WO2017043276A1 - 損傷情報抽出装置、損傷情報抽出方法および損傷情報抽出プログラム - Google Patents

損傷情報抽出装置、損傷情報抽出方法および損傷情報抽出プログラム Download PDF

Info

Publication number
WO2017043276A1
WO2017043276A1 PCT/JP2016/074008 JP2016074008W WO2017043276A1 WO 2017043276 A1 WO2017043276 A1 WO 2017043276A1 JP 2016074008 W JP2016074008 W JP 2016074008W WO 2017043276 A1 WO2017043276 A1 WO 2017043276A1
Authority
WO
WIPO (PCT)
Prior art keywords
damage
building
soundness
information
inspection
Prior art date
Application number
PCT/JP2016/074008
Other languages
English (en)
French (fr)
Inventor
哲弥 高森
窪田 聡
根来 雅之
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2017539090A priority Critical patent/JP6454422B2/ja
Priority to EP16844139.2A priority patent/EP3348986A4/en
Priority to CN201680052543.5A priority patent/CN108027301B/zh
Publication of WO2017043276A1 publication Critical patent/WO2017043276A1/ja
Priority to US15/905,579 priority patent/US10803426B2/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/20Administration of product repair or maintenance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/08Construction

Definitions

  • the present invention relates to an apparatus, method and program for extracting damage information of a building, and more particularly to an apparatus, method and program for extracting damage information of a building for diagnosing the soundness of the building.
  • the soundness of buildings such as bridges, tunnels, and buildings has been determined from the inspection results of the buildings.
  • the inspection is performed as an observation of a deformation phenomenon such as a crack, and the cause of the deformation is specified based on this information, the surrounding environment, the design information of the building, etc., and the soundness level is determined.
  • Patent Document 1 describes that an infrared image of the surface of a bridge floor slab is taken and a flaw detection position (damage inspection position) is specified from the infrared image.
  • Patent Document 2 describes a choice of damage types that can be input to an investigator using an option table that indicates the correspondence between bridge members and the types of damage that can occur in the members (damage to be inspected). It is described to display. As a result, the damage category related to the combination of work type, member, and material, the evaluation items of the damage level corresponding to the damage category, and the evaluation criteria are presented to the investigator as options, and the guideline for the investigator to evaluate each damage give. It also describes that the administrator sends a photograph after giving advice to the investigator.
  • Patent Document 3 describes a system that estimates the cause of deformation based on deformation information, structure information, and surrounding information of a building, and determines a soundness level. That is, the cracks in the tunnel lining that are caused by external force are automatically picked up from the deformation development map, and this is matched with more than 50 types of crack deformation patterns in advance and corresponds to any crack deformation pattern. Based on the basic information such as the crack deformation pattern and surrounding ground conditions, geological conditions, construction conditions during construction, and structural conditions, what are the external forces acting on the tunnel? Cause). Further, the mechanical soundness level of the tunnel is determined based on the information on the basic information together with the estimated cause of the deformation.
  • Non-Patent Document 1 the contribution rate (weight) to the soundness level of each component is calculated by analyzing the evaluation results of each check item, and the soundness of the element using one or two indicators from many check items Express sex.
  • Patent Document 1 specifies a damage position of a bridge floor slab using an infrared image, but cannot specify a damage position of a partial structure other than the bridge floor slab (such as a main girder, a bridge pier, and a telescopic device).
  • Patent Document 2 since the investigator performs the evaluation itself, the investigator needs specialized knowledge. Moreover, since the investigator has to confirm the evaluation items and the evaluation criteria for each combination of the type of work, the member, and the material, it takes time for the inspection at the site.
  • Patent Document 3 the degree of soundness is determined from information on the deformation and damage of the entire building regardless of the difference in the effect and damage on the strength and soundness of the building due to the location and type of damage. It is carried out. For this reason, in order to determine the soundness of a building, it is necessary to inspect the entire building, which requires a lot of labor. Moreover, in patent document 3, since the influence by the generation
  • the determination of the mechanical soundness depends on the estimation of the cause of the deformation in consideration of the basic information of the tunnel by an engineer having specialized knowledge. Therefore, an engineer must estimate the cause of deformation for each tunnel to be inspected, and there is a difficulty in securing human resources.
  • An object of the present invention is to provide a damage information extraction apparatus, a damage information extraction method, and a damage information extraction program.
  • the damage information extraction device includes a structure information acquisition unit that acquires structure information of a building, and a structure information of the building acquired by the structure information acquisition unit.
  • the inspection data for acquiring the inspection data in which the inspection position of the building is associated with the image data and the inspection position of the building
  • the damage corresponding to the inspection object damage type specified by the inspection specification means from the image data corresponding to the inspection position specified by the inspection specification means Damage information extracting means for extracting information.
  • the inspection position of the building and the type of damage to be inspected are specified based on the structure information of the building, and the inspection target specified by the inspection specifying means is selected from the image data corresponding to the specified inspection position. Since the damage information corresponding to the damage type is extracted, the damage information can be extracted from the important position on the structure of the building.
  • the inspection data it is only necessary to associate the image data with the inspection position of the building as the subject and the inspection position of the building, so there is no need to inspect unspecified members in detail at the inspection site of the building. It is possible to achieve both speed and accuracy of inspection.
  • the structure information acquisition means acquires the structure information of the building from the image data with the building as a subject. By doing so, it is possible to easily inspect even a building that does not remain, such as a design book.
  • the damage information includes the position of damage and the degree of damage corresponding to the type of damage to be inspected.
  • the damage information extraction apparatus is the health information in which the structure information of one or more buildings other than the building, the position of damage, the degree of damage, and the soundness are associated with each other. And the structural information of the above-mentioned building, the structural information of other buildings similar to the damage location and the degree of damage, the soundness corresponding to the position of damage and the degree of damage are retrieved and searched. And a soundness determination means for determining the soundness of the building based on the soundness of another building.
  • the damage information extraction apparatus further includes a soundness output means for outputting the soundness of the building determined by the soundness determination means.
  • a soundness confirmation input means for receiving a confirmation input relating to the suitability of the soundness of the building output by the soundness output means, and the soundness confirmation input means receive the input.
  • the soundness of the building determined by the soundness determination means is associated with the structure information of the building, the position of damage, and the degree of damage in the storage means. Either memorize or modify the soundness of the building determined by the soundness determination means, and associate the corrected soundness of the building with the structural information of the building, the position of damage, and the degree of damage.
  • Storage control means for storing in the storage means.
  • the damage information extraction apparatus includes use environment information acquisition means for acquiring use environment information of a building, and the inspection specifying means includes the structure information of the building acquired by the structure information acquisition means and Based on the use environment information of the building acquired by the use environment information acquisition means, the inspection position of the building and the type of damage to be inspected are specified.
  • the damage information extraction device associates structure information, damage position, damage level, use environment information, and soundness level of one or more buildings other than the above-mentioned building.
  • Storage means for storing health information and structural information of the building, location of damage, degree of damage, and structural information of other structures similar to usage environment information, location of damage, degree of damage and use It further comprises soundness determination means for searching for the soundness level corresponding to the environmental information and determining the soundness level of the building based on the soundness levels of the other buildings found.
  • the damage information extraction apparatus further includes a soundness output means for outputting the soundness of the building determined by the soundness determination means.
  • the soundness confirmation input means for receiving a confirmation input regarding the suitability of the soundness of the building output by the soundness output means, and the soundness confirmation input means receive the input.
  • Corresponding building soundness determined by soundness determination means with structural information on the building, location of damage, degree of damage, and usage environment information To store in the storage means, or correct the soundness of the building determined by the soundness determination means, and change the soundness of the corrected building to the structural information of the building, the position of damage, the degree of damage,
  • storage control means for storing in the storage means in association with the use environment information.
  • the soundness level output means obtains part or all of the soundness level information related to the soundness level of the other building searched for the soundness level of the building. Output together.
  • the computer obtains the structure information acquisition step of acquiring the structure information of the building, and the structure information of the building acquired by the structure information acquisition step.
  • An inspection specifying step for specifying the inspection position and the type of damage to be inspected an inspection data acquisition step for acquiring image data in which the inspection position of the building is the subject, and inspection data in which the inspection position of the building is associated, and inspection Damage that extracts damage information corresponding to the type of damage to be inspected specified in the inspection specifying step from the image data corresponding to the inspection position specified in the inspection specifying step from the inspection data acquired in the data acquisition step
  • an information extraction step is an information extraction step.
  • a damage information extraction program for causing a computer to execute the damage information extraction method is also included in the aspect of the present invention.
  • the inspection position of the building and the type of damage to be inspected are specified based on the structure information of the building, and the inspection object specified by the inspection specifying means is selected from the image data corresponding to the specified inspection position. Since the damage information corresponding to the damage type is extracted, the damage information can be extracted from the important position on the structure of the building.
  • the inspection data it is only necessary to associate the image data with the inspection position of the building as the subject and the inspection position of the building, so there is no need to inspect unspecified members in detail at the inspection site of the building. It is possible to achieve both speed and accuracy of inspection.
  • Block diagram showing schematic configuration of soundness determination system The figure which shows an example of the use environment history information accumulate
  • FIG. 1 is a block diagram showing a schematic configuration of a soundness determination system 100 to which the present invention is applied.
