WO2017038881A1 - ポリ乳酸発泡成形材料、その発泡成形品と製造方法 - Google Patents

ポリ乳酸発泡成形材料、その発泡成形品と製造方法 Download PDF

Info

Publication number
WO2017038881A1
WO2017038881A1 PCT/JP2016/075524 JP2016075524W WO2017038881A1 WO 2017038881 A1 WO2017038881 A1 WO 2017038881A1 JP 2016075524 W JP2016075524 W JP 2016075524W WO 2017038881 A1 WO2017038881 A1 WO 2017038881A1
Authority
WO
WIPO (PCT)
Prior art keywords
polylactic acid
weight
molding material
foam molding
parts
Prior art date
Application number
PCT/JP2016/075524
Other languages
English (en)
French (fr)
Inventor
幸助 内山
延儒 周
Original Assignee
幸助 内山
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 幸助 内山 filed Critical 幸助 内山
Priority to EP16841911.7A priority Critical patent/EP3345959B1/en
Priority to CN201680050377.5A priority patent/CN107922662B/zh
Priority to US15/755,464 priority patent/US10669389B2/en
Publication of WO2017038881A1 publication Critical patent/WO2017038881A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/22After-treatment of expandable particles; Forming foamed products
    • C08J9/228Forming foamed products
    • C08J9/236Forming foamed products using binding agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/122Hydrogen, oxygen, CO2, nitrogen or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/141Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0025Crosslinking or vulcanising agents; including accelerators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/026Crosslinking before of after foaming
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/06CO2, N2 or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/08Supercritical fluid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2467/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2467/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • C08K2003/265Calcium, strontium or barium carbonate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/16Compositions of unspecified macromolecular compounds the macromolecular compounds being biodegradable
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/06Biodegradable

