WO2017039198A1 - 조명 장치 - Google Patents

조명 장치 Download PDF

Info

Publication number
WO2017039198A1
WO2017039198A1 PCT/KR2016/009165 KR2016009165W WO2017039198A1 WO 2017039198 A1 WO2017039198 A1 WO 2017039198A1 KR 2016009165 W KR2016009165 W KR 2016009165W WO 2017039198 A1 WO2017039198 A1 WO 2017039198A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
lens
light
straight line
diameter
Prior art date
Application number
PCT/KR2016/009165
Other languages
English (en)
French (fr)
Inventor
김은화
Original Assignee
엘지이노텍(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150123441A external-priority patent/KR102465694B1/ko
Priority claimed from KR1020150123442A external-priority patent/KR102471181B1/ko
Application filed by 엘지이노텍(주) filed Critical 엘지이노텍(주)
Priority to CN201680050645.3A priority Critical patent/CN108027110B/zh
Priority to US15/753,874 priority patent/US10317018B2/en
Publication of WO2017039198A1 publication Critical patent/WO2017039198A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/04Refractors for light sources of lens shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/62Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction using mixing chambers, e.g. housings with reflective walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/69Details of refractors forming part of the light source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K99/00Subject matter not provided for in other groups of this subclass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S4/00Lighting devices or systems using a string or strip of light sources
    • F21S4/20Lighting devices or systems using a string or strip of light sources with light sources held by or within elongate supports
    • F21S4/28Lighting devices or systems using a string or strip of light sources with light sources held by or within elongate supports rigid, e.g. LED bars
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V13/00Producing particular characteristics or distribution of the light emitted by means of a combination of elements specified in two or more of main groups F21V1/00 - F21V11/00
    • F21V13/02Combinations of only two kinds of elements
    • F21V13/04Combinations of only two kinds of elements the elements being reflectors and refractors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/005Reflectors for light sources with an elongated shape to cooperate with linear light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/0066Reflectors for light sources specially adapted to cooperate with point like light sources; specially adapted to cooperate with light sources the shape of which is unspecified
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/04Optical design
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/04Optical design
    • F21V7/06Optical design with parabolic curvature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/04Optical design
    • F21V7/08Optical design with elliptical curvature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2103/00Elongate light sources, e.g. fluorescent tubes
    • F21Y2103/10Elongate light sources, e.g. fluorescent tubes comprising a linear array of point-like light-generating elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the embodiment relates to a lighting device including a light emitting device.
  • a light emitting diode In general, a light emitting diode (LED) is a device in which electrons and holes meet and emit light at a PN semiconductor junction by applying an electric current. It has a number of advantages over conventional light sources, such as continuous light emission and low power consumption.
  • LED is widely used in various display devices, backlight sources, and the like, and recently, a technology of emitting white light by using three light emitting diode chips emitting red, green, and blue light, or converting wavelengths using a phosphor is used. It has been developed to extend its application to lighting devices.
  • LEDs emitting ultraviolet light may be used for water purifiers, sterilizers, and the like for sterilization, cleaning, and the like, and may also be used for an exposure machine for forming a photoresist pattern.
  • a light emitting module including an LED emitting ultraviolet rays used in an exposure machine focuses light on a constant target area.
  • the embodiment provides an illumination device capable of uniformly concentrating light onto a target having a predetermined area.
  • a lighting apparatus including a light emitting part including a board and a plurality of light emitting elements disposed on an upper surface of the board; A reflecting part including a first reflecting surface positioned on one side of the light emitting part and a second reflecting surface positioned on the other side of the light emitting part, wherein the first reflecting surface and the second reflecting surface have a parabola shape. ; And a lens disposed on a light emitting portion between the first reflective surface and the second reflective surface, wherein each of the light emitting elements is disposed to be aligned with a focal point of the parabola shape, and the height of the reflecting portion is expressed by Equation 1 below.
  • Z is the height of the reflector
  • a is the focal length of the parabola shape
  • PD is the distance from the top of the first reflecting surface to the top of the second reflecting surface.
  • Z ⁇ 0.89A Z ⁇ 0.89A
  • A may be the diameter of the light emitting elements.
  • the distance between the lowest end of the first reflective surface and the lowest end of the second reflective surface may be 4a or more.
  • the lens includes a refracting portion including an incident surface through which light emitted from the light emitting elements is incident, and an exit surface through which light passes through the incident surface, and the light passing through the refractive portion is an upper surface of the board. It can be emitted parallel to the direction perpendicular to the.
  • the diameter of the incident surface of the lens is defined by Equation 2,
  • LD may be a diameter of an incident surface of the lens, and ⁇ may be an angle of light irradiated from the light emitting devices having a luminous intensity of 10% of a maximum value of an intensity distribution.
  • the height of the lens is defined by Equation 3,
  • LZ is the height of the lens
  • is the angle between the top surface of the board and the reference straight line
  • the reference straight line connecting the center of each of the light emitting elements and the top of the first reflective surface or the second reflective surface. It may be a virtual straight line.
  • may be 33 ° to 67 °. Or ⁇ may be 33 ° to 51 °. Or ⁇ may be 33 ° to 37 °.
  • a first edge of the lens is in contact with a first reference straight line
  • a second corner of the lens is in contact with a second reference straight line
  • the first reference straight line forms a center of each of the light emitting elements and a top end of the first reflective surface.
  • the second reference straight line may be an imaginary straight line
  • the second reference straight line may be an imaginary straight line connecting the center of each of the light emitting devices and the uppermost end of the second reflective surface.
  • the lens may further include a support part connected to the refractive part and fixed to an upper surface of the board, wherein the support part may be coupled to a second area except for the first area of the upper surface of the board where the light emitting devices are located. Can be.
  • the lighting apparatus further includes a housing having a light emitting part, a reflecting part, and a cavity accommodating the lens, and an inner wall of the housing may include a protrusion support part supporting both ends of the lens. Can be.
  • Each of the light emitting devices may generate ultraviolet rays having a wavelength range of 200 nm to 400 nm.
  • a lighting apparatus in another embodiment, includes a light emitting part including a board and at least one light emitting element disposed on an upper surface of the board; A first opening positioned around the light emitting portion, a second opening positioned above the first opening and emitting light emitted from the light emitting portion, and a half positioned between the first opening and the second opening.
  • a reflector including a slope; And a lens disposed on the light emitting part inside the reflective surface, the lens having an entrance surface and an exit surface, wherein the reflection surface has an elliptic shape, and an edge at which the entrance surface and the exit surface of the lens meet is a reference straight line.
  • the reference straight line is an imaginary straight line connecting the center of the at least one light emitting element and the uppermost end of the reflective surface, and the angle between the vertical reference line and the reference straight line is 30 ° to 51 °, and the vertical
  • the reference line is an imaginary straight line passing through the center of the reflector and the center of the lens and perpendicular to the top surface of the board.
  • the diameter of the first opening of the reflector may be 1.2 times or more of the diameter of the light emitting surface of the light emitting device, and may be 5.0 times or less of the diameter of the light emitting surface of the light emitting device.
  • the height of the lens may be one half of the height of the reflector.
  • At least 40% of a total collected power may be collected in a target spaced apart from a lower surface of the reflector and positioned in front of the second opening.
  • the diameter of the target may be 1.2 times or more of the diameter of the light emitting surface of the light emitting device, and may be 1.5 times or less of the diameter of the light emitting surface of the light emitting device.
  • the distance from the lower surface of the reflector to the target may be 1.0 times or more of the diameter of the light emitting surface of the light emitting device, and may be 4.5 times or less of the diameter of the light emitting surface of the light emitting device.
  • the diameter of the lens is defined by equations (4) and (5),
  • LD2 may be a diameter of a lens
  • B may be 1/2 of a diameter of the second opening
  • LH2 may be a height of the lens
  • may be an angle between a vertical reference line and the reference straight line.
  • the light may be uniformly focused on a target having a predetermined area.
  • FIG. 1 is an exploded perspective view of a lighting apparatus according to an embodiment.
  • FIG. 2A shows a cross-sectional view in the AB direction of the lighting device shown in FIG. 1.
  • FIG. 2B shows a cross-sectional view of the CD direction of the lighting device shown in FIG. 1.
  • FIG. 3 shows light refracted by the lens shown in FIG. 1.
  • FIG. 4 illustrates the heights of the first and second reflective surfaces illustrated in FIG. 3.
  • FIG. 5 illustrates light reflected by the reflector illustrated in FIG. 1.
  • FIG. 6 is a sectional view of a CD direction of the lighting apparatus according to another embodiment.
  • FIG. 7 shows the conditions of each case with respect to the simulation result of FIG. 8.
  • FIG. 8 illustrates the rate of increase of the luminance according to the simulation result based on the condition of FIG. 7.
  • FIG. 10 is an exploded perspective view of the lighting apparatus according to the embodiment.
  • FIG. 11 shows a cross-sectional view in the AB direction of the lighting apparatus shown in FIG. 10.
  • FIG. 12 is a sectional view of the CD direction of the lighting apparatus shown in FIG. 10.
  • FIG. 13 illustrates light reflected by the reflecting surface of the reflector shown in FIG. 10.
  • FIG. 15 shows the conditions of each case with respect to the simulation result of FIG.
  • FIG. 16 shows simulation results regarding light collection of the lighting apparatus according to FIG. 15.
  • FIG. 18 illustrates simulation results regarding light collection of the lighting apparatus according to the condition of FIG. 17.
  • FIGS. 16 and 18 are graphs of the simulation results of FIGS. 16 and 18.
  • each layer (region), region, pattern, or structure is “on” or “under” the substrate, each layer (film), region, pad, or pattern.
  • “up” and “under” include both “directly” or “indirectly” formed through another layer. do.
  • the criteria for up / down or down / down each layer will be described with reference to the drawings.
  • FIG. 1 is an exploded perspective view of a lighting device 100 according to an embodiment
  • FIG. 2A is a sectional view in the AB direction of the lighting device 100 shown in FIG. 1
  • FIG. 2B is a lighting device shown in FIG. The cross section of the CD direction of 100) is shown.
  • the lighting apparatus 100 includes a housing 110, a light emitter 120, a reflector 130, and a lens 140. .
  • the housing 110 includes a cavity 111 that accommodates the light emitter 120, the reflector 130, and the lens 140.
  • the housing 110 may be a light, heat resistant plastic material, or a metal material having good thermal conductivity, for example, aluminum.
  • the inner wall of the housing 110 may be coated with a reflective material capable of reflecting light emitted from the light emitting unit 120.
  • the housing 110 itself may be made of a reflective material that reflects light.
  • the light emitter 120 is disposed in the housing 110 and irradiates light.
  • the light emitting unit 120 may include a board 122 and a light emitting element 124.
  • the light emitting unit 120 may further include a resin layer 126 that protects the light emitting device 124 and refracts light emitted from the light emitting device 124.
  • the resin layer 126 may serve as a lens for refracting light.
  • the board 122 of the light emitting unit 120 mounts the light emitting device 124 and supplies a power to the light emitting device 124, or may be mounted in a plate shape to mount a device capable of controlling or protecting the light emitting device. It may be a structure.
  • the board 122 may be a printed circuit board or a metal PCB.
  • the board 122 may have a rectangular parallelepiped shape, but is not limited thereto.
  • the board 122 may have a circular, elliptical, or polyhedral plate shape.
  • the light emitting element 124 is disposed on one surface (eg, the upper surface) of the board 122.
  • the light emitting device 124 may be a light source based on a light emitting diode (LED), but is not limited thereto.
  • the light emitting device 124 may be in the form of a light emitting diode chip or in the form of a light emitting diode package.
  • the number of light emitting elements 124 may be one or more.
  • a plurality of light emitting devices 124-1 to 124-n and a natural number of n> 1 are arranged in a line on the board 122, but is not limited thereto.
  • the plurality of light emitting devices 124-1 to 124-n and a natural number of n> 1 may be arranged on the board 122 in various forms such as a circular shape or a matrix form.
  • the light emitting elements 124-1 to 124-n, a natural number of n> 1, may emit light having the same or similar wavelength range.
  • at least one of the light emitting elements 124-1 to 124-n, a natural number of n> 1, may emit light having a different wavelength range.
  • each of the light emitting elements 124-1 to 124-n and a natural number of n> 1 may generate ultraviolet rays having a wavelength range of 200 nm to 400 nm.
  • each of the light emitting devices 124-1 to 124-n and a natural number of n> 1 may generate ultraviolet-C (UVC) having a wavelength range of 200 nm to 280 nm.
  • UVC ultraviolet-C
  • the reflector 130 is a first reflective surface 132a positioned at one side of the light emitting unit 120, and a second half disposed on the other side of the light emitting unit 120 and facing the first reflective surface 132a. It may include a slope 134a.
  • the first reflective surface 132a and the second reflective surface 134a may have a parabola shape or have a curvature of the parabola.
  • the curved surface where the extension line of the first reflecting surface 132a and the extension line of the second reflecting surface 134a may have a parabola shape, and the light emitting devices 124-1 to 124-n, and n> 1 is a natural number. It may be arranged to align with the focal point of the parabola shape.
  • the reflector 130 may include a first reflector 132 located on one side of the light emitter 120 and a second reflector 134 located on the other side of the light emitter 120. As shown in FIGS. 1, 2A, and 2B, the first reflector 132 and the second reflector 134 are spaced apart from each other, but are not limited thereto. In another embodiment, the first reflector ( One end of the 132 and one end of the second reflector 134 may be connected to each other, and the other end of the first reflector 132 and the other end of the second reflector 134 may be connected to each other.
  • the first reflector 132 may include a first reflecting surface 132a facing the light emitting unit 120, a first side surface 132b opposite to the first reflecting surface 132a, and a first reflecting surface. It may include a first lower surface 132c positioned between the 132a and the first side surface 132b.
  • the second reflector 134 may include a second reflecting surface 134a facing the light emitting unit 120, a second side surface 134b opposite to the second reflecting surface 134a, and a second reflecting surface 134a. ) And a second lower surface 134c positioned between the second side surface 134b.
  • the length L1 of the upper side (or lower side) of the first reflective surface 132a may be longer than the length L2 from the upper end to the lower end of the first reflective surface 132a.
  • the length of the upper side (or lower side) of the second reflective surface 134a may be longer than the length of the second reflective surface 134a from the upper end to the lower end.
  • the length of the upper side and the lower side of the first reflective surface 132a may be the same, and the length of the upper side and the lower side of the second reflective surface 134a may be the same.
  • the length L1 of the upper side (or lower side) of the first reflective surface 132a may be the same as the length L1 of the upper side (or lower side) of the second reflective surface 134a, but is not limited thereto. no.
  • the length L1 of the upper side or the lower side of each of the first reflective surface 132a and the second reflective surface 134a may increase or decrease according to the number and arrangement of light emitting devices of the light emitting unit 120.
  • the first reflector 132 and the second reflector 134 may be spaced apart from each other, and the light emitter 120 may be located in a space between the first reflector 132 and the second reflector 134.
  • the first reflective surface 132a and the second reflective surface 134a may be symmetrical with respect to the vertical reference plane 101.
  • the vertical reference plane 101 passes through the center of the lens 140 and may be a virtual plane perpendicular to the upper surface of the board 122.
  • the lens 140 may be divided into left and right symmetrical with respect to the vertical reference plane 101.
  • the reflector 130 may be made of a reflective metal, for example, stainless steel or silver (Ag). Alternatively, the reflector 130 may be a metal material having a form of mirror reflection.
  • the reflector 130 may be made of a resin material having high reflectance, but is not limited thereto.
  • the lens 140 is disposed on the light emitting part 120 between the first reflective surface 132 and the second reflective surface 134.
  • the center of the light emitting unit 120 and the center of the lens 140 may be aligned with each other in the vertical direction, but is not limited thereto.
  • the lens 140 refracts and transmits the light emitted from the light emitter 120.
  • the lens 140 is a convex part 142 which is convex in the upper direction from the lower end of the reflector 130 or the direction from the light emitting part 120 to the lens 140, and a support part 144 provided on the lower surface of the part 142. ) May be included.
  • the support 144 of the lens 140 may be coupled to the coupling groove 122a provided on the upper surface of the board 122 and may support the lens 140.
  • the support 144 may be in the form of a leg, and at least one may be provided at one end of a lower surface of the lens 140, and at least one may be provided at the other end of the lower surface of the lens 140.
  • the number of supports 144 may be two or more.
  • support units may be provided on one side and the other side of the refracting unit 142, but embodiments are not limited thereto.
  • the support 144 of the lens 140 is coupled to the groove 122a provided in the board 122, but is not limited thereto.
  • the support 144 of the lens 140 may include a housing ( It may be coupled to a groove (not shown) provided in the lower surface of the cavity 111 of 110.
  • the groove 122a is not provided in the board 122, and the support part 144 may be fixed to the bottom surface of the board 122 or the cavity 111 of the housing 110 by an adhesive member. .
  • the first region between the first reflecting surface 132a and the second reflecting surface 134a corresponding to the light emitting elements 124-1 to 124-n, n> 1 is a natural number.
  • the support 144 may not be located at S1).
  • the support 144 of the lens 140 may be disposed in the second region S2 between the first reflective surface 132a and the second reflective surface 134a except for the first region S1.
  • the support part 144 may include the second area S2 except for the first area S1 of the upper surface of the board 122 where the light emitting devices 124-1 to 124-n and n> 1 are located.
  • the groove 122a of the board 122 coupled with the support 114 may also be formed in the second region S2 of the board 122.
  • FIG. 3 illustrates light refracted by the lens 140 illustrated in FIG. 1
  • FIG. 4 illustrates a height Z of the first and second reflective surfaces 132a and 134a illustrated in FIG. 3.
  • the refraction portion 142 of the lens 140 may include an incident surface 142a and an exit surface 142b.
  • the incident surface 142a of the refraction portion 142 of the lens 140 may be a surface on which light emitted from the light emitting elements 124-1 to 124-n, n> 1 is incident, and is refracted.
  • the first and second reflective surfaces 132a and 134a may be spaced apart from each other.
  • the exit surface 142b of the refraction portion 142 of the lens 140 refracts and passes the light passing through the incident surface 142a.
  • Light passing through the incident surface 142a and the exit surface 142b of the refraction portion 142 of the lens 140 may be converted into light 148 parallel to the direction from the light emitting portion 120 toward the lens 140. Can be.
  • the incident surface 142a of the lens 140 may be a plane parallel to the upper surface of the board 122, and the exit surface 142b may be a convex hemisphere convex in the direction from the light emitter 120 to the lens 140. It may have a shape or a dome shape, for example, a parabola shape or an ellipse shape, but is not limited thereto.
  • light passing through the incident surface 142a and the exit surface 142b may be parallel to the light 148.
  • the incident surface 142a and the birth surface 142b may be implemented in various forms so as to be converted.
  • the space between the first and second reflective surfaces 132a and 134a and the space between the lens 140 and the light emitting unit 120 may be filled with a gas, for example, air, but are not limited thereto. In an example it may be filled with a translucent material.
  • the first edge 142-1 of the lens 140 is in contact with the virtual first reference straight line 102a connecting the center of the light emitting element 124 and the top end 132-1 of the first reflective surface 132a.
  • the lens 140 may be disposed to be.
  • the first edge 142-1 of the lens 140 may be a first edge of the lens 140 that the incident surface 142a and the exit surface 142b of the lens 140 contact.
  • the second edge 142-2 of the lens 140 is in contact with the virtual second reference straight line 102b connecting the center of the light emitting element 124 and the top end 134-1 of the second reflective surface 134a.
  • the lens 140 may be disposed to be.
  • the second edge 142-2 of the lens 140 may be a second edge of the lens 140 in which the incident surface 142a and the exit surface 142b of the lens 140 contact each other.
  • the center of the light emitting device 124 may be the center of the light emitting surface of the light emitting device 124, and the first and second edges 142-1 and 142-2 of the lens 140 may have the lens 140. It may be an edge where the side and bottom face of the) meet.
  • Light of the light emitting device 124 irradiated between the virtual first reference line 102a and the second reference line 102b is refracted by the lens 140, and the refracted light is emitted from the light emitting unit 120 by the lens 140.
  • the light may be converted into light 148 parallel to the direction of the light and emitted.
  • first edge 142-1 and the second edge 142-2 of the lens 140 are disposed to be spaced apart from the first reference straight line 102a and the second reference straight line 102b. May be
  • FIG. 5 shows light reflected by the reflector 130 shown in FIG. 1.
  • the light of the light emitting element 124 emitted below the first reference straight line 102a and the second reference straight line 102b may be formed by the first and second reflective surfaces without refraction by the lens 140. Directly reflected by 132a and 134a.
  • the light 149 reflected by the first and second reflective surfaces 132a and 134a is transferred from the light emitter 120 to the lens 140. It may be parallel to the facing direction.
