WO2017038592A1 - リンギング抑制回路 - Google Patents

リンギング抑制回路 Download PDF

Info

Publication number
WO2017038592A1
WO2017038592A1 PCT/JP2016/074725 JP2016074725W WO2017038592A1 WO 2017038592 A1 WO2017038592 A1 WO 2017038592A1 JP 2016074725 W JP2016074725 W JP 2016074725W WO 2017038592 A1 WO2017038592 A1 WO 2017038592A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
period
suppression
length
ringing
Prior art date
Application number
PCT/JP2016/074725
Other languages
English (en)
French (fr)
Inventor
寛之 森
卓矢 本田
岸上 友久
磯村 博文
Original Assignee
株式会社デンソー
株式会社日本自動車部品総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016083699A external-priority patent/JP6336508B2/ja
Application filed by 株式会社デンソー, 株式会社日本自動車部品総合研究所 filed Critical 株式会社デンソー
Priority to DE112016003984.0T priority Critical patent/DE112016003984T5/de
Priority to US15/753,596 priority patent/US10128825B2/en
Publication of WO2017038592A1 publication Critical patent/WO2017038592A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/01Shaping pulses
    • H03K5/08Shaping pulses by limiting; by thresholding; by slicing, i.e. combined limiting and thresholding
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0175Coupling arrangements; Interface arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines

Definitions

  • the present disclosure relates to a circuit that is connected to a transmission line that transmits a differential signal by a pair of high-potential side signal line and low-potential side signal line, and that suppresses ringing that occurs due to transmission of the signal.
  • Patent Document 1 discloses a technique for suppressing ringing by matching impedance only for a certain period that does not affect communication when the voltage level of a transmission line transitions between low and high.
  • Patent Document 1 the period for matching impedance is fixed. For this reason, when the actual communication speed is lower than expected, a sufficient ringing suppression effect cannot be obtained. If the actual communication speed is higher than expected, the communication signal cannot be received normally. In order to avoid such a situation, it is necessary to design a product corresponding to each communication speed, which causes an increase in product number and cost increase.
  • An object of the present disclosure is to provide a ringing suppression circuit that can optimally suppress ringing corresponding to different communication speeds.
  • a ringing suppression circuit is connected to a transmission line that transmits a differential signal that changes between a high level and a low level by a pair of signal lines, and suppresses ringing that occurs due to transmission of the signal. To do.
  • the above-described ringing suppression circuit turns on the line switching element when detecting that the voltage-driven single line switching element connected between the pair of signal lines and the level of the differential signal have changed.
  • the pair of signal lines includes a high-potential side signal line and a low-potential side signal line, and the control unit turns on the line-to-line switching element for the suppression period having the length stored in the suppression period storage unit.
  • the length of a suppression period will be determined according to the communication speed of a differential signal, the setting signal according to the length will be provided, and the length of a suppression period will be memorize
  • FIG. 1 is a functional block diagram illustrating a configuration of a ringing suppression circuit according to the first embodiment.
  • FIG. 2 is a diagram showing a part of the ringing suppression circuit by a specific circuit.
  • FIG. 3 is a diagram more specifically showing the configuration of the suppression period detection unit and the suppression period storage unit,
  • FIG. 4 is an operation timing chart.
  • FIG. 5 is a diagram (part 1) illustrating a specific configuration example of the suppression period setting unit.
  • FIG. 6 is a diagram showing the signals T1 to Tn and the on / off states of the switches.
  • FIG. 1 is a functional block diagram illustrating a configuration of a ringing suppression circuit according to the first embodiment.
  • FIG. 2 is a diagram showing a part of the ringing suppression circuit by a specific circuit.
  • FIG. 3 is a diagram more specifically showing the configuration of the suppression period detection unit and the suppression period storage unit
  • FIG. 4 is an operation timing chart.
  • FIG. 5 is a diagram (part 1) illustrating
  • FIG. 7 is a diagram (part 2) illustrating a specific configuration example of the suppression period setting unit
  • FIG. 8 is a diagram illustrating the signals T1 to Tn + 1 and the on / off states of the switches.
  • FIG. 9 is a functional block diagram showing the configuration of the ringing suppression circuit according to the second embodiment.
  • FIG. 10 is a diagram more specifically showing the configuration of the suppression period detection unit and the suppression period storage unit,
  • FIG. 11 is an operation timing chart.
  • FIG. 12 is a flowchart showing the circuit operation.
  • FIG. 13 is a functional block diagram showing the configuration of the ringing suppression circuit according to the third embodiment.
  • FIG. 14 is a diagram more specifically showing the configuration of the suppression period detection unit and the suppression period storage unit
  • FIG. 15 is an operation timing chart.
  • FIG. 16 is an operation timing chart showing the fourth embodiment.
  • FIG. 17 is a functional block diagram illustrating the configuration of the ringing suppression circuit according to the fifth embodiment.
  • FIG. 18 is a diagram (No. 1) showing a modification of the configuration for giving the setting signal
  • FIG. 19 is a diagram (No. 2) showing a modification of the configuration for giving the setting signal
  • FIG. 20 is a diagram (No. 3) showing a modification of the configuration for giving the setting signal
  • FIG. 21 is a functional block diagram showing the configuration of the ringing suppression circuit according to the sixth embodiment
  • FIG. 22 is an operation timing chart.
  • the ringing suppression circuit 1 is connected in parallel with a transmission / reception circuit 2 between a transmission line 3 including a high potential side signal line 3P and a low potential side signal line 3N.
  • a transmission circuit or a reception circuit may be used.
  • the transmission / reception circuit 2 is controlled by the communication controller 4 to transmit the differential signal by driving the transmission line 3, and when receiving the differential signal transmitted from another transmission node via the transmission line 3, the transmission / reception circuit 2 receives the differential signal. Data is input to the communication controller 4.
  • the distortion start circuit detection unit 5 detects that the voltage of the transmission line 3 has changed when a differential signal is transmitted, and gives the suppression period control unit 6 a trigger signal for starting the suppression operation of distortion and ringing.
  • a series circuit of the suppression element 7 and the switch circuit 8 is connected between the signal lines 3P and 3N.
  • the suppression period control unit 6 turns on the switch circuit 8 for the set suppression period to reduce the impedance of the transmission line 3.
  • the setting of the length of the suppression period can be changed. Therefore, the suppression period transmission unit 9 transmits a setting signal for setting the length of the suppression period in the suppression period control unit 6.
  • the setting signal is received and detected by the suppression period detection unit 10, it is stored in the suppression period storage unit 11. Then, the suppression period control unit 6 turns on the switch circuit 8 for the suppression period having the length stored in the suppression period storage unit 11.
  • the sources which are the potential reference side conduction terminals of the four N channel MOSFETs 12 to 15 are all connected to the low potential side signal line 3N, and the N channel MOSFETs 12 and 14 are controlled.
  • a gate as a terminal is connected to the high potential side signal line 3P.
  • the drain which is the non-reference side conduction terminal of the FET 15 which is the line switching element is connected to the high potential side signal line 3P, and the drains of the FETs 13 and 14 are connected to the gate of the FET 7 and through the resistance element 16. Pulled up to a high level, that is, a power supply level (Vcc).
  • the drain of the FET 12 is pulled up to a high level via the resistance element 17 and is connected to the gate of the FET 13 via the suppression period setting unit 18.
  • the FET 15 corresponds to a series circuit of the suppression element 7 and the switch circuit 8 shown in FIG. That is, the on-resistance of the FET 15 corresponds to the suppression element 7.
  • the FET 12 corresponds to the distortion start circuit detection unit 5, and the other corresponds to the suppression period control unit 6.
  • the suppression period detection unit 10 includes a comparator 21.
  • the non-inverting input terminal of the comparator 21 is given a transmission signal from the suppression period transmission unit 9.
  • a series circuit of resistance elements 22 and 23 is connected between the power supply and the ground, and the common connection point thereof is connected to the inverting input terminal of the comparator 21.
  • a series circuit of a current source 24, a selector 25, and a capacitor 26 is connected between the power source and the ground.
  • the current source 24 and the selector 25 correspond to a charging unit.
  • the lower end of the current source 24 is connected to the H side input terminal of the selector 25, and the output terminal of the selector 25 is connected to the upper end of the capacitor 26.
  • the L side input terminal of the selector 25 is open.
  • the input selection of the selector 25 is controlled by the output signal of the comparator 21. That is, the H / L side input terminal is selected in accordance with the binary level change of the output signal.
  • the suppression period detection unit 10 includes, for example, n comparators 27_1 to 27_n, and these non-inverting input terminals are commonly connected to the output terminal of the selector 25.
  • a series circuit of resistance elements 28_1 to n and 29_1 to n is provided in the same manner as the comparator 21, and the respective common connection points are connected to the inverting input terminals of the comparators 27_1 to 27_n.
  • Threshold values 1 to n are given by the potentials of the common connection points, respectively.
  • the threshold value 1 is the lowest level
  • the threshold value n is the highest level
  • the level is set so as to increase sequentially.
  • Output signals T1 to Tn of the comparators 27_1 to 27_n are input to the suppression period control unit 6 via the suppression period storage unit 11 configured by a latch circuit.
  • the suppression period setting unit 18 shown in FIG. 2 is configured by an integration circuit that can change the time constant, that is, a delay circuit.
  • the suppression period setting unit 18A shown in FIG. 5 includes resistance elements R0 to Rn, capacitors C0 to Cn, switches SWr1 to SWrn and SWc1 to SWcn.
  • a series circuit including a switch SWr1 and resistance elements R1 to SWrn and Rn is connected in parallel to the resistance element R0.
  • each resistance element R0 to Rn is connected to the ground via the capacitor C0.
  • the lower ends of the other capacitors C1 to Cn are all connected to the ground, the upper ends of the capacitors C0 and C1 are connected via the switch SWc1, and the upper ends of the capacitors Cn-1 and Cn are connected via the switch SWcn.
  • the on / off of the switches SWr1 and SWc1 to SWrn and SWcn is controlled by signals T1 to Tn input from the suppression period storage unit 11, respectively.
  • the suppression period setting unit 18B shown in FIG. 7 includes switches SWr0 and SWc0 in addition to the suppression period setting unit 18A.
  • the resistor element R0 and the capacitors C0,..., The resistor element Rn and the capacitor Cn constitute an integrating circuit, respectively, and switches SWr0,..., Rn between the common input terminal and the resistor elements R0, R1,. SWrn is arranged, and switches SWc0,..., SWcn are arranged between the capacitors C0,. ON / OFF of the switches SWr0 and SWc0 to SWrn and SWcn is controlled by a signal input from the suppression period storage unit 11 as in the suppression period setting unit 18A. In this case, the signal Tn + 1 is required.
  • the suppression period transmission unit 9 transmits a suppression period setting signal indicating the length of the suppression period as a high level period. Then, the comparator 21 of the suppression period detection unit 10 sets the output signal to a high level while the suppression period setting signal indicates a high level. Since the capacitor 26 is charged by the current source 24 while the output signal of the comparator 21 shows a high level, the terminal voltage thereof rises linearly.
  • the suppression period storage unit 11 is configured by, for example, a latch circuit, and sets the output signals T1,... To a high level using the rising edge of each signal as a trigger.
  • the integration circuit is configured by only the resistor element R0 and the capacitor C0, and the time constant is minimized.
  • the switches SWr1 and SWc1,..., SWrn and SWcn are sequentially turned on, and the time constant gradually increases (see FIG. 6).
  • the suppression period setting unit 18B shown in FIG. 7 only one of the switches SWr1, SWc1,..., SWrn, and SWcn is exclusively turned on by the output signals T1,. Thereby, any one of the integration circuits R0 and C0 to Rn and Cn is connected (see FIG. 8). In this case, the time constants of the integration circuits R0 and C0 to Rn and Cn are set to gradually increase.
  • the FETs 12 and 14 are turned on when the differential signal level is high. Is off. Therefore, the FET 15 is in an off state. From this state, when the differential signal level changes from high to low, the FETs 4 and 6 are turned off. Then, in the suppression period setting unit 18, the FET 15 is turned on after a delay time corresponding to the length of the setting period stored in the suppression period storage unit 11 has elapsed. Then, the high potential side signal line 3P and the low potential side signal line 3N are connected via the ON resistance of the FET 15, and the impedance is lowered. As a result, energy of waveform distortion generated in the falling period in which the differential signal level changes from high to low is consumed by the on-resistance, and ringing is suppressed.
  • the suppression period transmission unit 9 transmits the setting signal indicating the length of the suppression period
  • the suppression period detection unit 10 detects the length of the suppression period indicated by the setting signal
  • the suppression period storage unit 11 stores the length of the detected suppression period.
  • the suppression period control unit 6 turns on the FET 15 for the length of the suppression period stored in the suppression period storage unit 11.
  • the length of the suppression period will be determined according to the communication speed of a differential signal, and the suppression period control part 6 will transmit the setting signal, and the period when the suppression period control part 6 turns on FET15 Can be variably set. Therefore, the ringing suppression circuit 1 can optimally suppress ringing according to the applied communication speed.
  • the suppression period transmission unit 9 transmits the high level duration indicated by the setting signal according to the length of the suppression period, and the suppression period detection unit 10 detects the length of the duration.
  • the length of the suppression period can be indicated by a simple signal format.
  • the suppression period detection unit 10 charges the capacitor 26 according to the length of the duration, compares the terminal voltage of the capacitor 26 with different threshold values by the comparators 27_1 to 27_n, and outputs the output signals of the comparators 27_1 to 27_n. Since the length of the duration is detected according to the number of changes, the length of the duration can be detected with simple hardware. Since the suppression period storage unit 11 includes a latch circuit that stores the change state of the output signals of the comparators 27_1 to 27_n, the length of the suppression period indicated by the length of the duration can be stored by the latch circuit. it can.
  • the suppression period setting unit 18 includes an integration circuit configured to be able to change the time constant, and changes the time constant according to the length of the suppression period stored in the suppression period storage unit 11 to control the suppression period.
  • the unit 6 turns on the FET 15 according to the time constant. Therefore, the length of the suppression period can be adjusted with a simple configuration.
  • the same parts as those in the first embodiment are denoted by the same reference numerals, description thereof will be omitted, and different parts will be described.
  • the format of the setting signal indicating the length of the suppression period is different from that in the first embodiment. That is, as shown in FIG. 11, the length of the suppression period is indicated by the number of times the level of the setting signal changes to high / low.
  • the ringing suppression circuit 31 of the second embodiment includes a suppression period transmission unit 32 and a suppression period detection unit 33 that replace the suppression period transmission unit 9 and the suppression period detection unit 10.
  • the suppression period detection unit 33 includes an edge count start detection unit 34, an edge count stop detection unit 35, and a falling edge count unit 36.
  • the edge count start detection unit 34 is constituted by a latch circuit.
  • the edge count stop detection unit 35 includes the charging unit and capacitor 26 of the first embodiment and one comparator 27.
  • the current source 24 is connected to the L-side input terminal of the selector 25, and the H-side input terminal is connected to the ground.
  • the edge count stop detection unit 35 includes another selector 37.
  • the H-side input terminal of the selector 37 is connected to the output terminal of the suppression period transmission unit 32, and the L-side input terminal is pulled up to the power source.
  • the input selection of the selector 37 is performed by the output signal of the edge count start detection unit 34, and the input selection of the selector 25 is performed by the output signal of the selector 37.
  • the falling edge count unit 36 is composed of an n-bit counter, and the count value is latched by the latch circuit of the suppression period storage unit 11.
  • the counter is cleared when the output signal of the comparator 27 becomes high level, and the latch circuit latches input data at the rising edge of the output signal.
  • the suppression period transmission unit 32 maintains the level of the output signal low (FIG. 12; S1). Since the output signal A of the edge count start detection unit 34 is at a low level, the output signal of the selector 37 is at a high level, and the selector 25 discharges the capacitor 26. Therefore, the output signal B of the comparator 27 is at a low level. From this state, the suppression period transmission unit 32 transmits the setting signal according to the number of times of changing the level of the output signal at the binary level of high / low.
  • the output signal of the suppression period transmission unit 32 changes to high level
  • the output signal A becomes high level (S2, S3; YES), and this state is fixed thereafter (S4).
  • the selector 37 selects the H side input terminal
  • the capacitor 26 is charged.
  • the suppression period transmission unit 32 outputs the high level pulse five times as the setting signal.
  • the selector 25 discharges the capacitor 26 every time the setting signal indicates a high level, so that the signal B remains at the low level while the level of the setting signal changes within a certain time (S10). To S12).
  • the counter of the falling edge counting unit 36 performs a counting operation in response to the falling edge of the setting signal (S5, S6).
  • FIG. 11 shows only 3 bits (Q1 to Q3).
  • the suppression period transmission unit 32 transmits the setting signal by changing the number of times of output of the transition edge between the binary levels according to the length of the suppression period.
  • the detection unit 33 detects the number of outputs. Therefore, the setting signal can be transmitted in a mode in which noise resistance is further improved. In this case, since the suppression period detector 33 counts the number of times of output by the falling edge counter 36, the length of the suppression period indicated by the setting signal can be easily detected from the count value.
  • the format of the setting signal indicating the length of the suppression period is different from that of the first and second embodiments.
  • the length of the suppression period is represented by digital data based on the NRZ signal.
  • the ringing suppression circuit 41 of the third embodiment includes a suppression period transmission unit 42 and a suppression period detection unit 43 that replace the suppression period transmission unit 9 and the suppression period detection unit 10.
  • the suppression period detection unit 43 includes a setting signal detection start unit 44, a setting signal detection stop unit 45, and a bit determination unit 46.
  • the setting signal detection start unit 44 is configured by a latch circuit in the same manner as the edge count start detection unit 34 of the second embodiment.
  • the setting signal detection stop unit 45 is configured by adding an AND gate 47 and a D flip-flop 48 to the edge count stop detection unit 35 of the second embodiment.
  • the output signal A of the latch circuit is input to the selector 37 as a signal D via the AND gate 47.
  • the output signal B of the comparator 27 is given to the clock terminal CK of the D flip-flop 48, and the output terminal Q (bar) of the D flip-flop 48 gives the signal C to the input terminal of the AND gate 47.
  • the input terminal D of the D flip-flop 48 is pulled up to the power source.
  • the bit determination unit 46 includes a comparator 49 and a D flip-flop 50.
  • the non-inverting input terminal of the comparator 49 is connected to the output terminal of the AND gate 55.
  • the input terminals of the AND gate 55 are connected to the output terminal of the suppression period transmission unit 42 and the output terminal of the AND gate 47, respectively.
  • a threshold value obtained by dividing the power supply voltage by the resistance elements 51 and 52 is given to the inverting input terminal.
  • the output terminal of the comparator 49 is connected to the input terminal D of the D flip-flop 50, and a clock signal is given from the clock oscillation circuit 53 to the clock terminal CK of the D flip-flop 50.
  • the suppression period storage unit 54 of the third embodiment is configured by a memory or the like, and the signal (data) E output from the output terminal Q of the D flip-flop 48 is stored by the memory.
  • the suppression period transmission unit 42 maintains the level of the output signal low.
  • the output signal C of the D flip-flop 48 is at a high level in the initial state.
  • the output signal A of the setting signal detection start unit 44 is at a low level
  • the output signal of the selector 37 is at a high level
  • the selector 25 discharges the capacitor 26. Therefore, the output signal B of the comparator 27 is at a low level.
  • the output signal D is at the low level
  • the output signal of the AND gate 55 is also at the low level, and the signal E remains at the low level.
  • the suppression period transmission unit 42 changes the output signal to high level, the output signal A becomes high level, and this state is fixed thereafter. Then, the selector 37 selects the H side input terminal and the capacitor 26 is charged. Here, it is assumed that the suppression period transmission unit 42 transmits 5-bit data “10101” as the setting signal. At this time, as in the second embodiment, the selector 25 discharges the capacitor 26 every time the setting signal indicates a high level, so that the signal B is low while the level of the setting signal changes within a certain time. Remain in level. Note that the data transmission cycle is set to 1 ⁇ 2 of the clock signal cycle in the bit determination unit 44.
  • the signal A becomes high level
  • the signal D also becomes high level.
  • a setting signal is given to the input terminal D of the D flip-flop 50 via the AND gate 55.
  • the D flip-flop 50 is triggered by a level change according to the data “10101”. Therefore, the signal E is also a signal indicating the data “10101” serially.
  • the storage of data by the suppression period storage unit 54 may be performed by shifting serial data input by, for example, a shift register or the like using a clock signal. Then, by decoding the data stored in the suppression period storage unit 54 via a decoder, the time constant may be adjusted as in the first embodiment.
  • the suppression period transmission unit 42 converts the length of the suppression period in the setting signal into data using an NRZ signal having a predetermined format, and transmits the data in the suppression period detection unit 43. The value was detected. If comprised in this way, it becomes unnecessary to lengthen the transmission period of a setting signal according to the case where a suppression period is set longer.
  • the fourth embodiment shows a case where the setting signal is transmitted in the PWM signal format using the ringing suppression circuit 41 of the third embodiment.
  • a duty ratio of 75% is set to data “0”
  • a duty ratio of 25% is set to data “1”.
  • the PWM cycle is matched with the clock signal cycle of the clock oscillation circuit 53, and the setting signal is transmitted at a timing at which the rising edge of the clock signal coincides with the center phase of the PWM cycle.
  • the signal E is a signal in which the duty ratio 100% indicates data “0” and the duty ratio 0% indicates data “1”.
  • the setting signal can be transmitted in the PWM signal format.
  • the ringing suppression circuit 61 of the fifth embodiment does not include the suppression period transmission unit 9 and the like in the first to fourth embodiments, and the input terminal of the suppression period detection unit 62 has a power supply
  • the common connection point of the resistance elements 63 and 64 connected between the ground and the ground is connected. That is, in the fifth embodiment, the setting signal is applied at a voltage level obtained by dividing the power supply voltage.
  • the suppression period detection unit 62 has a configuration in which the comparator 21 to the capacitor 26 are deleted from the suppression period detection unit 10 of the first embodiment.
  • the resistance elements 63 and 64 are connected to the non-inverting input terminals of the comparators 27_1 to 27_n.
  • the common connection point is directly connected. That is, in the fifth embodiment, the length of the suppression period is set according to the level of the voltage level indicated by the setting signal.
  • the setting signal can be given by the voltage level obtained by dividing the power supply voltage without including the suppression period transmission unit 9 and the like as in the first to fourth embodiments. .
  • a voltage level is obtained using a series circuit of variable resistance elements 65 and 66. Can also be changed. Only one of the resistance elements 63 and 64 may be replaced with a variable resistance element.
  • a selector 67 is connected to the lower end of the resistance element 63, and resistance elements 64 (1) to 64 (64) on the ground side having different resistance values. You may employ
  • the selector 67 is replaced with n N-channel MOSFETs 68 (1) to 68 (n), and one or more of them are selectively turned on to change the voltage level. You can also.
  • the resistance values of the resistance elements 64 (1) to 64 (n) may all be the same.
  • an NPN transistor, an analog switch, or the like may be used.
  • the setting signal is input to the suppression period detection unit 72 of the ringing suppression circuit 71 as a pulse signal.
  • the length of the suppression period is indicated by the pulse width of the signal.
  • the comparator 21 in the suppression period detection unit 10 of the first embodiment is replaced by a selector 73, and a selector 74 is also inserted between the upper end of the capacitor 26 and the comparator 27.
  • the suppression period detection unit 72 includes an edge detection unit 75, a power supply detection unit 76, and a setting enable signal generation unit 77.
  • the power supply detection unit 76 outputs an ON trigger signal to the setting enable signal generation unit 77 when detecting that the ringing suppression circuit 71 is turned on.
  • the edge detection unit 75 is configured by, for example, a flip-flop, and outputs an OFF trigger signal to the setting enable signal generation unit 77 when a falling edge of the input pulse signal is detected.
  • the setting enable signal generation unit 77 sets the setting enable signal to the active level high when the ON trigger signal is input, and sets the setting enable signal to the low level when the OFF trigger signal is input. Switching control of the selectors 73 and 74 is performed by a setting enable signal.
  • the power detection unit 76 corresponds to a power supply detection unit
  • the setting enable signal generation unit 77 corresponds to an enable signal output unit.
  • the current source 24 to the capacitor 26 correspond to a voltage signal conversion unit.
  • the selector 25 is on the R side and the selectors 73 and 74 are on the OFF side.
  • the power detection unit 76 outputs an ON trigger signal
  • the setting enable signal generation unit 77 sets the setting enable signal to a high level.
  • the selector 25 is switched to the D side for a period corresponding to the pulse width indicating the high level, and the capacitor 26 is charged by the current source 24.
  • the edge detection unit 75 outputs an OFF trigger signal at the timing of the falling edge.
  • the setting enable signal generator 77 sets the setting enable signal to a low level. Then, charging of the capacitor 26 is stopped, and both the selectors 73 and 74 are switched to the OFF side, and the terminal voltage of the capacitor 26 at that time is output to the comparator 27.
  • the capacitor 26 is charged in the period corresponding to the pulse width during the period in which the input pulse signal is at the high level and the period in which the input enable signal is at the active level.
  • a suppression period of a length corresponding to is set.
  • the input setting signal is shown by a plurality of pulse trains, but the setting signal may be a single pulse signal.
  • the setting signal may be transmitted by a setting signal transmission unit as in the first to fourth embodiments, for example.
  • the power detection unit 76 outputs the ON trigger signal when detecting that the ringing suppression circuit 71 is turned on, and the edge detection unit 75 determines the length of the suppression period.
  • an OFF trigger signal is output.
  • the setting enable signal generator 77 sets the setting enable signal to a high level when an ON trigger signal is input, and sets the signal to a low level when an OFF trigger signal is input.
  • a setting signal input during a period in which the enable signal is active is converted into a voltage signal having a level corresponding to the pulse width. Therefore, the suppression period can be set in a short time.
  • the setting signal transmitted by the setting signal transmission unit may be, for example, a format in which the length of the suppression period is indicated by a voltage level by resistance voltage division.
  • Any component may be realized not only by hardware but also by software.
  • the definition of the data “1, 0” may be reversed. Further, the duty ratio corresponding to the data value in the fourth embodiment may be defined by changing as appropriate.
  • the suppression period setting unit may be configured using a timer.
  • the configuration of the suppression period detection unit 72 in the sixth embodiment is merely an example, and any logic may be used as long as the configuration converts the voltage signal to a level corresponding to the pulse width of the setting signal.
  • each section is expressed as, for example, S1. Further, each section can be divided into a plurality of subsections, while a plurality of sections can be combined into one section. Further, each section configured in this manner can be referred to as a device, module, or means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Nonlinear Science (AREA)
  • Logic Circuits (AREA)

Abstract

リンギング抑制回路は、一対の信号線によりハイ,ローの2値レベルに変化する差動信号を伝送する伝送線路(3)に接続され、前記信号の伝送に伴い発生するリンギングを抑制する。リンギング抑制回路は、前記一対の信号線間に接続される電圧駆動型で単一の線間スイッチング素子(15)と、前記差動信号のレベルが変化したことを検出すると、前記線間スイッチング素子をオンさせて前記信号線間のインピーダンスを低下させる制御部(6)と、入力される設定信号により示される抑制期間の長さを検出する期間検出部(10,33,43)と、前記検出された抑制期間の長さを記憶する抑制期間記憶部(11,54)とを備える。前記一対の信号線は、高電位側信号線(3P)と低電位側信号線(3N)を備え、前記制御部は、抑制期間記憶部に記憶された長さの抑制期間だけ、前記線間スイッチング素子をオンさせる。

Description

リンギング抑制回路 関連出願の相互参照
 本出願は、2015年9月1日に出願された日本特許出願番号2015-171942号と2016年4月19日に出願された日本特許出願番号2016-83699号に基づくもので、ここにそれらの記載内容を援用する。
 本開示は、一対の高電位側信号線,低電位側信号線により差動信号を伝送する伝送線路に接続され、前記信号の伝送に伴い発生するリンギングを抑制する回路に関する。
 伝送線路を介してデジタル信号を伝送する場合、受信側においては、信号レベルが変化するタイミングで信号エネルギーの一部が反射することで、オーバーシュートやアンダーシュートのような波形の歪み,すなわちリンギングが生じる問題がある。そして、従来、波形歪みを抑制する技術については様々な提案がされている。例えば特許文献1では、伝送路の電圧レベルがロー,ハイ間で遷移する際に、通信に影響しない一定期間のみインピーダンスを整合させてリンギングを抑制する技術が開示されている。
 しかしながら、特許文献1では、インピーダンスを整合させる期間が固定されている。そのため、実際の通信速度が想定していたものよりも低速であった場合は、十分なリンギング抑制効果が得られない。また、実際の通信速度が想定していたものよりも高速であった場合は、通信信号を正常に受信できなくなってしまう。このような事態を回避するには、個別の通信速度に対応して製品を設計する必要があり、品番の増加やコストアップの要因となっていた。
特許第5498527号公報
 本開示の目的は、異なる通信速度に対応して最適にリンギングを抑制できるリンギング抑制回路を提供することにある。
 本開示の一態様に係るリンギング抑制回路は、一対の信号線によりハイ,ローの2値レベルに変化する差動信号を伝送する伝送線路に接続され、前記信号の伝送に伴い発生するリンギングを抑制する。上記のリンギング抑制回路は、一対の信号線間に接続される電圧駆動型で単一の線間スイッチング素子と、差動信号のレベルが変化したことを検出すると、線間スイッチング素子をオンさせて前記信号線間のインピーダンスを低下させる制御部と、入力される設定信号により示される抑制期間の長さを検出する期間検出部と、検出された抑制期間の長さを記憶する抑制期間記憶部とを備える。一対の信号線は、高電位側信号線と低電位側信号線を備え、制御部は、抑制期間記憶部に記憶された長さの抑制期間だけ、線間スイッチング素子をオンさせる。
 このように構成すれば、差動信号の通信速度に応じて抑制期間の長さを決定して、その長さに応じた設定信号を付与し、抑制期間の長さを抑制期間記憶部に記憶することで、制御部が線間スイッチング素子をオンさせる期間を可変設定できる。したがって、通信速度に応じて最適にリンギングを抑制することが可能になる。
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。図面においては、
図1は、第1実施形態であり、リンギング抑制回路の構成を示す機能ブロック図であり、 図2は、リンギング抑制回路の一部を、具体的な回路で示す図であり、 図3は、抑制期間検出部及び抑制期間記憶部の構成をより具体的に示す図であり、 図4は、動作タイミングチャートであり、 図5は、抑制期間設定部の具体的な構成例を示す図(その1)であり、 図6は、信号T1~Tnと各スイッチのオンオフ状態を示す図であり、 図7は、抑制期間設定部の具体的な構成例を示す図(その2)であり、 図8は、信号T1~Tn+1と各スイッチのオンオフ状態を示す図であり、 図9は、第2実施形態であり、リンギング抑制回路の構成を示す機能ブロック図であり、 図10は、抑制期間検出部及び抑制期間記憶部の構成をより具体的に示す図であり、 図11は、動作タイミングチャートであり、 図12は、回路動作を示すフローチャートであり、 図13は、第3実施形態であり、リンギング抑制回路の構成を示す機能ブロック図であり、 図14は、抑制期間検出部及び抑制期間記憶部の構成をより具体的に示す図であり、 図15は、動作タイミングチャートであり、 図16は、第4実施形態を示す動作タイミングチャートであり、 図17は、第5実施形態であり、リンギング抑制回路の構成を示す機能ブロック図であり、 図18は、設定信号を付与する構成の変形例を示す図(その1)であり、 図19は、設定信号を付与する構成の変形例を示す図(その2)であり、 図20は、設定信号を付与する構成の変形例を示す図(その3)であり、 図21は、第6実施形態であり、リンギング抑制回路の構成を示す機能ブロック図であり、及び、 図22は、動作タイミングチャートである。
  (第1実施形態)
 以下、第1実施形態について説明する。図1に示すように、リンギング抑制回路1は、送受信回路2と共に、高電位側信号線3P,低電位側信号線3Nよりなる伝送線路3の間に並列に接続されている。尚、送受信回路2に替えて、送信回路又は受信回路でも良い。送受信回路2は、通信コントローラ4により制御され、伝送線路3を駆動して差動信号を送信し、また、伝送線路3を介して他の送信ノードより送信された差動信号を受信すると、受信データを通信コントローラ4に入力する。
 歪開始回路検出部5は、差動信号が伝送される際に伝送線路3の電圧が変化したことを検出し、抑制期間制御部6に歪,リンギングの抑制動作を開始させるトリガ信号を与える。信号線3P,3Nの間には、抑制素子7及びスイッチ回路8の直列回路が接続されている。抑制期間制御部6は、上記のトリガ信号が入力されると、設定された抑制期間だけスイッチ回路8をオンして伝送路3のインピーダンスを低下させる。
 本実施形態において、前記抑制期間の長さの設定を変更可能にする。そのため、抑制期間送信部9は、抑制期間の長さを抑制期間制御部6に設定する設定信号を送信する。設定信号は抑制期間検出部10により受信されて検出されると、抑制期間記憶部11に記憶される。そして、抑制期間制御部6は、抑制期間記憶部11に記憶された長さの抑制期間だけスイッチ回路8をオンする。
 より具体的な構成を示す図2において、4つのNチャネルMOSFET12~15の電位基準側導通端子であるソースは、何れも低電位側信号線3Nに接続されており、NチャネルMOSFET12及び14の制御端子であるゲートは、高電位側信号線3Pに接続されている。
 線間スイッチング素子であるFET15の非基準側導通端子であるドレインは高電位側信号線3Pに接続されており、FET13及び14のドレインはFET7のゲートに接続されていると共に抵抗素子16を介してハイレベル,すなわち電源レベル;Vcc)にプルアップされている。FET12のドレインは、抵抗素子17介してハイレベルにプルアップされていると共に、抑制期間設定部18を介してFET13のゲートに接続されている。以上において、FET15は図1に示す抑制素子7及びスイッチ回路8の直列回路に相当する。つまり、FET15のオン抵抗が抑制素子7に相当している。また、FET12は歪開始回路検出部5に相当し、その他は抑制期間制御部6に相当する。
 図3に示すように、抑制期間検出部10はコンパレータ21を備えている。コンパレータ21の非反転入力端子には、抑制期間送信部9からの送信信号が与えられる。電源とグランドとの間には抵抗素子22及び23の直列回路が接続されており、それらの共通接続点はコンパレータ21の反転入力端子に接続されている。
 また、電源とグランドとの間には、電流源24,セレクタ25及びコンデンサ26の直列回路が接続されている。電流源24及びセレクタ25は充電部に相当する。電流源24の下端は、セレクタ25のH側入力端子に接続されており、セレクタ25の出力端子がコンデンサ26の上端に接続されている。セレクタ25のL側入力端子はオープンである。セレクタ25の入力選択はコンパレータ21の出力信号で制御される。すなわち、前記出力信号の二値レベル変化に応じて、H/L側入力端子が選択される。
 更に、抑制期間検出部10は、例えばn個のコンパレータ27_1~27_nを備えており、これらの非反転入力端子は共通に、セレクタ25の出力端子に接続されている。各コンパレータ27_1~27_nに対応して、コンパレータ21と同様に抵抗素子28_1~n及び29_1~nの直列回路が設けられており、それぞれの共通接続点がコンパレータ27_1~27_nの反転入力端子に接続されている。各共通接続点の電位によりそれぞれ閾値1~nが付与される。閾値1が最低レベル,閾値nが最高レベルであり、それらの間は順次レベルが上昇するように設定されている。各コンパレータ27_1~27_nの出力信号T1~Tnは、ラッチ回路で構成される抑制期間記憶部11を介して抑制期間制御部6に入力されている。
 図2に示す抑制期間設定部18は、図5又は図7に示すように、時定数を変更可能な積分回路,すなわち遅延回路で構成されている。図5に示す抑制期間設定部18Aは、抵抗素子R0~Rn,コンデンサC0~Cn,スイッチSWr1~SWrn及びSWc1~SWcnを有している。抵抗素子R0に対して、スイッチSWr1及び抵抗素子R1~SWrn及びRnからなる各直列回路が並列に接続されている。
 各抵抗素子R0~Rnの共通接続点は、コンデンサC0を介してグランドに接続されている。その他のコンデンサC1~Cnの下端は何れもグランドに接続され、コンデンサC0,C1の上端はスイッチSWc1を介して接続され、…コンデンサCn-1,Cnの上端はスイッチSWcnを介して接続されている。スイッチSWr1及びSWc1~SWrn及びSWcnのオンオフは、それぞれ抑制期間記憶部11より入力される信号T1~Tnにより制御される。
 また、図7に示す抑制期間設定部18Bは、抑制期間設定部18Aに加えてスイッチSWr0及びSWc0を備えている。抵抗素子R0及びコンデンサC0,…,抵抗素子Rn及びコンデンサCnがそれぞれ積分回路を構成しており、共通の入力端子と抵抗素子R0,R1,…,Rnとの間にはそれぞれスイッチSWr0,…,SWrnが配置されており、コンデンサC0,…,Cnと共通の出力端子との間にはそれぞれスイッチSWc0,…,SWcnが配置されている。スイッチSWr0及びSWc0~SWrn及びSWcnのオンオフは、抑制期間設定部18Aと同様に抑制期間記憶部11より入力される信号により制御されるが、この場合は信号Tn+1まで必要となる。
 次に、本実施形態の作用について説明する。図4に示すように、抑制期間送信部9は、抑制期間の長さをハイレベル期間で示す抑制期間設定信号を送信する。すると、抑制期間検出部10のコンパレータ21は、抑制期間設定信号がハイレベルを示す間に出力信号をハイレベルにする。コンパレータ21の出力信号がハイレベルを示す間、コンデンサ26は電流源24により充電されるので、その端子電圧は線形に上昇する。
 コンデンサ26の端子電圧が上昇する期間の長さに応じて、コンパレータ27は、設定されている閾値が低い方から順次出力信号をハイレベルに変化させる。抑制期間記憶部11は例えばラッチ回路で構成され、各信号の立上りエッジをトリガとして出力信号T1,…をハイレベルにする。
 図5に示す抑制期間設定部18Aの構成では、全てのスイッチがオフの場合は抵抗素子R0及びコンデンサC0のみで積分回路が構成され、時定数が最小になっている。その状態から出力信号T1,…,Tnが順次ハイレベルに変化すると、スイッチSWr1及びSWc1,…,SWrn及びSWcnが順次オンになり、時定数が漸増する(図6参照)。
 また、図7に示す抑制期間設定部18Bの構成では、出力信号T1,…,Tn+1により、スイッチSWr1及びSWc1,…,SWrn及びSWcnの何れか一組のだけが排他的にオンされる。これにより、積分回路R0及びC0~Rn及びCnの何れか1つが接続される(図8参照)。この場合、積分回路R0及びC0~Rn及びCnの時定数が、次第に大きくなるように設定されている。
 そして、伝送線路3に接続されている通信ノードによって伝送線路3がドライブされて差動信号が送信された際に、差動信号レベルがハイの場合にFET12及び14はオンしているので、FET13はオフしている。したがって、FET15はオフ状態となっている。この状態から、差動信号レベルがハイからローに変化するとFET4及び6がターンオフする。すると、抑制期間設定部18において、抑制期間記憶部11に記憶された設定期間の長さに応じた遅延時間が経過した後にFET15がターンオンする。すると、高電位側信号線3P,低電位側信号線3N間はFET15のオン抵抗を介して接続されることになり、インピーダンスが低下する。これにより、差動信号レベルがハイからローに変化する立下り期間に発生する波形歪みのエネルギーが上記オン抵抗により消費され、リンギングが抑制される。
 以上のように本実施形態によれば、抑制期間送信部9が抑制期間の長さを示す設定信号を送信すると、抑制期間検出部10が設定信号により示される抑制期間の長さを検出し、抑制期間記憶部11は検出された抑制期間の長さを記憶する。そして、抑制期間制御部6は、歪み抑制開始検出部5が差動信号のレベルが変化したことを検出すると、抑制期間記憶部11に記憶された長さの抑制期間だけFET15をオンさせる。
 このように構成すれば、差動信号の通信速度に応じて抑制期間の長さを決定し、抑制期間送信部9が設定信号を送信することで、抑制期間制御部6がFET15をオンさせる期間を可変設定できる。したがって、リンギング抑制回路1は、適用される通信速度に応じてリンギングを最適に抑制することが可能になる。
 この場合、抑制期間送信部9は、抑制期間の長さに応じて設定信号が示すハイレベルの継続時間を変化させて送信し、抑制期間検出部10は前記継続時間の長さを検出するので、簡単な信号形式により抑制期間の長さを示すことができる。
 また、抑制期間検出部10は、前記継続時間の長さに応じてコンデンサ26を充電し、コンデンサ26の端子電圧を、コンパレータ27_1~27_nによりそれぞれ異なる閾値と比較し、コンパレータ27_1~27_nの出力信号が変化する数に応じて継続時間の長さを検出するので、簡単なハードウェアにより継続時間の長さを検出できる。そして、抑制期間記憶部11は、コンパレータ27_1~27_nの出力信号の変化状態を記憶するラッチ回路を備えるので、継続時間の長さで示された抑制期間の長さをラッチ回路で記憶することができる。
 加えて、抑制期間設定部18は、時定数を変更可能に構成される積分回路を備え、抑制期間記憶部11に記憶された抑制期間の長さに応じて時定数を変化させ、抑制期間制御部6は、前記時定数に応じてFET15をオンさせる。したがって、抑制期間の長さを簡単な構成によって調整できる。
  (第2実施形態)
 以下、第1実施形態と同一部分には同一符号を付して説明を省略し、異なる部分について説明する。第2実施形態では、抑制期間の長さを示す設定信号の形式が第1実施形態とは異なっている。すなわち、図11に示すように、設定信号のレベルがハイ/ローに変化する回数により抑制期間の長さが示される。
 図9に示すように、第2実施形態のリンギング抑制回路31は、抑制期間送信部9及び抑制期間検出部10に替わる抑制期間送信部32及び抑制期間検出部33を備えている。抑制期間検出部33は、エッジカウント開始検出部34,エッジカウント停止検出部35及び立下りエッジカウント部36を有している。
 図10に示すように、エッジカウント開始検出部34はラッチ回路で構成されている。エッジカウント停止検出部35は、第1実施形態の充電部及びコンデンサ26と、1つのコンパレータ27とを備えている。但し、電流源24はセレクタ25のL側入力端子に接続されており、H側入力端子はグランドに接続されている。
 これらに加えて、エッジカウント停止検出部35は、もう1つのセレクタ37を備えている。セレクタ37のH側入力端子は抑制期間送信部32の出力端子に接続され、L側入力端子は電源にプルアップされている。セレクタ37の入力選択はエッジカウント開始検出部34の出力信号によって行われ、セレクタ25の入力選択はセレクタ37の出力信号によって行われる。
 立下りエッジカウント部36はnビットカウンタで構成され、そのカウント値は、抑制期間記憶部11のラッチ回路によりラッチされる。前記カウンタは、コンパレータ27の出力信号がハイレベルになるとクリアされ、前記ラッチ回路は前記出力信号の立上りエッジで入力データをラッチする。
 次に、第2実施形態の作用について説明する。図11に示すように、初期状態では、抑制期間送信部32は出力信号のレベルをローに維持している(図12;S1)。エッジカウント開始検出部34の出力信号Aはローレベルであるから、セレクタ37の出力信号はハイレベルになり、セレクタ25はコンデンサ26を放電させている。したがって、コンパレータ27の出力信号Bはローレベルになっている。この状態から、抑制期間送信部32は出力信号のレベルをハイ/ローの二値レベルで変化させる回数によって設定信号を送信する。
 最初に抑制期間送信部32の出力信号がハイレベルに変化すると、出力信号Aがハイレベルになり(S2,S3;YES)、以後この状態が固定される(S4)。すると、セレクタ37はH側入力端子を選択するので、コンデンサ26が充電される。ここで、抑制期間送信部32が設定信号としてハイレベルパルスを5回出力したとする。この時、セレクタ25は、設定信号がハイレベルを示す毎にコンデンサ26を放電させるので、設定信号のレベルが一定時間内で変化している間は、信号Bはローレベルのままである(S10~S12)。
 設定信号の立下りエッジにより、立下りエッジカウント部36のカウンタはカウント動作を行う(S5,S6)。図11では3ビット(Q1~Q3)のみを示す。そして、設定信号の送信が完了してローレベルが継続する状態になると(S7)、コンデンサ26の充電が継続されて端子電圧が上昇する。端子電圧がコンパレータ27の閾値電圧を超えると信号Bがハイレベルとなり(S12;YES)、抑制期間記憶部11のラッチ回路はカウント値「5」をラッチし(S8)、立下りエッジカウント部36のカウンタはクリアされる(S9)。
 以上のように第2実施形態によれば、抑制期間送信部32は、抑制期間の長さに応じて設定信号が2値レベル間で遷移するエッジの出力回数を変化させて送信し、抑制期間検出部33は、その出力回数を検出する。したがって、よりノイズ耐性を向上させた態様で設定信号を送信できる。この場合、抑制期間検出部33は、立下りエッジカウント部36により前記出力回数をカウントするので、設定信号で示される抑制期間の長さをカウント値により簡単に検出できる。
  (第3実施形態)
 第3実施形態では、抑制期間の長さを示す設定信号の形式が第1及び第2実施形態とは異なっており、図15に示すように、NRZ信号によるデジタルデータで抑制期間の長さが示される。図13に示すように、第3実施形態のリンギング抑制回路41は、抑制期間送信部9及び抑制期間検出部10に替わる抑制期間送信部42及び抑制期間検出部43を備えている。抑制期間検出部43は、設定信号検出開始部44,設定信号検出停止部45及びビット判定部46を有している。
 図14に示すように、設定信号検出開始部44は、第2実施形態のエッジカウント開始検出部34と同じくラッチ回路で構成されている。設定信号検出停止部45は、第2実施形態のエッジカウント停止検出部35に、ANDゲート47及びDフリップフロップ48を加えて構成されている。上記のラッチ回路の出力信号Aは、ANDゲート47を介した信号Dとしてセレクタ37に入力される。コンパレータ27の出力信号Bは、Dフリップフロップ48のクロック端子CKに与えられ、Dフリップフロップ48の出力端子Q(バー)は、信号CをANDゲート47の入力端子に与える。Dフリップフロップ48の入力端子Dは、電源にプルアップされている。
 ビット判定部46は、コンパレータ49,Dフリップフロップ50を備えている。コンパレータ49の非反転入力端子は、ANDゲート55の出力端子に接続されている。ANDゲート55の入力端子は、それぞれ抑制期間送信部42の出力端子,ANDゲート47の出力端子に接続されている。反転入力端子には、電源電圧を抵抗素子51及び52により分圧した閾値が与えられている。コンパレータ49の出力端子は、Dフリップフロップ50の入力端子Dに接続されており、Dフリップフロップ50のクロック端子CKには、クロック発振回路53よりクロック信号が与えられている。また、第3実施形態の抑制期間記憶部54はメモリ等により構成され、Dフリップフロップ48の出力端子Qより出力される信号(データ)Eは、上記のメモリにより記憶される。
 次に、第3実施形態の作用について説明する。図16に示すように、初期状態では、抑制期間送信部42は出力信号のレベルをローに維持している。尚、Dフリップフロップ48の出力信号Cは、初期状態でハイレベルである。第2実施形態と同様、設定信号検出開始部44の出力信号Aはローレベルでセレクタ37の出力信号はハイレベルになり、セレクタ25はコンデンサ26を放電させている。したがって、コンパレータ27の出力信号Bはローレベルである。また、信号DがローレベルであるからANDゲート55の出力信号もローレベルとなり、信号Eもローレベルのままである。
 この状態から、抑制期間送信部42が出力信号をハイレベルに変化させると、出力信号Aがハイレベルになり、以後この状態が固定される。すると、セレクタ37がH側入力端子を選択してコンデンサ26が充電される。ここで、抑制期間送信部42が設定信号として、5ビットのデータ「10101」を送信したとする。この時、セレクタ25は第2実施形態と同様に、設定信号がハイレベルを示す毎にコンデンサ26を放電させるので、設定信号のレベルが一定時間内で変化している間は、信号Bはローレベルのままである。尚、データ送信周期は、ビット判定部44におけるクロック信号周期の2分周に設定する。
 また、信号Aがハイレベルになると信号Dもハイレベルになる。これにより、ANDゲート55を介してDフリップフロップ50の入力端子Dに設定信号が与えられる。すると、Dフリップフロップ50はデータ「10101」に応じたレベル変化によりトリガされる。したがって、信号Eもデータ「10101」をシリアルに示す信号となる。
 そして、設定信号の送信が完了してローレベルが継続する状態になると、第2実施形態と同様にコンデンサ26の充電が継続されて端子電圧が上昇し、コンパレータ27の閾値電圧を超えると信号BがハイレベルとなりDフリップフロップ48がトリガされる。すると信号Cがローレベルになり、それに伴い信号Dもローレベルになる。
 ここで、抑制期間記憶部54によるデータの記憶は、例えばシフトレジスタ等により入力されるシリアルデータをクロック信号によりシフトすることで行うようにすれば良い。そして、抑制期間記憶部54に記憶されたデータを、デコーダを介してデコードすることで、第1実施形態と同様に時定数を調整すれば良い。
 以上のように第3実施形態によれば、抑制期間送信部42は、設定信号において抑制期間の長さを所定の形式であるNRZ信号によりデータ化して送信し、抑制期間検出部43はそのデータ値を検出するようにした。このように構成すれば、抑制期間をより長く設定する場合に応じて、設定信号の送信期間を長くする必要がなくなる。
  (第4実施形態)
 第4実施形態は、第3実施形態のリンギング抑制回路41を用いて、設定信号をPWM信号形式で送信する場合を示す。図16に示すように、例えばデューティ比75%をデータ「0」とし、デューティ比25%をデータ「1」とする。そして、PWM周期をクロック発振回路53のクロック信号周期に合わせ、当該クロック信号の立上りエッジがPWM周期の中心位相に一致するタイミングで設定信号を送信する。すると、信号Eは、デューティ比100%がデータ「0」,デューティ比0%がデータ「1」を示す信号となる。
 以上のように構成される第4実施形態によれば、設定信号をPWM信号形式で送信することができる。
  (第5実施形態)
 図17に示すように、第5実施形態のリンギング抑制回路61は、第1~第4実施形態における抑制期間送信部9等を備えておらず、抑制期間検出部62の入力端子には、電源とグランドとの間に接続される抵抗素子63及び64の共通接続点が接続されている。つまり第5実施形態では設定信号を、電源電圧を分圧した電圧レベルで付与する。そして、抑制期間検出部62は、第1実施形態の抑制期間検出部10よりコンパレータ21~コンデンサ26を削除した構成であり、コンパレータ27_1~27_nの非反転入力端子には、抵抗素子63及び64の共通接続点が直接接続されている。すなわち第5実施形態では、設定信号により示される電圧レベルの高低に応じて抑制期間の長短を設定する。
 以上のように構成される第5実施形態によれば、第1~第4実施形態のように抑制期間送信部9等を備えずとも、電源電圧を分圧した電圧レベルによって設定信号を付与できる。
 また、上記のように設定信号を電圧レベルで付与する構成としてはその他、抵抗素子63及び64に替えて、例えば図18に示すように、可変抵抗素子65及び66の直列回路を用いて電圧レベルを変更することもできる。尚、抵抗素子63及び64の何れか一方だけを可変抵抗素子に置き換えても良い。
 同様に、電圧レベルを変更可能な構成としては、例えば図19に示すように、抵抗素子63の下端にセレクタ67を接続し、それぞれ抵抗値が異なるグランド側の抵抗素子64(1)~64(n)との接続を切替える構成を採用しても良い。
 また、例えば図20に示すように、セレクタ67をn個のNチャネルMOSFET68(1)~68(n)に置き換えて、それらの1つ以上を選択的にオンすることで電圧レベルを変更することもできる。この場合、抵抗素子64(1)~64(n)の抵抗値は全て同じであっても良い。また、NチャネルMOSFET68に替えて、NPNトランジスタやアナログスイッチ等を用いても良い。
  (第6実施形態)
 図21に示すように、第6実施形態では、設定信号がパルス信号としてリンギング抑制回路71の抑制期間検出部72に入力される。そして、抑制期間の長短は、上記信号のパルス幅で示される。抑制期間検出部72では、第1実施形態の抑制期間検出部10におけるコンパレータ21がセレクタ73に置き換えられており、コンデンサ26の上端とコンパレータ27との間にもセレクタ74が挿入されている。また、抑制期間検出部72は、エッジ検出部75,電源検出部76及び設定イネーブル信号生成部77を備えている。
 電源検出部76は、リンギング抑制回路71に電源が投入されたことを検出するとONトリガ信号を設定イネーブル信号生成部77に出力する。エッジ検出部75は例えばフリップフロップ等で構成され、入力されるパルス信号の立下りエッジを検出するとOFFトリガ信号を設定イネーブル信号生成部77に出力する。設定イネーブル信号生成部77は、ONトリガ信号が入力されると設定イネーブル信号をアクティブレベルのハイにし、OFFトリガ信号が入力されると設定イネーブル信号をローレベルにする。セレクタ73及び74の切替制御は、設定イネーブル信号によって行われる。
 以上において、電源検出部76は電源供給検出部に相当し、設定イネーブル信号生成部77はイネーブル信号出力部に相当する。また、電流源24~コンデンサ26は電圧信号変換部に相当する。
 次に、第6実施形態の作用について説明する。初期状態で、セレクタ25はR側に,セレクタ73及び74はOFF側になっている。図22に示すように、リンギング抑制回路71に電源が投入されると電源検出部76がONトリガ信号を出力し、設定イネーブル信号生成部77は設定イネーブル信号をハイレベルにする。これにより、セレクタ73及び74は何れもON側に切り替わる。
 この状態で、セレクタ73にパルス信号が入力されると、セレクタ25は、前記信号がハイレベルを示すパルス幅相当の期間だけD側に切り替わり、コンデンサ26は電流源24により充電される。そして、パルス信号のレベルがハイからローに変化すると、その立下りエッジのタイミングでエッジ検出部75がOFFトリガ信号を出力する。これにより、設定イネーブル信号生成部77は、設定イネーブル信号をローレベルにする。すると、コンデンサ26の充電が停止されると共に、セレクタ73及び74が何れもOFF側に切り替わり、その時点のコンデンサ26の端子電圧がコンパレータ27に出力される。
 つまり、抑制期間検出部72では、設定イネーブル信号がアクティブレベルである期間において、入力されるパルス信号がハイレベルとなる期間,パルス幅に対応する期間でコンデンサ26が充電され、コンデンサ26の端子電圧に応じた長さの抑制期間が設定される。尚、図22では入力される設定信号を複数のパルス列で示しているが、設定信号としては単一のパルス信号で良い。また、設定信号は、例えば第1~第4実施形態のような設定信号送信部が送信しても良い。
 以上のように第6実施形態によれば、電源検出部76は、リンギング抑制回路71に電源が投入されたことを検出するとONトリガ信号を出力し、エッジ検出部75は、抑制期間の長さをパルス幅で示す設定信号の立下りエッジを検出するとOFFトリガ信号を出力する。そして、設定イネーブル信号生成部77は、ONトリガ信号が入力されると設定イネーブル信号をハイレベルにし、OFFトリガ信号が入力されると同信号をローレベルにし、電流源24~コンデンサ26は、設定イネーブル信号がアクティブである期間に入力される設定信号を、そのパルス幅に応じたレベルの電圧信号に変換する。したがって、抑制期間の設定を短時間で行うことができる。
 本開示は上記した、又は図面に記載した実施形態にのみ限定されるものではなく、以下のような変形又は拡張が可能である。
 設定信号送信部により送信される設定信号は、その他、例えば抑制期間の長さを抵抗分圧による電圧レベルで示す形式などでも良い。
 何れの構成要素もハードウェアのみならず、ソフトウェアで実現しても良い。
 第3及び第4実施形態において、データ「1,0」の定義は逆でも良い。また、第4実施形態におけるデータ値に対応するデューティ比は、適宜変更して定義すれば良い。
 抑制期間設定部を、タイマを用いて構成しても良い。
 第6実施形態における抑制期間検出部72の構成は一例であり、設定信号のパルス幅に応じたレベルの電圧信号に変換する構成であれば、どのようなロジックであっても良い。
 ここで、この出願に記載されるフローチャート、あるいは、フローチャートの処理は、複数のセクション(あるいはステップと言及される)から構成され、各セクションは、たとえば、S1と表現される。さらに、各セクションは、複数のサブセクションに分割されることができる、一方、複数のセクションが合わさって一つのセクションにすることも可能である。さらに、このように構成される各セクションは、デバイス、モジュール、ミーンズとして言及されることができる。

Claims (18)

  1.  一対の信号線によりハイ,ローの2値レベルに変化する差動信号を伝送する伝送線路(3)に接続され、前記信号の伝送に伴い発生するリンギングを抑制するリンギング抑制回路において、
     前記一対の信号線間に接続される電圧駆動型で単一の線間スイッチング素子(15)と、
     前記差動信号のレベルが変化したことを検出すると、前記線間スイッチング素子をオンさせて前記信号線間のインピーダンスを低下させる制御部(6)と、
     入力される設定信号により示される抑制期間の長さを検出する期間検出部(10,33,43)と、
     前記検出された抑制期間の長さを記憶する抑制期間記憶部(11,54)とを備え、
     前記一対の信号線は、高電位側信号線(3P)と低電位側信号線(3N)を備え、
     前記制御部は、抑制期間記憶部に記憶された長さの抑制期間だけ、前記線間スイッチング素子をオンさせるリンギング抑制回路。
  2.  前記設定信号は、前記抑制期間の長さを電圧レベルで示す請求項1記載のリンギング抑制回路。
  3.  前記電圧レベルは、電源電圧を、複数の抵抗素子(63,64,65,66)からなる分圧回路により分圧することで示される請求項2記載のリンギング抑制回路。
  4.  前記複数の抵抗素子の1つ以上が、可変抵抗素子(65,66)である請求項3記載のリンギング抑制回路。
  5.  前記分圧回路にセレクタ(67)を備え、
     前記セレクタにより抵抗素子の通電経路を切替えて、前記電圧レベルを変更する請求項3又は4記載のリンギング抑制回路。
  6.  前記セレクタは、電圧駆動型の半導体スイッチング素子(68)で構成される請求項5記載のリンギング抑制回路。
  7.  前記設定信号は、前記抑制期間の長さをパルス幅で示す請求項1記載のリンギング抑制回路。
  8.  前記期間検出部は、電源の供給が開始されたことを検出する電源供給検出部と、
     前記設定信号のパルスの立下りエッジを検出するエッジ検出部と、
     前記電源の供給開始が検出されたことをトリガとして設定イネーブル信号をアクティブにし、前記立下りエッジが検出されたことをトリガとして設定イネーブル信号をインアクティブにするイネーブル信号出力部と、
     前記設定イネーブル信号がアクティブである期間の長さに応じた電圧レベルを生成する電圧信号変換部とを備える請求項7記載のリンギング抑制回路。
  9.  前記設定信号を前記期間検出部に送信する設定信号送信部(9)をさらに備え、
     前記設定信号送信部は、前記抑制期間の長さに応じて、前記設定信号が示すハイ又はローレベルの何れかを継続する時間の長さを変化させて送信し、
     前記期間検出部は、前記時間の長さを検出する請求項1記載のリンギング抑制回路。
  10.  前記期間検出部は、前記時間の長さに応じてコンデンサ(26)を充電する充電部(24,25)と、
     前記コンデンサの端子電圧を、それぞれ異なる閾値と比較する複数のコンパレータ(27)とをさらに備え、
     前記複数のコンパレータの出力信号が変化する数に応じて、前記時間の長さを検出する請求項9記載のリンギング抑制回路。
  11.  前記抑制期間記憶部(11)は、前記複数のコンパレータの出力信号の変化状態を記憶するラッチ回路を備える請求項10記載のリンギング抑制回路。
  12.  前記設定信号送信部(32)は、前記抑制期間の長さに応じて、前記設定信号が2値レベル間で遷移するエッジの出力回数を変化させて送信し、
     前記期間検出部(33)は、前記出力回数を検出する請求項1記載のリンギング抑制回路。
  13.  前記期間検出部は、前記設定信号が変化する回数をカウントするカウンタ(36)を備える請求項12記載のリンギング抑制回路。
  14.  前記抑制期間記憶部(11)は、前記コンパレータの出力信号が変化しない状態が所定期間継続すると、前記カウンタのカウンタ値をラッチするラッチ回路で構成される請求項13記載のリンギング抑制回路。
  15.  前記設定信号送信部(42)は、前記設定信号において、前記抑制期間の長さを所定の形式でデータ化して送信し、
     前記期間検出部(43)は、前記データ値を検出する請求項1記載のリンギング抑制回路。
  16.  前記データの形式は、NRZ(No Return to Zero)信号である請求項15記載のリンギング抑制回路。
  17.  前記データの形式は、PWM(Pulse Width Modulation)信号である請求項15記載のリンギング抑制回路。
  18.  前記制御部は、時定数を変更可能に構成される遅延回路(18)を備え、前記抑制期間記憶部に記憶された抑制期間の長さに応じて前記時定数を変化させ、前記時定数に応じて前記線間スイッチング素子をオンさせる請求項1から17の何れか一項に記載のリンギング抑制回路。
PCT/JP2016/074725 2015-09-01 2016-08-25 リンギング抑制回路 WO2017038592A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112016003984.0T DE112016003984T5 (de) 2015-09-01 2016-08-25 Ringing-unterdrückungsschaltung
US15/753,596 US10128825B2 (en) 2015-09-01 2016-08-25 Ringing suppression circuit

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015171942 2015-09-01
JP2015-171942 2015-09-01
JP2016-083699 2016-04-19
JP2016083699A JP6336508B2 (ja) 2015-09-01 2016-04-19 リンギング抑制回路

Publications (1)

Publication Number Publication Date
WO2017038592A1 true WO2017038592A1 (ja) 2017-03-09

Family

ID=58187479

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/074725 WO2017038592A1 (ja) 2015-09-01 2016-08-25 リンギング抑制回路

Country Status (1)

Country Link
WO (1) WO2017038592A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107608633A (zh) * 2017-09-25 2018-01-19 郑州云海信息技术有限公司 一种存储设备存储管理方法及相关装置
US10224925B2 (en) 2015-09-24 2019-03-05 Denso Corporation Communication node

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009253498A (ja) * 2008-04-03 2009-10-29 Toyota Motor Corp 通信装置
JP2011244347A (ja) * 2010-05-20 2011-12-01 Nippon Soken Inc 差動通信装置
JP2012244220A (ja) * 2011-05-16 2012-12-10 Nippon Soken Inc リンギング抑制回路

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009253498A (ja) * 2008-04-03 2009-10-29 Toyota Motor Corp 通信装置
JP2011244347A (ja) * 2010-05-20 2011-12-01 Nippon Soken Inc 差動通信装置
JP2012244220A (ja) * 2011-05-16 2012-12-10 Nippon Soken Inc リンギング抑制回路

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10224925B2 (en) 2015-09-24 2019-03-05 Denso Corporation Communication node
CN107608633A (zh) * 2017-09-25 2018-01-19 郑州云海信息技术有限公司 一种存储设备存储管理方法及相关装置
CN107608633B (zh) * 2017-09-25 2020-09-18 苏州浪潮智能科技有限公司 一种存储设备存储管理方法及相关装置

Similar Documents

Publication Publication Date Title
JP6336508B2 (ja) リンギング抑制回路
JP6015858B2 (ja) 信号伝達回路
JP4690105B2 (ja) 逐次比較型a/dコンバータ
US6664822B2 (en) Driving device having dummy circuit
US8004338B2 (en) Pulse generator
JP5326927B2 (ja) レベルシフト回路
JP3833199B2 (ja) 相補信号発生回路
WO2017038592A1 (ja) リンギング抑制回路
JP5160320B2 (ja) スイッチング駆動回路
US11258432B1 (en) Deglitcher circuit with integrated non-overlap function
KR101119903B1 (ko) 타이밍 발생 회로
CN107231143B (zh) 电平移位电路
KR100329320B1 (ko) 디지털신호전송회로
US7847591B2 (en) Low jitter CMOS to CML converter
JP2007006254A (ja) 遅延回路
JP2009147564A (ja) 信号伝達回路
KR101408810B1 (ko) 시간-인터폴레이션 기법을 이용한 디지털-아날로그 변환기
JP2019022135A (ja) タイミング発生器および半導体集積回路
JP2018082226A (ja) データ通信システム及び半導体装置
JP2012234088A (ja) 駆動回路及びそれを備えた表示装置
US7256618B2 (en) Semiconductor integrated circuit device
JP6572076B2 (ja) ゲート駆動回路
JP7497257B2 (ja) 電子回路及び電力変換器
US7952384B2 (en) Data transmitter and related semiconductor device
US10644679B2 (en) Level shift circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16841624

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15753596

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112016003984

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16841624

Country of ref document: EP

Kind code of ref document: A1