation sheet for electronic equipment, a graphite substrate is molded into a sheet form with a density of 0.1 to The pseudo-graphite graphite sheet 10 formed in an incomplete crystal structure with a range of 1.5 g / cm 3 and the pseudo-graphite sheet 10 formed by forming a plurality of pores having a size of 0.001 mm to 3.0 mm are formed. Attached to one surface of the porous metal sheet 20, and integrally press-molded to form a void 0.001mm ~ 0.05mm, the heat radiation film layer 30 is formed on the outer surface is shown.
즉, 본 발명은 전자파 흡수소멸과 차폐용 융합시트 및 전자기기 고방열용 융합시트에 관한 것으로, 양자 동일한 구성과 제조공정으로 이루어져 있으나, 다기공 공극시트와 그라파이트시트를 일체로 가압하여 된 융합시트에 형성되는 공극의 크기에 따라 전자파 흡소소멸과 차폐용 융합시트 그리고 전자기기 고방열용 융합시트로 구분된다. 부연 설명하면, 전자파 흡수소멸과 차폐용 융합시트는 공극의 크기가 0.01mm~0.5mm의 크기를 갖는 다기공 금속시트에 그라파이트시트를 일체로 가압성형하여 제조되는 것에 의해 전자파 흡수소멸과 차폐의 특성을 갖는 것이고;, 전자기기 고방열용 융합시트는 다기공 금속시트의 공극이 0.001mm~3.0mm의 크기를 가지면서 최종적으로 그라파이트시트와 일체로 가압성형에 의해 공극이 0.001mm~0.05mm의 크기를 갖도록 성형되는 것에 의해 전자기기에 부착되어 고방열특성을 갖는 것이다.That is, the present invention relates to an electromagnetic wave absorption extinction and shielding fusion sheet and a high heat dissipation fusion sheet, but the same configuration and manufacturing process, but the fused sheet integrally pressurized the multi-pore pore sheet and graphite sheet Depending on the size of the pores formed in the electromagnetic wave absorbing and extinguishing, shielding fusion sheet and electronic device high heat dissipation fusion sheet. In other words, the electromagnetic wave absorption extinction and shielding fusion sheet is characterized by the electromagnetic wave absorption extinction and shielding by being manufactured by integrally forming a graphite sheet on a multi-porous metal sheet having a pore size of 0.01 mm to 0.5 mm. The high heat dissipation sheet for electronic devices has a pore size of 0.001 mm to 3.0 mm in the porous metal sheet, and finally a pore size of 0.001 mm to 0.05 mm by press molding integrally with the graphite sheet. It is attached to the electronic device by being molded to have a high heat dissipation characteristics.
도 2는 본 발명에 따른 전자파 흡수소멸과 차폐용 및 전자기기 고방열용 융합시트에서 제1실시례에 따른 소결시트로 제공되는 다기공 금속시트를 설명하기 위해 개략적으로 나타낸 도면이다. 도면에는 구리,주석,아연,알루미늄,스텐레스 계열의 금속분말을 1㎛~200㎛의 입도크기로 하여 용융온도보다 낮은 10~30% 낮은 온도에서 가열하여 소결하고 이를 가압하여 된 소결시트(21)로 제공되는 다기공 금속시트가 도시되어 있으며, 이때의 소결시트(21)는 300℃~1800℃의 용융 온도를 갖는 동계열, 주석 계열, 아연 계열, 알루미늄 계열, 스텐레스 계열의 입도 1㎛~200㎛의 크기를 갖는 금속 분말을 용융 온도 보다 10~30% 낮은 온도 분위기의 조건에서 10분~300분을 가열한 것으로, 전자파 흡수소멸 차폐용 융합시트는 0.05mm~3.0mm의 공극(20a)을 갖도록 성형되고, 전자기기 고방열용 융합시트는 0.001mm~3.0mm의 공극(20a)을 갖도록 성형된다.FIG. 2 is a view schematically illustrating a porous metal sheet provided as a sintered sheet according to the first embodiment in the electromagnetic wave absorbing extinction and shielding and high heat dissipation fusion sheet according to the present invention. In the drawing, a copper, tin, zinc, aluminum, stainless-based metal powder having a particle size of 1 μm to 200 μm is sintered by heating at a temperature of 10 to 30% lower than the melting temperature and sintered and pressurized. The multi-porous metal sheet is provided as shown, wherein the sintered sheet 21 is a particle size of 1㎛ ~ 200 of copper series, tin series, zinc series, aluminum series, stainless series having a melting temperature of 300 ℃ ~ 1800 ℃ A metal powder having a size of µm was heated for 10 minutes to 300 minutes under conditions of a temperature of 10 to 30% lower than the melting temperature. The electromagnetic wave absorption and extinction shielding fusion sheet has a pore 20a of 0.05 mm to 3.0 mm. It is molded to have, the electronic heat dissipation fusion sheet is molded to have a gap (20a) of 0.001mm ~ 3.0mm.
도 3은 본 발명에 따른 전자파 흡수소멸과 차폐용 및 전자기기 고방열용 융합시트에서 제2실시례에 따른 금속전해주조시트로 제공되는 다기공 금속시트를 설명하기 위해 개략적으로 나타낸 도면으로, 전자파 흡수소멸과 차폐용 융합시트를 기준으로 설명하면, 고온에서 기화 또는 액화되는 수지로 성형된 판상의 성형틀을 전해주조에 침지하여 통전시켜 금속을 전착하여 전착층을 형성하고, 이 전착층이 형성된 성형틀을 가열하여 수지를 제거하여 공극(20a)을 형성한 것으로 필요시 1~10여회 가압하여 두께 0.01mm~50mm가 시트 형태로 성형한 금속전해주조 시트(22)로 제공되는 다기공 금속시트가 도시되어 있다.FIG. 3 is a view schematically illustrating a multi-porous metal sheet provided as a metal electroplating sheet according to a second embodiment in the electromagnetic wave absorbing extinction and shielding and high heat dissipation fusion sheet according to the present invention. Referring to the fusion sheet for absorbing extinction and shielding, a plate-shaped mold formed of a resin that is vaporized or liquefied at high temperature is immersed in an electrolytic bath to conduct electricity to electrodeposit metal to form an electrodeposition layer, and the electrodeposition layer is formed. The pores 20a are formed by heating the mold to remove the resin, and if necessary, pressurize about 1 to 10 times, and the porous metal sheet provided as a metal electroforming sheet 22 having a thickness of 0.01 mm to 50 mm formed into a sheet form. Is shown.
한편, 전자기기 고방열용 융합시트를 기준으로 설명하면, 도면에는 고온에서 기화 또는 액화되는 수지로 성형된 판상의 성형틀을 전해주조에 침지하여 통전시켜 금속을 전착하여 전착층을 형성하고, 이 전착층이 형성된 성형틀을 가열하여 수지를 제거하여 0.001mm~3.0mm의 크기를 갖는 공극(20a)을 형성한 것으로 필요시 1~10여회 가압하여 두께 0.01mm~50mm가 시트 형태로 성형한 금속전해주조 시트(22)로 제공되는 다기공 금속시트가 도시되어 있다. On the other hand, referring to the electronic device heat dissipation fusion sheet as a reference, in the drawings, a plate-shaped mold formed of a resin that is evaporated or liquefied at high temperature is immersed in the electrolytic bath to conduct the electrode to electrodeposit metal to form an electrodeposition layer, The mold was formed by heating the mold in which the electrodeposition layer was formed to remove the resin to form a void 20a having a size of 0.001 mm to 3.0 mm. Shown is a porous metal sheet provided as electroforming sheet 22.
도 4는 본 발명에 따른 전자파 흡수소멸과 차폐용 및 전자기기 고방열용 융합시트에서 제3실시례에 따른 박판시트로 제공되는 다기공 금속시트를 설명하기 위해 개략적으로 도시한 도면이다. 4 is a view schematically illustrating a multi-porous metal sheet provided as a thin sheet according to the third embodiment in the fusion sheet for electromagnetic wave absorption and shielding and high heat radiation of the electronic device according to the present invention.
먼저, 전자파 흡수소멸과 차폐용 융합시트를 기준으로 설명하면, 도면에는 동,주석,아연,알루미늄,스텐레스 계열의 금속재로 된 박판에 펀칭,레이저,에칭공법으로 공극구멍을 형성하여 된 시트부재로서, 상기 공극구멍은 상기 가성형 그라파이트시트가 가압성형에 의해 부착된 상태에서 그 결정구조가 깨지지 않도록 상기 가성형 그라파이트시트가 부착되는 일측 표면을 기준으로 그 표면과 곡면 성형을 이루는 곡면부 및 이 곡면부에서 내측으로 진행하면서 지름이 완만하게 감소되는 경사면부를 형성하여 된 금속박판시트(23)인 다기공 금속시트가 도시되어 있다. First, referring to the fusion sheet for the absorption and shielding of electromagnetic waves, as shown in the drawing is a sheet member formed by forming a pore hole by punching, laser, and etching method in a thin plate of copper, tin, zinc, aluminum, and stainless steel. The voids have curved surfaces and curved surfaces that form curved surfaces with respect to one surface to which the pseudo graphite sheet is attached so that the crystal structure is not broken while the pseudo graphite sheet is attached by pressing. The porous metal sheet, which is a metal sheet sheet 23, is formed by forming an inclined surface portion whose diameter gradually decreases while moving inward from the portion.
이어서, 전자기기 고방열용 융합시트를 기준으로 설명하면, 도면에는 동,주석,아연,알루미늄,스텐레스 계열의 금속재로 된 박판에 펀칭,레이저,에칭공법으로 0.001mm~3.0mm의 크기를 갖는 공극구멍을 형성하여 된 시트부재로서, 상기 공극구멍은 상기 가성형 그라파이트시트가 가압성형에 의해 부착된 상태에서 그 결정구조가 깨지지 않도록 상기 가성형 그라파이트시트가 부착되는 일측 표면을 기준으로 그 표면과 곡면 성형을 이루는 곡면부 및 이 곡면부에서 내측으로 진행하면서 지름이 완만하게 감소되는 경사면부를 형성하여 된 금속박판시트(23)인 다기공 금속시트가 도시되어 있다. Next, referring to the fusion sheet for high heat dissipation of the electronic device, the drawing shows pores having a size of 0.001 mm to 3.0 mm by punching, laser, and etching methods on a thin sheet of copper, tin, zinc, aluminum, and stainless steel. A sheet member formed by forming a hole, wherein the void hole has a surface and a curved surface based on one surface to which the caustic graphite sheet is attached so that the crystal structure is not broken while the caustic graphite sheet is attached by pressing. A multi-porous metal sheet, which is a metal thin sheet 23, is formed by forming a curved surface portion and an inclined surface portion which gradually decreases in diameter while proceeding inward from the curved portion.
도 5는 본 발명에 따른 전자파 흡수소멸과 차폐용 및 전자기기 고방열용 융합시트에서 제4실시례에 따른 네트시트(24)시트로 제공되는 다기공 금속시트를 설명하기 위해 개략적으로 나타낸 도면이다. FIG. 5 is a schematic view illustrating a multi-porous metal sheet provided as a net sheet 24 sheet according to a fourth embodiment in the electromagnetic wave absorbing extinction and shielding and high heat dissipation fusion sheet according to the present invention. .
먼저, 전자파 흡수소멸과 차폐용 융합시트를 기준으로 설명하면, 도면에는 단면이 원형인 금속선재로 된 세로줄 와이어(24a)와 가로줄 와이어(24b)를 서로 교차하도록 엮는 것에 의해 이들 사이에 공극(20a)이 형성되는 네트시트(24)인 다기공 금속시트가 도시되어 있으며, 본 발명은 상기 금속선재인 세로줄 와이어(24a) 및 가로줄 와이어(24b)를 단일의 금속선재를 사용하는 것외에도 두가닥 또는 그 이상의 복수의 가닥을 꼬은 형태로 하여 그물 형태로 엮는 것도 가능할 것이다. First, referring to the fusion sheet for electromagnetic wave absorption extinction and shielding, in the drawing, the pores 20a are interwoven between the vertical wires 24a and the horizontal wires 24b made of a metal wire having a circular cross section so as to cross each other. The multi-porous metal sheet is shown is a net sheet 24 is formed, the present invention is not only using a single metal wire to the vertical wire (24a) and the horizontal wire (24b) of the metal wire, It is also possible to weave more than one strand in the form of a net.
이어서, 도면에는 단면이 원형인 금속선재로 된 세로줄 와이어(24a)와 가로줄 와이어(24b)를 서로 교차하도록 엮는 것에 의해 이들 사이에 0.001mm~3.0mm의 크기를 갖는 공극(20a)이 형성되는 네트시트(24)인 다기공 금속시트가 도시되어 있으며, 본 발명은 상기 금속선재인 세로줄 와이어(24a) 및 가로줄 와이어(24b)를 단일의 금속선재를 사용하는 것외에도 두가닥 또는 그 이상의 복수의 가닥을 꼬은 형태로 하여 그물 형태로 엮는 것도 가능할 것이다. Subsequently, in the drawing, the net in which the pores 20a having a size of 0.001 mm to 3.0 mm are formed between the vertical wires 24a and the horizontal wires 24b made of a metal wire having a circular cross section so as to cross each other. A multi-porous metal sheet, which is a sheet 24, is shown, and the present invention uses two or more strands in addition to using a single metal wire for the vertical wire 24a and the horizontal wire 24b which are the metal wire. It will be possible to weave in the form of a twisted net.
도 6은 본 발명에 따른 전자파 흡수소멸과 차폐용 및 전자기기 고방열용 융합시트의 적용예를 설명하기 위한 단면도이다.6 is a cross-sectional view for explaining an application example of the electromagnetic wave absorbing extinction and shielding and high heat dissipation fusion sheet according to the present invention.
먼저, 전자파 흡수소멸과 차폐용 융합시트를 기준으로 설명하면, 도면에는 열전도가 우수한 금속으로 된 다기공성 메탈로 된 다기공 금속시트(20)를 베이스 기재로 하고, 이 다기공 금속시트(20)의 일측 표면에 결정구조가 불완전한 그라파이트 기재로 이루어진 가성형 그라파이트시트를 적층 배치한 상태에서 프레스나 롤러 등의 가압기기를 이용하여 고압력으로 가압하면 그 일부가 다기공 금속시트(20)의 내부로 침투하여 함침된 상태를 이루고, 상기 다기공 금속시트(20)의 타측 표면으로 PVC, PC, 우레탄, 실리콘, ABS, UV 중 어느 하나 또는 하나 이상을 조성한 절연수지조성물을 코팅하여 형성된 절연물 또는 접착성분을 갖는 수지를 도포하여 된 점착물 또는 양면테이프를 부착하여 된 접착물 또는 알루미늄 또는 알루미늄 합금으로 된 박판을 가압 부착하여 형성된 금속박판 중 어느 하나 또는 하나로 이루어진 방열막층(30)을 형성하고, 이 방열막층의 외면에 전기발열원에 접촉하기 위한 절연물(40)을 형성한 전자파 흡수소멸과 차폐용 융합시트가 도시되어 있다.First, referring to the fusion sheet for electromagnetic wave absorption extinction and shielding, in the drawings, the porous metal sheet 20 made of a porous metal made of a metal having excellent thermal conductivity is used as a base, and the porous metal sheet 20 is formed as a base. In a state in which a pseudo-graphite graphite sheet made of graphite substrate having an incomplete crystal structure is laminated on one surface of the sheet, pressurizing at a high pressure by using a press device such as a press or a roller to infiltrate the inside of the porous metal sheet 20 To form an impregnated state and to form an insulating material or an adhesive component formed by coating an insulating resin composition having one or more of PVC, PC, urethane, silicone, ABS, and UV on the other surface of the porous metal sheet 20. Pressure-bonding the adhesive or the thin plate made of aluminum or aluminum alloy by applying a resin or a double-sided tape The electromagnetic wave absorbing extinction and shielding fusion sheet is formed by forming a heat radiation film layer 30 made of any one or one of the metal thin films formed therein, and an insulator 40 formed on the outer surface of the heat radiation film layer to contact an electric heat source. .
이어서, 전자기기 고방열용 융합시트를 기준으로 설명하면, 도면에는 열전도가 우수한 금속으로 된 다기공성 메탈로 된 다기공 금속시트(20)를 베이스 기재로 하고, 이 다기공 금속시트(20)의 일측 표면에 결정구조가 불완전한 그라파이트 기재로 이루어진 가성형 그라파이트시트를 적층 배치한 상태에서 프레스나 롤러 등의 가압기기를 이용하여 고압력으로 가압하면 그 일부가 다기공 금속시트(20)의 내부로 침투하여 함침된 상태를 이루고, 상기 다기공 금속시트(20)의 타측 표면으로 PVC, PC, 우레탄, 실리콘, ABS, UV 중 어느 하나 또는 하나 이상을 조성한 절연수지조성물을 코팅하여 형성된 절연물 또는 접착성분을 갖는 수지를 도포하여 된 점착물 또는 양면테이프를 부착하여 된 접착물 또는 알루미늄 또는 알루미늄 합금으로 된 박판을 가압 부착하여 형성된 금속박판 중 어느 하나 또는 하나로 이루어진 방열막층(30)을 형성하고, 이 방열막층(30)의 외면에 전기발열원에 접촉하기 위한 절연물(40)을 형성한 전자기기용 고방열 융합시트가 도시되어 있다.Next, referring to the fusion sheet for high heat dissipation of the electronic device, in the drawing, the porous base metal sheet 20 made of a porous metal made of a metal having excellent thermal conductivity is used as a base, and In a state in which a pseudo-graphite graphite sheet made of a graphite substrate having an incomplete crystal structure is laminated on one surface and pressed at high pressure by using a press device such as a press or a roller, part of the sheet penetrates into the porous metal sheet 20. It has an insulator or adhesive component formed in the impregnated state, and coated with an insulating resin composition of any one or more of PVC, PC, urethane, silicone, ABS, UV to the other surface of the porous metal sheet 20 Resin-coated adhesives or double-sided tapes are adhered to each other or pressure-bonded thin plates made of aluminum or aluminum alloy The heat dissipation layer for an electronic device is shown, which forms a heat dissipation layer 30 made of any one or one of the formed metal thin plates, and an insulator 40 for contacting an electric heat source on the outer surface of the heat dissipation layer 30 is shown. .
도 7은 본 발명에 따른 전자파 흡수소멸과 차폐용 및 전자기기 고방열용 융합시트의 특성을 설명하기 위한 예시도이다. Figure 7 is an exemplary view for explaining the characteristics of the electromagnetic wave absorbing extinction and shielding and high heat dissipation fusion sheet according to the present invention.
먼저, 전자파 흡수소멸과 차폐용 융합시트를 기준으로 설명하면, 도면에는 본 발명의 전자파 흡수소멸과 차폐용 융합시트의 하측에 열원이 위치하고 상측에는 디스플레이가 위치된 구성예를 나타낸 것으로 하측의 열원에서 전달된 열은 상측으로 전달되지 않고 그라파이트시트 부분에서 수평방향으로 확산되어 방열되는 상태를 나타낸 것으로, 본 발명의 융합시트는 소결, 금속전해주조, 펀칭 등에 의한 박판, 와이어를 그물 형태로 엮은 네트 형태로 제공되는 다기공 금속시트(20)와, 이 다기공 금속시트(20)를 중심으로 상부로는 가성형 그라파이트시트(10)가 가압 성형에 의해 일체로 부착 구비되어 그 결정입자의 일부가 상기 다기공 금속시트(20)의 표면측 공극(15)을 통해 함침되고, 상기 다기공 금속시트(20)의 하부로는 절연조성물로 된 절연물 또는 접착물 또는 연질의 금속박판 중 어느 하나로 된 방열막층(30)이 형성되며, 이 방열막층(30)의 하면으로는 전기발열원에 접촉하기 위한 절연물(40)으로 이루어진 전자파 흡수소멸과 차폐용 융합시트가 도시되어 있다.First, referring to the electromagnetic wave absorption extinction and shielding fusion sheet as a reference, the drawing shows a configuration example in which the heat source is located on the lower side and the display is located on the lower side of the electromagnetic wave absorption extinction and shielding fusion sheet of the present invention. The transferred heat is a state in which the heat is diffused in the horizontal direction in the graphite sheet portion without being transferred to the upper side, and the fused sheet of the present invention is a net form in which a thin plate, wire, etc. are woven by sintering, metal electroforming, punching, etc. The multi-porous metal sheet 20, and the caustic graphite sheet 10 is attached to the upper portion around the multi-porous metal sheet 20 integrally by pressure molding, and a part of the crystal grains is It is impregnated through the surface side voids 15 of the porous metal sheet 20, the lower portion of the porous metal sheet 20 is an insulator of an insulating composition or A heat dissipation film layer 30 made of any one of a complex or a soft metal thin plate is formed, and the lower surface of the heat dissipation film layer 30 includes an electromagnetic wave absorbing extinction and shielding fusion sheet composed of an insulator 40 for contacting an electric heat source. Is shown.
이어서, 전자기기 고방열용 융합시트를 기준으로 설명하면, 도면에는 본 발명의 전자기기용 고방열 융합시트의 하측에 열원이 위치하고 상측에는 디스플레이가 위치된 구성예를 나타낸 것으로 하측의 열원에서 전달된 열은 상측으로 전달되지 않고 그라파이트시트 부분에서 수평방향으로 확산되어 방열되는 상태를 나타낸 것으로, 본 발명의 융합시트는 소결, 금속전해주조, 펀칭 등에 의한 박판, 와이어를 그물 형태로 엮은 네트 형태로 제공되는 다기공 금속시트(20)와, 이 다기공 금속시트(20)를 중심으로 상부로는 가성형 그라파이트시트(10)가 가압 성형에 의해 일체로 부착 구비되어 그 결정입자의 일부가 상기 다기공 금속시트(20)의 표면측 공극(15)을 통해 함침되고, 상기 다기공 금속시트(20)의 하부로는 절연조성물로 된 절연물 또는 접착물 또는 연질의 금속박판 중 어느 하나로 된 방열막층(30)이 형성되며, 이 방열막층(30)의 하면으로는 전기발열원에 접촉하기 위한 절연물(40)으로 이루어진 전자기기용 고방열 융합시트가 도시되어 있다.Subsequently, referring to the electronic device high heat dissipation fusion sheet, the drawing shows a configuration example in which a heat source is located on the lower side of the high heat dissipation fusion sheet for electronic devices of the present invention and a display is positioned on the upper side. Silver is not transmitted to the upper side and the heat dissipation in the horizontal direction in the graphite sheet portion is a state showing the heat dissipation, the fusion sheet of the present invention is provided in the form of a net, a thin plate, a wire by weaving, such as sintering, metal electroforming, punching The multi-porous metal sheet 20 and the pseudo-molded graphite sheet 10 are integrally attached to the upper portion centered around the multi-porous metal sheet 20 by pressure molding, and a part of the crystal grains is formed by the multi-porous metal. It is impregnated through the surface side voids 15 of the sheet 20, the lower portion of the multi-porous metal sheet 20 is an insulator or adhesive of an insulating composition or Query the metal heat-radiating film 30 is formed by any one of the thin plate, the lower face of the heat dissipating film layer 30 is made of insulating material and electronic device 40 for contact with the electric heat source thermally fused sheet is shown.
도 8 내지 도 11은 본 발명에 따른 전자파 흡수소멸과 차폐용 및 전자기기 고방열용 융합시트의 제조방법을 설명하기 위한 블록도이다. 8 to 11 are block diagrams for explaining a method for manufacturing a fusion sheet for electromagnetic wave absorption and shielding and heat radiation of the electronic device according to the present invention.
도 8은 결정구조가 불완전한 상태의 그파라이트 기재로 된 가성형 그라파이트시트(10)를 준비하고 이를 금속분말을 소결 공정을 통해 성형한 다기공 금속시트(20)의 일면에 위치시킨 뒤 가압하여 일체로 부착시켜 제조되는 다기공 금속시트를 이용한 전자파 흡수소멸과 차폐용 및 전자기기 고방열용 융합시트의 제조방법을 나타낸 것으로, 상기 다기공 금속시트(20)는 타면으로 발열원과의 접촉을 위해 방열막층(30)이 형성시키는 공정이 도시되어 있으며, 이때의 상기 방열막층(30)은 가성형 그라파이트시트(10)와 다기공 금속시트(20)를 가압 성형하여 형성된 융합시트에 형성시키거나 또는 가성형 그라파이트시트(10)와 다기공 금속시트(20) 그리고 방열막층(30)을 적층하여 일체로 가압성형하는 것에 의해 형성될 수 있다. FIG. 8 illustrates the provision of a pseudo-graphite graphite sheet 10 made of gparite substrate with an incomplete crystal structure and placing the metal powder on one surface of the multi-porous metal sheet 20 formed through a sintering process. The present invention shows a method for manufacturing an electromagnetic wave absorption extinction and shielding and high heat dissipation fusion sheet using a multi-porous metal sheet prepared by attaching the metal sheet. The multi-porous metal sheet 20 is heat dissipated for contact with a heating source on the other side. The process of forming the membrane layer 30 is shown, wherein the heat dissipation membrane layer 30 is formed on the fused sheet formed by pressing the pseudo-molded graphite sheet 10 and the porous metal sheet 20, or caustic The graphite sheet 10, the porous metal sheet 20, and the heat dissipation layer 30 may be laminated and integrally press-molded.
