WO2017041347A1 - Psva型液晶显示面板及其制作方法 - Google Patents

Psva型液晶显示面板及其制作方法 Download PDF

Info

Publication number
WO2017041347A1
WO2017041347A1 PCT/CN2015/091728 CN2015091728W WO2017041347A1 WO 2017041347 A1 WO2017041347 A1 WO 2017041347A1 CN 2015091728 W CN2015091728 W CN 2015091728W WO 2017041347 A1 WO2017041347 A1 WO 2017041347A1
Authority
WO
WIPO (PCT)
Prior art keywords
passivation layer
substrate
liquid crystal
display panel
crystal display
Prior art date
Application number
PCT/CN2015/091728
Other languages
English (en)
French (fr)
Inventor
甘启明
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US14/786,552 priority Critical patent/US20170322456A1/en
Publication of WO2017041347A1 publication Critical patent/WO2017041347A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133707Structures for producing distorted electric fields, e.g. bumps, protrusions, recesses, slits in pixel electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136227Through-hole connection of the pixel electrode to the active element through an insulation layer
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/26Phase shift masks [PSM]; PSM blanks; Preparation thereof
    • G03F1/32Attenuating PSM [att-PSM], e.g. halftone PSM or PSM having semi-transparent phase shift portion; Preparation thereof
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133715Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films by first depositing a monomer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a PSVA type liquid crystal display panel and a method of fabricating the same.
  • TFT-LCD Active Thin Film Transistor-LCD
  • TN Twisted Nematic
  • STN Super Twisted Nematic
  • IPS In -Plane Switching
  • VA Vertical Alignment
  • the VA type liquid crystal display has a very high contrast ratio with respect to other types of liquid crystal displays, and has a very wide application in a large-sized display such as a television.
  • the polymer-stabilized vertical alignment (PSVA) wide viewing angle technology enables the liquid crystal display panel to have a fast response time and a high transmittance, and is characterized in that a polymer protrusion is formed on the surface of the alignment film. Thereby the liquid crystal molecules have a pretilt angle.
  • a general PSVA pixel structure is a patterning process in which a pixel electrode deposited thereon is patterned after a passivation layer for channel protection on the array substrate is completed. As shown in FIG. 1 , it is a conventional PSVA type liquid crystal display panel including an upper substrate 100 including a first substrate 110 and a planar common electrode 120, and a lower substrate 200 including a second substrate.
  • the pixel electrode 230 processed into the "m-shaped" pattern has a pattern in which the pixel electrode branches and slits are extended in different directions, the electric field formed by the common electrode 120 on the upper substrate 110 on the opposite side is not formed. In each case, the electric field corresponding to the branch region of the pixel electrode is significantly stronger than the electric field corresponding to the slit region, resulting in a phenomenon of uneven brightness in the pixel.
  • the passivation layer 220' in the PSVA type liquid crystal display panel is a patterned passivation layer, including a plurality of trenches 222 extending in different directions.
  • the pixel electrode 230' is a full-surface electrode, and the entire surface is attached to the patterned passivation layer 220' and has a corresponding pattern with the passivation layer 220'.
  • the pixel electrode 230' passes through the passivation layer 220'.
  • the via is connected to the drain of the thin film transistor;
  • the depth of the via holes on the passivation layer 220' is not equal to the depth of the trenches 222.
  • two masks are required to perform two yellow light and two etchings.
  • the new PSVA liquid crystal display panel is usually fabricated. Includes the following steps:
  • Step 1 as shown in FIG. 3, a substrate 210 is provided, and a thin film transistor is formed on the substrate 210; the thin film transistor includes a gate, a source, and a drain 240;
  • Step 2 depositing a passivation layer 220' on the thin film transistor; coating a photoresist on the passivation layer 220', and exposing the photoresist by using a first mask And developing to obtain a first photoresist layer 510, wherein the first mask is used to form a trench on the passivation layer 220';
  • Step 3 as shown in FIG. 5, the first photoresist layer 510 is used as a shielding layer, and the passivation layer 220' is etched to obtain a plurality of trenches 222 on the patterned passivation layer 220';
  • Step 4 as shown in FIG. 6, the first photoresist layer 510 is peeled off, the photoresist is coated on the passivation layer 220', and the photoresist is exposed and developed by using the second mask. a second photoresist layer 520, the second mask is used to form a via hole on the passivation layer 220';
  • Step 5 as shown in Figure 7, the second photoresist layer 520 as a shielding layer, the passivation layer 220' is etched to obtain a via 224 on the passivation layer 220';
  • Step 6 As shown in FIG. 8, a pixel electrode layer 230' is formed on the passivation layer 220', and the pixel electrode 230' is connected to the drain through a via 224 on the passivation layer.
  • An object of the present invention is to provide a PSVA type liquid crystal display panel having a patterned passivation layer, the upper surface of the passivation layer having a plurality of depth grooves, which can compensate for the transmittance uniformity to a certain extent. It contributes to the improvement of the large viewing angle characteristics of the PSVA type liquid crystal display panel.
  • Another object of the present invention is to provide a method for fabricating a PSVA type liquid crystal display panel, which adopts a multi-tone mask (MTM) process and simultaneously obtains a multi-order mask through a photolithography process. Vias on the passivation layer and trenches of various depths reduce production costs and increase production efficiency.
  • MTM multi-tone mask
  • the present invention provides a PSVA type liquid crystal display panel, including an upper substrate, a lower substrate disposed opposite the upper substrate, and a liquid crystal layer between the upper substrate and the lower substrate;
  • the upper substrate includes a first substrate and a common electrode disposed on the first substrate;