  • the soundness level determination system 100 includes a damage information extraction device 200 and a soundness level determination device 300.
  • the damage information extraction device 200 includes an inspection identification unit 14, an inspection data acquisition unit 15, an inspection data analysis unit 16, a use environment history information database (DB) 17, and a building structure information database (DB) 18.
  • the soundness determination device 300 includes a soundness determination unit 31, a soundness output unit 32, a soundness confirmation input unit 33, and a soundness database (DB) 34.
  • DB soundness database
  • Each unit included in the damage information extraction device 200 and each unit included in the soundness determination device 300 includes a processor, a RAM (Random Access Memory), a flash memory, a ROM (Read Only Memory), a display, a speaker, a touch panel, and a communication interface. It is possible to configure with known information processing devices such as personal computers, smartphones, mobile phones, and tablet terminals. Further, the damage information extraction device 200 and the soundness determination device 300 may be configured by separate information processing devices or may be configured by an integrated information processing device. When the damage information extraction device 200 and the soundness determination device 300 are configured as separate information processing devices, a known communication interface that connects both is provided in each of the damage information extraction device 200 and the soundness determination device 300. Both can communicate. If the damage information extraction device 200 and the soundness determination device 300 are integrally configured, the soundness determination system 100 is the same as the damage information extraction device 200 or the soundness determination device 300.
  • the usage environment history information accumulated in the usage environment history information DB 17 is information indicating the usage environment and usage history of the building.
  • the usage environment history information includes the name, date of completion of the bridge, date of commencement of use of the bridge, typhoon, earthquake, flood, heavy rain, fire, collision of objects, etc. Presence / absence of accidents affecting the structure of objects, the date of maintenance, the location of maintenance and the date of maintenance, the average temperature and humidity since the start of service, cumulative traffic volume, and the location of abnormalities discovered in the past Etc.
  • the use environment history information DB 17 may accumulate use environment history information of a plurality of different buildings, or may accumulate use environment history information of one building to be inspected. .
  • the data stored in the building structure information DB 18 is a design book or a completed drawing of an arbitrary building to be inspected, a name, a structure type of the building, and an arbitrary building to be inspected. It includes image data that records the appearance of the structure of the object, the structure and material of each part of the building, and the positional relationship of each part of the building. Although illustration is omitted, the building structure information DB 18 may store structure information of a plurality of different buildings, or may store structure information of one building to be inspected.
  • the building is a bridge
  • the basic structure type of the building is a girder bridge, truss bridge, arch bridge, suspension bridge, or ramen bridge.
  • the main girder and cross girder of the superstructure of the girder bridge are made of steel, the floor slab is made of prestressed concrete (PC), the support is made of rubber, and the substructure is reinforced concrete (RC) : Reinforced (Concrete) pile foundation or direct foundation.
  • PC prestressed concrete
  • RC reinforced concrete
  • the inspection specifying unit 14 is registered in the overall appearance photograph (see FIG. 3) of the building to be inspected and the building structure information DB 18. It is possible to determine the structural information of the building to be inspected by comparing with a typical structural model of the building (see FIG. 4). This can be done by human work, or can be automated or semi-automated by computer input work or computer processing.
  • a design book or a completed drawing of a building to be inspected is available, it can be stored as it is in the building structure information DB 18 as structure information of the building.
  • the actual construction results may differ from the design books and completed drawings, and the current status may differ from the design books and completed drawings due to repairs and replacement of parts. Should be included.
  • the structure information acquisition unit corresponds to the function of the examination specifying unit 14.
  • the inspection specifying unit 14 is based on the structure information of the building and the usage environment history information, and the member position that is the position of the member to be inspected among the constituent members of the building, and the damage type to be inspected at the member position Is identified. This is because the inspection object is narrowed down to structurally important member positions. Accordingly, the member position to be inspected is preferably a pinpoint fixed point, but may be a range having a spatial extent. As an example, a method for specifying a member position to be inspected and a damage type is as follows. The inspection specifying unit corresponds to the function of the inspection specifying unit 14.
  • the basic structure type of the building to be inspected is the girder bridge, the main girder and the cross girder of the superstructure of the girder bridge are steel, floor
  • the plate is defined as concrete and the bearing is defined as rubber.
  • the usage location is defined as within 1 km (coastal) from the coast.
  • the inspection specifying unit 14 determines the steel member in the central part of the main girder branch of the superstructure of the girder bridge as the inspection target member position, and corrosion of the steel member in the central part of the main girder branch, Breakage, cracks, deflection, and drop of bolts or nuts are determined as damage types extracted from the position of the member to be inspected. This is because, when the place of use is in the coastal area, damage related to salt damage is expected, but instead of inspecting all steel parts, the central part of the main girder, which is particularly heavy in terms of structural mechanics, is used. This is to focus on inspection.
  • the inspection specifying unit 14 determines the lower surface of the floor slab as a member position to be inspected, and determines cracks, concrete peeling, and floating on the lower surface of the floor slab as damage types to be inspected.
  • the inspection specifying unit 14 determines the pier foundation as a member position to be inspected based on the fact that there is a flood, and scours, sinks, moves, and inclines the pier foundation. Determine the type of damage.
  • the use environment history information accumulated in the use environment history information DB 17 is defined as having an earthquake with a seismic intensity of 5 or more.
  • the inspection specifying unit 14 determines the pier foundation as a member position to be inspected, and determines the sinking, movement, and inclination of the pier foundation as the type of damage to be inspected.
  • the ground of the pier foundation is defined as soft, the sinking, movement, and inclination of the pier are similarly examined. Determine the type of damage.
  • the inspection specifying unit 14 determines the reinforcing position of the cross beam as the member position to be inspected, and determines the breakage of the reinforcing material of the cross beam and the crack of the cross beam around the reinforcing material as the damage type to be inspected. To do.
  • the positions of members structurally important in terms of structural mechanics for example, the center portion of the girders, the cross beams, and the vertical girder joints are to be inspected.
  • the member positions are determined, and typical deformations occurring at these member positions, such as cracks, breaks, rust, missing bolts, and the like, are determined as the type of damage to be inspected. That is, the usage environment history information may not be essential for specifying the position of the member to be inspected and the type of damage.
  • the term “inspection” used in this specification does not necessarily include only skills and judgments made by personnel with expertise in buildings, but simply such as taking images on site. Work can also be included.
  • the inspection data acquired by the inspection data acquisition unit 15 includes image data in which each member of an arbitrary building to be inspected is a subject, and position information of each member that records the image.
  • Including. 5A illustrates image data in which the vertical and horizontal girders are illustrated, the (b) portion is the bottom surface of the floor slab, and the (c) portion illustrates image data in which the pier foundation is a subject.
  • the position information of these members may be based on position information obtained by GPS (Global Positioning System).
  • GPS Global Positioning System
  • the image data associated with the position information of the member is recorded by a person carrying the GPS camera, a drone or a robot equipped with the GPS camera.
  • the inspection data acquisition unit corresponds to the function of the inspection data acquisition unit 15.
  • the position information on the earth is set in the building to be inspected. It is necessary to convert to relative position information on the building in the local coordinates. For example, this conversion is performed by converting position information on the earth into coordinates (for example, XYZ coordinates with the origin of the bridge as the origin) appropriately set on the building. This can be realized by simple linear conversion.
  • the position information of the member included in the inspection data is assumed to be position information of the member on the building.
  • the inspection data acquisition unit 15 may acquire inspection data from a movable device such as a drone or robot equipped with the above-described GPS camera, or the inspection data acquisition unit 15 itself may be a device that generates inspection data. .
  • the inspection data analysis unit 16 acquires and analyzes the image data corresponding to the member position specified as the inspection target by the inspection specifying unit 14 from the inspection data acquisition unit 15, and from this image data, the damage specified as the inspection target Determine whether there is a type of damage and if so, the extent of the damage.
  • information indicating the presence / absence of damage and the degree of damage is referred to as damage information.
  • the damage information extraction unit corresponds to the above function of the inspection data analysis unit 16.
  • the area, crack length, number of bolts or nuts dropped, pier scouring, sinking, moving, and tilting length are determined by analyzing the image of the member at the inspection location.
  • the scale is copied together with the image, it is easy to determine the degree of damage related to the length, width, and range.
  • image analysis it is possible to identify a color difference between damage and a surrounding healthy place, and to determine a damage range accompanied by a color change such as corrosion, lime deposition, and rebar exposure. If image analysis is not possible, damage information may be determined by manual input by the user.
  • the soundness determination unit 31 determines the soundness of the building to be inspected based on the degree of damage for each member position analyzed by the inspection data analysis unit 16.
  • the soundness of a building is a stepwise or numerical evaluation of the safety of the building.
  • the soundness determination rule by the soundness determination unit 31 is as follows. First, the soundness level determination unit 31 selects one of the three levels of “partially deteriorated remarkable”, “partially deteriorated”, and “not deteriorated” based on the degree of damage of the individual inspection target member position. Are determined according to the degree of soundness of each individual inspection target position. When the inspection target position determined to be “partial deterioration noticeable” exceeds a specified number A, for example, 9, the soundness degree determination unit 31 determines the soundness of the entire building as “total deterioration noticeable”. Is determined.
  • the soundness determination unit 31 determines the soundness of the entire building. It is determined that “partial deterioration is remarkable”.
  • the soundness determination unit 31 determines the soundness of the entire building as “partial It is determined that there is a general deterioration.
  • the soundness determination unit 31 determines that the soundness of the entire building is “no deterioration” when the inspection target position determined as “partially noticeable deterioration” is 0.
  • the classification of soundness is not limited to the above, and may be less than three stages or four or more stages.