  • the light of the light emitting element 124 emitted below the first reference straight line 102a and the second reference straight line 102b is parallel light by the reflection of the first and second reflecting surfaces 132a and 134a. 149 can be converted to exit.
  • the height Z of the first and second reflectors 132 and 134 may be 0.89A or more (Z ⁇ 0.89A).
  • A may be the diameter of the light emitting element 124.
  • the first and second reflectors 140 may be disposed inside the first and second reflecting surfaces 132a and 134a.
  • the height of the reflectors 132 and 134 is too small.
  • Upper limits of the first and second reflectors 132 and 134 may be defined by ⁇ , which will be described later.
  • the relationship between the diameter PD of the light exit holes of 134a) may be defined as in Equation (1).
  • Z represents the height of the reflecting portions 132 and 134, for example, the distance from the lower surfaces 132c and 134c of the first and second reflecting surfaces 132a and 134a to the top ends 132-1 and 134-1.
  • PD is the diameter of the light exit port between the first and second reflective surfaces 132a, 134a, for example, the top 134a of the second reflective surface 134a at the top 132-1 of the first reflective surface 132a.
  • the distance to -1) is shown.
  • a may be a distance from the lowest end of the parabola shape PA to the light emitting element 124.
  • a may be a focal length of the parabola shape PA.
  • the distance D between the lower end 132-2 of the first reflective surface 132a and the lower end 134-2 of the second reflective surface 134a may be 4a.
  • D may be set to 4a.
  • the distance D between the bottom end 132-2 of the first reflective surface 132a and the bottom end 134-2 of the second reflective surface 134a may be 1.2 A or more.
  • the diameter LD of the incident surface 142a of the lens 140 may be defined as in Equation 2.
  • represents the angle of the light emitted from the light emitting elements 124-1 to 124-n corresponding to a 10% region of the maximum value of the luminosity in the intensity distribution of the lighting device 100
  • a is The focal length of the parabola shape PA is shown.
  • the height LZ of the lens 140 may be defined as shown in Equation 3 below.
  • LZ may be a height of the lens 140, for example, a distance from the lower surfaces 132c and 134c of the first and second reflectors 132 and 134 to the incident surface 142a of the lens 140. May be an angle between the horizontal reference plane and the virtual first reference straight line 102a or an angle between the horizontal reference plane and the virtual second reference straight line 102b.
  • the horizontal reference plane may be a plane perpendicular to the vertical reference plane 101.
  • the horizontal reference plane may be the bottom surfaces 132c and 134c of the first and second reflectors 132 and 134 or the top surface of the board 122.
  • FIG. 7 shows the condition of each case with respect to the simulation result of FIG. 8
  • FIG. 8 shows the rate of increase of the brightness according to the simulation result based on the condition of FIG. 7,
  • FIG. 9 shows the maximum luminous intensity (max) for each case of FIG. 8. intensity) Ascending rate curve.
  • each of the light emitting devices 160-1 to 160-m is 2.5 mm x 2.5 mm, and the diagonal length of each of the light emitting devices 160-1 to 160-m is 3.5 mm.
  • the light emitting devices 160-1 to 160-m may be aligned at a focal point having a parabola shape.
  • the maximum luminous intensity increase rate of the lighting device 100 is lowered.
  • the height Z of the first and second reflectors 132 and 134 is too large compared to the diameter of each of the light emitting devices 160-1 to 160-m, the area for adjusting the light source is increased, so The role of the lens 140 is reduced.
  • the lighting device 100 may have a maximum intensity increase rate of 10% or more.
  • the maximum intensity of the illumination device may be used as an index for evaluating the light distribution of the illumination device that is well condensed with parallel light. That is, the higher the maximum intensity of the lighting device, the more the lighting device can have a light distribution that is better focused with parallel light.
  • the rising rate may be a ratio of the maximum intensity of the maximum luminance of the illumination device 100 having the lens 140 to the maximum intensity of the illumination device not having the lens 140.
  • cases having a maximum intensity increase rate of 10% or more may be case 1 to case 5.
  • may be 33 ° to 67 °, and ⁇ may be 23 ° to 57 °.
  • the angle 2 ⁇ between the first reference straight line 102a and the second reference straight line 102b may be 46 ° to 114 °.
  • the lighting device 100 may have a maximum intensity increase rate of 30% or more.
  • cases having a maximum intensity increase rate of 30% or more may be case 1 to case 3.
  • may be 33 ° to 51 °
  • may be 39 ° to 57 °.
  • the angle 2 ⁇ between the first reference straight line 102a and the second reference straight line 102b may be 78 ° to 114 °.
  • the lighting device 100 may have a maximum intensity increase rate of 60% or more.
  • cases having a maximum intensity increase rate of 60% or more may be case 1 and case 2.
  • may be 33 ° to 37 °
  • may be 53 ° to 57 °
  • the angle 2 ⁇ between the first reference straight line 102a and the second reference straight line 102b may be 106 ° to 114 °.
  • FIG. 6 is a cross-sectional view of a CD direction of the lighting apparatus 200 according to another embodiment.
  • FIG. 6 may be the same as that of FIG. 1 except for the protruding support 115 of FIG. 6, and the cross-sectional view in the AB direction may be the same as that of FIG. 2A, and the same reference numerals as those of FIGS. Denotes the same configuration, and the description of the same configuration is simplified or omitted.
  • the lens 140 ′ of the lighting device 200 does not have the support 144 of FIG. 1.
  • the housing 110 of the lighting device 200 includes a protruding support 115 on an inner wall, and the protruding support 115 supports one end and the other end of the lower surface of the refracting portion 142 of the lens 140 '.
  • the lens 140 ′ may be supported by the protruding support 115 provided on the inner wall of the housing 110.
  • the embodiment illustrated in FIG. 6 does not include the support part 114, the light emitted from the light emitting elements 124-1 to 124-n is prevented from being refracted by the support part 114 of the lens 140. It is possible to improve the light collection efficiency as designed by Equations 1 to 3.
  • a light collecting module having only a UV LED may reduce the light collecting capability.
  • the number of UV LEDs included in the light emitting module needs to be increased.
  • the target distance increases, not only illuminance but also light uniformity falls together.
  • the light irradiated from the UV LED light source is converted into parallel light by using the parabola-shaped reflection surfaces 132a and 134a and the condenser lens 140, thereby uniformly condensing the light onto a target having a predetermined area.
  • the target may be a device for receiving light, an optical fiber, an optical cable, an exposure machine, a detector, an endoscope, or a sensor, but is not limited thereto.
  • the lighting apparatus 100 includes the first and second reflectors 132 and 134 and the lens 140 according to Equations 1 to 3, and may have a maximum intensity increase rate of 10% or more. have.
  • FIG. 10 is an exploded perspective view of the lighting apparatus 1100 according to the embodiment
  • FIG. 11 is a sectional view taken along the AB direction of the lighting apparatus 1100 illustrated in FIG. 10
  • FIG. 12 is a lighting apparatus illustrated in FIG. The cross section of the CD direction of 1100 is shown.
  • the lighting device 1100 includes a housing 1110, a light emitter 1120, a reflector 1130, and a lens 1140.
  • the housing 1110 includes a cavity 1111 that accommodates the light emitting unit 1120, the reflecting unit 1130, and the lens 1140.
  • the housing 1110 may be a light, heat resistant plastic material, or a metal material having good thermal conductivity, for example, aluminum.
  • the inner wall of the housing 1110 may be coated with a reflective material capable of reflecting light emitted from the light emitting unit 1120.
  • the housing 1110 itself may be made of a reflective material that reflects light.
  • the light emitter 1120 is disposed in the housing 1110 and irradiates light.
  • the light emitter 1120 may include a board 1122 and a light emitting device 1124.
  • the light emitting unit 1120 may further include a resin layer 1126 surrounding the light emitting device 1124.
  • the resin layer 1126 may protect the light emitting device 1124 and may refract light emitted from the light emitting device 1124.
  • the resin layer 1126 may serve as a lens for refracting light.
  • the board 1122 of the light emitting unit 1120 may mount the light emitting device 1124 and mount a device that supplies power to, controls, or protects the light emitting device 1124. It may be a plate-shaped structure.
  • the board 1122 may be a printed circuit board or a metal PCB.
  • the board 1122 may be a plate shape of a cube, but is not limited thereto, and may be a plate shape of a circle, an ellipse, or a polyhedron.
  • the light emitting device 1124 is disposed on one surface (eg, an upper surface) of the board 1122.
  • the light emitting device 1124 may be a light source based on a light emitting diode (LED), but is not limited thereto.
  • the light emitting device 1124 may be in the form of a light emitting diode chip or in the form of a light emitting diode package.
  • the number of light emitting devices 1124 may be one or more.
  • one light emitting device is disposed on a board, but is not limited thereto.
  • a plurality of light emitting devices may be arranged on the board in a row, or on the board 1122 in various forms such as a circular shape or a matrix shape.
  • the light emitting device 1124 may emit light having a visible or infrared wavelength range.
  • the light emitting device 1124 may emit light having a wavelength range of blue, red, or green.
  • the light emitting device 1124 may emit light having a wavelength range of white.
  • the light emitting device 1124 may generate ultraviolet rays having a wavelength range of 200 nm to 400 nm.
  • the light emitting device 1124 may generate UVC (ultraviolet-C) having a wavelength range of 200 nm to 280 nm.
  • the plurality of light emitting elements may generate light having the same or similar wavelength range. At least one of the plurality of light emitting elements may also emit light having a different wavelength range.
  • the reflector 1130 may be disposed to surround the light emitting device 1124 and may include a reflective surface 1132 reflecting light emitted from the light emitter 1120.
  • the reflector 1130 is adjacent to the light emitter 1120, is positioned above the first opening 1130a and the first opening 1130a, and the light emitted from the light emitter 1120 is emitted.
  • the second opening 1130b and the reflective surface 1132 positioned between the first opening 1130a and the second opening 1130b may be included.
  • the diameter of the second opening 1130b is larger than the diameter of the first opening 1130a.
  • the shape of the first opening 1130a and the second opening 1130b illustrated in FIG. 10 may be circular, but is not limited thereto. In another embodiment, the first opening 1130a and the second opening 1130b may have an elliptical or polygonal shape.
  • the vertical cross section of the reflective surface 1132 may be ellipse-shaped or have an elliptic curvature.
  • the vertical cross section of the reflective surface 1132 may be a plane passing through the center of the first opening 1130a and the center of the second opening 1130b.
  • an extension line at the bottom of the reflective surface 1132 and the reflective surface 1132 may have an ellipse EL shape, and an extension line at the bottom of the reflective surface 1132 may form a vertex of the ellipse EL. Can be.
  • the light emitting devices 1124 may be aligned to be positioned at the focal point of the ellipse EL.
  • the light emitter 1120 may be spaced apart from the reflective surface 1132, and the center of the light emitter 1120 may be aligned with the vertical reference line 1101.
  • the center of the light emitting unit 1120 may be the center of the light emitting device 1124, and the center of the light emitting device 1124 may be the center of the light emitting surface of the light emitting device 1124.
  • the vertical reference line 1101 may be a virtual straight line passing through the center of the reflector 1130 and the center of the lens 1140 and perpendicular to the top surface of the board 1122.
  • the vertical reference line 1101 passes through the center of the first opening 1130a of the reflector 1130, the center of the second opening 1130b, and the center of the lens 1140, and on the top surface of the board 1122. It may be a vertical virtual straight line.
  • the reflector 1130 may include a reflective surface 1132 having an elliptical shape in a vertical cross section, a side surface 1134 positioned opposite to the reflective surface 1132, and a lower surface positioned between the reflective surface 1132 and the side surface 1134 ( 1136).
  • the reflector 1130 may be made of a reflective metal, for example, stainless steel or silver (Ag). Alternatively, the reflector 1130 may be a metal material in the form of mirror reflection.
  • the reflector 1130 may be made of a resin material having a high reflectance, but is not limited thereto.
  • the lens 1140 is disposed in a space inside the reflective surface 1132 on the light emitter 1120 and refracts and transmits the light emitted from the light emitter 1120.
  • the center of the lens 1140 may be aligned with the center of the light emitting unit 1120, the center of the first opening 1130a, and the center of the second opening 1130b.
  • the lens 1140 is a convex part 1142 convex in the upper direction from the bottom of the reflector 1130 or the direction from the light emitting part 1120 toward the lens 1140, and a support part 1144 provided on the bottom surface of the refraction part 1142. ) May be included.
  • the support part 1144 of the lens 1140 may be coupled to the coupling groove 1122a provided on the upper surface of the board 1122, and may support the lens 1140.
  • the support part 1144 may be in the form of a leg connected to the lower surface of the refractive part 1142 of the lens 1140, and the number of the support parts 1144 may be two or more.
  • One end of the support part 1144 may be provided with a locking part for engaging with the coupling groove 1122a of the board 1122.
  • the number of the support parts 1144 is four, but is not limited thereto.
  • the support parts 1144 may be spaced apart from each other and connected to the bottom surface of the refracting part 1142.
  • the support 1144 of the lens 1140 is coupled to the groove 1122a provided in the board 1122, but is not limited thereto.
  • the support 1144 of the lens 1140 may include a housing ( It may be coupled to a groove (not shown) provided in the lower surface of the cavity 1111 of 1110.
  • the groove 1122a is not provided in the board 1122, and the support part 1144 may be fixed to the bottom surface of the board 1122 or the cavity 1111 of the housing 1110 by an adhesive member. .
  • the refraction portion 1142 of the lens 1140 may include an entrance surface 1142a and an exit surface 1142b.
  • the incident surface 1142a of the refraction portion 1142 of the lens 1140 may be a surface on which light emitted from the light emitting element 1124 is incident and refracted, and may be spaced apart from the reflective surface 1132.
  • the emission surface 1142b of the refraction portion 1142 of the lens 1140 refracts and passes the light passing through the incident surface 1142a.
  • Light passing through the incidence surface 1142a and the emission surface 1142b of the refraction portion 1142 of the lens 1140 may be converted into light 1148 parallel to the direction from the light emitting portion 1120 to the lens 1140. Can be.
  • the incident surface 1142a of the lens 1140 may be a plane parallel to the top surface of the board 1122, and the exit surface 1142b is convex in the direction from the light emitting part 1120 to the lens 1140. It may be a shape, a parabola shape, or an ellipse shape, but is not limited thereto.
  • the light passing through the incident surface 1142a and the exit surface 1142b may be converted into parallel light 1148.
  • the surface 1142a and the exit surface 1142b may be implemented in various forms.
  • the inner space of the reflective surface 1132 and the space between the lens 1140 and the light emitter 1120 may be filled with a gas, for example, air, but are not limited thereto.
  • the space may be filled with a light-transmissive material.
  • the edge 1142-1 of the lens 1140 may be spaced apart from an imaginary reference straight line 1102a connecting the center of the light emitting device 1124 and the top end 1132-1 of the reflective surface 1132a. Alternatively, the edge 1142-1 of the lens 1140 may be aligned or in contact with the virtual reference straight line 1102a.
  • the edge 1142-1 of the lens 1140 overlaps the virtual reference straight line 1102a, the light reflected by the reflective surface 1132 and the light refracted by the lens 1140 interfere with each other. This can cause the light to interfere with the desired focus on the target.
  • the edge 1142-1 of the lens 1140 may be an edge of the lens 1140 in which the entrance surface 1142a and the exit surface 1142b of the lens 1140 contact each other.
  • the center of the light emitting devices 1124 may be the center of a region where the light emitting devices are distributed.
  • the light of the light emitting device 1124 irradiated to the first region S11 of the reflector 1130 is refracted by the lens 1140, and the refracted light is directed toward the lens 1140 from the light emitter 1120.
  • the light may be converted into parallel light 1148 and output.
  • the first region S11 of the reflector 130 is a region located on one side of the virtual reference straight line 1102a connecting the center of the light emitting device 1124 and the uppermost end 1132-1 of the reflective surface 1132a. Can be.
  • the first region S11 of the reflector 1130 may include a closed curved surface including virtual reference straight lines 1102a connecting the center of the light emitting device 1124 and the uppermost end 1132-1 of the reflective surface 1132a.
  • it may be an inner region of the cone.
  • the light of the light emitting device 1124 irradiated above the reference straight line 1102a is refracted by the lens 1140, and the refracted light is light parallel to the direction from the light emitting part 1120 toward the lens 1140 ( 1148) to be output.
  • FIG. 13 shows light 1149 reflected by the reflecting surface 1132 of the reflecting portion 1130 shown in FIG. 10
  • FIG. 14 shows the size of the reflecting surface 1132, the size and position of the lens 1140, And the size and position of the target Ta.
  • the light of the light emitting device 1124 emitted below the reference straight line 1102a is focused on the target Ta by passing through the vertical reference line 1101 by the reflection of the reflecting surface 1132 or at the vertical reference line 1101. It may be focused on the target Ta to be aligned.
  • the diameter ED1 of the first opening 1130a of the reflector 1130 may be 1.2 ⁇ LD to 5.0 ⁇ LD.
  • LD may be a diameter of the light emitting surface of the light emitting device 1124
  • ED1 may be a diameter of the lowermost end of the reflective surface 1132.
  • the diameter ED1 of the first opening 1130a is 1.2 ⁇ LD or more, the light generated from the light emitting element 1124 may be sent to the reflective surface 1132 without loss.
  • the diameter ED1 of the first opening 1130a is less than 1.2 ⁇ LD, the amount of light emitted from the light emitting device 1124 may be lost.
  • the diameter ED1 of the first opening 1130a exceeds 5.0 ⁇ LD, the diameter of the first opening 1130a is too far relative to the area of the light source, resulting in an increase in the loss of the light quantity and thus the optical power.
  • the diameter TD of the target Ta is 1.2 ⁇ LD to 1.5 ⁇ .
  • LD may be.
  • the distance TH from the lower surface 1136 of the reflector 1130 to the target Ta may be 1.0 ⁇ LD to 4.5 ⁇ LD.
  • Equation 4 The angle ⁇ between the vertical reference line 1101 and the reference straight line 1102a is defined by Equation 4.
  • ED2 may be the diameter of the second opening 1130b.
  • ED2 may be the diameter of the top of the reflective surface 1132.
  • EH represents the height of the reflector 1130.
  • the EH may be a distance from the lower surface 1136 of the reflector 1130 to the uppermost 1132-1 of the reflecting surface 1132.
  • An angle ⁇ between the vertical reference line 1101 and the reference straight line 1102a may be 30 ° to 51 °.
  • the diameter LD2 of the lens 1140 is defined by equations (5) and (6).
  • k represents a constant related to interference of lights and may be 0.8 ⁇ k ⁇ 1.
  • the edge 1142-1 of the lens 1140 may be aligned with the virtual reference straight line 1102a.
  • LH2 represents the height of the lens 1140.
  • LH2 may be a distance from the lower surface 1136 of the reflector 1130 to the incident surface 1142a of the lens 1140.
  • the height LH2 of the lens 1140 is set to 1/2 of the height EH of the reflector 1130. do.
  • the curvature of the lens 1140 may vary depending on the distance TH to the target.
  • the embodiment sets LH2 to 1/2 of the EH, thereby providing 25% of the amount of light emitted from the light emitting element 1124. It is possible to focus ⁇ 60% to the desired target Ta.
  • Equation 6 when LH2 is 1/2 of the height EH of the reflecting portion 1130, B is 1/2 of the diameter of the uppermost end of the reflecting surface 1132, or the diameter ED2 of the second opening 1130b. May be 1/2 of
  • Light of the light emitting device 1124 irradiated to the second region S12 of the reflector 1130 by the reflector 1130 may be focused onto the target region.
  • the embodiment may be modified from the lighting device. At least 40% or more of the total optical power of the emitted light may be focused on the target area.
  • FIG. 15 shows the conditions of each case with respect to the simulation result of FIG. 16, and FIG. 16 shows the simulation result about the light condensing of the lighting apparatus according to FIG. 15.
  • the LES represents the diameter of the light emitting surface of the light emitting element 1124.
  • the LES is 3.5 mm and the size of the target, eg, detector, may be 5 mm x 5 mm.
  • the detector may measure the power or amount of light received.
  • F1 and F2 represent the focus of the ellipse
  • R is the vertex radius of the ellipse
  • k is the conic constant
  • F is from the origin of the ellipse to the focus (or light emitting device 1124). Distance.
  • Total collected power represents the collected power of the total light emitted from the lighting device
  • detector collected power represents the power of the light detected by the target Ta, for example the detector
  • the rate is Shows the ratio of total cumulative power to detector cumulative power.
  • the size of the target Ta for example, the detector, may be 1.2 to 1.5 times the diameter of the light emitting surface.
  • cases 1 to 4 may be used, and ⁇ may be 30 ° to 51 °.
  • FIG. 17 illustrates conditions of each case with respect to the simulation result of FIG. 18, and FIG. 18 illustrates simulation results regarding light collection of the lighting apparatus according to the condition of FIG. 17.
  • the LES is 14.5 mm and the size of the target, such as a detector, may be 18 mm x 18 mm.
  • cases 1 to 4 may be used, and ⁇ may be 30 ° to 51 °.
  • FIGS. 16 and 18 are graphs of the simulation results of FIGS. 16 and 18.
  • f1 is a graph according to the simulation result of FIG. 16, and f2 is a graph according to the simulation result of FIG. 18.
  • the value P1 of ⁇ having a rate of 40% is 28 °.
  • the ⁇ of the lighting device 100 according to the embodiment may be greater than or equal to 30 ° and less than or equal to 51 ° so that the rate is 40% or more in consideration of an error margin of 2 °.
  • the rate may be 40% or more and 68% or less.
  • may be 34 ° to 51 ° so that the rate is 50% or more.
  • may be 42 ° to 50 ° so that the rate is 60% or more.
  • a simple reflector is used to concentrate the power of a light source in an optical fiber or a detector having a size similar to that of a light source using an LED having a relatively low light quantity as a light source compared to a lamp having a large light quantity. ), It is difficult to concentrate the power of the light source throughout the detector area.
  • the embodiment has the following effects.
  • the amount of light lost to the optical system group can be reduced by using the condenser lens as the central lens of the reflector having the reflective surface of the ellipsoid for condensing.
  • the system efficiency is typically about 70%, whereas the lens group efficiency is reduced because the embodiment uses two optical elements, for example two lenses. It may be at least 84%, and the alignment of the optical axis may be easy.
  • the size and position of the lens may be easily adjusted according to a rule according to the area and distribution of the light emitting device 1124.
  • the embodiment measures at least 40% of the total cumulative power of the amount of light emitted from the reflector 1130.
  • the target Ta can be focused.
  • It can be used in an illumination device capable of uniformly concentrating light on a target having a certain area.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Led Device Packages (AREA)

Abstract

실시 예는 보드 및 상기 보드의 상부면에 배치되는 복수의 발광 소자들을 포함하는 발광부, 상기 발광부의 일 측에 위치하는 제1 반사면, 및 상기 발광부의 타 측에 위치하는 제2 반사면을 포함하고, 상기 제1 반사면과 상기 제2 반사면은 파라볼라 형상인 반사부, 상기 제1 반사면과 상기 제2 반사면 사이의 발광부 상에 배치되는 렌즈를 포함하며, 상기 발광 소자들 각각은 상기 파라볼라 형상의 초점에 정렬되도록 배치되고, 상기 반사부의 높이는 수학식 1에 의하여 정의된다.

Description

조명 장치
실시 예는 실시 예는 발광 소자를 포함하는 조명 장치에 관한 것이다.
일반적으로, 발광다이오드(LED: Light Emitting Diode, 이하 'LED'라 한다)는 전류 인가에 의해 P-N 반도체 접합(P-N junction)에서 전자와 정공이 만나 빛을 발하는 소자로서, LED는 저전압, 저전류로 연속 발광이 가능하고 소비 전력이 작은 이점 등 기존의 광원에 비해 많은 이점을 갖는다.
특히, LED는 각종 표시 장치, 백라이트 광원 등에 널리 사용되고 있으며, 최근, 적, 녹, 청색광을 각각 방출하는 3개의 발광 다이오드 칩들을 이용하거나, 또는 형광체를 사용하여 파장을 변환시킴으로써 백색광을 방출하는 기술이 개발되어 조명 장치로도 그 적용 범위를 넓히고 있다.
자외선을 방출하는 LED는 멸균, 세정 등의 목적으로 정수기, 멸균기 등에 사용될 수 있으며, 포토레지스트 패턴(photoresist pattern)을 형성하는 노광기에도 사용될 수 있다. 특히 노광기에 사용되는 자외선을 방출하는 LED를 포함하는 발광 모듈은 일정한 타겟 면적에 빛을 집광하는 것이 중요하다.
또한 광량이 큰 램프에 비하여 상대적으로 광량이 작은 LED를 광원으로 사용하여, 광원의 크기와 유사한 크기를 갖는 광섬유 또는 검출기(detector)에 광원의 파워(Power)를 집중시키고자 할 때, 단순한 리플렉터(reflector) 형태로는 검출기 면적 전체로 광원의 파워를 집중시키기 어렵다
실시 예는 일정 면적을 갖는 타겟에 광을 균일하게 집광할 수 있는 조명 장치를 제공한다.
실시 예에 따른 조명 장치는 보드 및 상기 보드의 상부면에 배치되는 복수의 발광 소자들을 포함하는 발광부; 상기 발광부의 일 측에 위치하는 제1 반사면, 및 상기 발광부의 타 측에 위치하는 제2 반사면을 포함하고, 상기 제1 반사면과 상기 제2 반사면은 파라볼라(parabola) 형상인 반사부; 및 상기 제1 반사면과 상기 제2 반사면 사이의 발광부 상에 배치되는 렌즈를 포함하며, 상기 발광 소자들 각각은 상기 파라볼라 형상의 초점에 정렬되도록 배치되고, 상기 반사부의 높이는 수학식 1에 의하여 정의되고,
[수학식 1]
Figure PCTKR2016009165-appb-I000001
Z는 상기 반사부의 높이이고, a는 상기 파라볼라 형상의 초점 거리이고, PD는 상기 제1 반사면의 최상단에서 상기 제2 반사면의 최상단까지의 거리이다.
Z≥ 0.89A이고, A는 발광 소자들의 직경일 수 있다.
상기 제1 반사면의 최하단과 상기 제2 반사면의최하단 사이의 거리는 4a 이상일 수 있다.
상기 렌즈는 상기 발광 소자들로부터 조사되는 빛이 입사되는 입사면, 및 상기 입사면을 통과한 빛을 통과시키는 출사면을 포함하는 굴절부를 포함하고,상기 굴절부를 통과한 빛은 상기 보드의 상부면과 수직한 방향과 평행하게 출사될 수 있다.
상기 렌즈의 입사면의 직경은 수학식 2에 의하여 정의되고,
[수학식 2]
Figure PCTKR2016009165-appb-I000002
LD는 상기 렌즈의 입사면의 직경이고, θ는 배광 분포(intensity distribution)의 최대값의 10%의 값의 광도를 갖는 상기 발광 소자들로부터 조사되는 빛의 각도일 수 있다.
상기 렌즈의 높이는 수학식 3에 의하여 정의되고,
[수학식 3]
Figure PCTKR2016009165-appb-I000003
LZ는 상기 렌즈의 높이이고, α는 상기 보드의 상부면과 기준 직선 사이의 각도이고, 상기 기준 직선은 상기 발광 소자들 각각의 중심과 상기 제1 반사면 또는 상기 제2 반사면의최상단을 잇는 가상의 직선일 수 있다.
α는 33°~ 67°일 수 있다. 또는 α는 33°~ 51°일 수 있다. 또는 α는 33°~ 37°일 수 있다.
제1 기준 직선에 상기 렌즈의 제1 모서리가 접하고, 제2 기준 직선에 상기 렌즈의 제2 모서리가 접하고, 상기 제1 기준 직선은 상기 발광 소자들 각각의 중심과 상기 제1 반사면의최상단을 잇는 가상의 직선이고, 상기 제2 기준 직선은 상기 발광 소자들 각각의 중심과 상기 제2 반사면의최상단을 잇는 가상의 직선일 수 있다.
상기 렌즈는 상기 굴절부와 연결되고, 상기 보드의 상부면에 고정되는 지지부를 더 포함하며, 상기 지지부는 상기 발광 소자들이 위치하는 상기 보드의 상부면의 제1 영역을 제외한 제2 영역에 결합할 수 있다.
상기 조명 장치는 상기 발광부, 상기 반사부, 및 상기 렌즈를 수용하는 캐비티(cavity)를 갖는 하우징(Housing)을 더 포함하며,상기하우징의 내벽에는 상기 렌즈의 양단을 지지하는 돌출 지지부가 마련될 수 있다.
상기 발광 소자들 각각은 각각은 200nm ~ 400nm의 파장 범위를 갖는 자외선을 발생할 수 있다.
다른 실시 예에 따른 조명 장치는 보드 및 상기 보드의 상부면 상에 배치되는 적어도 하나의 발광 소자를 포함하는 발광부; 상기 발광부 주위에 위치하는 제1 개구(opening), 상기 제1 개구 상부에 위치하고 상기 발광부로부터 조사되는 빛이 출사되는 제2 개구, 및 상기 제1 개구와 상기 제2 개구 사이에 위치하는 반사면을 포함하는 반사부; 및 상기 반사면 내측의 상기 발광부 상에 배치되고, 입사면과 출사면을 갖는 렌즈를 포함하며, 상기 반사면은 타원 형상이고, 상기 렌즈의 상기 입사면과 상기 출사면이 만나는 모서리는 기준 직선에 접하도록 정렬되고, 상기 기준 직선은 상기 적어도 하나의 발광 소자의 중앙과 상기 반사면의 최상단을 잇는 가상의 직선이고, 수직 기준선과 상기 기준 직선 사이의 각도는 30°~ 51°이고, 상기 수직 기준선은 상기 반사부의 중앙 및 상기 렌즈의 중앙을 지나고, 상기 보드의 상부면에 수직인 가상의 직선이다.
상기 반사부의 제1 개구의 직경은 상기 발광 소자의 발광면의 직경의 1.2배 이상이고, 상기 발광 소자의 발광면의 직경의 5.0배 이하일 수 있다.
상기 렌즈의 높이는 상기 반사부의 높이의 2분의 1일 수 있다.
상기 반사부의 하면으로부터 이격되어 상기 제2 개구의 전방에 위치하는 타겟(target)에는 적어도 총 누적 파워(total collected power)의 40% 이상이 집광될 수 있다.
상기 타겟의 직경은 상기 발광 소자의 발광면의 직경의 1.2배 이상이고, 상기 발광 소자의 발광면의 직경의 1.5배 이하일 수 있다.
상기 반사부의 하면으로부터 상기 타겟까지의 거리는 상기 발광 소자의 발광면의 직경의 1.0배 이상이고, 상기 발광 소자의 발광면의 직경의 4.5배 이하일 수 있다.
상기 렌즈의 직경은 수학식 4 및 5에 의하여 정의되고,
[수학식 4]
Figure PCTKR2016009165-appb-I000004
[수학식 5]
Figure PCTKR2016009165-appb-I000005
LD2는 렌즈의 직경이고, B는 상기 제2 개구의 직경의 1/2이고, 0.8≤k≤1이고, LH2는 상기 렌즈의 높이이고, θ는 수직 기준선과 상기 기준 직선 사이의 각도일 수 있다.
실시 예는 일정 면적을 갖는 타겟에 광을 균일하게 집광할 수 있다.
도 1은 실시 예에 따른 조명 장치의 분리 사시도를 나타낸다.
도 2a는 도 1에 도시된 조명 장치의 AB 방향의 단면도를 나타낸다.
도 2b는 도 1에 도시된 조명 장치의 CD 방향의 단면도를 나타낸다.
도 3은 도 1에 도시된 렌즈에 의해 굴절되는 빛을 나타낸다.
도 4는 도 3에 도시된 제1 및 제2 반사면들의 높이를 나타낸다.
도 5는 도 1에 도시된 반사부에 의하여 반사되는 빛을 나타낸다.
도 6은 다른 실시 예에 따른 조명 장치의 CD 방향의 단면도를 나타낸다.
도 7은 도 8의 시뮬레이션 결과에 대한 각 case의 조건을 나타낸다.
도 8은 도 7의 조건에 기초한 시뮬레이션 결과에 따른 광도의 상승률을 나타낸다.
도 9는 도 8의 각 경우에 대한 최대 광도 상승률 곡선을 나타낸다.
도 10은 실시 예에 따른 조명 장치의 분리 사시도를 나타낸다.
도 11은 도 10에 도시된 조명 장치의 AB 방향의 단면도를 나타낸다.
도 12는 도 10에 도시된 조명 장치의 CD 방향의 단면도를 나타낸다.
도 13은 도 10에 도시된 반사부의 반사면에 의하여 반사되는 빛을 나타낸다.
도 14는 반사면의 사이즈, 렌즈의 크기 및 위치, 및 타겟의 사이즈 및 위치를 나타낸다.
도 15는 도 16의 시뮬레이션 결과에 대한 각 케이스의 조건을 나타낸다.
도 16은 도 15에 따른 조명 장치의 집광에 관한 시뮬레이션 결과를 나타낸다.
도 17은 도 18의 시뮬레이션 결과에 대한 각 case의 조건을 나타낸다.
도 18은 도 17의 조건에 따른 조명 장치의 집광에 관한 시뮬레이션 결과를 나타낸다.
도 19는 도 16 및 도 18의 시뮬레이션 결과들에 대한 그래프이다.
이하, 실시 예들은 첨부된 도면 및 실시 예들에 대한 설명을 통하여 명백하게 드러나게 될 것이다. 실시 예의 설명에 있어서, 각 층(막), 영역, 패턴 또는 구조물들이 기판, 각 층(막), 영역, 패드 또는 패턴들의 "상/위(on)"에 또는 "하/아래(under)"에 형성되는 것으로 기재되는 경우에 있어, "상/위(on)"와 "하/아래(under)"는 "직접(directly)" 또는 "다른 층을 개재하여 (indirectly)" 형성되는 것을 모두 포함한다. 또한 각 층의 상/위 또는 하/아래에 대한 기준은 도면을 기준으로 설명한다.
도면에서 크기는 설명의 편의 및 명확성을 위하여 과장되거나 생략되거나 또는 개략적으로 도시되었다. 또한 각 구성요소의 크기는 실제크기를 전적으로 반영하는 것은 아니다. 또한 동일한 참조번호는 도면의 설명을 통하여 동일한 요소를 나타낸다.
도 1은 실시 예에 따른 조명 장치(100)의 분리 사시도를 나타내고, 도 2a는 도 1에 도시된 조명 장치(100)의 AB 방향의 단면도를 나타내고, 도 2b는 도 1에 도시된 조명 장치(100)의 CD 방향의 단면도를 나타낸다.
도 1 및 도 2a, 및 도 2b를 참조하면, 조명 장치(100)는 하우징(Housing, 110), 발광부(120), 반사부(reflector, 130), 및 렌즈(lens, 140)를 포함한다.
하우징(110)은 발광부(120), 반사부(130), 및 렌즈(140)를 수용하는 캐비티(cavity, 111)를 구비한다.
하우징(110)은 가볍고, 내열성이 강한 플라스틱 재질이거나, 열전도도가 좋은 금속 재질, 예컨대, 알루미늄일 수 있다. 하우징(110)의 내벽에는 발광부(120)로부터 조사되는 빛을 반사시킬 수 있는 반사 물질이 코팅될 수도 있다. 또는 다른 실시 예에서는 하우징(110) 자체가 광을 반사하는 반사 재질로 이루어질 수도 있다.
발광부(120)는 하우징(110) 내에 배치되며, 광을 조사한다.
발광부(120)는 보드(board, 122), 및 발광 소자(124)를 포함할 수 있다. 또한 발광부(120)는 발광 소자(124)를 보호하고, 발광 소자(124)로부터 조사되는 빛을 굴절시킬 수 있는 수지층(126)을 더 포함할 수 있다. 여기서 수지층(126)은 빛을 굴절시키는 렌즈 역할을 할 수 있다.
발광부(120)의 보드(122)는 발광 소자(124)를 마운팅하고, 발광 소자(124)에 전원을 공급하거나, 발광 소자를 제어하거나, 보호할 수 있는 소자를 마운팅할 수 있는 판 형태의 구조일 수 있다.
예컨대, 보드(122)는 인쇄회로기판(Printed circuit board)이거나, 메탈 PCB일 수 있다. 도 2b에서 보드(122)는 직육면체 형상일 수 있으나, 이에 한정되는 것은 아니며, 원형, 타원형, 또는 다면체의 판 형상일 수 있다.
발광 소자(124)는 보드(122)의 일면(예컨대, 상부면) 상에 배치된다. 발광 소자(124)는 LED(Light Emitting Diode) 기반의 광원일 수 있으나, 이에 한정되는 것은 아니다. 예컨대, 발광 소자(124)는 발광 다이오드 칩 형태이거나, 또는 발광 다이오드 패키지 형태일 수 있다.
발광 소자(124)의 개수는 1개 이상일 수 있다. 도 1에서는 복수 개의 발광 소자들(124-1 내지 124-n, n>1인 자연수)이 보드(122) 상에 일렬로 배열되지만, 이에 한정되는 것은 아니다. 복수 개의 발광 소자들(124-1 내지 124-n, n>1인 자연수)은 원형, 또는 매트릭스(matrix) 형태 등과 같이 다양한 형태로 보드(122) 상에 배열될 수 있다.
발광 소자들(124-1 내지 124-n, n>1인 자연수)은 동일 또는 유사한 파장 범위를 갖는 빛을 방출할 수 있다. 또는 발광 소자들(124-1 내지 124-n, n>1인 자연수) 중 적어도 하나는 다른 파장 범위를 갖는 빛을 방출할 수도 있다.
예컨대, 발광 소자들(124-1 내지 124-n, n>1인 자연수) 각각은 200nm ~ 400nm의 파장 범위를 갖는 자외선을 발생할 수 있다. 또는 예컨대, 발광 소자들(124-1 내지 124-n, n>1인 자연수) 각각은 200nm ~ 280nm의 파장 범위를 갖는 UVC(ultraviolet-C)를 발생할 수도 있다.
반사부(130)는 발광부(120)의 일 측에 위치하는 제1 반사면(132a), 및 발광부(120)의 타 측에 위치하고, 제1 반사면(132a)을 마주보는 제2 반사면(134a)을 포함할 수 있다.
제1 반사면(132a) 및 제2 반사면(134a)은 파라볼라(parabola) 형상이거나 파라볼라의 곡률을 가질 수 있다.
예컨대, 제1 반사면(132a)의 연장선과 제2 반사면(134a)의 연장선이 만나는 곡면은 파라볼라 형상일 수 있으며, 발광 소자들(124-1 내지 124-n, n>1인 자연수)은 파라볼라 형상의 초점에 정렬되도록 배치될 수 있다.
반사부(130)는 발광부(120)의 일 측에 위치하는 제1 반사부(132) 및 발광부(120)의 타 측에 위치하는 제2 반사부(134)를 포함할 수 있다. 도 1 및 도 2a, 및 도 2b에 도시된 바와 같이, 제1 반사부(132)와 제2 반사부(134)는 서로 이격하나, 이에 한정되는 것은 아니며, 다른 실시 예에서는 제1 반사부(132)의 일단과 제2 반사부(134)의 일단은 서로 연결될 수 있고, 제1 반사부(132)의 타단과 제2 반사부(134)의 타단은 서로 연결될 수도 있다.
예컨대, 제1 반사부(132)는 발광부(120)를 바라보는 제1 반사면(132a), 제1 반사면(132a)의 반대편에 위치하는 제1 측면(132b), 및 제1 반사면(132a)과 제1 측면(132b) 사이에 위치하는 제1 하면(132c)을 포함할 수 있다.
제2 반사부(134)는 발광부(120)를 바라보는 제2 반사면(134a), 제2 반사면(134a)의 반대편에 위치하는 제2 측면(134b), 및 제2 반사면(134a)과 제2 측면(134b) 사이에 위치하는 제2 하면(134c)을 포함할 수 있다.
예컨대, 제1 반사면(132a)의 상변(또는 하변)의 길이(L1)는 제1 반사면(132a)의 상단에서 하단까지의 길이(L2)보다 길 수 있다. 또한 제2 반사면(134a)의 상변(또는 하변)의 길이는 제2 반사면(134a)의 상단에서 하단까지의 길이보다 길 수 있다.
또한 예컨대, 제1 반사면(132a)의 상변의 길이와 하변의 길이는 서로 동일할 수 있고, 제2 반사면(134a)의 상변의 길이와 하변의 길이는 서로 동일할 수 있다.
또한 예컨대, 제1 반사면(132a)의 상변(또는 하변)의 길이(L1)는 제2 반사면(134a)의 상변(또는 하변)의 길이(L1)와 동일할 수 있으나, 이에 한정되는 것은 아니다. 또한 제1 반사면(132a) 및 제2 반사면(134a) 각각의 상변 또는 하변의 길이(L1)는 발광부(120)의 발광 소자의 수 및 배치에 따라 증가하거나 감소할 수 있다.
제1 반사부(132)와 제2 반사부(134)는 서로 이격하며, 발광부(120)는 제1 반사부(132)와 제2 반사부(134) 사이의 공간에 위치할 수 있다.
수직 기준면(101)을 기준으로 제1 반사면(132a)과 제2 반사면(134a)은 좌우 대칭일 수 있다. 수직 기준면(101)은 렌즈(140)의 중심을 지나고, 보드(122)의 상부면에 수직인 가상의 평면일 수 있다. 예컨대, 수직 기준면(101)을 기준으로 렌즈(140)는 좌우 서로 대칭되도록 양분될 수 있다
반사부(130)는 반사 금속, 예컨대, 스텐레스, 은(Ag)으로 이루어질 수 있다. 또는 반사부(130)는 경면 반사가 되는 형태의 금속 재질일 수 있다.
또는 반사부(130)는 반사율이 높은 수지 재질로 이루어질 수 있으나, 이에 한정되는 것은 아니다.
렌즈(140)는 제1 반사면(132)과 제2 반사면(134) 사이의 발광부(120) 상에 배치된다. 예컨대, 발광부(120)의 중심과 렌즈(140)의 중심은 수직 방향으로 서로 정렬될 수 있으나, 이에 한정되는 것은 아니다.
예컨대, 렌즈(140)는 발광부(120)로부터 조사되는 빛을 굴절시켜 투과시킨다.
렌즈(140)는 반사부(130)의 하단에서 상단 방향 또는 발광부(120)에서 렌즈(140)로 향하는 방향으로 볼록한 굴절부(142), 및 굴절부(142) 하면에 마련되는 지지부(144)를 포함할 수 있다.
렌즈(140)의 지지부(144)는 보드(122)의 상부면에 마련되는 결합 홈(122a)과 결합하며, 렌즈(140)를 지지할 수 있다.
지지부(144)는 다리 형태일 수 있고, 렌즈(140)의 하면 일단에 적어도 하나가 마련될 수 있고, 렌즈(140)의 하면 타단에 적어도 하나가 마련될 수 있다. 예컨대, 지지부(144)의 개수는 2개 이상일 수 있다.
예컨대, 지지부(144)에 의하여 발광부(120)로부터 조사되는 빛이 굴절되는 것을 억제하기 위하여 굴절부(142)의 하면 일 측 및 타 측에 지지부들이 마련될 수 있으나, 이에 한정되는 것은 아니다.
도 1에서는 렌즈(140)의 지지부(144)가 보드(122)에 마련되는 홈(122a)에 결합되지만, 이에 한정되는 것은 아니며, 다른 실시 예에서는 렌즈(140)의 지지부(144)는 하우징(110)의 캐비티(111)의 하면에 마련되는 홈(미도시)에 결합될 수도 있다. 또한 또 다른 실시 예에서는 보드(122)에 홈(122a)이 마련되지 않고, 접착 부재에 의하여 지지부(144)가 보드(122) 또는 하우징(110)의 캐비티(111)의 하면에 고정될 수도 있다.
도 2b에 도시된 바와 같이, 발광 소자들(124-1 내지 124-n, n>1인 자연수)에 대응하는 제1 반사면(132a)과 제2 반사면(134a) 사이의 제1 영역(S1)에는 지지부(144)가 위치하지 않을 수 있다. 예컨대, 렌즈(140)의 지지부(144)는 제1 영역(S1)을 제외한 제1 반사면(132a)과 제2 반사면(134a) 사이의 제2 영역(S2)에 배치될 수 있다. 예컨대, 지지부(144)는 발광 소자들(124-1 내지 124-n, n>1인 자연수)이 위치하는 보드(122)의 상부면의 제1 영역(S1)을 제외한 제2 영역(S2)에 결합될 수 있다. 이때 지지부(114)와 결합하는 보드(122)의 홈(122a)도 보드(122)의 제2 영역(S2)에 형성될 수 있다.
도 3은 도 1에 도시된 렌즈(140)에 의해 굴절되는 빛을 나타내고, 도 4는 도 3에 도시된 제1 및 제2 반사면들(132a, 134a)의 높이(Z)를 나타낸다.
도 3 및 도 4를 참조하면, 렌즈(140)의 굴절부(142)는 입사면(142a), 및 출사면(142b)을 포함할 수 있다.
렌즈(140)의 굴절부(142)의 입사면(142a)은 발광 소자들(124-1 내지 124-n, n>1인 자연수)로부터 조사되는 빛이 입사되고, 굴절되는 면일 수 있으며, 제1 및 제2 반사면들(132a, 134a)로부터 이격할 수 있다.
렌즈(140)의 굴절부(142)의 출사면(142b)은 입사면(142a)을 통과한 빛을 굴절시키며, 통과시킨다. 렌즈(140)의 굴절부(142)의 입사면(142a)과 출사면(142b)을 통과한 빛은 발광부(120)에서 렌즈(140)로 향하는 방향과 평행한 광(148)으로 변환될 수 있다.
예컨대, 렌즈(140)의 입사면(142a)은 보드(122)의 상부면과 평행한 평면일 수 있고, 출사면(142b)은 발광부(120)에서 렌즈(140)로 향하는 방향으로 볼록한 반구 형상 또는 돔 형상, 예컨대, 파라볼라 형상, 또는 타원 형상일 수 있으나, 이에 한정되는 것은 아니며, 다른 실시 예에서는 입사면(142a)과 출사면(142b)을 통과한 빛이 평행한 광(148)으로 변환될 수 있도록 입사면(142a) 및 출산면(142b)은 다양한 형태로 구현될 수 있다.
제1 및 제2 반사면들(132a, 134a) 사이의 공간, 및 렌즈(140)와 발광부(120) 사이의 공간은 기체, 예컨대, 공기로 채워질 수 있으나, 이에 한정되는 것은 아니며, 다른 실시 예에서는 투광성 재질로 채워질 수도 있다.
발광 소자(124)의 중심과 제1 반사면(132a)의 최상단(132-1)을 잇는 가상의 제1 기준 직선(102a)에 렌즈(140)의 제1 가장 자리(142-1)가 접하도록 렌즈(140)가 배치될 수 있다. 예컨대, 렌즈(140)의 제1 가장 자리(142-1)는 렌즈(140)의 입사면(142a)과 출사면(142b)이 접하는 렌즈(140)의 제1 모서리일 수 있다.
발광 소자(124)의 중심과 제2 반사면(134a)의 최상단(134-1)을 잇는 가상의 제2 기준 직선(102b)에 렌즈(140)의 제2 가장 자리(142-2)가 접하도록 렌즈(140)가 배치될 수 있다. 예컨대, 렌즈(140)의 제2 가장 자리(142-2)는 렌즈(140)의 입사면(142a)과 출사면(142b)이 접하는 렌즈(140)의 제2 모서리일 수 있다.
예컨대, 발광 소자(124)의 중심은 발광 소자(124)의 발광면의 중심일 수 있고, 렌즈(140)의 제1 및 제2 가장 자리들(142-1, 142-2)은 렌즈(140)의 측면과 하면이 만나는 모서리일 수도 있다.
가상의 제1 기준 직선(102a)과 제2 기준 직선(102b) 사이로 조사되는 발광 소자(124)의 빛은 렌즈(140)에 의하여 굴절되며, 굴절된 빛은 발광부(120)에서 렌즈(140)로 향하는 방향과 평행한 광(148)으로 변환되어 출사될 수 있다.
다른 실시 예에서는 렌즈(140)의 제1 가장 자리(142-1), 및 제2 가장 자리(142-2)는 제1 기준 직선(102a), 및 제2 기준 직선(102b)으로 이격하도록 배치될 수도 있다.
도 5는 도 1에 도시된 반사부(130)에 의하여 반사되는 빛을 나타낸다.
도 5를 참조하면, 제1 기준 직선(102a), 및 제2 기준 직선(102b) 아래로 출사되는 발광 소자(124)의 빛은 렌즈(140)에 의한 굴절없이 제1 및 제2 반사면들(132a, 134a)에 의하여 바로 반사된다.
제1 및 제2 반사면들(132a, 134a)은 파라볼라 형상이므로 제1 및 제2 반사면들(132a, 134a)에 의하여 반사된 빛(149)은 발광부(120)에서 렌즈(140)로 향하는 방향과 평행할 수 있다. 예컨대, 제1 기준 직선(102a), 및 제2 기준 직선(102b) 아래로 출사되는 발광 소자(124)의 빛은 제1 및 제2 반사면들(132a, 134a)의 반사에 의하여 평행한 광(149)으로 변환되어 출사될 수 있다.
제1 및 제2 반사부들(132, 134)의 높이(Z)는 0.89A 이상일 수 있다(Z≥0.89A). A는 발광 소자(124)의 직경일 수 있다.
제1 및 제2 반사부들(132, 134)의 높이(Z)가 0.89A 미만일 때는, 렌즈(140)를 제1 및 제2 반사면들(132a, 134a) 내측에 배치하기에는 제1 및 제2 반사부들(132,134)의 높이가 너무 작다. 제1 및 제2 반사부들(132,134)의 상한치는 후술하는 β에 의하여 정의될 수 있다.
실시 예에서는 제1 및 제2 반사부들(132, 134)의 높이(Z), 발광 소자(160-1 내지 160-m)의 위치(a), 및 제1 및 제2 반사면들(132a, 134a)의 광 출사구의 직경(PD) 사이의 관계는 수학식 1과 같이 정의될 수 있다.
수학식 1
Figure PCTKR2016009165-appb-M000001
여기서 Z는 반사부들(132,134)의 높이, 예컨대, 제1 및 제2 반사면(132a, 134a) 각각의 하면(132c, 134c)으로부터 최상단(132-1, 134-1)까지의 거리를 나타낸다.
PD는 제1 및 제2 반사면들(132a, 134a) 사이의 광 출사구의 직경, 예컨대, 제1 반사면(132a)의 최상단(132-1)에서 제2 반사면(134a)의 최상단(134-1)까지의 거리를 나타낸다.
a는 파라볼라 형상(PA)의 최하단으로부터 발광 소자(124)까지의 거리일 수 있다. 예컨대, a는 파라볼라 형상(PA)의 초점 거리일 수 있다.
제1 반사면(132a)의 최하단(132-2)과 제2 반사면(134a)의 최하단(134-2) 사이의 거리(D)는 4a일 수 있다. 예컨대, 발광 소자(124)가 파라볼라 형상(PA)의 초점에 위치할 때, D는 4a로 설정될 수 있다.
제1 반사면(132a)의 최하단(132-2)과 제2 반사면(134a)의 최하단(134-2) 사이의 거리(D)는 1.2A 이상일 수 있다.
제1 반사면(132a)의 최하단(132-2)과 제2 반사면(134a)의 최하단(134-2) 사이의 거리(D)는 1.2A 이상일 때, 발광 소자(124)로부터 발생하는 빛을 손실없이 제1 및 제2 반사면들(132a, 134a)로 보낼 수 있다. 반면에 제1 반사면(132a)의 최하단(132-2)과 제2 반사면(134a)의 최하단(134-2) 사이의 거리(D)가 1.2A 미만인 경우에는 발광 소자(124)로부터 방출되는 빛의 광량이 손실될 수 있다.
렌즈(140)의 입사면(142a)의 직경(LD)은 수학식 2와 같이 정의될 수 있다.
수학식 2
Figure PCTKR2016009165-appb-M000002
여기서 θ는 조명 장치(100)의 배광 분포(intensity distribution)에서 광도의 최대값의 10% 영역에 대응하는 발광 소자들(124-1 내지 124-n)로부터 조사되는 빛의 각도를 나타내고, a는 파라볼라 형상(PA)의 초점 거리를 나타낸다.
또한 렌즈(140)의 높이(LZ)는 수학식 3과 같이 정의될 수 있다.
수학식 3
Figure PCTKR2016009165-appb-M000003
여기서 LZ는 렌즈(140)의 높이, 예컨대, 제1 및 제2 반사부들(132, 134)의 하면(132c, 134c)으로부터 렌즈(140)의 입사면(142a)까지의 거리일 수 있으며, α는 수평 기준면과 가상의 제1 기준 직선(102a) 사이의 각도 또는 수평 기준면과 가상의 제2 기준 직선(102b) 사이의 각도일 수 있다. 수평 기준면은 수직 기준면(101)에 수직한 평면일 수 있다. 예컨대, 수평 기준면은 제1 및 제2 반사부들(132,134)의 하면(132c, 134c)이거나, 보드(122)의 상부면일 수 있다.
도 7은 도 8의 시뮬레이션 결과에 대한 각 case의 조건을 나타내고, 도 8은 도 7의 조건에 기초한 시뮬레이션 결과에 따른 광도의 상승률을 나타내고, 도 9는 도 8의 각 경우에 대한 최대 광도(max intensity) 상승률 곡선을 나타낸다.
도 7을 참조하면, 발광 소자들(160-1 내지 160-m) 각각의 크기는 2.5mm ×2.5mm이고, 발광 소자들(160-1 내지 160-m) 각각의 대각선의 길이는 3.5mm일 수 있다. 발광 소자(160-1 내지 160-m)는 파라볼라 형상의 초점에 정렬될 수 있다.
제1 및 제2 반사부들(132, 134)의 높이(Z)가 발광 소자들(160-1 내지 160-m) 각각의 직경에 비하여 너무 작으면 조명 장치(100)의 최대 광도 상승률이 저하된다. 또한 제1 및 제2 반사부들(132, 134)의 높이(Z)가 발광 소자들(160-1 내지 160-m) 각각의 직경에 비하여 너무 커지면, 광원을 조절하는 영역이 커지기 때문에 집광을 위한 렌즈(140)의 역할이 감소한다.
렌즈(140)를 구비하지 않는 조명 장치와 비교할 때, 실시 예에 따른 조명 장치(100)는 10% 이상의 최대 광도(max intensity) 상승률을 가질 수 있다.
평행광으로 집광이 잘되는 조명 장치의 배광 분포를 평가하는 지표로 조명 장치의 최대 광도(max intensity)가 사용될 수 있다. 즉 조명 장치의 최대 광도(max intensity)가 높을수록 조명 장치는 평행광으로 집광이 더 잘되는 배광 분포를 가질 수 있다. 여기서 상승률은 렌즈(140)를 구비하지 않는 조명 장치의 최대 광도(max intensity) 대비 렌즈(140)를 구비하는 조명 장치(100)의 최대 광도의 % 비율일 수 있다.
도 8을 참조할 때, 10% 이상의 최대 광도(max intensity) 상승률을 갖는 경우는 case 1 내지 case 5일 수 있다. 이때 α는 33°~ 67°일 수 있으며, β는 23°~ 57°일 수 있다. 또한 이때 제1 기준 직선(102a)과 제2 기준 직선(102b) 사이의 각도(2β)는 46°~ 114°일 수 있다.
또는 실시 예에 따른 조명 장치(100)는 30% 이상의 최대 광도(max intensity) 상승률을 가질 수 있다. 도 8을 참조할 때, 30% 이상의 최대 광도(max intensity) 상승률을 갖는 경우는 case 1 내지 case 3일 수 있다. 이때 α는 33°~ 51°일 수 있으며, β는 39°~ 57°일 수 있다. 또한 이때 제1 기준 직선(102a)과 제2 기준 직선(102b) 사이의 각도(2β)는 78°~ 114°일 수 있다.
또는 실시 예에 따른 조명 장치(100)는 60% 이상의 최대 광도(max intensity) 상승률을 가질 수 있다. 도 8을 참조할 때, 60% 이상의 최대 광도(max intensity) 상승률을 갖는 경우는 case 1 및 case 2일 수 있다. 이때 α는 33°~ 37°일 수 있으며, β는 53°~ 57°일 수 있다. 또한 이때 제1 기준 직선(102a)과 제2 기준 직선(102b) 사이의 각도(2β)는 106°~ 114°일 수 있다.
도 6은 다른 실시 예에 따른 조명 장치(200)의 CD 방향의 단면도를 나타낸다.
도 6의 사시도는 도 6의 돌출 지지부(115)를 제외하고는 도 1과 동일할 수 있으며, AB 방향의 단면도는 도 2a와 동일할 수 있으며, 도 1, 도 2a 및 도 2b와 동일한 도면 부호는 동일한 구성을 나타내며, 동일한 구성에 대해서는 설명을 간략하게 하거나 생략한다.
도 6을 참조하면, 조명 장치(200)의 렌즈(140')는 도 1의 지지부(144)를 구비하지 않는다. 조명 장치(200)의 하우징(110)은 내벽에 돌출 지지부(115)를 구비하며, 돌출 지지부(115)는 렌즈(140')의 굴절부(142)의 하면의 일단 및 타단을 지지한다.
따라서 렌즈(140')는 하우징(110)의 내벽에 마련되는 돌출 지지부(115)에 의하여 지지될 수 있다.
도 6에 도시된 실시 예는 지지부(114)를 구비하지 않기 때문에, 렌즈(140)의 지지부(114)에 의하여 발광 소자들(124-1 내지 124-n)로부터 조사되는 빛이 굴절되는 것을 방지할 수 있으며, 수학식 1 내지 3에 의하여 설계된 바에 따라 집광 효율을 향상시킬 수 있다.
적색 LED, 청색 LED, 녹색 LED, 또는 백색 LED와 비교할 때, UV LED는 점광원이면서 광량이 상대적으로 낮기 때문에 UV LED만으로 발광 모듈을 구성하면 집광 능력이 떨어진다.
타겟 거리가 멀어짐에 따라 타겟 조도(target irradiance)를 맞추기 위해서는 발광 모듈에 포함되는 UV LED의 개수를 늘려야 한다. 또한 타겟 거리가 멀어지면, 조도뿐만 아니라 광 균일도도 함께 떨어진다.
실시 예는 UV LED 광원으로부터 조사되는 빛을 파라볼라 형상의 반사면(132a, 134a)과 집광 렌즈(140)를 사용하여 평행광으로 변환시킴으로써, 일정 면적을 갖는 타겟에 광을 균일하게 집광시킬 수 있다. 여기서 타겟은 빛을 받아들이는 장치, 광 섬유, 광케이블, 노광기, 검출기, 내시경 또는 센서 등일 수 있으나, 이에 한정되는 것은 아니다.
또한 실시 예에 따른 조명 장치(100)는 수학식 1 내지 3에 따른 제1 및 제2 반사부들(132,134) 및 렌즈(140)를 구비함으로써, 10% 이상의 최대 광도(max intensity) 상승률을 가질 수 있다.
도 10은 실시 예에 따른 조명 장치(1100)의 분리 사시도를 나타내고, 도 11은 도 10에 도시된 조명 장치(1100)의 AB 방향의 단면도를 나타내고, 도 12는 도 10에 도시된 조명 장치(1100)의 CD 방향의 단면도를 나타낸다.
도 10 내지 도 12를 참조하면, 조명 장치(1100)는 하우징(Housing, 1110), 발광부(1120), 반사부(reflector, 1130), 및 렌즈(lens, 1140)를 포함한다.
하우징(1110)은 발광부(1120), 반사부(1130), 및 렌즈(1140)를 수용하는 캐비티(cavity, 1111)를 구비한다.
하우징(1110)은 가볍고, 내열성이 강한 플라스틱 재질이거나, 열전도도가 좋은 금속 재질, 예컨대, 알루미늄일 수 있다. 하우징(1110)의 내벽에는 발광부(1120)로부터 조사되는 빛을 반사시킬 수 있는 반사 물질이 코팅될 수도 있다. 또는 다른 실시 예에서는 하우징(1110) 자체가 광을 반사하는 반사 재질로 이루어질 수도 있다.
발광부(1120)는 하우징(1110) 내에 배치되며, 광을 조사한다.
발광부(1120)는 보드(board, 1122), 및 발광 소자(1124)를 포함할 수 있다. 또한 발광부(1120)는 발광 소자(1124)를 감싸는 수지층(1126)을 더 포함할 수 있다. 수지층(1126)은 발광 소자(1124)를 보호하고, 발광 소자(1124)로부터 조사되는 빛을 굴절시킬 수 있다. 예컨대, 수지층(1126)은 빛을 굴절시키는 렌즈 역할을 할 수 있다.
발광부(1120)의 보드(1122)는 발광 소자(1124)를 마운팅(mounting)할 수 있고, 발광 소자(1124)에 전원을 공급하거나, 발광 소자를 제어하거나, 보호할 수 있는 소자를 마운팅할 수 있는 판 형태의 구조일 수 있다.
예컨대, 보드(1122)는 인쇄회로기판(Printed circuit board)이거나, 메탈 PCB일 수 있다. 도 10에서 보드(1122)는 정육면체의 판 형상일 수 있으나, 이에 한정되는 것은 아니며, 원형, 타원형, 또는 다면체의 판 형상일 수 있다.
발광 소자(1124)는 보드(1122)의 일면(예컨대, 상부면) 상에 배치된다. 발광 소자(1124)는 LED(Light Emitting Diode) 기반의 광원일 수 있으나, 이에 한정되는 것은 아니다. 예컨대, 발광 소자(1124)는 발광 다이오드 칩 형태이거나, 또는 발광 다이오드 패키지 형태일 수 있다.
발광 소자(1124)의 개수는 1개 이상일 수 있다. 도 10에서는 1개의 발광 소자가 보드 상에 배치되지만, 이에 한정되는 것은 아니다. 예컨대, 다른 실시 예에서는 복수 개의 발광 소자들이 일렬로 보드 상에 배열되거나, 원형 또는 매트릭스(matrix) 형태 등과 같이 다양한 형태로 보드(1122) 상에 배열될 수 있다.
발광 소자(1124)는 가시광선 또는 적외선 파장 범위를 갖는 빛을 방출할 수 있다.
예컨대, 발광 소자(1124)는 청색, 적색, 또는 녹색의 파장 범위를 갖는 빛을 방출할 수 있다. 또는 발광 소자(1124)는 백색의 파장 범위를 갖는 빛을 방출할 수도 있다.
또는 예컨대, 발광 소자(1124)는 200nm ~ 400nm의 파장 범위를 갖는 자외선을 발생할 수 있다. 또는 예컨대, 발광 소자(1124)는 200nm ~ 280nm의 파장 범위를 갖는 UVC(ultraviolet-C)를 발생할 수도 있다.
발광 소자의 수가 복수 개일 때, 복수의 발광 소자들은 동일 또는 유사한 파장 범위를 갖는 빛을 발생할 수 있다. 또한 복수의 발광 소자들 중 적어도 하나는 다른 파장 범위를 갖는 빛을 방출할 수도 있다.
반사부(1130)는 발광 소자(1124) 주위를 감싸도록 배치되고, 발광부(1120)로부터 조사되는 빛을 반사하는 반사면(1132)을 포함할 수 있다.
예컨대, 반사부(1130)는 발광부(1120)에 인접하고, 하단에 위치하는 제1 개구(1130a), 제1 개구(1130a) 상부에 위치하고, 발광부(1120)로부터 조사되는 빛이 출사되는 제2 개구(1130b), 및 제1 개구(1130a)와 제2 개구(1130b) 사이에 위치하는 반사면(1132)을 포함할 수 있다. 제2 개구(1130b)의 직경은 제1 개구(1130a)의 직경보다 크다.
도 10에 도시된 제1 개구(1130a), 및 제2 개구(1130b)의 형상은 원형이나, 이에 한정되는 것은 아니며, 다른 실시 예에서는 타원형, 또는 다각형 형상일 수도 있다.
반사면(1132)의 수직 단면은 타원(Ellipse) 형상이거나 또는 타원의 곡률을 가질 수 있다. 예컨대, 반사면(1132)의 수직 단면은 제1 개구(1130a)의 중앙 및 제2 개구(1130b)의 중앙을 지나는 평면일 수 있다.
예컨대, 도 11에서 반사면(1132)과 반사면(1132)의 하단의 연장선은 타원(EL)의 형상을 가질 수 있으며, 반사면(1132) 하단의 연장선은 타원(EL)의 꼭지점을 형성할 수 있다.
발광 소자(1124)는 타원(EL)의 초점에 위치하도록 정렬될 수 있다.
발광부(1120)는 반사면(1132)으로부터 이격하여 위치하며, 발광부(1120)의 중앙은 수직 기준선(1101)에 정렬될 수 있다. 이때 발광부(1120)의 중앙은 발광 소자(1124)의 중앙일 수 있고, 발광 소자(1124)의 중앙은 발광 소자(1124)의 발광면의 중앙일 수 있다.
수직 기준선(1101)은 반사부(1130)의 중앙, 및 렌즈(1140)의 중앙을 지나고, 보드(1122)의 상부면에 수직인 가상의 직선일 수 있다. 예컨대, 수직 기준선(1101)은 반사부(1130)의 제1 개구(1130a)의 중앙, 제2 개구(1130b)의 중앙, 및 렌즈(1140)의 중앙을 지나고, 보드(1122)의 상부면에 수직인 가상의 직선일 수 있다.
반사부(1130)는 수직 단면이 타원 형상인 반사면(1132), 반사면(1132)의 반대편에 위치하는 측면(1134), 및 반사면(1132)과 측면(1134) 사이에 위치하는 하면(1136)을 포함할 수 있다.
반사부(1130)는 반사 금속, 예컨대, 스텐레스, 은(Ag)으로 이루어질 수 있다. 또는 반사부(1130)는 경면 반사가 되는 형태의 금속 재질일 수 있다.
또는 반사부(1130)는 반사율이 높은 수지 재질로 이루어질 수 있으나, 이에 한정되는 것은 아니다.
렌즈(1140)는 발광부(1120) 상의 반사면(1132) 내부의 공간에 배치되며, 발광부(1120)로부터 조사되는 빛을 굴절시켜 투과시킨다. 예컨대, 렌즈(1140)의 중앙은 발광부(1120)의 중앙, 제1 개구(1130a)의 중앙, 및 제2 개구(1130b)의 중앙에 정렬될 수 있다.
렌즈(1140)는 반사부(1130)의 하단에서 상단 방향 또는 발광부(1120)에서 렌즈(1140)로 향하는 방향으로 볼록한 굴절부(1142), 및 굴절부(1142) 하면에 마련되는 지지부(1144)를 포함할 수 있다.
렌즈(1140)의 지지부(1144)는 보드(1122)의 상부면에 마련되는 결합 홈(1122a)과 결합되고, 렌즈(1140)를 지지할 수 있다. 예컨대, 지지부(1144)는 렌즈(1140)의 굴절부(1142)의 하면에 연결된 다리 형태일 수 있으며, 지지부(1144)의 개수는 2개 이상일 수 있다. 지지부(1144)의 일단에는 보드(1122)의 결합홈(1122a)과 결합되기 위한 걸림부가 마련될 수 있다.
도 10에서는 지지부(1144)의 개수가 4개이나, 이에 한정되는 것은 아니다.
예컨대, 지지부(1144)에 의하여 발광부(120)로부터 조사되는 빛이 굴절되는 것을 억제하기 위하여 지지부(1144)는 서로 이격하여 굴절부(1142)의 하면에 연결될 수 있다.
도 10에서는 렌즈(1140)의 지지부(1144)가 보드(1122)에 마련되는 홈(1122a)에 결합되지만, 이에 한정되는 것은 아니며, 다른 실시 예에서는 렌즈(1140)의 지지부(1144)는 하우징(1110)의 캐비티(1111)의 하면에 마련되는 홈(미도시)에 결합될 수도 있다.
또한 또 다른 실시 예에서는 보드(1122)에 홈(1122a)이 마련되지 않고, 접착 부재에 의하여 지지부(1144)가 보드(1122) 또는 하우징(1110)의 캐비티(1111)의 하면에 고정될 수도 있다.
도 12는 렌즈(1140)에 의해 굴절되는 빛을 도시한다.