Definitions

  • the present invention relates to a polylactic acid foam molding material, a polylactic acid foam molding product, and a method for producing the foam molding product.
  • Polylactic acid is an environmentally friendly resin because it is produced from starch, which is a recycled material, and is biodegradable. Products made of polylactic acid are biodegradable and can therefore be disposed of in landfills as compost. Polystyrene foam molded products are widely used in food containers, buffer packaging materials, etc., but they are not biodegradable and need to be recovered and discarded or recycled.
  • Patent Document 1 polyvalent alcohol such as glycerin, erythritol and pentaerythritol or polyvalent carboxylic acid such as trimellitic acid and pyromellitic acid is added to polylactic acid which is substantially amorphous, and crosslinked with polyisocyanate.
  • polyvalent alcohol such as glycerin, erythritol and pentaerythritol or polyvalent carboxylic acid such as trimellitic acid and pyromellitic acid is added to polylactic acid which is substantially amorphous, and crosslinked with polyisocyanate.
  • the blending amount of polyisocyanate is 0.3 to 3% by weight, preferably 0.7 to 2% by weight. If the polyisocyanate is insufficient, the molecular weight of the polylactic acid after the reaction is too small, and only a foamed molded article having a low expansion ratio can be obtained. On the other hand, if the polyisocyanate is excessive, a foamed molded article that may be gelled cannot be obtained.
  • the foamed molded article is impregnated with a foaming agent, then conveyed in the form of pre-foamed beads, put into a mold, heated with water vapor, and foam-molded.
  • foaming agents include hydrocarbons such as propane, n-butane, iso-butane, n-pentane, iso-pentane, neopentane, cyclopentane and hexane, and halogenated hydrocarbons such as methyl chloride, methylene chloride and dichlorodifluoromethane.
  • Ethers such as dimethyl ether and methyl ethyl ether are used as foaming agents, and alcohols having 1 to 4 carbon atoms, ketones, ethers, benzene, toluene and the like are used as foaming aids.
  • Patent Document 2 it is preferable to blend a foam nucleating agent in order to form uniform and fine foamed cells.
  • a foaming nucleating agent solid particulate matter such as talc, silica, It is described that inorganic particles such as kaolin, zeolite, mica and alumina, and salts such as carbonic acid or bicarbonate, and alkali metal salts of carboxylic acids are preferred.
  • polyhydric alcohols such as glycerin, erythritol and pentaerythritol or polycarboxylic acids such as trimellitic acid and pyromellitic acid described in Patent Document 1 below
  • polyisocyanate and polylactic acid are mixed in the first stage.
  • polyhydric alcohol or polycarboxylic acid must be added and mixed to react. It is said that gelling will occur if the order of these reactions is reversed or simultaneously reacted.
  • additional equipment investment is required for the additional reaction of polyhydric alcohol or polycarboxylic acid in the second step, which is economically disadvantageous because the production process becomes longer.
  • amorphous polylactic acid is used, there is a serious drawback that the heat resistance of the foam molded product is insufficient.
  • An object of the present invention is to provide a method and apparatus for producing a stable, high-viscosity polylactic acid foam molding material suitable for high-magnification foam molding, and a high-magnification foam molding product comprising the same, at a low cost.
  • the polylactic acid foam molding material of the present invention has three types of polylactic acid (A), (B) and (C) having different constituent ratios of D-form and L-form and 0 parts by weight relative to 100 parts by weight of the polylactic acid.
  • a polylactic acid foam molding material comprising 2 to 2.0 parts by weight of a crosslinking agent having an epoxy group or a polyisocyanate group, which does not contain a polylactic acid having a polystyrene-equivalent molecular weight of 2 million or more as measured by GPC.
  • the MI value measured according to JIS K7210 with a load of 21.6 kg is 0.05 to 5.
  • the present invention provides the polylactic acid foam molding material having the above-described features, wherein the composition ratio (D / L) of the D-form and the L-form in the polylactic acid (A), (B) and (C) is
  • the present invention is characterized in that the polylactic acid foam molding material having the above-mentioned characteristics contains 0.5 to 5 parts by weight of calcium carbonate or talc fine particles.
  • the present invention is also a foam molded article characterized by comprising a polylactic acid foam molding material having the above-mentioned characteristics.
  • a foam molded article characterized by comprising a polylactic acid foam molding material having the above-mentioned characteristics.
  • a molded article for molding and foaming pre-foamed beads, and beads are produced.
  • the present invention is characterized in that the foam molded product having the above-mentioned characteristics is maintained in a form after injecting hot water at 90 ° C.
  • This foam molded product (molded container) is The container shape is maintained without deformation even after 3 minutes of injecting hot water at 90 ° C., and has excellent heat resistance.
  • the present invention provides a method for producing a polylactic acid foam molding material having the above-described features, wherein the composition ratio (D / L) of the D-form and the L-form in the crosslinked polylactic acid (A), (B) and (C) )
  • the present invention also relates to a method for producing a polylactic acid foam molding material having an MI value of 0.05 to 5 measured in accordance with JIS K7210 at 190 ° C. and a load of 21.6 kg.
  • polylactic acid having a polystyrene-equivalent molecular weight of 2 million or more in GPC measurement produced by a crosslinking reaction with 0.2 to 2.0 parts by weight of a crosslinking agent having a polyisocyanate group is physically or under inert gas supercriticality. It includes a step of mechanically reducing the molecular weight and
  • the present invention provides a method for producing a polylactic acid foam molding material having the above-described features, wherein the composition ratio (D / L) of the D-form and the L-form in the polylactic acid (A), (B) and (C)
  • the present invention is a method for producing a foamed molded product of a polylactic acid foamed molding material having an MI value of 0.05 to 5 measured according to JIS K7210 at 190 ° C. and a load of 21.6 kg
  • the present invention provides a method for producing a foamed molded article of polylactic acid foamed molding material having the above-described features, wherein 0.5 to 5 parts by weight of calcium carbonate or talc fine particles are added to 100 parts by weight of the mixture. It is also a feature.
  • the present invention is a method for producing a foamed molded product of polylactic acid foamed molding material having an MI value of 0.05 to 5 measured according to JIS K7210 at 190 ° C. and a load of 21.6 kg
  • polylactic acid having a polystyrene-equivalent molecular weight of 2 million or more in GPC measurement produced by a crosslinking reaction with 0.2 to 2.0 parts by weight of a crosslinking agent having a polyisocyanate group is physically or under inert gas supercriticality. It includes a step of foam molding by
  • the present invention provides a method for producing a foamed molded product of a polylactic acid foamed molding material having the above-described characteristics, wherein 0.5 to 5 parts by weight of calcium carbonate or talc fine particles is added to 100 parts by weight of the polylactic acid mixture. It is also characterized by being added.
  • the present invention is also a foam molded article characterized by being manufactured using the above-described method for producing a foamed molded article of polylactic acid foam molding material.
  • the present invention is characterized in that the foam molded product having the above-described characteristics retains its form after injecting hot water at 90 ° C.
  • the polylactic acid foam molding material of the present invention does not have a gelled part or a polylactic acid part having a remarkably large molecular weight which becomes an obstructive factor at the time of high-magnification foaming, it is possible to make the foamed cell film thin, and high-magnification foam molding Products can be supplied stably and inexpensively.
  • the foam molded article of the present invention using a polylactic acid foam molding material having a stable high melt viscosity without adding a polyhydric alcohol or a polycarboxylic acid is a foam molded article sheet that can practically withstand hot water and It is a container.
  • FIG. 1 It is a figure which shows the structure in a preferable example of the variable thickness constant temperature foaming die used with the manufacturing method of this invention. It is a schematic diagram of the three-dimensional parallel structure (structure like Gyroid) which is expressed when using polylactic acid having different constituent ratios of D-form and L-form. In the case where the molecular weight is physically reduced, the material is mechanically crushed and recombined, there are many cases where the bonds are more complicated, and this is a schematic diagram showing an example. It is a figure which shows the preferable structure of the foaming sheet shaping
  • the lactic acid dimer which is a ring-opening polymerization monomer of polylactic acid, includes a racemic L-form and a D-form, and various polylactic acids having different D-form and L-form compositions are produced depending on the blending ratio.
  • three types of crosslinked polylactic acid (A), (B) and (C) having different constituent ratios of D-form and L-form are used. All of lactic acids have a number average molecular weight of 5,000 or more obtained by adding 0.5 parts by weight of tin octylate as a catalyst to 100 parts by weight of a mixture of D-lactide and L-lactide and subjecting the mixture to ring-opening polymerization.
  • this polylactic acid raw material a remarkably large molecular weight produced when 0.2 to 2.0 parts by weight of a crosslinking agent having an epoxy group or a polyisocyanate group is added and melted (GPC measurement)
  • Polylactic acid having a molecular weight of 2 million or more in terms of polystyrene) is obtained by physically reducing the molecular weight under an inert gas supercritical state and mechanically pulverizing it by applying a shearing force. Then, a mixture of the three types of crosslinked polylactic acid produced in this manner mixed at a specific weight ratio is supplied to an injection molding machine or an extrusion molding machine provided with a crushing orifice, and has a remarkably large molecular weight generated upon melting.
  • the polylactic acid is reduced in molecular weight physically or mechanically under an inert gas supercritical state and recombined to produce the polylactic acid foam molding material of the present invention.
  • the cross-linked polylactic acid (A), (B), and (C) used at this time has a constitutional ratio (D / L) of D-form and L-form as follows.
  • the ratio of the D-form in the crosslinked polylactic acid (B) to the crosslinked polylactic acid (A) is 3 to 10 from the ratio of the D-form of the crosslinked polylactic acid (A).
  • the proportion of L-form is 3 to 10 parts by weight less than the proportion of L-form of crosslinked polylactic acid (A).
  • the proportion of D-form in the crosslinked polylactic acid (C) is 3 to 10 parts by weight more than the proportion of D-form of the crosslinked polylactic acid (B).
  • the proportion of L-form is that of the crosslinked polylactic acid (B). 3 to 10 parts by weight less than the L-form.
  • Specific examples of the constituent ratio (weight ratio) of D-form and L-form in three types of cross-linked polylactic acid (A), (B), and (C) include D A / L A of cross-linked polylactic acid (A).
  • polylactic acid is a polycondensate
  • the molecular weight varies depending on the equilibrium water content. Even if it is high molecular weight polylactic acid, if it is melted after moisture absorption, it will rapidly decrease in molecular weight, and will decrease to an equilibrium molecular weight commensurate with the amount of water.
  • the thickening part 21, the orifice part 6, and the decompression / expansion part 22 as shown in FIG. 3, it is possible to prevent a decrease in the molecular weight of polylactic acid due to remelting when the water is excessive.
  • the polylactic acid used in the present invention may be crystalline polylactic acid or amorphous polylactic acid.
  • amorphous polylactic acid obtained by copolymerizing D-form and L-form is used.
  • crystalline polylactic acid is preferred because the heat resistance is improved.
  • complex polylactic acid in which D-form and L-form are mixed is preferable because the heat resistance is further improved.
  • the number average molecular weight of the polylactic acid before crosslinking with polyisocyanate is preferably 5,000 or more, more preferably 20,000 or more, and even more preferably 100,000 or more.
  • the smaller the molecular weight of this polylactic acid the greater the amount of crosslinking agent such as polyisocyanate that is reacted in order to obtain the necessary viscosity at the time of molding with a high expansion ratio, which is economically disadvantageous.
  • the polylactic acid before cross-linking is dried in advance by a conventional method such as vacuum drying, and the moisture content is controlled.
  • the water content of polylactic acid before crosslinking is preferably 500 ppm or less, more preferably 100 ppm or less. More preferably, it is 50 ppm or less. Since the polyisocyanate reacts with water, emits carbon dioxide gas and becomes inactive, the efficiency of the polyisocyanate deteriorates. If the water content of polylactic acid before crosslinking is too high, it is economically disadvantageous.
  • the polyisocyanate used in the present invention is a polyisocyanate having a valence of 2 or more, and preferably contains an adduct of triisocyanate, tetraisocyanate or diisocyanate.
  • a polyisocyanate having a valence of 3 or more is used, the polylactic acid polymer chain is branched, the film strength becomes strong, and the expansion ratio can be improved.
  • the polyisocyanate used for the crosslinking reaction may be an isocyanate compound having two or more isocyanate groups in the molecule.
  • the polyisocyanate include 1,6-hexamethylene diisocyanate, 3-isocyanate methyl-3,5,5-trimethylcyclohexyl isocyanate (isophorone diisocyanate), 1,4-tetramethylene diisocyanate, 2,4,4-trimethylhexamethylene.
  • Diisocyanate 2,2,4-trimethylhexamethylene diisocyanate, dicyclohexylmethane-4,4'-diisocyanate, methylcyclohexyl-2,4-diisocyanate, methylcyclohexyl-2,6-diisocyanate, xylylene diisocyanate, 1,3-bis (Isocyanate) methylcyclohexane, tetramethylxylylene diisocyanate, transcyclohexane-1,4-diisocyanate, lysine diisocyanate Aliphatic diisocyanates, such as isophorone diisocyanate, hydrogenated diphenylmethane diisocyanate, hydrogenated tolylene diisocyanate, hydrogenated xylylene diisocyanate, hydrogenated tetramethylxylylene diisocyanate, cyclohexane diisocyanate, 2,4-toluene Diis
  • the polyisocyanate is preferably a polyisocyanate having a valence of 3 or more, which causes branching in the polylactic acid molecular chain and increases the strength of the foamed cell film. This phenomenon is the same as that when a polyethylene film is formed, a low-density polyethylene having a branched polymer chain is more suitable than a high-density polyethylene that is linear.
  • the compounding amount of polyisocyanate varies depending on the molecular weight of polylactic acid before crosslinking. It also varies depending on the molecular weight distribution of polylactic acid. As the amount of low molecular weight polylactic acid increases, a larger amount is necessary to obtain a melt viscosity suitable for foaming.
  • the blending amount of the polyisocyanate is preferably 0.2 to 2 parts by weight with respect to 100 parts by weight of the polylactic acid mixture before crosslinking. When there are too few compounding quantities of polyisocyanate, the melt viscosity suitable for foaming will not be obtained but a foaming ratio will fall. Further, if it is too much, gelation occurs and the expansion ratio is lowered.
  • the nozzle when released from the nozzle to the pressureless release space sucked by the vacuum pump in the superfluid state, it instantaneously crosslinks with another molecular group, and the molecular weight of the crosslinked PLA is averaged from before.
  • the macromolecule is mechanically crushed by configuring this nozzle with a long slit (FIG. 4).
  • the residence time required from the supercritical state in the extruder to passing through the slit is about 2 minutes or less, and pure PLA is hardly reduced in molecular weight.
  • the volume of the gas is extremely compressed until it reaches the out of the slit (FIG. 4), and the amount of heat of the gas is very small. When released into the non-pressure release space, the gas rapidly expands and escapes. The amount of heat that is dissipated and lost results in very little adiabatic expansion.
  • the cross-linking reaction of the unreacted portion that remains slightly within the time until it is cut by the subsequent underwater cutter is completed.
  • the bridging part crushed at the orifice part is recombined after the nozzle of the pressureless release space region (FIG. 3) sucked by the vent hole or the injection molding machine (FIG. 5).
  • the pressure after the nozzle corresponds to the pressure inside the mold.
  • this recombination for example, as shown in FIG. 8, there are many opportunities to bond to a complex structure, and such a complex bond has an effect of further increasing the viscosity. It should be noted that as the crushing at the orifice portion and the recombination in the non-pressure release space are repeated twice and three times, the coupling becomes more complicated, but may be once in practice.
  • the MI value measured according to JIS K7210 of 190 ° C. and a load of 21.6 kg of the polylactic acid foam molding material of the present invention is 0.05 to 5.
  • polylactic acid foam molding material of the present invention three types of polylactic acid (A), (B) and (C) having different D / L composition ratios are used, and polylactic acid (A), ( By blending B) and (C) at a blending ratio of 25 to 50:25 to 50:25 to 50, a three-dimensional metastable structure is developed, whereby the melt viscosity is a single composition. Compared to about 10 times the viscosity.
  • the occurrence of a significantly large polymer is suppressed by reducing the blending amount of the crosslinking agent, and the significantly large polymer produced by the heterogeneous reaction with the isocyanate or epoxy group is subjected to inert gas supercritical conditions. By physically reducing the molecular weight and mechanically crushing and averaging, it is possible to reduce the molecular weight of a significantly large polymer and obtain a stable foam cell membrane.
  • isocyanate Since isocyanate is highly reactive, it reacts with low molecular weight polyhydric alcohols and polycarboxylic acids to produce gelled products.
  • the reaction with the polymer is a reaction with a terminal group. If the amount of isocyanate is not excessive, a gelled network structure cannot be formed. However, it does not generate a huge network structure that is infusible, but it becomes a heterogeneous reaction and generates a polymer having a remarkably large molecular weight. If a polymer having a molecular weight of 2 million or more in terms of polystyrene as measured by GPC is partially present, stretched spots of the foamed cell film are generated, and high-magnification foaming becomes difficult. More preferably, the composition does not include a polymer having a polystyrene-equivalent molecular weight of 1.5 million or more.
  • ⁇ Heat resistance is inversely proportional to the ease of movement of molecules. The heat resistance improves as the molecular weight increases. Liquid paraffin is liquid at room temperature, but paraffin with a slightly increased molecular weight is solid at room temperature. Further, polyethylene having a higher molecular weight has a melting point of about 130 ° C., and the melting point of ultra high molecular weight polyethylene rises to 150 ° C.
  • the molecular weight of the polylactic acid foam molding material is increased by a coupling reaction between polylactic acid and polyisocyanate or epoxy group, the molecular weight is reduced under supercritical conditions of an inert gas.
  • a process of crushing extremely large polylactic acid molecules by applying a large shearing force mechanically is essential. If this step does not exist, remarkably large polylactic acid molecules locally inhibit the expansion of the foam cell membrane, and a high-magnification foam-molded product cannot be obtained.
  • Examples of the inert gas that does not react with polylactic acid in the present invention include nitrogen gas, carbon dioxide gas, helium gas, argon gas, methane gas, ethane gas, propane gas, butane gas, ethylene gas, and propylene gas.
  • nitrogen gas or carbon dioxide gas that easily reaches supercritical conditions and is inexpensive and non-flammable is preferable, and these gases can be used in combination.
  • the supercritical point of nitrogen gas is ( ⁇ 147 ° C., 3.39 MPa)
  • carbon dioxide gas is (31.1 ° C., 7.38 MPa)
  • methane gas is ( ⁇ 83 ° C., 4.6 MPa).
  • Ethane gas is (32.4 ° C., 4.88 MPa), propane gas is (93.8 ° C., 4.25 MPa), and butane gas is (152 ° C., 3.380 MPa).
  • the inert gas is quantitatively supplied so as to be blended in an amount of 0.1 to 2% by weight with respect to polylactic acid. However, after trapping moisture, it is recovered and reused. Only the actual loss of the inert gas is supplied to the processing machine system of the present invention. In the case of direct injection foam molding, an inert gas is used in a large excess because it is used as a foaming gas. However, when using the variable thickness constant temperature foaming mold of the present invention (see FIG. 6), the foaming efficiency of the inert gas used for foaming is not different from that of bead foaming. Quantitative supply of 1 to 2% by weight.
  • pressurizing above the supercritical point includes pressurizing devices such as plunger pumps, gear pumps, and screws.
  • Heating above the supercritical point is not limited to casting heaters or jacket heaters. There is a heating device.
  • the melting point of polylactic acid is approximately 170 ° C. or less, although it varies depending on the degree of copolymerization.
  • it is made to react with a polyisocyanate or an epoxy group above the melting point of the polylactic acid before crosslinking used.
  • polyisocyanate that is not liquid at room temperature is heated and melted, and quantitatively added to the semi-molten polylactic acid with a plunger pump or the like, and reacts with polylactic acid.
  • a plunger pump or the like When mixing a high-viscosity reaction product and a low-viscosity compound, it is better to mix the high-viscosity product in a semi-molten state at a low temperature, and a more uniform reaction can be expected.
  • biodegradable polymers may be mixed and blended as long as the physical properties of the foam molded article are not significantly affected.
  • Other biodegradable polymers include, for example, polycaprolactam, polybutylene succinate, polyhydroxybutyrate, poly (hydroxybutyrate / hydroxyhexanoate), (polylactic acid / polybutylene succinate) block copolymer, poly ( Caprolactone / butylene succinate, poly (butylene succinate / adipate), poly (butylene succinate / carbonate), poly (ethylene terephthalate / succinate), poly (butylene adipate / terephthalate), poly (tetramethylene adipate / terephthalate) etc. Can be mentioned.
  • a foam nucleating agent In order to form uniform and fine foam cells, it is preferable to add a foam nucleating agent.