  • the lower substrate includes a plurality of pixel units, each of the pixel units includes a second substrate and is disposed at the a thin film transistor on the second substrate, a passivation layer provided on the second substrate and the thin film transistor, and a pixel electrode disposed on the passivation layer;
  • the upper surface of the passivation layer has a plurality of trenches, and the plurality of trenches have three or more depths;
  • the pixel electrode is a full-surface electrode having a uniform thickness and continuous uninterrupted; the pixel electrode is entirely attached to the patterned passivation layer and has a corresponding pattern with the passivation layer. Thickness of the passivation layer
  • the thickness of the passivation layer is The depth of the groove is three, respectively.
  • the thin film transistor includes a gate, a source, and a drain, and the passivation layer is provided with a via hole corresponding to the drain, and the pixel electrode is connected to the drain of the thin film transistor through the via. .
  • the vias and trenches are simultaneously formed by a lithography process through a multi-level reticle.
  • the invention also provides a method for manufacturing a PSVA type liquid crystal display panel, comprising the following steps:
  • Step 1 providing a second substrate, forming a thin film transistor on the second substrate;
  • the thin film transistor includes a gate, a source, and a drain;
  • Step 2 depositing a passivation layer on the thin film transistor and the second substrate;
  • Step 3 coating a photoresist on the passivation layer, exposing and developing the photoresist by using a multi-level mask, the multi-level mask having a pattern on the passivation layer a fully exposed region forming a via, and a half-exposure region for forming a trench on the passivation layer, the semi-exposed region comprising three or more transmittances for forming trenches of three or more depths;
  • Step 4 using the photoresist layer as a shielding layer, etching the passivation layer to obtain a patterned passivation layer having a plurality of strips on the upper surface of the passivation layer a trench, and a via hole penetrating the passivation layer and corresponding to the drain, the trench having three or more depths;
  • Step 5 peeling off the remaining photoresist, sputtering a pixel electrode on the passivation layer; obtaining a lower substrate;
  • the pixel electrode is entirely on the patterned passivation layer and has a corresponding pattern with the passivation layer, and the pixel electrode is connected to the drain through the via hole;
  • Step 6 Providing an upper substrate, the upper substrate includes a first substrate, and a common electrode disposed on the first substrate; and the upper substrate and the lower substrate are aligned into a box to obtain a PSVA type liquid crystal display panel.
  • the half-exposure region of the multi-order reticle provided in the step 3 includes three kinds of transmittances, and the depth of the grooves formed in the step 4 is three, respectively
  • the thickness of the passivation layer deposited in the step 2 is
  • the passivation layer is etched by a dry etching process.
  • the present invention also provides a PSVA type liquid crystal display panel, comprising an upper substrate, a lower substrate disposed opposite the upper substrate, and a liquid crystal layer between the upper substrate and the lower substrate;
  • the upper substrate includes a first substrate and a common electrode disposed on the first substrate;
  • the lower substrate includes a plurality of pixel units, each of the pixel units includes a second substrate, a thin film transistor disposed on the second substrate, a passivation layer disposed on the second substrate and the thin film transistor, and a a pixel electrode on the passivation layer;
  • the upper surface of the passivation layer has a plurality of trenches, and the plurality of trenches have three or more depths;
  • the pixel electrode is a uniform surface electrode with uniform thickness and continuous uninterrupted; the pixel electrode is entirely attached to the patterned passivation layer and has a corresponding pattern with the passivation layer;
  • the thin film transistor includes a gate, a source, and a drain, and the passivation layer is provided with a via hole corresponding to the drain, and the pixel electrode passes through the via and the drain of the thin film transistor.
  • the via and the trench are simultaneously formed by a lithography process through a multi-level mask.
  • the present invention provides a PSVA type liquid crystal display panel and a method of fabricating the same, the PSVA type liquid crystal display panel of the present invention having a patterned passivation layer, the upper surface of the passivation layer having various depths
  • the groove can compensate for the transmittance uniformity to a certain extent, and contributes to the improvement of the large viewing angle characteristic of the PSVA type liquid crystal display panel;
  • the method for fabricating the PSVA type liquid crystal display panel of the present invention adopts a multi-order mask
  • the process utilizes a multi-level mask to simultaneously obtain vias on the passivation layer and trenches of various depths through a single photolithography process, thereby reducing production cost and improving production efficiency.
  • FIG. 1 is a schematic perspective view showing a conventional PSVA type liquid crystal display panel
  • FIG. 2 is a schematic perspective view showing another conventional PSVA type liquid crystal display panel
  • FIG. 3 is a schematic view showing the first step of the method for fabricating the PSVA type liquid crystal display panel of FIG. 2;
  • step 2 is a schematic diagram of step 2 of the method for fabricating the PSVA type liquid crystal display panel of FIG. 2;
  • step 3 is a schematic diagram of step 3 of the method for fabricating the PSVA type liquid crystal display panel of FIG. 2;
  • step 4 is a schematic diagram of step 4 of the method for fabricating the PSVA type liquid crystal display panel of FIG. 2;
  • step 5 is a schematic diagram of step 5 of the method for fabricating the PSVA type liquid crystal display panel of FIG. 2;
  • step 6 is a schematic diagram of step 6 of the method for fabricating the PSVA type liquid crystal display panel of FIG. 2;
  • FIG. 9 is a schematic flow chart of a method for fabricating a PSVA type liquid crystal display panel of the present invention.
  • step 3 is a schematic diagram of step 3 of a method for fabricating a PSVA type liquid crystal display panel of the present invention
  • step 4 is a schematic diagram of step 4 of a method for fabricating a PSVA type liquid crystal display panel of the present invention.
  • Fig. 12 is a schematic view showing the fifth step of the method of fabricating the PSVA type liquid crystal display panel of the present invention.
  • the present invention provides a PSVA type liquid crystal display panel including an upper substrate, a lower substrate 2 disposed opposite the upper substrate, and a liquid crystal layer between the upper substrate and the lower substrate 2;
  • the upper substrate includes a first substrate and a common electrode disposed on the first substrate;
  • the lower substrate 2 includes a plurality of pixel units, each of which includes a second substrate 21, a thin film transistor disposed on the second substrate 21, and a passivation layer disposed on the second substrate 21 and the thin film transistor. 22, and a pixel electrode 23 disposed on the passivation layer 22;
  • the upper surface of the passivation layer 22 has a plurality of trenches 221, and the plurality of trenches 221 have three or more depths;
  • the pixel electrode 23 is a full-surface electrode having a uniform thickness and continuous uninterrupted; the pixel electrode 23 is entirely attached to the patterned passivation layer 22 and has a corresponding pattern with the passivation layer 22.
  • the thickness of the passivation layer 22 is the thickness of the passivation layer 22 .
  • the depth of the trench 221 is three, respectively
  • the thin film transistor includes a gate, a source, and a drain 24.
  • the passivation layer 22 is provided with a via 223 corresponding to the drain 24, and the pixel electrode 23 passes through the via 223. Place The drains 24 are connected.
  • the via 223 and the trench 221 are formed through a lithography process through a multi-tone mask (MTM).
  • MTM multi-tone mask
  • the pixel electrode 23 is made entirely.
  • the surface is attached to the patterned passivation layer 22 and has a corresponding pattern with the passivation layer 22, since the plurality of trenches 221 have different depths, so that the liquid crystal display panel is at the trench 221 of different depths.
  • Different transmittances and different viewing angle characteristics contribute to the improvement of the large viewing angle characteristics of the PSVA type liquid crystal display panel.
  • the present invention further provides a method for fabricating a PSVA type liquid crystal display panel, comprising the following steps:
  • Step 1 providing a second substrate 21, forming a thin film transistor on the second substrate 21;
  • the thin film transistor includes a gate, a source, a drain 24;
  • Step 2 depositing a passivation layer 22 on the thin film transistor and the second substrate 21;
  • the thickness of the passivation layer 22 formed in this step is the thickness of the passivation layer 22 formed in this step.
  • Step 3 As shown in FIG. 10, a photoresist is coated on the passivation layer 22, and the photoresist is exposed and developed by using a multi-step mask to obtain a photoresist layer 50.
  • the gradation mask has a full exposure region for forming via holes on the passivation layer 22, and a half exposure region for forming a trench on the passivation layer 22, the half exposure region including three or more Transmittance is used to form trenches of more than three depths;
  • the pattern on the multi-level mask on the step 3 is transferred onto the photoresist layer 50;
  • Step 4 the passivation layer 22 is etched by using the photoresist layer 50 as a shielding layer to obtain a patterned passivation layer 22 having the patterned passivation layer 22 a plurality of trenches 221 on the upper surface of the passivation layer 22, and via holes 223 extending through the passivation layer 22 and corresponding to the drain electrodes 24, the plurality of trenches 221 having at least three kinds of depths ;
  • the passivation layer 22 is etched by a dry etching process
  • the half-exposure region of the multi-order reticle provided in the step 3 includes three kinds of transmittances, and the depth of the trenches 221 formed in the step 4 is corresponding to three types, respectively
  • Step 5 as shown in Figure 12, the remaining photoresist layer 50 is stripped, the pixel electrode 23 is sputtered on the passivation layer 22; the lower substrate 2 is obtained;
  • the pixel electrode 23 is entirely attached to the patterned passivation layer 22 and has a corresponding pattern with the passivation layer 22, and the pixel electrode 23 is connected to the drain electrode 24 through the via hole 223;
  • Step 6 Providing an upper substrate, the upper substrate includes a first substrate, and a common electrode disposed on the first substrate; and the upper substrate and the lower substrate are aligned into a box to obtain a PSVA type liquid crystal display panel.
  • a multi-step mask is used to simultaneously form via holes 223 in the passivation layer 22 and a plurality of depths on the upper surface of the passivation layer 22 in a photolithography process.
  • Different grooves 221 can reduce the number of masks and reduce the process, which saves cost and improves production efficiency.
  • the present invention provides a PSVA type liquid crystal display panel and a method of fabricating the same
  • the PSVA type liquid crystal display panel of the present invention has a patterned passivation layer, and the upper surface of the passivation layer has various depths.
  • the groove can compensate for the uniformity of the transmittance to a certain extent, and contributes to the improvement of the large viewing angle characteristic of the PSVA type liquid crystal display panel;
  • the manufacturing method of the PSVA type liquid crystal display panel of the present invention adopts the multi-order masking process By using a multi-step mask to obtain vias on the passivation layer and trenches of various depths through one photolithography process, the production cost is reduced and the production efficiency is improved.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Liquid Crystal (AREA)
  • Thin Film Transistor (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种PSVA型液晶显示面板及其制作方法,PSVA型液晶显示面板,具有图案化的钝化层(22),钝化层(22)的上表面具有多种深度的沟槽(221),能在一定程度上进行穿透率均一性弥补,有助于PSVA型液晶显示面板的大视角特性的提升;PSVA型液晶显示面板的制作方法,采用多阶调掩膜工艺,利用一张多阶调掩膜经一次光刻制程同时制得钝化层(22)上的过孔(223)和多种深度的沟槽(221),降低了生产成本,提高了生产效率。

Description

PSVA型液晶显示面板及其制作方法 技术领域
本发明涉及显示技术领域,尤其涉及一种PSVA型液晶显示面板及其制作方法。
背景技术
主动式薄膜晶体管液晶显示器(Thin Film Transistor-LCD,TFT-LCD)近年来得到了飞速的发展和广泛的应用。就目前主流市场上的TFT-LCD显示面板而言,可分为三种类型,分别是扭曲向列(Twisted Nematic,TN)或超扭曲向列(Super Twisted Nematic,STN)型,平面转换(In-Plane Switching,IPS)型、及垂直配向(Vertical Alignment,VA)型。其中VA型液晶显示器相对其他种类的液晶显示器具有极高的对比度,在大尺寸显示,如电视等方面具有非常广的应用。
其中,聚合物稳定垂直配向(polymer-stabilized vertical alignment,PSVA)广视角技术能够使液晶显示面板具有较快的响应时间、及穿透率高等优点,其特点是在配向膜表面形成聚合物突起,从而使液晶分子具有预倾角。一般的PSVA像素结构是在阵列基板上的用于沟道保护的钝化层(Passivation)做完后,将沉积在其上的像素电极做图案化处理。如图1所示,为现有的一种PSVA型液晶显示面板,包括上基板100和下基板200,上基板100包括第一基板110和平面型的公共电极120,下基板200包括第二基板210、钝化层220、及像素电极230,该像素电极230具有“米字型”图案。然而,由于被处理成“米字型”图案的像素电极230具有向不同方向延伸的像素电极分支与狭缝间隔的图案,导致其与对侧的上基板110上的公共电极120形成的电场不均,对应于像素电极分支区域的电场明显强于对应于狭缝区域的电场,从而导致像素内出现亮度不均的现象。
为了解决传统PSVA型液晶显示面板存在的问题,人们提出一种新型的PSVA型液晶显示面板,通过在钝化层上形成图案,得到数道沟槽,然后在整个钝化层上覆盖整面的像素电极;相比于传统的PSVA型液晶显示面板,如图2所示,该PSVA型液晶显示面板中钝化层220’为图案化钝化层,包括沿不同方向延伸的数条沟槽222,而像素电极230’为一整面电极,整面附着于图案化的钝化层220’上而随钝化层220’具有相应的图案,所述像素电极230’穿过钝化层220’上的过孔与薄膜晶体管的漏极相连接;由于 钝化层220’上过孔的深度与沟槽222的深度不相等,一般需要两张掩膜板,进行两次黄光和两次刻蚀,该新型的PSVA型液晶显示面板的制作方法通常包括以下步骤:
步骤1、如图3所示,提供一基板210,在所述基板210上制作薄膜晶体管;所述薄膜晶体管包括栅极、源极、漏极240;
步骤2、如图4所示,在所述薄膜晶体管上沉积钝化层220’;在所述钝化层220’上涂布光刻胶,利用第一掩膜板对该光刻胶进行曝光、显影,得到第一光阻层510,该第一掩膜板用于形成钝化层220’上的沟槽;
步骤3、如图5所示,以第一光阻层510为遮蔽层,对所述钝化层220’进行刻蚀,得到图案化的钝化层220’上的数道沟槽222;
步骤4、如图6所示,剥离第一光阻层510,在所述钝化层220’上再次涂布光刻胶,利用第二掩膜板对该光刻胶进行曝光、显影,得到第二光阻层520,该第二掩膜板用于形成钝化层220’上的过孔;
步骤5、如图7所示,以第二光阻层520为遮蔽层,对所述钝化层220’进行刻蚀,得到钝化层220’上的过孔224;
步骤6、如图8所示,在所述钝化层220’上形成像素电极层230’,该像素电极230’穿过钝化层上的过孔224与所述漏极相连接。
按照现有的制作工艺,如果在钝化层上做更多深度的沟槽,则需要两张以上的掩膜板,进行两次以上的光刻制程,这会带来成本的增加和工艺的繁琐,降低了生产效率。
发明内容
本发明的目的在于提供一种PSVA型液晶显示面板,具有图案化的钝化层,所述钝化层的上表面具有多种深度的沟槽,能在一定程度上进行穿透率均一性弥补,有助于PSVA型液晶显示面板的大视角特性的提升。
本发明的目的还在于提供一种PSVA型液晶显示面板的制作方法,采用多阶调掩膜(Multi-tone mask,MTM)工艺,利用一张多阶调掩膜经一次光刻制程同时制得钝化层上的过孔和多种深度的沟槽,降低了生产成本,提高了生产效率。
为实现上述目的,本发明提供一种PSVA型液晶显示面板,包括上基板、与所述上基板相对设置的下基板、及位于所述上基板与下基板之间的液晶层;
所述上基板包括第一基板、及设于所述第一基板上的公共电极;
所述下基板包括数个像素单元,每个像素单元包括第二基板、设于所 述第二基板上的薄膜晶体管、设于所述第二基板与薄膜晶体管上的钝化层、以及设于所述钝化层上的像素电极;
所述钝化层的上表面具有数条沟槽,所述数条沟槽具有三种以上的深度;
所述像素电极为厚度均匀、连续不间断的整面电极;所述像素电极整面附着于图案化的钝化层上而随钝化层具有相应的图案。所述钝化层的厚度
Figure PCTCN2015091728-appb-000001
所述钝化层的厚度为
Figure PCTCN2015091728-appb-000002
所述沟槽的深度为三种,分别为
Figure PCTCN2015091728-appb-000003
Figure PCTCN2015091728-appb-000004
所述薄膜晶体管包括栅极、源极、漏极,所述钝化层对应所述漏极的上方设有过孔,所述像素电极穿过该过孔与所述薄膜晶体管的漏极相连接。
所述过孔与沟槽通过一个多阶调掩膜板经由一道光刻制程同时制得。
本发明还提供一种PSVA型液晶显示面板的制作方法,包括以下步骤:
步骤1、提供第二基板,在所述第二基板上制作薄膜晶体管;所述薄膜晶体管包括栅极、源极、漏极;
步骤2、在所述薄膜晶体管及第二基板上沉积钝化层;
步骤3、在所述钝化层上涂布光刻胶,利用一个多阶调掩膜板对该光刻胶进行曝光、显影,所述多阶调掩膜板具有用于在钝化层上形成过孔的全曝光区域、以及用于在钝化层上形成沟槽的的半曝光区域,所述半曝光区域包括三种以上的透光度用于形成三种以上深度的沟槽;
步骤4、以所述光阻层为遮蔽层,对所述钝化层进行刻蚀,得到图案化的钝化层,该图案化的钝化层具有位于所述钝化层上表面的数条沟槽、以及贯穿所述钝化层且对应所述漏极上方的过孔,所述沟槽具有三种以上的深度;
步骤5、剥离剩余的光刻胶,在所述钝化层上溅射形成像素电极;得到下基板;
所述像素电极整面附着于图案化的钝化层上而随钝化层具有相应的图案,所述像素电极穿过过孔与所述漏极相连接;
步骤6、提供上基板,所述上基板包括第一基板、及设于所述第一基板上的公共电极;将所述上基板与下基板对位成盒,得到PSVA型液晶显示面板。
所述步骤2中沉积钝化层的厚度
Figure PCTCN2015091728-appb-000005
所述步骤3中提供的多阶调掩膜板的半曝光区域包括三种透光度,所述步骤4中形成的沟槽的深度为三种,分别为
Figure PCTCN2015091728-appb-000006
所述步骤2中沉积钝化层的厚度为
Figure PCTCN2015091728-appb-000007
所述步骤4中采用干法刻蚀工艺对所述钝化层进行刻蚀。
本发明还提供一种PSVA型液晶显示面板,包括上基板、与所述上基板相对设置的下基板、及位于所述上基板与下基板之间的液晶层;
所述上基板包括第一基板、及设于所述第一基板上的公共电极;
所述下基板包括数个像素单元,每个像素单元包括第二基板、设于所述第二基板上的薄膜晶体管、设于所述第二基板与薄膜晶体管上的钝化层、以及设于所述钝化层上的像素电极;
所述钝化层的上表面具有数条沟槽,所述数条沟槽具有三种以上的深度;
所述像素电极为厚度均匀、连续不间断的整面电极;所述像素电极整面附着于图案化的钝化层上而随钝化层具有相应的图案;
其中,所述钝化层的厚度
Figure PCTCN2015091728-appb-000008
其中,所述薄膜晶体管包括栅极、源极、漏极,所述钝化层对应所述漏极的上方设有过孔,所述像素电极穿过该过孔与所述薄膜晶体管的漏极相连接;
其中,所述过孔与沟槽通过一个多阶调掩膜板经由一道光刻制程同时制得。
本发明的有益效果:本发明提供一种PSVA型液晶显示面板及其制作方法,本发明的PSVA型液晶显示面板,具有图案化的钝化层,所述钝化层的上表面具有多种深度的沟槽,能在一定程度上进行穿透率均一性弥补,有助于PSVA型液晶显示面板的大视角特性的提升;本发明的PSVA型液晶显示面板的制作方法,采用多阶调掩膜工艺,利用一张多阶调掩膜经一次光刻制程同时制得钝化层上的过孔和多种深度的沟槽,降低了生产成本,提高了生产效率。
为了能更进一步了解本发明的特征以及技术内容,请参阅以下有关本发明的详细说明与附图,然而附图仅提供参考与说明用,并非用来对本发明加以限制。
附图说明
下面结合附图,通过对本发明的具体实施方式详细描述,将使本发明的技术方案及其他有益效果显而易见。
附图中,
图1为一种现有的PSVA型液晶显示面板的立体结构示意图;
图2为另一种现有的PSVA型液晶显示面板的立体结构示意图;
图3为图2的PSVA型液晶显示面板的制作方法的步骤1的示意图;
图4为图2的PSVA型液晶显示面板的制作方法的步骤2的示意图;
图5为图2的PSVA型液晶显示面板的制作方法的步骤3的示意图;
图6为图2的PSVA型液晶显示面板的制作方法的步骤4的示意图;
图7为图2的PSVA型液晶显示面板的制作方法的步骤5的示意图;
图8为图2的PSVA型液晶显示面板的制作方法的步骤6的示意图;
图9为本发明的PSVA型液晶显示面板的制作方法的流程示意图;
图10为本发明的PSVA型液晶显示面板的制作方法的步骤3的示意图;
图11为本发明的PSVA型液晶显示面板的制作方法的步骤4的示意图;
图12为本发明的PSVA型液晶显示面板的制作方法的步骤5的示意图。
具体实施方式
为更进一步阐述本发明所采取的技术手段及其效果,以下结合本发明的优选实施例及其附图进行详细描述。
请参阅图12,本发明提供一种PSVA型液晶显示面板,包括上基板、与所述上基板相对设置的下基板2、及位于所述上基板与下基板2之间的液晶层;
所述上基板包括第一基板、及设于所述第一基板上的公共电极;
所述下基板2包括数个像素单元,每个像素单元包括第二基板21、设于所述第二基板21上的薄膜晶体管、设于所述第二基板21与薄膜晶体管上的钝化层22、以及设于所述钝化层22上的像素电极23;
所述钝化层22的上表面具有数条沟槽221,所述数条沟槽221具有三种以上的深度;
所述像素电极23为厚度均匀、连续不间断的整面电极;所述像素电极23整面附着于图案化的钝化层22上而随钝化层22具有相应的图案。
具体的,所述钝化层22的厚度
Figure PCTCN2015091728-appb-000009
优选的,所述钝化层22的厚度为
Figure PCTCN2015091728-appb-000010
具体的,所述沟槽221的深度为三种,分别为
Figure PCTCN2015091728-appb-000011
具体的,所述薄膜晶体管包括栅极、源极、漏极24,所述钝化层22对应所述漏极24的上方设有过孔223,所述像素电极23穿过该过孔223与所 述漏极24相连接。
具体的,所述过孔223与沟槽221通过一个多阶调掩膜板(Multi Tone Mask,MTM)经由一道光刻制程制得。
上述PSVA型液晶显示面板,通过在钝化层22的上表面设置数条深度不同的沟槽221,然后在钝化层22的上表面铺盖整面的像素电极23,使得所述像素电极23整面附着于图案化的钝化层22上而随钝化层22具有相应的图案,由于所述数条沟槽221具有不同的深度,从而使得所述液晶显示面板在不同深度的沟槽221处具有不同的穿透率以及不同的视角特性,有助于PSVA型液晶显示面板的大视角特性的提升。
请参阅图9,本发明还提供一种PSVA型液晶显示面板的制作方法,包括以下步骤:
步骤1、提供第二基板21,在所述第二基板21上制作薄膜晶体管;所述薄膜晶体管包括栅极、源极、漏极24;
步骤2、在所述薄膜晶体管及第二基板21上沉积钝化层22;
具体的,该步骤中形成的钝化层22的厚度
Figure PCTCN2015091728-appb-000012
优选的,该步骤中形成的钝化层22的厚度为
Figure PCTCN2015091728-appb-000013
步骤3、如图10所示,在所述钝化层22上涂布光刻胶,利用一个多阶调掩膜板对该光刻胶进行曝光、显影,得到光阻层50,所述多阶调掩膜板具有用于在钝化层22上形成过孔的全曝光区域、以及用于在钝化层22上形成沟槽的的半曝光区域,所述半曝光区域包括三种以上的透光度用于形成三种以上深度的沟槽;
具体的,该步骤3中多阶调掩膜板上的图案转印到光阻层50上;
步骤4、如图11所示,以所述光阻层50为遮蔽层,对所述钝化层22进行刻蚀,得到图案化的钝化层22,该图案化的钝化层22具有位于所述钝化层22上表面的数条沟槽221、以及贯穿所述钝化层22且对应所述漏极24上方的过孔223,所述数条沟槽221具有至少三种以上的深度;
具体的,该步骤4中采用干法刻蚀工艺对所述钝化层22进行刻蚀;
优选的,所述步骤3中提供的多阶调掩膜板的半曝光区域包括三种透光度,该步骤4中形成的沟槽221的深度相应为三种,分别为
Figure PCTCN2015091728-appb-000014
Figure PCTCN2015091728-appb-000015
步骤5、如图12所示,剥离剩余的光阻层50,在所述钝化层22上溅射形成像素电极23;得到下基板2;
所述像素电极23整面附着于图案化的钝化层22上而随钝化层22具有相应的图案,所述像素电极23穿过过孔223与所述漏极24相连接;
步骤6、提供上基板,所述上基板包括第一基板、及设于所述第一基板上的公共电极;将所述上基板与下基板对位成盒,得到PSVA型液晶显示面板。
上述PSVA型液晶显示面板的制作方法,采用一个多阶调掩膜板在一道光刻制程中同时形成钝化层22中的过孔223、以及位于所述钝化层22上表面的数条深度不同的沟槽221,从而可减少光罩数量,并减少工艺制程,既节约成本又可提高生产效率。
综上所述,本发明提供一种PSVA型液晶显示面板及其制作方法,本发明的PSVA型液晶显示面板,具有图案化的钝化层,所述钝化层的上表面具有多种深度的沟槽,能在一定程度上进行穿透率均一性弥补,有助于PSVA型液晶显示面板的大视角特性的提升;本发明的PSVA型液晶显示面板的制作方法,采用多阶调掩膜工艺,利用一张多阶调掩膜经一次光刻制程同时制得钝化层上的过孔和多种深度的沟槽,降低了生产成本,提高了生产效率。
以上所述,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形都应属于本发明后附的权利要求的保护范围。

Claims (12)

  1. 一种PSVA型液晶显示面板,包括上基板、与所述上基板相对设置的下基板、及位于所述上基板与下基板之间的液晶层;
    所述上基板包括第一基板、及设于所述第一基板上的公共电极;
    所述下基板包括数个像素单元,每个像素单元包括第二基板、设于所述第二基板上的薄膜晶体管、设于所述第二基板与薄膜晶体管上的钝化层、以及设于所述钝化层上的像素电极;
    所述钝化层的上表面具有数条沟槽,所述数条沟槽具有三种以上的深度;
    所述像素电极为厚度均匀、连续不间断的整面电极;所述像素电极整面附着于图案化的钝化层上而随钝化层具有相应的图案。
  2. 如权利要求1所述的PSVA型液晶显示面板,其中,所述钝化层的厚度
    Figure PCTCN2015091728-appb-100001
  3. 如权利要求1所述的PSVA型液晶显示面板,其中,所述钝化层的厚度为
    Figure PCTCN2015091728-appb-100002
    所述沟槽的深度为三种,分别为
    Figure PCTCN2015091728-appb-100003
  4. 如权利要求1所述的PSVA型液晶显示面板,其中,所述薄膜晶体管包括栅极、源极、漏极,所述钝化层对应所述漏极的上方设有过孔,所述像素电极穿过该过孔与所述薄膜晶体管的漏极相连接。
  5. 如权利要求4所述的PSVA型液晶显示面板,其中,所述过孔与沟槽通过一个多阶调掩膜板经由一道光刻制程同时制得。
  6. 一种PSVA型液晶显示面板的制作方法,包括以下步骤:
    步骤1、提供第二基板,在所述第二基板上制作薄膜晶体管;所述薄膜晶体管包括栅极、源极、漏极;
    步骤2、在所述薄膜晶体管及第二基板上沉积钝化层;
    步骤3、在所述钝化层上涂布光刻胶,利用一个多阶调掩膜板对该光刻胶进行曝光、显影,得到光阻层,所述多阶调掩膜板具有用于在钝化层上形成过孔的全曝光区域、以及用于在钝化层上形成沟槽的的半曝光区域,所述半曝光区域包括三种以上的透光度用于形成三种以上深度的沟槽;
    步骤4、以所述光阻层为遮蔽层,对所述钝化层进行刻蚀,得到图案化的钝化层,该图案化的钝化层具有位于所述钝化层上表面的数条沟槽、以及贯穿所述钝化层且对应所述漏极上方的过孔,所述沟槽具有三种以上的深度;
    步骤5、剥离剩余的光阻层,在所述钝化层上溅射形成像素电极;得到下基板;
    所述像素电极整面附着于图案化的钝化层上而随钝化层具有相应的图案,所述像素电极穿过过孔与所述漏极相连接;
    步骤6、提供上基板,所述上基板包括第一基板、及设于所述第一基板上的公共电极;将所述上基板与下基板对位成盒,得到PSVA型液晶显示面板。
  7. 如权利要求6所述的PSVA型液晶显示面板的制作方法,其中,所述步骤2中沉积钝化层的厚度
    Figure PCTCN2015091728-appb-100004
  8. 如权利要求7所述的PSVA型液晶显示面板的制作方法,其中,所述步骤3中提供的多阶调掩膜板的半曝光区域包括三种透光度,所述步骤4中形成的沟槽的深度为三种,分别为
    Figure PCTCN2015091728-appb-100005
  9. 如权利要求7所述的PSVA型液晶显示面板的制作方法,其中,所述步骤2中沉积钝化层的厚度为
    Figure PCTCN2015091728-appb-100006
  10. 如权利要求6所述的PSVA型液晶显示面板的制作方法,其中,所述步骤4中采用干法刻蚀工艺对所述钝化层进行刻蚀。
  11. 一种PSVA型液晶显示面板,包括上基板、与所述上基板相对设置的下基板、及位于所述上基板与下基板之间的液晶层;
    所述上基板包括第一基板、及设于所述第一基板上的公共电极;
    所述下基板包括数个像素单元,每个像素单元包括第二基板、设于所述第二基板上的薄膜晶体管、设于所述第二基板与薄膜晶体管上的钝化层、以及设于所述钝化层上的像素电极;
    所述钝化层的上表面具有数条沟槽,所述数条沟槽具有三种以上的深度;
    所述像素电极为厚度均匀、连续不间断的整面电极;所述像素电极整面附着于图案化的钝化层上而随钝化层具有相应的图案;
    其中,所述钝化层的厚度
    Figure PCTCN2015091728-appb-100007
    其中,所述薄膜晶体管包括栅极、源极、漏极,所述钝化层对应所述漏极的上方设有过孔,所述像素电极穿过该过孔与所述薄膜晶体管的漏极相连接;
    其中,所述过孔与沟槽通过一个多阶调掩膜板经由一道光刻制程同时制得。
  12. 如权利要求11所述的PSVA型液晶显示面板,其中,所述钝化层的厚度为
    Figure PCTCN2015091728-appb-100008
    所述沟槽的深度为三种,分别为
    Figure PCTCN2015091728-appb-100009
    Figure PCTCN2015091728-appb-100010
PCT/CN2015/091728 2015-09-09 2015-10-12 Psva型液晶显示面板及其制作方法 WO2017041347A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/786,552 US20170322456A1 (en) 2015-09-09 2015-10-12 Psva liquid crystal display panel and manufacture method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510571677.5A CN105045002A (zh) 2015-09-09 2015-09-09 Psva型液晶显示面板及其制作方法
CN201510571677.5 2015-09-09

Publications (1)

Publication Number Publication Date
WO2017041347A1 true WO2017041347A1 (zh) 2017-03-16

Family

ID=54451654

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/091728 WO2017041347A1 (zh) 2015-09-09 2015-10-12 Psva型液晶显示面板及其制作方法

Country Status (3)

Country Link
US (1) US20170322456A1 (zh)
CN (1) CN105045002A (zh)
WO (1) WO2017041347A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105278182A (zh) * 2015-11-17 2016-01-27 昆山龙腾光电有限公司 液晶显示面板及其制造方法
CN106972032B (zh) * 2017-05-22 2020-08-25 上海天马有机发光显示技术有限公司 阵列基板及包含其的显示面板
CN107085330B (zh) * 2017-06-23 2020-04-03 深圳市华星光电半导体显示技术有限公司 Psva像素结构
CN107272291A (zh) * 2017-07-25 2017-10-20 武汉华星光电技术有限公司 一种阵列基板、显示面板及该阵列基板的制备方法
CN107340656A (zh) * 2017-09-08 2017-11-10 深圳市华星光电技术有限公司 像素电极及制作方法、显示面板
CN108400127A (zh) * 2018-03-07 2018-08-14 云谷(固安)科技有限公司 制造电容器的方法
CN109037245A (zh) * 2018-08-03 2018-12-18 惠科股份有限公司 显示装置及显示面板的制造方法
CN109856879A (zh) * 2019-04-09 2019-06-07 惠科股份有限公司 像素结构及其制作方法和显示面板
CN111584550A (zh) * 2020-05-06 2020-08-25 武汉华星光电半导体显示技术有限公司 一种显示面板及显示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020063825A1 (en) * 2000-11-30 2002-05-30 Nec Corporation Reflection type liquid crystal display device and process for manufacturing the same
US20080113461A1 (en) * 2006-11-15 2008-05-15 Au Optronics Corp. Method for manufacturing a lower substrate of a liquid crystal display device
CN103515375A (zh) * 2012-06-18 2014-01-15 京东方科技集团股份有限公司 阵列基板及其制造方法、以及显示装置
CN104503155A (zh) * 2014-11-17 2015-04-08 深圳市华星光电技术有限公司 液晶显示像素结构及其制作方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69434302T2 (de) * 1993-07-27 2005-12-29 Sharp K.K. Flüssigkristall-Anzeigevorrichtung
US20060197228A1 (en) * 2005-03-04 2006-09-07 International Business Machines Corporation Single mask process for variable thickness dual damascene structures, other grey-masking processes, and structures made using grey-masking
KR101808213B1 (ko) * 2010-04-21 2018-01-19 삼성디스플레이 주식회사 액정 표시 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020063825A1 (en) * 2000-11-30 2002-05-30 Nec Corporation Reflection type liquid crystal display device and process for manufacturing the same
US20080113461A1 (en) * 2006-11-15 2008-05-15 Au Optronics Corp. Method for manufacturing a lower substrate of a liquid crystal display device
CN103515375A (zh) * 2012-06-18 2014-01-15 京东方科技集团股份有限公司 阵列基板及其制造方法、以及显示装置
CN104503155A (zh) * 2014-11-17 2015-04-08 深圳市华星光电技术有限公司 液晶显示像素结构及其制作方法

Also Published As

Publication number Publication date
CN105045002A (zh) 2015-11-11
US20170322456A1 (en) 2017-11-09

Similar Documents

Publication Publication Date Title
WO2017041347A1 (zh) Psva型液晶显示面板及其制作方法
CN107272232B (zh) 一种液晶显示面板的制造方法
US8692258B2 (en) Array substrate of TFT-LCD including a black matrix and method for manufacturing the same
KR101322885B1 (ko) 어레이 기판과 액정 디스플레이
US10539836B2 (en) Display substrate, method of fabricating the same, and display device
KR101264722B1 (ko) 액정표시장치의 제조방법
US7557896B2 (en) Liquid crystal display panel
KR20110021586A (ko) 박막 트랜지스터 기판 및 그 제조 방법
US20140061645A1 (en) Thin Film Transistor Array Substrate, Manufacturing Method Thereof, And Display Device
WO2016177213A1 (zh) 阵列基板及其制造方法、显示装置
WO2020147495A1 (zh) 阵列基板及其制备方法、显示面板
WO2014131238A1 (zh) 阵列基板及其制作方法、显示面板及其制作方法
WO2017140083A1 (zh) 配向膜厚度均一性的优化方法及液晶显示面板
CN107608126A (zh) 一种液晶显示面板及其制造方法
WO2015100776A1 (zh) 一种液晶显示器的阵列基板的制造方法
KR102083641B1 (ko) 표시패널 및 이의 제조방법
WO2017035915A1 (zh) Psva型液晶显示面板
US8237902B2 (en) Array substrate of LCD with wide viewing angle and method for manufacturing the same
KR20070076842A (ko) 액정 표시 패널 및 그 제조방법
US20170213856A1 (en) Display device and manufacturing method thereof
CN101726945A (zh) 宽视角液晶显示器阵列基板及其制造方法
US9780221B2 (en) Thin film transistor substrate comprising a photoresist layer formed between a first dielectric layer and an amorphous silicon layer
US7485483B2 (en) Methods of fabricating active device array substrate and fabricating color filter substrate
KR20120077756A (ko) 표시 기판의 제조 방법
US10714513B2 (en) Array substrate and manufacturing method thereof, liquid crystal display device and manufacturing method thereof

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14786552

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15903450

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15903450

Country of ref document: EP

Kind code of ref document: A1