도 9는 밀도 0.1g/㎤~1.5g/㎤의 범위를 갖는 결정구조가 불완전한 상태의 그라파이트 기재로 된 가성형 그라파이트시트(10)와, 고온에서 기화 또는 액화되는 수지로 성형된 판상의 성형틀 외면에 통전액을 도포하여 통전층을 형성한 뒤 이를 전해주조에 침지 및 통전시켜 금속을 전착시킨 후 성형틀을 가열하여 수지를 제거하는 전해주조 공정을 통해 성형한 다기공 금속시트(20)를 각각 준비하고, 이들을 서로 적층배치하여 가압성형을 통해 일체로 부착시켜 융합시트를 형성하는 공정이 도시되어 있으며, 상기 융합시트는 상기 가성형 그라파이트시트(10)가 부착되지 않은 다기공 금속시트(20)의 타측면으로 발열원과의 접촉을 위해 방열막층(30)을 형성시키는 공정이 도시되어 있다. 한편, 상기 방열막층(30)은 가성형 그라파이트시트(10)와 다기공 금속시트(20)를 가압 성형하여 형성된 융합시트에 형성시키거나 또는 가성형 그라파이트시트(10)와 다기공 금속시트(20) 그리고 방열막층(30)을 적층하여 일체로 가압성형하는 것에 의해 형성될 수 있다. Fig. 9 is a moldable graphite sheet 10 made of a graphite substrate with an incomplete crystal structure having a density ranging from 0.1 g / cm 3 to 1.5 g / cm 3, and a plate-shaped mold formed of a resin vaporized or liquefied at high temperature. Applying a conductive solution to the outer surface to form a conductive layer, and then immersed and energized it in the electrolytic bath to electrodeposit the metal, and then heated the mold to remove the resin to form the porous metal sheet 20 formed through the electroforming process Each process is prepared, and a process of forming a fusion sheet by attaching them to each other by integrally arranging them by pressing molding is illustrated, and the fused sheet is a porous metal sheet 20 to which the pseudo-molded graphite sheet 10 is not attached. The process of forming the heat dissipation film layer 30 for contact with the heat generating source on the other side of FIG. On the other hand, the heat dissipation layer 30 is formed on the fusion sheet formed by pressing the pseudo-molded graphite sheet 10 and the porous metal sheet 20 or the flexible graphite sheet 10 and the porous metal sheet 20 And it can be formed by stacking the heat radiation film layer 30 and integrally press molding.
도 10은 밀도 0.1g/㎤~1.5g/㎤의 범위를 갖는 결정구조가 불완전한 상태의 그라파이트 기재로 된 가성형 그라파이트시트와, 금속재로 된 박판에 공극용 구멍을 천공 형성한 것으로 공극(20a)은 표면과 완만한 곡면을 이루도록 형성되는 곡면부(23a) 및 이 이 곡면부(23a)에서 연장 형성되는 경사면부(23b)로 이루어진 박판시트로 된 다기공 금속시트(20)로 구성되며, 이때의 상기 다기공 금속시트는 가성형 그라파이트시트가 일면에 적층된 상태에서 가압성형에 의해 일체로 부착되는 과정에서 상기 공극(20a)이 갖는 완만한 곡면부(23a)에 의해 그라파이트 기재의 결정구조가 깨지지 않도록 하고 경사면부(23b)에 의해 함침 밀도를 높이도록 구성된다.Fig. 10 shows a hole in which a pore hole is formed in a thin graphite plate made of a graphite substrate and a pseudo-type graphite sheet having an incomplete crystal structure having a density ranging from 0.1 g / cm 3 to 1.5 g / cm 3. It consists of a multi-porous metal sheet 20 made of a thin sheet consisting of a curved surface portion 23a formed to form a smooth surface with a silver surface and an inclined surface portion 23b extending from the curved surface portion 23a. The multi-porous metal sheet of the graphite substrate is a crystal structure of the graphite substrate by the smooth curved portion 23a of the void 20a in the process of integrally attaching by pressing molding in a state in which the laminated sheet is laminated on one surface It is configured so as not to be broken and to increase the impregnation density by the inclined surface portion 23b.
도 11은 밀도 0.1g/㎤~1.5g/㎤의 범위를 갖는 결정구조가 불완전한 상태의 그라파이트 기재로 된 가성형 그라파이트시트와, 단면이 원형이거나 타원형으로 된 세로줄 와이어(24a)와 가로줄 와이어(24b)를 서로 교차하도록 그물 형태로 엮은 네트시트(24)시트로 된 다기공 금속시트(20)로 구성되며, 이때의 다기공 금속시트(20)는 단면이 원형인 와이어를 사용함에 따라 가성형 그라파이트시트(10)와 일체로 가압성형되는 과정에서 그라파이트 기재의 결정구조가 깨지지 않고 공극(20a)을 형성하는 망 사이에 함침되어 일체로 부착 결합되어 융합시트를 형성하게 된다.Fig. 11 is a pseudo-graphite graphite sheet made of graphite substrate having an incomplete crystal structure having a density in the range of 0.1 g / cm 3 to 1.5 g / cm 3, and a vertical wire 24a and a horizontal wire 24b having a circular or elliptical cross section. ) Is composed of a multi-porous metal sheet 20 made of a net sheet (24) sheet woven in a net form to cross each other, wherein the porous metal sheet 20 is a pseudo-graphite according to the use of a wire having a circular cross section In the process of integrally molding with the sheet 10, the crystal structure of the graphite substrate is not broken and is impregnated between the nets forming the voids 20a to be integrally attached and bonded to form a fusion sheet.
이상의 도면을 참조하여 본 발명에 따른 전자파 흡수소멸과 차폐용 융합시트 및 전자기기 고방열용 융합시트를 설명하되, 먼저 전자파 흡수소멸과 차폐용 융합시트를 설명하기로 하고, 이어서 전자기기 고방열용 융합시트를 설명하기로 한다.With reference to the drawings, the electromagnetic wave absorbing extinction and shielding fusion sheet and the high heat dissipation fusion sheet of the electronic device according to the present invention will be described first, and then the electromagnetic wave absorption extinction and shielding fusion sheet will be described, and then for high heat radiation of the electronic device The fusion sheet will be described.
본 발명에 따른 전자파 흡수소멸과 차폐용 융합시트(1)는 크게 가압과정에서 그라파이트 결정구조가 깨지지 않도록 모서리를 형성하지 않고 곡면을 갖도록 된 공극(15)을 형성하여 된 금속재로 된 다기공 금속시트(10)와, 이 다기공 금속시트(20)의 일면에 적층 구비되는 것으로 그라파이트 기재를 시트 형태로 성형하되 밀도 0.1~1.5g/㎤ 범위를 갖도록 하여 결정구조가 불완전한 상태로 형성된 상태에서 상기 다기공 금속시트(20)의 일면에 적층되어 일체로 가압공정을 통해 부착 구비되는 가성형 그라파이트시트(10) 그리고 상기 다기공 금속시트(20)의 타면에 적층 구비되는 것으로 가압 또는 도포 또는 함침에 의해 일체로 부착형성되는 것으로 일부가 다기공 금속시트(20)의 표면에 형성된 공극을 통해 반대편의 상기 가성형 그라파이트시트(10) 측으로 함침되어 결속되는 금속 및 유무기 계열의 수지로 된 방열막층(30)으로 구성된다. 이러한 본 발명은 방열막층(30)이 갖는 물성에 따라 크게 두 가지 방법으로 제조될 수 있으며, 방열막층(30)이 수지계열로 제공되는 경우에는 상기 다기공 금속시트(20)의 일 표면에 코팅 형태로 부착되는 경우에는 복수의 공극(20a)을 형성한 다기공 금속시트(20)의 일면에 가성형 그라파이트시트(10)를 적층 배치시킨 상태에서 가압성형을 통해 일체로 구성한 뒤 상기 다기공 금속시트(20)의 타면으로 방열막층(30)을 이루는 수지계열의 조성물을 도포, 스프레이, 함침 등의 공법을 통해 일체로 부착시키는 방법과, 상기 방열막층(30)이 알루미늄 이나 알루미늄 합금으로 된 박판으로 제공되는 경우에는 상기 다기공 금속시트(20)의 일면과 타면에 각각 가성형 그라파이트시트(10)와 방열막층(30)을 적층 구성하고 이들을 한꺼번에 가압성형하여 일체로 구성시키는 방법이 있다. The electromagnetic wave absorbing extinction and shielding fusion sheet 1 according to the present invention is a porous metal sheet made of a metal material formed by forming a void 15 to have a curved surface without forming an edge so that the graphite crystal structure is not broken during pressurization (10) and being laminated on one surface of the multi-porous metal sheet 20 to form a graphite substrate in the form of a sheet but having a density of 0.1 to 1.5 g / cm 3, in a state in which the crystal structure is formed in an incomplete state. It is laminated on one surface of the porous metal sheet 20 and is integrally attached to the surface of the porous sheet by the pressurizing process, and is provided on the other surface of the porous metal sheet 20 by pressing or coating or impregnation. It is integrally formed and impregnated to the side of the pseudo-graphite graphite sheet 10 on the opposite side through the gap formed in the surface of the porous metal sheet 20. It consists of a heat-radiating film 30 to the resin of the metal and the inorganic binding control sequences. The present invention can be manufactured in two ways according to the physical properties of the heat radiation film layer 30, when the heat radiation film layer 30 is provided in a resin-based coating on one surface of the porous metal sheet 20 In the case of attaching in a shape, the multi-porous metal may be integrally formed by press molding in a state in which the dummy graphite sheet 10 is laminated on one surface of the multi-porous metal sheet 20 on which the plurality of voids 20a are formed. A method of integrally attaching a resin-based composition constituting the heat dissipation layer 30 to the other surface of the sheet 20 through a coating, spraying, or impregnation method, and the heat dissipation layer 30 is made of aluminum or an aluminum alloy. In the case where it is provided as the laminated porous sheet 10 and the heat-radiating film layer 30 on one side and the other surface of the multi-porous metal sheet 20, respectively, to form them integrally by pressing molded at once There is a way.
가성형 그라파이트시트(10)는 그라파이트 기재를 시트 형태를 갖도록 가성형한 것으로, 이때의 상기 그라파이트 기재는 탄소의 동소체 중 하나로 천연에서 산출되거나 또는 인공적으로 제조되는 흑연 또는 흑연분말을 압착 성형하거나, 또는 흑연에 유기계열, 무기계열, 세라믹계열 중 어느 하나 또는 하나 이상을 조성한 흑연조성물을 사용하거나 또는 그라파이트에 유기계열,무기계열,세라믹계열의 중 어느 하나 또는 하나 이상을 조성한 방열수지를 혼합하여 된 혼합물 중 어느 하나로 제공될 수 있다. 이러한 가성형 그라파이트시트(10)는 상기 금속박판시트(23)를 시트 형태로 성형한 것으로, 밀도 0.1~1.5g/㎤ 범위를 갖도록 하여 결정구조가 완전히 결합되지 않고 불완전한 상태를 갖는 것에 특징이 있다. 이는 후술할 다기공 금속시트(20)의 일면에 적층 배치된 상태에서 가압성형에 의해 그 결정구조가 치밀하게 압착될 수 있도록 하기 위함이다. 만약, 가성형 그라파이트시트(10)가 치밀한 조직 상태 즉, 1.6g/㎤ 이상의 밀도를 갖는 경우에는 후술할 다기공 금속시트(20)에 적층된 상태에서 일체로 가압과정을 거치게 되면 가압력에 의해 결정구조가 깨지게 되므로 결과적으로 그라파이트시트가 갖는 면방향의 열전도율 및 열확산성이 불량하게 된다. Caustic graphite sheet 10 is a pseudo-molded graphite substrate having a sheet form, wherein the graphite substrate is one of the allotropes of carbon, compression-molded graphite or graphite powder produced in nature or artificially produced, or A mixture using graphite composition in which any one or at least one of organic, inorganic, and ceramic is formed in graphite, or a mixture of heat-dissipating resin in which at least one of organic, inorganic, and ceramic is formed in graphite. It may be provided in any one of. The caustic graphite sheet 10 is formed by forming the sheet metal sheet 23 in the form of a sheet, and has a density of 0.1 to 1.5 g / cm 3, so that the crystal structure is not completely bonded and has an incomplete state. . This is to allow the crystal structure to be densely pressed by press molding in a state of being laminated on one surface of the porous metal sheet 20 to be described later. If the pseudo-molded graphite sheet 10 has a dense structure state, that is, a density of 1.6 g / cm 3 or more, it is determined by the pressing force when it is integrally pressed in a state laminated on the porous metal sheet 20 to be described later. Since the structure is broken, the thermal conductivity and thermal diffusivity in the plane direction of the graphite sheet are poor.
다기공 금속시트(20)는 0.01~0.5mm의 두께를 갖는 시트재로서, 상·하면으로 연결되는 미세한 구멍이나 틈새로 이루어진 공극(20a)을 형성하여 이루어진 것으로, 이때의 공극(20a)은 고르게 분포 형성되며 상·하면으로 연결되는 0.01mm~3.0mm 크기를 갖는다. 이러한 다기공 금속시트(20)는 금속으로 열전도율이 양호하면서 외력에 대한 탄성을 보유한 금속재로 제공되는 것이 바람직하며, 금속은 기공이 형성되는 경우 전자파에 대한 흡수 소멸 기능을 가지며, 특히 공극이 작을수록 저주파 대역에서 우수한 차폐성능을 확보할 수 있음에 따라 본 발명은 다기공 금속시트(20)의 상면과 하면으로 연결되는 공극(20a)을 형성시킴에 있어 그 크기는 0.01mm~3.0mm인 것을 제안하였다. 이는 공극(20a)의 크기가 0.01mm 미만인 경우에는 미세기공으로 인하여 고성능 전자파 차폐재인 그라파이트 기재의 함침율이 지나치게 낮아지기 때문에 결과적으로 전자파 차폐 성능 역시 낮아지는 폐단이 있으며, 공극(20a)의 크기가 3mm를 초과하는 경우에는 그라파이트 기재가 함침되어 견고한 결속상태를 유지하지 못하고 다기공 금속시트(20)로부터 탈락되거나 박리되는 폐단이 발생하기 때문이다. 따라서 본 발명에서는 다기공 금속시트(20)의 공극(20a) 크기를 0.01mm~3mm인 것을 제안하며 더욱 바람직하게는 0.05mm~1.0mm인 것이다. 이러한 다기공 금속시트(20)는 미세한 구멍이나 틈새로 이루어진 공극(20a)을 형성한 금속 시트재로 제공되는 특징을 갖는다면 다양한 형태의 금속 시트가 사용되어도 무방하며, 다만 일면에 적층된 가성형 그라파이트시트(10)와 가압되는 과정에서 가성형 그라파이트시트(10)의 결정구조를 깨뜨리지 않도록 가성형 그라파이트시트(10)가 접촉되는 공극(20a)은 전체적으로 모서리가 없이 둥근 형태 즉, 완만한 곡면을 갖도록 형성되어야 한다. Multi-porous metal sheet 20 is a sheet material having a thickness of 0.01 ~ 0.5mm, formed by forming a gap (20a) consisting of fine holes or gaps connected to the upper and lower surfaces, the void 20a at this time is even It is distributed and has a size of 0.01mm ~ 3.0mm connected to upper and lower surfaces. The multi-porous metal sheet 20 is preferably provided as a metal material having good thermal conductivity and elasticity against external force as a metal, and the metal has an absorbing and extinguishing function for electromagnetic waves when pores are formed. As the shielding performance can be secured in the low frequency band, the present invention proposes that the size of the pores 20a connected to the upper and lower surfaces of the multi-porous metal sheet 20 is 0.01 mm to 3.0 mm. It was. When the size of the pore 20a is less than 0.01 mm, the impregnation rate of the graphite substrate, which is a high-performance electromagnetic wave shielding material, is too low due to the micropores, and as a result, there is a closed end that the electromagnetic wave shielding performance is also lowered, and the size of the pore 20a is 3 mm. If it exceeds, the graphite substrate is impregnated to maintain a solid binding state and the closed end is removed or peeled off from the porous metal sheet 20. Therefore, the present invention proposes that the size of the pores 20a of the multi-porous metal sheet 20 is 0.01 mm to 3 mm, more preferably 0.05 mm to 1.0 mm. The multi-porous metal sheet 20 may be a metal sheet of various forms as long as it has a feature of being provided with a metal sheet formed with a gap 20a formed of fine holes or gaps, but a pseudo-ply laminated on one surface. The voids 20a to which the pseudo-graphite sheet 10 is in contact with the graphite sheet 10 so as not to break the crystal structure of the pseudo-graphite sheet 10 during pressurization have a rounded shape without a corner, that is, a smooth curved surface. It should be formed to have.
한편, 본 발명에서의 다기공 금속시트(20)는 소결공정에 의해 제조되는 소결시트(21), 금속 전해주조 방식에 의해 제조되는 금속전해주조시트(22), 금속박판에 구멍을 천공하여 제조되는 금속박판시트(23), 와이어를 그물형태로 엮어 제조되는 네트시트(24)로 제공되는 것을 제안하며, 이하 다기공 금속시트(20)의 여러 제조방법을 간략하게 설명하기로 한다. Meanwhile, the multi-porous metal sheet 20 according to the present invention is manufactured by drilling a hole in the sintered sheet 21 manufactured by the sintering process, the metal electroplated sheet 22 manufactured by the metal electroforming method, and the metal thin plate. Metal sheet sheet 23, which is to be provided as a net sheet 24 is produced by weaving a wire in the form of a net, and will be described briefly below the various manufacturing methods of the porous metal sheet 20.
첫째, 소결시트(21)는 도 2에 나타내 보인 바와 같이 1㎛~200㎛의 입도 크기를 갖는 금속분말을 용융온도 보다 낮은 온도에서 가열하여 완전히 용융되지 않으면서 분말들이 서로 연결되게 소결하고, 이를 가압하여 성형된 시트재이다. 즉, 소결시트(21)는 1㎛~200㎛ 내,외의 크기를 가지면서 300℃~1800℃의 용융 온도를 갖는 구리 등의 동계열, 주석 계열, 아연 계열, 알루미늄 계열, 스텐레스 계열의 금속분말을 준비하고, 이를 용융온도 보다 대략 10%~30% 가량 낮은 온도에서 10분~300분 가열하여 소결한 뒤 이를 프레스나 롤러 등의 가압장비를 사용하여 30MPa~300MPa의 압력으로 1회 내지 수십회 가압성형하여 시트 형태로 제조한 것으로 두께 0.01~0.5mm을 가지면서 상·하면으로 연결되는 0.01mm~3.0mm 크기를 갖는 복수의 공극(20a)을 형성한 것이다.First, as shown in FIG. 2, the sintered sheet 21 is sintered so that the powders are connected to each other without being completely melted by heating a metal powder having a particle size of 1 μm to 200 μm at a temperature lower than the melting temperature. It is a sheet | seat material formed by pressing. That is, the sintered sheet 21 is a metal powder of copper, tin-based, zinc-based, aluminum-based, stainless-based, such as copper having a melting temperature of 300 ℃ ~ 1800 ℃ while having a size of 1 ~ 200 ㎛, outside And then sintered by heating it at a temperature of about 10% to 30% lower than the melting temperature for 10 minutes to 300 minutes and then using a press or a pressurizing equipment such as a roller at a pressure of 30 MPa to 300 MPa once to several times It is manufactured in the form of a sheet by pressing and forming a plurality of pores (20a) having a size of 0.01mm to 3.0mm connected to the upper and lower surfaces having a thickness of 0.01 ~ 0.5mm.
둘째, 금속전해주조시트(22)는 도 3에 나타내 보인 바와 같이 고온에서 기화 또는 액화되는 수지로 성형된 판상의 성형틀을 전해주조에 침지하여 통전시켜 금속을 전착하여 전착층을 형성하고, 이 전착층이 형성된 성형틀을 가열하여 수지를 제거하여 공극(20a)을 형성한 것으로 필요시 1~10여회 가압하여 두께 0.01mm~50mm가 시트 형태로 성형한 금속전해주조 시트(22)로 제공된다.Second, as shown in FIG. 3, the metal electrolytic aid sheet 22 is immersed in an electrolytic bath by immersing a plate-shaped mold formed of a resin that is vaporized or liquefied at a high temperature in an electrolytic bath to electrodeposit metal to form an electrodeposition layer. The mold for forming the electrodeposition layer was heated to remove the resin to form the voids 20a. If necessary, the electrode was pressurized 1 to 10 times to provide a metal electroforming sheet 22 formed in a sheet form with a thickness of 0.01 mm to 50 mm. .
셋째, 금속박판시트(23)는 도 4에 나타내 보인 바와 같이 동,주석,아연,알루미늄,스텐레스 계열의 금속재로 된 박판에 펀칭,레이저,에칭공법으로 공극구멍을 형성하여 된 시트부재로서, 상기 공극구멍은 상기 가성형 그라파이트시트가 가압성형에 의해 부착된 상태에서 그 결정구조가 깨지지 않도록 상기 가성형 그라파이트시트가 부착되는 일측 표면을 기준으로 그 표면과 곡면 성형을 이루는 곡면부 및 이 곡면부에서 내측으로 진행하면서 지름이 완만하게 감소되는 경사면부를 형성하여 된 금속박판시트(23)인 다기공 금속시트로 제공된다.Third, the metal sheet 23 is a sheet member formed by forming a hole in the thin plate made of copper, tin, zinc, aluminum, stainless-based metal material by punching, laser, etching method as shown in FIG. The pore hole is a curved portion and a curved portion that forms a curved surface with the surface on one side to which the pseudo-graphite graphite sheet is attached so that the crystal structure is not broken while the pseudo-graphite sheet is attached by press molding. It is provided as a multi-porous metal sheet, which is a metal sheet sheet 23 formed by forming an inclined surface portion which gradually decreases in diameter while advancing inward.
넷째, 네트시트(24)는 도 5에 나타내 보인 바와 같이 단면이 원형인 금속선재로 된 세로줄 와이어(24a)와 가로줄 와이어(24b)를 서로 교차하도록 엮는 것에 의해 이들 사이에 공극(20a)이 형성되는 네트시트(24)인 다기공 금속시트가 도시되어 있으며, 본 발명은 상기 금속선재인 세로줄 와이어(24a) 및 가로줄 와이어(24b)를 단일의 금속선재를 사용하는 것 외에도 두가닥 또는 그 이상의 복수의 가닥을 꼬은 형태로 한 세로줄 와이어와 가로줄 와이어를 서로 그물 형태로 엮는 것도 가능할 것이다. Fourth, as shown in FIG. 5, as shown in FIG. 5, the space | gap 20a is formed between the vertical wire | line wire 24a and the horizontal wire | wire 24b which are made of the metal wire of a circular cross section so that they may cross each other. There is shown a multi-porous metal sheet is a net sheet 24, the present invention is a plurality of strands or more in addition to using a single metal wire for the vertical wire (24a) and the horizontal wire (24b) of the metal wire It is also possible to weave the vertical wires and the horizontal wires in the form of a twisted strand of wire.
이와 같이 여러 제조방식에 의해 제조되는 다기공 금속시트(20)는 프레스나 롤러 등의 가압기기를 이용하여 일회 또는 수회 반복하여 가압함으로써 그 두께를 조절할 수 있다.As described above, the multi-porous metal sheet 20 manufactured by various manufacturing methods may be adjusted by pressing one or several times by using a pressing device such as a press or a roller.