  • the foam nucleating agent include inorganic particles such as talc, silica, kaolin, zeolite, mica and alumina, carbonic acid or bicarbonate such as calcium carbonate, and alkali metal salt of carboxylic acid.
  • carbonic acid or bicarbonate such as calcium carbonate
  • alkali metal salt of carboxylic acid Among these, calcium carbonate and talc are preferable because they are soft and fine particles can be obtained at low cost.
  • the foam cell thickness is small, so the particle size of the foam nucleating agent is preferably 1 ⁇ m or less, more preferably 0.5 ⁇ m or less.
  • the blending amount of the foam nucleating agent is preferably 0.5 to 5% by weight, particularly preferably 0.5 to 2% by weight, based on the polylactic acid foam molding material. If the blending amount of the foam nucleating agent is too small, the cell size tends to be nonuniform, and if it is too large, it is difficult to obtain a high foaming ratio.
  • the above foam nucleating agent may be blended when producing the above-mentioned crosslinked polylactic acid (A), (B) and (C), or may be blended in the polylactic acid foam molding material of the present invention during foam molding. good.
  • a foaming inert gas such as nitrogen gas is side-injected into the molten polylactic acid foamed molding material of the present invention and foamed.
  • a foaming inert gas such as nitrogen gas
  • foaming inert gas in addition to nitrogen gas, as a foaming agent, for example, propane, n-butane, isobutane, n-pentane, isopentane, neopentane, cyclopentane, hexane, butane and other hydrocarbons, methyl chloride, methylene chloride, dichlorodifluoro There are halogenated hydrocarbons such as methane, and ethers such as dimethyl ether and methyl ethyl ether.
  • the foaming aid alcohol having 1 to 4 carbon atoms, ketones, ether, benzene, toluene and the like are used. You may mix and use these foaming agents.
  • molded article produced using the polylactic acid foam molding material of the present invention generally used additives such as pigments, flame retardants, deodorants, stabilizers, antibacterial agents, fungicides, etc. You may use in the range which does not affect biodegradability and the quality of a foaming molded product.
  • a supercritical gas whose flow rate is controlled is injected at the outlet of the pre-stage gear pump 5.
  • the amount of PLA melt flowing into this section per hour is controlled to be constant by controlling the rotational speed of the drive servo motor of the pre-stage gear pump 5.
  • the PLA melt passes through the slit of the orifice portion 6 together with the superfluid supercritical gas. Since the shear force is applied here, the polylactic acid having a molecular weight of 2 million or more is physically reduced in molecular weight. And mechanically pulverized.
  • the polylactic acid that has been physically reduced in molecular weight and mechanically pulverized is discharged into the no-pressure release space of the vent hole 8 portion where the gas is separated and sucked by the vacuum pump 7, and the rear gear pump portion 9 is driven by the screw. To reach the entrance. Finally, it is difficult to secure the pressure required for the PLA melt to pass through the die of the submerged cutter 10 with only a screw.
  • a rear gear pump unit 9 is provided in this part. The gas is already sucked through the vent hole 8 and is in a state close to vacuum, and the rotational speed of the rear gear pump unit 9 may be set slightly larger than the actual transport amount for the purpose of preventing the PLA melt from venting up.
  • the PLA melt that has passed through the die is cooled with water and simultaneously cut with a cutter to form solid pellets.
  • the reactive extruder having the above structure is used not only for producing the crosslinked polylactic acid (A), (B) and (C) as raw materials, but also for the crosslinked polylactic acid (A), (B) and (C ) And the polylactic acid foam molding material of the present invention.
  • the size tends to be reduced by about 2%. It is thought that there is a minute and minute residue of gas.
  • the rear gear pump unit 9 is not provided with a supercritical gas injection hole unlike the front gear pump unit 5, but the supercritical gas is injected into this portion, and the foam pellet in which the gas is sealed is used. It is also possible to produce.
  • Pelletized crosslinked polylactic acid PLA (A), PLA (B), PLA (C) is basically manufactured separately, PLA (A), PLA (B), PLA before crosslinking in Henschel mixer When (C) and the cross-linking agent are added and stirred at the same time, it is confirmed that the chance of developing a three-dimensional parallel structure is inferior.
  • the front-stage gear pump unit 5 and the rear-stage gear pump unit 9 in the reaction extruder having the configuration of FIG. 1 have an internal structure as shown in FIG. 2, and the flow rate of the PLA melt is controlled by controlling the gear rotation speed. Is adjusted.
  • the gear pump is mounted on the screw shaft. It should be installed away from.
  • a groove is not provided in the corresponding part of the screw, and a structure that can be fitted with a seal when leakage countermeasures are required is adopted. It is preferable to do.
  • a supercritical gas whose flow rate is controlled is injected from the gas supply unit on the outlet side of the pre-stage gear pump unit 5, and the pressure of the PLA melt is measured by the resin pressure gauge 11.
  • the thickened portion 21 shown in FIG. 3 there are a screw diameter of 50 mm and a thickened portion length of 100 mm, and two kinds of leads are combined in a groove shape 2R semicircle.
  • One type of lead is 8 mm at 50 mm, and one type of lead is 8 at 150 mm.
  • a generally known dalmage screw has a shape called a pineapple.
  • One type of lead is arranged in the direction of the flow of the resin melt, and one type of lead is opposite to the flow of the resin melt. Due to the arrangement in the direction, there is a drawback that heat generation is large in this part.
  • both leads are arranged in the same direction as the flow direction of the PLA melt so that different leads have the same thickening effect, but the degree of heat generation is small and the resin melt deteriorates due to heat generation. Is prevented.
  • the orifice section 6 in the reaction extruder having the configuration of FIG. 1 has an internal structure as shown in FIG. 3, and the structure of the screw 4 of the orifice section 6 is that of a front gear pump section 5 and a rear gear pump section 9. It is the same as the case of.
  • the cylinder on the outlet side of the orifice portion 6 is provided with a vent hole 8, which is sucked by a vacuum pump to form a pressureless release space.
  • the laminated structure of the slit plate 12 and the partition plate 13 arranged in the orifice portion 6 is shown in FIG.
  • FIG. 4 illustrates the configuration of the orifice of the orifice section 6 shown in FIG. 3, and a plurality of slit plates 12 and partition plates 13 alternately (preferably several tens, for example, 20 to 50, preferably 20 to 40 sheets) are laminated.
  • the thickness of the partition plate 13 is 1 mm
  • the thickness of the slit plate 12 is 0.2 mm
  • the width of the slit provided in the slit plate 12 is 2 mm
  • the length of the slit is 35 mm.
  • the PLA melt passes through the slit from the central part in together with the supercritical gas, moves to the outer peripheral part out side, and flows.
  • a polylactic acid foam molding material in a supercritical or subcritical state is made to have a crushing orifice portion composed of four slits extending in four directions as shown in FIG. 4, for example. To pass at high speed.
  • FIG. 5 shows a configuration of a preferred example of a PLA foam injection molding machine used in the manufacturing method of the present invention.
  • the tip of a generally known injection molding machine is shown in FIG. With such a structure, it can be used as a PLA foam injection molding machine.
  • Reference numeral 23 in FIG. 5 is a cooling adapter for cooling to an appropriate temperature of 100 ° C. or less before being injected into the mold, reference numeral 14 is a shut-off nozzle, and reference numeral 15 is a mold injection hole.
  • the supercritical gas supplied to the inside of the cylinder 3 is injected by opening the solenoid valve 16 at the timing in the piston pushing cycle. At this time, it is preferable to provide at least two gas injection ports because a more uniform foam can be obtained.
  • the expansion ratio of PLA resin is inversely proportional to the volume of PLA melt injected into the mold.
  • the injection time takes a long time.
  • the pressure is set to increase so that the pressure increases. In the case of, adjust the setting to reduce the pressure and fix it.
  • the stroke of the piston 18 provided in the air cylinder 17 is mechanically controlled by the movable portion 19, and supercritical gas is injected into the air cylinder when the piston 18 is retracted.
  • FIG. 6 shows a configuration of a preferred example of a variable thickness constant temperature foaming mold (injection molding mold) used in the manufacturing method of the present invention, and the hollow portion 20 in this mold is movable. It is.
  • the molten polymer is injected in a state where the hollow portion 20 is thin (for example, 0.1 mm) (see FIG. 6A), and in the second stage, the polymer is injected.
  • the temperature is lowered to an appropriate temperature of 100 ° C. or lower, and after the polymer is solidified, the hollow portion is expanded to a thickness of a predetermined foaming ratio (for example, 20 mm foaming at 2 mm, see FIG.
  • a predetermined foaming ratio for example, 20 mm foaming at 2 mm, see FIG.
  • a molded article having a high expansion ratio is obtained simultaneously with molding by foaming above the softening point of the polymer over 1 minute, cooling and fixing.
  • the injection molding cycle since the cycle has a foaming and cooling period, the injection molding cycle is longer than a general cooling only cycle.
  • a multi-foam mold injection molding apparatus that takes out a molded product while exchanging a plurality of molds is preferable.
  • the method for producing a polylactic acid foamed molded article includes a crushing orifice part in an injection molding machine (see FIG. 5), and uses a variable thickness constant temperature foaming mold (see FIG. 6) for foaming. It is cross-linked by polyisocyanate or epoxy groups by physically and mechanically crushing excessively high molecular weight polylactic acid having a molecular weight of 2 million or more by applying shear force under gas supercritical or subcritical conditions, This is a method for foaming a polylactic acid foam molding material foam molded article having a MI value of 0.05 to 5 measured in accordance with JIS K 7210 at 190 ° C. and a load of 21.6 kg at a temperature of 100 ° C. or lower and a softening point or higher.
  • the MI value is measured with an orifice diameter of 2 mm, an orifice length of 10 mm, 190 ° C., and a load of 21.6 kg for a polylactic acid foam molding material, and an orifice diameter of 1 mm and an orifice length of 10 mm for a raw material crosslinked polylactic acid.
  • the measurement was carried out by measuring the weight g flowing for 10 minutes or the equivalent weight g for 10 minutes in accordance with JIS K7210 under the conditions of 190 ° C. and load 2.16 kg.
  • Production Examples 1 to 3 commercially available L-lactide and D-lactide were purified by recrystallization from ethyl acetate.
  • FIG. 1 shows a schematic structure of an extruder preferable for carrying out the present invention.
  • a Henschel mixer 1 sealed with nitrogen gas, a raw material supply hopper 2, a pre-stage gear pump unit 5 for stably transferring the PLA melt and preventing the reverse flow of supercritical gas is provided.
  • Nitrogen gas was supplied from the side plunger pump and the accumulator tank for stabilizing the gas pressure to the gas injection hole via the pressure reducing valve and the flow rate control valve.
  • an orifice portion 6 was provided for the purpose of mechanically pulverizing by applying a shearing force while simultaneously reducing the molecular weight. A supercritical state is maintained between the front gear pump unit 5 and the orifice unit 6.
  • the oil diffusion vacuum pump code 7 and the reduced-pressure nitrogen gas recovery unit were connected from the vent hole 8, and the recovered nitrogen gas was reused via the water trap device.
  • This pressure-free release section rebonding of the PLA crosslinked portion that has been physically reduced in molecular weight and mechanically crushed is rapidly performed.
  • the PLA melt is pressurized by the rear gear pump unit and reaches the die of the underwater cutter 10.
  • a processing system in which the polylactic acid foam molding material round pellets of the present invention obtained from the outlet of the underwater cutter was conveyed to a dry hopper and dried with a vacuum dryer after a lapse of a certain time.
  • (Manufacturing Machine 2) Injection Molding Machine A Henschel mixer 1 and a raw material supply hopper 2 sealed with nitrogen gas were mounted and used in an apparatus obtained by remodeling a generally known injection molding machine having a schematic structure shown in FIG.
  • the gas injection hole 24, the orifice part 6, the cooling adapter 23, and the shut-off nozzle 14 are provided at the modified tip part, and the shut-off nozzle and the injection hole 15 of the foaming mold are in contact with each other.
  • the foaming gas supply unit passes from the nitrogen gas cylinder through the pressure reducing valve, and an appropriate amount adjusted by the pressure reducing valve by the piston 18 interlocked with the movable body of the injection molding machine is temporarily held in the side cylinder 17 and is adjusted from the gas injection hole according to the injection extrusion cycle.
  • a processing system injected into the PLA melt was adopted.
  • Example 1 Injection Foam Molding Using the injection molding machine of the production machine 2, the crosslinked polylactic acid round pellets produced in Production Examples 1 to 3 (A1) 30 parts by weight, (B1) 33 parts by weight, (C1) 37 The parts by weight were quantitatively supplied to a Henschel mixer, mixed with stirring, and supplied to the injection molding machine by a fixed amount from a hopper sealed with nitrogen gas. 2% by weight of nitrogen gas is injected into the polylactic acid foam molding material from the nitrogen gas supply side cylinder, and polylactic acid with a molecular weight of 2 million or more in terms of polystyrene as measured by GPC is melted under nitrogen gas supercriticality. 4 and maintained at 170 ° C. The thickness of the slit plate shown in FIG.
  • the injection-foamed molded article T1 of the present invention having a different amount of the cross-linking agent was produced by extruding it into the injection hole 15 of a box-shaped mold having an outer dimension of 90 mm and an outer dimension of 100 mm in a stroke of 30 seconds.
  • T2 was produced from the crosslinked polylactic acid round pellets (A2), (B2), and (C2).
  • T3 was produced from the crosslinked polylactic acid round pellets (A3), (B3), and (C3).
  • the expansion ratio of T1, T2, and T3 was 22 times. All heat resistance was excellent. MI values measured at 190 ° C. and a load of 21.6 kg for T1, T2, and T3 were 0.21, 0.31, and 0.42, respectively. In addition, by GPC measurement of T1, T2, and T3, a remarkably large high molecular weight substance having a polystyrene equivalent of 1.5 million or more was not detected.
  • E1 was manufactured by adding (E1) instead of (A1), (B1), and (C1) as in Example 1.
  • E2 was produced by adding (E2) instead of (A2), (B2), and (C2).
  • E3 was produced in the same manner by adding (E3) instead of (A3), (B3) and (C3).
  • the expansion ratio of E1, E2, and E3 was 16 times. All heat resistance was excellent.
  • the MI values measured at 190 ° C. and a load of 21.6 kg for E1, E2, and E3 were 0.30, 0.42, and 0.54, respectively.
  • the expansion ratio did not increase to a predetermined level, it could not be molded into a box shape.
  • GPC measurement a remarkably large high molecular weight product exceeding 2 million in terms of polystyrene was measured by 1% by weight or more. This is probably because the polylactic acid foam molding material having a remarkably large molecular weight hinders the expansion of the foamed cell membrane because the slit of the orifice portion 6 that gives a shearing force was removed, and thus the foaming ratio did not increase.
  • Example 2 Injection Foam Molding
  • each starting material was produced by changing only the talc fine powder to 0.3 parts by weight.
  • the foamed molded products of the present invention corresponding to T2, T3 were produced.
  • the MI values of the load of 21.6 kg of the foamed molded product of the present invention were not different from 0.4, 0.3 and 0.2, respectively, but the heat resistance was good.
  • Example 3 Injection Foam Molding Using the injection molding machine of the production machine 2, the crosslinked polylactic acid round pellets produced in Production Examples 1 to 3 (A1) 40 parts by weight, (B1) 30 parts by weight, (C1) 30 The parts by weight were quantitatively supplied to a Henschel mixer, mixed with stirring, and supplied to the injection molding machine by a fixed amount from a hopper sealed with nitrogen gas. 2% by weight of nitrogen gas and methanol volume ratio 2: 1 mixed gas is injected into the polylactic acid foam molding material from the nitrogen gas supply side cylinder, and polylactic acid having a polystyrene equivalent molecular weight of 2 million or more by GPC measurement is not used. Foam molding with an orifice portion shown in FIG. 3 maintained at 170 ° C.
  • a slit plate having a thickness of 0.2 mm, a groove width of 2 mm, and a slit length of 35 mm shown in FIG. 4 is disposed.
  • the thickness of the part was changed to 4 mm and foamed in 30 seconds to fill the hollow part, and then the mold was cooled to 40 ° C. and held for 30 seconds to produce an injection foam molded article T11 of the present invention.
  • T12 was produced from the crosslinked polylactic acid round pellets (A2), (B2), and (C2).
  • T13 was produced from the crosslinked polylactic acid round pellets (A3), (B3), and (C3) in the same manner.
  • the expansion ratio of T11, T12, and T13 was 20 times. All heat resistance was excellent. MI measured at a load of 21.6 kg of T11, T12, and T13 was 0.4, 0.3, and 0.2, respectively. In addition, by GPC measurement of T11, T12, and T13, a remarkably large high molecular weight substance having a polystyrene equivalent of 1.5 million or more was not detected.
  • Example 4 Beads and Foam Molded Article
  • the dice of the underwater cutter part of the extruder described in the production machine 1 was replaced with a small diameter 0.8 mm die for use.
  • 33.3 parts by weight of the crosslinked polylactic acid round pellets (A1), 33.3 parts by weight (B1) and 33.3 parts by weight (C1) produced in Production Examples 1 to 3 were quantitatively supplied to a Henschel mixer and stirred. Mix and feed from a hopper sealed with nitrogen gas to the extruder, and continuously feed 0.2 wt% nitrogen gas into the first stage gas injection hole with respect to the polylactic acid foam molding material.
  • Polystyrene by GPC measurement Polylactic acid having a reduced molecular weight of 2 million or more is physically reduced under nitrogen gas supercriticality, mechanically pulverized by applying a shearing force, and recombined to obtain a polylactic acid foam molding material round pellet of the present invention Diameter (1 mm) (T4) was produced. Similarly, (T5) was produced from the round pellets (A2), (B2), and (C2). In the same manner, (T6) was produced from the round pellets (A3), (B3), and (C3).
  • a predetermined amount of each of the beads T4, T5, and T6 was placed in a mold and heated and foamed with water vapor for 1 minute to produce a polylactic acid foam molding material foam molded article of the present invention.
  • the expansion ratio of this foam molded product was 28 times. All heat resistance was excellent.
  • the MI value measured at 190 ° C. under a load of 21.6 kg was 0.4 for T4, 0.3 for T5, and 0.2 for T6.
  • GPC measurement a remarkably large high molecular weight substance having a polystyrene equivalent of 1.5 million or more was not detected.
  • Example 4 Bead Foam Molding
  • the raw materials were 33.3 parts by weight of the crosslinked polylactic acid round pellets (A1) produced in Production Examples 1 to 3, (B1) 33.3 parts by weight, (C1 ) 33.3 parts by weight were used.
  • the manufacturing machine replaced the die of the underwater cutter part of the manufacturing machine I with a small-diameter 0.8 mm die, and removed and used the orifice part 6 for comparison with Example 4.
  • the die holes were clogged from the beginning of the operation, and only deformed items such as yarns or planes could be produced, making it impossible to produce round pellets.
  • the supercritical gas at the inlet is separated from the polylactic acid melt and a gas-only passage is formed to cause gas escape, and the polylactic acid melt is superfluid and does not pass through the thickened part, generating heat and increasing.
  • the thermal decomposition of the bridging part accelerates due to the heat generation in the viscous part, and since there is no orifice part, the resin pressure drops after the thickened part and the flow direction is not restricted in the flow direction. This is probably due to the continued recombination.
  • a predetermined amount of each of the beads T7, T8, and T9 was put into a mold and foamed by heating with steam for 1 minute to produce a polylactic acid foam molding material foam molded article.
  • the expansion ratio of this foam molded product was 15 times. Although the heat resistance was all excellent, it was judged that the foam contained many foam cells of 5 to 10 mm, was weak in strength, and lacked practicality.
  • the MI values measured at 190 ° C. under a load of 21.6 kg for this foamed molded product were 0.4 for T7, 0.3 for T8, and 0.2 for T9.
  • GPC measurement detected 1% or more of a significantly large high molecular weight substance having a polystyrene equivalent of 2 million or more.
  • FIG. 9 shows a schematic structure of an extrusion foaming sheet manufacturing machine preferable for carrying out the present invention.
  • the structure and content described in the manufacturing machine 1 are the same from the Henschel mixer 1 to the inlet of the rear gear pump 9.
  • the PLA melt pressurized by the rear gear pump is supplied from the Gas (2) via the foaming gas injection hole 26 before the T-die while being cooled by the cooling unit 25, and is provided with gas injection holes (two or more). It is injected into the PLA melt from a collection of many small diameter injection holes).
  • the extruded foam molded sheet 30 of the present invention is manufactured by ejecting the sheet from the T-die 27 to the take-up device 28 and then cooling it with a cooling roll 29 in the take-up device 28.
  • Example 5 Extruded Foam Molded Sheet Using the extruded foam molded sheet molding machine of the production machine 3, 50 parts by weight of the crosslinked polylactic acid round pellets (A1) produced in Production Examples 1 to 3, (B1) 25 parts by weight, (C1) 25 parts by weight are quantitatively continuously fed to the Henschel mixer 1 and fed to the extruder from a nitrogen gas-sealed hopper, and 1.0% by weight with respect to the polylactic acid foam molding material from the first stage gas injection hole. Nitrogen gas and methanol weight ratio of 2: 1 are quantitatively supplied continuously, and polylactic acid with a molecular weight of 2 million or more in terms of polystyrene by GPC measurement is physically reduced and mechanically reduced under inert gas supercriticality.
  • the heat resistance of the above-described sheets T21, T22, and T23 was excellent. MI which measured this foaming molding T21, T22, T23 by load 21.6kg was 0.4, 0.3, 0.2, respectively. By GPC measurement, a remarkably large high molecular weight substance having a polystyrene equivalent of 1.5 million or more was not detected.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

高倍率発泡成形に適した高粘度ポリ乳酸発泡成形材料の製造方法および装置、およびそれからなる高倍率発泡成形品を廉価に提供する。 D体とL体とで構成されたポリ乳酸を架橋剤と反応させて得られた、D体とL体の構成比率が異なる3種類の架橋ポリ乳酸(A)、(B)及び(C)を、25~50:25~50:25~50〔但し、(A)+(B)+(C)=100〕の重量比率にて混合し、この混合物を溶融した際に生成するGPC測定でのポリスチレン換算分子量200万以上のポリ乳酸を、不活性ガス超臨界下で、物理的又は機械的に低分子化させ再結合することにより、190℃、荷重21.6kgのJIS K 7210に準じて測定したMI値が0.05~5のポリ乳酸発泡成形材料を製造し、射出成型機または押し出し成型機に、破砕オリフィス部を設け、ダイスから軟化点以上110℃以下の温度で吐出させ、発泡成形を行うことにより、発泡成形品を製造する。

Description

ポリ乳酸発泡成形材料、その発泡成形品と製造方法
 本発明は、ポリ乳酸発泡成形材料、ポリ乳酸発泡成形品およびその発泡成形品の製造方法に関する。
 ポリ乳酸は再生原料である澱粉から製造され、生分解性であるため環境にやさしい樹脂である。ポリ乳酸で製造された製品は生分解性であるためコンポストとして埋め立て廃棄することができる。
 ポリスチレン発泡成形品は食品容器、緩衝包装材などに多用されているが、生分解性でないため回収廃棄または再生する必要がある。
 下記の特許文献1には、実質的に非晶性であるポリ乳酸にグリセリン、エリスリトール及びペンタエリスリトールなどの多価アルコールまたはトリメリト酸及びピロメリト酸などの多価カルボン酸を加え、ポリイソシアネートで架橋し、分子量を上げ、発泡成形品を製造する方法が記載されている。
 ポリ乳酸だけでは発泡成形に適した高溶融粘度の安定した組成物が得難いため、ポリ乳酸組成物が安定した溶融粘度を得るためには次式を満たす条件が良いとしている。
(0.5xn-100EMi)Mc/10NMi≦W≦(0.5xn-100EMi)Mc/NMi
(ここでE:ポリ乳酸の末端カルボキシル基数(当量/gr)
x:イソシアネート化合物添加量(重量%)
n:イソシアネート化合物の官能基数(当量/モル)
i:イソシアネート化合物の分子量(gr)
W:多価アルコール又は多価カルボン酸の添加量(重量%)
N:多価アルコール又は多価カルボン酸の官能基数(当量/モル)
c:多価アルコール又は多価カルボン酸の分子量(gr))
 また、ポリイソシアネートの配合量は0.3から3重量%、好ましくは0.7から2重量%が良いとされている。ポリイソシアネートが不足すると反応後のポリ乳酸の分子量が小さ過ぎ低発泡倍率の発泡成形体しか得られない。一方、ポリイソシアネートが過剰であるとゲル化して良い発泡成形体が得られないとしている。
 発泡成形品は発泡剤を含浸させた後、予備発泡させたビーズ状で搬送され、金型に入れ、水蒸気で加温されて発泡成形される。発泡剤としてはプロパン、n-ブタン、iso-ブタン、n-ペンタン、iso-ペンタン、ネオペンタン、シクロペンタン、ヘキサン等の炭化水素類、塩化メチル、塩化メチレン、ジクロロジフルオロメタン等のハロゲン化炭化水素類、ジメチルエーテル、メチルエチルエーテル等のエーテル類が発泡剤として、また、炭素数1~4のアルコール、ケトン類、エーテル、ベンゼン、トルエン等が発泡助剤として用いられる。
 下記の特許文献2には、均一で微細な発泡セルを形成させるためには発泡核剤を配合することが好ましく、用いる発泡核剤としては、固体状の粒子状物、例えば、タルク、シリカ、カオリン、ゼオライト、マイカ、アルミナ等の無機粒子、炭酸又は重炭酸塩、カルボン酸のアルカリ金属塩等の塩が好適であると記載されている。
 下記の特許文献1に記載されているグリセリン、エリスリトール及びペンタエリスリトールなどの多価アルコールまたはトリメリト酸及びピロメリト酸などの多価カルボン酸を加える製造法では、第1段階でポリイソシアネートとポリ乳酸を混合反応させ、第2段階で多価アルコールまたは多価カルボン酸を加え混合反応させなければならない。これらの反応の順番を逆にする、または同時に反応させるとゲル化してしまうとされている。
 上記製造法において多価アルコールや多価カルボン酸を第2工程で追加反応させるためには付加的な設備投資が必要であり、製造工程も長くなるため経済的に不利である。
 また、非晶性のポリ乳酸を使用するため発泡成形品の耐熱性が不足すると言う重大な欠点があった。
特開2000-169546号公報 特開2000-17039号公報
 本発明の目的は、高倍率発泡成形に適した安定した高粘度ポリ乳酸発泡成形材料の製造方法および装置、およびそれからなる高倍率発泡成形品を廉価に提供することを課題とする。
 本発明のポリ乳酸発泡成形材料は、D体とL体の構成比率が異なる3種類のポリ乳酸(A)、(B)および(C)と、前記ポリ乳酸の合計100重量部に対し、0.2~2.0重量部のエポキシ基またはポリイソシアネート基を有する架橋剤とからなるポリ乳酸発泡成形材料であって、GPC測定でのポリスチレン換算分子量200万以上のポリ乳酸を含まず、前記ポリ乳酸(A):(B):(C)の重量比率が25~50:25~50:25~50〔但し、(A)+(B)+(C)=100〕であり、190℃、荷重21.6kgのJIS K7210に準じて測定したMI値が0.05~5であることを特徴とする。
 また、本発明は、上記の特徴を有したポリ乳酸発泡成形材料において、前記ポリ乳酸(A)、(B)および(C)におけるD体とL体の構成比率(D/L)が、前記ポリ乳酸(A)については、D/L=5~20/95~80〔但し、D+L=100〕であり、前記ポリ乳酸(B)については、D/L=(D+3~D+10)/(L-3~L-10)〔但し、D+L=100〕であり、前記ポリ乳酸(C)については、D/L=(D+3~D+10)/(L-3~L-10)〔但し、D+L=100〕であることを特徴とするものである。
 また、本発明は、上記の特徴を有したポリ乳酸発泡成形材料において、炭酸カルシウムまたはタルク微粒子を0.5~5重量部含有することを特徴とするものである。
 さらに本発明は、上記の特徴を有したポリ乳酸発泡成形材料からなることを特徴とする発泡成形品でもあり、この発泡成形品には、プレ発泡ビーズを成形発泡する成形品と、ビーズを作らずに直接押し出し成型する発泡成形品がある。
 また、本発明は、上記の特徴を有した発泡成型品において、90℃の熱水を注入後、形態を保持していることを特徴とするものであり、この発泡成型品(成形容器)は、90℃の熱水を注入して3分後においても変形せずに容器形態を保持し、優れた耐熱性を有している。
 さらに本発明は、190℃、荷重21.6kgのJIS K7210に準じて測定したMI値が0.05~5であるポリ乳酸発泡成形材料を製造するための方法であって、当該製造方法は、
 D体とL体とで構成されたポリ乳酸100重量部と、エポキシ基またはポリイソシアネート基を有する架橋剤0.2~2.0重量部との架橋反応によって生成した生成物を不活性ガス超臨界下で物理的又は機械的に低分子化させ再結合させて得られた、D体とL体の構成比率が異なる3種類の架橋ポリ乳酸(A)、(B)および(C)を準備する工程、および
 前記架橋ポリ乳酸(A)、(B)および(C)を、25~50:25~50:25~50〔但し、(A)+(B)+(C)=100〕の重量比率にて混合し、得られた混合物を溶融した際に生成するGPC測定でのポリスチレン換算分子量200万以上のポリ乳酸を、不活性ガス超臨界下で、物理的又は機械的に低分子化させ再結合する工程
を含むことを特徴とする。
 また、本発明は、上記の特徴を有したポリ乳酸発泡成形材料の製造方法において、前記架橋ポリ乳酸(A)、(B)および(C)におけるD体とL体の構成比率(D/L)が、前記架橋ポリ乳酸(A)については、D/L=5~20/95~80〔但し、D+L=100〕であり、前記架橋ポリ乳酸(B)については、D/L=(D+3~D+10)/(L-3~L-10)〔但し、D+L=100〕であり、前記架橋ポリ乳酸(C)については、D/L=(D+3~D+10)/(L-3~L-10)〔但し、D+L=100〕であることを特徴とするものである。
 また、本発明は、190℃、荷重21.6kgのJIS K7210に準じて測定したMI値が0.05~5であるポリ乳酸発泡成形材料を製造するための方法であって、当該製造方法は、
 D体とL体の構成比率が異なる3種類のポリ乳酸(A)、(B)および(C)を準備し、前記ポリ乳酸(A)、(B)および(C)を、25~50:25~50:25~50〔但し、(A)+(B)+(C)=100〕の重量比率にて混合する工程、および
 前記工程で得られたポリ乳酸混合物100重量部と、エポキシ基またはポリイソシアネート基を有する架橋剤0.2~2.0重量部との架橋反応により生成するGPC測定でのポリスチレン換算分子量200万以上のポリ乳酸を、不活性ガス超臨界下で、物理的又は機械的に低分子化させ再結合する工程
を含むことを特徴とする。
 また、本発明は、上記の特徴を有したポリ乳酸発泡成形材料の製造方法において、前記ポリ乳酸(A)、(B)および(C)におけるD体とL体の構成比率(D/L)が、前記ポリ乳酸(A)については、D/L=5~20/95~80〔但し、D+L=100〕であり、前記ポリ乳酸(B)については、D/L=(D+3~D+10)/(L-3~L-10)〔但し、D+L=100〕であり、前記ポリ乳酸(C)については、D/L=(D+3~D+10)/(L-3~L-10)〔但し、D+L=100〕であることを特徴とするものである。
 さらに本発明は、190℃、荷重21.6kgのJIS K7210に準じて測定したMI値が0.05~5であるポリ乳酸発泡成形材料の発泡成形品を製造するための方法であって、当該製造方法は、
 D体とL体とで構成されたポリ乳酸100重量部と、エポキシ基またはポリイソシアネート基を有する架橋剤0.2~2.0重量部との架橋反応によって生成した生成物を不活性ガス超臨界下で物理的又は機械的に低分子化させ再結合により生成した、D体とL体の構成比率が異なる3種類の架橋ポリ乳酸(A)、(B)および(C)を準備する工程、および
 前記架橋ポリ乳酸(A)、(B)および(C)を、25~50:25~50:25~50〔但し、(A)+(B)+(C)=100〕の重量比率にて混合し、得られた混合物を溶融した際に生成するGPC測定でのポリスチレン換算分子量200万以上のポリ乳酸を、不活性ガス超臨界下で、物理的又は機械的に低分子化させ再結合により生成するポリ乳酸発泡成形材料を、軟化点以上110℃以下の温度で吐出させて発泡成形する工程
を含むことを特徴とする。
 また、本発明は、上記の特徴を有したポリ乳酸発泡成形材料の発泡成形品の製造方法において、前記混合物100重量部に対して、炭酸カルシウムまたはタルク微粒子を0.5~5重量部添加することを特徴とするものでもある。
 また、本発明は、190℃、荷重21.6kgのJIS K7210に準じて測定したMI値が0.05~5であるポリ乳酸発泡成形材料の発泡成形品を製造するための方法であって、当該製造方法は、
 D体とL体の構成比率が異なる3種類のポリ乳酸(A)、(B)および(C)を準備し、前記ポリ乳酸(A)、(B)および(C)を、25~50:25~50:25~50〔但し、(A)+(B)+(C)=100〕の重量比率にて混合する工程、および
 前記工程で得られたポリ乳酸混合物100重量部と、エポキシ基またはポリイソシアネート基を有する架橋剤0.2~2.0重量部との架橋反応により生成するGPC測定でのポリスチレン換算分子量200万以上のポリ乳酸を、不活性ガス超臨界下で、物理的又は機械的に低分子化させ再結合により生成するポリ乳酸発泡成形材料を、軟化点以上110℃以下の温度で吐出させて発泡成形する工程
を含むことを特徴とする。
 また、本発明は、上記の特徴を有したポリ乳酸発泡成形材料の発泡成形品の製造方法において、前記ポリ乳酸混合物100重量部に対して、炭酸カルシウムまたはタルク微粒子を0.5~5重量部添加することを特徴とするものでもある。
 さらに本発明は、上記のポリ乳酸発泡成形材料の発泡成形品の製造方法を用いて製造されたものであることを特徴とする発泡成形品でもある。
 また、本発明は、上記の特徴を有した発泡成形品において、90℃の熱水を注入後、形態を保持していることを特徴とするものである。
 本発明のポリ乳酸発泡成形材料は、高倍率発泡の際に阻害要因となるゲル化部分や著しく大きい分子量のポリ乳酸部がないため発泡セル膜を薄くすることが可能であり、高倍率発泡成形品を安定して廉価に供給することができる。
 また、多価アルコールや多価カルボン酸を加えることがなく安定した高溶融粘度のポリ乳酸発泡成形材料を使用した本発明の発泡成形品は、実用的に熱水に耐えられる発泡成形品シートおよび容器である。
本発明の製造方法にて使用される反応押出機の好ましい一例における構成を示す図である。 図1に例示された反応押出機のギアポンプ部の好ましい一例における内部構造を示す図である。 図1に例示された反応押出機のオリフィス部の好ましい一例における内部構造を示す図である。 図3に例示されたオリフィスの好ましい一例における構成を示す図であり、仕切り板とスリット板を交互に積層されていることが示されている。 本発明の製造方法にて使用されるPLA発泡射出成形機の好ましい一例における構成を示す図である。 本発明の製造方法にて使用される厚さ可変定温発泡金型の好ましい一例における構成を示す図である。 D体とL体の構成比率が異なるポリ乳酸を用いた際に発現する3次元平行構造(Gyroidのような構造)の模式図である。 物理的に低分子化され、機械的に破砕されて再結合した場合には、より複雑に結合する場合が多く、その一例を示す模式図である。 本発明の製造方法にて使用される発泡シート成形押し出し機の好ましい構成を示す図である。
 ポリ乳酸の開環重合モノマーである乳酸2量体にはラセミ体であるL体とD体があり、その配合比率により種々のD体とL体組成の異なるポリ乳酸が製造される。
 本発明のポリ乳酸発泡成形材料を製造する際には、D体とL体の構成比率が異なる3種類の架橋ポリ乳酸(A)、(B)および(C)が使用され、これらの架橋ポリ乳酸はいずれも、D‐ラクチドとL‐ラクチドの混合物100重量部に、触媒としてオクチル酸スズ0.5重量部を添加し、開環重合させて得られた数平均分子量5,000以上のものを原料とし、このポリ乳酸原料100重量部に対して、エポキシ基またはポリイソシアネート基を有する架橋剤を0.2~2.0重量部添加して溶融した際に生成する著しく大きな分子量(GPC測定でのポリスチレン換算分子量200万以上)のポリ乳酸を、不活性ガス超臨界下で、物理的に低分子化する、およびせん断力を加えることにより機械的に粉砕することにより得られる。そして、このようにして製造された3種類の架橋ポリ乳酸を特定の重量比率で混合した混合物を、破砕オリフィスを設けた射出成形機または押出し成形機に供給し、溶融時に生成する著しく大きな分子量のポリ乳酸が、不活性ガス超臨界下で、物理的又は機械的に低分子化され再結合することにより、本発明のポリ乳酸発泡成形材料が製造される。この際に使用される架橋ポリ乳酸(A)、(B)および(C)は、以下のような、D体とL体の構成比率(D/L)を有している。
 本発明においては、D体の割合が最も小さな架橋ポリ乳酸(A)についての構成比率(D/L)は5~20重量部/95~80重量部〔但し、D+L=100重量部〕であることが好ましく、このような架橋ポリ乳酸(A)に対して、架橋ポリ乳酸(B)におけるD体の割合は、架橋ポリ乳酸(A)のD体の割合より3~10重量部多く、逆に、L体の割合は、架橋ポリ乳酸(A)のL体の割合よりも3~10重量部少ない。又、架橋ポリ乳酸(C)におけるD体の割合は、架橋ポリ乳酸(B)のD体の割合より3~10重量部多く、逆に、L体の割合は、架橋ポリ乳酸(B)のL体の割合よりも3~10重量部少ない。
 具体的な3種類の架橋ポリ乳酸(A)、(B)、(C)におけるD体とL体の構成比率(重量比率)としては、例えば、架橋ポリ乳酸(A)のD/L=7/93、架橋ポリ乳酸(B)のD/L=10/90、架橋ポリ乳酸(C)のD/L=13/87の場合や、架橋ポリ乳酸(A)のD/L=10/90、架橋ポリ乳酸(B)のD/L=20/80、架橋ポリ乳酸(C)のD/L=30/70の場合や、架橋ポリ乳酸(A)のD/L=20/80、架橋ポリ乳酸(B)のD/L=30/70、架橋ポリ乳酸(C)のD/L=40/60の場合が挙げられるが、これらに限定されるものではない。
 ポリ乳酸は縮重合物であるため、平衡水分量により分子量が変化する。高分子量のポリ乳酸であっても吸湿後、溶融されると急激に分子量低下を起こし、水分量に見合う平衡分子量まで低下する。本発明では、図3に示されるような増粘部21、オリフィス部6、減圧膨張部22を設けることにより、水分過多時、再溶融によるポリ乳酸分子量低下を防ぐことができる。
 本発明に使用するポリ乳酸は、結晶性ポリ乳酸であっても非晶性ポリ乳酸であってもよい。発泡剤を含浸させるプレ発泡ビーズの場合には、D体とL体が共重合された非晶性ポリ乳酸を使用する。押し出し発泡成型の場合には、結晶性ポリ乳酸の方が耐熱性が向上するので好ましい。また、D体とL体を混合したコンプレックスポリ乳酸はより耐熱性が向上するので好ましい。
 ポリイソシアネートを用いて架橋を行う前のポリ乳酸の数平均分子量は5,000以上が好ましく、より好ましくは2万以上、さらに好ましくは10万以上である。このポリ乳酸の分子量が小さいほど高発泡倍率成型時に必要な粘度を得るために反応させるポリイソシアネートなどの架橋剤配合量が多くなり、経済的に不利になる。
 架橋を行う前のポリ乳酸は予め真空乾燥などの定法により乾燥され、水分率をコントロールしておく。架橋前のポリ乳酸水分率は好ましくは500ppm以下であり、さらに好ましくは100ppm以下である。より好ましくは50ppm以下である。ポリイソシアネートは水とも反応し、炭酸ガスを出し、不活性となるため、ポリイソシアネートの効率が悪くなる。架橋前のポリ乳酸の水分率が多すぎると経済的に不利である。
 本発明に使用するポリイソシアネートは2価以上のポリイソシアネートであり、好ましくはトリイソシアネートまたは、テトライソシアネートまたはジイソシアネートのアダクト体を含有する。3価以上のポリイソシアネートを使用するとポリ乳酸高分子鎖に分岐が生じ、膜強度が強固になり、発泡倍率を向上させることができる。
 本発明において、架橋反応のために使用されるポリイソシアネートは、分子中に2以上のイソシアネート基を有するイソシアネート化合物であればよい。ポリイソシアネートとしては、例えば1,6-ヘキサメチレンジイソシアネート、3-イソシアネートメチル-3,5,5-トリメチルシクロヘキシルイソシアネート(イソホロンジイソシアネート)、1,4-テトラメチレンジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート、ジシクロヘキシルメタン-4,4’-ジイソシアネート、メチルシクロヘキシル-2,4-ジイソシアネート、メチルシクロヘキシル-2,6-ジイソシアネート、キシリレンジイソシアネート、1,3-ビス(イソシアネート)メチルシクロヘキサン、テトラメチルキシリレンジイソシアネート、トランスシクロヘキサン-1,4-ジイソシアネート、リジンジイソシアネート等の脂肪族ジイソシアネート、イソホロンジイソシアネート、水添ジフェニルメタンジイソシアネート、水添トリレンジイソシアネート、水添キシリレンジイソシアネート、水添テトラメチルキシリレンジイソシアネート、シクロヘキサンジイソシアネート等の脂環族ポリイソシアネート、2,4-トルイレンジイソシアネート、2,6-トルイレンジイソシアネート、ジフェニルメタン-4,4’-イソシアネート、1,5’-ナフテンジイソシアネート、トリジンジイソシアネート、ジフェニルメチルメタンジイソシアネート、テトラアルキルジフェニルメタンジイソシアネート、4,4’-ジベンジルジイソシアネート、1,3-フェニレンジイソシアネート等の芳香族ジイソシアネート、リジンエステルトリイソシアネート、トリフェニルメタントリイソシアネート、1,6,11-ウンデカントリイソシアネート、1,8-イソシアネート-4,4-イソシアネートメチルオクタン、1,3,6-ヘキサメチレントリイソシアネート、ビシクロヘプタントリイソシアネート、トリメチロールプロパンと2,4-トルイレンジイソシアネートとのアダクト体、トリメチロールプロパンと1,6-ヘキサメチレンジイソシアネートなどジイソシアネートとのアダクト体等のトリイソシアネート化合物、およびグリセリン、ペンタエリストール等の多価アルコールとを前記の脂肪族及び芳香族ジイソシアネート化合物および前記のトリイソシアネート化合物などと反応させて得られる変性ポリイソシアネート化合物などがある。これらは1種を単独で又は2種以上を混合して使用することができる。また、本発明では、上記のイソシアネートの代わりに、エポキシ基を持ったアクリル系架橋剤を使用することも可能である。
 ポリイソシアネートは3価以上のポリイソシアネートを使用することにより、ポリ乳酸分子鎖に分岐が生じ、発泡セル膜強度が増加し好ましい。この現象はポリエチレンをフィルム化する場合、直鎖状である高密度ポリエチレンより、高分子鎖に分岐のある低密度ポリエチレンが適していることと同じである。
 ポリイソシアネートの配合量は架橋前のポリ乳酸の分子量によって異なる。また、ポリ乳酸の分子量分布によっても異なる。低分子量ポリ乳酸が多くなるとより多くの配合量が発泡に適した溶融粘度を得るために必要となる。ポリイソシアネートの配合量は、架橋前のポリ乳酸混合物100重量部に対して0.2重量部から2重量部であることが好ましい。ポリイソシアネートの配合量が少な過ぎると、発泡に適した溶融粘度が得られず発泡倍率が低下する。また、多すぎてもゲル化が生じ発泡倍率が低下する。
 ところで、ペレット状のポリ乳酸と液状の架橋剤を撹拌混合し、押出機を用いて架橋PLAを製造すると、分散不均衡が原因で巨大分子塊が混在生成する。仮にこの架橋PLAをインフレーション機でフィルムに加工すると、平坦なフィルムの所々に巨大分子塊の凸部が発生し以後の工程に支障があることが判明する。
 物理的な解決法として、巨大分子ほど窒素ガスまたは炭酸ガスの超臨界状態中にある時に速やかに架橋部の一部の鎖が切れ易く、反面巨大分子でない物は緩やかに低分子化する傾向にある。更に、超流動状態でノズルから真空ポンプで吸引されている無圧解放空間に放出される際に瞬時に別の分子群とも架橋結合し、架橋PLAの分子量は以前より平均化される。また、このノズルを長いスリット(図4)で構成することにより、巨大分子は機械的にも破砕される。なお押出機における超臨界状態からスリットを通過するまでに要する滞留時間は2分以下程度であり、純粋なPLAが低分子化することはほとんどない。また、スリット(図4)のoutに到達するまで気体の体積は極端に圧縮されており、気体の持つ熱量はごく僅かであり、無圧解放空間に放出される際に気体は急膨張し脱気され、失われる熱量がごく僅かな断熱膨張となる。更に、後段の水中カッターで切断されるまでの時間内に僅かに残留した未反応部の架橋反応は完了する。
 オリフィス部で破砕された架橋箇所は、ベント孔で吸引されている無圧解放空間領域(図3)、または射出成型機(図5)のノズル以降で再結合される。なお、射出成型機の場合のノズル以降の圧力は金型内部の圧力に相当する。この再結合では、例えば図8で示すように複雑な構造に結合される機会が多くなり、こうした複雑な結合はさらに粘度を増加させる効果がある。なお、オリフィス部での破砕、無圧解放空間での再結合は2度、3度と繰り返すほど、この結合はより複雑化するが、実用上は1度でも良い。
 そして、本発明のポリ乳酸発泡成形材料を製造する際、上記の3種類の架橋ポリ乳酸(A)、(B)および(C)は、25~50:25~50:25~50の重量比率(各ポリ乳酸の割合が50重量%以下で、(A)+(B)+(C)=100)となるようにして混合され、溶融時に生成したGPC測定でのポリスチレン換算分子量200万以上のポリ乳酸は、窒素または炭酸ガス超臨界下で、物理的に低分子化する、およびせん断力を加えて機械的に粉砕される。
 また、本発明では、架橋前の3種類のポリ乳酸を、25~50:25~50:25~50の重量比率(各ポリ乳酸の割合が50重量%以下で、(A)+(B)+(C)=100)となるようにして混合した後、ポリイソシアネートを添加して架橋させ、溶融時に生成したGPC測定でのポリスチレン換算分子量200万以上のポリ乳酸は、窒素または炭酸ガス超臨界下で、物理的に低分子化する、およびせん断力を加えて機械的に粉砕されても良い。
 本発明のポリ乳酸発泡成形材料の190℃、荷重21.6kgのJIS K7210に準じて測定したMI値は0.05~5である。
 D体とL体の配合比率が各々3重量%以上異なる上記の3種類のポリ乳酸を上記の配合比率で配合して溶融混練すると、図7に示されるGyroid構造のような3次元平行構造のポリ乳酸集合体が発現し、エネルギー的に準安定状態が得られ、この準安定構造を保持するように、溶融物の粘度は見掛け上、単独組成の粘度より著しく増大する。しかし、各ポリ乳酸におけるD体/L体の構成比率、3種類のポリ乳酸間の各D体/L体構成比率の差、3種類のポリ乳酸の配合比率がいずれも上記の条件を満たさない場合には、Gyroid構造のような3次元並行構造が発現しないため、見掛け粘度の増大は起こらない。
 本発明のポリ乳酸発泡成形材料の場合には、D体/L体の構成比率の異なる3種類のポリ乳酸(A)、(B)および(C)が使用され、ポリ乳酸(A)、(B)および(C)を25~50:25~50:25~50の配合比率にて配合することにより、3次元準安定状態の構造が発現し、これによって、溶融粘度が単独組成の場合と比較して約10倍以上に増粘する。そして本発明では、架橋剤の配合量低減により著しく大きな高分子の生起を抑制し、また上記イソシアネートまたはエポキシ基との不均一反応により生起した著しく大きな高分子を不活性ガス超臨界条件下で、物理的に低分子化する、および機械的に破砕し平均化することにより、著しく大きな高分子の分子量を小さくし安定した発泡セル膜を得ることができる。
 イソシアネートは反応性が大きいため低分子量の多価アルコールや多価カルボン酸と反応し、ゲル化物を生成する。高分子との反応は末端基との反応であり、イソシアネート量が過剰でなければゲル化の網目構造を生成するまでには至らない。しかし、不融となる巨大な網目構造までは生成はしないが不均一反応となり分子量の著しく大きい高分子を生成する。GPC測定でのポリスチレン換算分子量200万以上の高分子が部分的に存在すると発泡セル膜の延伸斑が生じ、高倍率発泡が困難になる。より好ましくはポリスチレン換算分子量が150万以上の高分子を含まない組成である。
 耐熱性は分子の動き易さに反比例する。分子量が大きくなると耐熱性は向上する。流動パラフィンは常温で液状であるが、分子量が少し大きくなったパラフィンは常温で固体である。さらに分子量が大きくなったポリエチレンは融点が130℃ほどになり、超高分子量ポリエチレンの融点は150℃まで上昇する。
 本発明のポリ乳酸発泡成形材料の製造法においては、ポリ乳酸とポリイソシアネートまたはエポキシ基によるカップリング反応によるポリ乳酸発泡成形材料の分子量増加後、不活性ガスの超臨界条件下で低分子化するか、機械的に大きなせん断力を加えて著しく大きいポリ乳酸分子を破砕する工程が必須である。この工程が存在しないと、著しく大きいポリ乳酸分子が局部的に発泡セル膜の膨張を阻害し、高倍率発泡成形品を得ることができない。
 本発明で言うポリ乳酸に反応しない不活性ガスとしては窒素ガス、炭酸ガス、ヘリウムガス、アルゴンガス、メタンガス、エタンガス、プロパンガス、ブタンガス、エチレンガス、プロピレンガスなどが挙げられる。これらの中では、超臨界条件に達しやすく、廉価で引火性がない窒素ガスまたは炭酸ガスが好ましく、これらのガスを併用することも可能である。窒素ガスの超臨界点は(-147℃、3.39MPa)、炭酸ガスは(31.1℃、7.38MPa)、メタンガスは(-83℃、4.6MPa)である。エタンガスは(32.4℃、4.88MPa)で、プロパンガスは(93.8℃、4.25MPa)で、ブタンガスは(152℃、3.380MPa)である。
 ビーズを製造する際には、不活性ガスは、ポリ乳酸に対して0.1から2重量%配合するように定量供給されるが、水分をトラップした後、回収して再使用される。不活性ガスは実際のロス分だけが本発明の加工機システムに補給される。直接射出発泡成型する場合には発泡ガスに使用するため、不活性ガスを大過剰に使用する。しかし、本発明の中空部厚さ可変定温発泡金型(図6参照)を使用する際には、発泡に使用する不活性ガスの発泡効率はビーズ発泡と変わらないため、ポリ乳酸に対して0.1から2重量%配合するように定量供給される。
 超臨界点の圧力以上に加圧する一般的な方法は、例えばプランジャーポンプ、ギアポンプ、スクリューなどの加圧装置があり、超臨界点の温度以上に加温することは鋳込みヒーターやジャケットヒーターなどの加熱装置がある。
 ポリ乳酸の融点は共重合度によっても異なるが、概ね170℃以下である。本発明では、使用する架橋前のポリ乳酸の融点以上でポリイソシアネートまたはエポキシ基と反応させる。本発明では、常温液状でないポリイソシアネートは加温溶融し、半溶融状態のポリ乳酸にプランジャーポンプなどで定量的に添加され、ポリ乳酸と反応する。高粘度反応物と低粘度化合物を混合する場合、高粘度物を低温で、半溶融状態で混合する方が予めよく分散し、より均一反応が期待できる。
 本発明のポリ乳酸発泡成形材料には、発泡成形品の物性に著しく悪い影響を与えない範囲で、他の生分解性のポリマーを混合して配合してもよい。他の生分解性ポリマーとしては、例えばポリカプロラクタム、ポリブチレンサクシネート、ポリヒドロキシブチレート、ポリ(ヒドロキシブチレート/ヒドロキシヘキサノエート)、(ポリ乳酸/ポリブチレンサクシネート系)ブロックコポリマー、ポリ(カプロラクトン/ブチレンサクシネート、ポリ(ブチレンサクシネート/アジペート)、ポリ(ブチレンサクシネート/カーボネート)、ポリ(エチレンテレフタレート/サクシネート)、ポリ(ブチレンアジペート/テレフタレート)、ポリ(テトラメチレンアジペート/テレフタレート)などが挙げられる。
 均一で微細な発泡セルを形成させるために発泡核剤を配合することが好ましい。発泡核剤としては、例えば、タルク、シリカ、カオリン、ゼオライト、マイカ、アルミナ等の無機粒子、炭酸カルシウムなどの炭酸または重炭酸塩、カルボン酸のアルカリ金属塩などがある。この中でも炭酸カルシウム、タルクは柔らかく、微細粒子が廉価に得られるので好ましい。高倍率発泡では、発泡セル膜厚が小さくなるので発泡核剤の粒径は1μm以下であることが好ましく、より好ましくは0.5μm以下である。発泡核剤の配合量はポリ乳酸発泡成形材料に対して0.5から5重量%が好ましく、0.5から2重量%が特に好ましい。発泡核剤の配合量が少な過ぎるとセルの大きさが不均一になりやすく、多過ぎると高発泡倍率が得難くなる。
 上記の発泡核剤は、前記の架橋ポリ乳酸(A)、(B)および(C)を製造する際に配合しても、発泡成形時に本発明のポリ乳酸発泡成形材料中に配合しても良い。
 本発明では、窒素ガスなどの発泡不活性ガスを溶融状態の本発明のポリ乳酸発泡成形材料にサイドインジェクションし、発泡させる。その際に窒素ガスなどの発泡不活性ガスの超臨界点または亜臨界条件以上の高温、高圧条件で発泡成形するとより微細なセルの発泡成形品が得られるので好ましい。発泡不活性ガスとしては、窒素ガス以外に発泡剤として例えばプロパン、n-ブタン、イソブタン、n-ペンタン、イソペンタン、ネオペンタン、シクロペンタン、ヘキサン、ブタン等の炭化水素、塩化メチル、塩化メチレン、ジクロロジフルオロメタン等のハロゲン化炭化水素類、ジメチルエーテル、メチルエチルエーテル等のエーテル類などがある。また発泡助剤として、炭素数1~4のアルコール、ケトン類、エーテル、ベンゼン、トルエン等が用いられる。これらの発泡剤は混合して使用してもよい。
 本発明のポリ乳酸発泡成形材料を用いて製造される前記成形品には、一般的に使用される例えば顔料、難燃剤、消臭剤、安定剤、抗菌剤、防かび剤などの添加剤を生分解性や発泡成形品の品質に影響ない範囲で使用してもよい。
 又、本発明では、植物性繊維の粉末、例えば、紙粉、竹粉などを、架橋ポリ乳酸(A)+(B)+(C)=100重量部に対して0.2~2.0重量部を添加することにより、他の発泡特性を犠牲にすることなく、成形直後の歪、湿度、温度、偏肉圧力などによる歪、直射日光による歪など、成形物形状の歪みを著しく改善することができる。
 次に、本発明の製造方法にて使用される反応押出機の好ましい一例における各部機能構成について説明する。図1に示した反応押出機においては、計量されたポリ乳酸(PLA)および架橋剤がヘンシェルミキサー1に投入され撹拌混合され、ホッパー2に供給される。そして、このホッパー2から加熱されたシリンダー3とスクリュー4により、PLAは前段ギアポンプ5に到達するまでの間に完全溶融し、GPC測定でのポリスチレン換算分子量200万以上のポリ乳酸が生成する。この際、前段ギアポンプ5の搬送能力以上のPLA溶融体はスクリュー4でスリップして余分に供給されることはない。
 その後、前段ギアポンプ5の出口では、流量コントロールされた超臨界ガスが注入される。この区間へのPLA溶融体の時間当たり流入量は、前段ギアポンプ5の駆動サーボモーターの回転数制御により一定にコントロールされる。
 そして次に、PLA溶融体は超流動状態の超臨界ガスと共にオリフィス部6のスリットを通過し、ここで、せん断力が加わるため、分子量200万以上の前記ポリ乳酸は物理的に低分子化されると同時に機械的に粉砕される。そして、物理的に低分子化され、機械的に粉砕されたポリ乳酸は、真空ポンプ7により気体が分離吸引されているベント孔8部の無圧解放空間に放出され、スクリューにより後段ギアポンプ部9の入口に到達する。
 最後に、水中カッター10のダイスをPLA溶融体が通過するのに必要とする圧力の確保はスクリューだけでは困難であり、その目的のためにこの部に後段ギアポンプ部9を設けている。
 気体はすでにベント孔8で吸引され真空に近い状態であり、PLA溶融体のベントアップを防ぐ目的で後段ギアポンプ部9の回転数は実際の搬送量より若干多めに設定して良い。ダイスを通過したPLA溶融体は、水により冷却されると同時にカッターで切断され、固形のペレットとなる。
 尚、上記の構造を有する反応押出機は、原料となる架橋ポリ乳酸(A)、(B)及び(C)を製造する際だけでなく、架橋ポリ乳酸(A)、(B)及び(C)の混合物から本発明のポリ乳酸発泡成形材料を製造する際にも使用される。
 図1に示される構成を有した反応押出機を用いて生産されたペレットを使用して試験片を成形した場合、寸法が約2%縮小する傾向があり、このような現象は、ペレット内部にガスの微細で微量な残留があるものと考えられる。
 図1の反応押出機では、後段ギアポンプ部9に前段ギアポンプ部5と違って超臨界ガス注入孔を設けていないが、この部分において超臨界ガスを注入し、ガスが封入された発泡体ペレットを生産することも可能である。
 ペレット状の架橋ポリ乳酸PLA(A)、PLA(B)、PLA(C)は、それぞれ別個に製造するのが基本であり、ヘンシェルミキサーに架橋前のPLA(A)、PLA(B)、PLA(C)と架橋剤を同時に投入撹拌し製造した場合には、3次元平行構造の発現の機会は劣るものと確認される。
 図1の構成を有した反応押出機における前段ギアポンプ部5および後段ギアポンプ部9は、図2に示されるような内部構造を有しており、ギア回転数を制御することによってPLA溶融体の流量が調整される。本発明では、市販されている一般に周知のギアポンプを使用することが可能であるが、スクリュー4を押出機全体を通して1本で構成するには、図2に示されるように、ギアポンプをスクリュー軸上から離して設置すれば良い。そして、PLA溶融体の通路(点線で表示されている)をギアポンプ側に向けるためにスクリューの該当部分に溝を設けず、漏れ対策が必要な場合にはシールをはめ込むことが可能な構造を採用することが好ましい。尚、前段ギアポンプ部5の出口側のガス供給部からは、流量コントロールされた超臨界ガスが注入され、PLA溶融体の圧力が樹脂圧計11で計測される。
 図3に示された増粘部21の構造寸法の具体的一例としては、スクリュー径50mm、増粘部長さ100mmが挙げられ、溝形状2R半円で2種類のリードを組み合わせる。1種類のリードは50mmで8条とし、さらに1種類のリードは150mmで8条とする。一般的に知られたダルメージスクリューにパイナップルと呼ばれている形状があり、1種類のリードは樹脂溶融体の流れの方向に配置され、さらに1種類のリードは樹脂溶融体の流れと逆の方向に配置されているために、この部で発熱が大きい欠点がある。ここでは、双方のリード共にPLA溶融体の流れる方向と同一方向に配置するために異なるリードとすることにより、増粘効果は同程度であるが、発熱の度合いが少なく発熱による樹脂溶融体の劣化は防止される。
 図1の構成を有した反応押出機におけるオリフィス部6は、図3に示されるような内部構造を有しており、オリフィス部6のスクリュー4の構造は、前段ギアポンプ部5および後段ギアポンプ部9の場合と同様である。このオリフィス部6の出口側のシリンダーにはベント孔8が設けられており、真空ポンプにより吸引がなされ、無圧解放空間を構成している。尚、オリフィス部6に配置されたスリット板12と仕切り板13の積層構造については、図4に示されている。
 図4には、図3に示されたオリフィス部6のオリフィスの構成が例示されており、スリット板12と仕切り板13が交互に複数枚(好ましくは数十枚、例えば20~50枚、好ましくは20~40枚)積層されて構成される。本発明において好ましい寸法としては、仕切り板13の厚さは1mm、スリット板12の厚さは0.2mm、スリット板12に設けられたスリットの溝幅は2mm、スリットの長さは35mmである。図4に示される積層構造体においては、PLA溶融体が超臨界ガスと共に中心部inからスリットを通過し、外周部out側に移動して流動する。
 本発明では、大きなせん断力を発生させるために、超臨界または亜臨界状態にあるポリ乳酸発泡成形材料を、例えば図4に示されるような、4方向に延びた4つのスリットからなる破砕オリフィス部を高速で通過させる。
 図5には、本発明の製造方法にて使用されるPLA発泡射出成形機の好ましい一例における構成が示されており、本発明では、一般に知られている射出成形機の先端部を、図5のような構造にすることでPLA発泡射出成形機として使用出来る。図5の符号23は金型に注入する前に100℃以下の適温まで冷却するための冷却アダプターで、符号14はシャットオフノズルであり、符号15は金型注入孔である。
 シリンダー3の内部に供給される超臨界ガスは、ピストンの押し出しサイクル時にタイミングを合わせ電磁弁16を開き注入する。この際、ガス注入口を少なくとも2ケ所以上設ける方がより均一な発泡体を得られるので好ましい。PLA樹脂の発泡倍率は、金型に注入されるPLA溶融体の体積に反比例する。超臨界ガスの圧力設定方法の1例として、注入時間は長く掛かるが、試し打ちの際に、成形品が冷却された時の歪みが凹の場合に圧力を増すように設定し、歪みが凸の場合には圧力を減らすように設定を調整し固定する。
 注入時間を短縮出来る方法としては、エアシリンダー17内に設けられたピストン18のストロークを可動部19により機械的に制御し、ピストン18の引き込み時に超臨界ガスをエアシリンダーに注入し、ピストン18の押し出しサイクル時にPLA溶融体に吐き出す方法がある。
 図6には、本発明の製造方法にて使用される厚さ可変定温発泡金型(射出成型用金型)の好ましい一例における構成が示されており、この金型における中空部20は可動式である。
 PLA樹脂の発泡成形を行う際の第1段階では、中空部20の厚さが薄い状態(例えば0.1mm)で溶融ポリマーを注入し(図6の図A参照)、第2段階では、ポリマー温度が100℃以下の適当な温度に低下し、ポリマーが固化してから既定の発泡倍率の厚さに中空部を広げ(例えば2mmで20倍発泡、図6の図B参照)、30秒から1分の時間をかけ、ポリマーの軟化点以上で発泡させ、冷却して固定することにより、成形と同時に高発泡倍率の成形品を得る。
 この射出成型サイクルにおいては、サイクルに発泡および冷却期間があるため、射出成型サイクルが一般的な冷却だけのサイクルより長くなる。サイクル時間を短縮するためには、複数金型を交換しながら成形品を取り出す多発泡金型射出成型装置が好ましい。
 本発明の1形態のポリ乳酸発泡成形品製造方法は、射出成型機(図5参照)に、破砕オリフィス部を備え、中空部厚さ可変定温発泡金型(図6参照)を使用し、発泡ガス超臨界下または亜臨界下で、せん断力を加えることにより、分子量200万以上の過度に大きな分子量のポリ乳酸を物理的および機械的に粉砕することにより、ポリイソシアネートまたはエポキシ基により架橋され、190℃、荷重21.6kgのJIS K 7210に準じて測定したMI値が0.05から5のポリ乳酸発泡成形材料発泡成形品を、100℃以下、軟化点以上で発泡製造する方法である。
 本発明におけるMI値の測定は、ポリ乳酸発泡成形材料についてはオリフィス径2mm、オリフィス長さ10mm、190℃、荷重21.6kgにて、原料の架橋ポリ乳酸についてはオリフィス径1mm、オリフィス長さ10mm、190℃、荷重2.16kgの条件でJIS K7210に準じて10分間にフローした重量gまたは10分間換算重量gを測定して行った。発泡倍率の測定については、発泡成形品1mlを切り出し、重量g1を測定し、本発明のポリ乳酸発泡成形材料1mlを切り出し、重量g2を測定し、g2をg1で除した商として求めた。原料ポリ乳酸などの水分率はカールフィッシャー法で測定した。発泡成形品の耐熱性は、製造した箱型成形品に90℃の熱水を80%深さまで注入し、3分後も変形しない場合に「良」と判定し、沸騰水を同様に注入し、3分後も変形しない場合に「優」と判定した。熱水注入後変形が見られた場合は「不良」とした。
 著しく大きい高分子の測定はGPCでPSt換算分子量分布を測定した。
 本発明のさらに詳細については実施例にて説明するが、本発明は、これらの実施例に限定されるものではない。
 尚、前述した反応押出機や射出成型機は、出発原料の架橋ポリ乳酸(A)、(B)、(C)、および(E)を製造する際にも使用できる。
 本発明の主たる目的の実施に使用するD体/L体比の異なる3種類に該当する原料ポリ乳酸は上市されておらず、D/L=13/87、D/L=19/81、D/L=25/75の3種類の原料ポリ乳酸は、以下の方法(製造例1~3)で製造した。製造例1~3では、市販のL-ラクチド、D-ラクチドをエチルアセテートで再結晶して精製した。精製したD-ラクチドの重量部、L-ラクチドの重量部合計が100になるように配合し、及び触媒としてオクチル酸スズ0.5重量部を攪拌機付きオートクレーブに仕込み、減圧脱気した後、N雰囲気下で190℃、1時間の重合条件で開環重合した。反応終了後、オートクレーブよりポリマーを策状で取り出し、クエンチ後、ロータリーカッターでカットし、架橋前のポリ乳酸ペレットを製造した。このペレットを80℃、24時間真空乾燥機中で乾燥した後、窒素シールしたアルミ袋に入れて保管し使用した。水分率が100ppm以下のものを原料ポリ乳酸として使用した。
(製造機械1)押し出し機
 図1に本発明を実施するのに好ましい押し出し機の概略構造を示す。窒素ガスシールされたヘンシェルミキサー1、原料供給ホッパー2、PLA溶融体を安定的に移送する、更に超臨界ガスが逆流するのを防止する目的の前段ギアポンプ部5を設け、窒素ガスボンベ、窒素ガス供給サイドプランジャーポンプおよびガス圧を安定させる目的のアキュムレータータンクから減圧弁と流量コントロール弁を経由してGas注入孔に窒素ガスを供給した。不活性ガスの超臨界下、物理的に低分子化させると同時にせん断力を加えることにより機械的に粉砕する目的のオリフィス部6を設けた。
 なお、前段ギアポンプ部5からオリフィス部6の間は超臨界状態が維持されている。ベント孔8からオイル拡散真空ポンプ符号7および減圧窒素ガス回収部を接続し、回収された窒素ガスは水トラップ装置を経由し再使用した。オリフィス部6から、特にスリット板(図4)のout孔から後段ギアポンプ部9入口までの間は真空ポンプにより吸引され脱気脱水がなされ無圧解放区間となる。この無圧解放区間において、物理的に低分子化され機械的に破砕されたPLAの架橋部の再結合が急速に行われる。PLA溶融体は後段ギアポンプ部で加圧され水中カッター10のダイスに到達する。水中カッターの出口から得られた本発明のポリ乳酸発泡成形材料丸ペレットをドライホッパーに搬送し、一定時間経過後、真空乾燥機で乾燥する加工システムを使用した。
(製造例1)出発原料A(架橋ポリ乳酸丸ペレット)の製造
 製造機械1で説明した押し出し機を使用し、D/L=13/87、数平均分子量10万のポリ乳酸原料を100重量部に、常温液体の1,6-ヘキサメチレンジイソシアネートとトリメチロールプロパンとのアダクト体、それぞれ1.5重量部、1重量部、0.5重量部と、平均粒径0.4μmのタルク微粉末1重量部を定量的にヘンシェルミキサーに供給し、混合し、窒素ガスシールしたホッパーから押し出し機に一定量供給し、初段Gas注入孔にポリ乳酸発泡成形材料に対して0.2重量%の窒素ガスを連続的に定量供給し、GPC測定でのポリスチレン換算分子量200万以上のポリ乳酸を、窒素ガス超臨界下で、物理的に低分子化し、せん断力を加えることにより機械的に粉砕し、再結合させた丸ペレット(A1)、(A2)、(A3)を製造した。荷重2.16kgのMI値はそれぞれ1.1、1.3、1.6であった。
(製造例2)出発原料B(架橋ポリ乳酸丸ペレット)の製造
 D/L=19/81、数平均分子量10万のポリ乳酸原料100重量部を、製造例1と同様に架橋剤、タルクをそれぞれ供給混合し丸ペレット(B1)、(B2)、(B3)を製造した。荷重2.16kgのMI値はそれぞれ1.0,1.2,1.5であった。
(製造例3)出発原料C(架橋ポリ乳酸丸ペレット)の製造
 D/L=25/75、数平均分子量10万のポリ乳酸原料100重量部を、製造例1と同様に架橋剤、タルクをそれぞれ供給混合し丸ペレット(C1)、(C2)、(C3)を製造した。荷重2.16kgのMI値はそれぞれ0.9、1.1、1.4であった。
(製造例4)出発原料E(架橋ポリ乳酸丸ペレット)の製造
 それぞれが数平均分子量10万のポリ乳酸原料D/L=13/87を30重量部、およびD/L=19/81を33重量部、およびD/L=25/75を37重量部、合計100重量部を、製造例1と同様に架橋剤、タルクをそれぞれ供給混合し、丸ペレット(E1)、(E2)、(E3)を製造した。荷重2.16kgのMI値はそれぞれ0.30、0.42、0.54であった。
(製造機械2)射出成形機
 図5で概略構造を示す一般に知られた射出成型機を改造した装置に窒素ガスシールされたヘンシェルミキサー1、原料供給ホッパー2を搭載し使用した。改造先端部にガス噴射孔24、オリフィス部6、冷却アダプター23、シャットオフノズル14を設け、シャットオフノズルと発泡金型の注入孔15が接する構造とした。発泡ガス供給部は窒素ガスボンベから減圧弁を経由し、射出成型機可動部本体と連動するピストン18により減圧弁で調整された適量がサイドシリンダー17に一旦保留され射出押し出しサイクルに合わせガス噴射孔からPLA溶融体に噴射される加工システムを採用した。
(実施例1)射出発泡成形
 製造機械2の射出成形機を使用し、製造例1から3で製造した架橋ポリ乳酸丸ペレット(A1)30重量部、(B1)33重量部、(C1)37重量部を定量的にヘンシェルミキサーに供給し、撹拌混合し、窒素ガスシールしたホッパーから射出成型機に一定量供給した。窒素ガス供給サイドシリンダーから窒素ガスをポリ乳酸発泡成形材料に対して2重量%インジェクトし、溶融した際に生じるGPC測定でのポリスチレン換算分子量200万以上のポリ乳酸を、窒素ガス超臨界下で、170℃に保持した図4に示すスリット板厚さ0.2mm、スリット溝幅2mm、スリット長さ35mmのオリフィス部にて低分子化し再結合させ、40℃に保持した厚さ10mm、深さ90mm、外寸縦横100mmの箱型成型金型の注入孔15にストローク30秒で押し出し、架橋剤の量が異なる本発明の射出発泡成形品T1を製造した。
 同様にして架橋ポリ乳酸丸ペレット(A2)、(B2)、(C2)によりT2を製造した。
 更に同様にして架橋ポリ乳酸丸ペレット(A3)、(B3)、(C3)によりT3を製造した。
 T1、T2、T3の発泡倍率は22倍であった。耐熱性は全て優であった。T1、T2、T3の190℃、荷重21.6kgで測定したMI値はそれぞれ、0.21、0.31、0.42であった。また、T1、T2、T3のGPC測定によりポリスチレン換算150万以上の著しく大きい高分子量物は検知されなかった。
 前項T1、T2、T3との結果を比較するために、実施例1と同様に(A1)、(B1)、(C1)の代わりに(E1)を投入しE1を製造した。同様にして(A2)、(B2)、(C2)の代わりに(E2)を投入しE2を製造した。更に同様にして(A3)、(B3)、(C3)の代わりに(E3)を投入しE3を製造した。E1、E2、E3の発泡倍率は16倍であった。耐熱性は全て優であった。E1、E2、E3の190℃、荷重21.6kgで測定したMI値はそれぞれ0.30、0.42、0.54であった。また、E1、E2、E3のGPC測定によりポリスチレン換算150万以上の著しく大きい高分子量物は検知されなかった。また、製造例4で3種類のポリ乳酸を同時に投入して出発原料E1、E2、E3を製造した結果は、原料構成が同一であるのにかかわらず、T1、T2、T3による製造結果よりも明らかに性能上において劣ることが判明した。これは3次元平行構造の発現の機会が劣ることが原因しているものと考察される。
(比較例1)射出発泡成形
 比較のため、製造機械1の押し出し機から低分子化およびせん断力を与えるオリフィス部のスリットを取り外し、その他条件は同一にしても樹脂圧計11の示す圧力は0.6MPaであり窒素ガスの超臨界点には達しない状態で架橋ポリ乳酸丸ペレット(A1)、(A2)、(A3)、(B1)、(B2)、(B3)、(C1)、(C2)、(C3)に対応するペレットを製造し、更に製造機械2の射出成形機のオリフィス部を取り外し、射出発泡製品T1、T2、T3に対応する比較品を製造したが、いずれも5倍未満の発泡倍率であり、部分的に発泡倍率が不均一であった。発泡倍率が所定まで上がらないため、箱型に成型することができなかった。GPC測定によりポリスチレン換算200万を越える著しく大きい高分子量物が1重量%以上測定された。
 これは、せん断力を与えるオリフィス部6のスリットを取り外したため、著しく分子量の大きいポリ乳酸発泡成形材料が発泡セル膜の延伸を妨ぎ、これにより、発泡倍率が上がらなかったと推察される。
(実施例2)射出発泡成形
 製造例1から3の工程でタルク微粉末を0.3重量部にのみ変更して各出発原料を製造し、実施例1と同様にして、実施例1のT1、T2、T3に対応する本発明の発泡成形品を製造した。本発明の発泡成形品の荷重21.6kgのMI値はそれぞれ、0.4、0.3、0.2と変わらなかったが、耐熱性は良であった。
(比較例2)射出発泡成形
 製造例1から3でポリ乳酸原料およびタルクの重量部を変更せずに、1,6-ヘキサメチレンジイソシアネートとトリメチロールプロパンとのアダクト体の配合量のみを0.1重量部に変更し、実施例1のT1と同一の製法工程で製造した発泡成形品は、荷重21.6kgのMI値は6であり、粘度が不足し発泡倍率が低く、箱型に成型することができなかった。
(比較例3)射出発泡成形
 製造例1から3で原料ポリ乳酸およびタルクの重量部を変更せずに、1,6-ヘキサメチレンジイソシアネートとトリメチロールプロパンとのアダクト体の配合量のみを3重量部に変更し、実施例1のT1と同一の製法工程で製造した発泡成形品は、荷重21.6kgのMI値は0.003であり、粘度が高過ぎ発泡倍率が低く、箱型に成型することができなかった。
(実施例3)射出発泡成形
 製造機械2の射出成形機を使用し、製造例1から3で製造した架橋ポリ乳酸丸ペレット(A1)40重量部、(B1)30重量部、(C1)30重量部を定量的にヘンシェルミキサーに供給し、撹拌混合し、窒素ガスシールしたホッパーから射出成型機に一定量供給した。窒素ガス供給サイドシリンダーから窒素ガスとメタノール容量比2:1混合ガスを、ポリ乳酸発泡成形材料に対して2重量%インジェクトし、GPC測定でのポリスチレン換算分子量200万以上のポリ乳酸を、不活性ガス超臨界下で、170℃に保持した図3に示すオリフィス部(図4に示す厚さ0.2mm、溝幅2mm、スリット長さ35mmのスリット板が配置されている)付きの発泡成型金型(図6のA図、中空部の厚さ0.2mm)に射出し、注入したポリ乳酸の温度が100℃になった後、図6のB図に示すように、金型の中空部の厚さを4mmに変更し、30秒間で発泡させ中空部を満たした後、金型を40℃に冷却し、30秒間保持し、本発明の射出発泡成形品T11を製造した。
 同様にして架橋ポリ乳酸丸ペレット(A2)、(B2)、(C2)によりT12を製造した。
 更に同様にして架橋ポリ乳酸丸ペレット(A3)、(B3)、(C3)によりT13を製造した。
 T11、T12、T13の発泡倍率は20倍であった。耐熱性は全て優であった。T11、T12、T13の荷重21.6kgで測定したMIはそれぞれ、0.4、0.3、0.2であった。また、T11、T12、T13のGPC測定により、ポリスチレン換算150万以上の著しく大きい高分子量物は検知されなかった。
(実施例4)ビーズと発泡成形品
 製造機械1で説明した押し出し機の水中カッター部のダイスを小径孔0.8mmダイスに交換して使用した。製造例1から3で製造した架橋ポリ乳酸丸ペレット(A1)33.3重量部、(B1)33.3重量部、(C1)33.3重量部を定量的にヘンシェルミキサーに供給し、撹拌混合し、窒素ガスシールしたホッパーから押し出し機に定量供給し、初段Gas注入孔にポリ乳酸発泡成形材料に対して0.2重量%の窒素ガスを連続的に定量供給し、GPC測定でのポリスチレン換算分子量200万以上のポリ乳酸を、窒素ガス超臨界下で、物理的に低分子化し、せん断力を加えることにより機械的に粉砕し、再結合させて本発明のポリ乳酸発泡成形材料丸ペレットの直径(1mm)(T4)を製造した。
 同様にして丸ペレット(A2)、(B2)、(C2)により(T5)を製造した。
 更に同様にして丸ペレット(A3)、(B3)、(C3)により(T6)を製造した。
 前記丸ペレット(T4)を100重量部とイソブタン、メタノール2:1溶液5重量部をオートクレープに入れ、70℃で1時間保持した後、常温まで冷却し、本発明の発泡ビーズT4を製造した。
 同様にして丸ペレット(T5)から発泡ビーズ、T5を製造した。
 更に同様にして丸ペレット(T6)から発泡ビーズ、T6を製造した。
 前記ビーズT4、T5、T6の所定量をそれぞれ金型に入れ、水蒸気で1分間加熱発泡させ、本発明のポリ乳酸発泡成形材料発泡成形品を製造した。この発泡成形品の発泡倍率は28倍であった。耐熱性は全て優であった。この発泡成形体の、190℃、荷重21.6kgで測定したMI値はT4が0.4、T5が0.3、T6が0.2であった。GPC測定によりポリスチレン換算150万以上の著しく大きい高分子量物は検知されなかった。
(比較例4)ビーズ発泡成形
 原料は実施例4と同様に、製造例1~3で製造した架橋ポリ乳酸丸ペレット(A1)33.3重量部、(B1)33.3重量部、(C1)33.3重量部を使用した。製造機は実施例4と同様に製造機械Iの水中カッター部のダイスを小径孔0.8mmダイスに交換し、実施例4と比較するためにオリフィス部6を取り外し使用した。運転条件は実施例4と同一であるが、運転開始当初からダイス孔が目詰まりし糸状または面状等の異形物しか出せず丸ペレットの製造は出来なかった。更にダイスの目詰まりが原因で、ベント孔8でベントアップし運転継続が出来なかった。ダイス孔到達直前の溶融体を抽出しGPC測定によりポリスチレン換算200万を超える著しく大きい高分子量物が1重量%以上検知された。この原因は、ポリ乳酸溶融体の流動障害となるオリフィス部が増粘部21の後段に無いため、増粘部出口の圧力低下が起き増粘部の入口と出口間において圧力差が大きくなり、入口部の超臨界ガスがポリ乳酸溶融体から分離してガスのみの通路が形成されガス抜けを起こし、ポリ乳酸溶融体が超流動で増粘部を通過することが出来ずに発熱し、増粘部における発熱により架橋部の熱分解が加速し、オリフィス部が無いために増粘部の後部以降の樹脂圧低下から流動方向に絞られず流動の横方向にも時間を掛けて徐々に規則性無く再結合を継続したためと考えられる。
 比較例4で丸ペレットの製造が出来なかったために、オリフィス部6を取り外した状態で、水中カッター部のダイスを通常孔3.2mmダイスに交換した。実施例4の運転と同様に、(A1)33.3重量部、(B1)33.3重量部、(C1)33.3重量部を押し出し機に定量供給し、破砕オリフィス部が無い状態でポリ乳酸発泡成形材料丸ペレットの直径は約5mm(T7)を製造した。
 同様にして丸ペレット(A2)、(B2)、(C2)により(T8)を製造した。
 更に同様にして丸ペレット(A3)、(B3)、(C3)により(T9)を製造した。
 前記丸ペレット(T7)を100重量部とイソブタン、メタノール2:1溶液5重量部をオートクレープに入れ、70℃で1時間保持した後、常温まで冷却し発泡ビーズ、T7を製造した。
 同様にして丸ペレット(T8)から発泡ビーズ、T8を製造した。
 更に同様にして丸ペレット(T9)から発泡ビーズ、T9を製造した。
 前記ビーズT7、T8、T9の所定量をそれぞれ金型に入れ、水蒸気で1分間加熱発泡させ、ポリ乳酸発泡成形材料発泡成形品を製造した。この発泡成形品の発泡倍率は15倍であった。耐熱性は全て優であったが、発泡体には5mmから10mmの発泡セルが多く含まれ、強度面でも弱く実用性に乏しいと判断された。この発泡成形体の、190℃、荷重21.6kgで測定したMI値はT7が0.4、T8が0.3、T9が0.2であった。GPC測定によりポリスチレン換算200万以上の著しく大きい高分子量物が1%以上検知された。この高分子量物の多さがガス抜けの原因で、大きな発泡セルの発生を起こしたと考えられる。金型内の密封空間で発泡させたので、見掛け上の発泡倍率は15倍になったが、解放空間の場合には、大きな発泡セルのガス抜けにより発泡倍率は更に低下することが容易に予想出来、比較例4を通してオリフィス部スリットの効果を実証出来る。
(製造機械3)押出し発泡成形シート成形機
 図9に本発明を実施するのに好ましい押し出し発泡シート製造機の概略構造を示す。図9中、ヘンシェルミキサー1から後段ギアポンプ9の入口までは製造機械1で説明した構造および内容と同様である。後段ギアポンプにより加圧されたPLA溶融体は冷却部25で冷却されながらT-ダイ手前でGas(2)から発泡ガス注入孔26を経由し供給され、2ケ所以上に配置されたガス噴射孔(多数の極小径噴射孔の集まり)からPLA溶融体に噴射される。T-ダイ27からシート状に噴出し、引き取り装置28に受け渡され、更に引き取り装置28内の冷却ロール29で冷却されて、本発明の押し出し発泡成形シート30が製造される。
(実施例5)押し出し発泡成形シート
 製造機械3の押出し発泡成形シート成形機を使用し、製造例1から3で製造した架橋ポリ乳酸丸ペレット(A1)50重量部、(B1)25重量部、(C1)25重量部を定量的にヘンシェルミキサー1に連続供給混合し、窒素ガスシールしたホッパーから押し出し機に定量供給し、初段Gas注入孔からポリ乳酸発泡成形材料に対して1.0重量%の窒素ガスとメタノール重量比2:1を連続的に定量供給し、GPC測定でのポリスチレン換算分子量200万以上のポリ乳酸を、不活性ガス超臨界下で、物理的に低分子化および機械的せん断力で破砕させるオリフィス部6を経由し、冷却部を通り、100℃に冷却された厚さ0.5mm、幅30cmのシート状で100℃に保持された厚さ10cmに設定されたシート引き取り装置に押し出した。30秒間100℃で保持された発泡成形部分の後、40℃の冷却ロール部分を通過させ、ポリ乳酸のTgより5℃低く冷却された状態で定長カットし、本発明の発泡成形シートT21を製造した。
 同様にして架橋ポリ乳酸丸ペレット(A2)、(B2)、(C2)によりT22を製造した。
 更に同様にして架橋ポリ乳酸ペレット(A3)、(B3)、(C3)によりT23を製造した。
 前述のシートT21、T22、T23の耐熱性は優であった。この発泡成形体T21、T22、T23を荷重21.6kgで測定したMIはそれぞれ0.4、0.3、0.2であった。GPC測定によりポリスチレン換算150万以上の著しく大きい高分子量物は検知されなかった。
 1 ヘンシェルミキサー
 2 ホッパー
 3 シリンダー
 4 スクリュー
 5 前段ギアポンプ
 6 オリフィス部または破砕オリフィス部
 7 真空ポンプ
 8 ベント孔
 9 後段ギアポンプ部
10 水中カッター
11 樹脂圧計
12 スリット板
13 仕切り板
14 シャットオフノズル
15 金型注入孔
16 電磁弁
17 サイドシリンダー(エアシリンダー)
18 ピストン
19 可動部
20 中空部
21 増粘部
22 減圧膨張部または脱気脱水部
23 冷却アダプター
24 ガス噴射孔
25 冷却部
26 発泡ガス注入孔
27 T-ダイ
28 引き取り装置
29 冷却ロール
30 押し出し発泡成形シート

Claims (15)

  1.  D体とL体の構成比率が異なる3種類のポリ乳酸(A)、(B)および(C)と、前記ポリ乳酸の合計100重量部に対し、0.2~2.0重量部のエポキシ基またはポリイソシアネート基を有する架橋剤とからなるポリ乳酸発泡成形材料であって、GPC測定でのポリスチレン換算分子量200万以上のポリ乳酸を含まず、前記ポリ乳酸(A):(B):(C)の重量比率が25~50:25~50:25~50〔但し、(A)+(B)+(C)=100〕であり、190℃、荷重21.6kgのJIS K7210に準じて測定したMI値が0.05~5であることを特徴とするポリ乳酸発泡成形材料。
  2.  前記ポリ乳酸(A)、(B)および(C)におけるD体とL体の構成比率(D/L)が、前記ポリ乳酸(A)については、D/L=5~20/95~80〔但し、D+L=100〕であり、前記ポリ乳酸(B)については、D/L=(D+3~D+10)/(L-3~L-10)〔但し、D+L=100〕であり、前記ポリ乳酸(C)については、D/L=(D+3~D+10)/(L-3~L-10)〔但し、D+L=100〕であることを特徴とする請求項1記載のポリ乳酸発泡成形材料。
  3.  炭酸カルシウムまたはタルク微粒子を0.5~5重量部含有することを特徴とする請求項1又は2記載のポリ乳酸発泡成形材料。
  4.  請求項1~3のいずれか1項記載のポリ乳酸発泡成形材料からなることを特徴とする発泡成形品。
  5.  90℃の熱水を注入後、形態を保持していることを特徴とする請求項4の発泡成型品。
  6.  190℃、荷重21.6kgのJIS K7210に準じて測定したMI値が0.05~5であるポリ乳酸発泡成形材料を製造するための方法であって、
     D体とL体とで構成されたポリ乳酸100重量部と、エポキシ基またはポリイソシアネート基を有する架橋剤0.2~2.0重量部との架橋反応によって生成した生成物を不活性ガス超臨界下で物理的又は機械的に低分子化させ再結合させて得られた、D体とL体の構成比率が異なる3種類の架橋ポリ乳酸(A)、(B)および(C)を準備する工程、および
     前記架橋ポリ乳酸(A)、(B)および(C)を、25~50:25~50:25~50〔但し、(A)+(B)+(C)=100〕の重量比率にて混合し、得られた混合物を溶融した際に生成するGPC測定でのポリスチレン換算分子量200万以上のポリ乳酸を、不活性ガス超臨界下で、物理的又は機械的に低分子化させ再結合する工程
    を含むことを特徴とするポリ乳酸発泡成形材料の製造方法。
  7.  前記架橋ポリ乳酸(A)、(B)および(C)におけるD体とL体の構成比率(D/L)が、前記架橋ポリ乳酸(A)については、D/L=5~20/95~80〔但し、D+L=100〕であり、前記架橋ポリ乳酸(B)については、D/L=(D+3~D+10)/(L-3~L-10)〔但し、D+L=100〕であり、前記架橋ポリ乳酸(C)については、D/L=(D+3~D+10)/(L-3~L-10)〔但し、D+L=100〕であることを特徴とする請求項6記載のポリ乳酸発泡成形材料の製造方法。
  8.  190℃、荷重21.6kgのJIS K7210に準じて測定したMI値が0.05~5であるポリ乳酸発泡成形材料を製造するための方法であって、
     D体とL体の構成比率が異なる3種類のポリ乳酸(A)、(B)および(C)を準備し、前記ポリ乳酸(A)、(B)および(C)を、25~50:25~50:25~50〔但し、(A)+(B)+(C)=100〕の重量比率にて混合する工程、および
     前記工程で得られたポリ乳酸混合物100重量部と、エポキシ基またはポリイソシアネート基を有する架橋剤0.2~2.0重量部との架橋反応により生成するGPC測定でのポリスチレン換算分子量200万以上のポリ乳酸を、不活性ガス超臨界下で、物理的又は機械的に低分子化させ再結合する工程
    を含むことを特徴とするポリ乳酸発泡成形材料の製造方法。
  9.  前記ポリ乳酸(A)、(B)および(C)におけるD体とL体の構成比率(D/L)が、前記ポリ乳酸(A)については、D/L=5~20/95~80〔但し、D+L=100〕であり、前記ポリ乳酸(B)については、D/L=(D+3~D+10)/(L-3~L-10)〔但し、D+L=100〕であり、前記ポリ乳酸(C)については、D/L=(D+3~D+10)/(L-3~L-10)〔但し、D+L=100〕であることを特徴とする請求項8記載のポリ乳酸発泡成形材料の製造方法。
  10.  190℃、荷重21.6kgのJIS K7210に準じて測定したMI値が0.05~5であるポリ乳酸発泡成形材料の発泡成形品を製造するための方法であって、
     D体とL体とで構成されたポリ乳酸100重量部と、エポキシ基またはポリイソシアネート基を有する架橋剤0.2~2.0重量部との架橋反応によって生成した生成物を不活性ガス超臨界下で物理的又は機械的に低分子化させ再結合により生成した、D体とL体の構成比率が異なる3種類の架橋ポリ乳酸(A)、(B)および(C)を準備する工程、および
     前記架橋ポリ乳酸(A)、(B)および(C)を、25~50:25~50:25~50〔但し、(A)+(B)+(C)=100〕の重量比率にて混合し、得られた混合物を溶融した際に生成するGPC測定でのポリスチレン換算分子量200万以上のポリ乳酸を、不活性ガス超臨界下で、物理的又は機械的に低分子化させ再結合により生成するポリ乳酸発泡成形材料を、軟化点以上110℃以下の温度で吐出させて発泡成形する工程
    を含むことを特徴とするポリ乳酸発泡成形材料の発泡成形品の製造方法。
  11.  前記混合物100重量部に対して、炭酸カルシウムまたはタルク微粒子を0.5~5重量部添加することを特徴とする請求項10記載のポリ乳酸発泡成形材料の発泡成形品の製造方法。
  12.  190℃、荷重21.6kgのJIS K7210に準じて測定したMI値が0.05~5であるポリ乳酸発泡成形材料の発泡成形品を製造するための方法であって、
     D体とL体の構成比率が異なる3種類のポリ乳酸(A)、(B)および(C)を準備し、前記ポリ乳酸(A)、(B)および(C)を、25~50:25~50:25~50〔但し、(A)+(B)+(C)=100〕の重量比率にて混合する工程、および
     前記工程で得られたポリ乳酸混合物100重量部と、エポキシ基またはポリイソシアネート基を有する架橋剤0.2~2.0重量部との架橋反応により生成するGPC測定でのポリスチレン換算分子量200万以上のポリ乳酸を、不活性ガス超臨界下で、物理的又は機械的に低分子化させ再結合により生成するポリ乳酸発泡成形材料を、軟化点以上110℃以下の温度で吐出させて発泡成形する工程
    を含むことを特徴とするポリ乳酸発泡成形材料の発泡成形品の製造方法。
  13.  前記ポリ乳酸混合物100重量部に対して、炭酸カルシウムまたはタルク微粒子を0.5~5重量部添加することを特徴とする請求項12記載のポリ乳酸発泡成形材料の発泡成形品の製造方法。
  14.  請求項10~13のいずれか1項記載の製造方法を用いて製造されたものであることを特徴とする発泡成形品。
  15.  90℃の熱水を注入後、形態を保持していることを特徴とする請求項14記載の発泡成形品。
PCT/JP2016/075524 2015-08-31 2016-08-31 ポリ乳酸発泡成形材料、その発泡成形品と製造方法 WO2017038881A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP16841911.7A EP3345959B1 (en) 2015-08-31 2016-08-31 Polylactic acid foam molding material, foam-molded article thereof and method for producing same
CN201680050377.5A CN107922662B (zh) 2015-08-31 2016-08-31 聚乳酸发泡成形材料、其发泡成形品和制造方法
US15/755,464 US10669389B2 (en) 2015-08-31 2016-08-31 Polylactic acid foam molding material, foam-molded article thereof and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015170983A JP6691754B2 (ja) 2015-08-31 2015-08-31 ポリ乳酸発泡成形材料、その発泡成形品と製造方法
JP2015-170983 2015-08-31

Publications (1)

Publication Number Publication Date
WO2017038881A1 true WO2017038881A1 (ja) 2017-03-09

Family

ID=58187708

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/075524 WO2017038881A1 (ja) 2015-08-31 2016-08-31 ポリ乳酸発泡成形材料、その発泡成形品と製造方法

Country Status (5)

Country Link
US (1) US10669389B2 (ja)
EP (1) EP3345959B1 (ja)
JP (1) JP6691754B2 (ja)
CN (1) CN107922662B (ja)
WO (1) WO2017038881A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020180252A (ja) * 2019-04-26 2020-11-05 株式会社リコー 脂肪族ポリエステル樹脂組成物及びその製造方法、並びに製造物

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11926940B2 (en) 2015-06-30 2024-03-12 BiologiQ, Inc. Spunbond nonwoven materials and fibers including starch-based polymeric materials
US11926929B2 (en) 2015-06-30 2024-03-12 Biologiq, Inc Melt blown nonwoven materials and fibers including starch-based polymeric materials
US11359088B2 (en) 2015-06-30 2022-06-14 BiologiQ, Inc. Polymeric articles comprising blends of PBAT, PLA and a carbohydrate-based polymeric material
US11046840B2 (en) 2015-06-30 2021-06-29 BiologiQ, Inc. Methods for lending biodegradability to non-biodegradable plastic materials
US11111363B2 (en) 2015-06-30 2021-09-07 BiologiQ, Inc. Articles formed with renewable and/or sustainable green plastic material and carbohydrate-based polymeric materials lending increased strength and/or biodegradability
US11879058B2 (en) 2015-06-30 2024-01-23 Biologiq, Inc Yarn materials and fibers including starch-based polymeric materials
KR102099632B1 (ko) * 2018-05-11 2020-04-13 김대희 용사법에 의한 발포금속 제조장치
JP7287092B2 (ja) * 2019-04-26 2023-06-06 株式会社リコー 発泡シートの製造方法
EP3872122A1 (en) * 2020-02-26 2021-09-01 Ricoh Company, Ltd. Foamed body, foamed sheet, manufacture, and method for producing foamed sheet
CN112280268A (zh) * 2020-10-30 2021-01-29 河南龙都天仁生物材料有限公司 一种基于聚乳酸的可降解泡沫材料
US11420367B2 (en) * 2020-11-19 2022-08-23 Dongguan Hailex New Material Science And Technology Co., Ltd. Foam molding process by modifying amorphous PLA
US20230242730A1 (en) * 2022-01-28 2023-08-03 Ricoh Company, Ltd. Foam sheet

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999021915A1 (fr) * 1997-10-29 1999-05-06 Kanebo, Limited Composition de resine biodegradable et capable de former de la mousse
JP2000017037A (ja) * 1998-06-30 2000-01-18 Kanebo Ltd 生分解性を有する発泡性樹脂組成物
JP2002155197A (ja) * 2000-09-11 2002-05-28 Unitika Ltd 生分解性耐熱樹脂組成物、及びそれから得られるシート、成形体、発泡体
JP2007254522A (ja) * 2006-03-22 2007-10-04 Cp Kasei Kk ポリ乳酸系樹脂製発泡シート、およびこのシート製容器の製造方法
WO2011122626A1 (ja) * 2010-03-29 2011-10-06 Uchiyama Kosuke ポリ乳酸組成物、その発泡成形品と製造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW316021U (en) 1996-11-15 1997-09-11 E Lead Electronic Co Ltd Universal hand-free earphone
TW364362U (en) 1998-12-23 1999-07-11 ze-xiong Chen Improvement on structure of protection mouth-muffle
TWM278637U (en) 2004-11-17 2005-10-21 Minima Technology Co Ltd Hot sealing cutting tools for biodegradable plastic bag
AU2006229153A1 (en) 2005-03-28 2006-10-05 Toray Industries, Inc. Polylactic acid foam
TW200900220A (en) 2007-06-27 2009-01-01 Chien-Ming Huang Manufacturing method for heat resistant polylactic acid resin extrusion forming article and product thereof
CN101362833B (zh) * 2008-09-25 2012-08-22 上海交通大学 聚乳酸发泡材料的制备方法
TW201028342A (en) 2009-01-22 2010-08-01 Minima Technology Co Ltd Environmental paper container
TW201028344A (en) 2009-01-22 2010-08-01 Minima Technology Co Ltd Environmental cup lid
TW201028343A (en) 2009-01-22 2010-08-01 Minima Technology Co Ltd Environmental net bag
US9017587B2 (en) 2010-07-21 2015-04-28 Minima Technology Co., Ltd. Manufacturing method of biodegradable net-shaped articles
US20120017387A1 (en) 2010-07-21 2012-01-26 Chien-Ming Huang Biodegradable Net-Shaped and Filament-Shaped Articles
CN101899167B (zh) * 2010-07-28 2011-12-28 深圳市光华伟业实业有限公司 聚乳酸发泡方法
JP2012041400A (ja) * 2010-08-16 2012-03-01 Mitsui Chemicals Inc 発泡成型品
TWI410459B (zh) 2010-09-01 2013-10-01 Minima Technology Co Ltd Heat - resistant lightweight environmental protection package and its composition
TWI542856B (zh) 2013-12-09 2016-07-21 銘安科技股份有限公司 環保可分解之bb彈及其製作方法
US9157712B2 (en) 2014-01-10 2015-10-13 Minima Technology Co., Ltd. Environmentally friendly biodegradable BB pellet and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999021915A1 (fr) * 1997-10-29 1999-05-06 Kanebo, Limited Composition de resine biodegradable et capable de former de la mousse
JP2000017037A (ja) * 1998-06-30 2000-01-18 Kanebo Ltd 生分解性を有する発泡性樹脂組成物
JP2002155197A (ja) * 2000-09-11 2002-05-28 Unitika Ltd 生分解性耐熱樹脂組成物、及びそれから得られるシート、成形体、発泡体
JP2007254522A (ja) * 2006-03-22 2007-10-04 Cp Kasei Kk ポリ乳酸系樹脂製発泡シート、およびこのシート製容器の製造方法
WO2011122626A1 (ja) * 2010-03-29 2011-10-06 Uchiyama Kosuke ポリ乳酸組成物、その発泡成形品と製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3345959A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020180252A (ja) * 2019-04-26 2020-11-05 株式会社リコー 脂肪族ポリエステル樹脂組成物及びその製造方法、並びに製造物
JP7287091B2 (ja) 2019-04-26 2023-06-06 株式会社リコー 脂肪族ポリエステル樹脂組成物の製造方法

Also Published As

Publication number Publication date
US20180251622A1 (en) 2018-09-06
EP3345959A1 (en) 2018-07-11
CN107922662B (zh) 2021-05-14
EP3345959B1 (en) 2021-03-03
JP2017048277A (ja) 2017-03-09
CN107922662A (zh) 2018-04-17
JP6691754B2 (ja) 2020-05-13
EP3345959A4 (en) 2019-05-01
US10669389B2 (en) 2020-06-02

Similar Documents

Publication Publication Date Title
WO2017038881A1 (ja) ポリ乳酸発泡成形材料、その発泡成形品と製造方法
US8921434B2 (en) Polylactic acid composition, foam molded article thereof and method of producing the same
US10518444B2 (en) Compostable or biobased foams
Mihai et al. Extrusion foaming of semi‐crystalline PLA and PLA/thermoplastic starch blends
EP1873195B1 (en) Method of producing a molded product
US20120010307A1 (en) Expandable Beads of a Compostable or Biobased Thermoplastic Polymer
JP2022180468A (ja) 発泡シート、製造物及び発泡シートの製造方法
JP7287092B2 (ja) 発泡シートの製造方法
CA2778580A1 (en) Expandable beads of a compostable or biobased thermoplastic polymer
TWI605069B (zh) Polylactic acid foaming molding material, foamed molded article and manufacturing method thereof
EP2543489A2 (en) Process for enabling secondary expansion of expandable beads
JP6928592B2 (ja) 改質されたポリ乳酸樹脂の製造方法、ポリ乳酸樹脂およびポリ乳酸樹脂発泡シート
CN115073799B (zh) 一种可发性聚丁二酸丁二醇酯的制备方法
CA2778641A1 (en) Method of producing compostable or biobased foams
JP7143929B2 (ja) 発泡シート、製造物及び発泡シートの製造方法
US20230340221A1 (en) Aliphatic polyester resin composition, foamed sheet, method of manufacturing foamed sheet, and manufactured matter
JP2024065972A (ja) ポリ乳酸樹脂組成物、ポリ乳酸樹脂発泡体及びその製造方法、並びに製造物
CN117946504A (zh) 聚乳酸树脂组合物、聚乳酸树脂发泡体及其制造方法
JP2012077150A (ja) ポリ乳酸系樹脂発泡体およびポリ乳酸系樹脂発泡成形体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16841911

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15755464

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016841911

Country of ref document: EP