WO2017043479A1 - 空調室内機 - Google Patents

空調室内機 Download PDF

Info

Publication number
WO2017043479A1
WO2017043479A1 PCT/JP2016/076164 JP2016076164W WO2017043479A1 WO 2017043479 A1 WO2017043479 A1 WO 2017043479A1 JP 2016076164 W JP2016076164 W JP 2016076164W WO 2017043479 A1 WO2017043479 A1 WO 2017043479A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
front flap
adjusting member
direction adjusting
flap
Prior art date
Application number
PCT/JP2016/076164
Other languages
English (en)
French (fr)
Inventor
裕介 樽木
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to AU2016320945A priority Critical patent/AU2016320945B2/en
Priority to CN201680052070.9A priority patent/CN108027165B/zh
Priority to EP16844340.6A priority patent/EP3348928A4/en
Publication of WO2017043479A1 publication Critical patent/WO2017043479A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/08Air-flow control members, e.g. louvres, grilles, flaps or guide plates
    • F24F13/10Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers
    • F24F13/14Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers built up of tilting members, e.g. louvre
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0011Indoor units, e.g. fan coil units characterised by air outlets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0043Indoor units, e.g. fan coil units characterised by mounting arrangements
    • F24F1/0057Indoor units, e.g. fan coil units characterised by mounting arrangements mounted in or on a wall

Definitions

  • the present invention relates to an air conditioning indoor unit.
  • An object of the present invention is to provide an air-conditioning indoor unit that can efficiently achieve lower blowing of blown air and further prevent the blown air from bypassing the gap between two wind direction adjusting members.
  • An air-conditioning indoor unit is a wall-mounted air-conditioning indoor unit that is installed on a side wall of an air-conditioning target space and changes the air direction of the blown-out air blown out from the air outlet by a plurality of air direction adjusting members.
  • the first wind direction adjusting member and the second wind direction adjusting member are provided.
  • the first air direction adjusting member adjusts the air direction of the blown air.
  • the second air direction adjusting member is located upstream of the first air direction adjusting member in the flow of the blown air.
  • Each of the first wind direction adjusting member and the second wind direction adjusting member has an air flow surface along which the blown air is along.
  • the first wind direction adjusting member and the second wind direction adjusting member take a predetermined posture.
  • the predetermined posture is a posture that forms a convex airflow guide surface that bulges forward by two airflow surfaces.
  • the first wind direction adjusting member is inclined with respect to the vertical plane with its lower end positioned on the side wall side of the upper end.
  • the first air direction adjusting member has the lower end positioned on the side wall side with respect to the upper end and is inclined with respect to the vertical plane, whereby the blown air is directed downward by 90 ° or more from the horizontal (the air conditioner is lower than the vertical plane). Can be deflected to the side of the installation side wall, and [insensitive airflow] toward the lower part of the side wall can be realized.
  • the air conditioning indoor unit according to the second aspect of the present invention is the air conditioning indoor unit according to the first aspect, wherein the airflow surface of the first wind direction adjusting member is larger than the airflow surface of the second air direction adjusting member.
  • the air guided to the airflow surface of the second airflow direction adjusting member is along the airflow surface of the first airflow direction adjusting member that is larger than the airflow surface. Can lead to direction.
  • the air conditioning indoor unit according to the third aspect of the present invention is the air conditioning indoor unit according to the first aspect or the second aspect, and the first wind direction adjusting member and the second wind direction adjusting member overlap.
  • the first air direction adjusting member and the second air direction adjusting member are overlapped, thereby preventing the bypass of the blown air to the gap between the two members.
  • the air conditioning indoor unit according to the fourth aspect of the present invention is the air conditioning indoor unit according to the third aspect, and the lower portion of the second air direction adjusting member overlaps the first air direction adjusting member from the upstream side of the flow of the blown air.
  • At least the tip of the second wind direction adjusting member is positioned to overlap the back side (side wall side) of the first wind direction adjusting member, and the air guided to the air flow surface of the second wind direction adjusting member is the first wind direction adjustment. Since it is along the airflow surface of the member, bypass to the gap between both members is reliably prevented.
  • An air conditioning indoor unit is the air conditioning indoor unit according to the third aspect, in which either one of the overlapping portions of the first wind direction adjusting member and the second wind direction adjusting member is the other. An indentation is provided.
  • An air conditioner indoor unit is the air conditioner indoor unit according to the first aspect, and in a predetermined posture, the second wind direction adjusting member has its lower end positioned in front of the upper end and is in a vertical plane.
  • the first wind direction adjusting member is inclined by 0 ° to 20 ° with respect to the vertical plane with its lower end positioned on the side of the side wall from the upper end.
  • the airflow surface of the second airflow direction adjustment member and the airflow surface of the first airflow direction adjustment member form a large obtuse angle, so that the airflow surface of the second airflow direction adjustment member moves to the airflow surface of the first airflow direction adjustment member.
  • the flow of air is smooth.
  • the first air direction adjusting member positions the lower end on the side wall side with respect to the upper end and inclines with respect to the vertical plane, whereby the blown air is directed downward by 90 ° or more from the horizontal. It can be deflected toward the side wall side of the air conditioner rather than the vertical plane, and [insensitive airflow] toward the lower part of the side wall can be realized.
  • the air guided to the airflow surface of the second airflow direction adjusting member is along the airflow surface of the first airflow direction adjusting member that is larger than the airflow surface. It is possible to guide in the target direction without peeling.
  • the first air direction adjusting member and the second air direction adjusting member overlap each other, thereby preventing the bypass of the blown air to the gap between the two members.
  • At least the tip of the second wind direction adjusting member is in an attitude that overlaps the back side (side wall side) of the first wind direction adjusting member, and is guided by the air flow surface of the second wind direction adjusting member. Since the air is along the airflow surface of the first air direction adjusting member, bypassing to the gap between the two members is reliably prevented.
  • the step difference between the two becomes small. Resistance when flowing on the airflow surface is reduced.
  • the airflow surface of the second airflow direction adjusting member and the airflow surface of the first airflow direction adjusting member form a large obtuse angle.
  • the flow of the blown air to the airflow surface of the wind direction adjusting member becomes smooth.
  • FIG. 6 is an enlarged cross-sectional view of a front flap, a sub-front flap, and a rear flap in FIG. 5.
  • Sectional drawing of the said back flap vicinity which shows the positional relationship of a back flap and a blower outlet.
  • FIG. 1 is a perspective view of the air conditioning indoor unit 10 during operation according to one embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the air conditioning indoor unit 10 in FIG. 1 and 2, the air conditioning indoor unit 10 is a wall-hanging type. 1 and 2, the airflow direction mode is set to the rearward downward airflow mode in which the blown air is directed to the lower part of the side wall where the air conditioning indoor unit 10 is installed.
  • the air conditioning indoor unit 10 includes a main body casing 11, an indoor heat exchanger 13, an indoor fan 14, a frame 17, and a control unit 50.
  • the main body casing 11 includes a top surface portion 11a, a front panel 11b, a back plate 11c, an inclined lower surface portion 11d, and a horizontal lower surface portion 11e, and includes an indoor heat exchanger 13, an indoor fan 14, a frame 17, and a control unit 50 inside. Stored.
  • the top surface portion 11a is located at the top of the main body casing 11, and is provided with a suction port (not shown) from the front portion to the rear portion of the top surface portion 11a.
  • the front panel 11b constitutes the front part of the indoor unit, and has a flat shape without a suction port or a curved shape with a large curvature. Further, the upper end of the front panel 11b is rotatably supported by the top surface portion 11a, and can operate in a hinged manner.
  • the indoor heat exchanger 13 and the indoor fan 14 are attached to the frame 17.
  • the indoor heat exchanger 13 exchanges heat with the passing air.
  • the indoor heat exchanger 13 has an inverted V-shape in which both ends are bent downward in a side view, and the indoor fan 14 is located below the indoor heat exchanger 13.
  • the indoor fan 14 is a cross-flow fan, blows air taken in from the room against the indoor heat exchanger 13 and then blows it into the room.
  • the blower outlet 15 is provided in the lower part of the main body casing 11.
  • a rear flap 40 for changing the direction of the blown air blown from the blower outlet 15 is rotatably attached to the blower outlet 15.
  • the rear flap 40 is driven by a motor (not shown) and can change the direction of the blown air, and can also open and close the blowout port 15.
  • the rear flap 40 can take a plurality of postures having different inclination angles.
  • a front flap 31 is provided in the vicinity of the outlet 15.
  • the front flap 31 can take a posture inclined in the front-rear direction by a motor (not shown), and is provided on the inclined lower surface portion 11d between the lower end of the front panel 11b and the outlet 15 when the operation is stopped. It is accommodated in the accommodating part 130.
  • the front flap 31 can take a plurality of postures having different inclination angles.
  • the sub front flap 32 is rotatably arranged upstream of the front flap 31 in the flow of the blown air.
  • the front flap 31, the sub front flap 32, and the rear flap 40 generate a backward downward airflow.
  • the front flap 31 and the sub-front flap 32 are collectively referred to as a front flap group 30.
  • the air outlet 15 is connected to the inside of the main body casing 11 by the air outlet channel 18.
  • the blowout flow path 18 is an air path sandwiched between the upper scroll 171 and the lower scroll 172 of the frame 17.
  • the indoor air is sucked into the indoor fan 14 through the suction port and the indoor heat exchanger 13 by the operation of the indoor fan 14, and blown out from the blower outlet 15 through the blowout passage 18 from the indoor fan 14.
  • the control unit 50 is disposed in a space provided between the front drain pan 61 and the upper partition wall 161 of the blower outlet forming wall 16.
  • the control unit 50 controls the rotational speed of the indoor fan 14 and controls the operation of the rear flap 40 and the front flap group 30.
  • the front drain pan 61 is located below the front lower part of the indoor heat exchanger 13 and receives condensed water generated at the front of the indoor heat exchanger 13.
  • each member is defined as “lower end, upper end” for convenience when the member is in a vertical posture or a posture approaching a vertical posture.
  • front end, rear end of each member is defined as “lower end, upper end” for convenience when the member is in a vertical posture or a posture approaching a vertical posture.
  • FIG. 1 Main body casing 11 As shown in FIG. 1, the main body casing 11 has a top surface portion 11 a that gently slopes downward from the rear toward the front.
  • the top surface portion 11a is provided with a suction port (not shown).
  • the front part of the main body casing 11 is constituted by a front panel 11b.
  • the front panel 11b extends from the upper front part of the main casing 11 to the lower front part while drawing a gentle arc curved surface.
  • the lower front side of the main body casing 11 is composed of an inclined lower surface portion 11d that connects the lower end of the front panel 11b and the upper end of the air outlet 15.
  • the inclined lower surface portion 11 d is formed with a region that is recessed toward the inside of the main body casing 11. The depth of the recess in this region is set so as to match the thickness dimension of the front flap 31, and constitutes an accommodating portion 130 in which the front flap 31 is accommodated.
  • the surface of the accommodating part 130 is also a gentle circular curved surface.
  • the lower rear side of the main body casing 11 is composed of a horizontal lower surface portion 11e extending from the rear end side of the air outlet 15 to the lower back surface.
  • the blower outlet 15 is formed in the lower part of the main body casing 11, and is a rectangular opening which makes a horizontal direction (direction orthogonal to the paper surface of FIG. 2) a long side.
  • the air outlet 15 is contoured by an air outlet forming wall 16.
  • the blower outlet forming wall 16 includes an upper partition 161 that forms the upper surface of the blower outlet 15 and a lower partition 162 that forms the lower surface of the blower outlet 15.
  • the upper partition wall 161 is provided with a front rib 15 a that protrudes vertically downward from the front end position of the air outlet 15.
  • a housing partition wall 131 is disposed on the opposite side of the upper partition wall 161 (in front of the front rib 15a) across the front rib 15a.
  • the accommodating part partition wall 131 is a wall that forms the upper surface of the accommodating part 130.
  • the upper partition 161, the front rib 15a, and the housing partition wall 131 are integrally formed.
  • the lower partition wall 162 is provided with a rear rib 15b that protrudes vertically downward from the rear end position of the air outlet 15.
  • the lower partition 162 and the rear rib 15b are integrally formed.
  • the frame 17 is a partition wall curved so as to face the indoor fan 14.
  • the frame 17 includes an up scroll 171 and a down scroll 172.
  • An upper partition 161 of the blower outlet forming wall 16 is adjacent to the tangential direction of the end of the upper scroll 171.
  • the lower partition wall 162 of the blower outlet forming wall 16 is adjacent to the tangential direction of the terminal end of the lower scroll 172.
  • the air passing through the blowout flow path 18 travels along the upper scroll 171 and the lower scroll 172, is sent in the tangential direction of the terminal ends thereof, and travels along the upper partition wall 161 and the lower partition wall 162 of the blower outlet forming wall 16. The air is blown out from the air outlet 15.
  • the vertical air direction adjusting plate 20 has a plurality of blade pieces 201 arranged along the longitudinal direction of the air outlet 15 (direction perpendicular to the paper surface of FIG. 2).
  • the vertical air direction adjusting plate 20 is disposed at a position closer to the indoor fan 14 than the rear flap 40 in the blowout flow path 18.
  • the plurality of blade pieces 201 swings left and right around a state perpendicular to the longitudinal direction by horizontally reciprocating along the longitudinal direction of the air outlet 15.
  • Front flap 31 3 is an enlarged cross-sectional view of the front flap 31 and the rear flap 40 in FIG.
  • FIG. 4 is a cross-sectional view of the air conditioning indoor unit when operation is stopped. 3 and 4, the front flap 31 is accommodated in the accommodating portion 130 while the air conditioning operation is stopped.
  • the front flap 31 moves away from the accommodating portion 130 by rotating.
  • the rotation axis of the front flap 31 is set below the front rib 15a of the upper partition wall 161 of the blower outlet forming wall 16, and the rear end of the front flap 31 and the rotation shaft are connected at a predetermined interval. ing. Therefore, the height position of the rear end of the front flap 31 is rotated so that the front flap 31 is rotated away from the accommodating portion 130.
  • the front flap 31 is moved counterclockwise when viewed from the front in FIG. 4, so that the front and rear ends of the front flap 31 are separated from the housing portion 130 while drawing an arc. Further, the front flap 31 is rotated clockwise in FIG. 2 when viewed from the front of FIG. 2, so that the front flap 31 approaches the housing portion 130 and is finally housed in the housing portion 130.
  • the operating state of the front flap 31 includes the attitude accommodated in the accommodating portion 130 (see FIG. 4), the attitude rotated and tilted forward and upward, further rotated and substantially horizontal, and further rotated and downwardly forward. There are postures that are inclined to the rear, and postures that are further rotated and inclined backward and downward (see FIGS. 2 and 3).
  • the front flap 31 has a first surface 31a that forms an outer surface and a second surface 31b that forms an inner surface when the front flap 31 is in the posture of being accommodated in the accommodating portion 130.
  • the first surface 31a and the second surface 31b form a rear surface and a front surface, respectively, when the front flap 31 is inclined downward and rearward in FIG.
  • the first surface 31 a is provided with a recess 311 whose size decreases in the thickness direction of the front flap 31.
  • the recess 311 is located closer to the rotation axis when viewed from the center of the front flap 31.
  • the dimension of the front flap 31 in the longitudinal direction is set to be equal to or larger than the dimension of the rear flap 40 in the longitudinal direction. The reason is that, for example, when the wind direction is upward, all of the blown air whose wind direction is adjusted by the rear flap 40 is received by the front flap 31, and the action / effect is short of the blown air from the side of the front flap 31. It is to prevent the circuit.
  • Sub-front flap 32 is a plate-like member that is located upstream of the front flap 31 in the flow of blown air.
  • the sub-front flap 32 is smaller than the front flap 31, but the sub-front flap 32 is set to a size sufficient to guide the air that has passed through the blowout flow path 18 to the first surface 31 a of the front flap 31.
  • the sub-front flap 32 is accommodated in an accommodating portion 16a provided in the upper partition wall 161 of the blower outlet forming wall 16 when not used.
  • the sub-front flap 32 has a first surface 32a that forms a lower surface and a second surface 32b that forms an upper surface when in the posture of being accommodated in the accommodating portion 16a.
  • the first surface 32a and the second surface 32b form a rear surface and a front surface, respectively, when the sub-front flap 32 takes the posture shown in FIG.
  • the accommodating part 16a is formed by denting the upper partition 161 of the blower outlet forming wall 16 in the thickness direction.
  • the depth of the accommodating portion 16a is set so that the first surface 32a of the sub-front flap 32 does not protrude toward the flow path side from the surface of the upper partition wall 161 when the sub-front flap 32 is accommodated.
  • the sub-front flap 32 when used, it moves from the accommodating portion 16a by rotation and protrudes to the flow path side from the surface of the upper partition wall 161.
  • the rotation axis of the sub-front flap 32 is set below the upstream end of the accommodating portion 16a.
  • the sub front flap 32 rotates so that its front end enters the recess 311 of the front flap 31.
  • the blown air bypasses the gap between the upper partition wall 161 and the sub front flap 32 when the entire sub front flap 32 is separated from the housing portion 16a, the rear end of the sub front flap 32 is placed in the housing portion in order to prevent this. 16a remains and the expansion of the gap between the upper partition wall 161 and the sub-front flap 32 is suppressed.
  • the first surface 32a of the sub-front flap 32 and the first surface 31a of the front flap 31 form an air flow guide surface 30a, and an air flow toward the lower portion of the side wall is generated together with the rear flap 40.
  • the rear flap 40 has an area that can close the air outlet 15 as shown in FIG.
  • the rear flap 40 has a first surface 40a that forms an outer surface and a second surface 40b that forms an inner surface when the air outlet 15 is closed.
  • the first surface 32a and the second surface 32b form a rear surface and a front surface, respectively, when the rear flap 40 takes a posture in which the rear flap 40 is inclined rearward and downward in FIG.
  • the first surface 40a is finished with a gentle circular curved surface that is convex outward with emphasis on design.
  • the second surface 40b includes a flat surface 40ba and a curved surface 40bb, and is arranged in the order of the flat surface 40ba and the curved surface 40bb from the upper end to the lower end of the rear flap 40 as shown in FIG. Yes.
  • the curved surface 40bb is a curved surface that swells to the front side with a radius of 200 mm or more.
  • the rotation axis of the rear flap 40 is set at a position adjacent to the rear rib 15b of the lower partition 162 of the blower outlet forming wall 16.
  • the rear flap 40 rotates about the rotation axis in the counterclockwise direction of FIG. 4 when viewed from the front, the rear flap 40 operates to move away from the front end of the air outlet 15 to open the air outlet 15.
  • the rear flap 40 rotates in the clockwise direction in FIG. 2 around the rotation axis, so that the rear flap 40 moves closer to the front end of the outlet 15 and closes the outlet 15.
  • the air-conditioning indoor unit of this embodiment changes the attitude
  • the direction is adjusted.
  • each wind direction mode will be described with reference to the drawings.
  • Each wind direction mode can be controlled to be automatically changed, or can be selected by a user via a remote controller or the like.
  • the rearward downward airflow mode is a mode in which the blown air is directed to the lower part of the side wall where the air conditioning indoor unit 10 is installed.
  • the blown air flows from the lower part of the side wall to the floor surface and flows toward the opposite side wall along the floor surface.
  • This airflow is also called “insensitive airflow” because it does not directly hit the resident and it is difficult to feel the air flow.
  • the front flap 31, the sub front flap 32, and the rear flap 40 take the posture shown in FIGS.
  • the sub-front flap 32 is inclined at an angle ⁇ (0 to 10 °) with respect to the vertical plane with its lower end positioned in front of the upper end.
  • the front flap 31 is inclined at an angle ⁇ (0 to 20 °) with respect to the vertical plane with its lower end positioned on the side wall side from the upper end.
  • the convex airflow guide surface 30a in which the first surface 32a of the sub front flap 32 and the first surface 31a of the front flap 31 bulge forward is formed.
  • the lower end of the front flap 31 is located below the height position of the tip of [the rear rib 15b protruding vertically downward from the rear end position of the blowout port 15].
  • the front end of the rear rib 15 b is the lowermost end of the air outlet 15.
  • the rear flap 40 has its lower end positioned on the side of the side wall with respect to the upper end, and the second surface 40b is inclined with respect to the vertical plane. Specifically, as shown in FIG. 3, the rear flap 40 is inclined until the first surface 40 a of the rear flap 40 contacts or approaches the tip of the rear rib 15 b.
  • the gap between the rear flap 40 and the rear rib 15b is equal to or less than a predetermined value (5 mm)
  • the ventilation resistance when air flows through the gap is increased, and the blown air passes through the gap.
  • the airflow guide space 30a and the second surface 40b, which is a wider passage, are avoided and flow into the air passage space.
  • the blown air passes through the air passage space sandwiched between the airflow guide surface 30a and the second surface 40b.
  • the blowing air guided to the sub front flap 32 follows the front flap 31 larger than that. Since the front flap 31 is inclined with respect to the vertical plane with the lower end of the front flap 31 positioned on the side of the side of the upper end, the blown air can be guided to the lower side of the side wall downward by 90 ° or more from the horizontal.
  • the vehicle advances along the air passage space in a state where forward diffusion is prevented by the front flap 31. Since the blown air becomes an air flow along the second surface 40b of the rear flap 40 when leaving the air passage space, the air flow toward the lower portion of the side wall is sufficiently generated.
  • the blown air flows along the order of the flat surface 40ba and the curved surface 40bb of the second surface 40b of the rear flap 40. Since the curved surface 40bb is set to have a radius of 200 mm or more so that the Coanda effect can be easily exerted, the blown air is drawn downward to the curved surface 40bb by the Coanda effect after being turned downward along the plane 40ba.
  • FIG. 5 is a cross-sectional view of the air conditioning indoor unit 10 in the forward downward airflow mode using the sub-front flap 32.
  • 6 is an enlarged cross-sectional view of the front flap 31, the sub-front flap 32, and the rear flap 40 in FIG.
  • the front flap 31 is rotated so that the first surface 31a of the front flap 31 is inclined downward by a predetermined angle x1 from the horizontal. If the first surface 31a is an arc surface and it is difficult to determine the angle, a line connecting both ends of the first surface 31a may be used as the angle reference, as shown in FIG.
  • the sub-front flap 32 is also rotated so that the first surface 32a of the sub-front flap 32 is inclined downward by a predetermined angle y1 from the horizontal.
  • the blown air bypasses the gap between the upper partition wall 161 and the sub front flap 32 when the entire sub front flap 32 is separated from the housing portion 16a, the rear end of the sub front flap 32 is placed in the housing portion in order to prevent this. 16a remains and the expansion of the gap between the upper partition wall 161 and the sub-front flap 32 is suppressed.
  • the rear flap 40 also rotates, and the flat surface 40ba of the second surface 40b of the rear flap 40 is inclined downward by a predetermined angle z1 from the horizontal.
  • the front end portion of the sub front flap 32 is upstream of the front flap 31 and the front flap 31. It overlaps the rear end of the front flap 31 by a dimension L vertically below the rear end surface.
  • the positional relationship between the front flap 31, the sub front flap 32, and the gap between them is a relationship in which the sub front flap 32, the gap, and the front flap 31 are arranged in this order, as viewed from the upstream side of the flow of the blown air. Since it is hidden by the upstream sub-front flap 32, the air guided to the first surface 32 a of the sub-front flap 32 through the blow-out flow path 18 is vigorous and does not rotate around the gap, but the first surface of the front flap 31. It flows to 31a. As a result, even if there is the gap, the conditioned air is prevented from bypassing the gap.
  • the sub-front flap 32 takes a posture of blocking the airflow passing through the gap between the upper partition wall 161 and the front flap 31, and the upper end of the front flap 31 is the boundary. Since blowing air is prevented from flowing along both surfaces of the front flap 31, the upper end of the front flap 31 does not become ventilation resistance. As a result, an increase in power consumption of the indoor fan 14 and a decrease in energy saving performance are prevented.
  • the forward downward air flow mode using the sub-front flap 32 is particularly useful when generating forward downward air blowing in the cooling operation. This is because the cooled air does not flow to the second surface 31b side of the front flap 31 and thus has an effect of preventing condensation.
  • the sub-front flap 32 is used in the cooling operation except when an upward airflow is generated.
  • FIG. 7 is a cross-sectional view of the air conditioning indoor unit 10 in the forward downward airflow mode that does not use the sub-front flap 32.
  • the sub-front flap 32 is accommodated in the accommodating portion 16 a, and the first surface 32 a of the sub-front flap 32 is along the extended surface of the adjacent upper partition 161, and the air along the upper partition 161 Does not obstruct the flow.
  • the sub-front flap 32 In the forward downward airflow mode that does not use the sub-front flap 32, the sub-front flap 32 itself does not become a draft resistance. However, since the sub-front flap 32 cannot prevent the airflow passing through the gap between the upper partition wall 161 and the front flap 31, it cannot be denied that the upper end of the front flap 31 becomes a ventilation resistance.
  • a circulation airflow mode that vigorously sends the blown air forward and an intermediate airflow mode that sends the blown air thickly forward are selected automatically or by the user.
  • FIG. 8 is a partial cross-sectional view of the air conditioning indoor unit 10 in the circulation airflow mode.
  • the front flap 31 takes a horizontal posture or a posture in which the front end is directed horizontally forward.
  • the sub-front flap 32 is accommodated in the accommodating portion 16a.
  • the rear flap 40 has an inclined posture in which the flat surface 40ba of the second surface 40b is along the extension of the tangent at the end of the lower partition 162 of the blower outlet forming wall 16. Since the lower partition 162 is also inclined along the extension of the tangent at the terminal end of the lower scroll 172, the lower scroll 172, the lower partition 162, and the plane 40ba are arranged so as to form one scroll wall. Is guided to the second surface 40b of the rear flap 40 without being interrupted.
  • FIG. 9 is a partial cross-sectional view of the air conditioning indoor unit 10 in the intermediate airflow mode.
  • the front flap 31 takes a posture in which the front end is directed above the horizontal.
  • the sub-front flap 32 is accommodated in the accommodating portion 16a.
  • the rear flap 40 has a posture in which the flat surface 40ba of the second surface 40b is inclined forward and downward.
  • the Coanda effect is a phenomenon in which if there is a wall near the flow of gas or liquid, it will flow in the direction along the wall even if the direction of the flow is different from the direction of the wall (Asakura). Bookstore “Dictionary of the Law”).
  • the sub front flap 32 is inclined with respect to the vertical plane with the lower end positioned in front of the upper end, and the front flap 31 is inclined with respect to the vertical plane with the lower end positioned on the side wall side with respect to the upper end.
  • the air guided to the first surface 32a of the sub-front flap 32 is along the first surface 31a of the front flap 31 larger than that, so that the blown air is not peeled off in the target direction. Can lead.
  • the first surface 32 a of the sub-front flap 32 and the first surface 31 a of the front flap 31 form a large obtuse angle, so the first surface of the front flap 31 from the first surface 32 a of the sub-front flap 32.
  • the flow of the blown air to 31a becomes smooth.
  • FIG. 10 is an enlarged cross-sectional view of the front flap 31, the sub front flap 32, and the rear flap 40 of the air conditioning indoor unit 10 according to the first modification.
  • a recess 321 whose size decreases in the thickness direction from the second surface 32 b side of the sub-front flap 32 is formed.
  • the wind direction mode is the backward downward airflow mode
  • the front flap 31 and the sub front flap 32 are superposed.
  • the upper end corner portion of the first surface 31a of the front flap 31 is the sub top portion. Since it fits in the hollow part 321 of the front flap 32, the level
  • FIG. 11 is an enlarged cross-sectional view of the front flap 31, the sub-front flap 32, and the rear flap 40 of the air conditioning indoor unit 10 according to the second modification.
  • the position of the sub-front flap 32 has moved forward as compared to that shown in FIGS. Along with this, the position and shape of the accommodating portion 16a are also changed.
  • the sub-front flap 32 rotates counterclockwise as viewed from the front in FIG. 11 around the rotation axis set on the rear end side, so that the lower end portion of the sub-front flap 32 is the second surface 31b of the front flap 31. Overlapping from the side.
  • the blown air is generated by the first surface 32a of the sub front flap 32.
  • the first surface 31a of the front flap 31 deflects backward and downward.
  • the blown air flows through the air passage space sandwiched between the airflow guide surface 30a and the second surface 40b of the rear flap 40 and becomes a rearward downward airflow.
  • the sub-front flap 32 is housed in the recessed housing portion 16 a provided in the upper partition wall 161 of the air outlet forming wall 16 and is rotated.
  • the structure protruded into the flow path.
  • the present invention is not limited to this, and may be configured to protrude into the flow path by linear movement.
  • FIG. 12 is an enlarged cross-sectional view of the front flap 31, the sub front flap 32, and the rear flap 40 of the air conditioning indoor unit 10 according to the third modification.
  • the upper partition wall 161 is formed with a housing portion 16 a that is a space that penetrates the sub-front flap 32 and is housed in the back.
  • the sub-front flap 32 When the sub-front flap 32 is not used, the sub-front flap 32 enters the accommodating portion 16a to the extent that its front end is hidden by the upper partition wall 161. When the sub front flap 32 is in the forward downward airflow mode, it projects into the flow path by linear movement.
  • FIG. 13 is a cross-sectional view of the vicinity of the rear flap 40 showing the positional relationship between the rear flap 40 and the outlet 15.
  • the upper end of the rear flap 40 forms an arc having a radius D ⁇ b> 2, and the arc center and the rotation center of the rear flap 40 substantially coincide with each other.
  • the rear flap 40 moves its lower end (front end when in a horizontal posture) from the horizontal front to the rear downward by rotating. At the time of rotation, the circular arc surface at the upper end of the rear flap 40 maintains a constant gap D1 with the rear rib 15b protruding vertically downward from the rear end position of the blowout port 15.
  • the gap D1 is set to 5 mm or less.
  • the blown air that passes through the upper end of the rear flap 40 flows to the second surface 40b side from the upper end without passing through the gap D1 because the ventilation resistance is too large compared to other ventilation paths even if it tries to flow through the gap D1.
  • the gap D1 is set to a certain value or less, the blown air does not flow to the first surface 40a side through the gap D1. Therefore, in the present embodiment, the first surface 40a of the rear flap 40 can be handled as part of the design of the main body casing 11 without being involved in wind direction control.
  • Air-conditioning indoor unit 15 Air outlet 31 Front flap (first wind direction adjusting member) 31a 1st surface (air flow surface) 32 Sub-front flap (second wind direction adjustment member) 32a 1st surface (air flow surface) 311 Recessed part 321 Recessed part

Abstract

本発明の課題は、吹出空気の下吹きを効率良く実現し、さらには吹出空気が2つの風向調整部材の隙間へバイパスすることを防止することができる空調室内機を提供することにある。空調室内機(10)では、サブ前フラップ(32)が下端を上端よりも前側に位置させて垂直面に対して傾斜し、前フラップ(31)が下端を上端よりも側壁側に位置させて垂直面に対して傾斜することによって、吹出空気を水平よりも90°以上下向き(垂直面よりも空調機の設置側壁側)へ偏向することができ、側壁の下部に向かう[無感気流]を実現することができる。

Description

空調室内機
 本発明は、空調室内機に関する。
 従来、上下に配置された2つの風向調整部材によって吹出空気の下吹きを実現する空気調和機が広く普及している。例えば、特許文献1(特開平9-196453号公報)に開示されている空気調和機では、上下フラップの下向き設定時に上下メインフラップ上端部と吹出グリルの上面部との隙間を塞ぐために、その隙間部に上下メインフラップに連動して回動する上下サブフラップが設けられている。
 しかしながら、下吹きの上下メインフラップと上下サブフラップとの間に隙間が存在するので、吹出空気がその隙間にバイパスし、適切な気流制御が行われない上に、バイパスした空気によるショートサーキットが発生する虞がある。
 本発明の課題は、吹出空気の下吹きを効率良く実現し、さらには吹出空気が2つの風向調整部材の隙間へバイパスすることを防止することができる空調室内機を提供することにある。
 本発明の第1観点に係る空調室内機は、空調対象空間の側壁に設置され、吹出口から吹き出される吹出空気の風向を複数の風向調整部材によって変更する、壁掛け式の空調室内機であって、第1風向調整部材と、第2風向調整部材とを備えている。第1風向調整部材は、吹出空気の風向を調整する。第2風向調整部材は、第1風向調整部材よりも吹出空気の流れの上流側に位置する。第1風向調整部材及び第2風向調整部材それぞれは、吹出空気が沿う気流面を有している。側壁の下部に向かう気流を生成する所定下吹きモードのとき、第1風向調整部材及び第2風向調整部材は、所定姿勢をとる。所定姿勢とは、2つの気流面によって前側に膨出する凸形状の気流ガイド面を形成する姿勢である。その所定姿勢において、第1風向調整部材は、自己の下端を上端よりも側壁側に位置させて垂直面に対して傾斜する。
 この空調室内機では、第1風向調整部材が下端を上端よりも側壁側に位置させて垂直面に対して傾斜することによって、吹出空気を水平よりも90°以上下向き(垂直面よりも空調機の設置側壁側)へ偏向することができ、側壁の下部に向かう[無感気流]を実現することができる。
 本発明の第2観点に係る空調室内機は、第1観点に係る空調室内機であって、第1風向調整部材の気流面が、第2風向調整部材の気流面よりも大きい。
 この空調室内機では、第2風向調整部材の気流面に案内された空気がそれよりも大きい第1風向調整部材の気流面に沿うので、気流面は吹出空気を途中で剥離させることなく狙いの方向に導くことができる。
 本発明の第3観点に係る空調室内機は、第1観点又は第2観点に係る空調室内機であって、第1風向調整部材と第2風向調整部材とが重なる。
 この空調室内機では、第1風向調整部材と第2風向調整部材とが重なることにより、吹出空気の両部材の隙間へのバイパスが防止される。
 本発明の第4観点に係る空調室内機は、第3観点に係る空調室内機であって、第2風向調整部材の下部が、吹出空気の流れの上流側から第1風向調整部材に重なる。
 この空調室内機では、少なくとも第2風向調整部材の先端が第1風向調整部材の背面側(側壁側)に重なる姿勢となり、第2風向調整部材の気流面に案内された空気が第1風向調整部材の気流面に沿うので、両部材の隙間へのバイパスが確実に防止される。
 本発明の第5観点に係る空調室内機は、第3観点に係る空調室内機であって、第1風向調整部材と第2風向調整部材との重なり部分における両者のいずれか一方に、他方が入り込む窪み部が設けられている。
 この空調室内機では、第2風向調整部材の下部が吹出空気の流れの上流側から第1風向調整部材に重なったときの、両者の段差が小さくなるので、吹出空気が気流面を流れる際の抵抗が低減される。
 本発明の第6観点に係る空調室内機は、第1観点に係る空調室内機であって、所定姿勢において、第2風向調整部材は自己の下端を上端よりも前側に位置させて垂直面に対して0°~10°傾斜し、第1風向調整部材は自己の下端を上端よりも側壁側に位置させて垂直面に対して0°~20°傾斜する。
 この空調室内機では、第2風向調整部材の気流面と第1風向調整部材の気流面とが大きな鈍角を形成するので、第2風向調整部材の気流面から第1風向調整部材の気流面への吹出空気の流れが滑らかになる。
 本発明の第1観点に係る空調室内機では、第1風向調整部材が下端を上端よりも側壁側に位置させて垂直面に対して傾斜することによって、吹出空気を水平よりも90°以上下向き(垂直面よりも空調機の設置側壁側)へ偏向することができ、側壁の下部に向かう[無感気流]を実現することができる。
 本発明の第2観点に係る空調室内機では、第2風向調整部材の気流面に案内された空気がそれよりも大きい第1風向調整部材の気流面に沿うので、気流面は吹出空気を途中で剥離させることなく狙いの方向に導くことができる。
 本発明の第3観点に係る空調室内機では、第1風向調整部材と第2風向調整部材とが重なることにより、吹出空気の両部材の隙間へのバイパスが防止される。
 本発明の第4観点に係る空調室内機では、少なくとも第2風向調整部材の先端が第1風向調整部材の背面側(側壁側)に重なる姿勢となり、第2風向調整部材の気流面に案内された空気が第1風向調整部材の気流面に沿うので、両部材の隙間へのバイパスが確実に防止される。
 本発明の第5観点に係る空調室内機では、第2風向調整部材の下部が吹出空気の流れの上流側から第1風向調整部材に重なったときの、両者の段差が小さくなるので、吹出空気が気流面を流れる際の抵抗が低減される。
 本発明の第6観点に係る空調室内機では、第2風向調整部材の気流面と第1風向調整部材の気流面とが大きな鈍角を形成するので、第2風向調整部材の気流面から第1風向調整部材の気流面への吹出空気の流れが滑らかになる。
本発明の一実施形態に係る運転時の空調室内機の斜視図。 図1における空調室内機の断面図。 図2における前フラップ及び後フラップの拡大断面図。 運転停止時の空調室内機の断面図。 サブ前フラップを利用する前方下向き気流モード時の空調室内機の断面図。 図5における前フラップ、サブ前フラップ及び後フラップの拡大断面図。 サブ前フラップを利用しない前方下向き気流モード時の空調室内機の部分断面図。 サーキュレーション気流モード時の空調室内機の部分断面図。 中間気流モード時の空調室内機の部分断面図。 第1変形例に係る空調室内機の前フラップ、サブ前フラップ及び後フラップの拡大断面図。 第2変形例に係る空調室内機の前フラップ、サブ前フラップ及び後フラップの拡大断面図。 第3変形例に係る空調室内機の前フラップ、サブ前フラップ及び後フラップの拡大断面図。 後フラップと吹出口との位置関係を示す当該後フラップ近傍の断面図。
 以下、図面を参照しながら、本発明の実施形態について説明する。なお、以下の実施形態は、本発明の具体例であって、本発明の技術的範囲を限定するものではない。
 (1)空調室内機10の構成
 図1は、本発明の一実施形態に係る運転時の空調室内機10の斜視図である。また、図2は、図1における空調室内機10の断面図である。図1及び図2において、空調室内機10は壁掛けタイプである。なお、図1及び図2ともに風向モードは、吹出空気を空調室内機10が設置される側壁の下部へ向ける後方下向き気流モードに設定されている。
 空調室内機10には、本体ケーシング11、室内熱交換器13、室内ファン14、フレーム17、及び制御部50が搭載されている。
 本体ケーシング11は、天面部11a、前面パネル11b、背面板11c、傾斜下面部11d及び水平下面部11eを有し、内部に室内熱交換器13、室内ファン14、フレーム17、及び制御部50を収納している。
 天面部11aは、本体ケーシング11の上部に位置し、天面部11aの前部から後部にかけて吸込口(図示せず)が設けられている。
 前面パネル11bは室内機の前面部を構成しており、吸込口がないフラットな形状或いは曲率の大きい湾曲形状を成している。また、前面パネル11bは、その上端が天面部11aに回動自在に支持され、ヒンジ式に動作することができる。
 室内熱交換器13及び室内ファン14は、フレーム17に取り付けられている。室内熱交換器13は、通過する空気との間で熱交換を行う。また、室内熱交換器13は、側面視において両端が下方に向いて屈曲する逆V字状の形状を成し、その下方に室内ファン14が位置する。室内ファン14は、クロスフローファンであり、室内から取り込んだ空気を、室内熱交換器13に当てて通過させた後、室内に吹き出す。
 本体ケーシング11の下部には、吹出口15が設けられている。吹出口15には、吹出口15から吹き出される吹出空気の方向を変更する後フラップ40が回動自在に取り付けられている。後フラップ40は、モータ(図示せず)によって駆動し、吹出空気の方向を変更するだけでなく、吹出口15を開閉することもできる。後フラップ40は、傾斜角が異なる複数の姿勢をとることが可能である。
 また、吹出口15の近傍には前フラップ31が設けられている。前フラップ31は、モータ(図示せず)によって前後方向に傾斜した姿勢をとることが可能であり、運転停止時には前面パネル11bの下端と吹出口15との間の傾斜下面部11dに設けられた収容部130に収容される。前フラップ31は、傾斜角が異なる複数の姿勢をとることが可能である。
 前フラップ31よりも吹出空気の流れの上流側には、サブ前フラップ32が回動可能に配置されている。本実施形態では、前フラップ31、サブ前フラップ32及び後フラップ40が後方下向き気流を生成する。なお、前フラップ31とサブ前フラップ32を総称して前フラップ群30とよぶ。
 また、吹出口15は、吹出流路18によって本体ケーシング11の内部と繋がっている。吹出流路18は、フレーム17の上スクロール171及び下スクロール172に挟まれた風路である。
 室内空気は、室内ファン14の稼動によって吸込口、室内熱交換器13を経て室内ファン14に吸い込まれ、室内ファン14から吹出流路18を経て吹出口15から吹き出される。
 制御部50は、前ドレンパン61と吹出口形成壁16の上隔壁161との間に設けられた空間に配置されている。制御部50は、室内ファン14の回転数制御、後フラップ40及び前フラップ群30の動作制御を行う。
 前ドレンパン61は、室内熱交換器13の前方下部の下方に位置し、室内熱交換器13の前部で発生する結露水を受ける。
 (2)詳細構成
 以下の説明において、各部材の「前端、後端」という表現については、当該部材が鉛直姿勢或いは鉛直姿勢に近づく姿勢をとった場合には、便宜上、「下端、上端」に言い換えて表現する。
 (2-1)本体ケーシング11
 図1に示すように、本体ケーシング11は、後方から前方に向かって緩やかに下方傾斜する天面部11aを有している。天面部11aには吸込口(図示せず)が設けられている。
 本体ケーシング11の前面部は、前面パネル11bによって構成されている。前面パネル11bは本体ケーシング11の前方上部からなだらかな円弧曲面を描きながら前方下部に至る。
 本体ケーシング11の下部前側は、前面パネル11bの下端と吹出口15の上端とを繋ぐ傾斜下面部11dで構成されている。傾斜下面部11dは、本体ケーシング11の内側に向かって窪む領域が形成されている。この領域の窪み深さは前フラップ31の厚み寸法に合うように設定されており、前フラップ31が収容される収容部130を成している。収容部130の表面もなだらかな円弧曲面である。
 本体ケーシング11の下部後側は、吹出口15の後端側から背面下部に延びる水平下面部11eで構成されている。
 (2-2)吹出口15
 図2に示すように、吹出口15は、本体ケーシング11の下部に形成されており、横方向(図2紙面と直交する方向)を長辺とする長方形の開口である。吹出口15は、吹出口形成壁16によって輪郭が形成されている。
 吹出口形成壁16は、吹出口15の上面を形成する上隔壁161と、吹出口15の下面を形成する下隔壁162を含んでいる。上隔壁161には、吹出口15の前端位置から鉛直下方に突出する前リブ15aが設けられている。
 前リブ15aを挟んで上隔壁161と反対側(前リブ15aの前方)に収容部隔壁131が配置されている。収容部隔壁131は、収容部130の上面を形成する壁である。上隔壁161と前リブ15aと収容部隔壁131とは一体に成形されている。
 また、下隔壁162には、吹出口15の後端位置から鉛直下方に突出する後リブ15bが設けられている。下隔壁162と後リブ15bとは一体に成形されている。
 (2-3)フレーム17
 フレーム17は、室内ファン14に対峙するように湾曲した隔壁である。フレーム17は、上スクロール171と下スクロール172とを含んでいる。上スクロール171の終端の接線方向に、吹出口形成壁16の上隔壁161が隣接している。また、下スクロール172の終端の接線方向に、吹出口形成壁16の下隔壁162が隣接している。
 吹出流路18を通る空気は、上スクロール171及び下スクロール172に沿って進み、それらの終端の接線方向に送られた後、吹出口形成壁16の上隔壁161と下隔壁162に沿って進み、吹出口15から吹き出される。
 (2-4)垂直風向調整板20
 垂直風向調整板20は、吹出口15の長手方向(図2の紙面に垂直な方向)に沿って配置された複数の羽根片201を有している。垂直風向調整板20は、吹出流路18において、後フラップ40よりも室内ファン14に近い位置に配置されている。複数枚の羽根片201は、吹出口15の長手方向に沿って水平往復移動することによって、その長手方向に対して垂直な状態を中心に左右に揺動する。
 (2-5)前フラップ31
 図3は、図2における前フラップ31及び後フラップ40の拡大断面図である。また、図4は、運転停止時の空調室内機の断面図である。図3及び図4において、前フラップ31は、空調運転が停止している間は収容部130に収容されている。
 前フラップ31は回動することによって収容部130から離れる。前フラップ31の回動軸は、吹出口形成壁16の上隔壁161の前リブ15aの下方に設定されており、前フラップ31の後端と回動軸とは所定の間隔を保って連結されている。それゆえ、前フラップ31が回動して収容部130から離れるほど、前フラップ31の後端の高さ位置は低くなるように回転する。
 前フラップ31は、図4正面視反時計方向に回動することによって、前フラップ31の前端および後端ともに円弧を描きながら収容部130から離れる。また、前フラップ31は、図2正面視時計方向に回動することによって、前フラップ31は収容部130に近づき、最終的に収容部130に収容される。
 前フラップ31の運転状態の姿勢としては、収容部130に収容された姿勢(図4参照)、回転して前方上向きに傾斜した姿勢、さらに回転してほぼ水平な姿勢、さらに回転して前方下向きに傾斜した姿勢、さらに回転して後方下向きに傾斜した姿勢(図2,3参照)がある。
 前フラップ31は、収容部130に収容された姿勢のときに外側の面を成す第1面31aと、内側の面を成す第2面31bとを有している。第1面31a及び第2面31bは、前フラップ31が図3の後方下向きに傾斜した姿勢をとったときには、それぞれ後面及び前面を成す。
 第1面31aには、図3に示すように前フラップ31の厚み方向に寸法が小さくなる窪み部311が設けられている。窪み部311は、前フラップ31の中央から視て回動軸寄りに位置している。
 また、前フラップ31の長手方向(図2の紙面に垂直な方向)の寸法は、後フラップ40の長手方向の寸法と同じ又はそれ以上となるように設定されている。その理由は、例えば風向が上向きの場合に、後フラップ40で風向調節された吹出空気すべてを前フラップ31で受けるためであり、その作用・効果は前フラップ31の側方からの吹出空気がショートサーキットすることを防止することである。
 (2-6)サブ前フラップ32
 サブ前フラップ32は、前フラップ31よりも吹出空気の流れの上流側に位置する板状の部材である。サブ前フラップ32は、前フラップ31よりも小さいが、サブ前フラップ32は、吹出流路18を通った空気を前フラップ31の第1面31aへ導くに十分な大きさに設定されている。
 サブ前フラップ32は、使用されないときには吹出口形成壁16の上隔壁161に設けられた収容部16aに収容されている。サブ前フラップ32は、収容部16aに収容された姿勢のときに下側の面を成す第1面32aと、上側の面を成す第2面32bとを有している。第1面32a及び第2面32bは、サブ前フラップ32が図3の姿勢をとったときには、それぞれ後面及び前面を成す。
 収容部16aは、吹出口形成壁16の上隔壁161を厚み方向に窪ませることによって形成される。収容部16aの深さは、サブ前フラップ32を収容した際にサブ前フラップ32の第1面32aが上隔壁161の面よりも流路側へ突出しないように設定されている。
 また、サブ前フラップ32は、使用されるとき、回動によって収容部16aから移動して上隔壁161の面よりも流路側へ突出する。サブ前フラップ32の回動軸は、収容部16aの上流側端部の下方に設定されている。
 例えば、図3に示すように前フラップ31が後方下向きに傾斜した姿勢をとったときには、サブ前フラップ32は自己の先端が前フラップ31の窪み部311に入り込むように回動する。このとき、サブ前フラップ32全体が収容部16aから離れると上隔壁161とサブ前フラップ32との隙間から吹出空気がバイパスするので、それを防止するためにサブ前フラップ32の後端が収容部16aに残り、上隔壁161とサブ前フラップ32との隙間の拡大を抑制している。
 この後、サブ前フラップ32の第1面32aと前フラップ31の第1面31aとが気流ガイド面30aを成し、後フラップ40と共に側壁の下部に向かう気流を生成する。
 (2-7)後フラップ40
 後フラップ40は、図4に示すように吹出口15を塞ぐことができる程度の面積を有している。後フラップ40は、吹出口15を閉じた姿勢のときに外側の面を成す第1面40aと、内側の面を成す第2面40bとを有している。第1面32a及び第2面32bは、後フラップ40が図3の後方下向きに傾斜した姿勢をとったときには、それぞれ後面及び前面を成す。
 第1面40aは、意匠性を重視して外側に凸のなだらかな円弧曲面に仕上げられている。これに対し、第2面40bは、平面40baと湾曲面40bbとを含んでおり、図3に示すように、後フラップ40の上端から下端に向かって平面40ba及び湾曲面40bbの順に配置されている。また、図3において湾曲面40bbは、半径200mm以上の前側に膨らむ湾曲面である。
 後フラップ40の回動軸は、吹出口形成壁16の下隔壁162の後リブ15bに隣接する位置に設定されている。後フラップ40が、回動軸回りに図4正面視反時計方向に回動することによって、後フラップ40が吹出口15の前端から遠ざかるように動作して吹出口15を開ける。逆に、後フラップ40が、回動軸回りに図2正面視時計方向に回動することによって、後フラップ40が吹出口15の前端へ近づくように動作して吹出口15を閉じる。
 後フラップ40が吹出口15を開けている状態において、吹出口15から吹き出された吹出空気は、後フラップ40の第2面40bに概ね沿って流れる。
 (3)吹出空気の方向制御
 本実施形態の空調室内機は、吹出空気の方向を制御する手段として、風向モードごとに前フラップ31、サブ前フラップ32及び後フラップ40の姿勢を変えて吹出空気の方向を調整している。以下、各風向モードについて図面を参照しながら説明する。なお、各風向モードは、自動的に変更されるように制御されることも、ユーザーによってリモコン等を介して選択されることもできる。
 (3-1)後方下向き気流モード
 後方下向き気流モードは、吹出空気を空調室内機10が設置されている側壁の下部に向けるモードである。後方下向き気流モードでは、吹出空気は、側壁の下部から床面に至り、床面に沿いながら対向する側壁に向かって流れる。この気流は、居住者に直に当たらず空気の流れを感じさせ難いことから「無感気流」ともいう。
 後方下向き気流モードでは、前フラップ31、サブ前フラップ32及び後フラップ40は図1~図3に示した姿勢をとる。図3で言えば、サブ前フラップ32は自己の下端を上端より前側に位置させて垂直面に対して角度α(0~10°)だけ傾斜させる。
 また、前フラップ31は自己の下端を上端よりも側壁側に位置させて垂直面に対して角度β(0~20°)だけ傾斜する。これによって、サブ前フラップ32の第1面32aと前フラップ31の第1面31aとが前側に膨出する凸形状の気流ガイド面30aを形成する。
 このときの前フラップ31の下端は、[吹出口15の後端位置から鉛直下方に突出する後リブ15b]の先端の高さ位置よりも下方に位置する。後リブ15bの先端は、吹出口15の最下端である。
 一方、後フラップ40は自己の下端を上端よりも側壁側に位置させて第2面40bを垂直面に対して傾斜させる。具体的には図3に示すように、後リブ15bの先端に後フラップ40の第1面40aが接触、若しくは近接するまで後フラップ40が傾斜する。
 本実施形態では、後フラップ40と後リブ15bとの隙間が一定値(5mm)以下になっているので、その隙間を空気が流れるときの通風抵抗が増大しており、吹出空気はその隙間を避けてもっと広い通路である気流ガイド面30aと第2面40bとで挟まれた風路空間に流れる。
 したがって、吹出空気は、気流ガイド面30aと第2面40bとで挟まれた風路空間を通過する。その際、サブ前フラップ32に案内された吹出空気がそれよりも大きい前フラップ31に沿う。前フラップ31は自己の下端を上端よりも側壁側に位置させ垂直面に対して傾斜しているので、吹出空気を水平よりも90°以上下向きの側壁下部へ導くことができる。
 また、気流ガイド面30aと第2面40bとで挟まれた風路空間を通過する吹出空気は、後リブ15bの先端(吹出口15の最下端)の高さ位置より下方に到達するまで、前方への拡散を前フラップ31に阻止された状態で当該風路空間に沿って進む。吹出空気は、当該風路空間を離れる際には後フラップ40の第2面40bに沿った気流となっているので、側壁の下部に向かう気流が十分に生成される。
 さらに、吹出空気は後フラップ40の第2面40bの平面40ba及び湾曲面40bbの順に沿って流れる。湾曲面40bbは、コアンダ効果を発揮し易いように半径200mm以上に設定されているので、吹出空気は平面40baに沿った下向き気流になった後にコアンダ効果によって湾曲面40bbに引き寄せられて側壁の下部に向かう気流となる。
 以上にように、前フラップ31及びサブ前フラップ32による前フラップ群30と後フラップ40とが相互に作用することによって、側壁の下部に向かう後方下向き気流(無感気流)が容易に生成される。
 (3-2)前方下向き気流モード
 前方下向き気流モードでは、サブ前フラップ32を利用するモードと利用しないモードのいずれかが自動的に又はユーザーにより選択される。
 (3-2-1)サブ前フラップ32を利用するモード
 図5は、サブ前フラップ32を利用する前方下向き気流モード時の空調室内機10の断面図である。また図6は、図5における前フラップ31、サブ前フラップ32及び後フラップ40の拡大断面図である。
 図5及び図6において、先ず、前フラップ31が回動して、前フラップ31の第1面31aが水平よりも所定角度x1だけ下向きに傾斜する姿勢をとる。なお、第1面31aが円弧面のため角度の基準がとり難い場合には、図6に示すよう、第1面31aの両端を結ぶ線を角度の基準としてもよい。
 また、サブ前フラップ32も回動して、サブ前フラップ32の第1面32aが水平よりも所定角度y1だけ下向きに傾斜する姿勢をとる。このとき、サブ前フラップ32全体が収容部16aから離れると上隔壁161とサブ前フラップ32との隙間から吹出空気がバイパスするので、それを防止するためにサブ前フラップ32の後端が収容部16aに残り、上隔壁161とサブ前フラップ32との隙間の拡大を抑制している。
 さらに、後フラップ40も回動して、後フラップ40の第2面40bの平面40baが水平よりも所定角度z1だけ下向きに傾斜する姿勢をとる。
 図6に示すように、前フラップ31及びサブ前フラップ32を水平方向前方から視たとき、サブ前フラップ32の前端部は、前フラップ31よりも吹出空気の流れの上流側で且つ前フラップ31の後端面より鉛直下方で、前フラップ31の後端部と寸法Lだけ重なっている。
 前フラップ31、サブ前フラップ32及び両者の隙間の位置関係は、吹出空気の流れの上流側から視て、サブ前フラップ32、当該隙間、前フラップ31の順で並ぶ関係となり、当該隙間がその上流側のサブ前フラップ32によって隠れるので、吹出流路18を通過してサブ前フラップ32の第1面32aに案内された空気は、勢い、当該隙間に回らずに前フラップ31の第1面31aに流れる。その結果、当該隙間があったとしても空調空気がその隙間へバイパスすることは防止される。
 上記のように、サブ前フラップ32を利用する前方下向き気流モードでは、サブ前フラップ32が上隔壁161と前フラップ31との隙間を通る気流を阻む姿勢を採り、前フラップ31の上端を境に吹出空気が前フラップ31の両面に沿って流れることを防止するので、前フラップ31の上端が通風抵抗にならない。その結果、室内ファン14の消費電力上昇、省エネ性能の低下が防止される。
 また、サブ前フラップ32を利用する前方下向き気流モードは、特に冷房運転における前方下向きの吹出空気を発生させる際に有用である。なぜなら、冷却された空気が前フラップ31の第2面31b側へ流れないので、結露防止という効果を奏するからである。
 本実施形態では、冷房運転において、上向きの気流を発生させる場合を除き、サブ前フラップ32を使用している。
 (3-2-2)サブ前フラップ32を利用しないモード
 図7は、サブ前フラップ32を利用しない前方下向き気流モード時の空調室内機10の断面図である。図7において、サブ前フラップ32は収容部16aに収容されており、サブ前フラップ32の第1面32aは、隣接する上隔壁161の延長面上に沿っており、上隔壁161に沿った空気の流れを妨げない。
 サブ前フラップ32を利用しない前方下向き気流モードでは、サブ前フラップ32自身は通風抵抗にならない。しかし、サブ前フラップ32が上隔壁161と前フラップ31との隙間を通る気流を阻止できないので、前フラップ31の上端が通風抵抗になることは否めない。
 (3-3)前方気流モード
 前方気流モードでは、吹出空気を前方へ勢い良く送り出すサーキュレーション気流モードと、吹出空気を厚く前方へ送り出す中間気流モードが自動的に又はユーザーにより選択される。
 (3-3-1)サーキュレーション気流モード
 図8は、サーキュレーション気流モード時の空調室内機10の部分断面図である。図8において、前フラップ31は水平姿勢、或いは前端を水平前方に向ける姿勢をとっている。サブ前フラップ32は、収容部16aに収容されている。後フラップ40は、第2面40bの平面40baが吹出口形成壁16の下隔壁162の終端の接線の延長上に沿う傾斜姿勢をとっている。下隔壁162も下スクロール172の終端の接線の延長上に沿うように傾斜しているので、あたかも下スクロール172、下隔壁162及び平面40baが1つのスクロール壁を形成しているように並び、空気の流れは妨げられることなく後フラップ40の第2面40b上に導かれる。
 サーキュレーション気流モードでは、前フラップ31の第1面31aと後フラップ40の第2面40bとの間隔が狭いので、吹出空気は絞られて流速が増し、勢い良く前方に送りだされ、空調対象空間の空気を攪拌する。その結果、空調対象空間の空気のよどみを解消することができる。
 (3-3-2)中間気流モード
 図9は、中間気流モード時の空調室内機10の部分断面図である。図9において、前フラップ31は前端を水平よりも上に向ける姿勢をとっている。サブ前フラップ32は、収容部16aに収容されている。後フラップ40は、第2面40bの平面40baが前方下向きに傾斜する姿勢をとっている。
 一見、吹出空気は後フラップ40の平面40baに沿って前方下向きに流れるようにも思えるが、吹出口15を出た吹出空気はコアンダ効果によって前フラップ31の第1面31aに引き寄せられて水平及び水平よりもやや上向きの気流となって送り出される。
 ここで、コアンダ効果とは、気体や液体の流れのそばに壁があると、流れの方向と壁の方向とが異なっていても、壁面に沿った方向に流れようとする現象である(朝倉書店「法則の辞典」)。
 図9において、前フラップ31の第1面31aにコアンダ効果を生じさせるには、前フラップ31と後フラップ40とが所定の開き角度以下になる必要がある。両者の位置関係については、出願人によって平成23年9月30日に出願された特許文献(特開2013-76530)に開示されているので、ここでは説明を省略する。
 (4)特徴
 (4-1)
 空調室内機10では、サブ前フラップ32が下端を上端よりも前側に位置させて垂直面に対して傾斜し、前フラップ31が下端を上端よりも側壁側に位置させて垂直面に対して傾斜することによって、吹出空気を水平よりも90°以上下向き(垂直面よりも空調機の設置側壁側)へ偏向することができ、側壁の下部に向かう[無感気流]を実現することができる。
 (4-2)
 空調室内機10では、サブ前フラップ32の第1面32aに案内された空気がそれよりも大きい前フラップ31の第1面31aに沿うので、吹出空気を途中で剥離させることなく狙いの方向に導くことができる。
 (4-3)
 空調室内機10では、前フラップ31とサブ前フラップ32とが重なることにより、吹出空気の両部材の隙間へのバイパスが防止される。
 (4-4)
 空調室内機10では、少なくともサブ前フラップ32の先端が前フラップ31の背面側(側壁側)に重なる姿勢となり、サブ前フラップ32の第1面32aに案内された空気が前フラップ31の第1面31aに沿うので、両部材の隙間へのバイパスが確実に防止される。
 (4-5)
 空調室内機10では、サブ前フラップ32の下部が吹出空気の流れの上流側から前フラップ31に重なったときの、両者の段差が小さくなるので、吹出空気が気流ガイド面30aを流れる際の抵抗が低減される。
 (4-6)
 空調室内機10では、サブ前フラップ32の第1面32aと前フラップ31の第1面31aとが大きな鈍角を形成するので、サブ前フラップ32の第1面32aから前フラップ31の第1面31aへの吹出空気の流れが滑らかになる。
 (5)変形例
 (5-1)第1変形例
 上記実施形態では、図3に示すように、前フラップ31の第1面31aに窪み部311を設けて、サブ前フラップ32の下端部分がその窪み部311に入り込む構成とした。しかし、これに限定されるものではなく、サブ前フラップ32側に窪み部を設けてもよい。
 図10は、第1変形例に係る空調室内機10の前フラップ31、サブ前フラップ32及び後フラップ40の拡大断面図である。図10において、サブ前フラップ32の第2面32b側から厚み方向にその寸法が小さくなる窪み部321が形成されている。
 第1変形例では、風向モードが後方下向き気流モードのときに、前フラップ31とサブ前フラップ32とが重なる姿勢となるが、その際、前フラップ31の第1面31aの上端コーナー部がサブ前フラップ32の窪み部321に嵌り込むので、前フラップ31の第1面31aとサブ前フラップ32の第1面32aとの間に生じる段差が小さくなり、気流の乱れを抑制する。
 (5-2)第2変形例
 また、図3に示す実施形態、及び図10に示す第1変形例では、サブ前フラップ32の下端部分が前フラップ31の第1面31a側から重なっている。しかし、これに限定されるものではなく、サブ前フラップ32の下端部分が前フラップ31の第2面31b側から重なってもよい。
 図11は、第2変形例に係る空調室内機10の前フラップ31、サブ前フラップ32及び後フラップ40の拡大断面図である。図11において、サブ前フラップ32は、図3及び図10に記載のものと比較してその位置が前方へ移動している。それに伴い、収容部16aの位置及び形状も変更されている。
 サブ前フラップ32は、後端側に設定された回動軸を中心に図11正面視で反時計方向に回動することによって、サブ前フラップ32の下端部分が前フラップ31の第2面31b側から重なる。
 サブ前フラップ32の重なり部を除く第1面32aと前フラップ31の第1面31aとは前方に凸の気流ガイド面30aを形成するので、吹出空気はサブ前フラップ32の第1面32aで前方下向きに偏向された直後に前フラップ31の第1面31aによって後方下向きに偏向される。
 その結果、吹出空気は、気流ガイド面30aと後フラップ40の第2面40bとで挟まれた風路空間を流れて後方下向き気流になる。
 (5-3)第3変形例
 上記実施形態では、図6に示すように、サブ前フラップ32は吹出口形成壁16の上隔壁161に設けられた凹状の収容部16aに収容され、回動により流路に突出する構成とした。しかし、これに限定されるものではなく直線移動により流路に突出する構成であってもよい。
 図12は、第3変形例に係る空調室内機10の前フラップ31、サブ前フラップ32及び後フラップ40の拡大断面図である。図12において、上隔壁161にはサブ前フラップ32を貫通させて奥に収容する空間である収容部16aが形成されている。
 サブ前フラップ32は、使用されないときは自己の前端が上隔壁161に隠れる程度まで収容部16a内に入り込む。そして、サブ前フラップ32が使用される前方下向き気流モードのときに直線移動により流路内に突出する。
 (6)その他
 図13は、後フラップ40と吹出口15との位置関係を示す当該後フラップ40近傍の断面図である。図13において、後フラップ40の上端は半径D2の円弧を成しており、その円弧中心と後フラップ40の回動中心とが略一致している。
 後フラップ40は、回動によって自己の下端(水平姿勢のときは前端)を水平前方から後方下向きへ移動させる。回動時、後フラップ40の上端の円弧面は、吹出口15の後端位置から鉛直下方に突出する後リブ15bと一定の隙間D1を保っている。本実施形態では、この隙間D1は5mm以下に設定されている。
 後フラップ40の上端を通過する吹出空気は、隙間D1を流れようとしても通風抵抗が他の通風路に比べて大きすぎるので、隙間D1を通過せずに上端から第2面40b側へ流れる。
 上記の通り、隙間D1が一定値以下に設定されているので、吹出空気が隙間D1を通って第1面40a側に流れることはない。そのため、本実施形態では後フラップ40の第1面40aを、風向制御に関与させることなく、本体ケーシング11の意匠の一部として扱うことができる。
10   空調室内機
15   吹出口
31   前フラップ(第1風向調整部材)
31a  第1面(気流面)
32   サブ前フラップ(第2風向調整部材)
32a  第1面(気流面)
311  窪み部
321  窪み部
特開平9-196453号公報

Claims (6)

  1.  空調対象空間の側壁に設置され、吹出口(15)から吹き出される吹出空気の風向を複数の風向調整部材によって変更する、壁掛け式の空調室内機であって、
     前記吹出空気の風向を調整する第1風向調整部材(31)と、
     前記第1風向調整部材(31)よりも前記吹出空気の流れの上流側に位置する第2風向調整部材(32)と、
    を備え、
     前記第1風向調整部材(31)及び前記第2風向調整部材(32)それぞれは、前記吹出空気が沿う気流面(31a,32a)を有しており、
     前記側壁の下部に向かう気流を生成する所定下吹きモードのとき、前記第1風向調整部材(31)及び前記第2風向調整部材(32)は、2つの前記気流面によって前側に膨出する凸形状の気流ガイド面を形成する所定姿勢をとり、
     前記所定姿勢において、
     前記第1風向調整部材(31)は、自己の下端を上端よりも前記側壁側に位置させて垂直面に対して傾斜する、
    空調室内機(10)。
  2.  前記第1風向調整部材(31)の前記気流面(31a)は、前記第2風向調整部材(32)の前記気流面(32a)よりも大きい、
    請求項1に記載の空調室内機(10)。
  3.  前記第1風向調整部材(31)と前記第2風向調整部材(32)とが重なる、
    請求項1又は請求項2に記載の空調室内機(10)。
  4.  前記第2風向調整部材(32)の下部が、前記吹出空気の流れの上流側から前記第1風向調整部材(31)に重なる、
    請求項3に記載の空調室内機(10)。
  5.  前記第1風向調整部材(31)と前記第2風向調整部材(32)との重なり部分における両者のいずれか一方に、他方が入り込む窪み部(311,321)が設けられている、
    請求項3に記載の空調室内機(10)。
  6.  前記所定姿勢において、
     前記第2風向調整部材(32)は、自己の下端を上端よりも前側に位置させて垂直面に対して0°~10°傾斜し、
     前記第1風向調整部材(31)は、自己の下端を上端よりも前記側壁側に位置させて垂直面に対して0°~20°傾斜する、
    請求項1に記載の空調室内機(10)。
PCT/JP2016/076164 2015-09-10 2016-09-06 空調室内機 WO2017043479A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2016320945A AU2016320945B2 (en) 2015-09-10 2016-09-06 Air conditioning indoor unit
CN201680052070.9A CN108027165B (zh) 2015-09-10 2016-09-06 空调室内机
EP16844340.6A EP3348928A4 (en) 2015-09-10 2016-09-06 Air-conditioning indoor unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-178823 2015-09-10
JP2015178823A JP6264347B2 (ja) 2015-09-10 2015-09-10 空調室内機

Publications (1)

Publication Number Publication Date
WO2017043479A1 true WO2017043479A1 (ja) 2017-03-16

Family

ID=58240111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/076164 WO2017043479A1 (ja) 2015-09-10 2016-09-06 空調室内機

Country Status (5)

Country Link
EP (1) EP3348928A4 (ja)
JP (1) JP6264347B2 (ja)
CN (1) CN108027165B (ja)
AU (1) AU2016320945B2 (ja)
WO (1) WO2017043479A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110319559A (zh) * 2019-06-21 2019-10-11 宁波奥克斯电气股份有限公司 一种出风结构及空调器
US10895388B2 (en) * 2016-02-03 2021-01-19 Mitsubishi Electric Corporation Indoor unit air-conditioning apparatus

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019201656A1 (de) 2019-02-08 2020-08-13 MTU Aero Engines AG Verfahren zum glätten einer oberfläche eines bauteils
JP6849032B2 (ja) * 2019-09-17 2021-03-24 ダイキン工業株式会社 空調室内機および空気調和機
EP4001790B1 (en) * 2019-09-17 2024-03-20 Daikin Industries, Ltd. Indoor unit for air conditioner

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5618244A (en) * 1979-07-24 1981-02-20 Matsushita Electric Ind Co Ltd Wind direction control apparatus for air conditioner
JPS59132037U (ja) * 1983-02-24 1984-09-04 ゼネラル・エアコン株式会社 空気調和機の風向調整装置
JPS6250877U (ja) * 1985-09-18 1987-03-30
JPH0861764A (ja) * 1994-08-19 1996-03-08 Sanyo Electric Co Ltd 空気調和機
JP2004053196A (ja) * 2002-07-23 2004-02-19 Mitsubishi Electric Corp 風向制御装置及びそれを用いた空気調和機
JP2005164067A (ja) * 2003-11-28 2005-06-23 Sharp Corp 空気調和機
JP2013053796A (ja) * 2011-09-02 2013-03-21 Panasonic Corp 空気調和機

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62162546U (ja) * 1986-04-07 1987-10-15
JP2001227811A (ja) * 2000-02-14 2001-08-24 Matsushita Electric Ind Co Ltd 空気調和機の風向変更装置
JP4580377B2 (ja) * 2006-11-22 2010-11-10 シャープ株式会社 空気調和機
JP4921135B2 (ja) * 2006-12-04 2012-04-25 シャープ株式会社 空気調和機
CN101839522B (zh) * 2009-03-20 2013-09-04 海尔集团公司 空调及其风向控制方法
CN103776101A (zh) * 2014-01-15 2014-05-07 广东美的制冷设备有限公司 空调器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5618244A (en) * 1979-07-24 1981-02-20 Matsushita Electric Ind Co Ltd Wind direction control apparatus for air conditioner
JPS59132037U (ja) * 1983-02-24 1984-09-04 ゼネラル・エアコン株式会社 空気調和機の風向調整装置
JPS6250877U (ja) * 1985-09-18 1987-03-30
JPH0861764A (ja) * 1994-08-19 1996-03-08 Sanyo Electric Co Ltd 空気調和機
JP2004053196A (ja) * 2002-07-23 2004-02-19 Mitsubishi Electric Corp 風向制御装置及びそれを用いた空気調和機
JP2005164067A (ja) * 2003-11-28 2005-06-23 Sharp Corp 空気調和機
JP2013053796A (ja) * 2011-09-02 2013-03-21 Panasonic Corp 空気調和機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3348928A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10895388B2 (en) * 2016-02-03 2021-01-19 Mitsubishi Electric Corporation Indoor unit air-conditioning apparatus
CN110319559A (zh) * 2019-06-21 2019-10-11 宁波奥克斯电气股份有限公司 一种出风结构及空调器

Also Published As

Publication number Publication date
AU2016320945B2 (en) 2019-05-16
EP3348928A1 (en) 2018-07-18
CN108027165A (zh) 2018-05-11
AU2016320945A1 (en) 2018-04-12
JP6264347B2 (ja) 2018-01-24
JP2017053568A (ja) 2017-03-16
CN108027165B (zh) 2021-05-28
EP3348928A4 (en) 2018-09-12

Similar Documents

Publication Publication Date Title
JP6137254B2 (ja) 空調室内機
WO2017043479A1 (ja) 空調室内機
JP5408228B2 (ja) 空調室内機
JP6702255B2 (ja) 空調室内機
JP5408227B2 (ja) 空調室内機
JP2017125678A5 (ja)
JP5120482B1 (ja) 空調室内機
JP5338895B2 (ja) 空調室内機
JP4945678B1 (ja) 空気調和機
JP5408319B1 (ja) 空調室内機
JP6233369B2 (ja) 空調室内機
JP2014006044A (ja) 空調室内機
JP6233398B2 (ja) 空気調和装置の室内ユニット
WO2012172727A1 (ja) 空気調和機
KR20140004090A (ko) 공기 조화기
JP5741545B2 (ja) 空調室内機
EP3604938B1 (en) Indoor air-conditioning hanging unit and air conditioner having same
JP6094749B2 (ja) 空気調和機
JP2020041730A (ja) 空気調和機
JP2015010732A (ja) 空気調和機
KR20050079660A (ko) 일체형 공기조화기의 스크롤
JP2001065904A (ja) 空気調和機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16844340

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016844340

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016320945

Country of ref document: AU

Date of ref document: 20160906

Kind code of ref document: A