방열막층(30)은 상기 다기공 금속시트(20)의 일면에 적층된 가성형 그라파이트시트(10)와 반대되는 타면에 적층 형태로 구비되어 가압, 도포, 함침 등에 의해 일체로 부착 형성되는 것으로 그 일부가 상기 다기공 금속시트(20)의 표면에 형성된 공극을 통해 반대편의 상기 그라파이트시트(10)측으로 함침되어 결속력을 생성하는 금속 및 유무기 계열의 수지로 제공된다. 이러한 방열막층(30)은 상기 다기공 금속시트(20)의 표면에 일체로 부착 형성되는 것으로, PVC, PC, 우레탄, 실리콘, ABS, UV 중 어느 하나 또는 하나 이상을 조성한 절연수지조성물을 코팅하여 형성된 절연물이거나 또는 접착성분을 갖는 수지를 도포하여 된 점착물 또는 양면테이프를 부착하여 된 접착물 중 어느 하나이거나 또는 방열특성을 양호하게 하면서 상기 다기공 금속시트(20)와의 가압 결합에 의해 그 일부가 상기 다기공 금속시트(20)의 표면 공극(20a)에 함침되는 연질의 알루미늄 또는 알루미늄 합금으로 된 박판을 부착하여 형성된 금속박판 중 어느 하나가 사용되거나 또는 복수층으로 구성되는 것도 가능하다. 즉, 본 발명에서의 방열막층(30)은 도 1에 나타내 보인 바와 같이 다기공 금속시트(20)를 중심으로 열원(미도시)이 위치하는 하면측에 적층 형태로 배치되며, 이때의 방열막층(30)은 수지계열의 절연물이나 점착물 또는 접착물 또는 알루미늄 박판으로 단층 형태로 제공될 수 있으며, 도 6 및 도 7에 나타내 보인 바와 같이 열원이 위치하는 다기공 금속시트(20)의 하면으로 수지계열이나 알루미늄 박판으로 된 방열막층(30)이 적층 구성되고, 그 하면으로 PVC, PC, 우레탄, 실리콘, ABS, UV 중 어느 하나 또는 하나 이상을 조성한 절연수지조성물을 코팅하여 된 절연물층(40)이 복층으로 구성되는 것도 가능하다.The heat dissipation layer 30 is provided in a laminated form on the other side of the multi-porous metal sheet 20 opposite to the pseudo-molded graphite sheet 10 and is integrally formed by pressing, coating, or impregnation. A part of the metal and organic-inorganic resin is impregnated to the opposite side of the graphite sheet 10 through the gap formed on the surface of the multi-porous metal sheet 20 to generate a binding force. The heat dissipation layer 30 is formed integrally attached to the surface of the multi-porous metal sheet 20, by coating an insulating resin composition of any one or more of PVC, PC, urethane, silicon, ABS, UV Either the formed insulating material or an adhesive formed by applying a resin having an adhesive component or an adhesive formed by attaching a double-sided tape, or a part thereof by pressure bonding with the porous metal sheet 20 while improving heat dissipation characteristics. Any one of the metal thin plates formed by attaching a thin plate made of soft aluminum or an aluminum alloy impregnated into the surface pores 20a of the multi-porous metal sheet 20 may be used or may be composed of a plurality of layers. That is, the heat dissipation film layer 30 in the present invention is arranged in a stacked form on the lower surface side where a heat source (not shown) is located around the porous metal sheet 20, as shown in FIG. 30 may be provided in the form of a single layer of the resin-based insulator or adhesive or adhesive or aluminum sheet, as shown in Figure 6 and 7 as the lower surface of the porous metal sheet 20, the heat source is located A heat insulating film layer 30 made of a resin series or a thin aluminum sheet is laminated, and an insulating material layer 40 formed by coating an insulating resin composition having one or more of PVC, PC, urethane, silicone, ABS, and UV on the bottom surface thereof. It is also possible to comprise a multilayer.
이하, 본 발명에 따른 전자파 흡수소멸과 차폐용 융합시트의 여러 제조방법을 설명하대기로 한다.Hereinafter, various manufacturing methods of the electromagnetic wave absorbing extinction and shielding fusion sheet according to the present invention will be described.
제1실시례 - 본 발명의 제1실시례에 따른 전자파 흡수소멸과 차폐용 융합시트의 제조방법은 도 8을 참조하면, 크게 가성형 그라파이트시트 준비단계(s10)와, 소결시트(21)로 된 다기공 금속시트 성형단계(s20), 융합시트 형성단계(s30), 방열박층 형성단계(s40)로 구성된다.First Embodiment-Referring to FIG. 8, a method of manufacturing a fusion sheet for absorbing and shielding electromagnetic waves according to a first embodiment of the present invention includes a caustic graphite sheet preparation step (s10) and a sintered sheet 21. The multi-porous metal sheet forming step (s20), the fusion sheet forming step (s30), the heat dissipation thin film forming step (s40).
상기 가성형 그라파이트시트 준비단계(s10)는 그라파이트 기재인 흑연 또는 흑연분말을 압착 성형하거나, 또는 흑연에 유기계열, 무기계열, 세라믹계열 중 어느 하나 또는 하나 이상을 조성한 흑연조성물 또는 그라파이트에 유기계열,무기계열,세라믹계열의 중 어느 하나 또는 하나 이상을 조성한 방열수지를 혼합하여 된 혼합물로 된 그라파이트 기재를 준비하고, 이를 밀도 0.1g/㎤~1.5g/㎤의 범위를 갖는 결정구조가 불완전한 상태의 시트 형태로 가성형한다. 이때의 가성형 방법은 공지의 다양한 방법에 의해 제조되어도 무방하므로 상세한 설명은 생략한다.The caustic graphite sheet preparing step (s10) is a graphite-based graphite or graphite powder is compression-molded, or the graphite composition or graphite in which any one or more of organic, inorganic, ceramic-based to graphite, or organic-based, A graphite substrate composed of a mixture obtained by mixing a heat-dissipating resin of one or more of inorganic and ceramic series is prepared, and the crystal structure having a density in the range of 0.1 g / cm 3 to 1.5 g / cm 3 is incomplete. Caustic in sheet form. In this case, the caustic molding method may be manufactured by various known methods, and thus detailed description thereof will be omitted.
상기 다기공 금속시트 성형단계(s20)는 먼저 300℃~1800℃의 용융 온도를 갖는 구리계열, 주석 계열, 아연 계열, 알루미늄 계열, 스텐레스 계열의 금속분말을 준비하되, 이때의 금속분말의 입도는 1㎛~200㎛의 크기를 갖는 것을 준비한다. 이어서 상기 준비된 금속분말을 평판의 박막소재를 성형하기 위한 성형공간을 제공하는 금형에 충진하고, 상기 금속분말의 소재가 갖는 용융 특성별로 용융점 대비 10%~30% 낮은 온도에서 10분~300분간 가열하여 소결 성형함으로써 소결시트(21)를 제조한다. 이러한 소결시트(21)는 금속분말들의 경계면이 서로 안정적으로 융착되어 균일한 공극(20a)을 형성한다.In the multi-porous metal sheet forming step (s20), first, a copper-based, tin-based, zinc-based, aluminum-based, stainless-based metal powder having a melting temperature of 300 ° C. to 1800 ° C. is prepared, but the particle size of the metal powder is The thing which has the magnitude | size of 1 micrometer-200 micrometers is prepared. Subsequently, the prepared metal powder is filled into a mold providing a molding space for forming a thin film material of a flat plate, and heated for 10 minutes to 300 minutes at a temperature 10% to 30% lower than the melting point for each melting characteristic of the material of the metal powder. And sinter molding to manufacture the sintered sheet 21. In the sintered sheet 21, the interface surfaces of the metal powders are stably fused to each other to form a uniform gap 20a.
상기 융합시트 형성단계(s30)는 상기 가성형 그라파이트시트(10)를 상기 다기공 금속시트(20)의 일 표면에 적층 배치시킨 상태에서 가압함으로써 상기 그라파이트시트를 구성하는 그라파이트 결정이 상기 다기공 금속시트의 표면 공극에 함침되면서 일체로 부착 결합되게 하는 것으로, 밀도 1.6g/㎤~6.0g/㎤의 범위를 갖도록 가압 성형되면서 공극 0.01mm~0.5mm의 크기를 갖도록 성형된다. 즉, 상기 소결시트(21)인 다기공 금속시트(20) 및 그 일면에 적층되는 가성형 그라파이트시트(10)에 대하여 30MPa~300MPa의 압력으로 1~20회 가압기기를 이용하여 가압을 실시함으로써, 결과적으로 두께 0.01mm~50mm가 되도록 가압하여 융합시트를 형성한다. 여기서, 상기 소결시트(21)인 다기공 금속시트(20)와 가성형 그라파이트시트(10)의 적층 구조물에 대한 가압방법으로는 다양한 가압장치가 사용될 수 있으며, 본 발명에서는 프레스기 또는 롤러 가압 방식인 롤링·압연기가 사용되는 것을 제안하며, 결과물의 요구 조건과 가압기의 성능에 따라 1~20회 가량 반복하여 실시할 수 있을 것이다. 한편, 상기 프레스기 또는 롤러 가압 방식의 롤링·압연기에 의해 가압 성형되는 융합시트는 상·하면이 평탄해지도록 가압되는 것이 바람직하며, 가압 과정을 거치면서 소결 밀도가 높아짐에 따라 금속분말 간의 결합력이 증대되어 결과적으로 내구성 및 탄성이 증대된다. 또한, 상기 공정은 실온 상태에서 진행되어도 무방하나, 금속분말의 소결온도를 기준으로 40% 이하의 낮은 온도에서 실시되는 것이 바람직하다.In the forming of the fused sheet (s30), the graphite crystals constituting the graphite sheet are pressed by pressing the dummy graphite sheet 10 on one surface of the multi-porous metal sheet 20 so that the polycrystalline metal is Impregnated and bonded integrally while being impregnated into the surface voids of the sheet, while being press-molded to have a density of 1.6 g / cm 3 to 6.0 g / cm 3, it is molded to have a size of 0.01 mm to 0.5 mm. That is, by pressurizing the multi-porous metal sheet 20, which is the sintered sheet 21, and the pseudo-molded graphite sheet 10 laminated on one surface thereof using a pressurizing device 1 to 20 times at a pressure of 30 MPa to 300 MPa. As a result, it is pressed to a thickness of 0.01mm ~ 50mm to form a fusion sheet. Here, various pressing apparatuses may be used as a pressing method for the laminated structure of the multi-porous metal sheet 20 and the caustic graphite sheet 10, which is the sintered sheet 21, and in the present invention, a press machine or a roller pressing method It is suggested that rolling and rolling mills be used, and may be repeated 1 to 20 times depending on the requirements of the resultant and the performance of the press. Meanwhile, the fusion sheet press-molded by the press or roller pressing / rolling press is preferably pressed to flatten the upper and lower surfaces. As the sintered density increases during the pressing process, the bonding force between the metal powders increases. As a result, durability and elasticity are increased. In addition, the process may be performed at room temperature, but is preferably performed at a low temperature of 40% or less based on the sintering temperature of the metal powder.
한편, 상기 소결시트(21)인 다기공 금속시트(20)에 대하여 가성형 그라파이트시트(10)가 부착되기전 공정에서 500℃~600℃에서 10~40분간 가열하여 비정질화시키는 비정질 금속시트 성형공정을 더 수행하는 것도 가능하며, 이 비정질 금속시트에 성형공정 이후에 상기 가성형 그라파이트시트를 부착하여 압착 성형하는 과정으로 수행되는 것도 가능할 것이다.On the other hand, the amorphous metal sheet forming process of heating and amorphous for 10 to 40 minutes at 500 ℃ to 600 ℃ in the process before attaching the caustic graphite sheet 10 to the multi-porous metal sheet 20 of the sintered sheet 21 It is also possible to perform a further, it may be possible to be carried out by attaching the pseudo-molded graphite sheet to the amorphous metal sheet after the molding process by compression molding.
상기 방열막층 형성단계(s40)는 상기 다기공 금속시트(20)의 타면 즉, 가성형 그라파이트시트(10)가 부착되지 않은 반대면에 방열막층을 적층 형성시키는 공정이다. 이러한 방열막층(30)은 상기 다기공 금속시트(20)의 타면에 적층된 상태에서 가압 또는 도포 또는 함침에 의해 일체로 부착 형성되는 것으로, 일부가 다기공 금속시트의 표면에 형성된 공극으로 함침되어 반대편의 상기 그라파이트시트에 부착되어 일체로 결속력을 생성시키는 유무기 계열의 수지 또는 알루미늄 또는 알루미늄 합금으로 된 박판이 사용된다. 한편 상기 방열막층은 유기계열, 무기계열, 세라믹계열 중 어느 하나 또는 하나 이상을 조성한 조성물이 사용되거나, 이러한 조성물에 흑연을 일부 섞은 흑연조성물이 사용되거나 또는 연질의 알루미늄이나 알루미늄 합금으로 된 박판이 사용될 수 있으며, 사용되는 재료의 물성에 따라 도포,함침,스프레이,가압의 방식을 통해 상기 다기공 금속시트에 일체로 구성될 수 있다.The heat radiation film layer forming step (s40) is a process of stacking the heat radiation film layer on the other surface of the multi-porous metal sheet 20, that is, on the opposite side to which the caustic graphite sheet 10 is not attached. The heat dissipation layer 30 is integrally formed by pressing or applying or impregnating in the state of being laminated on the other surface of the multi-porous metal sheet 20, and part of the heat-radiating layer 30 is impregnated with a gap formed on the surface of the multi-porous metal sheet. An organic-inorganic resin or a thin plate made of aluminum or an aluminum alloy is used to attach to the opposite graphite sheet to generate a binding force integrally. Meanwhile, the heat dissipation layer may be a composition comprising one or more of organic, inorganic, and ceramic, a graphite composition mixed with some graphite, or a thin sheet of soft aluminum or aluminum alloy. In accordance with the properties of the material used, it can be integrally formed in the multi-porous metal sheet through the method of coating, impregnation, spray, pressure.
또한, 본 실시례에서는 상기 소결시트(21)인 다기공 금속시트(20)와 가성형 그라파이트시트(10)를 일차로 서로 가압하여 일체로 결합한 융합시트에 방열막층(30)을 형성한 것을 예시하였으나, 본 발명은 이에 한정하지 않고 소결시트(21)인 다기공 금속시트(20)와 가성형 그라파이트시트(10) 그리고 방열막층(30)을 적층하여 일체로 가압 공정을 통해 일체로 형성하는 것도 가능할 것이다. In addition, the present embodiment illustrates that the heat-resistant film layer 30 is formed on the fusion sheet integrally bonded by pressing the multi-porous metal sheet 20 and the caustic graphite sheet 10 which are the sintered sheets 21 to each other. However, the present invention is not limited thereto, and the multi-porous metal sheet 20, the pseudo-graphite sheet 10, and the heat dissipation layer 30, which are the sintered sheet 21, may be laminated and integrally formed through a pressing process. It will be possible.
제2실시례 - 본 발명의 제2실시례에 따른 전자파 흡수소멸과 차폐용 융합시트의 제조방법은 도 9를 참조하면, 크게 가성형 그라파이트시트 준비단계(s11)와, 전해주조시트(22)로 된 다기공 금속시트 성형단계(s21), 융합시트 형성단계(s31), 방열박층 형성단계(s41)로 구성된다.Second Embodiment-Referring to FIG. 9, a method of manufacturing a fusion sheet for absorbing and shielding electromagnetic waves according to a second embodiment of the present invention includes a step of preparing a pseudo-graphite graphite sheet (s11) and an electroforming sheet (22). It consists of a multi-porous metal sheet forming step (s21), a fusion sheet forming step (s31), a heat radiation thin film forming step (s41).
상기 가성형 그라파이트시트 준비단계(s11)는 앞서 설명한 제1실시례의 구성과 대동소이하다. 즉 그라파이트 기재인 흑연 또는 흑연분말을 압착 성형하거나, 또는 흑연에 유기계열, 무기계열, 세라믹계열 중 어느 하나 또는 하나 이상을 조성한 흑연조성물 또는 그라파이트에 유기계열,무기계열,세라믹계열의 중 어느 하나 또는 하나 이상을 조성한 방열수지를 혼합하여 된 혼합물로 된 그라파이트 기재를 준비하고, 이를 밀도 0.1g/㎤~1.5g/㎤의 범위를 갖는 결정구조가 불완전한 상태의 시트 형태로 가성형한다. 이때의 가성형 방법은 공지의 다양한 방법에 의해 제조되어도 무방하므로 상세한 설명은 생략한다. The provisional type graphite sheet preparing step (s11) is similar to the configuration of the first embodiment described above. That is, the graphite-based graphite or graphite powder is press-molded, or the graphite composition or graphite-based organic composition, inorganic series, ceramic series, or any one or more of organic series, inorganic group, ceramic series, or graphite. A graphite substrate made of a mixture obtained by mixing at least one heat-dissipating resin is prepared, and this is temporarily molded in the form of a sheet having an incomplete crystal structure having a density in the range of 0.1 g / cm 3 to 1.5 g / cm 3. In this case, the caustic molding method may be manufactured by various known methods, and thus detailed description thereof will be omitted.
상기 다기공 금속시트 성형단계(s21)는 금속 전해주조 방식의 가성형 다기공 금속시트를 성형한 뒤 이를 가압공정을 통해 수회 가압함으로써 완성된 다기공 금속시트가 제조된다. 즉, 본 실시례에서의 다기공 금속시트 성형단계를 부연설명하면, 먼저 고온에서 기화 또는 액화되는 수지로 성형된 판상의 성형틀 외면에 통전액을 도포하여 통전층을 형성하고, 통전층이 형성된 성형틀을 전해주조에 침지시킨다. 그리고, 상기 전해주조에 침지된 통전층이 형성된 성형틀을 통전시키면 금속이 전착하여 전착층을 형성하게 된다. 이어서, 전착층이 형성된 성형틀을 전해주조에서 꺼내어 소정온도로 가열하면 수지로 된 성형틀이 녹으면서 제거됨에 따라 결과적으로 공극을 형성한 전착층으로 이루어진 가성형 다기공 금속시트가 완성된다. 이후 상기 가성형 다기공 금속시트를 롤러나 프레스 등의 가압기기를 사용하여 1회~10회 가량 가압하여 두께 0.01mm~50mm가 되도록 함으로써 다기공 금속시트의 성형을 완료하게 된다.In the forming of the multi-porous metal sheet (s21), a completed multi-porous metal sheet is manufactured by molding a caustic multi-porous metal sheet of a metal electroforming method and then pressing it several times through a pressing process. That is, when the multi-porous metal sheet forming step in the present embodiment will be described in detail, first, a current-carrying layer is formed by applying a current-carrying fluid to the outer surface of a plate-shaped mold formed from a resin that is vaporized or liquefied at a high temperature, thereby forming an electric current layer. Dip the mold into the electrolytic tank. Then, when the mold is formed with the conductive layer immersed in the electroforming tank, the metal is electrodeposited to form the electrodeposition layer. Subsequently, when the mold for which the electrodeposition layer is formed is taken out of the electroforming tank and heated to a predetermined temperature, the mold for molding of resin is removed while melting, resulting in a caustic porous metal sheet composed of an electrodeposition layer having voids formed thereon. Thereafter, by pressing the caustic multi-porous metal sheet by using a pressurizing device such as a roller or a press about 1-10 times to form a thickness of 0.01 mm to 50 mm, the molding of the multi-porous metal sheet is completed.
상기 융합시트 형성단계(s31)는 상기 가성형 그라파이트시트(10)를 상기 전해주조 방식으로 제조된 다기공 금속시트(20)의 일 표면에 적층 배치시킨 상태에서 가압함으로써 상기 그라파이트시트를 구성하는 그라파이트 결정이 상기 다기공 금속시트의 표면 공극에 함침되면서 일체로 부착 결합되게 하는 것으로, 밀도 1.6g/㎤~6.0g/㎤의 범위를 갖도록 가압 성형되면서 공극 0.01mm~0.5mm의 크기를 갖도록 성형된다. 즉, 상기 전해주조시트(22)인 다기공 금속시트(20) 및 그 일면에 적층되는 가성형 그라파이트시트(10)에 대하여 30MPa~300MPa의 압력으로 1~20회 가압기기를 이용하여 가압을 실시함으로써, 결과적으로 두께 0.01mm~50mm가 되도록 가압하여 융합시트를 형성한다. 여기서, 상기 전해주조시트(22)인 다기공 금속시트(20)와 가성형 그라파이트시트(10)의 적층 구조물에 대한 가압방법으로는 다양한 가압장치가 사용될 수 있으며, 본 발명에서는 프레스기 또는 롤러 가압 방식인 롤링·압연기가 사용되는 것을 제안하며, 결과물의 요구 조건과 가압기의 성능에 따라 1~20회 가량 반복하여 실시할 수 있을 것이다.The fusion sheet forming step (s31) is a graphite constituting the graphite sheet by pressing in a state in which the dummy graphite sheet 10 is laminated on one surface of the multi-porous metal sheet 20 manufactured by the electroforming method The crystals are integrally attached and bonded while being impregnated into the surface pores of the multi-porous metal sheet, and are molded to have a size of 0.01 mm to 0.5 mm while being press-molded to have a density of 1.6 g / cm 3 to 6.0 g / cm 3. . That is, the pressure is applied to the multi-porous metal sheet 20, which is the electroformed cast sheet 22, and the pseudo-molded graphite sheet 10 laminated on one surface thereof using a pressurizing device 1 to 20 times at a pressure of 30 MPa to 300 MPa. As a result, the resultant is pressurized to have a thickness of 0.01 mm to 50 mm to form a fusion sheet. Here, various pressing apparatuses may be used as a pressing method for the laminated structure of the multi-porous metal sheet 20 and the caustic graphite sheet 10 of the electroforming sheet 22, and in the present invention, a pressing machine or a roller pressing method. It is suggested that the in-rolling and rolling mill be used, and may be repeated 1 to 20 times depending on the requirements of the resultant and the performance of the press.
한편, 상기 프레스기 또는 롤러 가압 방식의 롤링·압연기에 의해 가압 성형되는 융합시트는 상·하면이 평탄해지도록 가압되는 것이 바람직하며, 가압 과정을 거치면서 공극 밀도가 높아짐에 따라 금속분말 간의 결합력이 증대되어 결과적으로 내구성 및 탄성이 증대된다. 또한, 상기 공정은 실온 상태에서 진행되어도 무방하나, 금속분말의 소결온도를 기준으로 40% 이하의 낮은 온도에서 실시되는 것이 바람직하다. 또한, 상기 전해주조시트(22)인 다기공 금속시트(20)에 대하여 가성형 그라파이트시트(10)가 부착되기전 공정에서 500℃~600℃에서 10~40분간 가열하여 비정질화시키는 비정질 금속시트 성형공정을 더 수행하는 것도 가능하며, 이 비정질 금속시트에 성형공정 이후에 상기 가성형 그라파이트시트를 부착하여 압착 성형하는 과정으로 수행되는 것도 가능할 것이다.Meanwhile, the fusion sheet press-molded by the press or roller pressing / rolling press is preferably pressed to flatten the upper and lower surfaces. As the pore density increases during the pressing process, the bonding force between the metal powders increases. As a result, durability and elasticity are increased. In addition, the process may be performed at room temperature, but is preferably performed at a low temperature of 40% or less based on the sintering temperature of the metal powder. In addition, an amorphous metal sheet is formed by heating the amorphous porous sheet 10, which is the electroformed cast sheet 22, to an amorphous state by heating at 500 ° C to 600 ° C for 10 to 40 minutes in a process before attaching the pseudo-molded graphite sheet 10. It is also possible to perform the process further, it may also be carried out by attaching the pseudo-moulded graphite sheet to the amorphous metal sheet after the molding process by compression molding.
상기 방열막층 형성단계(s41)는 상기 다기공 금속시트(20)의 타면 즉, 가성형 그라파이트시트(10)가 부착되지 않은 반대면에 방열막층을 적층 형성시키는 공정이다. 이러한 방열막층(30)은 상기 다기공 금속시트(20)의 타면에 적층된 상태에서 가압 또는 도포 또는 함침에 의해 일체로 부착 형성되는 것으로, 일부가 다기공 금속시트의 표면에 형성된 공극으로 함침되어 반대편의 상기 그라파이트시트에 부착되어 일체로 결속력을 생성시키는 유무기 계열의 수지 또는 알루미늄 또는 알루미늄 합금으로 된 박판이 사용된다. 한편, 상기 방열막층은 유기계열, 무기계열, 세라믹계열 중 어느 하나 또는 하나 이상을 조성한 조성물이 사용되거나, 이러한 조성물에 흑연을 일부 섞은 흑연조성물이 사용되거나 또는 연질의 알루미늄 또는 알루미늄 합금으로 된 박판이 사용될 수 있으며, 사용되는 재료의 물성에 따라 도포,함침,스프레이,가압의 방식을 통해 상기 다기공 금속시트에 일체로 구성된다. The heat dissipation layer forming step (s41) is a process of stacking the heat dissipation layer on the other surface of the porous metal sheet 20, that is, on the opposite side to which the caustic graphite sheet 10 is not attached. The heat dissipation layer 30 is integrally formed by pressing or applying or impregnating in the state of being laminated on the other surface of the multi-porous metal sheet 20, and part of the heat-radiating layer 30 is impregnated with a gap formed on the surface of the multi-porous metal sheet. An organic-inorganic resin or a thin plate made of aluminum or an aluminum alloy is used to attach to the opposite graphite sheet to generate a binding force integrally. On the other hand, the heat dissipation layer is a composition of any one or more of organic, inorganic, ceramic-based, or a graphite composition in which some of the graphite is mixed in such a composition, or a thin plate made of soft aluminum or aluminum alloy. It can be used, and is integrally formed in the porous metal sheet through the method of coating, impregnation, spray, pressure depending on the physical properties of the material used.
또한, 본 실시례에서는 상기 전해주조시트(22)인 다기공 금속시트(20)와 가성형 그라파이트시트(10)를 일차로 서로 가압하여 일체로 결합한 융합시트에 방열막층(30)을 형성한 것을 예시하였으나, 본 발명은 이에 한정하지 않고 전해주조시트(22)인 다기공 금속시트(20)와 가성형 그라파이트시트(10) 그리고 방열막층(30)을 적층하여 일체로 가압 공정을 통해 일체로 형성하는 것도 가능할 것이다. In addition, in this embodiment, the multi-porous metal sheet 20 and the pseudo-graphite graphite sheet 10, which are the electro-forming sheets 22, are formed by forming a heat-dissipating film layer 30 on the fusion sheet which is integrally bonded to each other by pressing the primary. Exemplary embodiments of the present invention are not limited thereto, but the multi-porous metal sheet 20, the pseudo-graphite sheet 10, and the heat dissipation layer 30, which are the electroforming sheets 22, are laminated and integrally formed through a pressing process. It would be possible.
제3실시례-본 발명의 제3실시례에 따른 전자파 흡수소멸과 차폐용 융합시트의 제조방법은 도 10을 참조하면, 크게 가성형 그라파이트시트 준비단계(s12)와, 금속박판시트(23)로 된 다기공 금속시트 성형단계(s22), 융합시트 형성단계(s32), 방열박층 형성단계(s42)로 구성된다. Third Embodiment-Referring to FIG. 10, a method of manufacturing a fusion sheet for absorbing and shielding electromagnetic waves according to a third embodiment of the present invention includes a caustic graphite sheet preparing step (s12) and a metal thin sheet (23). It consists of a multi-porous metal sheet forming step (s22), a fusion sheet forming step (s32), a heat radiation thin film forming step (s42).
상기 가성형 그라파이트시트 준비단계(s12)는 기재인 흑연 또는 흑연분말을 압착 성형하거나, 또는 흑연에 유기계열, 무기계열, 세라믹계열 중 어느 하나 또는 하나 이상을 조성한 흑연조성물 또는 그라파이트에 유기계열,무기계열,세라믹계열의 중 어느 하나 또는 하나 이상을 조성한 방열수지를 혼합하여 된 혼합물로 된 그라파이트 기재를 준비하고, 이를 밀도 0.1g/㎤~1.5g/㎤의 범위를 갖는 결정구조가 불완전한 상태의 시트 형태로 가성형한다. 이때의 가성형 방법은 공지의 다양한 방법에 의해 제조되어도 무방하므로 상세한 설명은 생략한다. The caustic graphite sheet preparation step (s12) is a compression-molded graphite or graphite powder as a substrate, or an organic series, inorganic to a graphite composition or graphite formed of one or more of organic, inorganic, and ceramic based on graphite. A graphite substrate composed of a mixture of heat dissipating resins in which any one or more of the series and the ceramic series is formed is prepared, and the sheet having an incomplete crystal structure having a density in the range of 0.1 g / cm 3 to 1.5 g / cm 3 is prepared. Prune in shape. In this case, the caustic molding method may be manufactured by various known methods, and thus detailed description thereof will be omitted.
상기 다기공 금속시트 성형단계(s22)는 금속박판에 구멍을 뚫어 형성한 금속박판시트(23)가 사용되며, 이때의 금속박판시트(23)는 동,주석,아연,알루미늄,스텐레스 계열의 금속재로 된 박판에 펀칭,레이저,에칭공법 중 어느 하나의 공법을 사용하여 공극을 형성하는 구멍을 성형한 시트재이다. 이때 상기 금속박판시트(23)에 형성되는 구멍인 공극(25)은 상기 가성형 그라파이트시트(10)가 가압 성형에 의해 부착된 상태에서 그 결정구조가 깨지지 않도록 구비되어야 하며, 이를 위해 본 발명에서는 상기 가성형 그라파이트시트(10)가 부착되는 일측 표면을 기준으로 그 표면과 곡면 성형을 이루는 곡면부(23a)와, 이 곡면부(23b)에서 구멍의 내측으로 진행하면서 지름이 완만하게 감소되는 경사면부(23b)를 형성하는 것을 제안하였다. 즉, 상기 금속박판시트(23)는 미세한 구멍이나 틈새로 이루어진 공극(20a)을 형성한 금속박판으로 된 시트재로 제공되는 특징을 갖는다면 다양한 형태의 금속 박판시트가 사용되어도 무방하며, 다만 일면에 적층된 가성형 그라파이트시트(10)와 가압되는 과정에서 가성형 그라파이트시트(10)의 결정구조를 깨뜨리지 않도록 가성형 그라파이트시트(10)가 접촉되는 공극(20a) 및 이 공극(25)에 연결되는 면들은 전체적으로 모서리가 없이 둥근 형태 즉, 완만한 곡면을 갖도록 형성되어야 한다. In the multi-porous metal sheet forming step (s22), a metal sheet sheet 23 formed by forming a hole in a metal sheet is used, and the metal sheet sheet 23 is made of copper, tin, zinc, aluminum, stainless-based metal materials. It is a sheet member formed by molding a hole for forming voids using any one of a punching, laser, and etching method on a thin plate made of steel. In this case, the voids 25, which are holes formed in the metal thin sheet 23, should be provided so that their crystal structures are not broken in a state in which the caustic graphite sheet 10 is attached by pressure molding. The curved portion 23a which forms a curved surface with the surface based on one surface to which the caustic graphite sheet 10 is attached, and an inclined surface that gradually decreases in diameter while proceeding to the inside of the hole in the curved portion 23b. It was proposed to form part 23b. That is, the metal thin sheet 23 may be used as a sheet metal sheet formed of a metal sheet having a gap (20a) formed of fine holes or gaps may be used in various forms, but only one surface Connected to the voids 20a and the voids 25 in which the pseudo-graphite sheet 10 is in contact with each other so as not to break the crystal structure of the pseudo-graphite sheet 10 in the pressurized process with the pseudo-type graphite sheet 10 laminated thereon. The faces to be formed should be formed to have a rounded shape without a corner as a whole, that is, a smooth curved surface.
상기 융합시트 형성단계(s32)는 상기 가성형 그라파이트시트(10)를 상기 금속박판시트(23)로 제공되는 다기공 금속시트(20)의 일 표면에 적층 배치시킨 상태에서 가압함으로써 상기 그라파이트시트를 구성하는 그라파이트 결정이 상기 다기공 금속시트의 표면 공극에 함침되면서 일체로 부착 결합되게 하는 것으로, 밀도 1.6g/㎤~6.0g/㎤의 범위를 갖도록 가압 성형되면서 공극 0.01mm~0.5mm의 크기를 갖도록 성형된다. 즉, 상기 금속박판시트(23)인 다기공 금속시트(20) 및 그 일면에 적층되는 가성형 그라파이트시트(10)에 대하여 30MPa~300MPa의 압력으로 1~20회 가압기기를 이용하여 가압을 실시함으로써, 결과적으로 두께 0.01mm~50mm가 되도록 가압하여 융합시트를 형성한다. 여기서, 상기 금속박판시트(23)인 다기공 금속시트(20)와 가성형 그라파이트시트(10)의 적층 구조물에 대한 가압방법으로는 다양한 가압장치가 사용될 수 있으며, 본 발명에서는 프레스기 또는 롤러 가압 방식인 롤링·압연기가 사용되는 것을 제안하며, 결과물의 요구 조건과 가압기의 성능에 따라 1~20회 가량 반복하여 실시할 수 있을 것이다. 한편, 상기 프레스기 또는 롤러 가압 방식의 롤링·압연기에 의해 가압 성형되는 융합시트는 상·하면이 평탄해지도록 가압되는 것이 바람직하며, 가압 과정을 거치면서 공극 밀도가 높아짐에 따라 금속분말 간의 결합력이 증대되어 결과적으로 내구성 및 탄성이 증대된다. 또한, 상기 공정은 실온 상태에서 진행되어도 무방하나, 금속분말의 소결온도를 기준으로 40% 이하의 낮은 온도에서 실시되는 것이 바람직하다. 또한, 상기 금속박판시트(23)인 다기공 금속시트에 대하여 가성형 그라파이트시트(10)가 부착되기전 공정에서 500℃~600℃에서 10~40분간 가열하여 비정질화시키는 비정질 금속시트 성형공정을 더 수행하는 것도 가능하며, 이 비정질 금속시트에 성형공정 이후에 상기 가성형 그라파이트시트를 부착하여 압착 성형하는 과정으로 수행되는 것도 가능하다.In the forming of the fusion sheet (s32), the graphite sheet is pressed by pressing the temporary graphite sheet 10 on one surface of the porous metal sheet 20 provided as the metal sheet 23. The graphite crystals are integrally attached and bonded while being impregnated into the surface pores of the multi-porous metal sheet, and have a size of 0.01 mm to 0.5 mm while being press-molded to have a density of 1.6 g / cm 3 to 6.0 g / cm 3. It is molded to have. That is, the pressure is applied to the multi-porous metal sheet 20, which is the metal thin sheet 23, and the pseudo-molded graphite sheet 10 laminated on one surface thereof using a pressure device 1 to 20 times at a pressure of 30 MPa to 300 MPa. As a result, the resultant is pressurized to have a thickness of 0.01 mm to 50 mm to form a fusion sheet. Here, various pressing apparatuses may be used as a pressing method for the laminated structure of the multi-porous metal sheet 20 and the caustic graphite sheet 10, which are the metal thin sheets 23, and in the present invention, a press machine or a roller pressing method. It is suggested that the in-rolling and rolling mill be used, and may be repeated 1 to 20 times depending on the requirements of the resultant and the performance of the press. Meanwhile, the fusion sheet press-molded by the press or roller pressing / rolling press is preferably pressed to flatten the upper and lower surfaces. As the pore density increases during the pressing process, the bonding force between the metal powders increases. As a result, durability and elasticity are increased. In addition, the process may be performed at room temperature, but is preferably performed at a low temperature of 40% or less based on the sintering temperature of the metal powder. In addition, the amorphous metal sheet forming process of heating the amorphous metal sheet for 10 to 40 minutes at 500 ° C. to 600 ° C. in the step before attaching the pseudo-molded graphite sheet 10 to the multi-porous metal sheet that is the metal thin sheet 23 is further performed. The amorphous metal sheet may be attached to the amorphous graphite sheet after the molding process, and may be carried out by compression molding.
상기 방열막층 형성단계(s42)는 상기 다기공 금속시트(20)의 타면 즉, 가성형 그라파이트시트(10)가 부착되지 않은 반대면에 방열막층을 적층 형성시키는 공정이다. 이러한 방열막층(30)은 상기 다기공 금속시트(20)의 타면에 적층된 상태에서 가압 또는 도포 또는 함침에 의해 일체로 부착 형성되는 것으로, 일부가 다기공 금속시트의 표면에 형성된 공극으로 함침되어 반대편의 상기 그라파이트시트에 부착되어 일체로 결속력을 생성시키는 유무기 계열의 수지 또는 알루미늄 또는 알루미늄 합금으로 된 박판이 사용된다. 한편, 상기 방열막층은 유기계열, 무기계열, 세라믹계열 중 어느 하나 또는 하나 이상을 조성한 조성물이 사용되거나, 이러한 조성물에 흑연을 일부 섞은 흑연조성물이 사용되거나 또는 연질의 알루미늄이나 알루미늄 합금으로 된 박판이 사용될 수 있으며, 사용되는 재료의 물성에 따라 도포,함침,스프레이,가압의 방식을 통해 상기 다기공 금속시트(20)에 일체로 구성된다. The heat dissipation layer forming step (s42) is a process of stacking the heat dissipation layer on the other surface of the multi-porous metal sheet 20, that is, on the opposite side to which the caustic graphite sheet 10 is not attached. The heat dissipation layer 30 is integrally formed by pressing or applying or impregnating in the state of being laminated on the other surface of the multi-porous metal sheet 20, and part of the heat-radiating layer 30 is impregnated with a gap formed on the surface of the multi-porous metal sheet. An organic-inorganic resin or a thin plate made of aluminum or an aluminum alloy is used to attach to the opposite graphite sheet to generate a binding force integrally. On the other hand, the heat dissipation layer is a composition of any one or more of organic, inorganic, ceramic, or a ceramic composition, or a graphite composition in which some of the graphite is mixed in such a composition, or a thin plate made of soft aluminum or aluminum alloy. It can be used, and is integrally formed in the porous metal sheet 20 through the method of coating, impregnation, spray, pressure depending on the physical properties of the material used.
또한, 본 실시례에서는 상기 금속박판시트(23)인 다기공 금속시트(20)와 가성형 그라파이트시트(10)를 일차로 서로 가압하여 일체로 결합한 융합시트에 방열막층(30)을 형성한 것을 예시하였으나, 본 발명은 이에 한정하지 않고 금속박판시트(23)인 다기공 금속시트(20)와 가성형 그라파이트시트(10) 그리고 방열막층(30)을 적층하여 일체로 가압 공정을 통해 일체로 형성하는 것도 가능할 것이다.In addition, in the present embodiment, the multi-porous metal sheet 20, which is the metal thin sheet 23, and the pseudo-molded graphite sheet 10 are primarily formed by forming a heat dissipation film layer 30 in a fusion sheet integrally bonded to each other. Exemplary embodiments of the present invention are not limited thereto, but the multi-porous metal sheet 20, the pseudo-graphite sheet 10, and the heat dissipation layer 30, which are the metal thin sheet 23, are laminated and integrally formed through a pressing process. It would be possible.
제4실시례-본 발명의 제4실시례에 따른 전자파 흡수소멸과 차폐용 융합시트의 제조방법은 도 11을 참조하면, 크게 가성형 그라파이트시트 준비단계(s13)와, 금속박판시트(23)로 된 다기공 금속시트 성형단계(s23), 융합시트 형성단계(s33), 방열박층 형성단계(s43)로 구성된다.Fourth Embodiment-Referring to FIG. 11, a method of manufacturing a fusion sheet for absorbing and shielding electromagnetic waves according to a fourth embodiment of the present invention includes a step of preparing a caustic graphite sheet (s13) and a metal thin sheet (23). It consists of a multi-porous metal sheet forming step (s23), a fusion sheet forming step (s33), a heat radiation thin film forming step (s43).
상기 가성형 그라파이트시트 준비단계(s13)는 기재인 흑연 또는 흑연분말을 압착 성형하거나, 또는 흑연에 유기계열, 무기계열, 세라믹계열 중 어느 하나 또는 하나 이상을 조성한 흑연조성물 또는 그라파이트에 유기계열,무기계열,세라믹계열의 중 어느 하나 또는 하나 이상을 조성한 방열수지를 혼합하여 된 혼합물로 된 그라파이트 기재를 준비하고, 이를 밀도 0.1g/㎤~1.5g/㎤의 범위를 갖는 결정구조가 불완전한 상태의 시트 형태로 가성형한다. 이때의 가성형 방법은 공지의 다양한 방법에 의해 제조되어도 무방하므로 상세한 설명은 생략한다. The caustic graphite sheet preparation step (s13) is a compression-molded graphite or graphite powder as a base material, or an organic series, inorganic to a graphite composition or graphite formed of any one or more of organic, inorganic, and ceramic based on graphite. A graphite substrate composed of a mixture of heat dissipating resins in which any one or more of the series and the ceramic series is formed is prepared, and the sheet having an incomplete crystal structure having a density in the range of 0.1 g / cm 3 to 1.5 g / cm 3 is prepared. Prune in shape. In this case, the caustic molding method may be manufactured by various known methods, and thus detailed description thereof will be omitted.
상기 다기공 금속시트 성형단계(s23)는 단면이 원형인 금속재로 된 세로줄 와이어(24a)와 가로줄 와이어(24b)를 서로 교차하도록 엮어서 된 것으로, 상기 세로줄 와이어(24a)와 가로줄 와이어(24b) 사이에 공극이 형성되는 그물 또는 네트 형태의 네트시트(24)가 사용된다. 한편, 상기 금속선재인 세로줄 와이어(24a)와 가로줄 와이어(24b)는 단일의 금속선재를 사용하는 것 외에도 두가닥 또는 그 이상의 복수의 가닥을 꼬아서 만든 꼬임선재를 사용하여 서로 그물 모양으로 엮는 것도 가능할 것이다. 또한, 네트시트(24)는 그 두께를 감소시키기 위하여 롤러나 프레스 기기등을 이용하여 가압과정을 더 수행하는 것도 가능할 것이다. The multi-porous metal sheet forming step (s23) is made by weaving the vertical wire 24a and the horizontal wire 24b made of a metal having a circular cross section to cross each other, between the vertical wire 24a and the horizontal wire 24b. A net sheet 24 in the form of a net or net in which voids are formed is used. Meanwhile, in addition to using a single metal wire, the vertical wire 24a and the horizontal wire 24b, which are the metal wires, may also be braided into each other using a twisted wire made by twisting two or more strands together. It will be possible. In addition, the net sheet 24 may further perform a pressing process using a roller or a press machine to reduce the thickness thereof.
상기 융합시트 형성단계(s33)는 상기 가성형 그라파이트시트(10)를 상기 네트시트(24)로 제공되는 다기공 금속시트(20)의 일 표면에 적층 배치시킨 상태에서 가압함으로써 상기 그라파이트시트를 구성하는 그라파이트 결정이 상기 다기공 금속시트의 표면 공극에 함침되면서 일체로 부착 결합되게 하는 것으로, 밀도 1.6g/㎤~6.0g/㎤의 범위를 갖도록 가압 성형되면서 공극 0.01mm~0.5mm의 크기를 갖도록 성형된다. 즉, 상기 네트시트(24)인 다기공 금속시트(20) 및 그 일면에 적층되는 가성형 그라파이트시트(10)에 대하여 30MPa~300MPa의 압력으로 1~20회 가압기기를 이용하여 가압을 실시함으로써, 결과적으로 두께 0.01mm~50mm가 되도록 가압하여 융합시트를 형성한다. 여기서, 상기 네트시트(24)인 다기공 금속시트(20)와 가성형 그라파이트시트(10)의 적층 구조물에 대한 가압방법으로는 다양한 가압장치가 사용될 수 있으며, 본 발명에서는 프레스기 또는 롤러 가압 방식인 롤링·압연기가 사용되는 것을 제안하며, 결과물의 요구 조건과 가압기의 성능에 따라 1~20회 가량 반복하여 실시할 수 있을 것이다. 한편, 상기 프레스기 또는 롤러 가압 방식의 롤링·압연기에 의해 가압 성형되는 융합시트는 상·하면이 평탄해지도록 가압되는 것이 바람직하며, 가압 과정을 거치면서 공극 밀도가 높아짐에 따라 금속분말 간의 결합력이 증대되어 결과적으로 내구성 및 탄성이 증대된다. 또한, 상기 공정은 실온 상태에서 진행되어도 무방하나, 금속분말의 소결온도를 기준으로 40% 이하의 낮은 온도에서 실시되는 것이 바람직하다. 또한, 상기 네트시트(24)인 다기공 금속시트(20)에 대하여 가성형 그라파이트시트(10)가 부착되기전 공정에서 500℃~600℃에서 10~40분간 가열하여 비정질화시키는 비정질 금속시트 성형공정을 더 수행하는 것도 가능하며, 이 비정질 금속시트에 성형공정 이후에 상기 가성형 그라파이트시트를 부착하여 압착 성형하는 과정으로 수행되는 것도 가능할 것이다.In the forming of the fused sheet (s33), the graphite sheet 10 is formed by pressing the dummy graphite sheet 10 on a surface of the multi-porous metal sheet 20 provided as the net sheet 24 in a state of being laminated. The graphite crystals are impregnated in the surface pores of the multi-porous metal sheet to be integrally attached and bonded, and pressurized to have a density of 1.6 g / cm 3 to 6.0 g / cm 3 while having a size of 0.01 mm to 0.5 mm. Molded. That is, by pressurizing the porous sheet metal sheet 20, which is the net sheet 24, and the pseudo-molded graphite sheet 10 laminated on one surface thereof using a pressurizing device 1 to 20 times at a pressure of 30 MPa to 300 MPa. As a result, it is pressed to a thickness of 0.01mm ~ 50mm to form a fusion sheet. Here, various pressing apparatuses may be used as a pressing method for the laminated structure of the multi-porous metal sheet 20 and the caustic graphite sheet 10, which is the net sheet 24, and in the present invention, a pressing machine or a roller pressing method may be used. It is suggested that rolling and rolling mills be used, and may be repeated 1 to 20 times depending on the requirements of the resultant and the performance of the press. Meanwhile, the fusion sheet press-molded by the press or roller pressing / rolling press is preferably pressed to flatten the upper and lower surfaces. As the pore density increases during the pressing process, the bonding force between the metal powders increases. As a result, durability and elasticity are increased. In addition, the process may be performed at room temperature, but is preferably performed at a low temperature of 40% or less based on the sintering temperature of the metal powder. In addition, the amorphous metal sheet forming process of heating the amorphous metal sheet 20 to 10-40 minutes at 500 ° C to 600 ° C in the process before attaching the pseudo-molded graphite sheet 10 to the multi-porous metal sheet 20 that is the net sheet 24 It is also possible to perform a further, it may be possible to be carried out by attaching the pseudo-molded graphite sheet to the amorphous metal sheet after the molding process by compression molding.
상기 방열막층 형성단계(s42)는 상기 다기공 금속시트(20)의 타면 즉, 가성형 그라파이트시트(10)가 부착되지 않은 반대면에 방열막층을 적층 형성시키는 공정이다. 이러한 방열막층(30)은 상기 다기공 금속시트(20)의 타면에 적층된 상태에서 가압 또는 도포 또는 함침에 의해 일체로 부착 형성되는 것으로, 일부가 다기공 금속시트의 표면에 형성된 공극으로 함침되어 반대편의 상기 그라파이트시트에 부착되어 일체로 결속력을 생성시키는 유무기 계열의 수지 또는 알루미늄 또는 알루미늄 합금으로 된 박판이 사용된다. 한편, 상기 방열막층(30)은 유기계열, 무기계열, 세라믹계열 중 어느 하나 또는 하나 이상을 조성한 조성물이 사용되거나, 이러한 조성물에 흑연을 일부 섞은 흑연조성물이 사용되거나 또는 연질의 알루미늄이나 알루미늄 합금으로 된 박판이 사용될 수 있으며, 사용되는 재료의 물성에 따라 도포나 함침, 스프레이 또는 가압의 방식을 통해 상기 다기공 금속시트(20)에 일체로 구성된다. 또한, 본 실시례에서는 상기 네트시트(24)인 다기공 금속시트(20)와 가성형 그라파이트시트(10)를 일차로 서로 가압하여 일체로 결합한 융합시트에 방열막층(30)을 형성한 것을 예시하였으나, 본 발명은 이에 한정하지 않고 네트시트(24)인 다기공 금속시트(20)와 가성형 그라파이트시트(10) 그리고 방열막층(30)을 적층하여 일체로 가압 공정을 통해 일체로 형성하는 것도 가능할 것이다.The heat dissipation layer forming step (s42) is a process of stacking the heat dissipation layer on the other surface of the multi-porous metal sheet 20, that is, on the opposite side to which the caustic graphite sheet 10 is not attached. The heat dissipation layer 30 is integrally formed by pressing or applying or impregnating in the state of being laminated on the other surface of the multi-porous metal sheet 20, and part of the heat-radiating layer 30 is impregnated with a gap formed on the surface of the multi-porous metal sheet. An organic-inorganic resin or a thin plate made of aluminum or an aluminum alloy is used to attach to the opposite graphite sheet to generate a binding force integrally. On the other hand, the heat dissipation layer 30 may be a composition of any one or more of organic, inorganic, and ceramic, or a graphite composition in which some of the graphite is mixed into the composition, or a soft aluminum or aluminum alloy. The thin plate may be used, and is integrally formed with the multi-porous metal sheet 20 by applying, impregnating, spraying, or pressing according to the properties of the material used. In addition, in the present embodiment, an example in which the heat dissipation layer 30 is formed on the fusion sheet integrally bonded by pressing the multi-porous metal sheet 20 and the caustic graphite sheet 10 which are the net sheets 24 to each other is primarily illustrated. However, the present invention is not limited thereto, and the multi-porous metal sheet 20, the pseudo-graphite sheet 10, and the heat dissipation film layer 30, which are the net sheets 24, may be laminated and integrally formed through a pressing process. It will be possible.
상기와 같이 여러 제조공정에 의해 제조되는 다기공 금속시트(20)를 적용한 전자파 흡수소멸과 차폐용 융합시트의 제조방법은 제조공정이 간소하여 대량 양산을 통한 경제적인 생산이 가능하고, 특히 가성형 그라파이트시트(10)의 결정구조가 미완성 상태에서 다기공 금속시트(20)와 함께 가압되어 융합시트를 형성하는 과정에서 상기 가성형 그라파이트시트(10)를 구성하는 그라파이트 결정들이 다기공 금속시트(20)의 공극(25)으로 함침되어 견고한 결속력을 유지함과 아울러 전자파 흡수소멸과 차폐의 성능 향상을 도모하고, 아울러 상기 가성형 그라파이트시트(10)의 반대되는 다기공 금속시트(20)의 타면에 형성되는 방열막층(30) 역시 그 성분이 공극(25)을 통해 상기 가성형 그라파이트시트(10)측으로 함침되면서 물리적으로 견고한 일체화가 이루어지게 된다.The manufacturing method of the electromagnetic wave absorption extinction and shielding fusion sheet applying the multi-porous metal sheet 20 manufactured by various manufacturing processes as described above is simple in the manufacturing process, and economical production is possible through mass production, In the process of forming the fused sheet by pressing together with the porous metal sheet 20 in the crystal structure of the graphite sheet 10 to form a fused sheet, the graphite crystals constituting the temporary graphite sheet 10 may be formed of the porous metal sheet 20. Impregnated with voids 25) to maintain a solid binding force and to improve the absorption and shielding performance of electromagnetic waves, and is formed on the other surface of the porous metal sheet 20 opposite to the temporary graphite sheet 10. The heat dissipation layer 30 is also impregnated to the pseudo-graphite sheet 10 side through the air gap 25 so that the physically solid integration is achieved do.
이하, 도 1 내지 도 11을 참조하여 본 발명에 따른 전자기기 고방열용 융합시트 및 그 제조방법과 관련하여 설명하기로 하되, 앞서 설명한 전자파 흡수소멸과 차폐용 융합시트 및 그 제조방법과는 융합시트에 형성된 공극의 크기만 상이하므로 동일한 구성에 대해서는 동일한 부호를 부여하여 설명하고, 일부 중복되는 설명은 생략하였다. Hereinafter, with reference to FIGS. 1 to 11 will be described in connection with the electronic device high heat dissipation fusion sheet according to the present invention and a method for manufacturing the same, the electromagnetic wave absorption extinction and shielding fusion sheet and the method of manufacturing the same Since only the size of the space | gap formed in the sheet differs, the same structure is attached | subjected and demonstrated, and the overlapping description was abbreviate | omitted.
본 발명에 따른 전자기기 고방열용 융합시트(1)는 크게 가압과정에서 그라파이트 결정구조가 깨지지 않도록 모서리를 형성하지 않고 곡면을 갖도록 된 공극(15)을 형성하여 된 금속재로 된 다기공 금속시트(10)와, 이 다기공 금속시트(20)의 일면에 적층 구비되는 것으로 그라파이트 기재를 시트 형태로 성형하되 밀도 0.1~1.5g/㎤ 범위를 갖도록 하여 결정구조가 불완전한 상태로 형성된 상태에서 상기 다기공 금속시트(20)의 일면에 적층되어 일체로 가압공정을 통해 부착 구비되는 가성형 그라파이트시트(10) 그리고 선택적으로 구비되는 것으로 상기 다기공 금속시트(20)의 타면에 적층 구비되는 것으로 가압 또는 도포 또는 함침에 의해 일체로 부착형성되는 것으로 일부가 다기공 금속시트(20)의 표면에 형성된 공극을 통해 반대편의 상기 가성형 그라파이트시트(10) 측으로 함침되어 결속되는 금속 및 유무기 계열의 수지로 된 방열막층(30)으로 구성된다. 여기서 상기 다기공 금속시트(20)는 가성형 그라파이트시트와 밀도 1.6g/㎤~6.0g/㎤를 갖도록 일체로 부착 결합되면되 그 상·하면으로 연결되는 0.001mm~0.05mm 공극을 복수 형성하는 특징을 갖는다. 이러한 본 발명은 방열막층(30)이 갖는 물성에 따라 크게 두 가지 방법으로 제조될 수 있으며, 방열막층(30)이 수지계열로 제공되는 경우에는 상기 다기공 금속시트(20)의 일 표면에 코팅 형태로 부착되는 경우에는 복수의 공극(20a)을 형성한 다기공 금속시트(20)의 일면에 가성형 그라파이트시트(10)를 적층 배치시킨 상태에서 가압성형을 통해 일체로 구성한 뒤 상기 다기공 금속시트(20)의 타면으로 방열막층(30)을 이루는 수지계열의 조성물을 도포, 스프레이, 함침 등의 공법을 통해 일체로 부착시키는 방법과, 상기 방열막층(30)이 알루미늄 이나 알루미늄 합금으로 된 박판으로 제공되는 경우에는 상기 다기공 금속시트(20)의 일면과 타면에 각각 가성형 그라파이트시트(10)와 방열막층(30)을 적층 구성하고 이들을 한꺼번에 가압성형하여 일체로 구성시키는 방법이 있다. The electronic device high heat dissipation fusion sheet 1 according to the present invention is a multi-porous metal sheet made of a metal material formed by forming a void 15 to have a curved surface without forming an edge so that the graphite crystal structure is not largely broken in the pressing process ( 10) to be laminated on one surface of the multi-porous metal sheet 20 to form a graphite substrate in the form of a sheet to have a density of 0.1 ~ 1.5g / cm 3 in the crystal structure is formed in an incomplete state in the state It is laminated on one surface of the metal sheet 20 and is integrally attached through a pressurizing process, and is provided with a pressurized graphite sheet 10 and optionally provided by being laminated on the other surface of the multi-porous metal sheet 20. Alternatively, the impregnated graphite is formed integrally by impregnation, and a part thereof is formed on the surface of the multi-porous metal sheet 20 through the pores formed on the opposite side. It consists of the heat radiation film layer 30 which consists of a metal and organic-inorganic series resin impregnated and bound by the sheet | seat 10 side. Wherein the multi-porous metal sheet 20 is integrally attached and bonded so as to have a density 1.6g / cm 3 ~ 6.0g / cm 3 with the pseudo-molded graphite sheet to form a plurality of 0.001mm ~ 0.05mm pores connected to the upper and lower surfaces Has characteristics. The present invention can be manufactured in two ways according to the physical properties of the heat radiation film layer 30, when the heat radiation film layer 30 is provided in a resin-based coating on one surface of the porous metal sheet 20 In the case of attaching in a shape, the multi-porous metal may be integrally formed by press molding in a state in which the dummy graphite sheet 10 is laminated on one surface of the multi-porous metal sheet 20 on which the plurality of voids 20a are formed. A method of integrally attaching a resin-based composition constituting the heat dissipation layer 30 to the other surface of the sheet 20 through a coating, spraying, or impregnation method, and the heat dissipation layer 30 is made of aluminum or an aluminum alloy. In the case where it is provided as the laminated porous sheet 10 and the heat-radiating film layer 30 on one side and the other surface of the multi-porous metal sheet 20, respectively, to form them integrally by pressing molded at once There is a way.
가성형 그라파이트시트(10)는 앞서 설명한 전자파 흡수소멸과 차폐용 융합시트의 구성과 대동소이하므로 상세한 설명은 생략한다. Caustic graphite sheet 10 is similar to the configuration of the above-described fusion sheet for absorbing and extinguishing electromagnetic waves, detailed description thereof will be omitted.
다기공 금속시트(20)는 0.01mm~50mm의 두께를 갖는 시트재로서, 상·하면으로 연결되는 미세한 구멍이나 틈새로 이루어진 공극(20a)을 형성하여 이루어진 것으로, 이때의 공극(20a)은 고르게 분포 형성되며 상·하면으로 연결되는 0.001mm~3.0mm 크기를 갖는다. 이러한 다기공 금속시트(20)는 금속으로 열전도율이 양호하면서 외력에 대한 탄성을 보유한 금속재로 제공되는 것이 바람직하며, 금속은 기공이 형성되는 경우 전자파에 대한 흡수 소멸 기능을 가지며, 특히 공극에 방열특성이 우수한 그라파이트 기재가 이 작을수록 저주파 대역에서 우수한 차폐성능을 확보할 수 있음에 따라 본 발명은 다기공 금속시트(20)의 상면과 하면으로 연결되는 공극(20a)을 형성시킴에 있어 그 크기는 0.001mm~3.0mm인 것을 제안하였다.The multi-porous metal sheet 20 is a sheet member having a thickness of 0.01 mm to 50 mm, and is formed by forming a gap 20a formed of minute holes or gaps connected to the upper and lower surfaces, and the voids 20a at this time are evenly formed. It is distributed and has a size of 0.001mm ~ 3.0mm connected to the top and bottom. The multi-porous metal sheet 20 is preferably provided as a metal material having good thermal conductivity and elasticity against external force as a metal, and the metal has an absorption and extinction function for electromagnetic waves when pores are formed, in particular, heat dissipation characteristics in the voids. The smaller the superior graphite substrate is, the more excellent the shielding performance can be secured in the low frequency band. Thus, in the present invention, the size of the pores 20a connected to the upper and lower surfaces of the multi-porous metal sheet 20 is increased. It proposed that it is 0.001mm-3.0mm.
이는 공극(20a)의 크기가 0.001mm 미만인 경우에는 미세기공으로 인하여 가공이 곤란할 뿐말 아니라 방열소재인 그라파이트 기재의 함침율이 지나치게 낮아지기 때문에 결과적으로 방열성능이 낮아지는 폐단이 있으며, 반대로 공극(20a)의 크기가 3mm를 초과하는 경우에는 그라파이트 기재가 함침되어 견고한 결속상태를 유지하지 못하고 다기공 금속시트(20)로부터 탈락되거나 박리되는 폐단이 발생하기 때문이다. 따라서 본 발명에서는 다기공 금속시트(20)의 공극(20a) 크기를 0.001mm~3mm인 것을 제안한다. 이러한 다기공 금속시트(20)는 미세한 구멍이나 틈새로 이루어진 공극(20a)을 형성한 금속 시트재로 제공되는 특징을 갖는다면 다양한 형태의 금속 시트가 사용되어도 무방하며, 다만 일면에 적층된 가성형 그라파이트시트(10)와 가압되는 과정에서 가성형 그라파이트시트(10)의 결정구조를 깨뜨리지 않도록 가성형 그라파이트시트(10)가 접촉되는 공극(20a)은 전체적으로 모서리가 없이 둥근 형태 즉, 완만한 곡면을 갖도록 형성되어야 한다. If the size of the pore 20a is less than 0.001mm, not only is it difficult to process due to micropores, but also the impregnation rate of the graphite substrate, which is a heat-dissipating material, is too low, and as a result, the heat dissipation performance is lowered. If the size exceeds 3mm, the graphite substrate is impregnated, and thus, a closed end may be caused to fall off or peel off from the porous metal sheet 20 without maintaining a solid binding state. Therefore, the present invention proposes that the size of the pore 20a of the multi-porous metal sheet 20 is 0.001 mm to 3 mm. The multi-porous metal sheet 20 may be a metal sheet of various forms as long as it has a feature of being provided with a metal sheet formed with a gap 20a formed of fine holes or gaps, but a pseudo-ply laminated on one surface. The voids 20a to which the pseudo-graphite sheet 10 is in contact with the graphite sheet 10 so as not to break the crystal structure of the pseudo-graphite sheet 10 during pressurization have a rounded shape without a corner, that is, a smooth curved surface. It should be formed to have.
한편, 본 발명에서의 다기공 금속시트(20)는 소결공정에 의해 제조되는 소결시트(21), 금속 전해주조 방식에 의해 제조되는 금속전해주조시트(22), 금속박판에 구멍을 천공하여 제조되는 금속박판시트(23), 와이어를 그물형태로 엮어 제조되는 네트시트(24)로 제공되는 것을 제안하며, 이하 다기공 금속시트(20)의 여러 제조방법을 간략하게 설명하기로 한다. Meanwhile, the multi-porous metal sheet 20 according to the present invention is manufactured by drilling a hole in the sintered sheet 21 manufactured by the sintering process, the metal electroplated sheet 22 manufactured by the metal electroforming method, and the metal thin plate. Metal sheet sheet 23, which is to be provided as a net sheet 24 is produced by weaving a wire in the form of a net, and will be described briefly below the various manufacturing methods of the porous metal sheet 20.
첫째, 소결시트(21)는 도 2에 나타내 보인 바와 같이 1㎛~200㎛의 입도 크기를 갖는 금속분말을 용융온도 보다 낮은 온도에서 가열하여 완전히 용융되지 않으면서 분말들이 서로 연결되게 소결하고, 이를 가압하여 성형된 시트재이다. 즉, 소결시트(21)는 1㎛~200㎛ 내,외의 크기를 가지면서 300℃~1800℃의 용융 온도를 갖는 구리 등의 동계열, 주석 계열, 아연 계열, 알루미늄 계열, 스텐레스 계열의 금속분말을 준비하고, 이를 용융온도 보다 대략 10%~30% 가량 낮은 온도에서 10분~300분 가열하여 소결한 뒤 이를 프레스나 롤러 등의 가압장비를 사용하여 30MPa~300MPa의 압력으로 1회 내지 수십회 가압성형하여 시트 형태로 제조한 것으로 두께 0.01mm~50mm을 가지면서 상·하면으로 연결되는 0.001mm~3.0mm 크기를 갖는 복수의 공극(20a)을 형성한 것이다.First, as shown in FIG. 2, the sintered sheet 21 is sintered so that the powders are connected to each other without being completely melted by heating a metal powder having a particle size of 1 μm to 200 μm at a temperature lower than the melting temperature. It is a sheet | seat material formed by pressing. That is, the sintered sheet 21 is a metal powder of copper, tin-based, zinc-based, aluminum-based, stainless-based, such as copper having a melting temperature of 300 ℃ ~ 1800 ℃ while having a size of 1 ~ 200 ㎛, outside And then sintered by heating it at a temperature of about 10% to 30% lower than the melting temperature for 10 minutes to 300 minutes and then using a press or a pressurizing equipment such as a roller at a pressure of 30 MPa to 300 MPa once to several times It is manufactured in the form of a sheet by pressing and forming a plurality of voids (20a) having a size of 0.001mm ~ 3.0mm connected to the upper and lower surfaces having a thickness of 0.01mm ~ 50mm.
둘째, 금속전해주조시트(22)는 도 3에 나타내 보인 바와 같이 고온에서 기화 또는 액화되는 수지로 성형된 판상의 성형틀을 전해주조에 침지하여 통전시켜 금속을 전착하여 전착층을 형성하고, 이 전착층이 형성된 성형틀을 가열하여 수지를 제거하여 0.001mm~3.0mm의 크기를 갖는 공극(20a)을 형성한 것으로 필요시 1~10여회 가압하여 두께 0.01mm~50mm가 시트 형태로 성형한 금속전해주조 시트(22)로 제공되는 다기공 금속시트가 도시되어 있다. Second, as shown in FIG. 3, the metal electrolytic aid sheet 22 is immersed in an electrolytic bath by immersing a plate-shaped mold formed of a resin that is vaporized or liquefied at a high temperature in an electrolytic bath to electrodeposit metal to form an electrodeposition layer. The mold was formed by heating the mold in which the electrodeposition layer was formed to remove the resin to form a void 20a having a size of 0.001 mm to 3.0 mm. Shown is a porous metal sheet provided as electroforming sheet 22.
셋째, 금속박판시트(23)는 도 4에 나타내 보인 바와 같이 동,주석,아연,알루미늄,스텐레스 계열의 금속재로 된 박판에 펀칭,레이저,에칭공법으로 0.001mm~3.0mm의 크기를 갖는 공극구멍을 형성하여 된 시트부재로서, 상기 공극구멍은 상기 가성형 그라파이트시트가 가압성형에 의해 부착된 상태에서 그 결정구조가 깨지지 않도록 상기 가성형 그라파이트시트가 부착되는 일측 표면을 기준으로 그 표면과 곡면 성형을 이루는 곡면부 및 이 곡면부에서 내측으로 진행하면서 지름이 완만하게 감소되는 경사면부를 형성하여 된 금속박판시트(23)인 다기공 금속시트가 도시되어 있다. Third, as shown in FIG. 4, the metal sheet 23 is a hole having a size of 0.001 mm to 3.0 mm by punching, laser, and etching in a thin sheet of copper, tin, zinc, aluminum, or stainless steel based metal material. Wherein the pore hole is formed on the surface and curved surface of the void based on one surface to which the pseudo-graphite graphite sheet is attached so that the crystal structure is not broken while the pseudo-graphite sheet is attached by pressing. The perforated metal sheet, which is a metal sheet sheet 23, is formed by forming a curved surface portion and an inclined surface portion which gradually decreases in diameter while proceeding inward from the curved portion.
넷째, 네트시트(24)는 도 5에 나타내 보인 바와 같이 단면이 원형인 금속선재로 된 세로줄 와이어(24a)와 가로줄 와이어(24b)를 서로 교차하도록 엮는 것에 의해 이들 사이에 0.001mm~3.0mm의 크기를 갖는 공극(20a)이 형성되는 네트시트(24)인 다기공 금속시트가 도시되어 있으며, 본 발명은 상기 금속선재인 세로줄 와이어(24a) 및 가로줄 와이어(24b)를 단일의 금속선재를 사용하는 것 외에도 두가닥 또는 그 이상의 복수의 가닥을 꼬은 형태로 한 세로줄 와이어와 가로줄 와이어를 서로 그물 형태로 엮는 것도 가능할 것이다. 이와 같이 여러 제조방식에 의해 제조되는 다기공 금속시트(20)는 프레스나 롤러 등의 가압기기를 이용하여 일회 또는 수회 반복하여 가압함으로써 그 두께와 공극의 크기가 조절될 수 있다.Fourth, as shown in Fig. 5, the net sheet 24 has a length of 0.001 mm to 3.0 mm between the vertical wire 24a and the horizontal wire 24b made of a metal wire having a circular cross section so as to cross each other. A multi-porous metal sheet is shown, which is a net sheet 24 in which a pore 20a having a size is formed. The present invention uses a single metal wire for the vertical wire 24a and the horizontal wire 24b, which are the metal wires. In addition to the two or more strands in the form of twisted vertical wires and horizontal wires may be intertwined in the form of a net. As described above, the multi-porous metal sheet 20 manufactured by various manufacturing methods may be pressurized once or several times using a pressing device such as a press or a roller to adjust the thickness and the size of the pores.
방열막층(30)은 상기 다기공 금속시트(20)의 일면에 적층된 가성형 그라파이트시트(10)와 반대되는 타면에 적층 형태로 구비되어 가압, 도포, 함침 등에 의해 일체로 부착 형성되는 것으로, 그 일부가 상기 다기공 금속시트(20)의 표면에 형성된 공극을 통해 반대편의 상기 그라파이트시트(10)측으로 함침되어 결속력을 생성하는 금속 및 유무기 계열의 수지로 제공된다. 이러한 방열막층(30)은 상기 다기공 금속시트(20)의 표면에 일체로 부착 형성되는 것으로, PVC, PC, 우레탄, 실리콘, ABS, UV 중 어느 하나 또는 하나 이상을 조성한 절연수지조성물을 코팅하여 형성된 절연물이거나 또는 접착성분을 갖는 수지를 도포하여 된 점착물 또는 양면테이프를 부착하여 된 접착물 중 어느 하나이거나 또는 방열특성을 양호하게 하면서 상기 다기공 금속시트(20)와의 가압 결합에 의해 그 일부가 상기 다기공 금속시트(20)의 표면 공극(20a)에 함침되는 연질의 알루미늄 또는 알루미늄 합금으로 된 박판을 부착하여 형성된 금속박판 중 어느 하나가 사용되거나 또는 복수층으로 구성되는 것도 가능하다.The heat dissipation layer 30 is provided in a laminated form on the other surface opposite to the pseudo-molded graphite sheet 10 stacked on one surface of the porous metal sheet 20 to be integrally attached and formed by pressure, coating, impregnation, etc. A part of the metal and organic-inorganic resin is impregnated to the opposite side of the graphite sheet 10 through the gap formed on the surface of the multi-porous metal sheet 20 to generate a binding force. The heat dissipation layer 30 is formed integrally attached to the surface of the multi-porous metal sheet 20, by coating an insulating resin composition of any one or more of PVC, PC, urethane, silicon, ABS, UV Either the formed insulating material or an adhesive formed by applying a resin having an adhesive component or an adhesive formed by attaching a double-sided tape, or a part thereof by pressure bonding with the porous metal sheet 20 while improving heat dissipation characteristics. Any one of the metal thin plates formed by attaching a thin plate made of soft aluminum or an aluminum alloy impregnated into the surface pores 20a of the multi-porous metal sheet 20 may be used or may be composed of a plurality of layers.
이하, 본 발명에 따른 전자기기 고방열용 융합시트의 여러 제조방법을 설명하되, 앞서 설명한 전자파 흡수소멸과 차폐용 융합시트의 제조방법과 극히 유사한 공정을 통해 제조되므로, 동일한 공정에 대해서는 동일한 부호를 부여하고, 중복되는 상세 설명은 생략하였다.Hereinafter, various manufacturing methods of the electronic device high heat dissipation fusion sheet according to the present invention will be described, but are manufactured through a process very similar to the manufacturing method of the electromagnetic wave absorption extinction and shielding fusion sheet described above, the same reference numerals for the same process In addition, overlapping detailed description is abbreviate | omitted.
제1실시례 - 본 발명의 제1실시례에 따른 전자기기 고방열용 융합시트의 제조방법은 도 8을 참조하면, 크게 가성형 그라파이트시트 준비단계(s10)와, 소결시트(21)로 된 다기공 금속시트 성형단계(s20), 융합시트 형성단계(s30), 방열박층 형성단계(s40)로 구성된다. First Embodiment - Referring to FIG. 8, the method for manufacturing a high heat dissipation fusion sheet for an electronic device according to a first embodiment of the present invention includes a caustic graphite sheet preparation step (s10) and a sintered sheet 21. It consists of a porous metal sheet forming step (s20), a fusion sheet forming step (s30), a heat radiation thin film forming step (s40).
상기 가성형 그라파이트시트 준비단계(s10)는 그라파이트 기재인 흑연 또는 흑연분말을 압착 성형하거나, 또는 흑연에 유기계열, 무기계열, 세라믹계열 중 어느 하나 또는 하나 이상을 조성한 흑연조성물 또는 그라파이트에 유기계열,무기계열,세라믹계열의 중 어느 하나 또는 하나 이상을 조성한 방열수지를 혼합하여 된 혼합물로 된 그라파이트 기재를 준비하고, 이를 밀도 0.1g/㎤~1.5g/㎤의 범위를 갖는 결정구조가 불완전한 상태의 시트 형태로 가성형한다. The caustic graphite sheet preparing step (s10) is a graphite-based graphite or graphite powder is compression-molded, or the graphite composition or graphite in which any one or more of organic, inorganic, ceramic-based to graphite, or organic-based, A graphite substrate composed of a mixture obtained by mixing a heat-dissipating resin of one or more of inorganic and ceramic series is prepared, and the crystal structure having a density in the range of 0.1 g / cm 3 to 1.5 g / cm 3 is incomplete. Caustic in sheet form.
상기 다기공 금속시트 성형단계(s20)는 먼저 300℃~1800℃의 용융 온도를 갖는 구리계열, 주석 계열, 아연 계열, 알루미늄 계열, 스텐레스 계열의 금속분말을 준비하되, 이때의 금속분말의 입도는 1㎛~200㎛의 크기를 갖는 것을 준비한다. 이어서 상기 준비된 금속분말을 평판의 박막소재를 성형하기 위한 성형공간을 제공하는 금형에 충진하고, 상기 금속분말의 소재가 갖는 용융 특성별로 용융점 대비 10%~30% 낮은 온도에서 10분~300분간 가열하여 소결 성형함으로써 소결시트(21)를 제조한다. 이러한 소결시트(21)는 금속분말들의 경계면이 서로 안정적으로 융착되어 균일한 0.001mm~3.0mm의 크기를 갖는 공극(20a)을 형성한다.In the multi-porous metal sheet forming step (s20), first, a copper-based, tin-based, zinc-based, aluminum-based, stainless-based metal powder having a melting temperature of 300 ° C. to 1800 ° C. is prepared, but the particle size of the metal powder is The thing which has the magnitude | size of 1 micrometer-200 micrometers is prepared. Subsequently, the prepared metal powder is filled into a mold providing a molding space for forming a thin film material of a flat plate, and heated for 10 minutes to 300 minutes at a temperature 10% to 30% lower than the melting point for each melting characteristic of the material of the metal powder. And sinter molding to manufacture the sintered sheet 21. The sintered sheet 21 is stably fused to each other the boundary surfaces of the metal powder to form a void 20a having a uniform size of 0.001mm ~ 3.0mm.
상기 융합시트 형성단계(s30)는 상기 가성형 그라파이트시트(10)를 상기 다기공 금속시트(20)의 일 표면에 적층 배치시킨 상태에서 가압함으로써 상기 그라파이트시트를 구성하는 그라파이트 결정이 상기 다기공 금속시트의 표면 공극에 함침되면서 일체로 부착 결합되게 하는 것으로, 밀도 1.6g/㎤~6.0g/㎤의 범위를 갖도록 가압 성형되면서 공극 0.001mm~0.05mm의 크기를 갖도록 성형된다. 즉, 상기 소결시트(21)인 다기공 금속시트(20) 및 그 일면에 적층되는 가성형 그라파이트시트(10)에 대하여 30MPa~300MPa의 압력으로 1~20회 가압기기를 이용하여 가압을 실시함으로써, 결과적으로 두께 0.01mm~50mm가 되도록 가압하여 융합시트를 형성한다. In the forming of the fused sheet (s30), the graphite crystals constituting the graphite sheet are pressed by pressing the dummy graphite sheet 10 on one surface of the multi-porous metal sheet 20 so that the polycrystalline metal is Impregnated and bonded integrally while being impregnated into the surface voids of the sheet, the pressure is molded to have a range of density 1.6g / cm 3 ~ 6.0g / cm 3 while being molded to have a size of 0.001mm ~ 0.05mm of the voids. That is, by pressurizing the multi-porous metal sheet 20, which is the sintered sheet 21, and the pseudo-molded graphite sheet 10 laminated on one surface thereof using a pressurizing device 1 to 20 times at a pressure of 30 MPa to 300 MPa. As a result, it is pressed to a thickness of 0.01mm ~ 50mm to form a fusion sheet.
상기 방열막층 형성단계(s40)는 상기 다기공 금속시트(20)의 타면 즉, 가성형 그라파이트시트(10)가 부착되지 않은 반대면에 방열막층을 적층 형성시키는 공정이다. 이러한 방열막층(30)은 상기 다기공 금속시트(20)의 타면에 적층된 상태에서 가압 또는 도포 또는 함침에 의해 일체로 부착 형성되는 것으로, 일부가 다기공 금속시트의 표면에 형성된 공극으로 함침되어 반대편의 상기 그라파이트시트에 부착되어 일체로 결속력을 생성시키는 유무기 계열의 수지 또는 알루미늄 또는 알루미늄 합금으로 된 박판이 사용된다. The heat radiation film layer forming step (s40) is a process of stacking the heat radiation film layer on the other surface of the multi-porous metal sheet 20, that is, on the opposite side to which the caustic graphite sheet 10 is not attached. The heat dissipation layer 30 is integrally formed by pressing or applying or impregnating in the state of being laminated on the other surface of the multi-porous metal sheet 20, and part of the heat-radiating layer 30 is impregnated with a gap formed on the surface of the multi-porous metal sheet. An organic-inorganic resin or a thin plate made of aluminum or an aluminum alloy is used to attach to the opposite graphite sheet to generate a binding force integrally.
제2실시 - 본 발명의 제2실시례에 따른 전자기기 고방열용 융합시트의 제조방법은 도 9를 참조하면, 크게 가성형 그라파이트시트 준비단계(s11)와, 전해주조시트(22)로 된 다기공 금속시트 성형단계(s21), 융합시트 형성단계(s31), 방열박층 형성단계(s41)로 구성된다. Second Embodiment -Referring to FIG. 9, the method for manufacturing a high heat dissipation sheet for an electronic device according to a second embodiment of the present invention includes a caustic graphite sheet preparation step (s11) and an electroforming sheet 22. It is composed of a multi-porous metal sheet forming step (s21), a fusion sheet forming step (s31), a heat radiation thin film forming step (s41).
상기 가성형 그라파이트시트 준비단계(s11)는 앞서 설명한 제1실시례의 구성과 대동소이하다. 즉 그라파이트 기재인 흑연 또는 흑연분말을 압착 성형하거나, 또는 흑연에 유기계열, 무기계열, 세라믹계열 중 어느 하나 또는 하나 이상을 조성한 흑연조성물 또는 그라파이트에 유기계열,무기계열,세라믹계열의 중 어느 하나 또는 하나 이상을 조성한 방열수지를 혼합하여 된 혼합물로 된 그라파이트 기재를 준비하고, 이를 밀도 0.1g/㎤~1.5g/㎤의 범위를 갖는 결정구조가 불완전한 상태의 시트 형태로 가성형한다. 이때의 가성형 방법은 공지의 다양한 방법에 의해 제조되어도 무방하므로 상세한 설명은 생략한다. The provisional type graphite sheet preparing step (s11) is similar to the configuration of the first embodiment described above. That is, the graphite-based graphite or graphite powder is press-molded, or the graphite composition or graphite-based organic composition, inorganic series, ceramic series, or any one or more of organic series, inorganic group, ceramic series, or graphite. A graphite substrate made of a mixture obtained by mixing at least one heat-dissipating resin is prepared, and this is temporarily molded in the form of a sheet having an incomplete crystal structure having a density in the range of 0.1 g / cm 3 to 1.5 g / cm 3. In this case, the caustic molding method may be manufactured by various known methods, and thus detailed description thereof will be omitted.
상기 다기공 금속시트 성형단계(s21)는 금속 전해주조 방식의 가성형 다기공 금속시트를 성형한 뒤 이를 가압공정을 통해 수회 가압함으로써 완성된 다기공 금속시트가 제조된다. 즉, 본 실시례에서의 다기공 금속시트 성형단계를 부연설명하면, 먼저 고온에서 기화 또는 액화되는 수지로 성형된 판상의 성형틀 외면에 통전액을 도포하여 통전층을 형성하고, 통전층이 형성된 성형틀을 전해주조에 침지시킨다. 그리고, 상기 전해주조에 침지된 통전층이 형성된 성형틀을 통전시키면 금속이 전착하여 전착층을 형성하게 된다. 이어서, 전착층이 형성된 성형틀을 전해주조에서 꺼내어 소정온도로 가열하면 수지로 된 성형틀이 녹으면서 제거됨에 따라 결과적으로 0.001mm~3.0mm의 크기를 갖는 공극을 형성한 전착층으로 이루어진 가성형 다기공 금속시트가 완성된다. 이후 상기 가성형 다기공 금속시트를 롤러나 프레스 등의 가압기기를 사용하여 1회~10회 가량 가압하여 두께 0.01mm~50mm가 되도록 함으로써 다기공 금속시트의 성형을 완료하게 된다.In the forming of the multi-porous metal sheet (s21), a completed multi-porous metal sheet is manufactured by molding a caustic multi-porous metal sheet of a metal electroforming method and then pressing it several times through a pressing process. That is, when the multi-porous metal sheet forming step in the present embodiment will be described in detail, first, a current-carrying layer is formed by applying a current-carrying fluid to the outer surface of a plate-shaped mold formed from a resin that is vaporized or liquefied at a high temperature, thereby forming an electric current layer. Dip the mold into the electrolytic tank. Then, when the mold is formed with the conductive layer immersed in the electroforming tank, the metal is electrodeposited to form the electrodeposition layer. Subsequently, when the mold for which the electrodeposition layer was formed was removed from the electroforming tank and heated to a predetermined temperature, the mold for molding was removed while the resin mold was melted, and as a result, a pseudo mold comprising an electrodeposition layer formed with voids having a size of 0.001 mm to 3.0 mm. The perforated metal sheet is completed. Thereafter, by pressing the caustic multi-porous metal sheet by using a pressurizing device such as a roller or a press about 1-10 times to form a thickness of 0.01 mm to 50 mm, the molding of the multi-porous metal sheet is completed.
상기 융합시트 형성단계(s31)는 상기 가성형 그라파이트시트(10)를 상기 전해주조 방식으로 제조된 다기공 금속시트(20)의 일 표면에 적층 배치시킨 상태에서 가압함으로써 상기 그라파이트시트를 구성하는 그라파이트 결정이 상기 다기공 금속시트의 표면 공극에 함침되면서 일체로 부착 결합되게 하는 것으로, 밀도 1.6g/㎤~6.0g/㎤의 범위를 갖도록 가압 성형되면서 공극 0.001mm~0.05mm의 크기를 갖도록 성형된다. 즉, 상기 전해주조시트(22)인 다기공 금속시트(20) 및 그 일면에 적층되는 가성형 그라파이트시트(10)에 대하여 30MPa~300MPa의 압력으로 1~20회 가압기기를 이용하여 가압을 실시함으로써, 결과적으로 두께 0.01mm~50mm가 되도록 가압하여 융합시트를 형성한다. The fusion sheet forming step (s31) is a graphite constituting the graphite sheet by pressing in a state in which the dummy graphite sheet 10 is laminated on one surface of the multi-porous metal sheet 20 manufactured by the electroforming method The crystals are integrally attached and bonded while being impregnated into the surface pores of the multi-porous metal sheet, and are molded to have a size of 0.001 mm to 0.05 mm while being press-molded to have a density of 1.6 g / cm 3 to 6.0 g / cm 3. . That is, the pressure is applied to the multi-porous metal sheet 20, which is the electroformed cast sheet 22, and the pseudo-molded graphite sheet 10 laminated on one surface thereof using a pressurizing device 1 to 20 times at a pressure of 30 MPa to 300 MPa. As a result, the resultant is pressurized to have a thickness of 0.01 mm to 50 mm to form a fusion sheet.
상기 방열막층 형성단계(s41)는 상기 다기공 금속시트(20)의 타면 즉, 가성형 그라파이트시트(10)가 부착되지 않은 반대면에 방열막층을 적층 형성시키는 공정이다. 이러한 방열막층(30)은 상기 다기공 금속시트(20)의 타면에 적층된 상태에서 가압 또는 도포 또는 함침에 의해 일체로 부착 형성되는 것으로, 일부가 다기공 금속시트의 표면에 형성된 공극으로 함침되어 반대편의 상기 그라파이트시트에 부착되어 일체로 결속력을 생성시키는 유무기 계열의 수지 또는 알루미늄 또는 알루미늄 합금으로 된 박판이 사용된다.The heat dissipation layer forming step (s41) is a process of stacking the heat dissipation layer on the other surface of the porous metal sheet 20, that is, on the opposite side to which the caustic graphite sheet 10 is not attached. The heat dissipation layer 30 is integrally formed by pressing or applying or impregnating in the state of being laminated on the other surface of the multi-porous metal sheet 20, and part of the heat-radiating layer 30 is impregnated with a gap formed on the surface of the multi-porous metal sheet. An organic-inorganic resin or a thin plate made of aluminum or an aluminum alloy is used to attach to the opposite graphite sheet to generate a binding force integrally.
제3실시례 - 본 발명의 제3실시례에 따른 전자기기 고방열용 융합시트의 제조방법은 도 10을 참조하면, 크게 가성형 그라파이트시트 준비단계(s12)와, 금속박판시트(23)로 된 다기공 금속시트 성형단계(s22), 융합시트 형성단계(s32), 방열박층 형성단계(s42)로 구성된다. Third Embodiment -Referring to FIG. 10, a method of manufacturing a high heat dissipation fusion sheet of an electronic device according to a third embodiment of the present invention includes a caustic graphite sheet preparing step (s12) and a metal thin sheet (23). The multi-porous metal sheet forming step (s22), the fusion sheet forming step (s32), the heat dissipation thin film forming step (s42).
상기 가성형 그라파이트시트 준비단계(s12)는 기재인 흑연 또는 흑연분말을 압착 성형하거나, 또는 흑연에 유기계열, 무기계열, 세라믹계열 중 어느 하나 또는 하나 이상을 조성한 흑연조성물 또는 그라파이트에 유기계열,무기계열,세라믹계열의 중 어느 하나 또는 하나 이상을 조성한 방열수지를 혼합하여 된 혼합물로 된 그라파이트 기재를 준비하고, 이를 밀도 0.1g/㎤~1.5g/㎤의 범위를 갖는 결정구조가 불완전한 상태의 시트 형태로 가성형한다. 이때의 가성형 방법은 공지의 다양한 방법에 의해 제조되어도 무방하므로 상세한 설명은 생략한다. The caustic graphite sheet preparation step (s12) is a compression-molded graphite or graphite powder as a substrate, or an organic series, inorganic to a graphite composition or graphite formed of one or more of organic, inorganic, and ceramic based on graphite. A graphite substrate composed of a mixture of heat dissipating resins in which any one or more of the series and the ceramic series is formed is prepared, and the sheet having an incomplete crystal structure having a density in the range of 0.1 g / cm 3 to 1.5 g / cm 3 is prepared. Prune in shape. In this case, the caustic molding method may be manufactured by various known methods, and thus detailed description thereof will be omitted.
상기 다기공 금속시트 성형단계(s22)는 금속박판에 구멍을 뚫어 형성한 금속박판시트(23)가 사용되며, 이때의 금속박판시트(23)는 동,주석,아연,알루미늄,스텐레스 계열의 금속재로 된 박판에 펀칭,레이저,에칭공법 중 어느 하나의 공법을 사용하여 0.001mm~3.0mm의 크기의 공극을 형성하는 구멍을 성형한 시트재이다.In the multi-porous metal sheet forming step (s22), a metal sheet sheet 23 formed by forming a hole in a metal sheet is used, and the metal sheet sheet 23 is made of copper, tin, zinc, aluminum, stainless-based metal materials. It is a sheet member formed by forming a hole for forming a void having a size of 0.001mm to 3.0mm by using any one of a punching, laser, and etching method on a thin plate made of a thin plate.
상기 융합시트 형성단계(s32)는 상기 가성형 그라파이트시트(10)를 상기 금속박판시트(23)로 제공되는 다기공 금속시트(20)의 일 표면에 적층 배치시킨 상태에서 가압함으로써 상기 그라파이트시트를 구성하는 그라파이트 결정이 상기 다기공 금속시트의 표면 공극에 함침되면서 일체로 부착 결합되게 하는 것으로, 밀도 1.6g/㎤~6.0g/㎤의 범위를 갖도록 가압 성형되면서 공극 0.001mm~0.05mm의 크기를 갖도록 성형된다. 즉, 상기 금속박판시트(23)인 다기공 금속시트(20) 및 그 일면에 적층되는 가성형 그라파이트시트(10)에 대하여 30MPa~300MPa의 압력으로 1~20회 가압기기를 이용하여 가압을 실시함으로써, 결과적으로 두께 0.01mm~50mm가 되도록 가압하여 융합시트를 형성한다. In the forming of the fusion sheet (s32), the graphite sheet is pressed by pressing the temporary graphite sheet 10 on one surface of the porous metal sheet 20 provided as the metal sheet 23. The graphite crystals are integrally attached and bonded while being impregnated into the surface pores of the multi-porous metal sheet, and the size of the pores is 0.001 mm to 0.05 mm while being press-molded to have a density of 1.6 g / cm 3 to 6.0 g / cm 3. It is molded to have. That is, the pressure is applied to the multi-porous metal sheet 20, which is the metal thin sheet 23, and the pseudo-molded graphite sheet 10 laminated on one surface thereof using a pressure device 1 to 20 times at a pressure of 30 MPa to 300 MPa. As a result, the resultant is pressurized to have a thickness of 0.01 mm to 50 mm to form a fusion sheet.
상기 방열막층 형성단계(s42)는 상기 다기공 금속시트(20)의 타면 즉, 가성형 그라파이트시트(10)가 부착되지 않은 반대면에 방열막층을 적층 형성시키는 공정이다. 이러한 방열막층(30)은 상기 다기공 금속시트(20)의 타면에 적층된 상태에서 가압 또는 도포 또는 함침에 의해 일체로 부착 형성되는 것으로, 일부가 다기공 금속시트의 표면에 형성된 공극으로 함침되어 반대편의 상기 그라파이트시트에 부착되어 일체로 결속력을 생성시키는 유무기 계열의 수지 또는 알루미늄 또는 알루미늄 합금으로 된 박판이 사용된다.The heat dissipation layer forming step (s42) is a process of stacking the heat dissipation layer on the other surface of the multi-porous metal sheet 20, that is, on the opposite side to which the caustic graphite sheet 10 is not attached. The heat dissipation layer 30 is integrally formed by pressing or applying or impregnating in the state of being laminated on the other surface of the multi-porous metal sheet 20, and part of the heat-radiating layer 30 is impregnated with a gap formed on the surface of the multi-porous metal sheet. An organic-inorganic resin or a thin plate made of aluminum or an aluminum alloy is used to attach to the opposite graphite sheet to generate a binding force integrally.
제4실시례 - 본 발명의 제4실시례에 따른 전자기기 고방열용 융합시트의 제조방법은 도 11을 참조하면, 크게 가성형 그라파이트시트 준비단계(s13)와, 금속박판시트(23)로 된 다기공 금속시트 성형단계(s23), 융합시트 형성단계(s33), 방열박층 형성단계(s43)로 구성된다. Fourth Embodiment -Referring to FIG. 11, a method of manufacturing a high heat dissipation fusion sheet of an electronic device according to a fourth embodiment of the present invention includes a caustic graphite sheet preparation step (s13) and a metal thin sheet (23). The multi-porous metal sheet forming step (s23), the fusion sheet forming step (s33), the heat radiation thin film forming step (s43).
상기 가성형 그라파이트시트 준비단계(s13)는 기재인 흑연 또는 흑연분말을 압착 성형하거나, 또는 흑연에 유기계열, 무기계열, 세라믹계열 중 어느 하나 또는 하나 이상을 조성한 흑연조성물 또는 그라파이트에 유기계열,무기계열,세라믹계열의 중 어느 하나 또는 하나 이상을 조성한 방열수지를 혼합하여 된 혼합물로 된 그라파이트 기재를 준비하고, 이를 밀도 0.1g/㎤~1.5g/㎤의 범위를 갖는 결정구조가 불완전한 상태의 시트 형태로 가성형한다. 이때의 가성형 방법은 공지의 다양한 방법에 의해 제조되어도 무방하므로 상세한 설명은 생략한다. The caustic graphite sheet preparation step (s13) is a compression-molded graphite or graphite powder as a base material, or an organic series, inorganic to a graphite composition or graphite formed of any one or more of organic, inorganic, and ceramic based on graphite. A graphite substrate composed of a mixture of heat dissipating resins in which any one or more of the series and the ceramic series is formed is prepared, and the sheet having an incomplete crystal structure having a density in the range of 0.1 g / cm 3 to 1.5 g / cm 3 is prepared. Prune in shape. In this case, the caustic molding method may be manufactured by various known methods, and thus detailed description thereof will be omitted.
상기 다기공 금속시트 성형단계(s23)는 단면이 원형인 금속재로 된 세로줄 와이어(24a)와 가로줄 와이어(24b)를 서로 교차하도록 엮어서 된 것으로, 상기 세로줄 와이어(24a)와 가로줄 와이어(24b) 사이에 공극이 형성되는 그물 또는 네트 형태의 네트시트(24)가 사용된다. The multi-porous metal sheet forming step (s23) is made by weaving the vertical wire 24a and the horizontal wire 24b made of a metal having a circular cross section to cross each other, between the vertical wire 24a and the horizontal wire 24b. A net sheet 24 in the form of a net or net in which voids are formed is used.
상기 융합시트 형성단계(s33)는 상기 가성형 그라파이트시트(10)를 상기 네트시트(24)로 제공되는 다기공 금속시트(20)의 일 표면에 적층 배치시킨 상태에서 가압함으로써 상기 그라파이트시트를 구성하는 그라파이트 결정이 상기 다기공 금속시트의 표면 공극에 함침되면서 일체로 부착 결합되게 하는 것으로, 밀도 1.6g/㎤~6.0g/㎤의 범위를 갖도록 가압 성형되면서 공극 0.001mm~0.05mm의 크기를 갖도록 성형된다. 즉, 상기 네트시트(24)인 다기공 금속시트(20) 및 그 일면에 적층되는 가성형 그라파이트시트(10)에 대하여 30MPa~300MPa의 압력으로 1~20회 가압기기를 이용하여 가압을 실시함으로써, 결과적으로 두께 0.01mm~50mm가 되도록 가압하여 융합시트를 형성한다. In the forming of the fused sheet (s33), the graphite sheet 10 is formed by pressing the dummy graphite sheet 10 on a surface of the multi-porous metal sheet 20 provided as the net sheet 24 in a state of being laminated. The graphite crystals are impregnated in the surface pores of the multi-porous metal sheet to be integrally attached to each other, and pressurized to have a density of 1.6 g / cm 3 to 6.0 g / cm 3 while having a size of 0.001 mm to 0.05 mm pore. Molded. That is, by pressurizing the porous sheet metal sheet 20, which is the net sheet 24, and the pseudo-molded graphite sheet 10 laminated on one surface thereof using a pressurizing device 1 to 20 times at a pressure of 30 MPa to 300 MPa. As a result, it is pressed to a thickness of 0.01mm ~ 50mm to form a fusion sheet.
상기 방열막층 형성단계(s42)는 상기 다기공 금속시트(20)의 타면 즉, 가성형 그라파이트시트(10)가 부착되지 않은 반대면에 방열막층을 적층 형성시키는 공정이다. 이러한 방열막층(30)은 상기 다기공 금속시트(20)의 타면에 적층된 상태에서 가압 또는 도포 또는 함침에 의해 일체로 부착 형성되는 것으로, 일부가 다기공 금속시트의 표면에 형성된 공극으로 함침되어 반대편의 상기 그라파이트시트에 부착되어 일체로 결속력을 생성시키는 유무기 계열의 수지 또는 알루미늄 또는 알루미늄 합금으로 된 박판이 사용된다The heat dissipation layer forming step (s42) is a process of stacking the heat dissipation layer on the other surface of the multi-porous metal sheet 20, that is, on the opposite side to which the caustic graphite sheet 10 is not attached. The heat dissipation layer 30 is integrally formed by pressing or applying or impregnating in the state of being laminated on the other surface of the multi-porous metal sheet 20, and part of the heat-radiating layer 30 is impregnated with a gap formed on the surface of the multi-porous metal sheet. An organic-inorganic resin or a thin sheet of aluminum or aluminum alloy is used, which is attached to the graphite sheet on the opposite side to create a binding force integrally.
상기와 같이 여러 제조공정에 의해 제조되는 다기공 금속시트(20)를 적용한 전자기기 고방열용 융합시트의 제조방법은 제조공정이 간소하여 대량 양산을 통한 경제적인 생산이 가능하고, 특히 가성형 그라파이트시트(10)의 결정구조가 미완성 상태에서 다기공 금속시트(20)와 함께 가압되어 융합시트를 형성하는 과정에서 상기 가성형 그라파이트시트(10)를 구성하는 그라파이트 결정들이 다기공 금속시트(20)의 공극(25)으로 함침되어 견고한 결속력을 유지함에 따라 접착성분을 갖는 수지나 바인더재의 사용에 따른 방열간섭 현상에 의한 방열특성이 저하되는 폐단을 해소할 수 있으므로 우수한 방열성능의 보장이 가능하다. As described above, the manufacturing method of the electronic device high heat dissipation fusion sheet using the multi-porous metal sheet 20 manufactured by various manufacturing processes can be economically produced through mass production due to the simple manufacturing process. In the process of forming the fused sheet by pressing together with the multi-porous metal sheet 20 in a state in which the crystal structure of the sheet 10 is unfinished, the graphite crystals constituting the pseudo-graphite sheet 10 are formed of the porous metal sheet 20. Impregnated with the voids 25 of the to maintain a solid binding force can be eliminated the end of the heat dissipation characteristics deteriorated due to the heat radiation interference phenomenon caused by the use of the resin or binder material having an adhesive component can be ensured excellent heat dissipation performance.
특히, 상기 가성형 그라파이트시트(10)의 반대되는 다기공 금속시트(20)의 타면에 형성되는 방열막층(30) 역시 그 성분이 공극(25)을 통해 상기 가성형 그라파이트시트(10)측으로 함침되면서 물리적으로 견고한 일체화가 이루어지므로 탄성과 내구성 향상을 높일 수 있어 결과적으로 대면적의 시트 양산이 가능하다. In particular, the heat dissipation film layer 30 formed on the other surface of the multi-porous metal sheet 20 opposite to the caustic graphite sheet 10 also has its components impregnated toward the caustic graphite sheet 10 through the pores 25. As a result, physically solid integration is achieved, thereby improving elasticity and durability, and as a result, sheet production of a large area is possible.
이상, 첨부된 도면을 참조하여 본 발명의 실시례를 설명하였지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해되어야만 한다While the embodiments of the present invention have been described above with reference to the accompanying drawings, those skilled in the art to which the present invention pertains may implement the present invention in other specific forms without changing the technical spirit or essential features thereof. You will understand that. Therefore, the embodiments described above are to be understood in all respects as illustrative and not restrictive.

Claims (26)

  1. 그라파이트 기재를 시트 형태로 성형하되 밀도 0.1~1.5g/㎤ 범위를 갖도록 하여 결정구조가 불완전한 상태로 형성된 가성형 그라파이트시트와; 상기 가성형 그라파이트시트가 일면에 적층되어 가압 성형에 의해 밀도 1.6g/㎤~6.0g/㎤를 갖도록 일체로 부착 결합되는 것으로 상·하면으로 연결되는 0.01mm~0.5mm 공극을 복수 형성하여 된 다기공 금속시트;를 포함하는 구성을 특징으로 하는 전자파 흡수소멸과 차폐용 융합시트.A moldable graphite sheet formed of a graphite substrate in the form of a sheet but having a density of 0.1 to 1.5 g / cm 3 in a crystal structure in an incomplete state; The pseudo-molded graphite sheet is laminated on one surface and is integrally attached and bonded to have a density of 1.6 g / cm 3 to 6.0 g / cm 3 by pressure molding, thereby forming a plurality of 0.01 mm to 0.5 mm pores connected to the upper and lower surfaces. Electromagnetic wave absorption extinction and shielding fusion sheet, characterized in that the configuration comprising a.
  2. 제 1항에 있어서, 상기 그라파이트시트는, 흑연 또는 흑연분말을 압착 성형하거나, 또는 흑연에 유기계열, 무기계열, 세라믹계열 중 어느 하나 또는 하나 이상을 조성한 흑연조성물을 사용하거나 또는 그라파이트에 유기계열,무기계열,세라믹계열의 중 어느 하나 또는 하나 이상을 조성한 방열수지를 혼합하여 된 혼합물 중 어느 하나로 성형된 것을 특징으로 하는 전자파 흡수소멸과 차폐용 융합시트. The graphite sheet according to claim 1, wherein the graphite sheet is formed by compression-molding graphite or graphite powder, using a graphite composition in which one or more of organic, inorganic, and ceramic groups are formed in graphite, or organic series in graphite, Electromagnetic wave absorption extinction and shielding fusion sheet, characterized in that formed into any one of a mixture made by mixing any one or more of the inorganic series, ceramic series heat dissipation resin.
  3. 제 1항에 있어서, 상기 다기공 금속시트는, 구리,주석,아연,알루미늄,스텐레스 계열의 금속분말을 1㎛~200㎛의 입도크기로 하여 용융온도보다 낮은 10~30% 낮은 온도에서 가열하여 소결하고 이를 가압하여 된 소결시트가 사용되는 것을 특징으로 하는 전자파 흡수소멸과 차폐용 융합시트.The method of claim 1, wherein the multi-porous metal sheet is a copper, tin, zinc, aluminum, stainless-based metal powder having a particle size of 1㎛ ~ 200㎛ by heating at a temperature of 10-30% lower than the melting temperature Electromagnetic wave absorption extinction and shielding fusion sheet, characterized in that the sintered sheet made by sintering and pressing it.
  4. 제 1항에 있어서, 상기 다기공 금속시트는, 고온에서 기화 또는 액화되는 수지로 성형된 성형틀을 전해주조에 침지하여 통전시켜 금속을 전착하여 전착층을 형성하고, 이 전착층이 형성된 성형틀을 가열하여 수지를 제거하여 된 금속전해주조 시트인 것을 특징으로 하는 전자파 흡수소멸과 차폐용 융합시트.The molding die according to claim 1, wherein the multi-porous metal sheet is formed by immersing and energizing a molding die made of a resin that is vaporized or liquefied at a high temperature in an electroforming bath to electrodeposit metal to form an electrodeposition layer. Electromagnetic wave absorption extinction and shielding fusion sheet, characterized in that the heating sheet to remove the resin.
  5. 제 1항에 있어서, 상기 다기공 금속시트는 동,주석,아연,알루미늄,스텐레스 계열의 금속재로 된 박판에 펀칭,레이저,에칭공법으로 공극구멍을 형성하여 된 시트부재로서, 상기 공극구멍은 상기 가성형 그라파이트시트가 가압성형에 의해 부착된 상태에서 그 결정구조가 깨지지 않도록 상기 가성형 그라파이트시트가 부착되는 일측 표면을 기준으로 그 표면과 곡면 성형을 이루는 곡면부 및 이 곡면부에서 내측으로 진행하면서 지름이 완만하게 감소되는 경사면부를 포함하는 구성을 특징으로 하는 전자파 흡수소멸과 차폐용 융합시트.The sheet member according to claim 1, wherein the multi-porous metal sheet is a sheet member formed by forming a hole in a thin plate made of copper, tin, zinc, aluminum, or stainless-based metal by punching, laser, or etching. In order to prevent the crystal structure from being broken in the state in which the pseudo-molded graphite sheet is attached by press molding, the curved portion forming the surface and the curved surface with respect to the surface on which the pseudo-graphite graphite sheet is attached, and proceeding inward from the curved portion Electromagnetic wave absorption extinction and shielding fusion sheet, characterized in that the configuration comprising a slope surface portion is reduced gently.
  6. 제 1항에 있어서, 상기 다기공 금속시트는 단면이 원형인 금속재로 된 세로줄 와이어와 가로줄 와이어를 서로 교차하도록 엮은 네트시트인 것을 특징으로 하는 전자파 흡수소멸과 차폐용 융합시트.[Claim 2] The fusion sheet of claim 1, wherein the multi-porous metal sheet is a net sheet woven so as to cross a vertical wire and a horizontal wire made of a metal having a circular cross section.
  7. 제 1항에 있어서, 상기 다기공 금속시트는 상기 그라파이트시트가 부착되지 않는 타면에 가압 또는 도포 또는 함침에 의해 일체로 부착 형성되는 것으로 일부가 다기공 금속시트의 표면에 형성된 공극을 통해 반대편의 상기 그라파이트시트측으로 함침되어 결속되는 금속 및 유무기 계열의 수지로 된 방열막층이 더 구비되고;, 상기 방열막층은 상기 다기공 금속시트의 표면에 PVC, PC, 우레탄, 실리콘, ABS, UV 중 어느 하나 또는 하나 이상을 조성한 절연수지조성물을 코팅하여 형성된 절연물 또는 접착성분을 갖는 수지를 도포하여 된 점착물 또는 양면테이프를 부착하여 된 접착물 또는 알루미늄 또는 알루미늄 합금으로 된 박판을 부착하여 형성된 금속박판 중 어느 하나 또는 하나 이상이 적층 형성되는 것을 특징으로 하는 전자파 흡수소멸과 차폐용 융합시트.The method of claim 1, wherein the multi-porous metal sheet is integrally formed by pressing or applying or impregnating to the other surface to which the graphite sheet is not attached, the portion of the multi-porous metal sheet on the opposite side through the pores formed on the surface of the multi-porous metal sheet A heat dissipation layer is further provided with a metal and organic-inorganic resin impregnated and bound to the graphite sheet side, wherein the heat dissipation layer is any one of PVC, PC, urethane, silicon, ABS, UV on the surface of the multi-porous metal sheet Or an insulating material formed by coating one or more insulating resin compositions or an adhesive formed by applying a resin having an adhesive component, an adhesive formed by attaching a double-sided tape, or a thin metal plate formed by attaching a thin plate made of aluminum or an aluminum alloy. Electromagnetic wave absorption extinction and shielding melting, characterized in that one or more laminated Ply sheet.
  8. 전자파 흡수소멸과 차폐용 융합시트의 제조방법에 있어서, 그라파이트 기재를 밀도 0.1g/㎤~1.5g/㎤의 범위를 갖는 결정구조가 불완전한 상태의 시트 형태를 갖는 가성형 그라파이트시트 준비단계; 300℃~1800℃의 용융 온도를 갖는 동계열, 주석 계열, 아연 계열, 알루미늄 계열, 스텐레스 계열의 금속분말로서, 금속 분말의 입도는 1㎛~200㎛의 크기를 갖는 금속 분말을 용융 온도 보다 10~30% 낮은 온도 분위기의 조건에서 10분~300분을 가열하여 0.05mm~3.0mm의 공극을 갖는 다기공성 소결체인 다기공 금속시트 성형단계; 상기 가성형 그라파이트시트를 상기 다기공 금속시트의 일 표면에 적층한 뒤 가압 성형하여 상기 그라파이트시트를 구성하는 그라파이트 결정이 상기 다기공 금속시트의 표면 공극에 함침되면서 일체로 부착 결합되게 하는 것으로, 밀도 1.6g/㎤~6.0g/㎤의 범위를 갖도록 가압 성형되면서 공극 0.01mm~0.5mm의 크기를 갖는 융합시트 형성단계;를 포함하여 구성되는 것을 특징으로 하는 전자파 흡수소멸과 차폐용 융합시트의 제조방법.A method for manufacturing an electromagnetic wave absorption extinction and shielding fusion sheet, the method comprising: preparing a pseudo-graphite graphite sheet having a graphite substrate having a shape of an incomplete crystal structure having a density in the range of 0.1 g / cm 3 to 1.5 g / cm 3; Copper, tin-based, zinc-based, aluminum-based, stainless-based metal powders having a melting temperature of 300 ° C. to 1800 ° C., wherein the metal powder has a particle size of 1 μm to 200 μm that is higher than the melting temperature. Forming a multi-porous metal sheet which is a porous porous sintered body having a pore of 0.05 mm to 3.0 mm by heating 10 minutes to 300 minutes under a condition of ˜30% low temperature; The pseudo-molded graphite sheet is laminated on one surface of the multi-porous metal sheet and pressure-molded so that the graphite crystals constituting the graphite sheet are integrally attached and bonded to each other while being impregnated into the surface pores of the multi-porous metal sheet. Manufacture of a fusion sheet for electromagnetic wave absorption and shielding characterized in that it comprises a; fusion sheet forming step having a size of 0.01mm ~ 0.5mm void while press-molded to have a range of 1.6g / cm 3 ~ 6.0g / cm 3 Way.
  9. 전자파 흡수소멸과 차폐용 융합시트의 제조방법에 있어서, 그라파이트 기재를 밀도 0.1g/㎤~1.5g/㎤의 범위를 갖는 결정구조가 불완전한 상태의 시트 형태를 갖는 가성형 그라파이트시트 준비단계; 고온에서 기화 또는 액화되는 수지로 성형된 판상의 성형틀 외면에 통전액을 도포하여 통전층을 형성하고, 이를 전해주조에 침지 및 통전시켜 금속을 전착하여 전착층을 형성한 뒤 상기 성형틀을 가열하여 수지를 제거하여 성형하여 된 가성형 다기공 금속시트 성형단계; 상기 가성형 다기공 금속시트를 두께 0.01mm~50mm가 되도록 1회~10회 가압하여 된 다기공 금속시트 성형단계; 상기 가성형 그라파이트시트를 상기 다기공 금속시트의 일 표면에 적층한 뒤 가압 성형하여 상기 그라파이트시트를 구성하는 그라파이트 결정이 상기 다기공 금속시트의 표면 공극에 함침되면서 일체로 부착 결합되게 하는 것으로, 밀도 1.6g/㎤~6.0g/㎤의 범위를 갖도록 가압 성형되면서 공극 0.01mm~0.5mm의 크기를 갖는 융합시트 형성단계;를 포함하는 구성을 특징으로 하는 전자파 흡수소멸과 차폐용 융합시트의 제조방법.A method for manufacturing an electromagnetic wave absorption extinction and shielding fusion sheet, the method comprising: preparing a pseudo-graphite graphite sheet having a graphite substrate having a shape of an incomplete crystal structure having a density in the range of 0.1 g / cm 3 to 1.5 g / cm 3; Applying a conductive solution to the outer surface of the plate-shaped molding frame formed of a resin that is vaporized or liquefied at a high temperature to form a conductive layer, and immersed and energized it in an electroforming tank to electrodeposit metal to form an electrodeposition layer, and then heating the mold. Forming a pseudo-porous multi-porous metal sheet formed by removing resin; Forming the multi-porous metal sheet by pressing the caustic multi-porous metal sheet once to 10 times so as to have a thickness of 0.01 mm to 50 mm; The pseudo-molded graphite sheet is laminated on one surface of the multi-porous metal sheet and press-molded to allow the graphite crystals constituting the graphite sheet to be integrally attached and bonded while being impregnated into the surface pores of the multi-porous metal sheet. Method for producing an electromagnetic wave absorption and shielding fusion sheet characterized in that it comprises a; forming a fusion sheet having a size of 0.01mm ~ 0.5mm pore while pressure-molded to have a range of 1.6g / cm 3 ~ 6.0g / cm 3 .
  10. 전자파 흡수소멸과 차폐용 융합시트의 제조방법에 있어서, 그라파이트 기재를 밀도 0.1g/㎤~1.5g/㎤의 범위를 갖는 결정구조가 불완전한 상태의 시트 형태를 갖는 가성형 그라파이트시트 준비단계; 동,주석,아연,알루미늄,스텐레스 계열의 금속재로 된 박판에 펀칭,레이저,에칭공법으로 공극구멍을 형성한 시트 부재로서, 상기 공극구멍은 가성형 그라파이트시트가 가압성형에 의해 부착된 상태에서 그 결정구조가 깨지지 않도록 상기 가성형 그라파이트시트가 부착되는 일측 표면을 기준으로 그 표면과 곡면 성형을 이루는 곡면부와 이 곡면부에서 구멍의 내측으로 진행하면서 지름이 완만하게 감소되는 경사면부를 형성하여 된 다기공 금속시트 성형단계; 상기 가성형 그라파이트시트를 다기공 금속시트의 일 표면에 적층한 뒤 가압 성형하여 상기 그라파이트시트를 구성하는 그라파이트 결정이 상기 다기공 금속시트의 표면 공극에 함침되면서 일체로 부착 결합되게 하는 것으로, 밀도 1.6g/㎤~6.0g/㎤의 범위를 갖도록 가압 성형되면서 공극 0.01mm~0.5mm의 크기를 갖는 융합시트 형성단계;로 구성되는 것을 특징으로 하는 전자파 흡수소멸과 차폐용 융합시트의 제조방법.A method for manufacturing an electromagnetic wave absorption extinction and shielding fusion sheet, the method comprising: preparing a pseudo-graphite graphite sheet having a graphite substrate having a shape of an incomplete crystal structure having a density in the range of 0.1 g / cm 3 to 1.5 g / cm 3; A sheet member in which a pore hole is formed by punching, laser, and etching methods on a thin plate made of copper, tin, zinc, aluminum, or stainless steel, wherein the pore hole is formed in a state in which a caustic graphite sheet is attached by pressing. In order to prevent the crystal structure from being broken, a curved portion forming a curved shape with the surface on the one surface to which the pseudo-molded graphite sheet is attached, and an inclined surface portion that gradually decreases in diameter while proceeding from the curved portion to the inside of the hole are formed. Forming a porous metal sheet; The pseudo-molded graphite sheet is laminated on one surface of the porous metal sheet and press-molded so that the graphite crystals constituting the graphite sheet are integrally attached and bonded to each other while being impregnated into the surface voids of the porous metal sheet, and having a density of 1.6. Method for producing a fusion sheet for electromagnetic wave absorption and shielding, characterized in that consisting of; forming a fusion sheet having a size of 0.01mm ~ 0.5mm pore while being press-molded to have a range of g / cm 3 ~ 6.0g / cm 3.
  11. 전자파 흡수소멸과 차폐용 융합시트의 제조방법에 있어서, 그라파이트 기재를 밀도 0.1g/㎤~1.5g/㎤의 범위를 갖는 결정구조가 불완전한 상태의 시트 형태를 갖는 가성형 그라파이트시트 준비단계; 단면이 원형인 금속재로 된 세로줄 와이어와 가로줄 와이어를 서로 교차하도록 엮어서 된 것으로 상기 세로줄 와이어와 가로줄 와이어의 사이에 공극이 형성되는 네트 모양의 다기공 금속시트 성형단계; 상기 가성형 그라파이트시트를 상기 다기공 금속시트의 일 표면에 적층한 뒤 가압 성형하여 상기 그라파이트시트를 구성하는 그라파이트 결정이 상기 다기공 금속시트의 표면 공극에 함침되면서 일체로 부착결합되게 하는 것으로, 밀도 1.6g/㎤~6.0g/㎤의 범위를 갖도록 가압 성형되면서 공극 0.01mm~0.5mm의 크기를 갖는 융합시트 형성단계;를 포함하여 구성되는 것을 특징으로 하는 전자파 흡수소멸과 차폐용 융합시트의 제조방법.A method for manufacturing an electromagnetic wave absorption extinction and shielding fusion sheet, the method comprising: preparing a pseudo-graphite graphite sheet having a graphite substrate having a shape of an incomplete crystal structure having a density in the range of 0.1 g / cm 3 to 1.5 g / cm 3; Forming a multi-porous metal sheet having a net shape in which a void is formed between the vertical wire and the horizontal wire in such a way that the vertical wire and the horizontal wire made of a metal having a circular cross section cross each other; The pseudo-molded graphite sheet is laminated on one surface of the multi-porous metal sheet and then press-molded so that the graphite crystals constituting the graphite sheet are integrally attached and bonded together while being impregnated into the surface pores of the multi-porous metal sheet. Manufacture of a fusion sheet for electromagnetic wave absorption and shielding characterized in that it comprises a; fusion sheet forming step having a size of 0.01mm ~ 0.5mm void while press-molded to have a range of 1.6g / cm 3 ~ 6.0g / cm 3 Way.
  12. 제 8항 내지 제 11항 중 어느 한 항에 있어서, 상기 다기공 금속시트의 성형단계에 이어서 500℃~600℃에서 10~40분간 가열하여 비정질화시키는 비정질 금속시트 성형단계를 수행하고;, 상기 비정질 금속시트에 가성형 그라파이트시트를 부착하여 압착성형하는 단계를 더 포함하는 것을 특징으로 하는 전자파 흡수소멸과 차폐용 융합시트의 제조방법.The amorphous metal sheet forming step of any one of claims 8 to 11, wherein the amorphous metal sheet forming step is performed after the forming step of the multi-porous metal sheet by heating at 500 ° C. to 600 ° C. for 10 to 40 minutes to be amorphous; Method of manufacturing a fusion sheet for electromagnetic wave absorption and shielding further comprising the step of attaching the pseudo-molded graphite sheet to the metal sheet by compression molding.
  13. 제 8항 내지 제 11항 중 어느 한 항에 있어서, 상기 가성형 그라파이트시트가 일면에 부착된 다기공 금속시트의 타면에 가압 또는 도포 또는 함침에 의해 일체로 부착 형성되는 것으로 일부가 다기공 금속시트의 표면에 형성된 공극으로 함침되어 반대편의 상기 그라파이트시트에 부착되어 일체로 결속력을 생성시키는 유무기 계열의 수지로 된 방열막층 형성단계; 또는 상기 가성형 그라파이트시트가 일면에 부착된 다기공 금속시트의 타면에 가압 또는 도포 또는 함침에 의해 일체로 부착 형성되는 것으로 일부가 다기공 금속시트의 표면에 형성된 공극으로 함침되어 결속력을 생성시키는 알루미늄 또는 알루미늄 합금으로 된 박판으로 구비되는 방열막층 형성단계;를 포함하여 구성되는 것을 특징으로 하는 전자파 흡수소멸과 차폐용 융합시트의 제조방법.The multi-porous metal sheet according to any one of claims 8 to 11, wherein the caustic graphite sheet is integrally attached to the other surface of the multi-porous metal sheet attached to one surface by pressing, applying, or impregnating. Forming a heat dissipation film layer made of an organic-inorganic resin that is impregnated with voids formed on the surface of the sheet and attached to the graphite sheet on the opposite side to integrally generate a binding force; Or aluminum is formed by attaching integrally to the other surface of the multi-porous metal sheet attached to one side by pressing, applying or impregnated to one side is impregnated into the air gap formed on the surface of the multi-porous metal sheet to create a binding force Or forming a heat dissipation layer formed of a thin plate made of aluminum alloy.
  14. 그라파이트 기재를 시트 형태로 성형하되 밀도 0.1~1.5g/㎤ 범위를 갖도록 하여 결정구조가 불완전한 상태로 형성된 가성형 그라파이트시트와; 상기 가성형 그라파이트시트가 일면에 적층되어 가압 성형에 의해 밀도 1.6g/㎤~6.0g/㎤를 갖도록 일체로 부착 결합되는 것으로 상·하면으로 연결되는 0.001mm~0.05mm 공극을 복수 형성하여 된 다기공 금속시트;를 포함하는 구성을 특징으로 하는 전자기기 고방열용 융합시트.A moldable graphite sheet formed of a graphite substrate in the form of a sheet but having a density of 0.1 to 1.5 g / cm 3 in a crystal structure in an incomplete state; The pseudo-molded graphite sheet is laminated on one surface to be integrally attached and bonded to have a density of 1.6 g / cm 3 to 6.0 g / cm 3 by pressure molding, thereby forming a plurality of 0.001 mm to 0.05 mm pores connected to the upper and lower surfaces. Porous metal sheet; fusion sheet for high heat dissipation of the electronic device, characterized in that comprising a.
  15. 제 14항에 있어서, 상기 다기공 금속시트는 상기 그라파이트시트가 부착되는 반대면에 가압 또는 도포 또는 함침에 의해 일체로 부착 형성되되 일부가 다기공 금속시트의 표면에 형성된 공극을 통해 반대편의 상기 그라파이트시트측으로 함침되어 결속되는 금속 및 유무기 계열의 수지로 된 방열막층;을 포함하는 구성을 특징으로 하는 전자기기 고방열용 융합시트.15. The method of claim 14, wherein the multi-porous metal sheet is integrally formed by pressing or applying or impregnating on the opposite surface to which the graphite sheet is attached, the part of the graphite on the opposite side through the pores formed on the surface of the multi-porous metal sheet The heat dissipation layer of the metal and organic-inorganic-based resin impregnated and bound to the sheet side; High heat dissipation sheet for electronic equipment characterized in that it comprises a configuration.
  16. 제 14항에 있어서, 상기 그라파이트시트는, 흑연 또는 흑연분말을 압착 성형하거나, 또는 흑연에 유기계열, 무기계열, 세라믹계열 중 어느 하나 또는 하나 이상을 조성한 흑연조성물을 사용하거나 또는 그라파이트에 유기계열,무기계열,세라믹계열의 중 어느 하나 또는 하나 이상을 조성한 방열수지를 혼합하여 된 혼합물 중 어느 하나로 성형되고, 상기 다기공 금속시트는, 구리,주석,아연,알루미늄,스텐레스 계열의 금속분말을 1㎛~200㎛의 입도크기로 하여 용융온도보다 낮은 10~30% 낮은 온도에서 가열하여 소결하고 이를 가압하여 된 소결시트가 사용되는 것을 특징으로 하는 전자기기 고방열용 융합시트.15. The graphite sheet according to claim 14, wherein the graphite sheet is formed by compression-molding graphite or graphite powder, or using a graphite composition in which one or more of organic, inorganic, and ceramic groups are formed on graphite, or organic series on graphite. One or more of the mixtures formed by mixing heat-dissipating resins of any one or more of inorganic and ceramic series are formed. The multi-porous metal sheet is made of copper, tin, zinc, aluminum, or stainless-based metal powder of 1 μm. A sintered sheet for high heat dissipation of electronic equipment, characterized in that a sintered sheet is formed by heating and sintering at a temperature of 10 to 30% lower than a melting temperature with a particle size of ˜200 μm.
  17. 제 14항에 있어서, 상기 다기공 금속시트는 고온에서 기화 또는 액화되는 수지로 성형된 성형틀을 전해주조에 침지하여 통전시켜 금속을 전착하여 전착층을 형성하고, 이 전착층이 형성된 성형틀을 가열하여 수지를 제거하여 된 금속전해주조 시트인 것을 특징으로 하는 전자기기 고방열용 융합시트.15. The mold according to claim 14, wherein the multi-porous metal sheet is formed by immersing and energizing a molding die formed of a resin that is vaporized or liquefied at a high temperature in an electroforming bath to electrodeposit metal to form an electrodeposition layer. High heat dissipation sheet for electronic devices, characterized in that the sheet is a metal electrolytic sheet made by removing the resin by heating.
  18. 제 14항에 있어서, 상기 다기공 금속시트는 동,주석,아연,알루미늄,스텐레스 계열의 금속재로 된 박판에 펀칭,레이저,에칭공법으로 공극구멍을 형성하여 된 시트부재로서, 상기 공극구멍은 상기 가성형 그라파이트시트가 가압성형에 의해 부착된 상태에서 그 결정구조가 깨지지 않도록 상기 가성형 그라파이트시트가 부착되는 일측 표면을 기준으로 그 표면과 곡면 성형을 이루는 곡면부 및 이 곡면부에서 내측으로 진행하면서 지름이 완만하게 감소되는 경사면부를 포함하여 구성되는 것을 특징으로 하는 전자기기 고방열용 융합시트.15. The method of claim 14, wherein the multi-porous metal sheet is a sheet member formed by forming a hole in the thin plate made of copper, tin, zinc, aluminum, stainless-based metal material by punching, laser, etching method, the pore hole is In order to prevent the crystal structure from being broken in the state in which the pseudo-molded graphite sheet is attached by press molding, the curved portion forming the surface and the curved surface with respect to the surface on which the pseudo-graphite graphite sheet is attached, and proceeding inward from the curved portion High heat dissipation fusion sheet, characterized in that comprising an inclined surface portion is gently reduced in diameter.
  19. 제14항에 있어서, 상기 다기공 금속시트는 단면이 원형인 금속재로 된 세로줄 와이어와 가로줄 와이어를 서로 교차하도록 엮은 네트시트인 것을 특징으로 하는 전자기기 고방열용 융합시트.15. The method of claim 14, wherein the multi-porous metal sheet is a fused sheet for high heat dissipation of the electronic device, characterized in that the net sheet woven to cross the vertical wire and the horizontal wire made of a metal having a circular cross section.
  20. 제15항에 있어서, 상기 방열막층은 상기 다기공 금속시트의 표면에 PVC, PC, 우레탄, 실리콘, ABS, UV 중 어느 하나 또는 하나 이상을 조성한 절연수지조성물을 코팅하여 형성된 절연물 또는 접착성분을 갖는 수지를 도포하여 된 점착물 또는 양면테이프를 부착하여 된 접착물 또는 알루미늄 또는 알루미늄 합금으로 된 박판을 부착하여 형성된 금속박판 중 어느 하나 또는 하나 이상이 적층 형성되는 것을 특징으로 하는 전자기기 고방열용 융합시트.The method of claim 15, wherein the heat dissipating layer has an insulating material or an adhesive component formed by coating an insulating resin composition of any one or more of PVC, PC, urethane, silicone, ABS, UV on the surface of the porous metal sheet High temperature fusion for electronic devices, characterized in that any one or one or more of a metal thin film formed by attaching a resin-coated adhesive or a double-sided tape or a thin metal plate made of aluminum or aluminum alloy is laminated. Sheet.
  21. 전자기기 고방열용 융합시트의 제조방법에 있어서, 그라파이트 기재를 밀도 0.1g/㎤~1.5g/㎤의 범위를 갖는 결정구조가 불완전한 상태의 시트 형태를 갖는 가성형 그라파이트시트 준비단계; 300℃~1800℃의 용융 온도를 갖는 동계열, 주석 계열, 아연 계열, 알루미늄 계열, 스텐레스 계열의 금속분말로서, 금속 분말의 입도는 1㎛~200㎛의 크기를 갖는 금속 분말을 용융 온도 보다 10~30% 낮은 온도 분위기의 조건에서 10분~300분을 가열하여 0.001mm~3.0mm의 공극을 갖는 다기공성 소결체인 다기공 금속시트 성형단계; 상기 가성형 그라파이트시트를 상기 다기공 금속시트의 일 표면에 적층한 뒤 가압 성형하여 상기 그라파이트시트를 구성하는 그라파이트 결정이 상기 다기공 금속시트의 표면 공극에 함침되면서 일체로 부착 결합되게 하는 것으로, 밀도 1.6g/㎤~6.0g/㎤의 범위를 갖도록 가압 성형되면서 공극 0.001mm~0.05mm의 크기를 갖는 융합시트 형성단계;를 포함하여 구성되는 것을 특징으로 하는 전자기기 고방열용 융합시트의 제조방법.Claims [1] A method for manufacturing a heat dissipation sheet for an electronic device, the method comprising: preparing a pseudo-graphite sheet having a graphite substrate having a sheet structure having an incomplete crystal structure having a density of 0.1 g / cm 3 to 1.5 g / cm 3; Copper, tin-based, zinc-based, aluminum-based, stainless-based metal powders having a melting temperature of 300 ° C. to 1800 ° C., wherein the metal powder has a particle size of 1 μm to 200 μm that is higher than the melting temperature. Forming a multi-porous metal sheet, which is a porous porous sintered body having a pore of 0.001 mm to 3.0 mm by heating 10 minutes to 300 minutes under a condition of ˜30% low temperature; The pseudo-molded graphite sheet is laminated on one surface of the multi-porous metal sheet and press-molded to allow the graphite crystals constituting the graphite sheet to be integrally attached and bonded while being impregnated into the surface pores of the multi-porous metal sheet. Method for producing a high-fusion fusion sheet of electronic equipment, characterized in that it comprises a; forming a fusion sheet having a size of 0.001mm ~ 0.05mm void while press-molded to have a range of 1.6g / cm 3 ~ 6.0g / cm 3 .
  22. 전자기기 고방열용 융합시트의 제조방법에 있어서, 그라파이트 기재를 밀도 0.1g/㎤~1.5g/㎤의 범위를 갖는 결정구조가 불완전한 상태의 시트 형태를 갖는 가성형 그라파이트시트 준비단계; 고온에서 기화 또는 액화되는 수지로 성형된 판상의 성형틀 외면에 통전액을 도포하여 통전층을 형성하고, 이를 전해주조에 침지 및 통전시켜 금속을 전착하여 전착층을 형성한 뒤 상기 성형틀을 가열하여 수지를 제거하여 성형하여 된 가성형 다기공 금속시트 성형단계; 상기 가성형 다기공 금속시트를 두께 0.01mm~50mm가 되도록 1회~10회 가압하여 된 다기공 금속시트 성형단계; 상기 가성형 그라파이트시트를 상기 다기공 금속시트의 일 표면에 적층한 뒤 가압 성형하여 상기 그라파이트시트를 구성하는 그라파이트 결정이 상기 다기공 금속시트의 표면 공극에 함침되면서 일체로 부착 결합되게 하는 것으로, 밀도 1.6g/㎤~6.0g/㎤의 범위를 갖도록 가압 성형되면서 공극 0.001mm~0.05mm의 크기를 갖는 융합시트 형성단계;를 포함하여 구성되는 것을 특징으로 하는 전자기기 고방열용 융합시트의 제조방법.Claims [1] A method for manufacturing a heat dissipation sheet for an electronic device, the method comprising: preparing a pseudo-graphite sheet having a graphite substrate having a sheet structure having an incomplete crystal structure having a density of 0.1 g / cm 3 to 1.5 g / cm 3; Applying a conductive solution to the outer surface of the plate-shaped molding frame formed of a resin that is vaporized or liquefied at a high temperature to form a conductive layer, and immersed and energized it in an electroforming tank to electrodeposit metal to form an electrodeposition layer, and then heating the mold. Forming a pseudo-porous multi-porous metal sheet formed by removing resin; Forming the multi-porous metal sheet by pressing the caustic multi-porous metal sheet once to 10 times so as to have a thickness of 0.01 mm to 50 mm; The pseudo-molded graphite sheet is laminated on one surface of the multi-porous metal sheet and press-molded to allow the graphite crystals constituting the graphite sheet to be integrally attached and bonded while being impregnated into the surface pores of the multi-porous metal sheet. Method for producing a high-fusion fusion sheet of electronic equipment, characterized in that it comprises a; forming a fusion sheet having a size of 0.001mm ~ 0.05mm void while press-molded to have a range of 1.6g / cm 3 ~ 6.0g / cm 3 .
  23. 전자기기 고방열용 융합시트의 제조방법에 있어서, 그라파이트 기재를 밀도 0.1g/㎤~1.5g/㎤의 범위를 갖는 결정구조가 불완전한 상태의 시트 형태를 갖는 가성형 그라파이트시트 준비단계; 동,주석,아연,알루미늄,스텐레스 계열의 금속재로 된 박판에 펀칭,레이저,에칭공법으로 공극구멍을 형성한 시트 부재로서, 상기 공극구멍은 상기 가성형 그라파이트시트가 가압성형에 의해 부착된 상태에서 그 결정구조가 깨지지 않도록 상기 가성형 그라파이트시트가 부착되는 일측 표면을 기준으로 그 표면과 곡면 성형을 이루는 곡면부와 이 곡면부에서 구멍의 내측으로 진행하면서 지름이 완만하게 감소되는 경사면부를 형성하여 된 다기공 금속시트 성형단계; 상기 가성형 그라파이트시트를 상기 다기공 금속시트의 일 표면에 적층한 뒤 가압 성형하여 상기 그라파이트시트를 구성하는 그라파이트 결정이 상기 다기공 금속시트의 표면 공극에 함침되면서 일체로 부착 결합되게 하는 것으로, 밀도 1.6g/㎤~6.0g/㎤의 범위를 갖도록 가압 성형되면서 공극 0.001mm~0.05mm의 크기를 갖는 융합시트 형성단계;를 포함하여 구성되는 것을 특징으로 하는 전자기기 고방열용 융합시트의 제조방법.Claims [1] A method for manufacturing a heat dissipation sheet for an electronic device, the method comprising: preparing a pseudo-graphite sheet having a graphite substrate having a sheet structure having an incomplete crystal structure having a density of 0.1 g / cm 3 to 1.5 g / cm 3; A sheet member in which a pore hole is formed by punching, laser, or etching in a thin plate made of copper, tin, zinc, aluminum, or stainless steel, wherein the pore hole is attached to the pseudo-graphite sheet by pressing. In order to prevent the crystal structure from being broken, a curved portion forming a curved shape with the surface is formed on the one surface to which the caustic graphite sheet is attached, and an inclined surface portion that gradually decreases in diameter while proceeding from the curved portion to the inside of the hole. Forming a porous metal sheet; The pseudo-molded graphite sheet is laminated on one surface of the multi-porous metal sheet and press-molded to allow the graphite crystals constituting the graphite sheet to be integrally attached and bonded while being impregnated into the surface pores of the multi-porous metal sheet. Method for producing a high-fusion fusion sheet of electronic equipment, characterized in that it comprises a; forming a fusion sheet having a size of 0.001mm ~ 0.05mm void while press-molded to have a range of 1.6g / cm 3 ~ 6.0g / cm 3 .
  24. 전자기기 고방열용 융합시트의 제조방법에 있어서, 그라파이트 기재를 밀도 0.1g/㎤~1.5g/㎤의 범위를 갖는 결정구조가 불완전한 상태의 시트 형태를 갖는 가성형 그라파이트시트 준비단계; 단면이 원형인 금속재로 된 세로줄 와이어와 가로줄 와이어를 서로 교차하도록 엮어서 된 것으로 세로줄 와이어와 가로줄 와이어의 사이에 공극이 형성되는 네트 모양의 다기공 금속시트 성형단계; 상기 가성형 그라파이트시트를 상기 다기공 금속시트의 일 표면에 적층한 뒤 가압 성형하여 상기 그라파이트시트를 구성하는 그라파이트 결정이 상기 다기공 금속시트의 표면 공극에 함침되면서 일체로 부착결합되게 하는 것으로, 밀도 1.6g/㎤~6.0g/㎤의 범위를 갖도록 가압 성형되면서 공극 0.001mm~0.05mm의 크기를 갖는 융합시트 형성단계;를 포함하여 구성되는 것을 특징으로 하는 전자기기 고방열용 융합시트의 제조방법.Claims [1] A method for manufacturing a heat dissipation sheet for an electronic device, the method comprising: preparing a pseudo-graphite sheet having a graphite substrate having a sheet structure having an incomplete crystal structure having a density of 0.1 g / cm 3 to 1.5 g / cm 3; Forming a multi-porous metal sheet having a net shape in which a void is formed between the vertical wire and the horizontal wire by crossing the vertical wire and the horizontal wire made of a metal having a circular cross section; The pseudo-molded graphite sheet is laminated on one surface of the multi-porous metal sheet and then press-molded so that the graphite crystals constituting the graphite sheet are integrally attached and bonded together while being impregnated into the surface pores of the multi-porous metal sheet. Method for producing a high-fusion fusion sheet of electronic equipment, characterized in that it comprises a; forming a fusion sheet having a size of 0.001mm ~ 0.05mm void while press-molded to have a range of 1.6g / cm 3 ~ 6.0g / cm 3 .
  25. 제 21항 내지 제 24항 중 어느 한 항에 있어서, 상기 다기공 금속시트의 성형단계에 이어서 500℃~600℃에서 10~40분간 가열하여 비정질화시키는 비정질 금속시트 성형단계를 수행하고, 상기 비정질 금속시트에 가성형 그라파이트시트를 부착하여 압착성형하는 단계를 더 포함하는 것을 특징으로 하는 전자기기 고방열용 융합시트의 제조방법.25. The amorphous metal sheet forming method according to any one of claims 21 to 24, wherein the amorphous metal sheet forming step is performed after the forming step of the multi-porous metal sheet by heating at 500 ° C to 600 ° C for 10 to 40 minutes to be amorphous. Method of manufacturing a high heat-dissipating fusion sheet of the electronic device characterized in that it further comprises the step of attaching the molded graphite sheet to the sheet by compression molding.
  26. 제 21항 내지 제 24항 중 어느 한 항에 있어서, 상기 가성형 그라파이트시트가 일면에 부착된 다기공 금속시트의 타면에 가압 또는 도포 또는 함침에 의해 일체로 부착 형성되는 것으로 일부가 다기공 금속시트의 표면에 형성된 공극으로 함침되어 반대편의 상기 그라파이트시트에 부착되어 일체로 결속력을 생성시키는 유무기 계열의 수지로 된 방열막층 형성단계; 또는 상기 가성형 그라파이트시트가 일면에 부착된 다기공 금속시트의 타면에 가압 또는 도포 또는 함침에 의해 일체로 부착 형성되는 것으로 일부가 다기공 금속시트의 표면에 형성된 공극으로 함침되어 결속력을 생성시키는 알루미늄 또는 알루미늄 합금으로 된 박판으로 구비되는 방열막층 형성단계;를 더 포함하여 구성되는 것을 특징으로 하는 전자기기 고방열용 융합시트의 제조방법.25. The porous metal sheet according to any one of claims 21 to 24, wherein the caustic graphite sheet is integrally attached to the other surface of the multi-porous metal sheet attached to one surface by pressing, coating, or impregnation. Forming a heat dissipation film layer made of an organic-inorganic resin that is impregnated with voids formed on the surface of the sheet and attached to the graphite sheet on the opposite side to integrally generate a binding force; Or aluminum is formed by attaching integrally to the other surface of the multi-porous metal sheet attached to one side by pressing, applying or impregnated to one side is impregnated into the air gap formed on the surface of the multi-porous metal sheet to create a binding force Or forming a heat dissipation layer formed of a thin plate made of an aluminum alloy. 2.
PCT/KR2016/009948 2015-09-07 2016-09-06 Complex sheet for absorbing/extinguishing and shielding electromagnetic waves and highly dissipating heat from electronic device and manufacturing method therefor WO2017043831A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201680001577.1A CN108260366B (en) 2015-09-07 2016-09-06 Electromagnetic wave absorbing and shielding fusion sheet for superstrong heat dissipation of electronic equipment and manufacturing method thereof
JP2016570243A JP6393784B2 (en) 2015-09-07 2016-09-06 Electromagnetic wave absorption extinguishing and shielding sheet and electronic device high heat dissipation fusion sheet, and manufacturing method thereof
US15/317,154 US11052636B2 (en) 2015-09-07 2016-09-06 Fused sheet for electromagnetic wave absorption-extinction and shielding, and for electronic equipment high heat dissipation, and method of manufacturing the same
ES16798613T ES2746161T3 (en) 2015-09-07 2016-09-06 Complex foil for absorption / extinction and shielding against electromagnetic waves, and for the high heat dissipation of an electronic device and its manufacturing process
EP16798613.2A EP3174375B1 (en) 2015-09-07 2016-09-06 Complex sheet for absorbing/extinguishing and shielding electromagnetic waves and highly dissipating heat from electronic device and manufacturing method therefor

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
KR10-2015-0126086 2015-09-07
KR10-2015-0126085 2015-09-07
KR20150126086 2015-09-07
KR20150126085 2015-09-07
KR10-2015-0147750 2015-10-23
KR20150147750 2015-10-23
KR10-2015-0147751 2015-10-23
KR20150147751 2015-10-23
KR10-2016-0090511 2016-07-18
KR1020160090511A KR101749460B1 (en) 2015-09-07 2016-07-18 Fusion Sheet For Absorption extinction and Shielding of Electromagnetic Wave
KR1020160090512A KR101749461B1 (en) 2015-09-07 2016-07-18 the fusion heat dissipation sheet for electronic equipment
KR10-2016-0090512 2016-07-18

Publications (1)

Publication Number Publication Date
WO2017043831A1 true WO2017043831A1 (en) 2017-03-16

Family

ID=58240081

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/009948 WO2017043831A1 (en) 2015-09-07 2016-09-06 Complex sheet for absorbing/extinguishing and shielding electromagnetic waves and highly dissipating heat from electronic device and manufacturing method therefor

Country Status (1)

Country Link
WO (1) WO2017043831A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111918519A (en) * 2019-05-07 2020-11-10 河南烯力新材料科技有限公司 Elastic heat conduction structure, manufacturing method thereof and electronic device
CN112659662A (en) * 2020-12-07 2021-04-16 航天特种材料及工艺技术研究所 Wave-absorbing patch/hard substrate adhesive composite structure and preparation method thereof
CN114050420A (en) * 2021-11-29 2022-02-15 南京航空航天大学 Heat dissipation-wave absorption integrated passive frequency selective surface wave absorber
CN114801357A (en) * 2022-04-28 2022-07-29 安徽碳华新材料科技有限公司 Heat radiation structure for integrated chip based on film-like artificial graphite sheet

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005229100A (en) * 2004-01-13 2005-08-25 Japan Matekkusu Kk Heat-dissipating sheet and heatsink
KR20070079891A (en) * 2006-02-03 2007-08-08 김경일 Radiator sheet
KR100755014B1 (en) 2006-10-25 2007-09-06 실리콘밸리(주) The manufacturing method of heat-conductive adhesive graphite sheet and graphite sheet
KR20120073792A (en) * 2010-12-27 2012-07-05 율촌화학 주식회사 Heat radiating sheet
KR101280681B1 (en) * 2012-09-05 2013-07-01 주학식 Functional plate material
JP2015156490A (en) * 2006-11-01 2015-08-27 日立化成株式会社 Thermally conductive sheet, method for manufacturing the same, and heat radiator with thermally conductive sheet

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005229100A (en) * 2004-01-13 2005-08-25 Japan Matekkusu Kk Heat-dissipating sheet and heatsink
KR20070079891A (en) * 2006-02-03 2007-08-08 김경일 Radiator sheet
KR100755014B1 (en) 2006-10-25 2007-09-06 실리콘밸리(주) The manufacturing method of heat-conductive adhesive graphite sheet and graphite sheet
JP2015156490A (en) * 2006-11-01 2015-08-27 日立化成株式会社 Thermally conductive sheet, method for manufacturing the same, and heat radiator with thermally conductive sheet
KR20120073792A (en) * 2010-12-27 2012-07-05 율촌화학 주식회사 Heat radiating sheet
KR101280681B1 (en) * 2012-09-05 2013-07-01 주학식 Functional plate material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111918519A (en) * 2019-05-07 2020-11-10 河南烯力新材料科技有限公司 Elastic heat conduction structure, manufacturing method thereof and electronic device
CN112659662A (en) * 2020-12-07 2021-04-16 航天特种材料及工艺技术研究所 Wave-absorbing patch/hard substrate adhesive composite structure and preparation method thereof
CN114050420A (en) * 2021-11-29 2022-02-15 南京航空航天大学 Heat dissipation-wave absorption integrated passive frequency selective surface wave absorber
CN114801357A (en) * 2022-04-28 2022-07-29 安徽碳华新材料科技有限公司 Heat radiation structure for integrated chip based on film-like artificial graphite sheet
CN114801357B (en) * 2022-04-28 2024-02-09 安徽碳华新材料科技有限公司 Heat radiation structure for integrated chip based on film-shaped artificial graphite sheet

Similar Documents

Publication Publication Date Title
JP6393784B2 (en) Electromagnetic wave absorption extinguishing and shielding sheet and electronic device high heat dissipation fusion sheet, and manufacturing method thereof
WO2017043831A1 (en) Complex sheet for absorbing/extinguishing and shielding electromagnetic waves and highly dissipating heat from electronic device and manufacturing method therefor
KR101749460B1 (en) Fusion Sheet For Absorption extinction and Shielding of Electromagnetic Wave
KR101749461B1 (en) the fusion heat dissipation sheet for electronic equipment
WO2013002460A1 (en) High heat-radiant optical device substrate and manufacturing method thereof
JP2017195278A (en) Electromagnetic wave shielding film and printed wiring board with the same
JP2015136940A (en) Conductive elastic member
WO2010114238A2 (en) Circuit board, and method for manufacturing same
US20140120291A1 (en) Laminated base material, substrate using laminated base material, and method of manufacturing substrate
KR101043346B1 (en) Organo-inorganic hybrid composition with excellent thermal radiation and thermal radiation sheet of thin layer type which uses this
JPWO2012090360A1 (en) Metal base circuit board and method for manufacturing metal base circuit board
KR102000954B1 (en) Manufacturing method of circuit module and film formation apparatus
JP2014150203A (en) Power module and manufacturing method of the same
US20150004400A1 (en) Support assembly for use in semiconductor manufacturing tools with a fusible bond
WO2014073039A1 (en) Substrate for light emitting diodes
WO2014038839A1 (en) Method for manufacturing highly functional thin film material made of two kinds of materials
TW201909348A (en) Package structure and manufacturing method thereof
KR101204718B1 (en) Thermal conductive plate member having improved thermal conductivity
WO2015056880A1 (en) Method for manufacturing circuit board
KR20190001141U (en) The conductive layer of the electromagnetic wave shielding film,
CN105860868A (en) Preparation process of heat dissipation lamination film
CN105038626B (en) Compound two-sided tape
KR20170102305A (en) Insulation sheet, heat spreader and electronic device
CN201490177U (en) Metal-based copper clad laminate for mounting semiconductor power devices
JP2014099574A (en) Lead frame heat releasing substrate and method of manufacturing the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016570243

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2016798613

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2016798613

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15317154

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16798613

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE