WO2017038943A1 - アクリル基を有するシルセスキオキサン化合物を含む重合性組成物 - Google Patents

アクリル基を有するシルセスキオキサン化合物を含む重合性組成物 Download PDF

Info

Publication number
WO2017038943A1
WO2017038943A1 PCT/JP2016/075699 JP2016075699W WO2017038943A1 WO 2017038943 A1 WO2017038943 A1 WO 2017038943A1 JP 2016075699 W JP2016075699 W JP 2016075699W WO 2017038943 A1 WO2017038943 A1 WO 2017038943A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
mass
component
compound
polymerizable composition
Prior art date
Application number
PCT/JP2016/075699
Other languages
English (en)
French (fr)
Inventor
圭 安井
偉大 長澤
加藤 拓
圭介 首藤
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to CN201680044929.1A priority Critical patent/CN107922548B/zh
Priority to KR1020187000605A priority patent/KR102676480B1/ko
Priority to JP2017538109A priority patent/JP6879469B2/ja
Priority to EP16841972.9A priority patent/EP3345943B1/en
Priority to US15/757,628 priority patent/US10703863B2/en
Publication of WO2017038943A1 publication Critical patent/WO2017038943A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00432Auxiliary operations, e.g. machines for filling the moulds
    • B29D11/00442Curing the lens material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/30Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/102Esters of polyhydric alcohols or polyhydric phenols of dialcohols, e.g. ethylene glycol di(meth)acrylate or 1,4-butanediol dimethacrylate
    • C08F222/1025Esters of polyhydric alcohols or polyhydric phenols of dialcohols, e.g. ethylene glycol di(meth)acrylate or 1,4-butanediol dimethacrylate of aromatic dialcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F230/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal
    • C08F230/04Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal
    • C08F230/08Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal containing silicon
    • C08F230/085Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal containing silicon the monomer being a polymerisable silane, e.g. (meth)acryloyloxy trialkoxy silanes or vinyl trialkoxysilanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/045Polysiloxanes containing less than 25 silicon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/80Siloxanes having aromatic substituents, e.g. phenyl side groups
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2083/00Use of polymers having silicon, with or without sulfur, nitrogen, oxygen, or carbon only, in the main chain, as moulding material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F230/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal
    • C08F230/04Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal
    • C08F230/08Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal containing silicon