  • the contents to be classified are not limited to the above, and for example, the degree of soundness may be classified into four stages, such as “measures not required”, “monitoring required”, “urgent measures required”, and “urgent measures required”.
  • the determination of soundness in consideration of the degree of damage of each member may be based on the determination criteria in advance as described above, but other methods are also possible.
  • the soundness determination unit 31 can determine the soundness in consideration of the degree of damage of each member and the use environment of the building by a statistical method as described in Non-Patent Document 1.
  • the soundness DB 34 stores the structure information of one or more buildings other than the building to be inspected, the position of damage, the degree of damage, and the soundness information in association with the soundness
  • the soundness determination unit 31 stores the structure information of the structure to be inspected, the structure information of other structures similar to the damage position and the degree of damage, the soundness level corresponding to the position of damage and the degree of damage to the soundness database. You may search from 34 and you may determine the soundness of the structure of a test object based on the soundness of the other structure searched. Whether or not they are similar is calculated by calculating the distance between the structure to be inspected and other structures in the feature space with the structural information of the building, the position of damage, and the degree of damage as the feature vector.
  • the soundness level of another building that gives the minimum value of this distance is determined as the soundness level of the building to be inspected.
  • This distance may be an unweighted distance (Euclidean distance) or a weighted distance (Mahalanobis distance). What weight is assigned to which parameter may be determined by a statistical method such as principal component analysis as described in Non-Patent Document 1.
  • the soundness level stored in the soundness level database 34 is preferably determined by the judgment of a person with specialized knowledge. A value obtained by simple average or weighted average of the soundness of a plurality of buildings whose distance is equal to or less than a certain threshold value can be determined as the soundness of the building to be inspected. This threshold can be optimized by statistical techniques.
  • the soundness determination unit 31 stores the structure information of the building to be inspected, the position of damage, the degree of damage, and the structure information of other buildings similar to the usage environment history information, the position of damage, and the damage.
  • the health level corresponding to the degree of health and the usage environment history information may be searched from the health level database 34, and the health level of the building to be inspected may be determined based on the health level of other searched buildings. .
  • the soundness level of another building that gives the minimum value of this distance is determined as the soundness level of the building to be inspected.
  • This distance may be an unweighted distance (Euclidean distance) or a weighted distance (Mahalanobis distance). What weight is assigned to which parameter may be determined by a statistical method such as principal component analysis as described in Non-Patent Document 1.
  • the soundness level stored in the soundness level database 34 is preferably determined by the judgment of a person with specialized knowledge.
  • a value obtained by simple average or weighted average of the soundness of a plurality of buildings whose distance is equal to or less than a certain threshold value can be determined as the soundness of the building to be inspected.
  • This threshold can be optimized by statistical techniques.
  • the storage means corresponds to the function of the soundness level DB 34. Further, the soundness level determination unit corresponds to the function of the soundness level determination unit 31.
  • the soundness output unit 32 includes a display, a printer, a speaker, and the like.
  • the soundness output unit 32 converts the soundness of the entire building determined by the soundness determination unit 31 into an image, text, sound, and the like and outputs the converted image.
  • the soundness output unit 32 includes structural information of the structure to be inspected, the position of damage, the degree of damage, and structural information of one or more other structures similar to the usage environment history information, the position of damage, All or some of the degree and usage environment history information may be output together as a representative example.
  • the soundness level output unit corresponds to the function of the soundness level output unit 32.
  • the soundness confirmation input unit 33 prompts the user to confirm whether the soundness of the entire building determined by the soundness determination unit 31 is appropriate or should be corrected, and accepts the confirmation input.
  • the soundness confirmation input unit 33 indicates the soundness of the whole building determined by the soundness determination unit 31 or the corrected soundness according to the confirmation input.
  • the soundness output unit 32, the soundness DB 34, and the printer Output to a recording medium and a network.
  • the soundness level confirmation input unit corresponds to the function of the soundness level confirmation input unit 33.
  • the soundness level determination unit 31 determines the soundness of the entire building to be inspected after the confirmation input, the structural information of the building to be inspected, the position of damage, the degree of damage, and the usage environment history information (however, the usage environment history) (When information is used for determination of soundness) may be accumulated in the soundness DB 34 as new soundness information.
  • the degree of difference between the soundness level and the actual soundness level determined by the specialists is converted into statistical data, and the soundness level information of the soundness level DB34, which is an element that causes this difference, is deleted or corrected. Information may be optimized.
  • the storage control unit corresponds to the above function of the soundness degree determination unit 31.
  • FIG. 6 is a flowchart of damage information extraction processing executed by the damage information extraction apparatus 200.
  • a program for causing the damage information extraction apparatus 200 to execute this processing is stored in a computer-readable storage medium such as a flash memory of the damage information extraction apparatus 200.
  • the inspection specifying unit 14 acquires the structural information of the building to be inspected from the structural information of the building stored in the building structure information DB 18.
  • the inspection specifying unit 14 acquires the use environment history information of the building to be inspected from the use environment history information accumulated in the use environment history information DB 17.
  • the use environment information acquisition unit corresponds to the function of the examination specifying unit 14.
  • the inspection specifying unit 14 determines a member position to be inspected based on the structure information of the building acquired in S1 and the use environment history information acquired in S2, and the member position. To identify the type of damage to be inspected. When there is no use environment history information, the inspection specifying unit 14 specifies a member position to be inspected and a damage type to be inspected at the member position based on the structure information of the building acquired in S1. .
  • the inspection data acquisition unit 15 captures and records the subject image of each member of an arbitrary building to be inspected, and position information of each member that records the image.
  • the inspection data including is acquired.
  • each member is stored as a subject evenly.
  • the inspection data analysis unit 16 acquires and analyzes the image data corresponding to the member position specified as the inspection target by the inspection specifying unit 14 and analyzes the image data. From this, it is determined whether or not there is damage of the type of damage specified as the inspection object, and if there is damage, the degree of the damage is determined. Since the inspection data analysis unit 16 does not analyze image data corresponding to member positions that are not specified as inspection targets, analysis of damage to unimportant members is omitted. However, even the member position that is not specified by the inspection specifying unit 14 can be analyzed by the inspection data analysis unit 16 after individually specifying the member position to be inspected according to the user's instruction.
  • damage information can be extracted from image data corresponding to important member positions among image data in which each unspecified member of the building is a subject. Therefore, damage information on important member positions can be efficiently obtained without spending time at the installation site of the building.
  • FIG. 7 is a flowchart of soundness determination processing executed by the soundness determination device 300.
  • a program for causing the soundness determination device 300 to execute this process is stored in a computer-readable storage medium such as a flash memory of the soundness determination device 300.
  • the soundness level determination unit 31 acquires the damage type and the degree of damage for each member position obtained by the damage information extraction process of the damage information extraction device 200.
  • the soundness determination unit 31 determines the soundness of the building to be inspected based on the degree of damage for each member position.
  • the method of determining the soundness may be any of a rule, a statistical method, a past similar case search, or a combination of some or all of them.
  • the soundness determination unit 31 always uses the damage information obtained by the damage information extraction apparatus 200 including the damage type and the degree of damage for each member position for soundness determination.
  • the soundness output unit 32 outputs the soundness determined in S12 to a display, a printer, or the like.
  • damage information is extracted from image data corresponding to important member positions out of image data in which each unspecified member of the building is a subject, and the soundness level of the building is efficiently obtained from this damage information. Can be determined.
  • the scope of application of the present invention is not limited to bridges, and constructions such as civil engineering structures such as tunnels, sheds, culverts, slopes, retaining walls, dams, and seawalls, and buildings such as buildings and condominiums are constructed. It can be applied to all things. That is, it is possible to determine an appropriate member position and damage type to be inspected according to the type of building and its use environment, and to determine the soundness of the building from the image data for each member position.
  • the inspection object is a tunnel constructed by the sheet pile method, and that the location where the tunnel is installed is a cold mountainous area in the usage environment history information.
  • the longitudinal joints, transverse joints, transverse joints, longitudinal joints, near the top and near the middle of the lining span are determined as the inspection target member positions, and the type of damage to be inspected. These include seams, joints, cracks continuous at the top, cracks near the middle of the lining span, fragmentation of the cracks due to these cracks, floating, peeling, discoloration, water leakage, and steps. This is in order to intensively inspect portions where cracks due to temperature expansion and contraction are likely to occur.
  • the usage history information shows repaired parts, cold joints, or jumper occurrences, determine the position of the part to be inspected, and inspect for deformation such as cracks at that position.
  • the damage type of the subject are structurally fragile and prone to deformation.
  • the soundness of the building to be inspected can be selected from the three stages of “overall degradation remarkable”, “with partial degradation”, and “without degradation”. One of them is determined as soundness.
  • the object to be inspected is an RC building
  • image data in which a member constituting a frame such as a column, a beam, a wall, and a floor slab is recorded as a subject in association with the position of the member.
  • the type of damage corresponding to each member for example, the presence or absence of damage types such as cracking, paint peeling, rebar exposure, painted surface choking, and water leakage, is detected, and the inspection target depends on the degree of damage.
  • the degree of soundness of the building is determined as one of the three levels of “overall deterioration remarkable”, “partially deteriorated”, and “no deterioration”.
  • Judgment of soundness in a building other than a bridge may be based on any of rules, statistical methods, past similar case searches, or some or all of these.