렌즈(1140)의 굴절부(1142)는 입사면(1142a), 및 출사면(1142b)을 포함할 수 있다.
렌즈(1140)의 굴절부(1142)의 입사면(1142a)은 발광 소자(1124)로부터 조사되는 빛이 입사되고, 굴절되는 면일 수 있으며, 반사면(1132)로부터 이격할 수 있다.
렌즈(1140)의 굴절부(1142)의 출사면(1142b)은 입사면(1142a)을 통과한 빛을 굴절시키며, 통과시킨다. 렌즈(1140)의 굴절부(1142)의 입사면(1142a)과 출사면(1142b)을 통과한 빛은 발광부(1120)에서 렌즈(1140)로 향하는 방향과 평행한 광(1148)으로 변환될 수 있다.
예컨대, 렌즈(1140)의 입사면(1142a)은 보드(1122)의 상부면과 평행한 평면일 수 있고, 출사면(1142b)은 발광부(1120)에서 렌즈(1140)로 향하는 방향으로 볼록한 반구 형상, 파라볼라 형상, 또는 타원 형상일 수 있으나, 이에 한정되는 것은 아니며, 다른 실시 예에서는 입사면(1142a)과 출사면(1142b)을 통과한 빛이 평행한 광(1148)으로 변환될 수 있도록 입사면(1142a) 및 출사면(1142b)은 다양한 형태로 구현될 수 있다.
반사면(1132) 내부 공간, 및 렌즈(1140)와 발광부(1120) 사이의 공간은 기체, 예컨대, 공기로 채워질 수 있으나, 이에 한정되는 것은 아니며, 다른 실시 예에서는 투광성 재질로 채워질 수도 있다.
렌즈(1140)의 가장 자리(1142-1)는 발광 소자(1124)의 중앙과 반사면(1132a)의 최상단(1132-1)을 잇는 가상의 기준 직선(1102a)에서 이격될 수 있다. 또는 렌즈(1140)의 가장 자리(1142-1)는 가상의 기준 직선(1102a)에 정렬되거나 접할 수 있다.
만약 렌즈(1140)의 가장 자리(1142-1)가 가상의 기준 직선(1102a)과 오버랩되는 경우에는 반사면(1132)에 의해 반사되는 빛과 렌즈(1140)에 의해 굴절되는 빛이 서로 간섭을 일으킬 수 있으며, 이러한 빛의 간섭에 의하여 타겟에 원하는 집광을 할 수 없다.
예컨대, 렌즈(1140)의 가장 자리(1142-1)는 렌즈(1140)의 입사면(1142a)과 출사면(1142b)이 접하는 렌즈(1140)의 모서리일 수 있다.
발광 소자(1124)의 개수가 복수 개일 때, 발광 소자(1124)의 중앙은 발광 소자들이 분포되는 영역의 중앙일 수 있다.
반사부(1130)의 제1 영역(S11)으로 조사되는 발광 소자(1124)의 빛은 렌즈(1140)에 의하여 굴절되며, 굴절된 빛은 발광부(1120)에서 렌즈(1140)로 향하는 방향과 평행한 광(1148)으로 변환되어 출사될 수 있다.
이때 반사부(130)의 제1 영역(S11)은 발광 소자(1124)의 중앙과 반사면(1132a)의 최상단(1132-1)을 잇는 가상의 기준 직선(1102a)의 일 측에 위치하는 영역일 수 있다.
예컨대, 반사부(1130)의 제1 영역(S11)은 발광 소자(1124)의 중앙과 반사면(1132a)의 최상단(1132-1)을 잇는 가상의 기준 직선들(1102a)로 이루어지는 폐곡면(예컨대, 원뿔)의 내측 영역일 수 있다.
예컨대, 기준 직선(1102a)의 위로 조사되는 발광 소자(1124)의 빛은 렌즈(1140)에 의하여 굴절되며, 굴절된 빛은 발광부(1120)에서 렌즈(1140)로 향하는 방향과 평행한 광(1148)으로 변환되어 출사될 수 있다.
도 13은 도 10에 도시된 반사부(1130)의 반사면(1132)에 의하여 반사되는 빛(1149)을 나타내고, 도 14는 반사면(1132)의 사이즈, 렌즈(1140)의 크기 및 위치, 및 타겟(Ta)의 사이즈 및 위치를 나타낸다.
도 13 및 도 14를 참조하면, 기준 직선(1102a) 아래로 출사되는 발광 소자(1124)의 빛은 렌즈(1140)에 의한 굴절없이 반사면(1132)에 의하여 바로 반사된다. 반사면(1132)은 타원 형상이므로 반사면(1132)에 의하여 반사된 빛(1149)은 일정 거리에 위치하는 타겟(Ta)으로 집광될 수 있다.
예컨대, 기준 직선(1102a) 아래로 출사되는 발광 소자(1124)의 빛은 반사면(1132)의 반사에 의하여 수직 기준선(1101)을 통과하여 타겟(Ta)에 집광되거나 또는 수직 기준선(1101)에 정렬되도록 타겟(Ta)에 집광될 수 있다.
도 12 및 도 13을 참조하면, 반사부(1130)의 제1 개구(1130a)의 직경(ED1)은 1.2×LD ~ 5.0×LD일 수 있다. 예컨대, LD는 발광 소자(1124)의 발광면의 직경일 수 있고, ED1은 반사면(1132)의 최하단의 직경일 수 있다.
제1 개구(1130a)의 직경(ED1)이 1.2×LD 이상일 경우에는 발광 소자(1124)로부터 발생하는 빛을 손실없이 반사면(1132)으로 보낼 수 있다. 제1 개구(1130a)의 직경(ED1)이 1.2×LD 미만일 경우에는 발광 소자(1124)로부터 방출되는 빛의 광량이 손실될 수 있다.
또한 제1 개구(1130a)의 직경(ED1)이 5.0×LD을 초과하는 경우에는 광원의 면적 대비 제1 개구(1130a)의 직경이 너무 멀어져서 광량의 손실이 증가하여 광 파워가 떨어진다.
발광 소자(1124)의 발광면의 직경(LD)과 유사한 직경을 갖는 타겟(Ta)에 빛을 집광하도록 하기 위하여, 실시 예에 따른 타겟(Ta)의 직경(TD)은 1.2×LD ~ 1.5×LD일 수 있다.
또한 반사부(1130)의 하면(1136)으로부터 타겟(Ta)까지의 거리(TH)는 1.0×LD ~ 4.5×LD일 수 있다.
TH가 4.5×LD 초과일 경우, 집광되는 거리가 멀어지기 때문에 집광되는 광 파워가 40% 미만으로 감소하기 때문이다.
TH가 1.0×LD 미만일 경우, 반사부(1130)의 하면(1136)으로부터 타겟(Ta)까지의 거리(TH)가 너무 가까워져서 반사부(1130)와 렌즈(1140)에 의한 집광 효과를 얻을 수 없습니다.
수직 기준선(1101)과 기준 직선(1102a) 사이의 각도(θ)는 수학식 4에 의하여 정의된다.
수학식 4
Figure PCTKR2016009165-appb-M000004
ED2는 제2 개구(1130b)의 직경일 수 있다. 예컨대, ED2는 반사면(1132)의 최상단의 직경일 수 있다.
EH는 반사부(1130)의 높이를 나타낸다. 예컨대, EH는 반사부(1130)의 하면(1136)으로부터 반사면(1132)의 최상단(1132-1)까지의 거리일 수 있다.
수직 기준선(1101)과 기준 직선(1102a) 사이의 각도(θ)는 30°~ 51°일 수 있다.
θ가 30°미만일 경우는 타원 형상(EL)의 초점 거리(a1)가 멀어져서 광량이 떨어지고, θ가 51°초과일 경우에는 타원 형상(EL)의 초점 거리(a1)가 짧아져서 집광하기 어렵다.
렌즈(1140)의 직경(LD2)은 수학식 5 및 수학식 6에 의하여 정의된다.
수학식 5
Figure PCTKR2016009165-appb-M000005
수학식 6
Figure PCTKR2016009165-appb-M000006
k는 빛들의 간섭에 관한 상수를 나타내며, 0.8≤k≤1일 수 있다.
k=1 일 때는 렌즈(1140)의 가장 자리(1142-1)가 가상의 기준 직선(1102a)에 정렬될 수 있다.
k>1 일 때는 렌즈(1140)의 가장 자리(1142-1)가 가상의 기준 직선(1102a)과 오버랩되기 때문에, 빛의 간섭이 발생할 수 있다.
k<0.8 일 때는 렌즈(1140)의 직경이 작아져서 렌즈(1140)에 의한 빛의 집광 효과를 얻을 수 없다.
LH2는 렌즈(1140)의 높이를 나타낸다.
예컨대, LH2는 반사부(1130)의 하면(1136)으로부터 렌즈(1140)의 입사면(1142a)까지의 거리일 수 있다.
렌즈(1140)가 타원의 곡률을 갖는다는 점, 및 타겟(Ta)까지의 거리를 고려하여 렌즈(1140)의 높이(LH2)는 반사부(1130)의 높이(EH)의 1/2로 설정한다. 렌즈(1140)의 곡률은 타겟까지의 거리(TH)에 따라 달라질 수 있다.
즉 렌즈(1140)가 집광하는 영역이 작아질수록 렌즈(1140)의 곡률의 높이가 증가하면서 타겟(Ta)까지의 거리(TH)도 증가할 수 있다. 타원의 곡률을 갖는 렌즈(1140)가 집광할 수 있는 타겟까지의 거리를 고려할 때, 실시 예는 LH2를 EH의 1/2로 설정함으로써, 발광 소자(1124)로부터 발생하는 빛의 광량의 25% ~ 60%를 원하는 타겟(Ta)까지 집광할 수 있다.
수학식 6에서는 LH2가 반사부(1130)의 높이(EH)의 1/2일 때, B는 반사면(1132)의 최상단의 직경의 1/2, 또는 제2 개구(1130b)의 직경(ED2)의 1/2일 수 있다.
반사부(1130)에 의하여 반사부(1130)의 제2 영역(S12)으로 조사되는 발광 소자(1124)의 빛은 타겟 영역으로 집광될 수 있다.
렌즈(1140)에 의하여 손실되는 광을 고려하더라도 실시 예는 조명 장치로부터 출사된 빛의 전체 광 파워의 적어도 40% 이상을 타겟 영역에 집광할 수 있다.
도 15는 도 16의 시뮬레이션 결과에 대한 각 케이스(case)의 조건을 나타내고, 도 16은 도 15에 따른 조명 장치의 집광에 관한 시뮬레이션 결과를 나타낸다.
LES는 발광 소자(1124)의 발광면의 직경을 나타낸다. LES는 3.5mm이고, 타겟, 예컨대, 검출기(detector)의 크기(size)는 5mm × 5mm일 수 있다. 여기서 검출기는 수신되는 빛의 파워 또는 광량을 측정할 수 있다.
F1, F2는 타원의 초점을 나타내고, R은 타원의 버텍스라디우스(vertex radius)이고, k는 코닉 상수(conic constant)이고, F는 타원의 원점에서 초점(또는 발광 소자(1124))까지의 거리이다.
총 누적 파워(Total collected power)는 조명 장치로부터 출사되는 전체 광의 수집된 파워를 나타내고, 검출기 누적 파워(Detector collected power)는 타겟(Ta), 예컨대, 검출기에 의하여 검출되는 광의 파워를 나타내고, rate는 총 누적 파워와 검출기 누적 파워의 비율을 나타낸다.
타겟(Ta), 예컨대, 검출기의 사이즈는 발광면의 직경의 1.2배 내지 1.5배일 수 있다.
도 15 및 도 16을 참조하면, 비율(rate)이 40% 이상이 되는 경우는 case 1 내지 case 4일 수 있으며, θ는 30°~ 51°일 수 있다.
도 17은 도 18의 시뮬레이션 결과에 대한 각 case의 조건을 나타내고, 도 18은 도 17의 조건에 따른 조명 장치의 집광에 관한 시뮬레이션 결과를 나타낸다.
LES는 14.5mm이고, 타겟, 예컨대, 검출기(detector)의 크기(size)는 18mm × 18mm일 수 있다.
도 17 및 도 18을 참조하면, 비율(rate)이 40% 이상이 되는 경우는 case 1 내지 case 4일 수 있으며, θ는 30°~ 51°일 수 있다.
도 19는 도 16 및 도 18의 시뮬레이션 결과들에 대한 그래프이다.
f1은 도 16의 시뮬레이션 결과에 따른 그래프이고, f2는 도 18의 시뮬레이션 결과에 따른 그래프이다.
도 19를 참조하면, 비율(rate)이 40%인 θ의 값(P1)는 28°이다.
2°의 오차 마진을 고려하여 비율(rate)이 40% 이상이 되도록 하기 위하여 실시 예에 따른 조명 장치(100)의 θ는 30°이상일 수 있으며, 51°이하일 수 있다.
θ가 51°초과에서는 반사면(1132)의 높이(EH)가 너무 작아져서, 반사면(1132)이 타원의 형상을 갖기 어렵고, 이로 인하여 원하는 타겟에 집광을 할 수 없기 때문에, θ의 상한치를 51°로 설정한다.
θ는 30°~ 51°일 때, 비율(rate)은 40% 이상 68% 이하일 수 있다.
또한 비율(rate)이 50% 이상이 되도록 하기 위하여 θ는 34°~ 51°일 수 있다.
또한 비율(rate)이 60% 이상이 되도록 하기 위하여 θ는 42°~ 50°일 수 있다.
광량이 큰 램프에 비하여 상대적으로 광량이 작은 LED를 광원으로 사용하여, 광원의 크기와 유사한 크기를 갖는 광섬유 또는 검출기(detector)에 광원의 파워(Power)를 집중시키고자 할 때, 단순한 리플렉터(reflector) 형태로는 검출기 면적 전체로 광원의 파워를 집중시키기 어렵다.
실시 예는 다음과 같은 효과가 있다.
첫째, 집광을 위하여 집광 렌즈를 타원면의 반사면으로 갖는 반사부의 중앙 렌즈로 사용함으로써 광학계군으로 손실되는 광량을 줄일 수 있다.
둘째, 집광을 위하여 다수의 렌즈들을 사용하는 광학계에서는 시스템 효율이 통상 70% 정도되는 반면에, 실시 예는 2개의 광학 요소들(optical elements), 예컨대, 2개의 렌즈들을 사용하기 때문에 렌즈군 효율은 적어도 84% 정도가 될 수 있으며, 광학 축의 정렬(align)이 용이할 수 있다.
셋째, 발광 소자(1124)의 면적 및 분포에 따른 규칙에 따라 렌즈의 크기 및 위치 조절이 용이할 수 있다.
TH가 1.0×LD ~ 4.5×LD이고, 1.2×LD ~ 1.5×LD의 직경을 갖는 타겟(Ta)에 대하여, 실시 예는 반사부(1130)로부터 출사되는 광량의 총 누적 파워의 40% 이상을 타겟(Ta)에 집광시킬 수 있다.
이상에서 실시 예들에 설명된 특징, 구조, 효과 등은 본 발명의 적어도 하나의 실시 예에 포함되며, 반드시 하나의 실시 예에만 한정되는 것은 아니다. 나아가, 각 실시 예에서 예시된 특징, 구조, 효과 등은 실시 예들이 속하는 분야의 통상의 지식을 가지는 자에 의해 다른 실시 예들에 대해서도 조합 또는 변형되어 실시 가능하다. 따라서 이러한 조합과 변형에 관계된 내용들은 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.
일정 면적을 갖는 타겟에 광을 균일하게 집광할 수 있는 조명 장치에 사용될 수 있다.

Claims (20)

  1. 보드 및 상기 보드의 상부면에 배치되는 복수의 발광 소자들을 포함하는 발광부;
    상기 발광부의 일 측에 위치하는 제1 반사면, 및 상기 발광부의 타 측에 위치하는 제2 반사면을 포함하고, 상기 제1 반사면과 상기 제2 반사면은 파라볼라(parabola) 형상인 반사부; 및
    상기 제1 반사면과 상기 제2 반사면 사이의 발광부 상에 배치되는 렌즈를 포함하며,
    상기 발광 소자들 각각은 상기 파라볼라 형상의 초점에 정렬되도록 배치되고, 상기 반사부의 높이는 수학식 1에 의하여 정의되고,
    [수학식 1]
    Figure PCTKR2016009165-appb-I000006
    Z는 상기 반사부의 높이이고, a는 상기 파라볼라 형상의 초점 거리이고, PD는 상기 제1 반사면의 최상단에서 상기 제2 반사면의 최상단까지의 거리인 조명 장치.
  2. 제1항에 있어서,
    Z≥ 0.89A이고, A는 발광 소자들의 직경인 조명 장치.
  3. 제1항에 있어서,
    상기 제1 반사면의 최하단과 상기 제2 반사면의 최하단 사이의 거리는 4a 이상인 조명 장치.
  4. 제1항에 있어서,
    상기 렌즈는 상기 발광 소자들로부터 조사되는 빛이 입사되는 입사면, 및 상기 입사면을 통과한 빛을 통과시키는 출사면을 포함하는 굴절부를 포함하고,
    상기 굴절부를 통과한 빛은 상기 보드의 상부면과 수직한 방향과 평행하게 출사되는 조명 장치.
  5. 제4항에 있어서,
    상기 렌즈의 입사면의 직경은 수학식 2에 의하여 정의되고,
    [수학식 2]
    Figure PCTKR2016009165-appb-I000007
    ,
    LD는 상기 렌즈의 입사면의 직경이고, θ는 배광 분포(intensity distribution)의 최대값의 10%의 값의 광도를 갖는 상기 발광 소자들로부터 조사되는 빛의 각도인 조명 장치.
  6. 제5항에 있어서,
    상기 렌즈의 높이는 수학식 3에 의하여 정의되고,
    [수학식 3]
    Figure PCTKR2016009165-appb-I000008
    ,
    LZ는 상기 렌즈의 높이이고, α는 상기 보드의 상부면과 기준 직선 사이의 각도이고, 상기 기준 직선은 상기 발광 소자들 각각의 중심과 상기 제1 반사면 또는 상기 제2 반사면의최상단을 잇는 가상의 직선인 조명 장치.
  7. 제6항에 있어서,
    α는 33°~ 67°인 조명 장치.
  8. 제6항에 있어서,
    α는 33°~ 51°인 조명 장치.
  9. 제6항에 있어서,
    α는 33°~ 37°인 조명 장치.
  10. 제1항에 있어서,
    제1 기준 직선에 상기 렌즈의 제1 모서리가 접하고, 제2 기준 직선에 상기 렌즈의 제2 모서리가 접하고, 상기 제1 기준 직선은 상기 발광 소자들 각각의 중심과 상기 제1 반사면의최상단을 잇는 가상의 직선이고, 상기 제2 기준 직선은 상기 발광 소자들 각각의 중심과 상기 제2 반사면의최상단을 잇는 가상의 직선인 조명 장치.
  11. 제4항에 있어서,
    상기 렌즈는 상기 굴절부와 연결되고, 상기 보드의 상부면에 고정되는 지지부를 더 포함하며, 상기 지지부는 상기 발광 소자들이 위치하는 상기 보드의 상부면의 제1 영역을 제외한 제2 영역에 결합하는 조명 장치.
  12. 제1항에 있어서,
    상기 발광부, 상기 반사부, 및 상기 렌즈를 수용하는 캐비티(cavity)를 갖는 하우징(Housing)을 더 포함하며,
    상기 하우징의 내벽에는 상기 렌즈의 양단을 지지하는 돌출 지지부가 마련되는 조명 장치.
  13. 제1항에 있어서,
    상기 발광 소자들 각각은 각각은 200nm ~ 400nm의 파장 범위를 갖는 자외선을 발생하는 조명 장치.
  14. 보드 및 상기 보드의 상부면 상에 배치되는 적어도 하나의 발광 소자를 포함하는 발광부;
    상기 발광부 주위에 위치하는 제1 개구(opening), 상기 제1 개구 상부에 위치하고 상기 발광부로부터 조사되는 빛이 출사되는 제2 개구, 및 상기 제1 개구와 상기 제2 개구 사이에 위치하는 반사면을 포함하는 반사부; 및
    상기 반사면 내측의 상기 발광부 상에 배치되고, 입사면과 출사면을 갖는 렌즈를 포함하며,
    상기 반사면은 타원 형상이고, 상기 렌즈의 상기 입사면과 상기 출사면이 만나는 모서리는 기준 직선에 접하도록 정렬되고,상기 기준 직선은 상기 적어도 하나의 발광 소자의 중앙과 상기 반사면의 최상단을 잇는 가상의 직선이고,
    수직 기준선과 상기 기준 직선 사이의 각도는 30°~ 51°이고, 상기 수직 기준선은 상기 반사부의 중앙 및 상기 렌즈의 중앙을 지나고, 상기 보드의 상부면에 수직인 가상의 직선인 조명 장치.
  15. 제14항에 있어서,
    상기 반사부의 제1 개구의 직경은 상기 발광 소자의 발광면의 직경의 1.2배 이상이고, 상기 발광 소자의 발광면의 직경의 5.0배 이하인 조명 장치.
  16. 제14항에 있어서,
    상기 렌즈의 높이는 상기 반사부의 높이의 2분의 1인 조명 장치.
  17. 제14항에 있어서,
    상기 반사부의 하면으로부터 이격되어 상기 제2 개구의 전방에 위치하는 타겟(target)에는 적어도 총 누적 파워(total collected power)의 40% 이상이 집광되는 조명 장치.
  18. 제17항에 있어서,
    상기 타겟의 직경은 상기 발광 소자의 발광면의 직경의 1.2배 이상이고, 상기 발광 소자의 발광면의 직경의 1.5배 이하인 조명 장치.
  19. 제17항에 있어서,
    상기 반사부의 하면으로부터 상기 타겟까지의 거리는 상기 발광 소자의 발광면의 직경의 1.0배 이상이고, 상기 발광 소자의 발광면의 직경의 4.5배 이하인 조명 장치.
  20. 제16항에 있어서,
    상기 렌즈의 직경은 수학식 4 및 5에 의하여 정의되고,
    [수학식 4]
    Figure PCTKR2016009165-appb-I000009
    ,
    [수학식 5]
    Figure PCTKR2016009165-appb-I000010
    ,
    LD2는 렌즈의 직경이고, B는 상기 제2 개구의 직경의 1/2이고, 0.8≤k≤1이고, LH2는 상기 렌즈의 높이이고, θ는 수직 기준선과 상기 기준 직선 사이의 각도인 조명 장치.
PCT/KR2016/009165 2015-09-01 2016-08-19 조명 장치 WO2017039198A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680050645.3A CN108027110B (zh) 2015-09-01 2016-08-19 照明装置
US15/753,874 US10317018B2 (en) 2015-09-01 2016-08-19 Lighting device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2015-0123442 2015-09-01
KR1020150123441A KR102465694B1 (ko) 2015-09-01 2015-09-01 조명 장치
KR1020150123442A KR102471181B1 (ko) 2015-09-01 2015-09-01 조명 장치
KR10-2015-0123441 2015-09-01

Publications (1)

Publication Number Publication Date
WO2017039198A1 true WO2017039198A1 (ko) 2017-03-09

Family

ID=58187817

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/009165 WO2017039198A1 (ko) 2015-09-01 2016-08-19 조명 장치

Country Status (3)

Country Link
US (1) US10317018B2 (ko)
CN (1) CN108027110B (ko)
WO (1) WO2017039198A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3703158A4 (en) * 2018-01-18 2020-12-23 Lg Chem, Ltd. SEPARATOR FOR SECONDARY BATTERY AND LITHIUM SECONDARY BATTERY WITH IT

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017039198A1 (ko) * 2015-09-01 2017-03-09 엘지이노텍(주) 조명 장치
JP6530681B2 (ja) * 2015-09-07 2019-06-12 日機装株式会社 殺菌装置
US10746916B2 (en) * 2018-05-02 2020-08-18 Huizhou China Star Optoelectronics Technology Co., Ltd. Backlight module and LCD device
EP3670354B1 (en) * 2018-12-17 2022-05-11 Goodrich Lighting Systems GmbH Lighting arrangement
CN212390157U (zh) * 2020-05-28 2021-01-22 漳州立达信光电子科技有限公司 线条灯
JPWO2022234813A1 (ko) * 2021-05-07 2022-11-10

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100032294A (ko) * 2008-09-16 2010-03-25 (주)어플리컴 점 광원을 위한 광학렌즈
KR101355815B1 (ko) * 2012-08-03 2014-01-27 방주광학 주식회사 발광장치 및 이를 구비하는 조명장치
KR20140124270A (ko) * 2013-04-16 2014-10-24 한국광기술원 조명 렌즈 모듈
KR20140131018A (ko) * 2013-05-03 2014-11-12 엘지이노텍 주식회사 발광 소자 패키지 및 이를 포함하는 발광 모듈
US20150204508A1 (en) * 2014-01-07 2015-07-23 Lg Innotek Co., Ltd. Lens and lighting apparatus including the same

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2045809U (zh) * 1988-12-28 1989-10-11 陇涤湘 高聚光能电筒
CN2182322Y (zh) * 1993-12-24 1994-11-09 裴中印 一种节能车辆照明灯
US7658513B2 (en) * 2005-03-03 2010-02-09 Dialight Corporation LED illumination device with a highly uniform illumination pattern
KR101109592B1 (ko) * 2005-04-25 2012-01-31 삼성전자주식회사 광원 모듈 및 이를 채용한 화상투사장치
KR100962898B1 (ko) * 2008-11-14 2010-06-10 엘지이노텍 주식회사 반도체 발광소자 및 그 제조방법
US8313218B2 (en) * 2009-05-25 2012-11-20 Lg Innotek, Co., Ltd. Gap member, lens and lighting device having the same
KR101081193B1 (ko) * 2009-10-15 2011-11-07 엘지이노텍 주식회사 반도체 발광소자 및 그 제조방법
JP5010010B2 (ja) * 2010-04-16 2012-08-29 フェニックス電機株式会社 発光装置
CN101886783A (zh) * 2010-06-30 2010-11-17 海洋王照明科技股份有限公司 一种聚光灯反射器、聚光灯及头灯
CN201819153U (zh) * 2010-07-27 2011-05-04 叶秀敏 多功能光学组套
US8789969B2 (en) * 2010-08-17 2014-07-29 GE Lighting Solutions, LLC Compact LED light engine with reflector cups and highly directional lamps using same
US8506105B2 (en) * 2010-08-25 2013-08-13 Generla Electric Company Thermal management systems for solid state lighting and other electronic systems
KR101208599B1 (ko) * 2010-12-03 2012-12-06 엘지이노텍 주식회사 카메라 모듈
CN103262521B (zh) * 2010-12-09 2017-02-22 Lg伊诺特有限公司 照相机模块
CN201954469U (zh) * 2011-01-19 2011-08-31 浙江新地标节能光源科技有限公司 Led射灯反光罩
KR101259844B1 (ko) * 2011-01-31 2013-05-03 엘지이노텍 주식회사 리드 크랙이 강화된 전자소자용 탭 테이프 및 그의 제조 방법
KR20120108729A (ko) * 2011-03-25 2012-10-05 삼성디스플레이 주식회사 표시 장치
US9134230B2 (en) * 2011-04-06 2015-09-15 Instant Bioscan, Llc Microbial detection apparatus and method
KR20120129472A (ko) 2011-05-20 2012-11-28 현대모비스 주식회사 차량용 램프
US8485692B2 (en) 2011-09-09 2013-07-16 Xicato, Inc. LED-based light source with sharply defined field angle
KR101817807B1 (ko) * 2011-09-20 2018-01-11 엘지이노텍 주식회사 발광소자 패키지 및 이를 포함하는 조명시스템
US8817116B2 (en) * 2011-10-28 2014-08-26 Lg Innotek Co., Ltd. Camera module
KR102017538B1 (ko) * 2012-01-31 2019-10-21 엘지이노텍 주식회사 조명 장치
KR101262051B1 (ko) * 2012-02-13 2013-05-08 엘지이노텍 주식회사 발광소자 패키지
KR101360678B1 (ko) * 2012-07-23 2014-02-10 엘지이노텍 주식회사 조명 장치
KR102047373B1 (ko) * 2012-07-30 2019-11-21 엘지이노텍 주식회사 카메라 모듈
KR101973395B1 (ko) * 2012-08-09 2019-04-29 엘지이노텍 주식회사 발광 모듈
KR102066614B1 (ko) * 2013-02-28 2020-01-15 엘지이노텍 주식회사 조명 장치
US9528693B2 (en) * 2013-02-28 2016-12-27 Lg Innotek Co., Ltd. Lighting device
KR101524914B1 (ko) * 2013-03-28 2015-06-01 엘지이노텍 주식회사 광확산 소자, 및 이를 갖는 발광소자 어레이 유닛
KR102082335B1 (ko) * 2013-04-23 2020-02-27 엘지이노텍 주식회사 조명 장치
CN104421842A (zh) * 2013-09-09 2015-03-18 深圳市海洋王照明工程有限公司 反射器、聚光灯组件和手电筒
KR102246882B1 (ko) * 2014-01-28 2021-04-30 엘지이노텍 주식회사 카메라 모듈
KR102197082B1 (ko) * 2014-06-16 2020-12-31 엘지이노텍 주식회사 발광 소자 및 이를 포함하는 발광소자 패키지
KR102221602B1 (ko) * 2014-11-07 2021-03-02 엘지이노텍 주식회사 발광 모듈, 이 모듈을 포함하는 백 라이트 유닛 및 이 유닛을 포함하는 표시 장치
KR102362726B1 (ko) * 2014-11-14 2022-02-15 엘지이노텍 주식회사 홍채인식 카메라와 이를 포함하는 휴대용 단말기 및 홍채인식 카메라를 이용한 홍채인식방법
KR102368883B1 (ko) * 2015-01-14 2022-03-04 엘지이노텍 주식회사 발광 장치
WO2017039198A1 (ko) * 2015-09-01 2017-03-09 엘지이노텍(주) 조명 장치
KR20170041359A (ko) * 2015-10-07 2017-04-17 엘지이노텍 주식회사 조명 장치
JP6952945B2 (ja) * 2016-03-25 2021-10-27 スージョウ レキン セミコンダクター カンパニー リミテッド 発光素子パッケージ及び照明装置
KR102509061B1 (ko) * 2016-04-28 2023-03-10 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 발광 소자 패키지
US11370231B2 (en) * 2017-04-07 2022-06-28 Phoseon Technology, Inc. Pivoted elliptical reflector for large distance reflection of ultraviolet rays

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100032294A (ko) * 2008-09-16 2010-03-25 (주)어플리컴 점 광원을 위한 광학렌즈
KR101355815B1 (ko) * 2012-08-03 2014-01-27 방주광학 주식회사 발광장치 및 이를 구비하는 조명장치
KR20140124270A (ko) * 2013-04-16 2014-10-24 한국광기술원 조명 렌즈 모듈
KR20140131018A (ko) * 2013-05-03 2014-11-12 엘지이노텍 주식회사 발광 소자 패키지 및 이를 포함하는 발광 모듈
US20150204508A1 (en) * 2014-01-07 2015-07-23 Lg Innotek Co., Ltd. Lens and lighting apparatus including the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3703158A4 (en) * 2018-01-18 2020-12-23 Lg Chem, Ltd. SEPARATOR FOR SECONDARY BATTERY AND LITHIUM SECONDARY BATTERY WITH IT
US11929519B2 (en) 2018-01-18 2024-03-12 Lg Energy Solution, Ltd. Separator including coating layer with ethylenically unsaturated binder, and secondary battery including polymer network formed by gel polymer electrolyte and ethylenically unsaturated binder in coating layer of separator

Also Published As

Publication number Publication date
US10317018B2 (en) 2019-06-11
CN108027110A (zh) 2018-05-11
US20190011088A1 (en) 2019-01-10
CN108027110B (zh) 2020-07-10

Similar Documents

Publication Publication Date Title
WO2017039198A1 (ko) 조명 장치
WO2013022283A2 (en) Lighting device
WO2017142349A1 (ko) 광학 렌즈, 및 이를 구비한 라이트 유닛 및 조명 장치
WO2017191954A1 (ko) 조명모듈 및 이를 구비한 조명 장치
WO2016089102A1 (en) White light emitting device and display device using the same
WO2018088705A1 (ko) 디스플레이 장치 및 그의 백라이트 유닛
WO2013015602A2 (en) Lighting module
WO2013032276A1 (en) Lighting device
WO2013012217A2 (en) Lighting device
WO2013122337A1 (en) Light emitting package
WO2018117382A1 (ko) 고 신뢰성 발광 다이오드
WO2010024583A2 (ko) Led 조명장치
WO2016140493A1 (ko) 센서 및 이를 포함하는 휴대용 단말기
WO2018110982A1 (ko) 반도체 소자 패키지 및 그 제조방법
WO2013036062A2 (en) Lighting module
WO2011025171A2 (en) Optical assembly, backlight unit, and display device
WO2016190651A1 (ko) 광학 렌즈, 조명 모듈 및 이를 구비한 라이트 유닛
WO2018080061A2 (ko) 발광 다이오드 패키지 및 그것을 갖는 디스플레이 장치
WO2013089334A1 (ko) 조명 장치
WO2013180365A1 (en) Member for cotrolling luminous flux, method for fabricating the member, display device, and light emitting device
WO2014157847A1 (ko) 깊이 영상 획득 장치 및 그를 이용한 디스플레이 장치
WO2019059703A2 (ko) 발광소자 패키지 및 조명 모듈
WO2018217006A2 (ko) 반도체 발광소자 및 이의 제조 방법
WO2016028024A1 (ko) 조명 장치
WO2019156321A1 (ko) 광 반사형 광확산 및 집광 프로파일면, 이를 이용한 면 발광 조명 및 집광 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16842164

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16842164

Country of ref document: EP

Kind code of ref document: A1