Definitions

  • the present invention relates to a polymerizable composition containing a reactive silsesquioxane compound having an acrylic group. Specifically, the present invention relates to a polymerizable composition capable of forming a cured product having excellent optical properties (high refractive index) and high heat resistance (dimensional stability, transparency, etc.).
  • Plastic lenses are used in various optical devices and the like, and are required to have excellent optical characteristics according to the purpose of the device. High productivity that can be molded with good yield is required.
  • a resin material for example, a transparent resin such as a polycarbonate resin, a cycloolefin polymer, an acrylic resin, and a methacrylic resin has been used (Patent Document 1 and Patent Document 2).
  • CMOS image sensor or a CCD image sensor used in various devices such as a mobile phone, a digital camera, an in-vehicle camera, and a surveillance / security camera.
  • these image sensors the reduction in the amount of light collected per pixel due to miniaturization is prevented by arranging microlenses.
  • a material having a high refractive index is required.
  • the heat resistance of the material is also required.
  • a lens for a CMOS image sensor mounted on the above-described wearable terminal or the like has a high refractive index (for example, 1.57 or more), high transparency (for example, a light transmittance of 400 nm of 95% or more), and severe use.
  • Dimensional stability against temperature changes eg, dimensional change rate after 2 hours of less than 2% at 125 ° C
  • light transmittance stability eg, at 150 ° C, after 500 hours have passed
  • the inventors of the present invention can be obtained by adding a specific fluorene compound to the polymerizable composition in addition to the specific reactive silsesquioxane compound.
  • the cured product (molded product) is found to have a high refractive index and high transparency, and further, a molded product capable of suppressing the dimensional change caused by the high temperature thermal history and the decrease in transmittance can be obtained and completed. It was.
  • the first aspect of the present invention is represented by (a) the alkoxysilicon compound A represented by the formula [1] and the formula [2] in an amount of 0 to 99 mol times the alkoxysilicon compound A.
  • a polymerizable composition comprising 100 parts by mass of a reactive silsesquioxane compound which is a polycondensate with alkoxysilicon compound B and 10 to 2,000 parts by mass of (b) a fluorene compound represented by formula [3] Related to things.
  • R 1 represents an alkyl group having 1 to 10 carbon atoms having at least one (meth) acryloyloxy group
  • R 2 represents a methyl group or an ethyl group.
  • R 3 represents an alkyl group having 1 to 10 carbon atoms, an aralkyl group having 7 to 10 carbon atoms, or an aryl group having 6 to 14 carbon atoms
  • R 4 represents a methyl group or an ethyl group.
  • R 5 and R 6 each independently represent a hydrogen atom or a methyl group
  • L 1 and L 2 each independently represent a phenylene group which may have a substituent, or a substituent.
  • An optionally substituted naphthalenediyl group, L 3 and L 4 each independently represents an alkylene group having 1 to 6 carbon atoms, and m and n are 0 or positive in which m + n is 0 to 40 Represents an integer.
  • the present invention relates to the polymerizable composition according to the first aspect, wherein R 3 represents an aryl group having 6 to 14 carbon atoms.
  • the first aspect or the second aspect further includes (c) 10 to 200 parts by mass of a (meth) acrylate compound different from the fluorene compound with respect to 100 parts by mass of the total amount of the component (a) and the component (b).
  • the present invention relates to a polymerizable composition described in two aspects.
  • a 4th viewpoint with respect to 100 mass parts of total amount of (a) component and (b) component, or when (c) component is included, with respect to 100 mass parts of total amount of (a) thru
  • it relates to the polymerizable composition according to any one of the first to third aspects, further comprising (d) 0.01 to 20 parts by mass of a chain transfer agent.
  • the present invention relates to the polymerizable composition according to any one of the first to fourth aspects, further comprising (e) 0.01 to 20 parts by mass of an antioxidant.
  • the present invention relates to a cured product obtained by curing the polymerizable composition according to any one of the first aspect to the fifth aspect.
  • the present invention relates to a resin lens material comprising the polymerizable composition according to any one of the first aspect to the fifth aspect.
  • an 8th viewpoint it is related with the resin lens produced using the polymeric composition as described in any one of a 1st viewpoint thru
  • a 9th viewpoint it is related with the resin lens as described in an 8th viewpoint which is a lens for CMOS image sensors.
  • a method for producing a molded body which includes a step of exposing and photopolymerizing the filled composition.
  • the method further includes a step of taking out and releasing the obtained photopolymer from the space filled, and a step of heating the photopolymer before, during or after the release.
  • the manufacturing method according to the tenth aspect As a twelfth aspect, the present invention relates to the manufacturing method according to the tenth aspect or the eleventh aspect, in which the molded body is a resin lens.
  • the cured product has desirable optical characteristics as a lens for an optical device, for example, a CMOS image sensor (for example, a high refractive index of 1.57 or more, for example, a high transmittance of 95% or more at 400 nm). ), Heat resistance dimensional stability (for example, under 125 ° C., dimensional change rate after 2 hours of less than 2%) and heat resistance transmittance (for example, under 150 ° C. The reduction rate of the light transmittance at 400 nm after 500 hours is 1% or less). Therefore, the resin lens material of the present invention comprising the polymerizable composition can be suitably used as a lens for a CMOS image sensor.
  • a CMOS image sensor for example, a high refractive index of 1.57 or more, for example, a high transmittance of 95% or more at 400 nm.
  • Heat resistance dimensional stability for example, under 125 ° C., dimensional change rate after 2 hours of less than 2
  • heat resistance transmittance for example,
  • the production method of the present invention can efficiently produce a molded body, particularly a resin lens.
  • the polymerizable composition of the present invention has a viscosity that can be sufficiently handled in a solvent-free form, it is suitably formed by applying a pressing process (imprint technique) of a mold such as a mold. In addition, it has excellent releasability from the mold.
  • the polymerizable composition of the present invention is a polymerizable composition containing a specific reactive silsesquioxane compound as the component (a) and a specific fluorene compound as the component (b), and optionally other components.
  • a specific reactive silsesquioxane compound as the component (a)
  • a specific fluorene compound as the component (b)
  • the (a) reactive silsesquioxane compound used in the present invention is a compound obtained by polycondensation of an alkoxysilicon compound A having a specific structure described later and an alkoxysilicon compound B having a specific structure in the presence of an acid or a base. It is.
  • the alkoxysilicon compound A is a compound represented by the following formula [1].
  • R 1 represents an alkyl group having 1 to 10 carbon atoms having at least one (meth) acryloyloxy group
  • R 2 represents a methyl group or an ethyl group.
  • the (meth) acryloyloxy group means both an acryloyloxy group and a methacryloyloxy group.
  • Examples of the alkyl group having 1 to 10 carbon atoms having at least one (meth) acryloyloxy group represented by R 1 include (meth) acryloyloxymethyl group, 2- (meth) acryloyloxyethyl group, 3- (meth) Examples include acryloyloxypropyl group, 4- (meth) acryloyloxybutyl group, and 8- (meth) acryloyloxyoctyl group.
  • the compound represented by the above formula [1] include, for example, (meth) acryloyloxymethyltrimethoxysilane, (meth) acryloyloxymethyltriethoxysilane, (2- (meth) acryloyloxyethyl) trimethoxy Silane, (2- (meth) acryloyloxyethyl) triethoxysilane, (3- (meth) acryloyloxypropyl) trimethoxysilane, (3- (meth) acryloyloxypropyl) triethoxysilane, (4- (meth) (Acryloyloxybutyl) trimethoxysilane, (4- (meth) acryloyloxybutyl) triethoxysilane, (8- (meth) acryloyloxyoctyl) trimethoxysilane, (8- (meth) acryloyloxyoctyl) triethoxysilane,
  • alkoxysilicon compound B is a compound represented by the following formula [2].
  • R 3 represents an alkyl group having 1 to 10 carbon atoms, an aralkyl group having 7 to 10 carbon atoms, or an aryl group having 6 to 14 carbon atoms
  • R 4 represents a methyl group or an ethyl group. Represents a group.
  • the alkyl group having 1 to 10 carbon atoms represented by R 3 may be any of a linear, branched, or cyclic alkyl group such as a methyl group, an ethyl group, or an n-propyl group.
  • Examples of the aralkyl group having 7 to 10 carbon atoms (arylalkyl group) represented by R 3 include a benzyl group, a phenethyl group, and a phenylpropyl group.
  • Examples of the aryl group having 6 to 14 carbon atoms represented by R 3 include a phenyl group, a tolyl group, a xylyl group, a phenoxyphenyl group, a biphenyl group, a naphthyl group, and a phenanthryl group. Among them, an aryl group having 6 to 12 carbon atoms is preferable.
  • R 3 is preferably an aryl group having 6 to 14 carbon atoms, and among them, a phenyl group, a biphenyl group, a naphthyl group, or a phenanthryl group is preferable.
  • R 3 is preferably an aryl group having 6 to 12 carbon atoms.
  • the compound represented by the above formula [2] include, for example, trimethoxy (methyl) silane, triethoxy (methyl) silane, ethyltrimethoxysilane, ethyltriethoxysilane, trimethoxy (propyl) silane, triethoxy (propyl) Silane, benzyltrimethoxysilane, benzyltriethoxysilane, trimethoxy (phenethyl) silane, triethoxy (phenethyl) silane, trimethoxy (phenyl) silane, trimethoxy (p-tolyl) silane, trimethoxy (4-phenoxyphenyl) ) Silane, triethoxy (4-phenoxyphenyl) silane, [1,1′-biphenyl] -4-yltrimethoxysilane, trimethoxy (naphthalen-1-yl) silane, triethoxy
  • the compounding ratio concerning the polycondensation reaction of the alkoxysilicon compound A represented by the formula [1] and the alkoxysilicon compound B represented by the formula [2] used for the reactive silsesquioxane compound of the component is as follows:
  • the alkoxysilicon compound B is used in an amount of 0 to 99 mol times the alkoxysilicon compound A. More preferably, the alkoxysilicon compound B is used in an amount of 0 to 20 mol times, more preferably 0 to 4 mol times, particularly preferably 0 to 1.5 mol times with respect to the alkoxysilicon compound A.
  • the fixation in the cured product is promoted, and the dimensional stability against heat is further improved.
  • the above-mentioned alkoxysilicon compound A and alkoxysilicon compound B compounds can be appropriately selected and used as necessary, and plural kinds of compounds can be used in combination. In this case, the molar ratio of the total amount of the alkoxysilicon compound A and the total molar amount of the alkoxysilicon compound B also falls within the above range.
  • the polycondensation reaction of the alkoxysilicon compound A represented by the formula [1] or the polycondensation reaction of the alkoxysilicon compound A and the alkoxysilicon compound B represented by the formula [2] is preferably carried out in the presence of a catalyst.
  • the type of the catalyst used for the polycondensation reaction is not particularly limited as long as it is dissolved or uniformly dispersed in a solvent described later, and can be appropriately selected and used as necessary.
  • catalysts examples include acidic compounds such as inorganic acids such as hydrochloric acid, nitric acid and sulfuric acid, organic acids such as acetic acid and oxalic acid, etc .; basic compounds such as alkali metal hydroxides and alkaline earth metal waters. Oxides, ammonium hydroxide, quaternary ammonium salts, amines, etc .; Examples of fluoride salts include NH 4 F, NR 4 F, and the like.
  • R represents a hydrogen atom, a linear alkyl group having 1 to 12 carbon atoms, a branched alkyl group having 3 to 12 carbon atoms, or a cyclic alkyl group having 3 to 12 carbon atoms.
  • Examples of the acidic compound include hydrochloric acid, nitric acid, sulfuric acid, acetic acid, oxalic acid, boric acid and the like.
  • Examples of the basic compound include sodium hydroxide, potassium hydroxide, magnesium hydroxide, calcium hydroxide, strontium hydroxide, barium hydroxide, ammonium hydroxide, tetramethylammonium hydroxide, tetraethylammonium hydroxide, hydroxide Examples include tetrabutylammonium and triethylamine.
  • fluoride salt examples include ammonium fluoride, tetramethylammonium fluoride, and tetrabutylammonium fluoride.
  • one or more selected from the group consisting of hydrochloric acid, acetic acid, potassium hydroxide, calcium hydroxide, barium hydroxide and tetraethylammonium hydroxide are preferably used.
  • the amount of the catalyst used is 0.01 to 10% by mass, preferably 0.1 to 5% by mass, based on the total mass of the alkoxysilicon compound A and the alkoxysilicon compound B.
  • the reaction proceeds more favorably when the amount of the catalyst used is 0.01% by mass or more. In consideration of economy, the use of 10% by mass or less is sufficient.
  • the reactive silsesquioxane compound according to the present invention is characterized by the structure of the alkoxysilicon compound A.
  • the (meth) acryloyloxy group (polymerizable double bond) which is a reactive group contained in the alkoxysilicon compound A used in the present invention is easily polymerized by radicals or cations, and has high heat resistance after polymerization (after curing). Properties (heat-resistant dimensional stability, heat-resistant transmittance).
  • the hydrolysis polycondensation reaction between the alkoxysilicon compound A and the alkoxysilicon compound B can be carried out in the absence of a solvent, but a solvent inert to both alkoxysilicon compounds such as tetrahydrofuran (THF) described later is used as a reaction solvent. It is also possible to use it. When a reaction solvent is used, there is an advantage that the reaction system can be easily made uniform and a more stable polycondensation reaction can be performed.
  • the synthesis reaction of the reactive silsesquioxane compound may be performed without a solvent as described above, but there is no problem even if a solvent is used to make the reaction more uniform.
  • the solvent is not particularly limited as long as it does not react with both alkoxysilicon compounds and dissolves the polycondensate thereof.
  • Examples of such a reaction solvent include ketones such as acetone and methyl ethyl ketone (MEK); aromatic hydrocarbons such as benzene, toluene and xylene; tetrahydrofuran (THF), 1,4-dioxane, diisopropyl ether, cyclopentylmethyl, and the like.
  • Ethers such as ether (CPME); glycols such as ethylene glycol, propylene glycol, hexylene glycol; glycol ethers such as ethyl cellosolve, butyl cellosolve, ethyl carbitol, butyl carbitol, diethyl cellosolve, diethyl carbitol; N- Examples thereof include amides such as methyl-2-pyrrolidone (NMP) and N, N-dimethylformamide (DMF). These solvents may be used alone or in combination of two or more.
  • NMP methyl-2-pyrrolidone
  • DMF N-dimethylformamide
  • the reactive silsesquioxane compound used in the present invention is an alkoxy silicon compound A represented by the formula [1], or the alkoxy silicon compound A and the alkoxy silicon compound B represented by the formula [2] Alternatively, it can be obtained by performing hydrolysis polycondensation in the presence of a basic catalyst.
  • the reaction temperature for the hydrolysis polycondensation is 20 to 150 ° C, more preferably 30 to 120 ° C.
  • the reaction time is not particularly limited as long as it is longer than the time necessary for the molecular weight distribution of the polycondensate to increase and to stabilize the molecular weight distribution, and more specifically, several hours to several days.
  • the obtained reactive silsesquioxane compound After completion of the polycondensation reaction, it is preferable to collect the obtained reactive silsesquioxane compound by any method such as filtration and evaporation of the solvent, and appropriately perform a purification treatment as necessary.
  • the reactive silsesquioxane compound used by this invention is the alkoxy silicon compound A represented by the said Formula [1], or the said alkoxy silicon compound A and the alkoxy silicon compound B represented by Formula [2].
  • the base and the amount used thereof may be one or more compounds selected from the group consisting of the basic compounds and fluoride salts described above, and the amount used may be employed, preferably potassium hydroxide, calcium hydroxide, hydroxide
  • One or more selected from the group consisting of barium and tetraethylammonium hydroxide can be used as the base.
  • reaction conditions and the like used for the polycondensation reaction, the reaction solvent, and the like can be those described above. And after completion
  • Examples of commercially available strong acid cation exchange resins include Amberlite (registered trademark) 15, 200, 200C, 200CT, 252, 1200H, IR120B, IR120H, IR122Na, IR124, IRC50, IRC86, IRN77, IRP-64, IRP-69, CG-50, CG-120, Amberjet (registered trademark) 1020, 1024, 1060, 1200, 1220, Amber List (registered trademark) 15, 15DRY, 15JWET, 16, 16WET, 31WET, 35WET, 36, Dowex (registered trademark) 50Wx2, 50Wx4, 50Wx8, DR-2030, DR-20 G8, HCR-W2, 650C UPW, G-26, 88, M-31, N-406, Dowex (registered trademark) Monosphere (registered trademark) 650C, 88, M-31, 99K / 320, 99K / 350, 99Ca / 320, Dow X Marathon (register
  • Examples of commercially available weakly acidic cation exchange resins include Amberlite (registered trademark) CG-50, FPC3500, IRC50, IRC76, IRC86, IRP-64, and Dowex (registered trademark). MAC-3 [above, manufactured by Dow Chemical Co., Ltd.]; Diaion (registered trademark) CWK30 / S, WK10, WK11, WK40, WK100, WT01S [above, manufactured by Mitsubishi Chemical Corporation] It is done.
  • the polycondensate obtained by such a reaction has a weight average molecular weight Mw measured in terms of polystyrene by GPC of 500 to 100,000, preferably 500 to 30,000. Dispersity: Mw (weight average molecular weight ) / Mn (number average molecular weight) is 1.0 to 10.
  • the (a) reactive silsesquioxane compound has at least a siloxane unit represented by [R 1 SiO 3/2 ], and further has a siloxane unit represented by [R 3 SiO 3/2 ]. It is a compound having a crosslinked structure which may be included.
  • the (b) fluorene compound used in the present invention is a compound represented by the formula [3].
  • R 5 and R 6 each independently represent a hydrogen atom or a methyl group
  • L 1 and L 2 each independently represent a phenylene group which may have a substituent, or Represents an optionally substituted naphthalenediyl group
  • L 3 and L 4 each independently represent an alkylene group having 1 to 6 carbon atoms
  • m and n are 0 in which m + n is 0 to 40 Or it represents a positive integer.
  • Examples of the phenylene group optionally having a substituent represented by L 1 and L 2 include an o-phenylene group, an m-phenylene group, a p-phenylene group, a 2-methylbenzene-1,4-diyl group, Examples include 2-aminobenzene-1,4-diyl group, 2,4-dibromobenzene-1,3-diyl group, 2,6-dibromobenzene-1,4-diyl group and the like.
  • Examples of the naphthalenediyl group optionally having a substituent represented by L 1 and L 2 include 1,2-naphthalenediyl group, 1,4-naphthalenediyl group, 1,5-naphthalenediyl group, 1, Examples thereof include an 8-naphthalenediyl group, a 2,3-naphthalenediyl group, and a 2,6-naphthalenediyl group.
  • alkylene group having 1 to 6 carbon atoms represented by L 3 and L 4 examples include methylene group, ethylene group, trimethylene group, 1-methylethylene group, tetramethylene group, 1-methyltrimethylene group, 1,1 -Dimethylethylene group, pentamethylene group, 1-methyltetramethylene group, 2-methyltetramethylene group, 1,1-dimethyltrimethylene group, 1,2-dimethyltrimethylene group, 2,2-dimethyltrimethylene group, 1-ethyltrimethylene group, hexamethylene group, 1-methylpentamethylene group, 2-methylpentamethylene group, 3-methylpentamethylene group, 1,1-dimethyltetramethylene group, 1,2-dimethyltetramethylene group, 2,2-dimethyltetramethylene group, 1-ethyltetramethylene group, 1,1,2-trimethyltrimethylene group , 1,2,2-methyltrimethylene group, 1-ethyl-1-methyltrimethylene group, a 1-ethyl-2-methyltrim
  • m and n are preferably m + n from 0 to 30, and more preferably m + n from 2 to 20.
  • Specific examples of the compound represented by the above formula [3] include, for example, 9,9-bis (4- (2- (meth) acryloyloxyethoxy) phenyl) -9H-fluorene, Ogsol (registered trademark) EA- 0200, EA-0300, EA-F5003, EA-F5503, EA-F5510, EA-F5710, GA-5000 [above, manufactured by Osaka Gas Chemical Co., Ltd.], NK Ester A-BPEF [New Nakamura Chemical Co., Ltd.] and the like, but are not limited thereto.
  • the content of the component (b) is 10 to 2,000 parts by mass with respect to 100 parts by mass of the component (a). Among these, 50 to 1,000 parts by mass is preferable, and 100 to 500 parts by mass is more preferable.
  • the heat-resistant dimensional stability is improved by increasing the proportion of the content of the component (a) in the total content of the components (a) and (b), and the component (b) Increasing the proportion of the content of the material increases the refractive index.
  • the polymerizable composition of the present invention may further contain (c) a (meth) acrylate compound different from the fluorene compound as the component (c).
  • a (meth) acrylate compound different from the fluorene compound as the component (c).
  • mono (meth) acrylate compounds having an aromatic group are preferred.
  • the (meth) acrylate compound refers to both an acrylate compound and a methacrylate compound.
  • (meth) acrylic acid refers to acrylic acid and methacrylic acid.
  • Examples of the mono (meth) acrylate compound having an aromatic group include benzyl (meth) acrylate, 2-phenoxyethyl (meth) acrylate, diethylene glycol monophenyl ether (meth) acrylate, polyethylene glycol monophenyl ether (meth) acrylate, Examples include, but are not limited to, 2-hydroxy-3-phenoxypropyl (meth) acrylate, neopentyl glycol benzoate (meth) acrylate, ethoxylated o-phenylphenol (meth) acrylate, and the like.
  • Examples of the (meth) acrylate compound other than the mono (meth) acrylate compound having an aromatic group as the component (c) include methyl (meth) acrylate, ethyl (meth) acrylate, 2,2,2- Trifluoroethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, sec-butyl (meth) acrylate, isobutyl (meth) acrylate, tert-butyl (meth) Acrylate, n-hexyl (meth) acrylate, n-octyl (meth) acrylate, isobornyl (meth) acrylate, adamantyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyl (meth) acrylate, 2- ( Jisiku Pentanyl
  • the said compound When adding the (meth) acrylate compound of a component, the said compound may be used individually by 1 type or in mixture of 2 or more types.
  • the amount added is 1 to 200 parts by weight, more preferably 10 to 50 parts by weight, based on 100 parts by weight of the total amount of the components (a) and (b).
  • the polymerizable composition of the present invention may contain (d) a chain transfer agent in addition to the above components (a) and (b) and, if desired, (c).
  • chain transfer agents include thiol compounds, disulfide compounds, and ⁇ -methylstyrene dimers.
  • thiol compound examples include methyl mercaptoacetate, methyl 3-mercaptopropionate, 2-ethylhexyl 3-mercaptopropionate, 3-methoxybutyl 3-mercaptopropionate, n-octyl 3-mercaptopropionate, and 3-mercapto.
  • disulfide compound examples include diethyl disulfide, dipropyl disulfide, diisopropyl disulfide, dibutyl disulfide, di-tert-butyl disulfide, dipentyl disulfide, diisopentyl disulfide, dihexyl disulfide, dicyclohexyl disulfide, didecyl disulfide, bis (2, 3,3,4,4,5-hexamethylhexane-2-yl) disulfide (di-tert-dodecyl disulfide), bis (2,2-diethoxyethyl) disulfide, bis (2-hydroxyethyl) disulfide, di Alkyl disulfides such as benzyl disulfide; diphenyl disulfide, di-p-tolyl disulfide, di (pyridin-2-yl) disulfide, di (benzimidazole- Aromatic disulfides
  • the chain transfer agent When a chain transfer agent is added, the chain transfer agent may be used alone or in combination of two or more. Moreover, as the addition amount, it is (a) thru
  • the total amount is 0.01 to 20 parts by mass, more preferably 0.1 to 10 parts by mass with respect to 100 parts by mass.
  • the polymerizable composition of the present invention may contain (e) an antioxidant in addition to the above components (a) and (b) and, if desired, the components (c) and (d).
  • an antioxidant include phenol-based antioxidants, phosphoric acid-based antioxidants, sulfide-based antioxidants, etc. Among them, phenol-based antioxidants are preferable.
  • phenolic antioxidant examples include IRGANOX (registered trademark) 245, 1010, 1035, 1076, 1135 [above, manufactured by BASF Japan Ltd.], Sumilizer (registered trademark) GA-80, GP MDP-S, BBM-S, WX-R [above, manufactured by Sumitomo Chemical Co., Ltd.], ADK STAB (registered trademark) AO-20, AO-30, AO-40, AO-50, AO-60, AO-80, AO-330 [above, manufactured by ADEKA Corporation] and the like.
  • the antioxidants When adding an antioxidant, the antioxidants may be used alone or in combination of two or more. Moreover, as the addition amount, it is (a) thru
  • the total amount is 0.01 to 20 parts by mass, more preferably 0.1 to 10 parts by mass with respect to 100 parts by mass.
  • the polymerizable composition of the present invention may contain a polymerization initiator in addition to the components (a) and (b) and, if desired, the components (c) to (e).
  • a polymerization initiator any of a photopolymerization initiator and a thermal polymerization initiator can be used.
  • photopolymerization initiator examples include alkylphenones, benzophenones, acylphosphine oxides, Michler's benzoylbenzoates, oxime esters, tetramethylthiuram monosulfides, and thioxanthones.
  • photocleavable photoradical polymerization initiators are preferred.
  • examples of the photocleavable photoradical polymerization initiator include those described in the latest UV curing technology (p. 159, publisher: Kazuhiro Takahisa, publisher: Technical Information Association, published in 1991). .
  • radical photopolymerization initiators examples include IRGACURE (registered trademark) 184, 369, 651, 500, 819, 907, 784, 2959, CGI 1700, CGI 1750, and CGI 1850.
  • thermal polymerization initiator examples include azos and organic peroxides.
  • thermal polymerization initiator examples include V-30, V-40, V-59, V-60, V-65, and V-70 [above, manufactured by Wako Pure Chemical Industries, Ltd.] Etc.
  • organic peroxide thermal polymerization initiators examples include, for example, Parkadox (registered trademark) CH, BC-FF, 14, 16 and Trigonox (registered trademark) 22, 23, 121.
  • the polymerization initiators When a polymerization initiator is added, the polymerization initiators may be used alone or in combination of two or more. Moreover, as the addition amount, it is (a) thru
  • the total amount is 0.1 to 20 parts by mass, more preferably 0.3 to 10 parts by mass with respect to 100 parts by mass.
  • the polymerizable composition of the present invention is an adhesive aid such as an ultraviolet absorber, a light stabilizer, a leveling agent, a rheology modifier, and a silane coupling agent, as long as the effects of the present invention are not impaired.
  • an adhesive aid such as an ultraviolet absorber, a light stabilizer, a leveling agent, a rheology modifier, and a silane coupling agent, as long as the effects of the present invention are not impaired.
  • Pigments, dyes, antifoaming agents, and the like are examples of the like.
  • the method for preparing the polymerizable composition of the present embodiment is not particularly limited.
  • a preparation method for example, the components (a) and (b), and the components (c) to (e) and a polymerization initiator are mixed at a predetermined ratio as necessary, and other additives are further added as desired.
  • component and component and optionally (c) to (e) component and at least two components of polymerization initiator After mixing at least a part of the solution to make a uniform solution, the remaining components are added, and if desired, other additives are further added and mixed to make a uniform solution, or in addition to these components, Examples include a method using a conventional solvent.
  • the ratio of the solid content in the present polymerizable composition is not particularly limited as long as each component is uniformly dissolved in the solvent, but is, for example, 1 to 50% by mass, or 1 to 30 % By mass or 1 to 25% by mass.
  • the solid content is obtained by removing the solvent component from all components of the polymerizable composition.
  • the solution of the polymerizable composition is preferably used after being filtered using a filter having a pore size of 0.1 to 5 ⁇ m.
  • the polymerizable composition can be exposed (photocured) or heated (heat cured) to obtain a cured product.
  • light rays to be exposed include ultraviolet rays, electron beams, and X-rays.
  • a light source used for ultraviolet irradiation sunlight, a chemical lamp, a low-pressure mercury lamp, a high-pressure mercury lamp, a metal halide lamp, a xenon lamp, a UV-LED, or the like can be used.
  • the post-baking method is not particularly limited, but is usually performed in a range of 50 to 260 ° C.
  • thermosetting The heating conditions in the thermosetting are not particularly limited, but are usually appropriately selected from the range of 50 to 300 ° C. and 1 to 120 minutes.
  • the heating means is not particularly limited, and examples thereof include a hot plate and an oven.
  • the cured product obtained by curing the polymerizable composition of the present invention has a high refractive index of 1.57 or more at a wavelength of 633 nm, and is extremely small in discoloration (yellowing) by heating, and has a light transmittance.
  • the polymerizable composition of the present invention can be formed into various molded products in parallel with the formation of a cured product by using a conventional molding method such as compression molding (imprinting, etc.), casting, injection molding, blow molding and the like. Can be easily manufactured.
  • the molded body thus obtained is also an object of the present invention.
  • a step of filling the above-mentioned polymerizable composition of the present invention into a space between a supporting substrate and a mold or a space inside a mold that can be divided, the filled composition A step of exposing and photopolymerizing the product, a step of removing the resulting photopolymerized product from the space filled with the mold, and a step of heating the photopolymerized product before, during or after the release.
  • the manufacturing method containing these is preferable.
  • the step of filling the polymerizable composition may be performed by placing a mold on a support, for example, a glass substrate, and filling the polymerizable composition of the present invention in the space between the support and the mold.
  • the polymerizable composition may be filled in the space inside the mold that can be divided into two or three partial molds.
  • the exposure and photopolymerization step can be carried out by applying the conditions shown in the above ⁇ cured product >>.
  • the photopolymer may be heated before or after the release step, in the middle of the release, that is, simultaneously with the release operation, and further heated from before release to after release. May be.
  • the photopolymer may be removed from the filled space between the support and the mold, heated on the support, and the photopolymer filled in the interior space of the separable mold may be You may heat without taking out from internal space.
  • the conditions for the heating step are not particularly limited, but are usually selected appropriately from the range of 50 to 260 ° C. and 1 to 120 minutes. Moreover, it does not specifically limit as a heating means, For example, a hotplate, oven, etc. are mentioned.
  • the molded body produced by such a method can be suitably used as a lens for a CMOS image sensor.
  • GPC Gel permeation chromatography
  • Light transmittance Device JASCO Corporation UV-Vis Near-Infrared Spectrophotometer V-670 (5) Lens height Device: Mitaka Kogyo Co., Ltd.
  • UV exposure system Batch type UV irradiation system (high pressure mercury lamp 2kW x 1 lamp) manufactured by Eye Graphics Co., Ltd.
  • Nanoimprinter device NM-0801HB manufactured by Myeongchang Kiko Co., Ltd. Pressing pressure: 150N Lamp: Toshiba Corporation short arc mercury lamp UV exposure: 20 mW / cm 2 (365 nm detection), 150 seconds
  • APTMS (3-acryloyloxypropyl) trimethoxysilane [Shin-Etsu Silicone (registered trademark) KBM-5103, manufactured by Shin-Etsu Chemical Co., Ltd.]
  • MPTMS (3-Methacryloyloxypropyl) trimethoxysilane [Shin-Etsu Silicone (registered trademark) KBM-503, manufactured by Shin-Etsu Chemical Co., Ltd.]
  • PTMS Trimethoxy (phenyl) silane [Shin-Etsu Chemical Co., Ltd.
  • I1010 Pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] [IRGANOX (registered trademark) 1010 manufactured by BASF Japan Ltd.]
  • I184: 1-hydroxycyclohexyl phenyl ketone [IRGACURE (registered trademark) 184 manufactured by BASF Japan Ltd.]
  • TPO Diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide [IRGACURE (registered trademark) TPO manufactured by BASF Japan Ltd.]
  • THF tetrahydrofuran
  • reaction mixture was warmed to 40 ° C. and stirred for 16 hours. Then, the reaction mixture was cooled to room temperature (approximately 23 ° C.), and 71 g of a 1.2% by mass acetic acid / ethyl acetate solution (14 mmol as acetic acid) was added to stop the reaction by changing the liquidity of the aqueous layer to neutral to acidic. . Thereafter, this reaction mixture was added to 448 g of ethyl acetate and 223 g of ion-exchanged water, and the organic layer was separated using a separatory funnel.
  • the obtained organic layer was washed with ion-exchanged water three times, and then concentrated using a rotary evaporator to obtain 111.5 g of a silsesquioxane compound 1 (hereinafter sometimes abbreviated as AP55) solution. It was. From the volatile matter measurement at 100 ° C., the content of AP55 in the obtained solution was 46.7% by mass. Moreover, the weight average molecular weight Mw measured by polystyrene conversion by GPC of the obtained compound was 2,900, and dispersion degree: Mw (weight average molecular weight) / Mn (number average molecular weight) was 1.5.
  • AP55 silsesquioxane compound 1
  • the reaction mixture was warmed to 40 ° C. and stirred for 16 hours. Subsequently, the reaction mixture was cooled to room temperature (approximately 23 ° C.), and 3.6 g of a cation exchange resin [Amberlyst (registered trademark) 15JWET manufactured by Dow Chemical Co., Ltd.] previously washed with THF, and a filter aid [Nippon Paper Industries ( KC Flock W-100GK] 0.72 g was added and stirred for 1 hour to stop the reaction. Thereafter, the cation exchange resin and the filter aid were filtered through a membrane filter having a pore size of 0.5 ⁇ m, and further washed with 18 g of ethyl acetate.
  • a cation exchange resin [Amberlyst (registered trademark) 15JWET manufactured by Dow Chemical Co., Ltd.]
  • a filter aid [Nippon Paper Industries ( KC Flock W-100GK] 0.72 g was added and stirred for 1
  • the filtrate and the washing solution were combined and the solvent was distilled off under reduced pressure using a rotary evaporator to obtain 13.2 g of a silsesquioxane compound 3 (hereinafter sometimes abbreviated as APe55).
  • the weight average molecular weight Mw measured by polystyrene conversion by GPC of the obtained compound was 1,600, and the degree of dispersion: Mw / Mn was 1.1.
  • reaction mixture was warmed to 40 ° C. and stirred for 4 hours. Then, the reaction mixture was cooled to room temperature (approximately 23 ° C.), and 71 g of a 1.2% by mass acetic acid / ethyl acetate solution (14 mmol as acetic acid) was added to stop the reaction by changing the liquidity of the aqueous layer to neutral to acidic. . Thereafter, this reaction mixture was added to 448 g of ethyl acetate and 223 g of ion-exchanged water, and the organic layer was separated using a separatory funnel.
  • the obtained organic layer was washed three times with ion-exchanged water, and then concentrated using a rotary evaporator to obtain 96.8 g of a silsesquioxane compound 2 (hereinafter sometimes abbreviated as SP55) solution. It was. From the volatile matter measurement at 100 ° C., the content of SP55 in the obtained solution was 53.9% by mass. Moreover, the weight average molecular weight Mw measured by polystyrene conversion by GPC of the obtained compound was 4,000, and dispersion degree: Mw / Mn was 1.8.
  • SP55 silsesquioxane compound 2
  • polymerizable composition 1 (a) 15 parts by mass of AP10 as a silsesquioxane compound, (b) 85 parts by mass of FDA as a fluorene compound, (d) DDDS as a chain transfer agent (reaction accelerator) 0.5 parts by mass, (e) 0.5 part by mass of I1010 as an antioxidant, and 2 parts by mass of I184 and 1 part by mass of TPO as a polymerization initiator were stirred and mixed at 50 ° C. for 1 hour. Further, the polymerizable composition 1 was prepared by stirring and defoaming for 10 minutes.
  • Example 2 and 3 Preparation of polymerizable compositions 2 and 3 Polymerizable compositions 2 and 3 were prepared in the same manner as in Example 1 except that each composition was changed as shown in Table 1. In Table 1, “part” represents “part by mass”.
  • the cured product obtained from the polymerizable composition of the present invention has a low decrease in light transmittance of 400 nm of 1% or less even after heating at 125 to 150 ° C. for 96 hours or more. As a result, the discoloration (yellowing) due to was very small.
  • the cured product containing the silsesquioxane compound having a vinylphenyl group had a light transmittance of nearly 3% when heated at 125 ° C. for 24 hours, and coloring was also confirmed visually.
  • the cured product (convex lens) obtained from the polymerizable composition of the present invention has a very small change in lens height even when subjected to heating at 125 to 150 ° C. for 96 hours or longer. The result was high dimensional stability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Ophthalmology & Optometry (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Silicon Polymers (AREA)

Abstract

【課題】高い屈折率を維持しさらに高温熱履歴によって生じる寸法変化や透過率変化を抑制することができる成形物を作るのに好適な重合性組成物を提供すること。 【解決手段】(a)特定の反応性シルセスキオキサン化合物100質量部及び (b)特定のフルオレン化合物10~2,000質量部 を含む重合性組成物、当該重合性組成物を硬化した硬化物、並びに当該重合性組成物を用いて作成された樹脂レンズ。

Description

アクリル基を有するシルセスキオキサン化合物を含む重合性組成物
 本発明はアクリル基を有する反応性シルセスキオキサン化合物を含む重合性組成物に関する。詳細には、優れた光学特性(高屈折率)、高い耐熱性(寸法安定性、透明性等)を有する硬化物を形成できる、重合性組成物に関する。
 プラスチックレンズは、種々の光学機器等に用いられており、その機器の目的に応じた優れた光学特性を有するものであることが求められ、また、使用態様に合わせて、高い耐久性、例えば耐熱性、耐候性等と、歩留まり良く成形できる高い生産性とが求められている。
 このような樹脂材料としては、例えば、ポリカーボネート樹脂、シクロオレフィンポリマー、アクリル樹脂、メタクリル樹脂等の透明性樹脂が使用されてきた(特許文献1及び特許文献2等)。
 上記プラスチックレンズの一用途として、例えば携帯電話、デジタルカメラ、車載用カメラ、監視・防犯カメラ等の種々の機器に用いられる、CMOSイメージセンサやCCDイメージセンサ向け用途がある。これらイメージセンサでは、微細化に伴う1画素あたりの集光量の低下をマイクロレンズを配置することで防いでおり、こうしたレンズにおいて透明性はもちろん、光取り出し効率の向上や集光性の向上のために高い屈折率を有する材料が求められる。
 また、車載用カメラ等における厳しい使用環境などを考慮すると、材料の耐熱性についても求められる。
 近年、上記CMOSイメージセンサの新たな用途として、身に付けることが可能なウェアラブル端末等に注目が集まっている。
 こうした新たな用途における機器等へのイメージセンサの組み込みにあたって、センサ自体のさらなる小型化、軽量化に加え、低コスト化が求められる。そのためそこに使用されるプラスチックレンズにおいても、上述のセンサの小型化等を実現するべく、上記の透明性や屈折率、耐熱性等の基本性能の向上が望まれ、また従来の射出成形による製造に替わる製造工程の簡略化や低コスト化が図れることが望ましい。
特開平09-31136号公報 特開2012-62398号公報
 このように、上述のウェラブル端末等に搭載されるCMOSイメージセンサ用のレンズには、高い屈折率(例えば1.57以上)、高い透明性(例えば400nmの光線透過率95%以上)、厳しい使用環境下でも適合する耐熱性として温度変化に対する寸法安定性(例えば125℃下、500時間経過後の寸法変化率が2%以下)及び光透過率安定性(例えば150℃下、500時間経過後の、400nmの光線透過率の減少率が1%以下)等を満足する硬化性樹脂材料は未だなく、その開発が望まれていた。
 そして上述の性能に加えて、従来の射出成形等を用いた製造方法に比べて、工程を簡略化でき、低コスト化を図れる製造方法が適用できる、硬化性樹脂材料について有用な提案はこれまでにない。
 本発明は、このような事情に鑑みてなされたものであり、硬化物が高い屈折率と透明性を維持し、さらに高温熱履歴によって生じる寸法変化や透過率低下等を抑制することができる成形物を作るのに好適な重合性組成物を提供することを課題とする。
 本発明者らは、上記の課題を解決するべく鋭意検討を行った結果、特定の反応性シルセスキオキサン化合物に加えて、特定のフルオレン化合物を重合性組成物に添加することにより、得られるその硬化物(成形物)が高い屈折率と高い透明性を発現し、さらに高温熱履歴によって生じる寸法変化並びに透過率低下を抑制することができる成形物が得られることを見出し、完成するに至った。
 すなわち、本発明は、第1観点として、(a)式[1]で表されるアルコキシケイ素化合物Aと、前記アルコキシケイ素化合物Aに対して0~99モル倍量の式[2]で表されるアルコキシケイ素化合物Bとの重縮合物である反応性シルセスキオキサン化合物100質量部、及び(b)式[3]で表されるフルオレン化合物10~2,000質量部を含む、重合性組成物に関する。
Figure JPOXMLDOC01-appb-C000004
(式中、Rは(メタ)アクリロイルオキシ基を少なくとも1つ有する炭素原子数1乃至10のアルキル基を表し、Rはメチル基又はエチル基を表す。)
Figure JPOXMLDOC01-appb-C000005
(式中、Rは炭素原子数1乃至10のアルキル基、炭素原子数7乃至10のアラルキル基、又は炭素原子数6乃至14のアリール基を表し、Rはメチル基又はエチル基を表す。)
Figure JPOXMLDOC01-appb-C000006
(式中、R及びRはそれぞれ独立して、水素原子又はメチル基を表し、L及びLはそれぞれ独立して、置換基を有していてもよいフェニレン基、又は置換基を有していてもよいナフタレンジイル基を表し、L及びLはそれぞれ独立して、炭素原子数1乃至6のアルキレン基を表し、m及びnはm+nが0乃至40となる0又は正の整数を表す。)
 第2観点として、前記Rが炭素原子数6乃至14のアリール基を表す、第1観点に記載の重合性組成物に関する。
 第3観点として、(a)成分及び(b)成分の総量100質量部に対して、さらに(c)前記フルオレン化合物と異なる(メタ)アクリレート化合物10~200質量部を含む、第1観点又は第2観点に記載の重合性組成物に関する。
 第4観点として、(a)成分及び(b)成分の総量100質量部に対して、あるいは(c)成分を含む場合には(a)乃至(c)成分の総量100質量部に対して、さらに(d)連鎖移動剤0.01~20質量部を含む、第1観点乃至第3観点のうち何れか一項に記載の重合性組成物に関する。
 第5観点として、(a)成分及び(b)成分の総量100質量部に対して、あるいは(c)成分を含む場合には(a)乃至(c)成分の総量100質量部に対して、さらに(e)酸化防止剤0.01~20質量部を含む、第1観点乃至第4観点のうち何れか一項に記載の重合性組成物に関する。
 第6観点として、第1観点乃至第5観点の何れか一項に記載の重合性組成物を硬化した、硬化物に関する。
 第7観点として、第1観点乃至第5観点の何れか一項に記載の重合性組成物からなる樹脂レンズ用材料に関する。
 第8観点として、第1観点乃至第5観点の何れか一項に記載の重合性組成物を用いて作製された、樹脂レンズに関する。
 第9観点として、CMOSイメージセンサ用レンズである、第8観点に記載の樹脂レンズに関する。
 第10観点として、第1観点乃至第5観点の何れか一項に記載の重合性組成物を、接し合う支持体と鋳型との間の空間又は分割可能な鋳型の内部の空間に充填する工程、及び当該充填された組成物を露光して光重合する工程を含む、成形体の製造方法に関する。
 第11観点として、さらに、得られた光重合物を充填された前記空間から取り出して離型する工程、並びに、該光重合物を該離型の前、中途又は後において加熱する工程を含む、第10観点に記載の製造方法に関する。
 第12観点として、前記成形体が樹脂レンズである、第10観点又は第11観点に記載の製造方法に関する。
 本発明の重合性組成物は、その硬化物が、光学デバイス、例えば、CMOSイメージセンサ用のレンズとして望ましい光学特性(例えば1.57以上の高い屈折率、例えば400nmにおいて95%以上の高い透過率)を有するだけでなく、その使用環境における厳しい熱環境に適し得る耐熱寸法安定性(例えば125℃下、500時間経過後の寸法変化率が2%以下)及び耐熱透過率(例えば150℃下、500時間経過後の、400nmの光線透過率の減少率が1%以下)等をも有する。
 したがって、上記重合性組成物からなる本発明の樹脂レンズ用材料は、CMOSイメージセンサ用のレンズとして好適に使用することができる。
 また、本発明の製造方法は、成形体、特に樹脂レンズを効率的に製造することができる。
 さらに、本発明の重合性組成物は、無溶剤の形態で十分に取り扱い可能な粘度を有しているため、金型等の鋳型の押し付け加工(インプリント技術)を適用して好適に成形体を成形することができ、しかも鋳型からの優れた離型性も有する。
<<重合性組成物>>
 本発明の重合性組成物は、成分(a)として特定の反応性シルセスキオキサン化合物及び成分(b)として特定のフルオレン化合物を含み、所望によりその他成分を含む重合性組成物である。
 以下、各成分の詳細を説明する。
<(a)反応性シルセスキオキサン化合物>
 本発明に用いられる(a)反応性シルセスキオキサン化合物は、後述する特定構造のアルコキシケイ素化合物Aと特定構造のアルコキシケイ素化合物Bとを、酸又は塩基の存在下重縮合して得られる化合物である。
[アルコキシケイ素化合物A]
 前記アルコキシケイ素化合物Aは、下記式[1]で表される化合物である。
Figure JPOXMLDOC01-appb-C000007
上記式[1]中、Rは(メタ)アクリロイルオキシ基を少なくとも1つ有する炭素原子数1乃至10のアルキル基を表し、Rはメチル基又はエチル基を表す。
 なお、本発明では(メタ)アクリロイルオキシ基とは、アクリロイルオキシ基とメタクリロイルオキシ基の両方を意味する。
 Rが表す(メタ)アクリロイルオキシ基を少なくとも1つ有する炭素原子数1乃至10のアルキル基としては、(メタ)アクリロイルオキシメチル基、2-(メタ)アクリロイルオキシエチル基、3-(メタ)アクリロイルオキシプロピル基、4-(メタ)アクリロイルオキシブチル基、8-(メタ)アクリロイルオキシオクチル基等が挙げられる。
 上記式[1]で表される化合物の具体例としては、例えば、(メタ)アクリロイルオキシメチルトリメトキシシラン、(メタ)アクリロイルオキシメチルトリエトキシシラン、(2-(メタ)アクリロイルオキシエチル)トリメトキシシラン、(2-(メタ)アクリロイルオキシエチル)トリエトキシシラン、(3-(メタ)アクリロイルオキシプロピル)トリメトキシシラン、(3-(メタ)アクリロイルオキシプロピル)トリエトキシシラン、(4-(メタ)アクリロイルオキシブチル)トリメトキシシラン、(4-(メタ)アクリロイルオキシブチル)トリエトキシシラン、(8-(メタ)アクリロイルオキシオクチル)トリメトキシシラン、(8-(メタ)アクリロイルオキシオクチル)トリエトキシシラン等が挙げられるが、これらに限定されるものではない。
[アルコキシケイ素化合物B]
 前記アルコキシケイ素化合物Bは、下記式[2]で表される化合物である。
Figure JPOXMLDOC01-appb-C000008
 上記式[2]中、Rは炭素原子数1乃至10のアルキル基、炭素原子数7乃至10のアラルキル基、又は炭素原子数6乃至14のアリール基を表し、Rはメチル基又はエチル基を表す。
 Rが表す炭素原子数1乃至10のアルキル基としては、直鎖状、分枝鎖状、或いは環状のアルキル基の何れであってもよく、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、シクロプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソアミル基、ネオペンチル基、tert-アミル基、sec-イソアミル基、シクロペンチル基、n-ヘキシル基、シクロヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基等が挙げられる。
 Rが表す炭素原子数7乃至10のアラルキル基(アリールアルキル基)としては、例えば、ベンジル基、フェネチル基、フェニルプロピル基等が挙げられる。
 Rが表す炭素原子数6乃至14のアリール基としては、例えば、フェニル基、トリル基、キシリル基、フェノキシフェニル基、ビフェニル基、ナフチル基、フェナントリル基等が挙げられる。中でも、炭素原子数6乃至12のアリール基が好ましい。
 上記の中でも、Rは炭素原子数6乃至14のアリール基であることが好ましく、中でもフェニル基、ビフェニル基、ナフチル基又はフェナントリル基が好ましい。また、Rは炭素原子数6乃至12のアリール基であることが好ましい。
 上記式[2]で表される化合物の具体例としては、例えば、トリメトキシ(メチル)シラン、トリエトキシ(メチル)シラン、エチルトリメトキシシラン、エチルトリエトキシシラン、トリメトキシ(プロピル)シラン、トリエトキシ(プロピル)シラン、ベンジルトリメトキシシラン、ベンジルトリエトキシシラン、トリメトキシ(フェネチル)シラン、トリエトキシ(フェネチル)シラン、トリメトキシ(フェニル)シラン、トリエトキシ(フェニル)シラン、トリメトキシ(p-トリル)シラン、トリメトキシ(4-フェノキシフェニル)シラン、トリエトキシ(4-フェノキシフェニル)シラン、[1,1’-ビフェニル]-4-イルトリメトキシシラン、トリメトキシ(ナフタレン-1-イル)シラン、トリエトキシ(ナフタレン-1-イル)シラン、トリメトキシ(ナフタレン-2-イル)シラン、トリエトキシ(ナフタレン-2-イル)シラン、トリメトキシ(2-フェナントリル)シラン、トリメトキシ(3-フェナントリル)シラン、トリメトキシ(9-フェナントリル)シラン、トリエトキシ(9-フェナントリル)シラン等が挙げられるが、これらに限定されるものではない。
[アルコキシケイ素化合物Aとアルコキシケイ素化合物Bの配合割合]
 (a)成分の反応性シルセスキオキサン化合物に用いる、式[1]で表されるアルコキシケイ素化合物Aと式[2]で表されるアルコキシケイ素化合物Bの重縮合反応にかかる配合比は、アルコキシケイ素化合物Aに対して、アルコキシケイ素化合物Bを0~99モル倍量にて用いる。さらに好ましくは、アルコキシケイ素化合物Aに対して、アルコキシケイ素化合物Bを0~20モル倍量、より好ましくは0~4モル倍量、特に好ましくは0~1.5モル倍量である。
 アルコキシケイ素化合物Aに対して、アルコキシケイ素化合物Bを上記の範囲内にて使用することで、硬化物中での固定化が促進され、熱に対する寸法安定性がより向上する。
 上述のアルコキシケイ素化合物A及びアルコキシケイ素化合物Bは、必要に応じて適宜化合物を選択して用いることができ、またそれぞれ複数種の化合物を併用することもできる。この場合の配合モル比も、アルコキシケイ素化合物Aのモル量の総計と、アルコキシケイ素化合物Bのモル量の総計の比が、上記の範囲となる。
[酸又は塩基性触媒]
 上記式[1]で表されるアルコキシケイ素化合物Aの重縮合反応、又は前記アルコキシケイ素化合物Aと、上記式[2]で表されるアルコキシケイ素化合物Bとの重縮合反応は、酸又は塩基性触媒の存在下で好適に実施される。
 上記重縮合反応に用いる触媒は、後述の溶媒に溶解する、又は均一分散する限りにおいては特にその種類は限定されず、必要に応じて適宜選択して用いることができる。
 用いることのできる触媒としては、例えば、酸性化合物として、塩酸、硝酸、硫酸などの無機酸、酢酸、シュウ酸などの有機酸等;塩基性化合物として、アルカリ金属水酸化物、アルカリ土類金属水酸化物、水酸化アンモニウム、第四級アンモニウム塩、アミン類等;フッ化物塩として、NHF、NRF等が挙げられる。なお、ここでRは、水素原子、炭素原子数1乃至12の直鎖状アルキル基、炭素原子数3乃至12の分枝状アルキル基、炭素原子数3乃至12の環状アルキル基からなる群から選ばれる一種以上の基である。
 これら触媒は、一種単独で、又は複数種を併用することもできる。
 上記酸性化合物としては、例えば、塩酸、硝酸、硫酸、酢酸、シュウ酸、ホウ酸等が挙げられる。
 上記塩基性化合物としては、例えば、水酸化ナトリウム、水酸化カリウム、水酸化マグネシウム、水酸化カルシウム、水酸化ストロンチウム、水酸化バリウム、水酸化アンモニウム、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、水酸化テトラブチルアンモニウム、トリエチルアミン等が挙げられる。
 上記フッ化物塩としては、例えば、フッ化アンモニウム、フッ化テトラメチルアンモニウム、フッ化テトラブチルアンモニウム等を挙げることができる。
 これら触媒のうち、好ましく用いられるのは、塩酸、酢酸、水酸化カリウム、水酸化カルシウム、水酸化バリウム及び水酸化テトラエチルアンモニウムからなる群から選ばれる一種以上である。
 触媒の使用量は、上記アルコキシケイ素化合物Aとアルコキシケイ素化合物Bとの合計質量に対し、0.01~10質量%、好ましくは0.1~5質量%である。触媒の使用量を0.01質量%以上とすることで反応がより良好に進行する。また、経済性を考慮すれば、10質量%以下の使用で十分である。
[重縮合反応]
 本発明にかかる反応性シルセスキオキサン化合物は、アルコキシケイ素化合物Aの構造が一つの特徴となっている。本発明に用いられるアルコキシケイ素化合物Aに含まれる反応性基である(メタ)アクリロイルオキシ基(重合性二重結合)は、ラジカル又はカチオンによって容易に重合し、重合後(硬化後)は高い耐熱性(耐熱寸法安定性、耐熱透過率)を示す。
 アルコキシケイ素化合物Aとアルコキシケイ素化合物Bの加水分解重縮合反応は、無溶媒下で行うことも可能だが、後述するテトラヒドロフラン(THF)などの両アルコキシケイ素化合物に対して不活性な溶媒を反応溶媒として用いることも可能である。反応溶媒を用いる場合は、反応系を均一にしやすく、より安定した重縮合反応を行えるという利点がある。
 反応性シルセスキオキサン化合物の合成反応は、前述のように無溶媒で行ってもよいが、反応をより均一化させるために溶媒を使用しても問題ない。溶媒は、両アルコキシケイ素化合物と反応せず、その重縮合物を溶解するものであれば特に限定されない。
 このような反応溶媒としては、例えば、アセトン、メチルエチルケトン(MEK)等のケトン類;ベンゼン、トルエン、キシレン等の芳香族炭化水素類;テトラヒドロフラン(THF)、1,4-ジオキサン、ジイソプロピルエーテル、シクロペンチルメチルエーテル(CPME)等のエーテル類;エチレングリコール、プロピレングリコール、ヘキシレングリコール等のグリコール類;エチルセロソルブ、ブチルセロソルブ、エチルカルビトール、ブチルカルビトール、ジエチルセロソルブ、ジエチルカルビトール等のグリコールエーテル類;N-メチル-2-ピロリドン(NMP)、N,N-ジメチルホルムアミド(DMF)等のアミド類などが挙げられる。これら溶媒は、一種単独で、又は二種以上を混合して用いてもよい。
 本発明で用いる反応性シルセスキオキサン化合物は、式[1]で表されるアルコキシケイ素化合物Aを、又は前記アルコキシケイ素化合物Aと式[2]で表されるアルコキシケイ素化合物Bとを、酸又は塩基性触媒の存在下で、加水分解重縮合を行うことにより得られる。加水分解重縮合にかかる反応温度は20~150℃、より好ましくは30~120℃である。
 反応時間は、重縮合物の分子量増加が終了し、分子量分布が安定するのに必要な時間以上なら、特に制限は受けず、より具体的には数時間から数日間である。
 重縮合反応の終了後、得られた反応性シルセスキオキサン化合物をろ過、溶媒留去等の任意の方法で回収し、必要に応じて適宜精製処理を行うことが好ましい。
 また本発明で用いる反応性シルセスキオキサン化合物は、上記式[1]で表されるアルコキシケイ素化合物Aを、又は前記アルコキシケイ素化合物Aと式[2]で表されるアルコキシケイ素化合物Bとを、塩基の存在下で重縮合し、陽イオン交換樹脂を用いて塩基を除去することにより、製造され得る。
 上記塩基並びにその使用量は、上述した塩基性化合物及びフッ化物塩からなる群から選択される一種以上の化合物、またその使用量を採用し得、好ましくは水酸化カリウム、水酸化カルシウム、水酸化バリウム及び水酸化テトラエチルアンモニウムからなる群から選ばれる一種以上のものを塩基として使用できる。
 また重縮合反応に用いる反応条件等や反応溶媒等は上述したものを採用できる。
 そして反応終了後、塩基の除去に使用する陽イオン交換樹脂としてはスルホ基をイオン基として有するイオン交換樹脂が好ましく用いられる。
 市販されている強酸性陽イオン交換樹脂としては、例えば、アンバーライト(登録商標)15、同200、同200C、同200CT、同252、同1200H、同IR120B、同IR120H、同IR122Na、同IR124、同IRC50、同IRC86、同IRN77、同IRP-64、同IRP-69、同CG-50、同CG-120、アンバージェット(登録商標)1020、同1024、同1060、同1200、同1220、アンバーリスト(登録商標)15、同15DRY、同15JWET、同16、同16WET、同31WET、同35WET、同36、ダウエックス(登録商標)50Wx2、同50Wx4、同50Wx8、同DR-2030、同DR-G8、同HCR-W2、同650C UPW、同G-26、同88、同M-31、同N-406、ダウエックス(登録商標)モノスフィアー(登録商標)650C、同88、同M-31、同99K/320、同99K/350、同99Ca/320、ダウエックス マラソン(登録商標)MSC、同C[以上、ダウ・ケミカル社製];ダイヤイオン(登録商標)EXC04、同HPK25、同PK208、同PK212、同PK216、同PK220、同PK228L、同RCP160M、同SK1B、同SK1BS、同SK104、同SK110、同SK112、同SK116、同UBK510L、同UBK555[以上、三菱化学(株)製];レバチット(登録商標)MonoPlusS100、同MonoPlusSP112[以上、ランクセス社製]等が挙げられる。
 また、市販されている弱酸性陽イオン交換樹脂としては、例えば、アンバーライト(登録商標)CG-50、同FPC3500、同IRC50、同IRC76、同IRC86、同IRP-64、ダウエックス(登録商標)MAC-3[以上、ダウ・ケミカル社製];ダイヤイオン(登録商標)CWK30/S、同WK10、同WK11、同WK40、同WK100、同WT01S[以上、三菱化学(株)製]等が挙げられる。
 このような反応によって得られた重縮合物は、GPCによるポリスチレン換算で測定される重量平均分子量Mwが500~100,000、好ましくは500~30,000であり、分散度:Mw(重量平均分子量)/Mn(数平均分子量)は1.0~10である。
 なお、上記(a)反応性シルセスキオキサン化合物は、[RSiO3/2]で表されるシロキサン単位を少なくとも有し、さらに[RSiO3/2]で表されるシロキサン単位を含んでいてもよい、架橋構造を持つ化合物である。
<(b)フルオレン化合物>
 本発明に用いられる(b)フルオレン化合物は、式[3]で表される化合物である。
Figure JPOXMLDOC01-appb-C000009
 上記式[3]中、R及びRはそれぞれ独立して、水素原子又はメチル基を表し、L及びLはそれぞれ独立して、置換基を有していてもよいフェニレン基、又は置換基を有していてもよいナフタレンジイル基を表し、L及びLはそれぞれ独立して、炭素原子数1乃至6のアルキレン基を表し、m及びnはm+nが0乃至40となる0又は正の整数を表す。
 L及びLが表す置換基を有していてもよいフェニレン基としては、例えば、o-フェニレン基、m-フェニレン基、p-フェニレン基、2-メチルベンゼン-1,4-ジイル基、2-アミノベンゼン-1,4-ジイル基、2,4-ジブロモベンゼン-1,3-ジイル基、2,6-ジブロモベンゼン-1,4-ジイル基等が挙げられる。
 また、L及びLが表す置換基を有していてもよいナフタレンジイル基としては、1,2-ナフタレンジイル基、1,4-ナフタレンジイル基、1,5-ナフタレンジイル基、1,8-ナフタレンジイル基、2,3-ナフタレンジイル基、2,6-ナフタレンジイル基等が挙げられる。
 L及びLが表す炭素原子数1乃至6のアルキレン基としては、例えば、メチレン基、エチレン基、トリメチレン基、1-メチルエチレン基、テトラメチレン基、1-メチルトリメチレン基、1,1-ジメチルエチレン基、ペンタメチレン基、1-メチルテトラメチレン基、2-メチルテトラメチレン基、1,1-ジメチルトリメチレン基、1,2-ジメチルトリメチレン基、2,2-ジメチルトリメチレン基、1-エチルトリメチレン基、ヘキサメチレン基、1-メチルペンタメチレン基、2-メチルペンタメチレン基、3-メチルペンタメチレン基、1,1-ジメチルテトラメチレン基、1,2-ジメチルテトラメチレン基、2,2-ジメチルテトラメチレン基、1-エチルテトラメチレン基、1,1,2-トリメチルトリメチレン基、1,2,2-トリメチルトリメチレン基、1-エチル-1-メチルトリメチレン基、1-エチル-2-メチルトリメチレン基等が挙げられる。
 式[3]で表される化合物において、m及びnは、m+nが0乃至30となる場合が好ましく、m+nが2乃至20となる場合がより好ましい。
 上記式[3]で表される化合物の具体例としては、例えば、9,9-ビス(4-(2-(メタ)アクリロイルオキシエトキシ)フェニル)-9H-フルオレン、オグソール(登録商標)EA-0200、同EA-0300、同EA-F5003、同EA-F5503、同EA-F5510、同EA-F5710、同GA-5000[以上、大阪ガスケミカル(株)製]、NKエステルA-BPEF[新中村化学工業(株)製]等が挙げられるが、これらに限定されるものではない。
 本発明の重合性組成物において、(b)成分の含有量は、(a)成分100質量部に対し10~2,000質量部である。中でも、50~1,000質量部が好ましく、100~500質量部がより好ましい。
 本発明の重合性組成物において、(a)成分と(b)成分の合計含有量における(a)成分の含有量の割合を高めることにより耐熱寸法安定性は良好なものとなり、(b)成分の含有量の割合を高めることにより屈折率が高いものとなる。
<(c)前記フルオレン化合物と異なる(メタ)アクリレート化合物>
 本発明の重合性組成物は、さらに(c)成分として、(c)前記フルオレン化合物と異なる(メタ)アクリレート化合物を含み得る。中でも、芳香族基を有するモノ(メタ)アクリレート化合物が好ましい。
 なお、本発明では(メタ)アクリレート化合物とは、アクリレート化合物とメタクリレート化合物の両方をいう。例えば(メタ)アクリル酸は、アクリル酸とメタクリル酸をいう。
 芳香族基を有するモノ(メタ)アクリレート化合物としては、例えば、ベンジル(メタ)アクリレート、2-フェノキシエチル(メタ)アクリレート、ジエチレングリコールモノフェニルエーテル(メタ)アクリレート、ポリエチレングリコールモノフェニルエーテル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、ネオペンチルグリコールベンゾエート(メタ)アクリレート、エトキシ化o-フェニルフェノール(メタ)アクリレート等が挙げられるが、これらに限定されるものではない。
 また、(c)成分として、前記芳香族基を有するモノ(メタ)アクリレート化合物以外の(メタ)アクリレート化合物としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、2,2,2-トリフルオロエチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、sec-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、n-ヘキシル(メタ)アクリレート、n-オクチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、アダマンチル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、2-(ジシクロペンタニルオキシ)エチル(メタ)アクリレート、2-(ジシクロペンテニルオキシ)エチル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、1,3-ブタンジオールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、プロポキシ化ネオペンチルグリコールジ(メタ)アクリレート、ネオペンチルグリコールモノ(ヒドロキシピバリン酸)エステル(メタ)アクリレート、3-メチル-1,5-ペンタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、2-(3-ヒドロキシ-2-メチルプロピル-2-イル)-5-エチル-5-ヒドロキシメチル-1,3-ジオキサンジ(メタ)アクリレート(ジオキサングリコールジ(メタ)アクリレートとも呼ぶ)、トリシクロ[5.2.1.02,6]デカンジメタノールジ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、エトキシ化トリメチロールプロパントリ(メタ)アクリレート、プロポキシ化トリメチロールプロパントリ(メタ)アクリレート、ペンタエリトリトールテトラ(メタ)アクリレート、エトキシ化ペンタエリトリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジペンタエリトリトールヘキサ(メタ)アクリレート等が挙げられるが、これらに限定されるものではない。
 (c)成分の(メタ)アクリレート化合物を添加する場合、当該化合物は一種単独で、又は二種以上を混合して用いてもよい。また、その添加量としては、(a)成分及び(b)成分の総量100質量部に対し1~200質量部、さらに好ましくは10~50質量部である。
<(d)連鎖移動剤>
 本発明の重合性組成物は、上記(a)成分及び(b)成分、さらに所望により(c)成分に加えて、(d)連鎖移動剤を含み得る。連鎖移動剤としては、チオール化合物、ジスルフィド化合物及びα-メチルスチレンダイマーなどが挙げられる。
 上記チオール化合物としては、例えば、メルカプト酢酸メチル、3-メルカプトプロピオン酸メチル、3-メルカプトプロピオン酸2-エチルヘキシル、3-メルカプトプロピオン酸3-メトキシブチル、3-メルカプトプロピオン酸n-オクチル、3-メルカプトプロピオン酸ステアリル、1,4-ビス(3-メルカプトプロピオニルオキシ)ブタン、1,4-ビス(3-メルカプトブチリルオキシ)ブタン、トリメチロールエタントリス(3-メルカプトプロピオネート)、トリメチロールエタントリス(3-メルカプトブチレート)、トリメチロールプロパントリス(3-メルカプトプロピオネート)、トリメチロールプロパントリス(3-メルカプトブチレート)、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3-メルカプトブチレート)、ジペンタエリスリトールヘキサキス(3-メルカプトプロピオネート)、ジペンタエリスリトールヘキサキス(3-メルカプトブチレート)、トリス[2-(3-メルカプトプロピオニルオキシ)エチル]イソシアヌレート、トリス[2-(3-メルカプトブチリルオキシ)エチル]イソシアヌレート等のメルカプトカルボン酸エステル類;エタンチオール、2-メチルプロパン-2-チオール、n-ドデカンチオール、2,3,3,4,4,5-ヘキサメチルヘキサン-2-チオール(tert-ドデカンチオール)、エタン-1,2-ジチオール、プロパン-1,3-ジチオール、ベンジルチオール等のアルキルチオール類;ベンゼンチオール、3-メチルベンゼンチオール、4-メチルベンゼンチオール、ナフタレン-2-チオール、ピリジン-2-チオール、ベンゾイミダゾール-2-チオール、ベンゾチアゾール-2-チオール等の芳香族チオール類;2-メルカプトエタノール、4-メルカプト-1-ブタノール等のメルカプトアルコール類;3-(トリメトキシシリル)プロパン-1-チオール、3-(トリエトキシシリル)プロパン-1-チオール等のシラン含有チオール類などが挙げられる。
 上記ジスルフィド化合物としては、例えば、ジエチルジスルフィド、ジプロピルジスルフィド、ジイソプロピルジスルフィド、ジブチルジスルフィド、ジ-tert-ブチルジスルフィド、ジペンチルジスルフィド、ジイソペンチルジスルフィド、ジヘキシルジスルフィド、ジシクロヘキシルジスルフィド、ジデシルジスルフィド、ビス(2,3,3,4,4,5-ヘキサメチルヘキサン-2-イル)ジスルフィド(ジ-tert-ドデシルジスルフィド)、ビス(2,2-ジエトキシエチル)ジスルフィド、ビス(2-ヒドロキシエチル)ジスルフィド、ジベンジルジスルフィド等のアルキルジスルフィド類;ジフェニルジスルフィド、ジ-p-トリルジスルフィド、ジ(ピリジン-2-イル)ジスルフィド、ジ(ベンゾイミダゾール-2-イル)ジスルフィド、ジ(ベンゾチアゾール-2-イル)ジスルフィド等の芳香族ジスルフィド類;テトラメチルチウラムジスルフィド、テトラエチルチウラムジスルフィド、テトラブチルチウラムジスルフィド、ビス(ペンタメチレン)チウラムジスルフィド等のチウラムジスルフィド類などが挙げられる。
 連鎖移動剤を添加する場合、連鎖移動剤は一種単独で、又は二種以上を混合して用いてもよい。また、その添加量としては、重合性成分、すなわち上記(a)成分及び(b)成分の総量100質量部に対して、あるいは(c)成分を含む場合には(a)乃至(c)成分の総量100質量部に対して0.01~20質量部、さらに好ましくは0.1~10質量部である。
<(e)酸化防止剤>
 本発明の重合性組成物は、上記(a)成分及び(b)成分、さらに所望により(c)成分、(d)成分に加えて、(e)酸化防止剤を含み得る。
 上記酸化防止剤としては、フェノール系酸化防止剤、リン酸系酸化防止剤、スルフィド系酸化防止剤等が挙げられるが、中でもフェノール系酸化防止剤が好ましい。
 フェノール系酸化防止剤としては、例えば、IRGANOX(登録商標)245、同1010、同1035、同1076、同1135[以上、BASFジャパン(株)製]、スミライザー(登録商標)GA-80、同GP、同MDP-S、同BBM-S、同WX-R[以上、住友化学(株)製]、アデカスタブ(登録商標)AO-20、同AO-30、同AO-40、同AO-50、同AO-60、同AO-80、同AO-330[以上、(株)ADEKA製]等が挙げられる。
 酸化防止剤を添加する場合、酸化防止剤は一種単独で、又は二種以上を混合して用いてもよい。また、その添加量としては、重合性成分、すなわち上記(a)成分及び(b)成分の総量100質量部に対して、あるいは(c)成分を含む場合には(a)乃至(c)成分の総量100質量部に対して0.01~20質量部、さらに好ましくは0.1~10質量部である。
<重合開始剤>
 本発明の重合性組成物は、上記(a)成分及び(b)成分、さらに所望により上記(c)乃至(e)成分に加えて、重合開始剤を含み得る。重合開始剤としては、光重合開始剤及び熱重合開始剤の何れも使用できる。
 光重合開始剤としては、例えば、アルキルフェノン類、ベンゾフェノン類、アシルホスフィンオキシド類、ミヒラーのベンゾイルベンゾエート類、オキシムエステル類、テトラメチルチウラムモノスルフィド類、チオキサントン類等が挙げられる。
 特に、光開裂型の光ラジカル重合開始剤が好ましい。光開裂型の光ラジカル重合開始剤については、最新UV硬化技術(159頁、発行人:高薄一弘、発行所:(株)技術情報協会、1991年発行)に記載されているものが挙げられる。
 市販されている光ラジカル重合開始剤としては、例えば、IRGACURE(登録商標)184、同369、同651、同500、同819、同907、同784、同2959、同CGI1700、同CGI1750、同CGI1850、同CG24-61、同TPO、Darocur(登録商標)1116、同1173[以上、BASFジャパン(株)製]、ESACURE KIP150、同KIP65LT、同KIP100F、同KT37、同KT55、同KTO46、同KIP75[以上、ランベルティ社製]等を挙げることができる。
 熱重合開始剤としては、例えば、アゾ類、有機過酸化物類等が挙げられる。
 市販されているアゾ系熱重合開始剤としては、例えば、V-30、V-40、V-59、V-60、V-65、V-70[以上、和光純薬工業(株)製]等を挙げることができる。
 また市販されている有機過酸化物系熱重合開始剤としては、例えば、パーカドックス(登録商標)CH、同BC-FF、同14、同16、トリゴノックス(登録商標)22、同23、同121、カヤエステル(登録商標)P、同O、カヤブチル(登録商標)B[以上、化薬アクゾ(株)製]、パーヘキサ(登録商標)HC、パークミル(登録商標)H、パーオクタ(登録商標)O、パーヘキシル(登録商標)O、同Z、パーブチル(登録商標)O、同Z[以上、日油(株)製]等を挙げることができるが、これらに限定されるものではない。
 重合開始剤を添加する場合、重合開始剤は一種単独で、又は二種以上を混合して用いてもよい。また、その添加量としては、重合性成分、すなわち上記(a)成分及び(b)成分の総量100質量部に対して、あるいは(c)成分を含む場合には(a)乃至(c)成分の総量100質量部に対して0.1~20質量部、さらに好ましくは0.3~10質量部である。
<その他添加剤>
 さらに本発明の重合性組成物は、本発明の効果を損なわない限りにおいて、必要に応じて、紫外線吸収剤、光安定化剤、レベリング剤、レオロジー調整剤、シランカップリング剤等の接着補助剤、顔料、染料、消泡剤などを含有することができる。
<重合性組成物の調製方法>
 本実施の形態の重合性組成物の調製方法は、特に限定されない。調製法としては、例えば、(a)成分及び(b)成分、並びに必要に応じて(c)乃至(e)成分及び重合開始剤を所定の割合で混合し、所望によりその他添加剤をさらに添加して混合し、均一な溶液とする方法、これら各成分のうち、例えば(a)成分及び(b)成分並びに所望により(c)乃至(e)成分及び重合開始剤のうち少なくとも二種の成分のうち少なくとも一部を混合して均一な溶液とした後、残りの各成分を加え、所望によりその他添加剤をさらに添加して混合し、均一な溶液とする方法、又はこれらの成分に加えさらに慣用の溶媒を使用する方法等が挙げられる。
 溶媒を使用する場合、本重合性組成物における固形分の割合は、各成分が溶媒に均一に溶解している限りは特に限定はないが、例えば1~50質量%であり、又は1~30質量%であり、又は1~25質量%である。ここで固形分とは、重合性組成物の全成分から溶媒成分を除いたものである。
 また、重合性組成物の溶液は、孔径が0.1~5μmのフィルタなどを用いてろ過した後、使用することが好ましい。
<<硬化物>>
 また、本発明は、上記重合性組成物を露光(光硬化)又は加熱(熱硬化)して、硬化物を得ることができる。
 露光する光線としては、紫外線、電子線、X線等が挙げられる。紫外線照射に用いる光源としては、太陽光線、ケミカルランプ、低圧水銀灯、高圧水銀灯、メタルハライドランプ、キセノンランプ、UV-LED等が使用できる。また、露光後、硬化物の物性を安定化させるためにポストベークを施してもよい。ポストベークの方法としては、特に限定されないが、通常、ホットプレート、オーブン等を使用して、50~260℃、1~120分間の範囲で行われる。
 熱硬化における加熱条件としては、特に限定されないが、通常、50~300℃、1~120分間の範囲から適宜選択される。また、加熱手段としては、特に限定されないが、例えばホットプレート、オーブン等が挙げられる。
 本発明の重合性組成物を硬化することにより得られる硬化物は、波長633nmにおける屈折率が1.57以上と高いものであり、また、加熱による変色(黄色化)が極めて小さく、光線透過率の低下が抑制され、高い寸法安定性を有するものであるから、高屈折率樹脂レンズ用材料として好適に使用することができる。
<<成形体>>
 本発明の重合性組成物は、例えば、圧縮成形(インプリント等)、注型、射出成形、ブロー成形などの慣用の成形法を使用することによって、硬化物の形成と並行して各種成形体を容易に製造することができる。こうして得られる成形体も本発明の対象である。
 成形体を製造する方法としては、例えば接し合う支持体と鋳型との間の空間又は分割可能な鋳型の内部の空間に前述の本発明の重合性組成物を充填する工程、当該充填された組成物を露光して光重合する工程、得られた光重合物を充填された前記空間から取り出して離型する工程、並びに、該光重合物を該離型の前、中途又は後において加熱する工程、を含む製造方法が好ましい。
 上記重合性組成物を充填する工程は、支持体、例えばガラス基板上に鋳型を載置し、支持体と鋳型との間の空間内に本発明の重合性組成物を充填してもよいし、例えばニ、三の部分型に分割可能な鋳型の内部の空間に重合性組成物を充填してもよい。
 上記露光して光重合する工程は、前述の<<硬化物>>に示す条件を適用して実施することができる。
 上記加熱工程については、光重合物を離型工程の前に又はその後に、離型の中途に、つまり離型の動作と同時に加熱してもよく、さらには離型前から離型後にわたって加熱してもよい。例えば、光重合物を支持体と離型との間の充填された空間から取り出し、支持体上で加熱してもよく、また分割可能な鋳型の内部空間に充填された光重合物を、該内部空間から取り出さずに加熱してもよい。
 また、上記加熱工程の条件としては、特に限定されないが、通常、50~260℃、1~120分間の範囲から適宜選択される。また、加熱手段としては、特に限定されないが、例えば、ホットプレート、オーブン等が挙げられる。
 このような方法によって製造された成形体は、CMOSイメージセンサ用のレンズとして好適に使用することができる。
 以下、実施例を挙げて、本発明をより具体的に説明するが、本発明は下記の実施例に限定されるものではない。
 なお、実施例において、試料の調製及び物性の分析に用いた装置及び条件は、以下の通りである。
(1)ゲル浸透クロマトグラフィー(GPC)
 装置:(株)島津製作所製 Prominence(登録商標)GPCシステム
 カラム:昭和電工(株)製 Shodex(登録商標)GPC KF-804L及びGPC KF-803L
 カラム温度:40℃
 溶媒:テトラヒドロフラン
 検出器:RI
 検量線:標準ポリスチレン
(2)揮発分測定
 装置:メトラー・トレド社製 ハロゲン水分計 HR83
(3)屈折率
 装置:メトリコン社製 モデル2010/M プリズムカプラー
 測定温度:23℃
(4)光線透過率
 装置:日本分光(株)製 紫外可視近赤外分光光度計V-670
(5)レンズ高さ
 装置:三鷹光器(株)製 非接触表面性状測定装置PF-60
(6)撹拌脱泡機
 装置:(株)シンキー製 自転・公転ミキサー あわとり練太郎(登録商標)ARE-310
(7)UV露光
 装置:アイグラフィックス(株)製 バッチ式UV照射装置(高圧水銀灯2kW×1灯)
(8)ナノインプリンター
 装置:明昌機工(株)製 NM-0801HB
 押し付け圧:150N
 ランプ:(株)東芝製 ショートアーク水銀灯
 UV露光量:20mW/cm(365nm検出)、150秒
 また、略記号は以下の意味を表す。
APTMS:(3-アクリロイルオキシプロピル)トリメトキシシラン[信越化学工業(株)製 信越シリコーン(登録商標)KBM-5103]
MPTMS:(3-メタクリロイルオキシプロピル)トリメトキシシラン[信越化学工業(株)製 信越シリコーン(登録商標)KBM-503]
PTMS:トリメトキシ(フェニル)シラン[信越化学工業(株)製 信越シリコーン(登録商標)KBM-103]
STMS:トリメトキシ(4-ビニルフェニル)シラン[信越化学工業(株)製 信越シリコーン(登録商標)KBM-1403]
TMOS:テトラメトキシシラン[東京化成工業(株)製]
AP10:3-アクリロイルオキシプロピル基含有シルセスキオキサン[東亞合成(株)製 AC-SQ TA-100、アクリル等量:165g/eq]
BnA:ベンジルアクリレート[大阪有機化学工業(株)製 ビスコート#160]
FDA:ビスアリールフルオレンジアクリレート[大阪ガスケミカル(株)製 オグソール(登録商標)EA-F5503]
DDDS:ジデシルジスルフィド[東京化成工業(株)製]
DDT:n-ドデカンチオール[花王(株)製 チオカルコール20]
I1010:ペンタエリスリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート][BASFジャパン(株)製 IRGANOX(登録商標)1010]
I184:1-ヒドロキシシクロヘキシル=フェニル=ケトン[BASFジャパン(株)製 IRGACURE(登録商標)184]
TPO:ジフェニル(2,4,6-トリメチルベンゾイル)ホスフィンオキシド[BASFジャパン(株)製 IRGACURE(登録商標)TPO]
THF:テトラヒドロフラン
[製造例1]シルセスキオキサン化合物1(AP55)溶液の製造
 凝縮器を備えた300mLの反応フラスコに、35質量%水酸化テトラエチルアンモニウム水溶液[アルドリッチ社製]2.97g(7.1mmol)、イオン交換水9.56g(531mmol)、及びTHF92gを仕込み、窒素バルーンを用いてフラスコ中の空気を窒素で置換した。ここへ、APTMS41.3g(177mmol)、及びPTMS35.0g(177mmol)の混合物を、室温(およそ23℃)で10分間で滴下した。この反応混合物を40℃に昇温し、16時間撹拌した。
 次いで、反応混合物を室温(およそ23℃)に冷却し、1.2質量%酢酸/酢酸エチル溶液71g(酢酸として14mmol)を加え、水層の液性を中性~酸性として反応を停止させた。その後、この反応混合物を、酢酸エチル448g及びイオン交換水223gに加え、分液ロートを用いて有機層を分取した。得られた有機層を、イオン交換水で3回洗浄した後、ロータリーエバポレーターを用いて濃縮することで、シルセスキオキサン化合物1(以下、AP55と略記することもある)溶液111.5gを得た。
 100℃での揮発分測定から、得られた溶液のAP55の含有量は46.7質量%であった。また、得られた化合物のGPCによるポリスチレン換算で測定される重量平均分子量Mwは2,900、分散度:Mw(重量平均分子量)/Mn(数平均分子量)は1.5であった。
[製造例2]トリメトキシ(9-フェナントリル)シラン(PheTMS)の製造
 凝縮器を備えた500mLの反応フラスコに、マグネシウム切削片[関東化学(株)製]10.4g(0.43mol)を仕込み、窒素バルーンを用いてフラスコ中の空気を窒素で置換した。ここへ、9-ブロモフェナントレン[東京化成工業(株)製]100.3g(0.39mol)、及びTHF346gの混合物を、室温(およそ23℃)下、1時間で滴下し、さらに30分間撹拌することで、グリニャール試薬を調製した。
 1Lの反応フラスコに、TMOS178.0g(1.17mol)、及びTHF346gを仕込み、窒素バルーンを用いてフラスコ中の空気を窒素で置換した。ここへ、上記グリニャール試薬を、室温(およそ23℃)下、30分間で滴下し、さらに2時間撹拌した。この反応混合物から、エバポレーターを用いてTHFを減圧留去した。得られた残渣に、ヘキサン1,000gを加え、可溶物を溶解した後、不溶物をろ別した。この不溶物に、再度ヘキサン500gを加え、同様に不溶物をろ別した。それぞれのろ液を混合し、エバポレーターを用いてヘキサンを減圧留去することで、粗生成物を得た。粗生成物を減圧蒸留(1mmHg、120~150℃)した後、メタノール389gで再結晶することで、目的とするPheTMS74.6g(収率64%)を得た。
[製造例3]シルセスキオキサン化合物3(APe55)の製造
 凝縮器を備えた50mLの反応フラスコに、35質量%水酸化テトラエチルアンモニウム水溶液[アルドリッチ社製]1.23g(2.7mmol)、イオン交換水1.44g(80mmol)、及びTHF7gを仕込み、窒素バルーンを用いてフラスコ中の空気を窒素で置換した。ここへ、APTMS7.85g(34mmol)、及びPheTMS10.0g(34mmol)の混合物を、室温(およそ23℃)で10分間で滴下した。この反応混合物を40℃に昇温し、16時間撹拌した。
 次いで、反応混合物を室温(およそ23℃)に冷却し、予めTHFで洗浄した陽イオン交換樹脂[ダウ・ケミカル社製 アンバーリスト(登録商標)15JWET]3.6g、及びろ過助剤[日本製紙(株)製 KCフロック W-100GK]0.72gを加え、1時間撹拌して反応を停止させた。その後、孔径0.5μmのメンブレンフィルタで陽イオン交換樹脂及びろ過助剤をろ過し、さらに酢酸エチル18gで洗い流した。このろ液及び洗浄液を併せて、ロータリーエバポレーターを用いて溶媒を減圧留去することで、シルセスキオキサン化合物3(以下、APe55と略記することもある)13.2gを得た。
 得られた化合物のGPCによるポリスチレン換算で測定される重量平均分子量Mwは1,600、分散度:Mw/Mnは1.1であった。
[比較製造例1]シルセスキオキサン化合物2(SP55)溶液の製造
 凝縮器を備えた300mLの反応フラスコに、35質量%水酸化テトラエチルアンモニウム水溶液[アルドリッチ社製]2.97g(7.1mmol)、イオン交換水9.56g(531mmol)、及びTHF90gを仕込み、窒素バルーンを用いてフラスコ中の空気を窒素で置換した。ここへ、STMS39.6g(177mmol))、及びPTMS35.0g(177mmol)の混合物を、室温(およそ23℃)で10分間で滴下した。この反応混合物を40℃に昇温し、4時間撹拌した。
 次いで、反応混合物を室温(およそ23℃)に冷却し、1.2質量%酢酸/酢酸エチル溶液71g(酢酸として14mmol)を加え、水層の液性を中性~酸性として反応を停止させた。その後、この反応混合物を、酢酸エチル448g及びイオン交換水223gに加え、分液ロートを用いて有機層を分取した。得られた有機層を、イオン交換水で3回洗浄した後、ロータリーエバポレーターを用いて濃縮することで、シルセスキオキサン化合物2(以下、SP55と略記することもある)溶液96.8gを得た。
 100℃での揮発分測定から、得られた溶液のSP55の含有量は53.9質量%であった。また、得られた化合物のGPCによるポリスチレン換算で測定される重量平均分子量Mwは4,000、分散度:Mw/Mnは1.8であった。
[実施例1]重合性組成物1の調製
 (a)シルセスキオキサン化合物としてAP10 15質量部、(b)フルオレン化合物としてFDA 85質量部、(d)連鎖移動剤(反応促進剤)としてDDDS 0.5質量部、(e)酸化防止剤としてI1010 0.5質量部、並びに重合開始剤としてI184 2質量部及びTPO 1質量部を、50℃で1時間撹拌混合した。さらに10分間撹拌脱泡することで重合性組成物1を調製した。
[実施例2,3]重合性組成物2,3の調製
 各組成を表1に記載のとおりに変更した以外は実施例1と同様に操作し、重合性組成物2,3を調製した。なお、表1中、「部」は「質量部」を表す。
[実施例4,5、比較例1]重合性組成物4~6の調製
 さらに(c)その他の(メタ)アクリレート化合物としてBnAを配合し、各組成を表1に記載のとおりに変更した以外は実施例1と同様に操作し、重合性組成物4~6を調製した。なお、重合性組成物4,5については、初めに(a)成分及び(c)成分を混合し、(a)成分に含まれていた溶媒を留去した後に、残りの成分を配合した。
Figure JPOXMLDOC01-appb-T000010
[光学特性評価]
 予めMPTMSで易接着処理したガラス基板に、スペーサーとして50μm厚のカプトン(登録商標)テープを貼った。このガラス基板上に各重合性組成物を乗せ、無処理のガラス基板で挟み込んだ。この挟み込んだ重合性組成物を、20mW/cmで150秒間UV露光し、さらに150℃のオーブンで20分間加熱することで硬化物を作製した。室温(およそ23℃)まで冷却後、重合性組成物を挟み込んだ無処理のガラス基板を剥離し、得られた硬化物の633nmにおける屈折率を測定した。結果を表2に示す。
[耐熱透明性評価]
 上記で得られた各硬化物の、オーブンを用いた加熱試験(125℃、24時間及び500時間(重合性組成物4については150℃、24時間及び96時間))前後の波長400nmの光線透過率を測定し、加熱による光線透過率の低下を評価した。結果を表2に示す。
[寸法安定性評価]
 各重合性組成物について、マイクロレンズ形状シリコンモールド[(株)協同インターナショナル製 レンズサイズ:φ40μm×深さ16.5μm]を用い、支持体としてのガラス基板上にナノインプリンターを用いて成形した。モールドを外した後、150℃のホットプレートで15分間加熱し、さらに265℃のホットプレートで3分間加熱することで、該ガラス基板上に凸レンズを作製した。
 得られたガラス基板上の凸レンズの任意の3個についてオーブンを用いた加熱試験(150℃、500時間(重合性組成物4については125℃、96時間;重合性組成物6については150℃、96時間))前後のレンズ高さ(厚み)を測定し、その変化率(=(加熱前レンズ高さ-加熱後レンズ高さ)÷加熱前レンズ高さ×100)から加熱による寸法安定性を評価した。結果を表2に併せて示す。
Figure JPOXMLDOC01-appb-T000011
 表2に示すように、本発明の重合性組成物から得られた硬化物は、125~150℃で96時間以上の加熱を経ても400nmの光線透過率の低下が1%以下と低く、加熱による変色(黄色化)が極めて小さいとする結果が得られた。これに対し、ビニルフェニル基を有するシルセスキオキサン化合物を配合した硬化物は、125℃、24時間の加熱で光線透過率が3%近く低下し、目視でも着色が確認された。
 また、本発明の重合性組成物から得られた硬化物(凸レンズ)は何れも、125~150℃で96時間以上という長時間の加熱を経ても、レンズ高さの変化が極めて小さく、加熱による寸法安定性が高いという結果が得られた。

Claims (12)

  1. (a)式[1]で表されるアルコキシケイ素化合物Aと、前記アルコキシケイ素化合物Aに対して0~99モル倍量の式[2]で表されるアルコキシケイ素化合物Bとの重縮合物である反応性シルセスキオキサン化合物100質量部、及び
    (b)式[3]で表されるフルオレン化合物10~2,000質量部
    を含む、重合性組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Rは(メタ)アクリロイルオキシ基を少なくとも1つ有する炭素原子数1乃至10のアルキル基を表し、Rはメチル基又はエチル基を表す。)
    Figure JPOXMLDOC01-appb-C000002
    (式中、Rは炭素原子数1乃至10のアルキル基、炭素原子数7乃至10のアラルキル基、又は炭素原子数6乃至14のアリール基を表し、Rはメチル基又はエチル基を表す。)
    Figure JPOXMLDOC01-appb-C000003
    (式中、R及びRはそれぞれ独立して、水素原子又はメチル基を表し、L及びLはそれぞれ独立して、置換基を有していてもよいフェニレン基、又は置換基を有していてもよいナフタレンジイル基を表し、L及びLはそれぞれ独立して、炭素原子数1乃至6のアルキレン基を表し、m及びnはm+nが0乃至40となる0又は正の整数を表す。)
  2. 前記Rが炭素原子数6乃至14のアリール基を表す、請求項1に記載の重合性組成物。
  3. (a)成分及び(b)成分の総量100質量部に対して、さらに(c)前記フルオレン化合物と異なる(メタ)アクリレート化合物1~200質量部を含む、請求項1又は請求項2に記載の重合性組成物。
  4. (a)成分及び(b)成分の総量100質量部に対して、あるいは(c)成分を含む場合には(a)乃至(c)成分の総量100質量部に対して、さらに(d)連鎖移動剤0.01~20質量部を含む、請求項1乃至請求項3のうち何れか一項に記載の重合性組成物。
  5. (a)成分及び(b)成分の総量100質量部に対して、あるいは(c)成分を含む場合には(a)乃至(c)成分の総量100質量部に対して、さらに(e)酸化防止剤0.01~20質量部を含む、請求項1乃至請求項4のうち何れか一項に記載の重合性組成物。
  6. 請求項1乃至請求項5の何れか一項に記載の重合性組成物を硬化した、硬化物。
  7. 請求項1乃至請求項5の何れか一項に記載の重合性組成物からなる樹脂レンズ用材料。
  8. 請求項1乃至請求項5の何れか一項に記載の重合性組成物を用いて作製された、樹脂レンズ。
  9. CMOSイメージセンサ用レンズである、請求項8に記載の樹脂レンズ。
  10. 請求項1乃至請求項5の何れか一項に記載の重合性組成物を、接し合う支持体と鋳型との間の空間又は分割可能な鋳型の内部の空間に充填する工程、及び当該充填された組成物を露光して光重合する工程を含む、成形体の製造方法。
  11. さらに、得られた光重合物を充填された前記空間から取り出して離型する工程、並びに、該光重合物を該離型の前、中途又は後において加熱する工程を含む、請求項10に記載の成形体の製造方法。
  12. 前記成形体が樹脂レンズである、請求項10又は請求項11に記載の製造方法。
PCT/JP2016/075699 2015-09-02 2016-09-01 アクリル基を有するシルセスキオキサン化合物を含む重合性組成物 WO2017038943A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201680044929.1A CN107922548B (zh) 2015-09-02 2016-09-01 含有具有丙烯酰基的倍半硅氧烷化合物的聚合性组合物
KR1020187000605A KR102676480B1 (ko) 2015-09-02 2016-09-01 아크릴기를 갖는 실세스퀴옥산 화합물을 포함하는 중합성 조성물
JP2017538109A JP6879469B2 (ja) 2015-09-02 2016-09-01 アクリル基を有するシルセスキオキサン化合物を含む重合性組成物
EP16841972.9A EP3345943B1 (en) 2015-09-02 2016-09-01 Polymerizable composition comprising silsesquioxane compound having acrylic group
US15/757,628 US10703863B2 (en) 2015-09-02 2016-09-01 Polymerizable composition comprising silsesquioxane compound having acrylic group

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-173351 2015-09-02
JP2015173351 2015-09-02

Publications (1)

Publication Number Publication Date
WO2017038943A1 true WO2017038943A1 (ja) 2017-03-09

Family

ID=58187627

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/075699 WO2017038943A1 (ja) 2015-09-02 2016-09-01 アクリル基を有するシルセスキオキサン化合物を含む重合性組成物

Country Status (7)

Country Link
US (1) US10703863B2 (ja)
EP (1) EP3345943B1 (ja)
JP (1) JP6879469B2 (ja)
KR (1) KR102676480B1 (ja)
CN (1) CN107922548B (ja)
TW (1) TWI713577B (ja)
WO (1) WO2017038943A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017179438A1 (ja) * 2016-04-11 2017-10-19 日産化学工業株式会社 フェナントレン環含有反応性シルセスキオキサン化合物を含む重合性組成物
JP2019094381A (ja) * 2017-11-20 2019-06-20 信越化学工業株式会社 光硬化性組成物およびその硬化物

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102649151B1 (ko) * 2017-10-23 2024-03-21 닛산 가가쿠 가부시키가이샤 임프린트용 광경화성 조성물
KR102640556B1 (ko) * 2018-10-18 2024-02-27 도아고세이가부시키가이샤 실세스퀴옥산 유도체 조성물 및 그 이용
TWI815191B (zh) * 2021-09-30 2023-09-11 新應材股份有限公司 樹脂組成物以及硬化膜

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10161315A (ja) * 1996-12-05 1998-06-19 Nippon Steel Chem Co Ltd アルカリ可溶性感光性樹脂組成物
JP2008088430A (ja) * 2006-09-08 2008-04-17 Ube Nitto Kasei Co Ltd ポリオルガノシロキサン粒子の製造方法およびシリカ粒子の製造方法
JP2008297490A (ja) * 2007-06-01 2008-12-11 Showa Denko Kk 耐エッチング性に優れた硬化性樹脂組成物
JP2011006610A (ja) * 2009-06-26 2011-01-13 Nagase Chemtex Corp 透明複合体
JP2012180462A (ja) * 2011-03-02 2012-09-20 Arakawa Chem Ind Co Ltd 硬化性樹脂組成物、当該硬化物、およびこれらから誘導される各種物品
JP2013221112A (ja) * 2012-04-18 2013-10-28 Nagase Chemtex Corp 硬化性樹脂組成物
WO2015022965A1 (ja) * 2013-08-15 2015-02-19 日産化学工業株式会社 反応性シリコーン化合物を含む重合性組成物
WO2015129818A1 (ja) * 2014-02-28 2015-09-03 日産化学工業株式会社 反応性シルセスキオキサン化合物を含む重合性組成物

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3556332B2 (ja) 1995-07-17 2004-08-18 三菱レイヨン株式会社 プラスチックレンズ成形用組成物及びそれを用いたプラスチックレンズ
JP2007291321A (ja) * 2006-03-27 2007-11-08 Sanyo Electric Co Ltd 硬化型有機金属組成物及び有機金属ポリマー材料並びに光学部品
CN101045788A (zh) * 2006-03-27 2007-10-03 三洋电机株式会社 固化型有机金属组合物、有机金属聚合物材料以及光学部件
CN101802033B (zh) * 2007-12-14 2013-03-13 旭化成电子材料株式会社 感光性树脂组合物
JP5444177B2 (ja) 2010-09-16 2014-03-19 新日鉄住金化学株式会社 硬化性複合体組成物及びその硬化物
WO2011162293A1 (ja) * 2010-06-23 2011-12-29 日本化成株式会社 無機有機ハイブリッド材料及びそれを用いた光学材料並びに無機有機複合材組成物
JP2013129766A (ja) * 2011-12-22 2013-07-04 Nippon Steel & Sumikin Chemical Co Ltd ガラス繊維複合化樹脂基板
JP5841835B2 (ja) * 2011-12-26 2016-01-13 新日鉄住金化学株式会社 硬化性樹脂組成物、硬化物および光学物品

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10161315A (ja) * 1996-12-05 1998-06-19 Nippon Steel Chem Co Ltd アルカリ可溶性感光性樹脂組成物
JP2008088430A (ja) * 2006-09-08 2008-04-17 Ube Nitto Kasei Co Ltd ポリオルガノシロキサン粒子の製造方法およびシリカ粒子の製造方法
JP2008297490A (ja) * 2007-06-01 2008-12-11 Showa Denko Kk 耐エッチング性に優れた硬化性樹脂組成物
JP2011006610A (ja) * 2009-06-26 2011-01-13 Nagase Chemtex Corp 透明複合体
JP2012180462A (ja) * 2011-03-02 2012-09-20 Arakawa Chem Ind Co Ltd 硬化性樹脂組成物、当該硬化物、およびこれらから誘導される各種物品
JP2013221112A (ja) * 2012-04-18 2013-10-28 Nagase Chemtex Corp 硬化性樹脂組成物
WO2015022965A1 (ja) * 2013-08-15 2015-02-19 日産化学工業株式会社 反応性シリコーン化合物を含む重合性組成物
WO2015129818A1 (ja) * 2014-02-28 2015-09-03 日産化学工業株式会社 反応性シルセスキオキサン化合物を含む重合性組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3345943A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017179438A1 (ja) * 2016-04-11 2017-10-19 日産化学工業株式会社 フェナントレン環含有反応性シルセスキオキサン化合物を含む重合性組成物
EP3444284A4 (en) * 2016-04-11 2019-12-11 Nissan Chemical Corporation POLYMERIZABLE COMPOSITION WITH REACTIVE SILSESQUIOXAN COMPOUND WITH PHENANTHRENRING
US10787535B2 (en) 2016-04-11 2020-09-29 Nissan Chemical Corporation Polymerizable composition containing reactive silsesquioxane compound containing phenanthrene ring
JP2019094381A (ja) * 2017-11-20 2019-06-20 信越化学工業株式会社 光硬化性組成物およびその硬化物

Also Published As

Publication number Publication date
KR102676480B1 (ko) 2024-06-20
JPWO2017038943A1 (ja) 2018-06-14
JP6879469B2 (ja) 2021-06-02
CN107922548B (zh) 2021-06-18
EP3345943B1 (en) 2021-06-23
US10703863B2 (en) 2020-07-07
EP3345943A1 (en) 2018-07-11
TWI713577B (zh) 2020-12-21
CN107922548A (zh) 2018-04-17
EP3345943A4 (en) 2019-06-26
KR20180048560A (ko) 2018-05-10
US20180244852A1 (en) 2018-08-30
TW201723008A (zh) 2017-07-01

Similar Documents

Publication Publication Date Title
JP6879469B2 (ja) アクリル基を有するシルセスキオキサン化合物を含む重合性組成物
WO2016163561A1 (ja) 反応性シルセスキオキサン化合物を含む重合性樹脂組成物
US10450418B2 (en) Polymerizable composition comprising reactive silsesquioxane compound and aromatic vinyl compound
KR102314075B1 (ko) 반응성 폴리실록산 및 이것을 포함하는 중합성 조성물
JP6674157B2 (ja) フェナントレン環含有反応性シルセスキオキサン化合物を含む重合性組成物
EP3466956A1 (en) Polymerizable silane compound
JP6555499B2 (ja) 高屈折率重合性化合物の低粘度化剤及びそれを含む重合性組成物
JP2017049461A (ja) 反応性シロキサン化合物を含むインプリント成形用重合性組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16841972

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017538109

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187000605

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15757628

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2016841972

Country of ref document: EP