Landscapes

  • Business, Economics & Management (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Resources & Organizations (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Marketing (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Quality & Reliability (AREA)
  • Operations Research (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Primary Health Care (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Working Measures On Existing Buildindgs (AREA)

Abstract

建造物の重要位置と重要損傷を特定し、重要位置の重要損傷を評価することによって、建造物全体の健全度評価を行うことを可能とするものである。検査特定部14が、建造物構造情報の中から、検査対象となる建造物の建造物構造情報を取得するとともに、使用環境履歴情報の中から、検査対象となる建造物の使用環境履歴情報を取得し、これら情報に基づき検査対象とする位置と損傷種類を特定する。そして、検査データ取得部15が、各部材の被写体像を撮影した画像データと各部材の位置情報を含む検査データを取得し、検査データ分析部16が、部材位置に対応する画像データを検査データ取得部15から取得して分析し、検査対象として特定された損傷種類の損傷が存在するか否か、および、その損傷が存在する場合に、その損傷の程度を決定する。

Description

損傷情報抽出装置、損傷情報抽出方法および損傷情報抽出プログラム
 本発明は、建造物の損傷情報を抽出する装置、方法およびプログラムに関し、特に、建造物の健全度を診断するための建造物の損傷情報を抽出する装置、方法およびプログラムに関する。
 従来より、橋梁、トンネル、およびビルなどの建造物の健全度を、建造物の点検結果から判定することが行われている。点検はひび割れなどの変状現象の観測として行われ、この情報と周囲の環境、および建造物の設計情報などに基づいてその変状原因を特定し、健全度の判定が行われる。
 健全度の判定を正確に行うためには、高度かつ広範な専門知識と、長い分析時間が必要である。このため、健全度の判定を支援するシステムが考案されている。
 特許文献1には、橋梁床版の表面の赤外線画像を撮影し、赤外線画像から探傷位置(損傷検査位置)を特定することが記載されている。
 特許文献2には、橋梁の部材とその部材で発生しうる損傷の種類(検査対象損傷)との対応関係を示す選択肢テーブルを用いて、入力可能な損傷の種類の選択肢を調査員に対して表示することが記載されている。これにより、工種、部材、および材料の組み合わせに関連する損傷区分と損傷区分に対応する損傷程度の評価項目、および評価基準を選択肢として調査員に提示し、それぞれの損傷を調査員に評価させる指針を与える。また、管理者が調査員にアドバイスを送ってから写真を撮影させることも記載されている。
 特許文献3には、建造物の変状情報、構造情報、および周囲情報に基づいて変状原因を推定し、健全度を判定するシステムが記載されている。すなわち、変状展開図からトンネルの覆工にあるひび割れのうち外力に起因するものを自動的にピックアップし、これをあらかじめ50種類以上あるひび割れ変状パターンと照合してどのひび割れ変状パターンに該当するかをチェックし、該当したひび割れ変状パターンおよび周辺の地山条件、地質条件、建設時の施工条件、および構造条件等の基本情報を基に、トンネルに作用する外力が何であるか(変状原因)を推定する。さらに、推定された変状原因と共に、上記の基本情報に関する情報を踏まえてトンネルの力学的健全度を判定する。
 非特許文献1では、各点検項目の評価結果を主成分分析することで各構成要素の健全度に対する寄与率(重み)を算定し、多数の点検項目から1つまたは2つの指標で要素の健全性を表現する。
特開2010-133835号公報 特開2006-338312号公報 特許4279159号公報
統計的手法を用いた橋梁点検データベースに基づく 橋梁健全度評価に関する基礎的研究,土木学会論文集 A2(応用力学), Vol. 67, No. 2(応用力学論文集 Vol. 14), I_813-I_824, 2011
 近年、社会的インフラの老朽化が問題となっている。老朽化した社会的インフラのメンテナンスに際しては、専門知識を持った検査員がインフラの各所を詳細に検査することが望ましいが、予算、人員、およびインフラの設置場所や設置数の点から制約があり、全てのインフラを即座にくまなく検査するのは難しい。したがって、緊急に対策が必要な重大な損傷とそうでない損傷を区別するための、要点を絞った検査を簡易かつ迅速に行うための仕組みが求められる。
 特許文献1は、赤外線画像を用いて橋梁床版の損傷位置の特定を行うが、橋梁床版以外の部分構造(主桁、橋脚、および伸縮装置など)の損傷位置を特定することはできない。
 特許文献2では、評価自体は調査員が行うため、調査員に専門知識が必要である。また、工種、部材、および材料の組み合わせごとに調査員がいちいち評価項目と評価基準を確認しなければならないため、現場での検査に時間がかかる。
 特許文献3では、建造物の変状や損傷をその発生部位や損傷種類による建造物の強度や健全度に対する影響の違いに関係なく、建造物全体の変状や損傷の情報から健全度の判定を行っている。このため、建造物の健全度を判定するためには、建造物全体の検査を実施する必要があり大きな労力が必要である。また、特許文献3では、損傷の発生部位や種類による影響を評価していないため、正確な判定ができない場合がある。さらに、特許文献3では、トンネルの基本情報からの変状原因の推定がどのようにされるかが具体的に記載されていない。このため、力学的健全度の判定は、専門的な知識を有する技術者による、トンネルの基本情報を考慮した変状原因の推定に依存することになる。よって、検査対象のトンネルごとにいちいち技術者が変状原因の推定を行わなければならず、人材の確保の点で難がある。
 本発明はこのような事情に鑑みてなされたもので、建造物の重要位置と重要損傷を特定し、重要位置の重要損傷を評価することによって、建造物全体の健全度評価を行うことを可能とする損傷情報抽出装置、損傷情報抽出方法および損傷情報抽出プログラムを提供することを目的とする。
 上記の課題を解決するため、本願発明の第1の態様に係る損傷情報抽出装置は、建造物の構造情報を取得する構造情報取得手段と、構造情報取得手段が取得した建造物の構造情報に基づいて、建造物の検査位置と検査対象損傷種類を特定する検査特定手段と、建造物の検査位置を被写体とした画像データおよび建造物の検査位置が対応づけられた検査データを取得する検査データ取得手段と、検査データ取得手段で取得された検査データのうち、検査特定手段で特定された検査位置に対応する画像データの中から、検査特定手段で特定された検査対象損傷種類に対応する損傷情報を抽出する損傷情報抽出手段と、を備える。
 この態様では、建造物の構造情報に基づいて、建造物の検査位置と検査対象損傷種類を特定し、特定された検査位置に対応する画像データの中から、検査特定手段で特定された検査対象損傷種類に対応する損傷情報を抽出するため、建造物の構造上の重要位置から損傷情報を抽出することができる。検査データでは、建造物の検査位置を被写体とした画像データおよび建造物の検査位置が対応づけられていれば足りるため、建造物の点検現場で不特定の部材を逐一詳細に検査する必要がなく、検査の迅速性と正確性を両立することができる。
 本願発明の第2の態様に係る損傷情報抽出装置において、構造情報取得手段は、建造物を被写体とした画像データから建造物の構造情報を取得する。こうすることで、設計図書などの残っていない建造物についても、簡易に検査が可能である。
 本願発明の第3の態様に係る損傷情報抽出装置において、損傷情報は、検査対象損傷種類に対応する損傷の位置および損傷の程度を含む。
 本願発明の第4の態様に係る損傷情報抽出装置は、上記建造物以外の他の1または複数の建造物の構造情報、損傷の位置、損傷の程度、および健全度を対応づけた健全度情報を記憶する記憶手段と、上記建造物の構造情報、損傷の位置および損傷の程度に類似する他の建造物の構造情報、損傷の位置および損傷の程度に対応する健全度を検索し、検索された他の建造物の健全度に基づいて、上記建造物の健全度を判定する健全度判定手段と、をさらに備える。
 本願発明の第5の態様に係る損傷情報抽出装置は、健全度判定手段の判定した建造物の健全度を出力する健全度出力手段をさらに備える。
 本願発明の第6の態様に係る損傷情報抽出装置は、健全度出力手段の出力した建造物の健全度の適否に関する確認入力を受け付ける健全度確認入力手段と、健全度確認入力手段が入力を受け付けた建造物の健全度の適否に関する確認入力に応じて、健全度判定手段の判定した建造物の健全度を、建造物の構造情報、損傷の位置、および損傷の程度と対応づけて記憶手段に記憶させるか、または、健全度判定手段の判定した建造物の健全度を修正し、修正された建造物の健全度を、建造物の構造情報、損傷の位置、および損傷の程度と対応づけて記憶手段に記憶させる記憶制御手段と、をさらに備える。
 本願発明の第7の態様に係る損傷情報抽出装置は、建造物の使用環境情報を取得する使用環境情報取得手段を備え、検査特定手段は、構造情報取得手段が取得した建造物の構造情報と使用環境情報取得手段が取得した建造物の使用環境情報に基づいて、建造物の検査位置と検査対象損傷種類を特定する。
 本願発明の第8の態様に係る損傷情報抽出装置は、上記建造物以外の他の1または複数の建造物の構造情報、損傷の位置、損傷の程度、使用環境情報、および健全度を対応づけた健全度情報を記憶する記憶手段と、建造物の構造情報、損傷の位置、損傷の程度、および使用環境情報に類似する他の建造物の構造情報、損傷の位置、損傷の程度、および使用環境情報に対応する健全度を検索し、検索された他の建造物の健全度に基づいて、上記建造物の健全度を判定する健全度判定手段と、をさらに備える。
 本願発明の第9の態様に係る損傷情報抽出装置は、健全度判定手段の判定した建造物の健全度を出力する健全度出力手段をさらに備える。
 本願発明の第10の態様に係る損傷情報抽出装置は、健全度出力手段の出力した建造物の健全度の適否に関する確認入力を受け付ける健全度確認入力手段と、健全度確認入力手段が入力を受け付けた建造物の健全度の適否に関する確認入力に応じて、健全度判定手段の判定した建造物の健全度を、建造物の構造情報、損傷の位置、損傷の程度、および使用環境情報と対応づけて記憶手段に記憶させるか、または、健全度判定手段の判定した建造物の健全度を修正し、修正された建造物の健全度を、建造物の構造情報、損傷の位置、損傷の程度、および使用環境情報と対応づけて記憶手段に記憶させる記憶制御手段と、をさらに備える。
 本願発明の第11の態様に係る損傷情報抽出装置において、健全度出力手段は、検索された他の建造物の健全度に関連する健全度情報の一部または全部を、上記建造物の健全度とともに出力する。
 本願発明の第12の態様に係る損傷情報抽出方法では、コンピュータが、建造物の構造情報を取得する構造情報取得ステップと、構造情報取得ステップが取得した建造物の構造情報に基づいて、建造物の検査位置と検査対象損傷種類を特定する検査特定ステップと、建造物の検査位置を被写体とした画像データおよび建造物の検査位置が対応づけられた検査データを取得する検査データ取得ステップと、検査データ取得ステップで取得された検査データのうち、検査特定ステップで特定された検査位置に対応する画像データの中から、検査特定ステップで特定された検査対象損傷種類に対応する損傷情報を抽出する損傷情報抽出ステップと、を実行する。
 上記の損傷情報抽出方法をコンピュータに実行させるための損傷情報抽出プログラムも本願発明の態様に含まれる。
 本発明では、建造物の構造情報に基づいて、建造物の検査位置と検査対象損傷種類を特定し、特定された検査位置に対応する画像データの中から、検査特定手段で特定された検査対象損傷種類に対応する損傷情報を抽出するため、建造物の構造上の重要位置から損傷情報を抽出することができる。検査データでは、建造物の検査位置を被写体とした画像データおよび建造物の検査位置が対応づけられていれば足りるため、建造物の点検現場で不特定の部材を逐一詳細に検査する必要がなく、検査の迅速性と正確性を両立することができる。
健全度判定システムの概略構成を示すブロック図 使用環境履歴情報DBに蓄積される使用環境履歴情報の一例を示す図 建造物構造情報DBに蓄積される建造物構造情報の一例を示す図 建造物の構造モデルの一例を示す図 検査データの一例を示す図 損傷情報抽出処理のフローチャート 健全度判定処理のフローチャート
 図1は、本発明を適用した健全度判定システム100の概略構成を示すブロック図である。健全度判定システム100は、損傷情報抽出装置200と健全度判定装置300とを含む。損傷情報抽出装置200は、検査特定部14、検査データ取得部15、検査データ分析部16、使用環境履歴情報データベース(DB)17、および建造物構造情報データベース(DB)18を備える。また、健全度判定装置300は、健全度判定部31、健全度出力部32、健全度確認入力部33、および健全度データベース(DB)34を備える。
 損傷情報抽出装置200の備える各部および健全度判定装置300の備える各部は、プロセッサ、RAM(Random Access Memory)、フラッシュメモリ、ROM(Read Only Memory)、ディスプレイ、スピーカ、タッチパネル、および通信インターフェースなどで構成された、パソコン、スマートフォン、携帯電話、およびタブレット端末などの既知の情報処理デバイスで構成することが可能である。また、損傷情報抽出装置200と健全度判定装置300とは、別々の情報処理装置で構成されてもよいし、一体的な情報処理装置で構成されてもよい。損傷情報抽出装置200と健全度判定装置300とが別々の情報処理装置で構成されている場合は、両者を接続する既知の通信インターフェースが損傷情報抽出装置200と健全度判定装置300の各々に設けられ、両者が通信できるものとする。損傷情報抽出装置200と健全度判定装置300とが一体的に構成されていれば、健全度判定システム100は損傷情報抽出装置200あるいは健全度判定装置300と同じである。
 図2に例示するように、使用環境履歴情報DB17に蓄積された使用環境履歴情報は、建造物の使用環境と使用履歴を示す情報である。例えば、建造物が橋であれば、使用環境履歴情報は、名称、橋の竣工年月日、橋の供用開始年月日、台風、地震、洪水、集中豪雨、火災、物体の衝突などの建造物の構造に影響を及ぼす事故の有無とその年月日、メンテナンス実施箇所とメンテナンス実施の年月日、供用開始以後の平均気温と湿度、累積交通量、および過去に発見された異常箇所の位置などである。
 図示は省略するが、使用環境履歴情報DB17は、異なる複数の建造物の使用環境履歴情報を蓄積してもよいし、検査対象となる1つの建造物の使用環境履歴情報を蓄積してもよい。
 図3に例示するように、建造物構造情報DB18に蓄積されるデータは、検査対象となる任意の建造物の設計図書や竣工図、名称、建造物の構造形式、検査対象となる任意の建造物の構造の外観を記録した画像データ、建造物の各部位の構造および材質、および建造物の各部位の構造上の位置関係などを含む。図示は省略するが、建造物構造情報DB18は、異なる複数の建造物の構造情報を蓄積してもよいし、検査対象となる1つの建造物の構造情報を蓄積してもよい。
 例えば、建造物が橋であれば、建造物の基本構造の形式は桁橋、トラス橋、アーチ橋、吊り橋、あるいはラーメン橋などとなる。
 桁橋の各部位の材質については、桁橋の上部構造の主桁および横桁は鋼製、床版はプレストレストコンクリート(PC:Prestressed Concrete)製、支承はゴム製、および下部構造は鉄筋コンクリート(RC:Reinforced Concrete)製の杭基礎あるいは直接基礎などとなる。
 検査対象となる建造物の設計図書や竣工図の入手が不可能な場合、検査特定部14は、検査対象の建造物の全体外観写真(図3参照)と、建造物構造情報DB18に登録された典型的な建造物の構造モデル(図4参照)とを比較し、検査対象となる建造物の構造情報を決定することができる。これは人的な作業によっても可能であるし、コンピュータへの入力作業やコンピュータによる処理によって自動化あるいは半自動化することも可能である。検査対象となる建造物の設計図書や竣工図の入手が可能な場合は、それをそのまま建造物構造情報DB18に建造物の構造情報として蓄積することができる。ただし、設計図書や竣工図と実際の施工結果が異なっていたり、補修や部材の交換によって現状が設計図書や竣工図と異なることもあるので、可能であれば、これらも建造物の構造情報に含めるとよい。構造情報取得手段は、検査特定部14の上記機能に対応する。
 検査特定部14は、建造物の構造情報と使用環境履歴情報に基づき、建造物の構成部材の中から検査対象とする部材の位置である部材位置と、その部材位置で検査対象とする損傷種類を特定する。これは、構造上重要な部材位置に検査対象を絞るためである。したがって、検査対象の部材位置はピンポイント的な定点が望ましいが、空間的な広がりを持つ範囲であってもよい。一例として、検査対象となる部材位置と損傷種類の特定の方法は以下の通りとなる。検査特定手段は、検査特定部14の上記機能に対応する。
 (1)建造物構造情報DB18に蓄積された建造物の構造情報において、検査対象となる建造物の基本構造の形式は桁橋、桁橋の上部構造の主桁および横桁は鋼製、床版はコンクリート製、および支承はゴム製と定義されているとする。
 そして、使用環境履歴情報DB17に蓄積された使用環境履歴情報において、使用場所は沿岸から1km以内(沿岸部)と定義されているとする。
 この場合、検査特定部14は、桁橋の上部構造の主桁の支間中央部の鋼製部材を検査対象の部材位置に決定し、かつ、主桁の支間中央部の鋼製部材の腐食、破断、亀裂、たわみ、ボルトまたはナットの脱落を、当該検査対象の部材位置から抽出する損傷種類に決定する。これは、使用場所が沿岸部の場合は、塩害に関連する損傷の発生が予測されるが、鋼製部材全てを検査するのでなく、構造力学的に特に過重のかかる主桁の支間中央部を重点的に検査するためである。
 (2)使用場所が山間部の場合、路面に融雪剤の散布が行われるから、床版での塩害の発生が予測される。したがって、この場合、検査特定部14は、床版下面を検査対象の部材位置に決定し、かつ床版下面のひび割れおよびコンクリート剥離および浮きを検査対象の損傷種類に決定する。
 (3)使用環境履歴情報DB17に蓄積された使用環境履歴情報において、洪水ありと定義されているとする。この場合、検査特定部14は、洪水ありであることを根拠に、橋脚基礎部を検査対象の部材位置に決定し、かつ、橋脚基礎部の洗掘、沈下、移動、および傾斜を検査対象の損傷種類に決定する。
 (4)使用環境履歴情報DB17に蓄積された使用環境履歴情報において、震度5以上の地震ありと定義されているとする。この場合、検査特定部14は、橋脚基礎部を検査対象の部材位置に決定し、かつ、橋脚基礎部の沈下、移動、および傾斜を検査対象の損傷種類に決定する。なお、使用環境履歴情報において、震度5以上の地震がなくても、橋脚基礎部の地盤が軟弱であると定義されている場合は、同様に、橋脚の沈下、移動、および傾斜を検査対象の損傷種類に決定する。
 (5)使用環境履歴情報DB17に蓄積された使用環境履歴情報において、横桁に補強箇所ありと定義されているとする。この場合、検査特定部14は、横桁の補強箇所を検査対象の部材位置に決定し、かつ、横桁の補強材の破断および補強材周辺の横桁の亀裂を検査対象の損傷種類に決定する。
 (6)使用環境履歴情報DB17に使用環境履歴情報が蓄積されていない場合は、構造力学的に重要な部材の位置、例えば、桁中央部、横桁、および縦桁接合部などを検査対象の部材位置に決定し、これらの部材位置に生じる典型的な変状、例えば、ひび割れ、破断、さび、ボルト欠落などを検査対象の損傷種類に決定する。すなわち、使用環境履歴情報を、検査対象となる部材位置と損傷種類の特定に必須としなくてもよい。なお、本明細書で使用される「検査」という用語は、必ずしも建造物についての専門知識を持った人員による技能や判断のみを含むのではなく、現場にて画像を撮影するだけのような単純作業も含みうる。
 図5に例示するように、検査データ取得部15が取得する検査データは、検査対象となる任意の建造物の各部材を被写体とした画像データと、その画像を記録した各部材の位置情報を含む。図5の(a)部分は縦桁および横桁、(b)部分は床版下面、(c)部分は橋脚基礎部を被写体とした画像データを例示する。これらの部材の位置情報は、GPS(Global Positioning System)で得られた位置情報に基づいてもよい。例えば、GPS付きカメラを携帯した人員、GPS付きカメラを搭載したドローンあるいはロボットにて、部材の位置情報の対応づけられた画像データを記録する。検査データ取得手段は、検査データ取得部15の上記機能に対応する。
 建造物の各部材の被写体像をカメラで記録する際には、各部材が全てまんべんなく画像データに収められていればよく、撮影者あるいは撮影機器が重要な部材とそうでない部材を選別して撮影する必要はない。すなわち、撮影時には、撮影箇所を選別する必要はないが、その代り建造物の各部材をくまなく被写体に捉えて撮影する必要がある。
 なお、後述の損傷情報抽出処理に必要なのは、部材の地球上の位置情報ではなく、建造物における各部材の存在位置の情報であるため、地球上の位置情報は、検査対象の建造物に設定された局所的座標における建造物上の相対的な位置情報に変換する必要がある。例えば、この変換は、地球上の位置情報を建造物上に適宜設定された座標(例えば、橋の起点を原点としたXYZ座標)に変換することで行われる。これは単なる線型変換で実現できる。以下では、検査データに含まれる部材の位置情報は、建造物上の部材の位置情報であるものとする。
 検査データ取得部15は、上述のGPS付きカメラを搭載したドローンあるいはロボットといった可動機器から検査データを取得してもよいし、検査データ取得部15自身が検査データを生成する機器であってもよい。
 検査データ分析部16は、検査特定部14によって検査対象として特定された部材位置に対応する画像データを検査データ取得部15から取得して分析し、この画像データから、検査対象として特定された損傷種類の損傷が存在するか否か、および、その損傷が存在する場合はその損傷の程度を決定する。以下では、これらの損傷の有無および損傷の程度を示す情報を、損傷情報と呼ぶ。損傷情報抽出手段は、検査データ分析部16の上記機能に対応する。
 これは例えば、床版のひび割れ、剥離、または鉄筋露出の範囲の幅、長さおよび面積、鉄筋露出の単位面積あたりの本数、主桁のたわみの長さ、主桁の鋼製部材の腐食の面積、亀裂の長さ、ボルトまたはナットの脱落の数、橋脚の洗掘、沈下、移動、および傾斜の長さを、検査位置の部材を被写体とした画像を分析することで決定する。なお、画像とともにスケールを写しておけば、長さ、幅、範囲に関する損傷の程度の決定が容易である。また、各種の画像解析を使用することで、損傷とその周囲の健全箇所との色の違いを識別し、腐食、石灰析出、鉄筋露出などの色の変化を伴う損傷範囲を決定できる。画像分析ができない場合は、ユーザの手動入力によって、損傷情報を決定してもよい。
 健全度判定部31は、検査データ分析部16が分析した、部材位置ごとの損傷の程度に基づいて、検査対象の建造物の健全度を判定する。建造物の健全度とは、建造物の安全性を段階的または数値的に評価したものである。
 健全度判定部31による健全度判定のルールは例えば次のようになる。まず健全度判定部31は、個別の検査対象の部材位置の損傷の程度から、「部分的な劣化顕著」、「部分的な劣化あり」、「劣化なし」の3段階の中からいずれか1つを、個別の検査対象位置ごとの健全度に判定する。そして、健全度判定部31は、「部分的な劣化顕著」と判定された検査対象位置が、規定数A、例えば9を超えた場合、建造物全体の健全度を「全体的な劣化顕著」と判定する。
 健全度判定部31は、「部分的な劣化顕著」と判定された検査対象位置が規定数B以上かつ規定数A以下、例えば5から9の間に達した場合、建造物全体の健全度を「部分的な劣化顕著」と判定する。
 健全度判定部31は、「部分的な劣化顕著」と判定された検査対象位置が1以上かつ規定数B以下、例えば1から4の間に達した場合、建造物全体の健全度を「部分的な劣化あり」と判定する。
 健全度判定部31は、「部分的な劣化顕著」と判定された検査対象位置が0の場合、建造物全体の健全度を「劣化なし」と判定する。
 健全度の区分は上記に限らず、3つ未満の段階でもよいし、4つ以上の段階でもよい。また区分する内容も上記に限らず、例えば、「措置不要」、「監視必要」、「早急な対策必要」、および「緊急な対策必要」といった4段階で健全度が区分されてもよい。
 各部材の損傷程度を考慮した健全度の判定は、上記のように事前に判定の基準がルール化されたものでもよいが、他の方法でも可能である。例えば、健全度判定部31による、各部材の損傷程度や建造物の使用環境を考慮した健全度の判定は、非特許文献1のような統計的手法によって行うことも可能である。
 あるいは、検査対象となる建造物以外の他の1または複数の建造物の構造情報、損傷の位置、損傷の程度、および健全度を対応づけた健全度情報を健全度DB34に記憶しておき、健全度判定部31は、検査対象の建造物の構造情報、損傷の位置および損傷の程度に類似する他の建造物の構造情報、損傷の位置および損傷の程度に対応する健全度を健全度データベース34から検索し、検索された他の建造物の健全度に基づいて、検査対象の建造物の健全度を判定してもよい。類似するか否かは、建造物の構造情報、損傷の位置、および損傷の程度を特徴ベクトルとする特徴空間での、検査対象となる建造物と他の建造物との間の距離を算出し、この距離の大きさにより判断できる。そして、例えばこの距離の最小値を与える他の建造物の健全度を、検査対象となる建造物の健全度と判定する。この距離は、重みづけされていない距離(ユークリッド距離)でもよいし、重みづけされている距離(マハラノビス距離)でもよい。どのパラメータにどのような重みを割り当てるかは、非特許文献1のような主成分分析などの統計的手法で決定されてもよい。さらに、健全度データベース34に記憶される健全度は、専門知識を持った人員の判定によるものが望ましい。上記距離がある閾値以下となる複数の建造物の健全度を単純平均または加重平均した値を、検査対象となる建造物の健全度と判定することもできる。この閾値は統計的手法によって最適化できる。
 さらに例えば、検査対象の建造物以外の他の1または複数の建造物の構造情報、損傷の位置、損傷の程度、使用環境履歴情報、および健全度を対応づけた健全度情報を健全度DB34に記憶しておき、健全度判定部31は、検査対象の建造物の構造情報、損傷の位置、損傷の程度、および使用環境履歴情報に類似する他の建造物の構造情報、損傷の位置、損傷の程度、および使用環境履歴情報に対応する健全度を健全度データベース34から検索し、検索された他の建造物の健全度に基づいて、検査対象の建造物の健全度を判定してもよい。類似するか否かは、建造物の構造情報、損傷の位置、損傷の程度、および使用環境履歴情報を特徴ベクトルとする特徴空間での、検査対象となる建造物と他の建造物との間の距離の大きさにより判断できる。そして、例えばこの距離の最小値を与える他の建造物の健全度を、検査対象となる建造物の健全度と判定する。この距離は、重みづけされていない距離(ユークリッド距離)でもよいし、重みづけされている距離(マハラノビス距離)でもよい。どのパラメータにどのような重みを割り当てるかは、非特許文献1のような主成分分析などの統計的手法で決定されてもよい。さらに、健全度データベース34に記憶される健全度は、専門知識を持った人員の判定によるものが望ましい。上記距離がある閾値以下となる複数の建造物の健全度を単純平均または加重平均した値を、検査対象となる建造物の健全度と判定することもできる。この閾値は統計的手法によって最適化できる。なお、記憶手段は、健全度DB34の上記機能に対応する。また、健全度判定手段は、健全度判定部31の上記機能に対応する。
 健全度出力部32は、ディスプレイ、プリンタ、およびスピーカなどで構成されており、健全度判定部31が判定した建造物全体の健全度を画像、文字、および音声などに変換して出力する。健全度出力部32は、検査対象の建造物の構造情報、損傷の位置、損傷の程度、および使用環境履歴情報に類似する他の1または複数の建造物の構造情報、損傷の位置、損傷の程度、および使用環境履歴情報のうちの全部または一部の情報を、代表例として共に出力してもよい。なお、健全度出力手段は、健全度出力部32の上記機能に対応する。
 健全度確認入力部33は、健全度判定部31が判定した建造物全体の健全度が妥当か否か、あるいは修正すべきか否かの確認入力をユーザに促して、その確認入力を受け付ける。健全度確認入力部33は、確認入力に応じて、健全度判定部31が判定した建造物全体の健全度か、または、修正された健全度を、健全度出力部32、健全度DB34、プリンタ、記録媒体、およびネットワークなどに出力する。なお、健全度確認入力手段は、健全度確認入力部33の上記機能に対応する。
 健全度判定部31は、この確認入力後の検査対象の建造物全体の健全度と、検査対象の建造物の構造情報、損傷の位置、損傷の程度、および使用環境履歴情報(ただし使用環境履歴情報が健全度の判定に使用された場合)を、新たな健全度情報として健全度DB34に蓄積してもよい。専門要員によって判定された実際の健全度との相違の程度を統計データ化し、この相違が生じる要素となった健全度DB34の健全度情報を削除や訂正するなどして、健全度DB34の健全度情報を最適化してもよい。なお、記憶制御手段は、健全度判定部31の上記機能に対応する。
 図6は損傷情報抽出装置200の実行する損傷情報抽出処理のフローチャートである。この処理を損傷情報抽出装置200に実行させるためのプログラムは、損傷情報抽出装置200のフラッシュメモリなどのコンピュータ読み取り可能な記憶媒体に記憶されている。
 S1(構造情報取得ステップ)では、検査特定部14は、建造物構造情報DB18に蓄積された建造物の構造情報の中から、検査対象となる建造物の構造情報を取得する。
 S2では、検査特定部14は、使用環境履歴情報DB17に蓄積された使用環境履歴情報の中から、検査対象となる建造物の使用環境履歴情報を取得する。なお、使用環境情報取得手段は、検査特定部14の上記機能に対応する。
 S3(検査特定ステップ)では、検査特定部14は、S1で取得された建造物の構造情報と、S2で取得された使用環境履歴情報とに基づき、検査対象とする部材位置と、その部材位置で検査対象とする損傷種類を特定する。なお、使用環境履歴情報がない場合、検査特定部14は、S1で取得された建造物の構造情報に基づき、検査対象とする部材位置と、その部材位置で検査対象とする損傷種類を特定する。
 S4(検査データ取得ステップ)では、検査データ取得部15は、検査対象となる任意の建造物の各部材の被写体像を撮影および記録した画像データと、その画像を記録した各部材の位置情報とを含む検査データを取得する。上述のように、この画像データには、各部材がまんべんなく被写体として収められている。
 S5(損傷情報抽出ステップ)では、検査データ分析部16は、検査特定部14によって検査対象として特定された部材位置に対応する画像データを検査データ取得部15から取得して分析し、この画像データから、検査対象として特定された損傷種類の損傷が存在するか否か、および、その損傷が存在する場合はその損傷の程度を決定する。検査データ分析部16は、検査対象として特定されていない部材位置に対応する画像データは分析しないので、重要でない部材の損傷の分析は省略される。ただし、検査特定部14の特定していない部材位置であっても、ユーザの指示に応じて、個別に検査対象の部材位置に指定した上で、検査データ分析部16に分析させることもできる。
 以上の処理により、建造物の不特定の各部材を被写体とした画像データのうち、重要な部材位置に対応する画像データから損傷情報を抽出することができる。したがって、建造物の設置現場で時間を費やすことなく、重要な部材位置の損傷情報を効率的に得ることができる。
 図7は健全度判定装置300の実行する健全度判定処理のフローチャートである。この処理を健全度判定装置300に実行させるためのプログラムは、健全度判定装置300のフラッシュメモリなどのコンピュータ読み取り可能な記憶媒体に記憶されている。
 S11では、健全度判定部31は、損傷情報抽出装置200の損傷情報抽出処理で得られた、部材位置ごとの損傷種類と損傷程度を取得する。
 S12では、健全度判定部31は、部材位置ごとの損傷程度に基づいて、検査対象の建造物の健全度を判定する。この健全度の判定の仕方は、上記のように、ルールによるもの、統計的手法によるもの、あるいは過去の類似事例の検索によるもの、あるいはこれらの一部または全部の組み合わせのうちいずれによってもよい。ただし、健全度判定部31は、損傷情報抽出装置200で得られた、部材位置ごとの損傷種類と損傷程度を含む損傷情報を健全度判定に必ず利用する。
 S13では、健全度出力部32は、S12で判定された健全度をディスプレイやプリンタなどに出力する。
 以上の処理により、建造物の不特定の各部材を被写体とした画像データのうち、重要な部材位置に対応する画像データから損傷情報を抽出し、この損傷情報から効率的に建造物の健全度を判定できる。
 なお、本発明の適用範囲は、橋梁に限定されず、トンネル、シェッド、カルバート、のり面工、擁壁、ダム、および護岸といった土木構造物や、ビル、およびマンションのような建築物など、建造物全般に適用することができる。すなわち、建造物の種類とその使用環境に応じて、適切な検査対象の部材位置と損傷種類を決定し、部材位置ごとの画像データから建造物の健全度を判定することが可能である。
 例えば、検査対象が矢板工法で施工されたトンネルであり、使用環境履歴情報では、トンネルの設置箇所が寒冷地山間部とされているとする。この場合、覆工については、縦断打ち継ぎ目、横断打ち継ぎ目、横断方向目地、縦断方向目地、天端付近、および覆工スパンの中間付近を検査対象の部材位置に決定し、検査対象の損傷種類は、これらの継ぎ目、目地、天端に連続するひび割れ、覆工スパンの中間付近のひび割れ、これらのひび割れによるひびの細片化、浮き、剥離、変色、漏水、および段差などとなる。これは、温度伸縮によるひび割れなどが発生しやすい箇所を重点的に検査するためである。また、使用環境履歴情報において、補修済みの箇所、コールドジョイント、およびジャンカの発生箇所が示されている場合、その位置を検査対象の部材位置に決定し、当該位置におけるひび割れなどの変状を検査対象の損傷種類とする。これらは構造的に脆弱で変状の生じやすい部分だからである。
 そして、それらの各部材位置の損傷の程度によって、検査対象の建築物の健全度を「全体的な劣化顕著」、「部分的な劣化あり」、および「劣化なし」の3段階の中からいずれか1つを健全度に判定する。
 あるいは、検査対象がRC造建築物の場合、柱、梁、壁、および床スラブといった躯体を構成する部材を被写体とした画像データを、その部材の存在位置と対応づけて記録しておき、その画像データから、各部材に対応する損傷種類、例えば、ひび割れ、塗装剥離、鉄筋露出、塗装面のチョーキング、および漏水といった損傷種類の有無とその程度を検出し、それらの損傷の程度によって、検査対象の建築物の健全度を「全体的な劣化顕著」、「部分的な劣化あり」、および「劣化なし」の3段階の中からいずれか1つを健全度に判定する。
 橋梁以外の建造物における健全度の判定は、ルールによるもの、統計的手法によるもの、あるいは過去の類似事例の検索によるもの、あるいはこれらの一部または全部の組み合わせのうちいずれによってもよい。
14…検査特定部、15…検査データ取得部、16…検査データ分析部、17…使用環境履歴情報データベース、18…建造物構造情報データベース、31…健全度判定部、32…健全度出力部

Claims (13)

  1.  建造物の構造情報を取得する構造情報取得手段と、
     前記構造情報取得手段が取得した前記建造物の構造情報に基づいて、前記建造物の検査位置と検査対象損傷種類を特定する検査特定手段と、
     前記建造物の検査位置を被写体とした画像データおよび前記建造物の検査位置が対応づけられた検査データを取得する検査データ取得手段と、
     前記検査データ取得手段で取得された検査データのうち、前記検査特定手段で特定された検査位置に対応する画像データの中から、前記検査特定手段で特定された検査対象損傷種類に対応する損傷情報を抽出する損傷情報抽出手段と、
     を備える損傷情報抽出装置。
  2.  前記構造情報取得手段は、前記建造物を被写体とした画像データから前記建造物の構造情報を取得する請求項1に記載の損傷情報抽出装置。
  3.  前記損傷情報は、前記検査対象損傷種類に対応する損傷の位置および損傷の程度を含む請求項1または2に記載の損傷情報抽出装置。
  4.  前記建造物以外の他の1または複数の建造物の構造情報、損傷の位置、損傷の程度、および健全度を対応づけた健全度情報を記憶する記憶手段と、
     前記建造物の構造情報、損傷の位置および損傷の程度に類似する前記他の建造物の構造情報、損傷の位置および損傷の程度に対応する健全度を検索し、検索された前記他の建造物の健全度に基づいて、前記建造物の健全度を判定する健全度判定手段と、
     をさらに備える請求項3に記載の損傷情報抽出装置。
  5.  前記健全度判定手段の判定した前記建造物の健全度を出力する健全度出力手段をさらに備える請求項4に記載の損傷情報抽出装置。
  6.  前記健全度出力手段の出力した前記建造物の健全度の適否に関する確認入力を受け付ける健全度確認入力手段と、
     前記健全度確認入力手段が入力を受け付けた前記建造物の健全度の適否に関する確認入力に応じて、前記健全度判定手段の判定した前記建造物の健全度を、前記建造物の構造情報、損傷の位置、および損傷の程度と対応づけて前記記憶手段に記憶させるか、または、前記健全度判定手段の判定した前記建造物の健全度を修正し、修正された前記建造物の健全度を、前記建造物の構造情報、損傷の位置、および損傷の程度と対応づけて前記記憶手段に記憶させる記憶制御手段と、
     をさらに備える請求項5に記載の損傷情報抽出装置。
  7.  前記建造物の使用環境情報を取得する使用環境情報取得手段を備え、
     前記検査特定手段は、前記構造情報取得手段が取得した前記建造物の構造情報と前記使用環境情報取得手段が取得した前記建造物の使用環境情報に基づいて、前記建造物の検査位置と検査対象損傷種類を特定する請求項3に記載の損傷情報抽出装置。
  8.  前記建造物以外の他の1または複数の建造物の構造情報、損傷の位置、損傷の程度、使用環境情報、および健全度を対応づけた健全度情報を記憶する記憶手段と、
     前記建造物の構造情報、損傷の位置、損傷の程度、および使用環境情報に類似する前記他の建造物の構造情報、損傷の位置、損傷の程度、および使用環境情報に対応する健全度を検索し、検索された前記他の建造物の健全度に基づいて、前記建造物の健全度を判定する健全度判定手段と、
     をさらに備える請求項7に記載の損傷情報抽出装置。
  9.  前記健全度判定手段の判定した前記建造物の健全度を出力する健全度出力手段をさらに備える請求項8に記載の損傷情報抽出装置。
  10.  前記健全度出力手段の出力した前記建造物の健全度の適否に関する確認入力を受け付ける健全度確認入力手段と、
     前記健全度確認入力手段が入力を受け付けた前記建造物の健全度の適否に関する確認入力に応じて、前記健全度判定手段の判定した前記建造物の健全度を、前記建造物の構造情報、損傷の位置、損傷の程度、および使用環境情報と対応づけて前記記憶手段に記憶させるか、または、前記健全度判定手段の判定した前記建造物の健全度を修正し、修正された前記建造物の健全度を、前記建造物の構造情報、損傷の位置、損傷の程度、および使用環境情報と対応づけて前記記憶手段に記憶させる記憶制御手段と、
     をさらに備える請求項9に記載の損傷情報抽出装置。
  11.  前記健全度出力手段は、検索された前記他の建造物の健全度に関連する健全度情報の一部または全部を、前記建造物の健全度とともに出力する請求項5、6、9または10に記載の損傷情報抽出装置。
  12.  コンピュータが、
     建造物の構造情報を取得する構造情報取得ステップと、
     前記構造情報取得ステップが取得した前記建造物の構造情報に基づいて、前記建造物の検査位置と検査対象損傷種類を特定する検査特定ステップと、
     前記建造物の検査位置を被写体とした画像データおよび前記建造物の検査位置が対応づけられた検査データを取得する検査データ取得ステップと、
     前記検査データ取得ステップで取得された検査のうち、前記検査特定ステップで特定された検査位置に対応する画像データの中から、前記検査特定ステップで特定された検査対象損傷種類に対応する損傷情報を抽出する損傷情報抽出ステップと、
     を実行する損傷情報抽出方法。
  13.  請求項12に記載の損傷情報抽出方法をコンピュータに実行させるための損傷情報抽出プログラム。
PCT/JP2016/074008 2015-09-10 2016-08-17 損傷情報抽出装置、損傷情報抽出方法および損傷情報抽出プログラム WO2017043276A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017539090A JP6454422B2 (ja) 2015-09-10 2016-08-17 損傷情報抽出装置、損傷情報抽出方法および損傷情報抽出プログラム
EP16844139.2A EP3348986A4 (en) 2015-09-10 2016-08-17 Damage information extraction device, damage information extraction method and damage information extraction program
CN201680052543.5A CN108027301B (zh) 2015-09-10 2016-08-17 损伤信息提取装置、损伤信息提取方法及损伤信息提取程序
US15/905,579 US10803426B2 (en) 2015-09-10 2018-02-26 Damage information extraction device, damage information extraction method, and damage information extraction program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-178454 2015-09-10
JP2015178454 2015-09-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/905,579 Continuation US10803426B2 (en) 2015-09-10 2018-02-26 Damage information extraction device, damage information extraction method, and damage information extraction program

Publications (1)

Publication Number Publication Date
WO2017043276A1 true WO2017043276A1 (ja) 2017-03-16

Family

ID=58239451

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/074008 WO2017043276A1 (ja) 2015-09-10 2016-08-17 損傷情報抽出装置、損傷情報抽出方法および損傷情報抽出プログラム

Country Status (5)

Country Link
US (1) US10803426B2 (ja)
EP (1) EP3348986A4 (ja)
JP (2) JP6454422B2 (ja)
CN (1) CN108027301B (ja)
WO (1) WO2017043276A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018179881A (ja) * 2017-04-19 2018-11-15 株式会社NejiLaw 建造物モニタリングシステム、建造物モニタリング方法
JP2019052954A (ja) * 2017-09-15 2019-04-04 エナジー・ソリューションズ株式会社 検査システム、検査方法、サーバ装置、及びプログラム
US11790505B2 (en) 2020-07-01 2023-10-17 Toyota Jidosha Kabushiki Kaisha Information processing apparatus, information processing method, and information processing system

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017051735A1 (ja) * 2015-09-25 2017-03-30 富士フイルム株式会社 撮像支援システム及び装置及び方法、並びに撮像端末
US11714024B2 (en) 2017-11-30 2023-08-01 University Of Kansas Vision-based fatigue crack detection using feature tracking
US11354814B2 (en) 2018-03-23 2022-06-07 University Of Kansas Vision-based fastener loosening detection
US11080838B1 (en) 2018-08-13 2021-08-03 State Farm Mutual Automobile Insurance Company Systems and methods for image labeling using artificial intelligence
WO2020041319A1 (en) 2018-08-21 2020-02-27 University Of Kansas Fatigue crack detection in civil infrastructure
JP7351849B2 (ja) * 2018-11-29 2023-09-27 富士フイルム株式会社 構造物の損傷原因推定システム、損傷原因推定方法、及び損傷原因推定サーバ
WO2020110560A1 (ja) * 2018-11-29 2020-06-04 富士フイルム株式会社 コンクリート構造物の点検支援装置、点検支援方法及び点検支援プログラム
JP7429648B2 (ja) 2018-12-13 2024-02-08 富士フイルム株式会社 損傷図作成支援装置、損傷図作成支援方法、損傷図作成支援プログラム及び損傷図作成支援システム
EP4006842A4 (en) * 2019-07-23 2022-09-07 FUJIFILM Corporation DEVICE, METHOD AND PROGRAM FOR ASSESSING CRACKS
US20210082151A1 (en) * 2019-09-14 2021-03-18 Ron Zass Determining image capturing parameters in construction sites from previously captured images
JP7471570B2 (ja) * 2019-09-25 2024-04-22 株式会社イクシス 建物構造物診断システム
JP7321452B2 (ja) * 2019-10-11 2023-08-07 Biprogy株式会社 プログラム、情報処理装置、情報処理方法及び学習済みモデルの生成方法
CN110672154A (zh) * 2019-10-14 2020-01-10 陕西理工大学 土木工程建筑监测系统
CN111311555B (zh) * 2020-01-22 2023-07-14 哈尔滨工业大学 大型智能临时看台安全性检测系统
JP6829333B1 (ja) * 2020-02-07 2021-02-10 株式会社神名テックス 料金出力装置、料金出力方法及び料金出力システム
CN111950070B (zh) * 2020-08-31 2022-05-10 江苏工程职业技术学院 一种监督建筑施工安全性的方法和装置
JP6807093B1 (ja) * 2020-09-24 2021-01-06 株式会社センシンロボティクス 点検システム及び管理サーバ、プログラム、ヒビ割れ情報提供方法
JP6960643B1 (ja) * 2020-09-24 2021-11-05 株式会社センシンロボティクス 点検システム及び管理サーバ、プログラム、ヒビ割れ情報提供方法
JP6807092B1 (ja) * 2020-09-24 2021-01-06 株式会社センシンロボティクス 点検システム及び管理サーバ、プログラム、ヒビ割れ情報提供方法
CN112435253B (zh) * 2020-12-08 2023-06-27 深圳创维数字技术有限公司 墙体脱落检测方法、装置及可读存储介质
CN112613408B (zh) * 2020-12-23 2022-10-04 宁波市交通建设工程试验检测中心有限公司 一种安全帽视频检测方法、系统、存储介质及安全帽
CN113049034A (zh) * 2021-03-11 2021-06-29 合肥轩丐智能科技有限公司 基于人工智能的大跨度桥梁桥墩支承结构健康智能监测方法
CN113237885B (zh) * 2021-04-22 2024-01-26 西安石油大学 一种基于结构健康监测数据的建筑性能评估方法
CN113469652A (zh) * 2021-06-30 2021-10-01 上海市建筑科学研究院有限公司 基于云平台的既有建筑损伤记录系统
CN116318475B (zh) * 2023-05-16 2023-07-21 武汉能钠智能装备技术股份有限公司四川省成都市分公司 无线电频谱监控系统及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1021211A (ja) * 1996-06-28 1998-01-23 Taisei Corp ニューラルネットワークおよびコンクリート構造物中の鉄筋腐食の評価方法および予測方法
JP2011048760A (ja) * 2009-08-28 2011-03-10 Fujifilm Corp 建設検査支援装置、建設検査システム、建設検査支援方法および建設検査支援プログラム
JP2014159981A (ja) * 2013-02-19 2014-09-04 Kddi Corp 検査補助装置
US20140336928A1 (en) * 2013-05-10 2014-11-13 Michael L. Scott System and Method of Automated Civil Infrastructure Metrology for Inspection, Analysis, and Information Modeling

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4088448B2 (ja) * 2002-01-21 2008-05-21 日本総合住生活株式会社 外壁検査装置および外壁検査方法並びに外壁検査診断システム
JP4279159B2 (ja) 2004-01-21 2009-06-17 財団法人鉄道総合技術研究所 トンネル健全度診断システム
JP2006338312A (ja) 2005-06-01 2006-12-14 Usric Co Ltd 調査支援装置、調査支援システム、調査支援方法、及びプログラム
JP5191873B2 (ja) 2008-12-04 2013-05-08 阪神高速道路株式会社 橋梁床版の亀裂検出方法
US9158869B2 (en) * 2011-01-11 2015-10-13 Accurence, Inc. Method and system for property damage analysis
US9721264B2 (en) * 2011-01-11 2017-08-01 Accurence, Inc. Method and system for property damage analysis
JP5803723B2 (ja) * 2012-02-14 2015-11-04 富士通株式会社 構造物点検支援方法、構造物点検支援プログラム及び構造物点検支援装置
US9002719B2 (en) * 2012-10-08 2015-04-07 State Farm Mutual Automobile Insurance Company Device and method for building claim assessment
EP4220506A1 (de) 2013-10-30 2023-08-02 Screening Eagle Dreamlab Pte. Ltd. Anordnung und verfahren zur inspektion eines objekts, insbesondere eines bauwerks
JP6349607B2 (ja) * 2014-02-26 2018-07-04 ジオ・サーチ株式会社 岸壁又は堤防の空洞探査方法及び危険性評価方法
CN204944448U (zh) * 2015-09-25 2016-01-06 浙江中技建设工程检测有限公司 既有建筑变形及缺陷的检测装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1021211A (ja) * 1996-06-28 1998-01-23 Taisei Corp ニューラルネットワークおよびコンクリート構造物中の鉄筋腐食の評価方法および予測方法
JP2011048760A (ja) * 2009-08-28 2011-03-10 Fujifilm Corp 建設検査支援装置、建設検査システム、建設検査支援方法および建設検査支援プログラム
JP2014159981A (ja) * 2013-02-19 2014-09-04 Kddi Corp 検査補助装置
US20140336928A1 (en) * 2013-05-10 2014-11-13 Michael L. Scott System and Method of Automated Civil Infrastructure Metrology for Inspection, Analysis, and Information Modeling

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3348986A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018179881A (ja) * 2017-04-19 2018-11-15 株式会社NejiLaw 建造物モニタリングシステム、建造物モニタリング方法
JP2019052954A (ja) * 2017-09-15 2019-04-04 エナジー・ソリューションズ株式会社 検査システム、検査方法、サーバ装置、及びプログラム
JP7045030B2 (ja) 2017-09-15 2022-03-31 エナジー・ソリューションズ株式会社 検査システム、検査方法、サーバ装置、及びプログラム
US11790505B2 (en) 2020-07-01 2023-10-17 Toyota Jidosha Kabushiki Kaisha Information processing apparatus, information processing method, and information processing system

Also Published As

Publication number Publication date
EP3348986A4 (en) 2018-10-17
CN108027301B (zh) 2019-07-19
JP6454422B2 (ja) 2019-01-16
JP6666416B2 (ja) 2020-03-13
CN108027301A (zh) 2018-05-11
US10803426B2 (en) 2020-10-13
US20180189749A1 (en) 2018-07-05
JP2019039936A (ja) 2019-03-14
JPWO2017043276A1 (ja) 2018-07-12
EP3348986A1 (en) 2018-07-18

Similar Documents

Publication Publication Date Title
JP6454422B2 (ja) 損傷情報抽出装置、損傷情報抽出方法および損傷情報抽出プログラム
JP6454790B2 (ja) 健全度判定装置、健全度判定方法および健全度判定プログラム
JP6454793B2 (ja) 健全度判定装置、健全度判定方法および健全度判定プログラム
JP6472894B2 (ja) メンテナンス計画立案支援システム、方法およびプログラム
US11935143B2 (en) Structure repair method selection system, structure repair method selection method, and structure repair method selection server
Chun et al. Utilization of unmanned aerial vehicle, artificial intelligence, and remote measurement technology for bridge inspections
Limongelli et al. Bridge structural monitoring: The Lombardia regional guidelines
Sangiorgio et al. User-reporting based decision support system for reinforced concrete building monitoring
Chen et al. A lightweight bridge inspection system using a dual-cable suspension mechanism
KR20220023267A (ko) 합성곱 신경망(cnn)을 이용한 시각적 교량 검사 방법 및 시스템
Sousa et al. Next generation of Monitoring Systems towards Infrastructure Resilience
Muhit et al. A framework for digital twinning of masonry arch bridges
Wang et al. Application of unmanned aerial vehicle (UAV) technology on damage inspection of reinforced concrete structures
Khalil et al. State of the art review on structural health monitoring concept for bridges
FADDA et al. Vulnerability assessment of concrete bridges using different methods of visual inspection
Chinh Proposed SHM system with acoustic emission (AE) technology for Tran Hoang Na steel arch bridge
Idris et al. High-Rise Building Inspection by Using Unmanned Aerial Vehicles
Ge et al. Unmanned Aerial Vehicle-Assisted Assessment of Cable-Stayed Bridge Slant Cables and Piers: Methods and Applications
Kreslin et al. Validation of the digital inspection of bridges
Pasupuleti Global Health Assessment of Structures Using NDT and Machine Learning
Tsuchimoto et al. Rapid Post-earthquake Safety Assessment System for Buildings using Sparse Acceleration Measurement
Ziehl et al. Building Smarter Cities via Intelligent Asset Management: South Carolina Case Study Using IBM Maximo Application
Ehtisham et al. Role and Importance of Structural Health Monitoring in Under Developing Countries Like Pakistan
CN116433214A (zh) 一种冷却塔健康监测方法、系统、设备及介质
Duke SHM to Support Preventive Maintenance of Transportation Structures

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16844139

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017539090

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE