WO2017043711A1 - Organic rankine cycle power generating device using stirling engine - Google Patents

Organic rankine cycle power generating device using stirling engine Download PDF

Info

Publication number
WO2017043711A1
WO2017043711A1 PCT/KR2016/000569 KR2016000569W WO2017043711A1 WO 2017043711 A1 WO2017043711 A1 WO 2017043711A1 KR 2016000569 W KR2016000569 W KR 2016000569W WO 2017043711 A1 WO2017043711 A1 WO 2017043711A1
Authority
WO
WIPO (PCT)
Prior art keywords
connecting rod
stirling engine
rankine cycle
organic rankine
power generation
Prior art date
Application number
PCT/KR2016/000569
Other languages
French (fr)
Korean (ko)
Inventor
김민수
김동규
Original Assignee
서울대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교 산학협력단 filed Critical 서울대학교 산학협력단
Publication of WO2017043711A1 publication Critical patent/WO2017043711A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • F02G1/045Controlling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • F02G1/053Component parts or details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • F02G1/053Component parts or details
    • F02G1/055Heaters or coolers

Definitions

  • the present invention relates to an organic Rankine cycle power generation apparatus using a Stirling engine, and more particularly to an organic Rankine cycle power generation apparatus using a Stirling engine that can be improved power generation efficiency.
  • the ORC Organic Rankine Cycle
  • the organic Rankine cycle is based on an evaporator, a turbine, a condenser, and a pump.
  • An object of the present invention is to provide an organic Rankine cycle power generation apparatus using a Stirling engine that can be improved efficiency while using low-temperature waste heat.
  • An organic Rankine cycle power generation apparatus using a stirling engine includes a heating chamber that forms a space for thermally expanding a working fluid, and a cooling chamber that forms a space for cooling and compressing a working fluid that is thermally expanded in the heating chamber.
  • a displacer that linearly moves by a cylinder, a volume expansion force of a working fluid heated in the heating chamber, a flywheel connected by the displacer and a first connecting rod, and rotated by a linear motion of the displacer;
  • a piston provided in the cooling chamber and connected by the fly wheel and the second connecting rod to compress the working fluid cooled in the cooling chamber while linearly moving by the rotation of the fly wheel;
  • the nozzle portion gradually reducing the cross-sectional area and the dividing portion gradually increasing the cross-sectional area The bottom portion is formed.
  • An organic Rankine cycle power generation apparatus using a stirling engine includes a heating chamber that forms a space for thermally expanding a working fluid, and a cooling chamber that forms a space for cooling and compressing a working fluid that is thermally expanded in the heating chamber. And a cylinder having a nozzle portion having a gradually decreasing cross-sectional area and a diffuser portion having a gradually increasing cross-sectional area between the heating chamber and the cooling chamber, and a displacer linearly moving by the volume expansion force of the working fluid heated in the heating chamber.
  • a flywheel connected by the displacer and the first connecting rod and rotating by linear movement of the displacer, provided in the cooling chamber, and connected by the flywheel and the second connecting rod, Piston for compressing the working fluid cooled in the cooling chamber while linear movement by the rotation of the wheel And a slit hole formed so that the first connecting rod passes through the piston, and one side is fixed to the slit hole and the other side is coupled to the first connecting rod to seal between the slit hole and the first connecting rod.
  • the nozzle portion includes a reduction portion communicating with the heating chamber and gradually reducing the cross-sectional area than the heating chamber, and a tubular portion extending from the reduction portion and having a constant cross-sectional area, wherein the diffuser portion
  • the connecting portion is connected to the cooling chamber, and the cross-sectional area is formed to gradually increase than the cylindrical portion.
  • the present invention includes a stirling engine that performs the functions of an evaporator and a turbine, so that the evaporator and the turbine do not need to be installed separately, and thus the configuration is simple.
  • the heat generated in the process of transferring heat from the evaporator to the turbine Since the loss is prevented, the power generation efficiency can be improved.
  • the energy generation efficiency can be increased.
  • FIG. 1 is a perspective view showing a Stirling engine according to an embodiment of the present invention.
  • FIG. 2 is a perspective view showing the inside of the stirling engine shown in FIG. 1.
  • FIG. 2 is a perspective view showing the inside of the stirling engine shown in FIG. 1.
  • FIG. 3 is a cross-sectional view taken along the line A-A of FIG. 2.
  • 4 to 7 are diagrams showing the operating state of the Stirling engine shown in FIG.
  • FIG. 1 is a perspective view showing a Stirling engine according to an embodiment of the present invention.
  • FIG. 2 is a perspective view showing the inside of the stirling engine shown in FIG. 1.
  • FIG. 3 is a cross-sectional view taken along the line A-A of FIG. 2.
  • the Stirling engine of the organic Rankine cycle power generation apparatus according to an embodiment of the present invention, the cylinder 10, the displacer 20, the first connecting rod 30 ), A piston 40, a second connecting rod 50 and a flywheel 60.
  • the cylinder 10 includes a heating chamber 11, a nozzle portion 12, a cylinder portion 13, a diffuser portion 14, and a cooling chamber 15.
  • the heating chamber 11 is a space in which a working fluid is filled and the working fluid is heated and expanded by an external heat source.
  • the heating chamber 11 is disposed below the cylinder 10, for example.
  • the heating chamber 11 is formed in a cylindrical shape with a constant cross section.
  • the nozzle portion 12 communicates with the heating chamber 11 and is formed such that its cross-sectional area is gradually reduced than that of the heating chamber 11.
  • the nozzle unit 12 is insulated.
  • the nozzle unit 12 increases the speed of the working fluid heat-expanded in the heating chamber 11, thereby increasing the force that the working fluid pushes the displacer 20.
  • the said cylinder part 13 communicates with the said nozzle part 12, and is formed in constant cross-sectional area from the end of the said nozzle part 12. As shown in FIG.
  • the cylinder 13 is made of a cylindrical shape, for example.
  • the cylinder 13 is also insulated.
  • the diffuser portion 14 communicates with the tube portion 13 and is formed to gradually increase in cross-sectional area than the tube portion 13.
  • the diffuser portion 14 is also insulated.
  • the diffuser portion 14 serves to slow down the speed of the working fluid passing through the cylinder part 13 and to diffuse the working fluid into the cooling chamber 15.
  • the cooling chamber 15 enters a working fluid, which is heated and expanded in the heating chamber 11, and forms a space for cooling and compressing the working fluid by an external cooling source.
  • the cooling chamber 15 is disposed above the cylinder 10, for example.
  • the cooling chamber 15 is formed in a cylindrical shape with a constant cross section.
  • the displacer 20 linearly moves upward by the volume expansion force of the working fluid heated in the heating chamber 11.
  • the displacer 20 has a smaller cross-sectional area than the tube portion 13. That is, the displacer 20 is formed to have a smaller size than the cylinder 13 so that a gap in which the working fluid can move between the inner circumferential surface of the cylinder 13 can occur.
  • the first connecting rod 30 connects the displacer 20 to a flywheel 60 described later.
  • the first connecting rod 30 rotates the flywheel 60 during the linear movement of the displacer 20.
  • the first connecting rod 30 is rotatable at both ends of the first fixing rod 31 coupled to the top surface of the displacer 20, the first fixing rod 31, and the flywheel 60.
  • a first rotating rod 32 coupled to it.
  • One end of the first rotary rod 32 is rotatably coupled to the first fixing rod 31 by a hinge, and the other end is rotatably coupled to the flywheel 60 by a hinge or the like.
  • the piston 40 is provided in the cooling chamber 15.
  • the piston 40 is connected to the fly wheel 60 by a second connecting rod 50, and the working fluid cooled in the cooling chamber 15 while linearly moving downward by the rotation of the fly wheel 60. Compress it.
  • the piston 40 is formed to be in close contact with the inner circumferential surface of the cooling chamber 15.
  • a separate sealing member may be provided between the piston 40 and the cooling chamber 15 to seal the piston 40 and the cooling chamber 15.
  • a slit hole 40a is formed in the piston 40 to allow the first connecting rod 30 to pass therethrough.
  • the slit hole 40a is formed long in the moving direction of the first connecting rod 30.
  • a sealing member is installed between the slit hole 40a and the first connecting rod 30 to prevent leakage of the working fluid.
  • the sealing member one side is fixed to the slit hole (40a), the other side is coupled to the first connecting rod 30 is formed to surround between the slit hole (40a) and the first connecting rod (30) Sealing boots 80.
  • the sealing boot 80 is made of an elastic material and may be stretched according to the movement of the first connecting rod 30.
  • a ring-shaped sealing member may be provided between the sealing boot 80 and the first connecting rod 30.
  • the second connecting rod 50 connects the piston 40 to the flywheel 60 to linearly move the piston 40 when the flywheel 60 rotates.
  • the second connecting rod 50 may be rotatable at both ends of the second fixing rod 51 coupled to the upper surface of the piston 40, the second fixing rod 51, and the flywheel 60.
  • a second rotating rod 52 coupled.
  • the second fixing rod 51 is provided at a position spaced a predetermined distance from the slit hole 40a so as not to interfere with the first connecting rod 30.
  • One end of the second rotary rod 32 is rotatably coupled to the second fixed rod 51 by a hinge or the like, and the other end is rotatably coupled to the flywheel 60 by a hinge or the like.
  • the first rotating rod 32 and the second rotating rod 52 are coupled to different surfaces of the front and rear surfaces of the flywheel 60 so as not to interfere with each other.
  • the first rotating rod 32 and the second rotating rod 52 are coupled to different surfaces of the front and rear surfaces of the flywheel 60 so as not to interfere with each other.
  • the flywheel 60 is provided outside the cylinder 10.
  • the first connecting rod 30 is coupled to one side of the flywheel 60, and the second connecting rod 50 is coupled to the other side.
  • the position at which the first connecting rod 30 and the second connecting rod 50 are coupled to the flywheel 60 is preset according to the linear movement distance of the displacer 20 and the piston 40. .
  • the flywheel 60 is rotated by the first connecting rod 30 during linear movement of the displacer 20.
  • a rotary shaft (not shown) is coupled to the flywheel 60 and is generated through the rotary shaft (not shown).
  • the outer side of the cylinder 10 is described with an example of the rotary shaft support 62 for rotatably supporting the rotary shaft, for example, but not limited to this, it is of course also possible that the rotary shaft support is deleted.
  • the rotary shaft support 62 is formed in a rod shape.
  • 4 to 7 are diagrams showing the operating state of the Stirling engine shown in FIG.
  • the displacer 20 is located at the bottom dead center D1, and the flywheel 60 is in a stopped state. At this time, the piston 40 is in a state located at the top dead center (P1).
  • the heating chamber 11 is heated so that the working fluid inside the heating chamber 11 is heated to change phase.
  • the displacer 20 is moved upward by the expansion force of the vaporized working fluid.
  • the first connecting rod 30 coupled to the displacer 20 moves upward to rotate the flywheel 60.
  • the flywheel 60 rotates about 90 degrees clockwise while the displacer 20 moves upward from the bottom dead center DI by a predetermined distance.
  • the vaporized working fluid passes through the nozzle part 12, the cylinder part 13, and the diffuser part 14 in order.
  • the vaporized working fluid pushes up the displacer 20 and moves upward through the space between the displacer 20 and the cylinder 10.
  • the vaporized working fluid is increased in speed while passing through the nozzle unit 12, so that not only the force pushing the displacer 20 increases but also moves faster toward the cooling chamber 15. .
  • the working fluid may diffuse into the cooling chamber 15 while passing through the diffuser unit 14, the cooling and compression in the cooling chamber 15 may be more smoothly performed.
  • the displacer 20 continuously moves upward to reach the top dead center D2, and the second connecting rod 50 and the piston 40 are rotated as the flywheel 60 rotates. ) Moves downward so that the piston 40 reaches the bottom dead center P2.
  • the vaporized working fluid flows into the cooling chamber 15 until the displacer 20 reaches the top dead center D2.
  • the working fluid introduced into the cooling chamber 15 is cooled and compressed until the piston 40 reaches the bottom dead center P2.
  • the displacer 20 moves downward from the top dead center D2, and the piston 40 moves upward from the bottom dead center P2.
  • the working fluid liquefied in the cooling chamber 15 moves downward to the heating chamber 11 side.
  • the liquefied working fluid returns to the heating chamber 11 while sequentially passing through the diffuser portion 14, the cylinder portion 13, and the nozzle portion 12.
  • the working fluid circulated to the heating chamber 11 is again expanded by heating in the heating chamber 11 to repeat the above process.
  • an organic Rankine cycle power generation device that can improve the power generation efficiency.

Abstract

The present invention comprises a Stirling engine, which performs the function of an evaporator and that of a turbine, such that there is no need to separately install an evaporator and a turbine, thereby providing the advantage of a simple configuration, and the same prevents heat loss, which would otherwise occur in the process of heat obtained from the evaporator moving to the turbine, thereby improving the power generating efficiency. Furthermore, a passage, through which an operating fluid passes after undergoing a phase change, is formed in the shape of a nozzle and that of a diffuser, thereby increasing the energy generating efficiency. In addition, power can be generated by evaporating and expanding the operating fluid using low-temperature waste heat, thereby providing applicability to more diversified fields.

Description

스터링 엔진을 이용한 유기랭킨 사이클 발전 장치Organic Rankine Cycle Generator Using Stirling Engine
본 발명은 스터링 엔진을 이용한 유기랭킨 사이클 발전 장치에 관한 것으로서, 보다 상세하게는 발전 효율이 보다 향상될 수 있는 스터링 엔진을 이용한 유기랭킨 사이클 발전 장치에 관한 것이다. The present invention relates to an organic Rankine cycle power generation apparatus using a Stirling engine, and more particularly to an organic Rankine cycle power generation apparatus using a Stirling engine that can be improved power generation efficiency.
일반적으로 유기랭킨 사이클(ORC,Organic Rankine Cycle)은 저온의 폐열을 이용하여 작동매체를 고온 고압으로 비등시킨 후, 터빈을 통해 팽창시켜 토크를 얻어 발전기를 통해 전력을 생산한다. 상기 유기랭킨 사이클은, 증발기, 터빈, 응축기, 펌프를 기본 구성으로 한다. In general, the ORC (Organic Rankine Cycle) uses low temperature waste heat to boil the working medium to high temperature and high pressure, expands it through a turbine, obtains torque, and generates power through a generator. The organic Rankine cycle is based on an evaporator, a turbine, a condenser, and a pump.
종래의 유기랭킨 사이클은, 증발기와 터빈이 각각 따로 설치되어 증발기에서 얻은 열을 터빈으로 이동하는 과정에서 손실이 발생되는 문제점이 있다. 또한, 상기 터빈의 입구측에서 과열상태의 증기를 만들기 위해 과도한 열이 필요하기 때문에 폐열의 온도가 적어도 150도 이상이 되어야 하며, 열원의 에너지가 낮은 경우 효율적으로 일을 생성할 수 없는 문제점이 있다. Conventional organic Rankine cycle, there is a problem that a loss occurs in the process of moving the heat obtained from the evaporator to the turbine installed separately from the evaporator. In addition, since excessive heat is required to make the superheated steam at the inlet side of the turbine, the temperature of the waste heat should be at least 150 degrees or more, and there is a problem in that work cannot be efficiently generated when the energy of the heat source is low. .
본 발명의 목적은, 저온 폐열을 이용하면서도 효율이 향상될 수 있는 스터링 엔진을 이용한 유기랭킨 사이클 발전 장치를 제공하는 데 있다. An object of the present invention is to provide an organic Rankine cycle power generation apparatus using a Stirling engine that can be improved efficiency while using low-temperature waste heat.
본 발명에 따른 스터링 엔진을 이용한 유기랭킨 사이클 발전 장치는, 작동유체를 가열 팽창시키는 공간을 형성하는 가열실과, 상기 가열실에서 가열 팽창된 작동유체를 냉각 압축시키는 공간을 형성하는 냉각실을 포함하는 실린더와, 상기 가열실에서 가열된 작동유체의 부피 팽창력에 의해 직선 운동하는 디스플레이서와, 상기 디스플레이서와 제1커넥팅 로드에 의해 연결되어, 상기 디스플레이서의 직선 운동에 의해 회전하는 플라이 휠과, 상기 냉각실에 구비되고, 상기 플라이 휠과 제2커넥팅 로드에 의해 연결되어, 상기 플라이 휠의 회전에 의해 직선 운동하면서 상기 냉각실에서 냉각된 작동유체를 압축하는 피스톤을 포함하고, 상기 실린더에서 상기 가열실과 상기 냉각실 사이에는 단면적이 점차 축소되는 노즐부와 단면적이 점차 확대되는 디퓨저부가 형성된다.An organic Rankine cycle power generation apparatus using a stirling engine according to the present invention includes a heating chamber that forms a space for thermally expanding a working fluid, and a cooling chamber that forms a space for cooling and compressing a working fluid that is thermally expanded in the heating chamber. A displacer that linearly moves by a cylinder, a volume expansion force of a working fluid heated in the heating chamber, a flywheel connected by the displacer and a first connecting rod, and rotated by a linear motion of the displacer; A piston provided in the cooling chamber and connected by the fly wheel and the second connecting rod to compress the working fluid cooled in the cooling chamber while linearly moving by the rotation of the fly wheel; Between the heating chamber and the cooling chamber, the nozzle portion gradually reducing the cross-sectional area and the dividing portion gradually increasing the cross-sectional area The bottom portion is formed.
본 발명의 다른 측면에 따른 스터링 엔진을 이용한 유기랭킨 사이클 발전 장치는, 작동유체를 가열 팽창시키는 공간을 형성하는 가열실과, 상기 가열실에서 가열 팽창된 작동유체를 냉각 압축시키는 공간을 형성하는 냉각실을 포함하고, 상기 가열실과 상기 냉각실 사이에는 단면적이 점차 축소되는 노즐부와 단면적이 점차 확대되는 디퓨저부가 형성된 실린더와, 상기 가열실에서 가열된 작동유체의 부피 팽창력에 의해 직선 운동하는 디스플레이서와, 상기 디스플레이서와 제1커넥팅 로드에 의해 연결되어, 상기 디스플레이서의 직선 운동에 의해 회전하는 플라이 휠과, 상기 냉각실에 구비되고, 상기 플라이 휠과 제2커넥팅 로드에 의해 연결되어, 상기 플라이 휠의 회전에 의해 직선 운동하면서 상기 냉각실에서 냉각된 작동유체를 압축하는 피스톤과, 상기 피스톤에서 상기 제1커넥팅 로드가 통과하도록 형성된 슬릿홀과, 일측은 상기 슬릿홀에 고정되고 타측은 상기 제1커넥팅 로드에 결합되어 상기 슬릿홀과 상기 제1커넥팅 로드 사이를 실링하는 실링 부츠(sealing boots)를 포함하고, 상기 노즐부는, 상기 가열실에 연통되고 상기 가열실보다 단면적이 점차 축소되는 축소부와, 상기 축소부에서 연장되고 단면적이 일정하게 형성된 통부를 포함하고, 상기 디퓨저부는, 상기 통부와 상기 냉각실을 연결하며, 상기 통부보다 단면적이 점차 증가되게 형성된다.An organic Rankine cycle power generation apparatus using a stirling engine according to another aspect of the present invention includes a heating chamber that forms a space for thermally expanding a working fluid, and a cooling chamber that forms a space for cooling and compressing a working fluid that is thermally expanded in the heating chamber. And a cylinder having a nozzle portion having a gradually decreasing cross-sectional area and a diffuser portion having a gradually increasing cross-sectional area between the heating chamber and the cooling chamber, and a displacer linearly moving by the volume expansion force of the working fluid heated in the heating chamber. And a flywheel connected by the displacer and the first connecting rod and rotating by linear movement of the displacer, provided in the cooling chamber, and connected by the flywheel and the second connecting rod, Piston for compressing the working fluid cooled in the cooling chamber while linear movement by the rotation of the wheel And a slit hole formed so that the first connecting rod passes through the piston, and one side is fixed to the slit hole and the other side is coupled to the first connecting rod to seal between the slit hole and the first connecting rod. (sealing boots), wherein the nozzle portion includes a reduction portion communicating with the heating chamber and gradually reducing the cross-sectional area than the heating chamber, and a tubular portion extending from the reduction portion and having a constant cross-sectional area, wherein the diffuser portion The connecting portion is connected to the cooling chamber, and the cross-sectional area is formed to gradually increase than the cylindrical portion.
본 발명은, 증발기와 터빈의 기능을 수행하는 스터링 엔진을 포함함으로써, 증발기와 터빈을 별도로 설치할 필요가 없으므로 구성이 간단한 이점이 있을 뿐만 아니라, 증발기에서 얻은 열이 터빈으로 이동하는 과정에서 발생되는 열 손실이 방지되므로 발전 효율이 향상될 수 있다.The present invention includes a stirling engine that performs the functions of an evaporator and a turbine, so that the evaporator and the turbine do not need to be installed separately, and thus the configuration is simple. In addition, the heat generated in the process of transferring heat from the evaporator to the turbine Since the loss is prevented, the power generation efficiency can be improved.
또한, 작동유체가 상변화후 통과하는 통로를 노즐과 디퓨저 형상으로 형성함으로써, 에너지 발생 효율을 증대시킬 수 있다.In addition, by forming a passage through which the working fluid passes after the phase change in the shape of a nozzle and a diffuser, the energy generation efficiency can be increased.
또한, 저온의 폐열을 이용하여 작동 유체의 증발 및 팽창시킴으로써 동력을 발생시킬 수 있으므로, 보다 다양한 분야에 적용 가능한 이점이 있다. In addition, since the power can be generated by evaporating and expanding the working fluid using waste heat of low temperature, there is an advantage that can be applied to various fields.
도 1은 본 발명의 실시예에 따른 스터링 엔진이 도시된 사시도이다.1 is a perspective view showing a Stirling engine according to an embodiment of the present invention.
도 2는 도 1에 도시된 스터링 엔진의 내부를 나타낸 사시도이다.FIG. 2 is a perspective view showing the inside of the stirling engine shown in FIG. 1. FIG.
도 3은 도 2의 A-A선 방향에서 자른 단면도이다.3 is a cross-sectional view taken along the line A-A of FIG. 2.
도 4 내지 도 7은 도 3에 도시된 스터링 엔진의 작동상태가 도시된 도면이다. 4 to 7 are diagrams showing the operating state of the Stirling engine shown in FIG.
이하, 첨부된 도면을 참조하여 본 발명의 실시예에 대해 상세히 설명한다.Hereinafter, with reference to the accompanying drawings will be described in detail an embodiment of the present invention.
도 1은 본 발명의 실시예에 따른 스터링 엔진이 도시된 사시도이다. 도 2는 도 1에 도시된 스터링 엔진의 내부를 나타낸 사시도이다. 도 3은 도 2의 A-A선 방향에서 자른 단면도이다.1 is a perspective view showing a Stirling engine according to an embodiment of the present invention. FIG. 2 is a perspective view showing the inside of the stirling engine shown in FIG. 1. FIG. 3 is a cross-sectional view taken along the line A-A of FIG. 2.
도 1 내지 도 3을 참조하면, 본 발명의 실시예에 따른 유기랭킨 사이클 발전 장치의 스터링 엔진(Stirling engine)은, 실린더(10), 디스플레이서(displacer)(20), 제1커넥팅 로드(30), 피스톤(40), 제2커넥팅 로드(50) 및 플라이 휠(60)을 포함한다.1 to 3, the Stirling engine of the organic Rankine cycle power generation apparatus according to an embodiment of the present invention, the cylinder 10, the displacer 20, the first connecting rod 30 ), A piston 40, a second connecting rod 50 and a flywheel 60.
상기 실린더(10)는, 가열실(11), 노즐부(12), 통부(13), 디퓨저부(14) 및 냉각실(15)을 포함한다.The cylinder 10 includes a heating chamber 11, a nozzle portion 12, a cylinder portion 13, a diffuser portion 14, and a cooling chamber 15.
상기 가열실(11)은, 내부에 작동유체가 채워지고, 외부 열원에 의해 작동유체를 가열하여 팽창시키는 공간이다. 본 실시예에서는, 상기 실린더(10)의 하부에 상기 가열실(11)이 배치되는 것으로 예를 들어 설명한다. 상기 가열실(11)은 단면적이 일정한 원통 형상으로 형성된다. The heating chamber 11 is a space in which a working fluid is filled and the working fluid is heated and expanded by an external heat source. In the present embodiment, the heating chamber 11 is disposed below the cylinder 10, for example. The heating chamber 11 is formed in a cylindrical shape with a constant cross section.
상기 노즐부(12)는, 상기 가열실(11)에 연통되고 상기 가열실(11)보다 단면적이 점차 축소되게 형성된다. 상기 노즐부(12)는 단열된다. 상기 노즐부(12)는 상기 가열실(11)에서 가열 팽창된 작동유체의 속도를 증가시켜, 상기 작동유체가 상기 디스플레이서(20)를 미는 힘을 증가시킨다. The nozzle portion 12 communicates with the heating chamber 11 and is formed such that its cross-sectional area is gradually reduced than that of the heating chamber 11. The nozzle unit 12 is insulated. The nozzle unit 12 increases the speed of the working fluid heat-expanded in the heating chamber 11, thereby increasing the force that the working fluid pushes the displacer 20.
상기 통부(13)는, 상기 노즐부(12)에 연통되고 상기 노즐부(12)의 끝단부터 단면적이 일정하게 형성된다. 상기 통부(13)는 원통형으로 이루어진 것으로 예를 들어 설명한다. 상기 통부(13)도 단열된다.The said cylinder part 13 communicates with the said nozzle part 12, and is formed in constant cross-sectional area from the end of the said nozzle part 12. As shown in FIG. The cylinder 13 is made of a cylindrical shape, for example. The cylinder 13 is also insulated.
상기 디퓨저부(14)는, 상기 통부(13)에 연통되고 상기 통부(13)보다 단면적이 점차 증가하도록 형성된다. 상기 디퓨저부(14)도 단열된다. 상기 디퓨저부(14)는 상기 통부(13)를 통과한 작동유체의 속도를 감속시키고, 상기 작동유체를 상기 냉각실(15)로 확산시키는 역할을 한다. The diffuser portion 14 communicates with the tube portion 13 and is formed to gradually increase in cross-sectional area than the tube portion 13. The diffuser portion 14 is also insulated. The diffuser portion 14 serves to slow down the speed of the working fluid passing through the cylinder part 13 and to diffuse the working fluid into the cooling chamber 15.
상기 냉각실(15)은, 상기 가열실(11)에서 가열 팽창된 작동 유체가 유입되고, 외부 냉각원에 의해 작동유체를 냉각 압축하는 공간을 형성한다. 본 실시예에서는, 상기 실린더(10)의 상부에 상기 냉각실(15)이 배치되는 것으로 예를 들어 설명한다. 상기 냉각실(15)은 단면적이 일정한 원통 형상으로 형성된다. The cooling chamber 15 enters a working fluid, which is heated and expanded in the heating chamber 11, and forms a space for cooling and compressing the working fluid by an external cooling source. In the present embodiment, the cooling chamber 15 is disposed above the cylinder 10, for example. The cooling chamber 15 is formed in a cylindrical shape with a constant cross section.
상기 디스플레이서(20)는, 상기 가열실(11)에서 가열된 작동유체의 부피 팽창력에 의해 상방향으로 직선 운동한다. 상기 디스플레이서(20)는 상기 통부(13)보다 단면적이 작게 형성된다. 즉, 상기 디스플레이서(20)는 상기 통부(13)의 내주면과의 사이에 작동유체가 이동할 수 있는 간격이 생길 수 있도록 상기 통부(13)보다 작은 크기로 형성된다. The displacer 20 linearly moves upward by the volume expansion force of the working fluid heated in the heating chamber 11. The displacer 20 has a smaller cross-sectional area than the tube portion 13. That is, the displacer 20 is formed to have a smaller size than the cylinder 13 so that a gap in which the working fluid can move between the inner circumferential surface of the cylinder 13 can occur.
상기 제1커넥팅 로드(30)는, 상기 디스플레이서(20)를 후술하는 플라이 휠(60)에 연결시킨다. 상기 제1커넥팅 로드(30)는 상기 디스플레이서(20)의 직선 운동시 상기 플라이 휠(60)을 회전시킨다. 상기 제1커넥팅 로드(30)는, 상기 디스플레이서(20)의 상면에 결합된 제1고정 로드(31)와, 상기 제1고정 로드(31)와 상기 플라이 휠(60)에 양단이 회전가능토록 결합된 제1회전 로드(32)를 포함한다. 상기 제1회전 로드(32)의 일단은 상기 제1고정 로드(31)에 힌지 등에 의해 회전가능토록 결합되고, 타단은 상기 플라이 휠(60)에 힌지 등에 의해 회전가능토록 결합된다. The first connecting rod 30 connects the displacer 20 to a flywheel 60 described later. The first connecting rod 30 rotates the flywheel 60 during the linear movement of the displacer 20. The first connecting rod 30 is rotatable at both ends of the first fixing rod 31 coupled to the top surface of the displacer 20, the first fixing rod 31, and the flywheel 60. And a first rotating rod 32 coupled to it. One end of the first rotary rod 32 is rotatably coupled to the first fixing rod 31 by a hinge, and the other end is rotatably coupled to the flywheel 60 by a hinge or the like.
상기 피스톤(40)은, 상기 냉각실(15)에 구비된다. 상기 피스톤(40)은 상기 플라이 휠(60)에 제2커넥팅 로드(50)에 의해 연결되어, 상기 플라이 휠(60)의 회전에 의해 하향 직선운동하면서 상기 냉각실(15)에서 냉각된 작동유체를 압축한다. 상기 피스톤(40)은 상기 냉각실(15)의 내주면에 밀착되게 형성된다. 상기 피스톤(40)과 상기 냉각실(15)사이에 별도의 실링부재가 구비되어, 상기 피스톤(40)과 상기 냉각실(15)사이를 실링하는 것도 가능하다. The piston 40 is provided in the cooling chamber 15. The piston 40 is connected to the fly wheel 60 by a second connecting rod 50, and the working fluid cooled in the cooling chamber 15 while linearly moving downward by the rotation of the fly wheel 60. Compress it. The piston 40 is formed to be in close contact with the inner circumferential surface of the cooling chamber 15. A separate sealing member may be provided between the piston 40 and the cooling chamber 15 to seal the piston 40 and the cooling chamber 15.
상기 피스톤(40)에는 상기 제1커넥팅 로드(30)가 관통하도록 슬릿홀(40a)이 형성된다. 상기 슬릿홀(40a)은 상기 제1커넥팅 로드(30)의 움직이는 방향으로 길게 형성된다. A slit hole 40a is formed in the piston 40 to allow the first connecting rod 30 to pass therethrough. The slit hole 40a is formed long in the moving direction of the first connecting rod 30.
상기 슬릿홀(40a)과 상기 제1커넥팅 로드(30) 사이에는 작동유체의 누설을 방지하기 위한 실링부재가 설치된다. 상기 실링부재는, 일측은 상기 슬릿홀(40a)에 고정되고, 타측은 상기 제1커넥팅 로드(30)에 결합되어 상기 슬릿홀(40a)과 상기 제1커넥팅 로드(30)사이를 감싸도록 형성된 실링 부츠(sealing boots)(80)이다. 상기 실링 부츠(80)는 신축성 있는 재료로 이루어져, 상기 제1커넥팅 로드(30)의 움직임에 따라 신축될 수 있다. 상기 실링 부츠(80)와 상기 제1커넥팅 로드(30)사이에는 별도로 링 형상의 실링부재가 구비되는 것도 물론 가능하다. A sealing member is installed between the slit hole 40a and the first connecting rod 30 to prevent leakage of the working fluid. The sealing member, one side is fixed to the slit hole (40a), the other side is coupled to the first connecting rod 30 is formed to surround between the slit hole (40a) and the first connecting rod (30) Sealing boots 80. The sealing boot 80 is made of an elastic material and may be stretched according to the movement of the first connecting rod 30. Of course, a ring-shaped sealing member may be provided between the sealing boot 80 and the first connecting rod 30.
상기 제2커넥팅 로드(50)는, 상기 피스톤(40)을 상기 플라이 휠(60)에 연결시켜, 상기 플라이 휠(60)의 회전시 상기 피스톤(40)을 직선운동시킨다. 상기 제2커넥팅 로드(50)는, 상기 피스톤(40)의 상면에 결합된 제2고정 로드(51)와, 상기 제2고정 로드(51)와 상기 플라이 휠(60)에 양단이 회전가능토록 결합된 제2회전 로드(52)를 포함한다. 상기 제2고정 로드(51)는 상기 제1커넥팅 로드(30)와 간섭이 생기지 않도록 상기 슬릿홀(40a)로부터 소정간격 이격된 위치에 구비된다. 상기 제2회전 로드(32)의 일단은 상기 제2고정 로드(51)에 힌지 등에 의해 회전가능토록 결합되고, 타단은 상기 플라이 휠(60)에 힌지 등에 의해 회전가능토록 결합된다. 본 실시예에서는, 상기 제1회전 로드(32)와 상기 제2회전 로드(52)는 서로 간섭이 발생하지 않도록 상기 플라이 휠(60)의 전,후면 중 서로 다른 면에 결합되는 것으로 예를 들어 설명한다. The second connecting rod 50 connects the piston 40 to the flywheel 60 to linearly move the piston 40 when the flywheel 60 rotates. The second connecting rod 50 may be rotatable at both ends of the second fixing rod 51 coupled to the upper surface of the piston 40, the second fixing rod 51, and the flywheel 60. A second rotating rod 52 coupled. The second fixing rod 51 is provided at a position spaced a predetermined distance from the slit hole 40a so as not to interfere with the first connecting rod 30. One end of the second rotary rod 32 is rotatably coupled to the second fixed rod 51 by a hinge or the like, and the other end is rotatably coupled to the flywheel 60 by a hinge or the like. In the present embodiment, the first rotating rod 32 and the second rotating rod 52 are coupled to different surfaces of the front and rear surfaces of the flywheel 60 so as not to interfere with each other. Explain.
상기 플라이 휠(60)은, 상기 실린더(10)의 외측에 구비된다. 상기 플라이 휠(60)의 일측에는 상기 제1커넥팅 로드(30)가 결합되고, 타측에는 상기 제2커넥팅 로드(50)가 결합된다. 상기 플라이 휠(60)에서 상기 제1커넥팅 로드(30)와 상기 제2커넥팅 로드(50)가 결합되는 위치는 상기 디스플레이서(20)와 상기 피스톤(40)의 직선 이동 거리에 따라 미리 설정된다. 상기 플라이 휠(60)은, 상기 디스플레이서(20)의 직선 운동시 상기 제1커넥팅 로드(30)에 의해 회전된다. The flywheel 60 is provided outside the cylinder 10. The first connecting rod 30 is coupled to one side of the flywheel 60, and the second connecting rod 50 is coupled to the other side. The position at which the first connecting rod 30 and the second connecting rod 50 are coupled to the flywheel 60 is preset according to the linear movement distance of the displacer 20 and the piston 40. . The flywheel 60 is rotated by the first connecting rod 30 during linear movement of the displacer 20.
상기 플라이 휠(60)에는 회전축(미도시)이 결합되고, 상기 회전축(미도시)을 통해 발전된다. 본 실시예에서는, 상기 실린더(10)의 외측에는 상기 회전축을 회전가능하게 지지하는 회전축 지지대(62)가 구비된 것으로 예를 들어 설명하나, 이에 한정되지 않고 상기 회전축 지지대가 삭제되는 것도 물론 가능하다. 상기 회전축 지지대(62)는 막대 형상으로 형성된다. A rotary shaft (not shown) is coupled to the flywheel 60 and is generated through the rotary shaft (not shown). In the present embodiment, the outer side of the cylinder 10 is described with an example of the rotary shaft support 62 for rotatably supporting the rotary shaft, for example, but not limited to this, it is of course also possible that the rotary shaft support is deleted. . The rotary shaft support 62 is formed in a rod shape.
도 4 내지 도 7은 도 3에 도시된 스터링 엔진의 작동상태가 도시된 도면이다. 4 to 7 are diagrams showing the operating state of the Stirling engine shown in FIG.
도 4 내지 도 7을 참조하여, 본 발명의 실시예에 따른 스터링 엔진의 작동을 설명하면, 다음과 같다. 4 to 7, the operation of the Stirling engine according to the embodiment of the present invention will be described.
먼저, 도 4를 참조하면, 상기 가열실(11)이 가열되기 이전에 상기 디스플레이서(20)는 하사점(D1)에 위치하고, 상기 플라이 휠(60)은 정지 상태이다. 이 때, 상기 피스톤(40)은 상사점(P1)에 위치한 상태이다. First, referring to FIG. 4, before the heating chamber 11 is heated, the displacer 20 is located at the bottom dead center D1, and the flywheel 60 is in a stopped state. At this time, the piston 40 is in a state located at the top dead center (P1).
이후, 도 5를 참조하면, 상기 가열실(11)이 가열되어 상기 가열실(11) 내부의 작동유체가 가열되어 상변화하게 된다. 기화된 작동유체의 팽창력에 의해 상기 디스플레이서(20)가 상향 이동한다. 상기 디스플레이서(20)가 상향 이동하면, 상기 디스플레이서(20)에 결합된 상기 제1커넥팅 로드(30)가 상향 이동하면서 상기 플라이 휠(60)을 회전시킨다. 상기 디스플레이서(20)가 상기 하사점(DI)로부터 소정 거리만큼 상향 이동하면서 상기 플라이 휠(60)이 시계방향으로 약 90도 회전한다. Subsequently, referring to FIG. 5, the heating chamber 11 is heated so that the working fluid inside the heating chamber 11 is heated to change phase. The displacer 20 is moved upward by the expansion force of the vaporized working fluid. When the displacer 20 moves upward, the first connecting rod 30 coupled to the displacer 20 moves upward to rotate the flywheel 60. The flywheel 60 rotates about 90 degrees clockwise while the displacer 20 moves upward from the bottom dead center DI by a predetermined distance.
이 때, 상기 기화된 작동유체는, 상기 노즐부(12), 상기 통부(13) 및 상기 디퓨저부(14)를 차례로 통과한다. 상기 기화된 작동유체는 상기 디스플레이서(20)를 밀어올림과 동시에, 상기 디스플레이서(20)와 상기 실린더(10)사이의 공간을 통해 상향 이동한다. 상기 기화된 작동유체는, 상기 노즐부(12)를 통과하면서 속도가 증가하게 되므로, 상기 디스플레이서(20)를 미는 힘이 증가할 뿐만 아니라, 상기 냉각실(15)을 향해 보다 빠르게 이동할 수 있다. 또한, 상기 작동유체는 상기 디퓨저부(14)를 통과하면서 상기 냉각실(15)로 확산될 수 있으므로, 상기 냉각실(15)에서의 냉각과 압축이 보다 원활하게 이루어질 수 있다. At this time, the vaporized working fluid passes through the nozzle part 12, the cylinder part 13, and the diffuser part 14 in order. The vaporized working fluid pushes up the displacer 20 and moves upward through the space between the displacer 20 and the cylinder 10. The vaporized working fluid is increased in speed while passing through the nozzle unit 12, so that not only the force pushing the displacer 20 increases but also moves faster toward the cooling chamber 15. . In addition, since the working fluid may diffuse into the cooling chamber 15 while passing through the diffuser unit 14, the cooling and compression in the cooling chamber 15 may be more smoothly performed.
한편, 상기 플라이 휠(60)이 회전하면, 상기 제2커넥팅 로드(50)는 하향 이동한다. 따라서, 상기 제2커넥팅 로드(50)에 결합된 상기 피스톤(40)이 상기 상사점(P1)으로부터 하향 이동한다. 이 때, 상기 냉각실(15)의 외부 냉각원에 의해 냉각되고 있으므로 상기 냉각실(15)로 유입된 작동유체는 냉각되어 액화되고, 상기 피스톤(40)에 의해 압축된다. On the other hand, when the fly wheel 60 rotates, the second connecting rod 50 moves downward. Therefore, the piston 40 coupled to the second connecting rod 50 moves downward from the top dead center P1. At this time, since it is cooled by the external cooling source of the cooling chamber 15, the working fluid introduced into the cooling chamber 15 is cooled and liquefied, and is compressed by the piston 40.
도 6을 참조하면, 상기 디스플레이서(20)가 계속해서 상향 이동하여 상사점(D2)에 도달하고, 상기 플라이 휠(60)의 회전에 따라 상기 제2커넥팅 로드(50)와 상기 피스톤(40)이 하향 이동하여 상기 피스톤(40)은 하사점(P2)에 도달한다. 상기 디스플레이서(20)가 상기 상사점(D2)에 도달할때까지 상기 기화된 작동유체가 상기 냉각실(15)로 유입된다. 상기 피스톤(40)이 상기 하사점(P2)에 도달할때까지 상기 냉각실(15)로 유입된 작동유체는 냉각 압축된다. Referring to FIG. 6, the displacer 20 continuously moves upward to reach the top dead center D2, and the second connecting rod 50 and the piston 40 are rotated as the flywheel 60 rotates. ) Moves downward so that the piston 40 reaches the bottom dead center P2. The vaporized working fluid flows into the cooling chamber 15 until the displacer 20 reaches the top dead center D2. The working fluid introduced into the cooling chamber 15 is cooled and compressed until the piston 40 reaches the bottom dead center P2.
이후, 도 7을 참조하면, 상기 디스플레이서(20)는 상기 상사점(D2)으로부터 하향 이동하고, 상기 피스톤(40)은 상기 하사점(P2)으로부터 상향 이동한다. 상기 냉각실(15)에서 액화된 작동유체는 하향 이동하여 상기 가열실(11)측으로 이동한다. 이 때, 액화된 작동유체는, 상기 디퓨저부(14), 상기 통부(13) 및 상기 노즐부(12)를 차례로 통과하면서 상기 가열실(11)로 돌아간다. Subsequently, referring to FIG. 7, the displacer 20 moves downward from the top dead center D2, and the piston 40 moves upward from the bottom dead center P2. The working fluid liquefied in the cooling chamber 15 moves downward to the heating chamber 11 side. At this time, the liquefied working fluid returns to the heating chamber 11 while sequentially passing through the diffuser portion 14, the cylinder portion 13, and the nozzle portion 12.
상기 가열실(11)로 순환된 작동유체는 다시 상기 가열실(11)에서 가열 팽창되어, 상기와 같은 과정을 반복하게 된다. The working fluid circulated to the heating chamber 11 is again expanded by heating in the heating chamber 11 to repeat the above process.
상기와 같은 본 발명의 실시예에 따른 스터링 엔진은, 작동유체가 상변화후 통과하는 통로를 노즐과 디퓨저 형상으로 형성함으로써, 작동유체의 이동속도가 증가되어 플라이 휠의 회전속도가 증가될 수 있으므로 발전 효율이 보다 향상될 수 있다. 또한, 작동유체가 상기 디퓨저부(14)를 통과하면서 상기 냉각실(15)로 확산되므로, 상기 냉각실(15)로 유입된 작동유체가 보다 빠르게 확산되어 냉각 압축될 수 있으므로 효율이 향상될 수 있다. In the Stirling engine according to the embodiment of the present invention as described above, by forming a passage through which the working fluid passes after the phase change in the shape of a nozzle and a diffuser, since the moving speed of the working fluid is increased, the rotation speed of the flywheel can be increased. Power generation efficiency can be further improved. In addition, since the working fluid is diffused into the cooling chamber 15 while passing through the diffuser portion 14, the working fluid introduced into the cooling chamber 15 can be diffused faster and compressed, thereby improving the efficiency. have.
본 발명에 따르면, 발전 효율이 향상될 수 있는 유기랭킨 사이클 발전 장치를 제조할 수 있다. According to the present invention, it is possible to manufacture an organic Rankine cycle power generation device that can improve the power generation efficiency.

Claims (12)

  1. 작동유체를 가열 팽창시키는 공간을 형성하는 가열실과, 상기 가열실에서 가열 팽창된 작동유체를 냉각 압축시키는 공간을 형성하는 냉각실을 포함하는 실린더와;A cylinder including a heating chamber for forming a space for thermally expanding the working fluid, and a cooling chamber for forming a space for cooling and compressing the working fluid thermally expanded in the heating chamber;
    상기 가열실에서 가열된 작동유체의 부피 팽창력에 의해 직선 운동하는 디스플레이서와;A displacer which linearly moves by the volume expansion force of the working fluid heated in the heating chamber;
    상기 디스플레이서와 제1커넥팅 로드에 의해 연결되어, 상기 디스플레이서의 직선 운동에 의해 회전하는 플라이 휠과;A flywheel connected by the displacer and the first connecting rod to rotate by the linear motion of the displacer;
    상기 냉각실에 구비되고, 상기 플라이 휠과 제2커넥팅 로드에 의해 연결되어, 상기 플라이 휠의 회전에 의해 직선 운동하면서 상기 냉각실에서 냉각된 작동유체를 압축하는 피스톤을 포함하고,A piston provided in the cooling chamber and connected by the fly wheel and the second connecting rod to compress the working fluid cooled in the cooling chamber while linearly moving by the rotation of the fly wheel,
    상기 실린더에서 상기 가열실과 상기 냉각실 사이에는 단면적이 점차 축소되는 노즐부와 단면적이 점차 확대되는 디퓨저부가 형성된 스터링 엔진을 이용한 유기랭킨 사이클 발전 장치.An organic Rankine cycle power generation apparatus using a Stirling engine having a nozzle portion and a diffuser portion gradually increasing in cross section between the heating chamber and the cooling chamber in the cylinder.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 노즐부는, 상기 가열실에 연통되고 상기 가열실보다 단면적이 점차 축소되게 형성된 스터링 엔진을 이용한 유기랭킨 사이클 발전 장치.The nozzle unit, the organic Rankine cycle power generation apparatus using a Stirling engine in communication with the heating chamber and the cross-sectional area is gradually reduced than the heating chamber.
  3. 청구항 2에 있어서,The method according to claim 2,
    상기 노즐부와 상기 디퓨저부 사이에는 단면적이 일정한 통부가 형성된 스터링 엔진을 이용한 유기랭킨 사이클 발전 장치.An organic Rankine cycle power generation apparatus using a Stirling engine having a cylindrical section having a constant cross-sectional area between the nozzle unit and the diffuser unit.
  4. 청구항 3에 있어서,The method according to claim 3,
    상기 디퓨저부는, 상기 통부와 상기 냉각실을 연결하며, 상기 통부보다 단면적이 점차 증가되게 형성된 스터링 엔진을 이용한 유기랭킨 사이클 발전 장치.The diffuser unit, the organic Rankine cycle power generation apparatus using a Stirling engine that connects the cylinder portion and the cooling chamber, the cross section is gradually increased than the cylinder portion.
  5. 청구항 3에 있어서,The method according to claim 3,
    상기 디스플레이서는, 상기 통부보다 단면적이 작게 형성된 스터링 엔진을 이용한 유기랭킨 사이클 발전 장치.The displacer is an organic Rankine cycle power generation apparatus using a Stirling engine having a smaller cross-sectional area than the tube portion.
  6. 청구항 1에 있어서,The method according to claim 1,
    상기 피스톤은, 상기 냉각실의 내주면에 밀착되게 형성된 스터링 엔진을 이용한 유기랭킨 사이클 발전 장치.The piston is an organic Rankine cycle power generation apparatus using a Stirling engine formed in close contact with the inner peripheral surface of the cooling chamber.
  7. 청구항 1에 있어서,The method according to claim 1,
    상기 피스톤에는 상기 제1커넥팅 로드가 통과하는 슬릿홀이 형성된 스터링 엔진을 이용한 유기랭킨 사이클 발전 장치.Organic Rankine cycle power generation apparatus using a Stirling engine having a slit hole through which the first connecting rod passes through the piston.
  8. 청구항 7에 있어서,The method according to claim 7,
    상기 슬릿홀과 상기 제1커넥팅 로드 사이를 실링하는 실링부재를 더 포함하는 스터링 엔진을 이용한 유기랭킨 사이클 발전 장치.Organic Rankine cycle power generation apparatus using a Stirling engine further comprises a sealing member for sealing between the slit hole and the first connecting rod.
  9. 청구항 8에 있어서,The method according to claim 8,
    상기 실링부재는, The sealing member,
    일측은 상기 슬릿홀에 고정되고 타측은 상기 제1커넥팅 로드에 결합되어, 상기 슬릿홀과 상기 제1커넥팅 로드 사이를 감싸도록 형성된 실링 부츠(sealing boots)인 스터링 엔진을 이용한 유기랭킨 사이클 발전 장치.One side is fixed to the slit hole and the other side is coupled to the first connecting rod, organic Rankine cycle power generation apparatus using a stirling engine (sealing boots) formed to surround between the slit hole and the first connecting rod.
  10. 청구항 1에 있어서,The method according to claim 1,
    상기 제1커넥팅 로드는, The first connecting rod,
    상기 디스플레이서에 구비된 고정 로드와, 일단은 상기 고정 로드에 회전가능토록 결합되고 타단은 상기 플라이 휠에 회전가능하게 결합되며 상기 피스톤을 관통하는 회전 로드를 포함하는 스터링 엔진을 이용한 유기랭킨 사이클 발전 장치. Organic Rankine cycle power generation using a stirling engine including a fixed rod provided on the displacer, one end rotatably coupled to the fixed rod and the other end rotatably coupled to the flywheel, and passing through the piston. Device.
  11. 청구항 1에 있어서,The method according to claim 1,
    상기 제2커넥팅 로드는,The second connecting rod,
    상기 피스톤에 구비된 고정 로드와, 일단은 상기 고정 로드에 회전가능토록 결합되고 타단은 상기 플라이 휠에 회전가능하게 결합된 회전 로드를 포함하는 스터링 엔진을 이용한 유기랭킨 사이클 발전 장치. An organic Rankine cycle power generation apparatus using a stirling engine including a fixed rod provided on the piston, and a rotating rod having one end rotatably coupled to the fixed rod and the other end rotatably coupled to the flywheel.
  12. 작동유체를 가열 팽창시키는 공간을 형성하는 가열실과, 상기 가열실에서 가열 팽창된 작동유체를 냉각 압축시키는 공간을 형성하는 냉각실을 포함하고, 상기 가열실과 상기 냉각실 사이에는 단면적이 점차 축소되는 노즐부와 단면적이 점차 확대되는 디퓨저부가 형성된 실린더와;A heating chamber forming a space for heating and expanding the working fluid, and a cooling chamber for forming a space for cooling and compressing the working fluid expanded and heated in the heating chamber, and a nozzle having a cross-sectional area gradually reduced between the heating chamber and the cooling chamber. A cylinder having a diffuser portion in which the portion and the cross-sectional area are gradually enlarged;
    상기 가열실에서 가열된 작동유체의 부피 팽창력에 의해 직선 운동하는 디스플레이서와;A displacer which linearly moves by the volume expansion force of the working fluid heated in the heating chamber;
    상기 디스플레이서와 제1커넥팅 로드에 의해 연결되어, 상기 디스플레이서의 직선 운동에 의해 회전하는 플라이 휠과;A flywheel connected by the displacer and the first connecting rod to rotate by the linear motion of the displacer;
    상기 냉각실에 구비되고, 상기 플라이 휠과 제2커넥팅 로드에 의해 연결되어, 상기 플라이 휠의 회전에 의해 직선 운동하면서 상기 냉각실에서 냉각된 작동유체를 압축하는 피스톤과;A piston provided in the cooling chamber and connected by the fly wheel and the second connecting rod to compress the working fluid cooled in the cooling chamber while linearly moving by the rotation of the fly wheel;
    상기 피스톤에서 상기 제1커넥팅 로드가 통과하도록 형성된 슬릿홀과; A slit hole formed to pass the first connecting rod through the piston;
    일측은 상기 슬릿홀에 고정되고 타측은 상기 제1커넥팅 로드에 결합되어 상기 슬릿홀과 상기 제1커넥팅 로드 사이를 실링하는 실링 부츠(sealing boots)를 포함하고,One side is fixed to the slit hole and the other side is coupled to the first connecting rod includes a sealing boots (sealing boots) for sealing between the slit hole and the first connecting rod,
    상기 노즐부는, 상기 가열실에 연통되고 상기 가열실보다 단면적이 점차 축소되는 축소부와, 상기 축소부에서 연장되고 단면적이 일정하게 형성된 통부를 포함하고,The nozzle portion includes a reduction portion communicating with the heating chamber and gradually reducing the cross-sectional area than the heating chamber, and a cylindrical portion extending from the reduction portion and having a constant cross-sectional area.
    상기 디퓨저부는, 상기 통부와 상기 냉각실을 연결하며, 상기 통부보다 단면적이 점차 증가되게 형성된 스터링 엔진을 이용한 유기랭킨 사이클 발전 장치. The diffuser unit, the organic Rankine cycle power generation apparatus using a Stirling engine that connects the cylinder portion and the cooling chamber, the cross section is gradually increased than the cylinder portion.
PCT/KR2016/000569 2014-12-10 2016-01-20 Organic rankine cycle power generating device using stirling engine WO2017043711A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR20140177416 2014-12-10
KR10-2015-0126321 2015-09-07
KR1020150126321A KR101714657B1 (en) 2014-12-10 2015-09-07 Organic rankine cycle power plant with advanced stirling engine

Publications (1)

Publication Number Publication Date
WO2017043711A1 true WO2017043711A1 (en) 2017-03-16

Family

ID=56354464

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/000569 WO2017043711A1 (en) 2014-12-10 2016-01-20 Organic rankine cycle power generating device using stirling engine

Country Status (2)

Country Link
KR (1) KR101714657B1 (en)
WO (1) WO2017043711A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1180593A1 (en) * 2000-08-16 2002-02-20 Cybertech Ventures, Inc. Method of controlling power output of a stirling engine
US20120240570A1 (en) * 2011-03-22 2012-09-27 The Boeing Company Heat exchanger and associated method employing a stirling engine
KR20140036888A (en) * 2012-09-18 2014-03-26 한국전력공사 Ejector-stirling cycle device using waste heat
WO2014091496A2 (en) * 2012-12-12 2014-06-19 M Elumalai "boiling oil" steam engine
US20150101324A1 (en) * 2013-10-15 2015-04-16 Kevin Song Valved Stirling Engine with Improved Efficiency

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4553392A (en) * 1984-12-12 1985-11-19 Stirling Technology, Inc. Self pressurizing, crank-type Stirling engine having reduced loading of displacer drive linkages
JPS63109270A (en) * 1986-10-27 1988-05-13 Sanyo Electric Co Ltd Multi-cylinder stirling engine
JPS6487854A (en) * 1987-09-30 1989-03-31 Toshiba Corp Stirling engine
US6041598A (en) * 1997-11-15 2000-03-28 Bliesner; Wayne Thomas High efficiency dual shell stirling engine
KR101336788B1 (en) 2012-07-27 2013-12-04 한국에너지기술연구원 A cooling system of the organic rankine cycle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1180593A1 (en) * 2000-08-16 2002-02-20 Cybertech Ventures, Inc. Method of controlling power output of a stirling engine
US20120240570A1 (en) * 2011-03-22 2012-09-27 The Boeing Company Heat exchanger and associated method employing a stirling engine
KR20140036888A (en) * 2012-09-18 2014-03-26 한국전력공사 Ejector-stirling cycle device using waste heat
WO2014091496A2 (en) * 2012-12-12 2014-06-19 M Elumalai "boiling oil" steam engine
US20150101324A1 (en) * 2013-10-15 2015-04-16 Kevin Song Valved Stirling Engine with Improved Efficiency

Also Published As

Publication number Publication date
KR20160070669A (en) 2016-06-20
KR101714657B1 (en) 2017-03-09

Similar Documents

Publication Publication Date Title
CN105556067A (en) Method and heat engine for utilising waste heat or geothermal heat
CN101283176A (en) 4-cycle stirling engine with two double piston units
US5336059A (en) Rotary heat driven compressor
GB1391787A (en) Oscillating or reciprocating device
CN102691591A (en) Heat exchanger and associated method employing stirling engine
Dubberke et al. Experimental setup of a cascaded two-stage organic Rankine cycle
WO2017043711A1 (en) Organic rankine cycle power generating device using stirling engine
US8978618B2 (en) Heat engine
KR101018379B1 (en) External combustion engine and output method thereof
JP2009144598A (en) External combustion engine
JP2010144518A (en) Rotary stirling engine
KR102394987B1 (en) Variable volume transfer shuttle capsule and valve mechanism
US20150247654A1 (en) Direct use of acoustic power in stirling engine for heat removal
CN206668426U (en) A kind of novel rotor type Stirling engine
US10465947B2 (en) Stirling cooler with fluid transfer by deformable conduit
KR101623418B1 (en) stirling engine
EP2090745B1 (en) Fluid machinery
RU2581292C1 (en) Compressor plant for gas compression
JP5628118B2 (en) Vane rotary type heating and cooling equipment
CN109115016A (en) A kind of device for realizing enhancing heat transfer
WO2015163703A1 (en) Cryogenic refrigeration system
KR101079131B1 (en) A stirling engine with hydrostatics pump
RU2042851C1 (en) Engine with external heat supply
CN108343482A (en) Birotor expanding machine is connected the device for generating power by waste heat of organic Rankine cycle expansion machine
RU2326256C2 (en) Heat machine "ilo" employing stirling closed cycle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16844531

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16844531

Country of ref document: EP

Kind code of ref document: A1