WO2017038563A1 - ユーザ端末、無線基地局及び無線通信方法 - Google Patents

ユーザ端末、無線基地局及び無線通信方法 Download PDF

Info

Publication number
WO2017038563A1
WO2017038563A1 PCT/JP2016/074550 JP2016074550W WO2017038563A1 WO 2017038563 A1 WO2017038563 A1 WO 2017038563A1 JP 2016074550 W JP2016074550 W JP 2016074550W WO 2017038563 A1 WO2017038563 A1 WO 2017038563A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
user terminal
signal
base station
lte
Prior art date
Application number
PCT/JP2016/074550
Other languages
English (en)
French (fr)
Inventor
一樹 武田
浩樹 原田
聡 永田
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to CA2996405A priority Critical patent/CA2996405C/en
Priority to EP16841595.8A priority patent/EP3346796A4/en
Priority to EP22215480.9A priority patent/EP4171169A1/en
Priority to JP2017537772A priority patent/JP6826037B2/ja
Priority to US15/755,909 priority patent/US10841935B2/en
Priority to CN201680050155.3A priority patent/CN107926076B/zh
Publication of WO2017038563A1 publication Critical patent/WO2017038563A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1215Wireless traffic scheduling for collaboration of different radio technologies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0035Resource allocation in a cooperative multipoint environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/005Interference mitigation or co-ordination of intercell interference
    • H04J11/0053Interference mitigation or co-ordination of intercell interference using co-ordinated multipoint transmission/reception
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals

Definitions

  • the present invention relates to a user terminal, a radio base station, and a radio communication method in a next-generation mobile communication system.
  • LTE Long Term Evolution
  • 5G 5th generation mobile communication system
  • FRA Feature Radio Access
  • CA Carrier Aggregation
  • CC Component Carrier
  • UE User Equipment
  • DC Dual Connectivity
  • CG Cell Group
  • CC Cell Center
  • FDD frequency division duplex
  • DL downlink
  • UL uplink
  • TDD Time Division Duplex
  • HARQ Hybrid Automatic Repeat reQuest
  • a user terminal or radio base station feeds back an acknowledgment signal (HARQ-ACK) related to the data in accordance with the data reception result, and the radio base station (or user terminal) feeds back the HARQ- Based on the ACK, retransmission of data is controlled.
  • HARQ-ACK acknowledgment signal
  • a transmission time interval (TTI: Transmission Time Interval) applied to DL transmission and UL transmission between the radio base station and the user terminal is set to 1 ms and controlled.
  • the transmission time interval is also called a transmission time interval, and the TTI in the LTE system (Rel. 8-12) is also called a subframe length.
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • New-RAT new communication system
  • MIMO massive MIMO
  • LTE new communication system
  • the user terminal communicates with the existing LTE system using a new communication system (for example, CA and / or DC).
  • a user terminal when a user terminal performs communication (for example, DC) using a plurality of communication systems, a UL signal is simultaneously transmitted to a plurality of base stations (for example, an LTE base station and a New-RAT base station). Cases arise. When there is a user terminal that does not support simultaneous UL transmission to a plurality of systems (no UL simultaneous transmission capability), the user terminal may not be able to perform communication appropriately.
  • a base stations for example, an LTE base station and a New-RAT base station.
  • the present invention has been made in view of such a point, and even when UL simultaneous transmission is not supported, a user terminal, a radio base station, and a radio communication method capable of appropriately performing communication in a future radio communication system One of the purposes is to provide.
  • One aspect of the user terminal according to the present invention is a user terminal that communicates with a plurality of communication systems, a reception unit that receives a DL signal transmitted from each communication system, and a transmission that transmits a UL signal to each communication system. And a control unit that controls reception of the DL signal and transmission of the UL signal, and the control unit performs control so as not to transmit UL signals simultaneously to different communication systems. To do.
  • HARQ-ACK can be appropriately transmitted in a future wireless communication system.
  • FIG. 8A and FIG. 8B are diagrams illustrating an example of a table that defines the transmission timing of the UL signal of the LTE-FDD cell in the second embodiment.
  • 9A to 9C are diagrams illustrating an example of a table that defines the number of HARQ processes used in the LTE-FDD cell according to the second embodiment.
  • FIG. 11A and FIG. 11B are diagrams illustrating another example of a table defining the transmission timing of the UL signal of the LTE-FDD cell in the second embodiment.
  • FIG. 1 is a diagram illustrating an example of an operation mode of a future wireless communication system (for example, 5G).
  • FIG. 1 shows a case where a user terminal connects to an existing LTE / LTE-A system (hereinafter referred to as “LTE system”) and a new communication system.
  • LTE system LTE / LTE-A system
  • a new communication system is designed in consideration of MIMO (massive MIMO) using a high frequency and a large number of antenna elements.
  • the cells of the new communication system are arranged so as to overlap the coverage of the cells of the LTE system.
  • the new communication system is also called New-RAT, 5G-RAT, new RAT, etc. (hereinafter referred to as “New-RAT”).
  • New-RAT can be an extended system of the LTE / LTE-A system.
  • New-RAT may be a system that applies a radio frame configuration different from the LTE system.
  • the radio frame configuration of New-RAT may be a radio frame configuration in which at least one of transmission time interval (TTI), symbol length, subcarrier interval, and bandwidth is different compared to the LTE system.
  • TTI transmission time interval
  • symbol length symbol length
  • subcarrier interval subcarrier interval
  • CA carrier aggregation
  • DC dual connectivity
  • CA carrier aggregation
  • one scheduler for example, the scheduler which macro base station eNB has
  • controls scheduling of a plurality of cells for example, small cells which a small base station forms.
  • each radio base station may be connected by an ideal backhaul such as a high-speed line such as an optical fiber. is assumed.
  • the user terminal is controlled to transmit uplink control information such as HARQ-ACK for a plurality of cells using an uplink control channel (PUCCH) of a predetermined cell (for example, primary cell (PCell)).
  • PUCCH uplink control channel
  • PCell primary cell
  • a plurality of schedulers are provided independently, and the plurality of schedulers (for example, the scheduler of the radio base station MeNB and the scheduler of the unrelated base station SeNB) have jurisdiction over each. Control the scheduling of one or more cells.
  • a non-ideal backhaul non-ideal non-ideal
  • backhaul non-ideal non-ideal
  • each radio base station sets a cell group (CG: Cell Group) composed of one or a plurality of cells.
  • CG Cell Group
  • Each cell group includes one or more cells formed by the same radio base station, or one or more cells formed by the same transmission point such as a transmission antenna device or a transmission station.
  • a cell group including PCell is called a master cell group (MCG: Master CG), and a cell group other than the MCG is called a secondary cell group (SCG: Secondary CG).
  • MCG Master CG
  • SCG Secondary CG
  • CA CA of two or more cells can be performed.
  • a radio base station in which MCG is set is called a master base station (MeNB: Master eNB)
  • a radio base station in which SCG is set is called a secondary base station (SeNB: Secondary eNB).
  • DC wireless base stations do not assume close cooperation equivalent to CA. Therefore, the user terminal independently performs downlink L1 / L2 control (PDCCH / EPDCCH) and uplink L1 / L2 control (UCI (Uplink Control Information feedback by PUCCH / PUSCH)) for each cell group. Therefore, in DC, a cell (PSCell) having a function equivalent to that of PCell such as setting of common search space and PUCCH is also set in the secondary base station.
  • PDCCH downlink L1 / L2 control
  • UCI Uplink Control Information feedback by PUCCH / PUSCH
  • the number of physical layer channels and signals (signals) required is greater than when applying CA.
  • a user terminal can transmit uplink control information (UCI) for a plurality of cells using an uplink control channel of a primary cell (PCell).
  • PCell primary cell
  • DC the user terminal needs to transmit uplink control information using an uplink control channel of a predetermined cell (for example, PCell, PSCell) for each of a plurality of cell groups (MCG, SCG).
  • MCG cell groups
  • the user terminal is Rel.
  • DC is applied to connect the LTE base station and the New-RAT base station in the same manner as in FIG. 12, it is necessary to implement an RF circuit capable of simultaneously transmitting UL and reducing harmonic components and unnecessary radiation.
  • New-RAT when New-RAT is introduced, not all user terminals support simultaneous UL transmission for a plurality of communication systems using different frequencies. In such a case, a user terminal that does not have the capability of simultaneous UL transmission cannot appropriately perform communication (for example, DC) using the LTE system and New-RAT. Further, even when the user terminal supports simultaneous reception of DL signals transmitted from a plurality of communication systems, communication using the LTE system and New-RAT cannot be performed.
  • the present inventors control the user terminal so as not to perform UL simultaneous transmission to a plurality of communication systems by controlling the timing of user terminal UL transmission to the plurality of communication systems, respectively.
  • a plurality of communication systems for example, , DC
  • the present inventors when performing control so that the user terminal does not perform UL simultaneous transmission to a plurality of communication systems, perform UL transmission using the transmission timing of the existing LTE system in the FDD cell, It was noted that UL transmission opportunities in other communication systems are limited. On the other hand, when restricting UL transmission in an FDD cell using the transmission timing of an existing LTE system in order to increase UL transmission opportunities in other communication systems, the present inventors also assign DLs in the FDD cell. Focused on being limited.
  • the present inventors aggregate UL signals (for example, ACK / NACK) for a plurality of DL subframes into a predetermined UL subframe when performing UL transmission in an FDD cell of a predetermined system (for example, LTE system).
  • a predetermined system for example, LTE system.
  • a user terminal uses scheduling and / or HARQ-ACK transmission timing (for example, transmission timing defined for each UL / DL configuration) defined in TDD.
  • HARQ-ACK transmission timing for example, transmission timing defined for each UL / DL configuration
  • the New-RAT may be a system that is an extension of the LTE / LTE-A system, or may be a new system.
  • the New-RAT may be a system having a configuration in which at least one of a transmission time interval (TTI), a symbol length, a subcarrier interval, and a bandwidth is different from that of an LTE system.
  • TTI transmission time interval
  • a case where a user terminal connects to a plurality of communication systems using DC is shown, but the present embodiment is not limited to this. Any communication mode that supports simultaneous UL transmission of user terminals for different communication systems can be applied.
  • the following description shows the case where a cell (FDD cell) using FDD is set in the LTE system, the present invention can also be applied to a cell (TDD cell) using TDD.
  • FIG. 2 shows an example of a control method for UL transmission and DL transmission in a New-RAT and LTE system in which user terminals are connected by applying DC. That is, the user terminal performs DC with a cell group (LTE CG) set in the LTE system and a cell group (New-RAT CG) set with New-RAT.
  • LTE CG cell group
  • New-RAT CG cell group
  • LTE-FDD cell when a cell (LTE-FDD cell) that uses FDD is set in the LTE system (LTE CG), a cell that uses TDD in New-RAT (New-RAT-CG) (NewRAT-TDD cell).
  • LTE-FDD cell a cell that uses TDD in New-RAT
  • New-RAT-CG New-RAT
  • the present invention is not limited to this. This embodiment can also be applied when a TDD cell (LTE-TDD cell) is set in the LTE system and / or when an FDD cell (NewRAT-FDD) is set in New-RAT.
  • a radio base station that operates the LTE system (LTE base station) and / or a radio base station that operates New-RAT (New-RAT base station) performs scheduling so that simultaneous transmission to a predetermined user terminal does not occur.
  • LTE base station LTE base station
  • New-RAT base station New-RAT base station
  • an LTE base station and / or a New-RAT base station restricts scheduling based on scheduling (UL transmission timing) of another communication system.
  • the LTE base station controls scheduling of the FDD cell (for example, UL allocation and / or DL allocation) so that UL transmission is not performed in a time interval that becomes a UL subframe in the New-RAT in which the TDD cell is set.
  • the LTE base station can previously receive information on the UL / DL configuration applied in the New-RAT TDD cell from the New-RAT base station using a backhaul or the like.
  • the LTE base station performs UL transmission (for example, UL data transmission or HARQ-ACK transmission) from the LTE-FDD cell in a time interval (for example, subframe) in which the UL signal is transmitted from the New-RAT cell.
  • UL transmission for example, UL data transmission or HARQ-ACK transmission
  • the user terminal performs UL data (PUSCH) transmission four subframes after receiving the UL grant.
  • the user terminal transmits ACK / NACK four subframes after receiving the DL signal (PDSCH).
  • the LTE base station restricts UL transmission to the LTE system in the UL transmission interval in the New-RAT cell, and restricts DL allocation before 4 subframes in the UL transmission interval.
  • the New-RAT base station can grasp the scheduling (UL transmission timing) of the LTE base station in advance, it restricts UL allocation and / or DL allocation in the New-RAT cell based on the scheduling information. .
  • control is performed by switching in the time direction so that UL transmissions of user terminals do not overlap (Time-switch uplink).
  • the LTE base station can allow the UL transmission of the user terminal within the cell group (LTE-CG) set in the LTE system. Also, the New-RAT base station can allow simultaneous UL transmission to user terminals in a cell group (CG) configured in a New-RAT DC.
  • the user terminal controls UL transmission by limiting cell groups (CG) that perform UL transmission based on information (for example, UL / DL configuration, etc.) notified by higher layer signaling, MAC layer signaling, and the like. Can do. That is, the user terminal can control UL transmission on the assumption that UL transmission occurs only in the CG of one communication system in a predetermined period. The user terminal may assume that UL transmission occurs only in one CG and allocate all allowable maximum transmission power to the UL transmission of the CG.
  • CG cell groups
  • the user terminal may report to the radio base station in advance as UE capability information (UE Capability) that it does not have the UL simultaneous transmission capability for a plurality of communication systems.
  • UE Capability UE Capability
  • the radio base station LTE base station and / or New-RAT base station
  • the user terminal should perform control so as to give priority to UL transmission to a CG of a specific communication system. Can do. In this case, the user terminal can be controlled not to perform (drop) UL transmission for other CGs.
  • the user terminal When the UL simultaneous transmission to the LTE system and the New-RAT is instructed, the user terminal gives priority to the UL transmission to the CG of the LTE system, and can drop the UL transmission to the CG of the New-RAT. As a result, communication connectivity can be ensured in a widely secured LTE system coverage.
  • the user terminal may prioritize UL transmission to the New-RAT CG and drop the UL transmission to the CG of the LTE system.
  • the user terminal may prioritize UL transmission of a cell group including a predetermined cell (for example, PCell), and may drop UL transmission of a cell group that does not include the predetermined cell.
  • a predetermined cell for example, PCell
  • a user terminal that cannot support simultaneous UL transmission can also perform communication using the LTE system and New-RAT. It becomes.
  • a radio base station should just permit UL simultaneous transmission, and may control scheduling.
  • the TTI is a transmission time unit of one channel-encoded data packet (transport block), and can be a processing unit such as scheduling or link adaptation.
  • New-RAT can be used at a higher frequency than the LTE system. Therefore, in New-RAT, it is conceivable to use a radio frame configuration in which the OFDM symbol length is shortened by widening the subcarrier interval (see FIG. 3). As described above, by shortening the TTI length (applying the shortened TTI), it is possible to reduce the control processing delay and shorten the delay time.
  • New-RAT in order to reduce control delays related to scheduling and HARQ-ACK, it is conceivable that UL data transmission and HARQ-ACK feedback timing are significantly shortened compared to the LTE system.
  • the delay time from when the user terminal receives the UL transmission instruction (UL grant) until the UL data is transmitted, and the delay time from the reception of the DL signal to the HARQ-ACK transmission is 4 ms or more. It has become.
  • FIG. 4A shows a case where HARQ-ACK (ACK / NACK) feedback is performed in 1 ms or less in a TDD cell using a shortened TTI.
  • FIG. 4B shows a case where HARQ-ACK feedback is performed in 1 ms or less in an FDD cell using a shortened TTI.
  • FIG. 4C shows a case where HARQ-ACK feedback for DL transmission is performed in a UL subframe continuous to the DL subframe in which the DL transmission is performed in an FDD cell using a shortened TTI.
  • New-RAT it is conceivable to perform communication by switching between UL transmission and DL transmission at a transmission time interval (TTI) shorter than that of the LTE system in order to realize delay reduction. Therefore, when control is performed so that the user terminal does not perform simultaneous UL transmission to different communication systems, UL transmission in the LTE carrier is limited in a time interval in which UL transmission and DL transmission using a shortened TTI are repeated in the New-RAT carrier. There is a need. Further, when UL transmission is restricted by an LTE carrier (LTE cell), it is necessary to restrict allocation of the DL signal (see FIG. 5).
  • LTE carrier LTE cell
  • uplink control information for example, HARQ-ACK
  • HARQ-ACK uplink control information
  • the time interval in which UL transmission and DL transmission can be performed in the LTE carrier is shortened.
  • important signals system information and the like
  • the LTE carrier when UL transmission is performed on the LTE carrier, UL transmission on the New-RAT carrier is limited. For this reason, if the UL transmission time interval of the LTE carrier (for example, LTE-FDD cell) is secured and the UL transmission limit of the New-RAT carrier is increased, the performance of the LTE carrier can be ensured, but it depends on the New-RAT carrier. The performance improvement effect cannot be obtained sufficiently.
  • the LTE carrier for example, LTE-FDD cell
  • the user terminal when transmitting a UL signal such as user data or HARQ-ACK in a communication system (for example, LTE system) having a relatively long TTI, the user terminal aggregates it into a predetermined subframe. Control to send.
  • a communication system for example, LTE system
  • the present embodiment will be described with specific examples.
  • a user terminal connected to the LTE system and the New-RAT transmits UL using the UL / DL configuration defined in TDD. Control.
  • the case where the user terminal transmits an UL signal in the LTE-FDD cell is not limited to the case where the LTE carrier (LTE-CG) is an FDD cell, but the LTE-CG includes a TDD carrier, but the PUCCH in the LTE-CG
  • the cell (PUCCH cell) that transmits the FDD cell is also included.
  • FIG. 6 shows an example of a control method for UL transmission and DL transmission when a user terminal connects to an LTE system and a New-RAT using a shortened TTI and transmits an uplink control signal in an FDD cell in the LTE system.
  • the user terminal transmits the UL signal (UL data and / or HARQ-ACK) of the FDD cell based on the transmission timing of UL / DL configuration 2 (UL-DL configuration # 2) defined by TDD Is shown.
  • the UL / DL configuration (DL-reference UL-DL configuration) applied to the LTE-FDD cell (FDD carrier) is not limited to the UL / DL configuration 2.
  • ACK / NACK for each of four DL subframes is fed back using subframe 2 (UL subframe 2) and subframe 7 (UL subframe) (FIG. 8A).
  • User data is also transmitted using subframe 2 and subframe 7.
  • the user terminal controls the LTE carrier (or LTE-CG) to perform UL transmission using the subframe 2 and the subframe 7. Further, the LTE base station notifies the user terminal of a UL transmission instruction (UL grant) so that UL transmission is performed in the subframe 2 and the subframe 7.
  • LTE carrier or LTE-CG
  • UL grant UL transmission instruction
  • the New-RAT base station and / or the user terminal performs control so that UL transmission is not performed in the New-RAT during the subframes 2 and 7 in the LTE system.
  • the New-RAT base station and / or the user terminal can be controlled to perform only DL transmission in the New-RAT TTI corresponding to subframes 2 and 7 of the LTE system.
  • communication can be performed by appropriately switching between UL transmission and DL transmission in New-RAT.
  • the LTE base station and / or the New-RAT base station notifies the user terminal of information on scheduling and / or HARQ timing applied in the FDD carrier (or LTE-CG) of the LTE system by higher layer signaling or the like. Can do.
  • the LTE base station can set a predetermined UL / DL configuration defined by TDD in the user terminal as information regarding transmission timing in the LTE-FDD cell.
  • the UL / DL configuration set in the user terminal is also referred to as a reference UL / DL configuration, a standard UL / DL configuration, or a reference UL-DL configuration.
  • the user terminal transmits the UL data transmission timing and HARQ in the carrier (for example, LTE carrier, LTE-FDD cell, LTE-CG) in which the reference UL / DL configuration is set.
  • the timing is switched to the transmission timing of the reference UL / DL configuration.
  • UL signals are aggregated and transmitted in a predetermined subframe, thereby restricting the LTE carrier (LTE-CG) DL allocation subframe.
  • LTE-CG LTE carrier
  • the user terminal controls UL transmission and DL reception using the transmission timing applied to the FDD carrier (FDD-SCell) serving as the SCell in the TDD-FDD CA using the PCell as the TDD carrier (TDD-PCell). May be.
  • FDD-SCell FDD carrier
  • TDD-PCell TDD carrier
  • scheduling and / or DL HARQ timing is defined so that DL allocation is possible for all DL subframes of the LTE-FDD cell.
  • FIG. 7 shows an example of a control method of UL transmission and DL transmission when a user terminal is connected to an LTE system and a New-RAT using a shortened TTI and transmits an uplink control signal in an FDD cell in LTE-CG.
  • the user terminal controls the UL transmission in the LTE-FDD cell using the HARQ timing (here, UL / DL configuration 2) applied to the FDD-SCell in the TDD-FDD CA where the TDD becomes the PCell.
  • the reference UL / DL configuration (DL-reference UL-DL configuration) applied to the FDD carrier is not limited to the UL / DL configuration 2.
  • ACK / NACK for each of five DL subframes is fed back using subframe 2 and subframe 7.
  • FIG. 8B That is, in the case of FIGS. 6 and 8A, DL transmission in subframes 2 and 7 is not supported, but in the second mode, DL transmission can also be supported in subframes 2 and 7 (FIG. 8). 7, see FIG. 8B). Thereby, DL transmission can be performed using all DL subframes of the LTE-FDD cell.
  • the user terminal controls the LTE carrier (or LTE-CG) to perform UL transmission using the subframe 2 and the subframe 7. Further, the LTE base station notifies the user terminal of a UL transmission instruction (UL grant) so that UL transmission is performed in the subframe 2 and the subframe 7.
  • LTE carrier or LTE-CG
  • UL grant UL transmission instruction
  • the New-RAT base station and / or the user terminal performs control so that UL transmission is not performed in the New-RAT during the subframes 2 and 7 in the LTE system.
  • the New-RAT base station and / or the user terminal can be controlled to perform only DL transmission in the New-RAT TTI corresponding to subframes 2 and 7 of the LTE system.
  • communication can be performed by appropriately switching between UL transmission and DL transmission in New-RAT.
  • all the DL subframes of the LTE carrier (for example, LTE-FDD cell) are used by using the UL transmission timing defined for FDD-SCell in TDD-FDD CA where TDD is PCell. And can communicate.
  • LTE-FDD cell for example, LTE-FDD cell
  • the radio base station can notify the user terminal of information on a reference UL / DL configuration applied to an FDD carrier of the LTE system (or LTE-CG using the FDD carrier as a PUCCH cell).
  • the LTE base station configures a predetermined reference UL / DL configuration in the user terminal using higher layer signaling (for example, RRC signaling).
  • the user terminal can be configured to apply the existing scheduling and / or HARQ timing as long as information on the reference UL / DL configuration is not notified from the radio base station.
  • the user terminal sets the set reference UL / DL regardless of whether the New-RAT cell group is set (Active or Schedule). Transmission timing based on the configuration can be applied.
  • the radio base station may designate the application of the reference UL / DL configuration to the user terminal by higher layer signaling and cancel the application of the reference UL / DL configuration by MAC CE.
  • the user terminal notified of the MAC CE can control UL transmission by switching from transmission / reception timing control based on the reference UL / DL configuration to application of existing scheduling and / or HARQ timing.
  • the instruction to the user terminal using the MAC CE may be an instruction related to setting / releasing (Activation / de-activation) of a New-RAT cell group.
  • the radio base station may be configured to dynamically switch application of the reference UL / DL configuration in the user terminal using physical signaling (PHY signaling).
  • PHY signaling physical signaling
  • the radio base station can dynamically switch the timing preset in the user terminal by higher layer signaling or the like using downlink control information (PDCCH).
  • PDCH downlink control information
  • the user terminal for which the reference UL / DL configuration is set controls transmission and reception using a predetermined time interval and timing based on the reference UL / DL configuration based on an instruction of physical layer signaling.
  • the user terminal uses existing scheduling and / or HARQ timing unless it receives physical signaling.
  • a predetermined reference UL / DL configuration may be notified to the user terminal by physical layer signaling.
  • the user terminal when the user terminal is notified of the cancellation of application of the reference UL / DL configuration by physical signaling, the user terminal transmits the existing transmission timing (for example, scheduling and / or HARQ defined in the LTE-FDD cell). It is good also as a structure switched and applied to (timing). In this case, after the reference UL / DL configuration is set by higher layer signaling, transmission timing based on the reference UL / DL configuration is applied unless there is a release notification by physical layer signaling.
  • the existing transmission timing for example, scheduling and / or HARQ defined in the LTE-FDD cell.
  • the physical signaling may be eIMTA signaling used when changing the TDD UL / DL configuration in the existing LTE system.
  • the LTE base station use the TDD DCI format instead of the existing FDD DCI format as downlink control information (DCI format) for notifying the user terminal of scheduling (UL allocation or DL allocation).
  • DCI format downlink control information
  • the user terminal in which the reference UL / DL configuration is set for the FDD carrier the DCI format of the downlink control channel (PDCCH and / or EPDCCH) received by the FDD carrier is specified for TDD.
  • reception processing for example, blind decoding
  • the number of HARQ processes is defined more than the number of HARQ processes in FDD (3 bits).
  • the radio base station when using UL / DL configuration 1-6 in TDD, the radio base station includes a DAI (Downlink Assignment Indicator (Index)) indicating downlink allocation information in downlink control information and notifies the user terminal. Further, when using UL / DL configuration 0 in TDD, the radio base station notifies the user terminal of the UL index included in the downlink control information.
  • DAI Downlink Assignment Indicator
  • the user terminal in which the reference UL / DL configuration is set for the FDD carrier can perform downlink control information reception processing assuming that the number of HARQ processes is 4 bits in the DCI format. Further, when applying the UL / DL configuration 1-6, the user terminal assumes that a DAI field (2 bits) indicating downlink allocation information is included in the DCI format, and receives downlink control information. It can be performed. Further, when the UL / DL configuration 0 is used, the user terminal can perform downlink control information reception processing assuming that a UL index field (2 bits) is included.
  • the radio base station sets the number of HARQ processes of the FDD carrier of the LTE system (and the SCell included in the same CG having the FDD carrier as the PUCCH cell) based on the reference UL / DL configuration that notifies the user terminal. (See FIG. 9).
  • FIG. 9A is a table showing the relationship between the number of DL HARQ processes and the UL / DL configuration for TDD or TDD CA.
  • the reference UL / DL configuration is set for the FDD carrier as shown in the first mode (see FIGS. 6 and 8A)
  • the LTE base station and the user terminal set the reference UL configured with the table of FIG. 9A.
  • the maximum number of DL HARQ processes can be ascertained.
  • FIG. 9B is a table showing the relationship between the number of DL HARQ processes for FDD-SCell and the UL / DL configuration in TDD-FDD CA where TDD is PCell.
  • the reference UL / DL configuration is set for the FDD carrier as shown in the modification of the first mode (see FIGS. 7 and 8B)
  • the LTE base station and the user terminal are set as the table in FIG. 9B.
  • the maximum number of DL HARQ processes can be grasped based on the reference UL / DL configuration.
  • FIG. 9C is a table showing the relationship between the number of UL HARQ processes and the UL / DL configuration for TDD or TDD CA.
  • the reference UL / DL configuration is set for the FDD carrier as shown in the first aspect or the modification
  • the LTE base station and the user terminal are based on the reference UL / DL configuration set in the table of FIG. 9C.
  • the maximum number of UL HARQ processes can be ascertained.
  • the UL transmission timing is set between the user terminals. You may control to disperse. For example, a user terminal specific offset is applied to scheduling and / or HARQ timing based on the reference UL / DL configuration.
  • FIG. 10 applies subframe offset 0 to the first user terminal (UE # 1) using the reference UL / DL configuration 2, and applies subframe offset 1 to the second user terminal (UE # 2).
  • the first user terminal performs UL transmission using subframes 2 and 7.
  • the second user terminal performs UL transmission using subframes 3 and 8 in which offset 1 is added to the transmission timing based on the reference UL / DL configuration.
  • the LTE base station can notify the user terminal using the reference UL / DL configuration of information on the subframe offset using higher layer signaling, MAC CE, physical signaling, or the like. For example, the LTE base station notifies the user terminal of information (value of X) relating to the offset applied to the tables shown in FIGS. 8A and 8B (see FIGS. 11A and 11B).
  • the user terminal controls UL transmission based on the information on the reference UL / DL configuration and the offset value notified from the LTE base station.
  • the New-RAT base station can acquire information on the offset value from the LTE base station and control the UL transmission timing in the New-RAT cell.
  • FIG. 12 shows a case where the user terminal controls the UL transmission in the LTE carrier using the reference UL / DL configuration and receives the DL signal without performing the UL transmission for the New-RAT in the UL transmission section of the LTE carrier. Show. Note that the New-RAT base station and the user terminal can perform communication in which switching between UL transmission and DL transmission using the shortened TTI is performed in the New-RAT, except for the time period of UL transmission in the LTE system.
  • the user terminal can only perform DL reception with New-RAT in the time interval in which the LTE carrier is UL, the user terminal cannot transmit a DL data delivery confirmation signal received in the time interval. For this reason, the user terminal feeds back the DL data delivery confirmation signal received in the time interval after the UL transmission in the LTE system is completed and the UL transmission is possible with the New-RAT.
  • the user terminal uses the DL signal delivery confirmation signal transmitted by the New-RAT during the time interval in which the UL transmission is performed in the LTE system, based on the DL signal delivery confirmation signal transmitted by the New-RAT other than the time interval. Also control to feed back at a later timing. As a result, the user terminal can appropriately feed back the acknowledgment signal of the DL signal transmitted by the New-RAT in the time interval in which UL transmission is performed in the LTE system.
  • the user terminal applies bundling (ACK / NACK bundling) by exclusive OR to the DL signal delivery confirmation signal transmitted by the New-RAT in the time interval in which UL transmission is performed in the LTE system. can do.
  • the user terminal may feed back the delivery confirmation signal of the DL signal transmitted by New-RAT in the time interval as different bits.
  • the user terminal and / or the New-RAT base station can implicitly grasp the time interval in which the UL transmission is performed in the LTE system from the reference UL / DL configuration etc. set for the LTE carrier. .
  • the New-RAT by controlling feedback (for example, transmission timing) of a delivery confirmation signal of a DL signal transmitted by the New-RAT during a time period in which UL transmission is performed in the LTE system, the shortened TTI is used by the New-RAT. Even in this case, ACK / NACK can be appropriately fed back.
  • wireless communication system Wireless communication system
  • the wireless communication methods according to the above embodiments and aspects are applied.
  • wireless communication method which concerns on each said embodiment and each aspect may be applied independently, respectively, and may be applied in combination.
  • FIG. 13 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment of the present invention.
  • the wireless communication system 1 for example, LTE system
  • the wireless communication system 2 for example, New-RAT
  • CA carrier aggregation
  • DC dual connectivity
  • the wireless communication system 2 may be called 5G, FRA (Future Radio Access), or the like.
  • a radio base station 11 (for example, LTE base station) that forms the macro cell C1 and radio base stations 12a to 12c (for example, New) that are arranged in the macro cell C1 and that form a small cell C2 that is narrower than the macro cell C1.
  • -RAT base station radio base station
  • the user terminal 20 is arrange
  • the user terminal 20 can be connected to both the radio base station 11 and the radio base station 12. It is assumed that the user terminal 20 uses the macro cell C1 and the small cell C2 that use different frequencies simultaneously by CA or DC. In addition, the user terminal 20 can apply CA or DC using a plurality of cells (CC) (for example, six or more CCs). Further, the shortened TTI can be applied to UL transmission and / or DL transmission between the user terminal 20 and the radio base station 12.
  • CC cells
  • Communication between the user terminal 20 and the radio base station 11 can be performed using a carrier having a relatively low frequency band (for example, 2 GHz) and a narrow bandwidth (referred to as an existing carrier or a legacy carrier).
  • a carrier for example, New-RAT carrier
  • a relatively high frequency band for example, 3.5 GHz, 5 GHz, etc.
  • the same carrier as that used for the wireless base station 11 may be used.
  • the configuration of the frequency band used by each radio base station is not limited to this.
  • a wired connection for example, an optical fiber compliant with CPRI (Common Public Radio Interface), an X2 interface, etc.
  • a wireless connection It can be set as the structure to do.
  • the radio base station 11 and each radio base station 12 are connected to the higher station apparatus 30 and connected to the core network 40 via the higher station apparatus 30.
  • the upper station device 30 includes, for example, an access gateway device, a radio network controller (RNC), a mobility management entity (MME), and the like, but is not limited thereto.
  • RNC radio network controller
  • MME mobility management entity
  • Each radio base station 12 may be connected to the higher station apparatus 30 via the radio base station 11.
  • the radio base station 11 is a radio base station having a relatively wide coverage, and may be referred to as a macro base station, an aggregation node, an eNB (eNodeB), a transmission / reception point, an LTE base station, or the like.
  • the radio base station 12 is a radio base station having local coverage, and includes a small base station, a micro base station, a pico base station, a femto base station, a HeNB (Home eNodeB), an RRH (Remote Radio Head), and transmission / reception. It may be called a point, a New-RAT base station, or the like.
  • a radio base station 10 when the radio base stations 11 and 12 are not distinguished, they are collectively referred to as a radio base station 10.
  • Each user terminal 20 is a terminal compatible with various communication methods such as LTE and LTE-A, and may include not only a mobile communication terminal but also a fixed communication terminal.
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier-frequency division multiple access
  • OFDMA is a multi-carrier transmission scheme that performs communication by dividing a frequency band into a plurality of narrow frequency bands (subcarriers) and mapping data to each subcarrier.
  • SC-FDMA is a single-carrier transmission scheme that reduces interference between terminals by dividing the system bandwidth into bands consisting of one or continuous resource blocks for each terminal and using a plurality of terminals with mutually different bands. is there.
  • the uplink and downlink radio access schemes are not limited to these combinations, and OFDMA may be used in the uplink.
  • downlink shared channels PDSCH: Physical Downlink Shared Channel
  • broadcast channels PBCH: Physical Broadcast Channel
  • downlink L1 / L2 control channels are shared as downlink channels. Etc. are used.
  • User data, higher layer control information, SIB (System Information Block), etc. are transmitted by PDSCH.
  • SIB System Information Block
  • MIB Master Information Block
  • Downlink L1 / L2 control channels include downlink control channels (PDCCH (Physical Downlink Control Channel), EPDCCH (Enhanced Physical Downlink Control Channel)), PCFICH (Physical Control Format Indicator Channel), PHICH (Physical Hybrid-ARQ Indicator Channel), etc. Including. Downlink control information (DCI: Downlink Control Information) including scheduling information of PDSCH and PUSCH is transmitted by PDCCH. The number of OFDM symbols used for PDCCH is transmitted by PCFICH. The HAICH transmission confirmation information (ACK / NACK) for PUSCH is transmitted by PHICH.
  • EPDCCH is frequency-division multiplexed with PDSCH (downlink shared data channel), and is used for transmission of DCI and the like in the same manner as PDCCH.
  • an uplink shared channel shared by each user terminal 20
  • an uplink control channel PUCCH
  • a random access channel PUCCH: Physical Uplink Control Channel
  • PRACH Physical Random Access Channel
  • User data and higher layer control information are transmitted by the PUSCH.
  • Uplink control information including at least one of delivery confirmation information (ACK / NACK) and radio quality information (CQI) is transmitted by PUSCH or PUCCH.
  • a random access preamble for establishing connection with a cell is transmitted by the PRACH.
  • FIG. 14 is a diagram illustrating an example of the overall configuration of a radio base station according to an embodiment of the present invention.
  • the radio base station 10 includes a plurality of transmission / reception antennas 101, an amplifier unit 102, a transmission / reception unit 103, a baseband signal processing unit 104, a call processing unit 105, and a transmission path interface 106.
  • the transmission / reception unit 103 includes a transmission unit and a reception unit.
  • User data transmitted from the radio base station 10 to the user terminal 20 via the downlink is input from the higher station apparatus 30 to the baseband signal processing unit 104 via the transmission path interface 106.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access
  • Retransmission control for example, HARQ (Hybrid Automatic Repeat reQuest) transmission processing
  • HARQ Hybrid Automatic Repeat reQuest
  • the downlink control signal is also subjected to transmission processing such as channel coding and inverse fast Fourier transform, and is transferred to the transmission / reception unit 103.
  • the transmission / reception unit 103 converts the baseband signal output by precoding for each antenna from the baseband signal processing unit 104 to a radio frequency band and transmits the converted signal.
  • the radio frequency signal frequency-converted by the transmission / reception unit 103 is amplified by the amplifier unit 102 and transmitted from the transmission / reception antenna 101.
  • the transmission / reception unit (reception unit) 103 receives a UL signal (for example, UL data, HARQ-ACK, etc.) transmitted from the user terminal.
  • the transmission / reception unit (transmission unit) 103 transmits a DL signal (for example, UL grant).
  • the transmission / reception unit (transmission unit) 103 transmits information on the reference UL / DL configuration used by the user terminal for UL transmission timing to at least one of upper layer signaling, MAC CE (Media Access Control Element), and physical signaling. Can be sent using.
  • the transmission / reception unit 103 can be configured by a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on common recognition in the technical field according to the present invention.
  • the transmission / reception part 103 may be comprised as an integral transmission / reception part, and may be comprised from a transmission part and a receiving part.
  • the radio frequency signal received by the transmission / reception antenna 101 is amplified by the amplifier unit 102.
  • the transmission / reception unit 103 receives the uplink signal amplified by the amplifier unit 102.
  • the transmission / reception unit 103 converts the frequency of the received signal into a baseband signal and outputs it to the baseband signal processing unit 104.
  • the baseband signal processing unit 104 performs fast Fourier transform (FFT) processing, inverse discrete Fourier transform (IDFT: Inverse Discrete Fourier Transform) processing, and error correction on user data included in the input upstream signal.
  • FFT fast Fourier transform
  • IDFT inverse discrete Fourier transform
  • Decoding, MAC retransmission control reception processing, RLC layer and PDCP layer reception processing are performed and transferred to the upper station apparatus 30 via the transmission path interface 106.
  • the call processing unit 105 performs call processing such as communication channel setting and release, state management of the radio base station 10, and radio resource management.
  • the transmission path interface 106 transmits and receives signals to and from the higher station apparatus 30 via a predetermined interface.
  • the transmission path interface 106 transmits and receives (backhaul signaling) signals to and from the adjacent radio base station 10 via an interface between base stations (for example, an optical fiber compliant with CPRI (Common Public Radio Interface), X2 interface). Also good.
  • CPRI Common Public Radio Interface
  • X2 interface also good.
  • FIG. 15 is a diagram illustrating an example of a functional configuration of the radio base station according to the present embodiment. Note that FIG. 15 mainly shows functional blocks of characteristic portions in the present embodiment, and the wireless base station 10 also has other functional blocks necessary for wireless communication. As shown in FIG. 15, the baseband signal processing unit 104 includes a control unit (scheduler) 301, a transmission signal generation unit (generation unit) 302, a mapping unit 303, and a reception signal processing unit 304. .
  • the baseband signal processing unit 104 includes a control unit (scheduler) 301, a transmission signal generation unit (generation unit) 302, a mapping unit 303, and a reception signal processing unit 304.
  • the control unit (scheduler) 301 controls scheduling (for example, resource allocation) of downlink data signals transmitted on PDSCH and downlink control signals transmitted on PDCCH and / or EPDCCH. It also controls scheduling of system information, synchronization signals, paging information, CRS (Cell-specific Reference Signal), CSI-RS (Channel State Information Reference Signal), and the like. Further, scheduling of uplink reference signals, uplink data signals transmitted on PUSCH, uplink control signals transmitted on PUCCH and / or PUSCH, and the like is controlled.
  • the control unit 301 controls transmission of the UL grant so that the user terminal does not transmit UL signals simultaneously to different communication systems.
  • the control unit 301 can be a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present invention.
  • the transmission signal generation unit 302 generates a DL signal (including a downlink data signal and a downlink control signal) based on an instruction from the control unit 301, and outputs the DL signal to the mapping unit 303.
  • transmission signal generation section 302 generates a downlink data signal (PDSCH) including user data and outputs it to mapping section 303.
  • the transmission signal generation unit 302 generates a downlink control signal (PDCCH / EPDCCH) including DCI (UL grant, DL assignment) and outputs the downlink control signal (PDCCH / EPDCCH) to the mapping unit 303.
  • the transmission signal generation unit 302 can be a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present invention.
  • the mapping unit 303 maps the DL signal generated by the transmission signal generation unit 302 to a predetermined radio resource based on an instruction from the control unit 301, and outputs the DL signal to the transmission / reception unit 103.
  • the mapping unit 303 can be a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present invention.
  • the reception signal processing unit 304 performs reception processing (for example, demapping, demodulation, decoding, etc.) on the UL signal (HARQ-ACK, PUSCH, etc.) transmitted from the user terminal 20.
  • the processing result is output to the control unit 301.
  • the reception signal processing unit 304 may be configured by a signal processor, a signal processing circuit or a signal processing device, and a measuring device, a measurement circuit or a measuring device, which are described based on common recognition in the technical field according to the present invention. it can.
  • FIG. 16 is a diagram illustrating an example of an overall configuration of a user terminal according to an embodiment of the present invention.
  • the user terminal 20 includes a plurality of transmission / reception antennas 201 for MIMO transmission, an amplifier unit 202, a transmission / reception unit 203, a baseband signal processing unit 204, and an application unit 205.
  • the transmission / reception unit 203 may include a transmission unit and a reception unit.
  • the radio frequency signals received by the plurality of transmission / reception antennas 201 are each amplified by the amplifier unit 202.
  • Each transmitting / receiving unit 203 receives the downlink signal amplified by the amplifier unit 202.
  • the transmission / reception unit 203 converts the frequency of the received signal into a baseband signal and outputs it to the baseband signal processing unit 204.
  • the transmission / reception unit (reception unit) 203 receives DL signals transmitted from a plurality of communication systems.
  • the transmission / reception unit (transmission unit) 203 transmits UL signals to a plurality of communication systems.
  • the transmission / reception unit (reception unit) 203 uses at least one of upper layer signaling, MAC CE (Media Access Control Control Element), and physical signaling as information on the reference UL / DL configuration used by the user terminal for UL transmission timing. Can be received.
  • the transmission / reception unit (reception unit) 203 can receive information on resources and / or signal sequences for transmitting delivery confirmation signals with existing downlink control information (for example, DL assignment).
  • the transmission / reception unit 203 can be a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on common recognition in the technical field according to the present invention.
  • the baseband signal processing unit 204 performs FFT processing, error correction decoding, retransmission control reception processing, and the like on the input baseband signal.
  • the downlink user data is transferred to the application unit 205.
  • the application unit 205 performs processing related to layers higher than the physical layer and the MAC layer.
  • broadcast information in the downlink data is also transferred to the application unit 205.
  • uplink user data is input from the application unit 205 to the baseband signal processing unit 204.
  • the baseband signal processing unit 204 performs retransmission control transmission processing (for example, HARQ transmission processing), channel coding, precoding, discrete Fourier transform (DFT) processing, IFFT processing, and the like.
  • the data is transferred to the transmission / reception unit 203.
  • the transmission / reception unit 203 converts the baseband signal output from the baseband signal processing unit 204 into a radio frequency band and transmits it.
  • the radio frequency signal frequency-converted by the transmission / reception unit 203 is amplified by the amplifier unit 202 and transmitted from the transmission / reception antenna 201.
  • FIG. 17 is a diagram illustrating an example of a functional configuration of the user terminal according to the present embodiment. Note that FIG. 17 mainly shows functional blocks of characteristic portions in the present embodiment, and the user terminal 20 also has other functional blocks necessary for wireless communication. As illustrated in FIG. 17, the baseband signal processing unit 204 included in the user terminal 20 includes a control unit 401, a transmission signal generation unit 402, a mapping unit 403, a reception signal processing unit 404, and a determination unit 405. I have.
  • the reception unit may be configured using the reception signal processing unit 404 and the transmission / reception unit 203.
  • the control unit 401 obtains, from the received signal processing unit 404, a downlink control signal (a signal transmitted by PDCCH / EPDCCH) and a downlink data signal (a signal transmitted by PDSCH) transmitted from the radio base station 10.
  • the control unit 401 generates an uplink control signal (for example, an acknowledgment signal (HARQ-ACK)) or an uplink data signal based on a downlink control signal, a result of determining whether retransmission control is necessary for the downlink data signal, or the like.
  • HARQ-ACK acknowledgment signal
  • the control unit 401 can control the transmission signal generation unit 402, the mapping unit 403, and the reception signal processing unit 404.
  • the control unit 401 can control reception of DL signals and transmission of UL signals to a plurality of communication systems, and control not to simultaneously transmit UL signals to different communication systems (see FIG. 2).
  • the control part 401 when the transmission / reception part 203 transmits UL signal with the FDD cell of a LTE system, the control part 401 is based on the 1st UL transmission timing applied to UL / DL structure prescribed
  • the control unit 401 when the transmission / reception unit 203 transmits an UL signal in the FDD cell of the LTE system, the second UL transmission timing applied to the TDD in which the TDD is the PCell and the FDD cell in which the SDD is the SCell The transmission of the UL signal can be controlled based on (see FIGS. 7 and 8B).
  • the control unit 401 when applying the first UL transmission timing or the second transmission timing, assumes that the DCI format of the downlink control channel received by the FDD cell is a DCI format specified for TDD. The decoding process can be controlled. In addition, when applying the first UL transmission timing or the second transmission timing, the control unit 401 can further control the transmission timing of the UL signal based on the subframe offset set specifically for the user terminal ( (Refer FIG. 10, FIG. 11).
  • control unit 401 receives a delivery confirmation signal for a DL signal received by another communication system in a time interval in which UL transmission is performed in the LTE system, in another communication system in a time interval in which UL transmission is not performed in the LTE system. It can be controlled to feed back at a timing different from the delivery confirmation signal for the DL signal (see FIG. 12).
  • the control unit 401 may be a controller, a control circuit, or a control device that is described based on common recognition in the technical field according to the present invention.
  • the transmission signal generation unit 402 generates a UL signal based on an instruction from the control unit 401 and outputs the UL signal to the mapping unit 403. For example, the transmission signal generation unit 402 generates an uplink control signal such as a delivery confirmation signal (HARQ-ACK) or channel state information (CSI) based on an instruction from the control unit 401.
  • HARQ-ACK delivery confirmation signal
  • CSI channel state information
  • the transmission signal generation unit 402 generates an uplink data signal based on an instruction from the control unit 401. For example, the transmission signal generation unit 402 is instructed by the control unit 401 to generate an uplink data signal when the UL grant is included in the downlink control signal notified from the radio base station 10.
  • the transmission signal generation unit 402 may be a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present invention.
  • the mapping unit 403 maps the uplink signal (uplink control signal and / or uplink data) generated by the transmission signal generation unit 402 to a radio resource based on an instruction from the control unit 401, and outputs the radio resource to the transmission / reception unit 203.
  • the mapping unit 403 may be a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present invention.
  • the reception signal processing unit 404 performs reception processing (for example, demapping, demodulation, decoding, etc.) on the DL signal (for example, downlink control signal transmitted from the radio base station, downlink data signal transmitted by PDSCH, etc.). I do.
  • the reception signal processing unit 404 outputs information received from the radio base station 10 to the control unit 401 and the determination unit 405.
  • the reception signal processing unit 404 outputs broadcast information, system information, RRC signaling, DCI, and the like to the control unit 401, for example.
  • the reception signal processing unit 404 includes a signal processor, a signal processing circuit, or a signal processing device, and a measuring device, a measurement circuit, or a measuring device, which are described based on common recognition in the technical field according to the present invention. be able to. Further, the reception signal processing unit 404 can constitute a reception unit according to the present invention.
  • the determination unit 405 performs retransmission control determination (ACK / NACK) based on the decoding result of the received signal processing unit 404 and outputs the determination result to the control unit 401.
  • ACK / NACK retransmission control determination
  • ACK / NACK retransmission control determination
  • the determination part 405 can be comprised from the determination circuit or determination apparatus demonstrated based on common recognition in the technical field which concerns on this invention.
  • each functional block is realized by one physically coupled device, or may be realized by two or more physically separated devices connected by wire or wirelessly and by a plurality of these devices. Good.
  • the radio base station 10 and the user terminal 20 are realized using hardware such as ASIC (Application Specific Integrated Circuit), PLD (Programmable Logic Device), and FPGA (Field Programmable Gate Array). May be.
  • the radio base station 10 and the user terminal 20 are each a computer device including a processor (CPU: Central Processing Unit), a communication interface for network connection, a memory, and a computer-readable storage medium holding a program. It may be realized. That is, the radio base station, user terminal, and the like according to an embodiment of the present invention may function as a computer that performs processing of the radio communication method according to the present invention.
  • Computer-readable recording media include, for example, flexible disks, magneto-optical disks, ROM (Read Only Memory), EPROM (Erasable Programmable ROM), CD-ROM (Compact Disc-ROM), RAM (Random Access Memory), A storage medium such as a hard disk.
  • the program may be transmitted from a network via a telecommunication line.
  • the radio base station 10 and the user terminal 20 may include an input device such as an input key and an output device such as a display.
  • the functional configurations of the radio base station 10 and the user terminal 20 may be realized by the hardware described above, may be realized by a software module executed by a processor, or may be realized by a combination of both.
  • the processor controls the entire user terminal by operating an operating system. Further, the processor reads programs, software modules and data from the storage medium into the memory, and executes various processes according to these.
  • the program may be a program that causes a computer to execute the operations described in the above embodiments.
  • the control unit 401 of the user terminal 20 may be realized by a control program stored in a memory and operated by a processor, and may be realized similarly for other functional blocks.
  • software, instructions, etc. may be transmitted / received via a transmission medium.
  • software may use websites, servers, or other devices using wired technology such as coaxial cable, fiber optic cable, twisted pair and digital subscriber line (DSL) and / or wireless technology such as infrared, wireless and microwave.
  • wired technology such as coaxial cable, fiber optic cable, twisted pair and digital subscriber line (DSL) and / or wireless technology such as infrared, wireless and microwave.
  • DSL digital subscriber line
  • wireless technology such as infrared, wireless and microwave.
  • the channel and / or symbol may be a signal (signaling).
  • the signal may be a message.
  • the component carrier (CC) may be called a carrier frequency, a cell, or the like.
  • information, parameters, and the like described in this specification may be represented by absolute values, may be represented by relative values from a predetermined value, or may be represented by other corresponding information.
  • the radio resource may be indicated by an index.
  • notification of predetermined information is not limited to explicitly performed, but is performed implicitly (for example, by not performing notification of the predetermined information). May be.
  • notification of information is not limited to the aspect / embodiment described in this specification, and may be performed by other methods.
  • notification of information includes physical layer signaling (for example, DCI (Downlink Control Information), UCI (Uplink Control Information)), upper layer signaling (for example, RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling), It may be implemented by broadcast information (MIB (Master Information Block), SIB (System Information Block)), other signals, or a combination thereof.
  • the RRC signaling may be referred to as an RRC message, and may be, for example, an RRC connection setup (RRCConnectionSetup) message, an RRC connection reconfiguration (RRCConnectionReconfiguration) message, or the like.
  • Each aspect / embodiment described in this specification includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G, 5G, FRA (Future Radio Access), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802.20, UWB (Ultra-WideBand), Bluetooth (registered trademark), and other appropriate systems
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • SUPER 3G IMT-Advanced
  • 4G 5G
  • FRA Full Radio Access
  • CDMA2000 Code Division Multiple Access 2000
  • UMB User Mobile Broadband
  • IEEE 802.11 Wi-Fi
  • IEEE 802.16 WiMAX
  • IEEE 802.20 UWB (Ultra-WideBand)
  • Bluetooth registered trademark

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

UL同時送信をサポートしていないユーザ端末であっても将来の無線通信システムにおいて通信を適切行うこと。複数の通信システムと通信を行うユーザ端末であって、各通信システムから送信されるDL信号を受信する受信部と、各通信システムにUL信号を送信する送信部と、前記DL信号の受信及び前記UL信号の送信を制御する制御部と、を有し、前記制御部は、異なる通信システムに対してUL信号を同時に送信しないように制御する。

Description

ユーザ端末、無線基地局及び無線通信方法
 本発明は、次世代移動通信システムにおけるユーザ端末、無線基地局及び無線通信方法に関する。
 UMTS(Universal Mobile Telecommunications System)ネットワークにおいて、さらなる高速データレート、低遅延などを目的としてロングタームエボリューション(LTE:Long Term Evolution)が仕様化された(非特許文献1)。LTEからのさらなる広帯域化および高速化を目的として、LTEアドバンスト(Rel.10-12)が仕様化され、さらに、5G(5th generation mobile communication system)、FRA(Feature Radio Access)等と呼ばれるLTEの後継システムが検討されている。
 LTE Rel.10/11では、広帯域化を図るために、複数のコンポーネントキャリア(CC:Component Carrier)を統合するキャリアアグリゲーション(CA:Carrier Aggregation)が導入されている。各CCは、LTE Rel.8のシステム帯域を一単位として構成される。また、CAでは、同一の無線基地局(eNB:eNodeB)の複数のCCがユーザ端末(UE:User Equipment)に設定される。
 一方、LTE Rel.12では、異なる無線基地局の複数のセルグループ(CG:Cell Group)がユーザ端末に設定されるデュアルコネクティビティ(DC:Dual Connectivity)も導入されている。各セルグループは、少なくとも一つのセル(CC)で構成される。DCでは、異なる無線基地局の複数のCCが統合されるため、DCは、Inter-eNB CAなどとも呼ばれる。
 LTE Rel.8-12では、下り(DL:Downlink)伝送と上り(UL:Uplink)伝送とを異なる周波数帯で行う周波数分割複信(FDD:Frequency Division Duplex)と、下り伝送と上り伝送と時間的に切り替えて行う時分割複信(TDD:Time Division Duplex)とが導入されている。
 また、LTE Rel.8-12では、再送制御にHARQ(Hybrid Automatic Repeat reQuest)が利用されている。HARQでは、ユーザ端末(又は無線基地局)は、データの受信結果に応じて当該データに関する送達確認信号(HARQ-ACK)をフィードバックし、無線基地局(又はユーザ端末)は、フィードバックされたHARQ-ACKに基づいて、データの再送を制御する。
 以上のようなLTE Rel.8-12では、無線基地局とユーザ端末間のDL送信及びUL送信に適用される送信時間間隔(TTI:Transmission Time Interval)は1msに設定されて制御される。送信時間間隔は伝送時間間隔とも呼ばれ、LTEシステム(Rel.8-12)におけるTTIはサブフレーム長とも呼ばれる。
 将来の無線通信システム(例えば、5G)では、モバイルブロードバンド用途向けにより一層の高速化・大容量化が求められると共に、低遅延化や大量のデバイスからの接続への対応等が要求されることが想定されている。また、より一層の高速化・大容量化を図るために、さらに広帯域の周波数スペクトルを利用することも想定されている。例えば、将来の無線通信システムでは、数十GHzなどの高周波数帯での通信や、IoT(Internet of Things)、MTC(Machine Type Communication)、M2M(Machine To Machine)など相対的にデータ量が小さい通信を行うことも想定される。
 上記の要求を満たすために、将来の無線通信システムでは、高い周波数や大量のアンテナ素子を利用したMIMO(Massive MIMO)を考慮して設計された新しい通信システム(New-RAT)を利用してユーザ端末が通信を行うことが想定される。また、将来の無線通信システムでは、新しい通信システム(New-RAT)と既存のLTEシステムと組み合わせて運用することも想定される。例えば、ユーザ端末が、既存のLTEシステムと新しい通信システムを用いて通信(例えば、CA及び/又はDC等)を行うことが考えられる。
 しかし、ユーザ端末が複数の通信システムを利用して通信(例えば、DC)を行う場合、複数の基地局(例えば、LTE基地局とNew-RAT基地局)に対してUL信号の同時送信を行う場合が生じる。複数のシステムに対するUL同時送信をサポートしていない(UL同時送信の能力がない)ユーザ端末が存在する場合、当該ユーザ端末は通信を適切に行うことが出来なくなるおそれがある。
 本発明はかかる点に鑑みてなされたものであり、UL同時送信をサポートしていない場合であっても将来の無線通信システムにおいて通信を適切行うことができるユーザ端末、無線基地局及び無線通信方法を提供することを目的の一とする。
 本発明のユーザ端末の一態様は、複数の通信システムと通信を行うユーザ端末であって、各通信システムから送信されるDL信号を受信する受信部と、各通信システムにUL信号を送信する送信部と、前記DL信号の受信及び前記UL信号の送信を制御する制御部と、を有し、前記制御部は、異なる通信システムに対してUL信号を同時に送信しないように制御することを特徴とする。
 本発明によれば、将来の無線通信システムにおいてHARQ-ACKの送信を適切に行うことができる。
将来の無線通信システムの運用形態の一例を示す図である。 第1の実施の形態におけるUL伝送/DL伝送の制御方法の一例を示す図である。 LTEシステムの無線フレーム構成とNew-RATの無線フレーム構成の一例を示す図である。 図4A-Cは、New-RATの送達確認信号のフィードバックタイミングの一例を示す図である。 既存のLTEシステムのFDDにおけるACK/NACKフィードバックを適用した場合のUL伝送/DL伝送の制御方法の一例を示す図である。 第2の実施の形態におけるUL伝送/DL伝送の制御方法の一例を示す図である。 第2の実施の形態におけるUL伝送/DL伝送の制御方法の他の例を示す図である。 図8A及び図8Bは、第2の実施の形態におけるLTE-FDDセルのUL信号の送信タイミングを規定したテーブルの一例を示す図である。 図9A-Cは、第2の実施の形態におけるLTE-FDDセルで利用するHARQプロセス数を規定したテーブルの一例を示す図である。 第2の実施の形態におけるUL伝送/DL伝送の制御方法の他の例を示す図である。 図11A及び図11Bは、第2の実施の形態におけるLTE-FDDセルのUL信号の送信タイミングを規定したテーブルの他の例を示す図である。 第3の実施の形態におけるUL伝送/DL伝送の制御方法の一例を示す図である。 本実施の形態に係る無線通信システムの概略構成の一例を示す概略構成図である。 本実施の形態に係る無線基地局の全体構成の一例を示す図である。 本実施の形態に係る無線基地局の機能構成の一例を示す図である。 本実施の形態に係るユーザ端末の全体構成の一例を示す図である。 本実施の形態に係るユーザ端末の機能構成の一例を示す図である。
 図1は、将来の無線通信システム(例えば、5G)の運用形態の一例を示す図である。図1では、ユーザ端末が、既存のLTE/LTE-Aシステム(以下、「LTEシステム」と記す)と新しい通信システムに接続する場合を示している。新しい通信システムは、高い周波数や大量のアンテナ素子を利用したMIMO(Massive MIMO)を考慮して設計することも想定されている。また、新しい通信システムのセルは、LTEシステムのセルのカバレッジと重複するように配置される。なお、新しい通信システムは、New-RAT、5G-RAT、新規RAT等とも呼ばれる(以下、「New-RAT」と記す)。
 New-RATは、LTE/LTE-Aシステムを拡張したシステムとすることも可能である。また、New-RATは、LTEシステムと異なる無線フレーム構成を適用するシステムであってもよい。例えば、New-RATの無線フレーム構成は、LTEシステムと比較して、送信時間間隔(TTI)、シンボル長、サブキャリア間隔、帯域幅の少なくとも一つが異なる無線フレーム構成とすることができる。
 図1に示す場合、LTEシステムでカバレッジを確保すると共に、New-RATでスループットの増大を図ることが可能となる。また、LTEシステムとNew-RATを組み合わせてキャリアアグリゲーション(CA)又はデュアルコネクティビティ(DC)を適用することも考えられる。LTEシステムとNew-RATを組み合わせてDCを適用して運用する場合、CAで運用する場合と比較してLTE基地局とNew-Rat基地局間のバックホール接続の要求条件を緩和し、柔軟かつ低コストである置局が可能となる。
 キャリアアグリゲーション(CA)を適用する場合、複数のセル(又はコンポーネントキャリア(CC))を利用してユーザ端末と無線基地局間で通信を行う。また、CAでは、1つのスケジューラ(例えば、マクロ基地局eNBの有するスケジューラ)が複数セル(例えば、スモール基地局が形成するスモールセル)のスケジューリングを制御する。このように、マクロ基地局の有するスケジューラが複数セルのスケジューリングを制御する構成では、光ファイバのような高速回線などの理想的バックホール(ideal backhaul)で各無線基地局間が接続されることが想定される。
 また、CAを適用する場合、ユーザ端末は、複数セルに対するHARQ-ACK等の上り制御情報を所定のセル(例えばプライマリセル(PCell))の上り制御チャネル(PUCCH)を用いて送信するように制御する。
 デュアルコネクティビティ(DC)が適用される場合、複数のスケジューラが独立して設けられ、当該複数のスケジューラ(例えば、無線基地局MeNBの有するスケジューラ及び無縁基地局SeNBの有するスケジューラ)が、それぞれの管轄する1つ以上のセルのスケジューリングを制御する。無線基地局MeNBの有するスケジューラ及び無線基地局SeNBの有するスケジューラがそれぞれスケジューリングを制御する構成では、各基地局間が、例えばX2インターフェースのような、遅延の無視できない非理想的バックホール(non-ideal backhaul)で接続されることが想定される。
 このため、DCでは、CAと同等の密なeNB間の協調制御は行えないと想定されている。したがって、下りリンクL1/L2制御(PDCCH/EPDCCH)、上りリンクL1/L2制御(PUCCH/PUSCHによるUCIフィードバック)は各eNBで独立に行う必要がある。
 また、DCでは、各無線基地局が、1つ又は複数のセルから構成されるセルグループ(CG:Cell Group)を設定する。各セルグループは、同一の無線基地局が形成する1つ以上のセル又は送信アンテナ装置、送信局などの同一送信ポイントが形成する1つ以上のセルから構成される。
 PCellを含むセルグループはマスタセルグループ(MCG:Master CG)と呼ばれ、MCG以外のセルグループはセカンダリセルグループ(SCG:Secondary CG)と呼ばれる。各セルグループでは、2セル以上のCAを行うことができる。また、MCGが設定される無線基地局はマスタ基地局(MeNB:Master eNB)と呼ばれ、SCGが設定される無線基地局はセカンダリ基地局(SeNB:Secondary eNB)と呼ばれる。
 DCでは、無線基地局間はCAと同等の密な協調は前提としない。そのため、ユーザ端末は、セルグループごとに下りリンクL1/L2制御(PDCCH/EPDCCH)、上りリンクL1/L2制御(PUCCH/PUSCHによるUCI(Uplink Control Information)フィードバック)を独立に行う。そのため、DCでは、セカンダリ基地局においても、共通サーチスペースやPUCCHの設定などのPCellと同等の機能を有するセル(PSCell)が設定される。
 上述したように、DCを適用する場合には、スケジューラレベルで基地局間の協調を行うことが困難となる。また、LTEシステム(Rel.12)では、DCをサポートするユーザ端末は、両方の周波数に対するUL同時送信をサポートすることが前提となっている。このため、ユーザ端末がRel.12と同様にDCを適用してLTE基地局とNew-RAT基地局と接続する場合、ユーザ端末からLTE基地局及びNew-RAT基地局に対してUL信号の同時送信をサポートする必要がある。
 ユーザ端末がDCを適用する場合、CAを適用する場合と比較して必要となる物理レイヤのチャネルやシグナル(信号)の数が多くなる。例えば、CAを適用する場合、ユーザ端末は、プライマリセル(PCell)の上り制御チャネルを利用して複数セルに対する上り制御情報(UCI)を送信することができる。これに対し、DCを適用する場合、ユーザ端末は、複数のセルグループ(MCG、SCG)毎に所定のセル(例えば、PCell、PSCell)の上り制御チャネルを用いて上り制御情報を送信する必要が生じる。
 したがって、ユーザ端末がRel.12と同様にDCを適用してLTE基地局とNew-RAT基地局と接続する場合、UL同時送信を行うと共に、高調波成分や不要輻射を低減できるRF回路の実装が必要となる。
 しかし、New-RATが導入される時点において、全てのユーザ端末が異なる周波数を利用する複数の通信システムに対するUL同時送信をサポートしているとは限らない。かかる場合、UL同時送信の能力を有していないユーザ端末は、LTEシステムとNew-RATを利用した通信(例えば、DC)を適切に行うことが出来なくなる。また、当該ユーザ端末が複数の通信システムから送信されるDL信号の同時受信をサポートしている場合であっても、LTEシステムとNew-RATを利用した通信を行うことが出来なくなる。
 そこで、本発明者等は、複数の通信システムに対するユーザ端末のUL送信のタイミングをそれぞれ制御することにより、当該ユーザ端末が複数の通信システムに対してUL同時送信を行わないように制御することを着想した。このように、ユーザ端末が、異なる通信システムに対するUL送信が時間方向において重複しないように制御することにより、UL同時送信をサポートしないユーザ端末であっても、複数の通信システムを利用した通信(例えば、DC)を適切に行うことが可能となる。
 また、本発明者等は、ユーザ端末が複数の通信システムに対してUL同時送信を行わないように制御する場合、FDDセルにおいて既存のLTEシステムの送信タイミングを利用してUL送信を行うと、他の通信システムにおけるUL送信機会が制限されることに着目した。一方で、本発明者等は、他の通信システムにおけるUL送信機会を増やすために、既存のLTEシステムの送信タイミングを利用するFDDセルにおいてUL送信を制限する場合、当該FDDセルにおけるDLの割当ても制限されることに着目した。
 そこで、本発明者等は、所定システム(例えば、LTEシステム)のFDDセルでUL送信を行う場合、複数のDLサブフレームに対するUL信号(例えば、ACK/NACK)を所定のULサブフレームに集約して送信することを着想した。例えば、ユーザ端末は、FDDセルでUL送信を行う場合に、TDDで規定されているスケジューリング及び/又はHARQ-ACK送信タイミング(例えば、UL/DL構成毎に規定された送信タイミング)を利用してUL送信を制御することを着想した。
 これにより、LTEシステム(又は、LTEキャリア、LTE CC、LTE セル)のDL割当てサブフレームに対する制約と、New-RAT(又は、New-RATキャリア、New-RAT CC、New-RATセル)のUL送信機会に対する制約を低減して通信を行うことが可能となる。
 以下に本実施の形態について詳細に説明する。以下に示す実施の形態では、ユーザ端末が接続する無線通信システムとして、LTEシステムとNew-RATに接続する場合を示すが、本実施の形態はこれに限られない。ユーザ端末が複数のNew-RATに接続する場合にも適用することができる。なお、New-RATは、LTE/LTE-Aシステムを拡張したシステムでもよいし、新規のシステムであってもよい。例えば、New-RATは、LTEシステムと比較して送信時間間隔(TTI)、シンボル長、サブキャリア間隔、帯域幅の少なくとも一つが異なる構成を有するシステムであってもよい。
 また、以下の説明では、ユーザ端末がDCを利用して複数の通信システムに接続する場合を示すが、本実施の形態はこれに限られない。異なる通信システムに対してユーザ端末のUL同時送信がサポートされる通信形態であれば適用することができる。また、以下の説明では、LTEシステムにおいてFDDを利用するセル(FDDセル)が設定される場合を示すがTDDを利用するセル(TDDセル)であっても適用することができる。
(第1の実施形態)
 第1の実施形態では、複数の通信システムとDCを適用して通信を行うユーザ端末において、各通信システム間でUL同時送信が起こらないように制御する場合について説明する。
 図2は、ユーザ端末がDCを適用して接続するNew-RATとLTEシステムにおけるUL伝送及びDL伝送の制御方法の一例を示している。つまり、ユーザ端末は、LTEシステムで設定されるセルグループ(LTE CG)と、New-RATで設定されるセルグループ(New-RAT CG)とDCを行う。
 図2では、LTEシステム(LTE CG)においてFDDを利用するセル(LTE-FDDセル)が設定される場合、New-RAT(New-RAT-CG)においてTDDを利用するセル(NewRAT-TDDセル)が設定される場合を示しているが、これに限られない。LTEシステムでTDDセル(LTE-TDDセル)が設定される場合、及び/又はNew-RATでFDDセル(NewRAT-FDD)が設定される場合においても本実施の形態を適用することができる。
 LTEシステムを運用する無線基地局(LTE基地局)及び/又はNew-RATを運用する無線基地局(New-RAT基地局)は、所定のユーザ端末に対してUL同時送信が起こらないようにスケジューリングを制御する。例えば、LTE基地局及び/又はNew-RAT基地局は、他の通信システムのスケジューリング(UL送信タイミング)に基づいて、スケジューリングを制限する。
 LTE基地局は、TDDセルが設定されるNew-RATにおいてULサブフレームとなる時間区間では、UL送信を行わないようにFDDセルのスケジューリング(例えば、UL割当て及び/又はDL割当て)を制御する。LTE基地局は、New-RATのTDDセルで適用されるUL/DL構成に関する情報をあらかじめNew-RAT基地局からバックホール等を利用して受信することができる。
 例えば、LTE基地局は、New-RATセルからUL信号が送信される時間区間(例えば、サブフレーム)に、LTE-FDDセルからUL送信(例えば、ULデータ送信やHARQ-ACK送信)が行われないようにULグラントやDLデータの送信を制限する。既存のLTEシステムでは、ユーザ端末はULグラントを受信してから4サブフレーム後にULデータ(PUSCH)送信を行う。また、ユーザ端末はDL信号(PDSCH)を受信してから4サブフレーム後にACK/NACKの送信を行う。このため、LTE基地局は、New-RATセルにおけるUL送信区間においてLTEシステムに対するUL送信を制限すると共に、当該UL送信区間の4サブフレーム前のDL割当てを制限する。
 同様に、New-RAT基地局は、あらかじめLTE基地局のスケジューリング(UL送信タイミング)を把握できる場合には、当該スケジューリング情報に基づいて、New-RATセルにおけるUL割当て及び/又はDL割当てを制限する。このように、異なる通信システムにおいて、ユーザ端末のUL送信が重複しないように時間方向で切り替えて制御する(Time-switch uplink)。
 LTE基地局は、LTEシステムで設定されるセルグループ(LTE-CG)内ではユーザ端末のUL同時送信を許容することができる。また、New-RAT基地局は、New-RATのDCにおいて構成されるセルグループ(CG)内ではユーザ端末に対するUL同時送信を許容することができる。
 ユーザ端末は、上位レイヤシグナリング、MACレイヤのシグナリング等で通知される情報(例えば、UL/DL構成等)に基づいて、UL送信を行うセルグループ(CG)を限定してUL送信を制御することができる。つまり、ユーザ端末は、所定期間では一方の通信システムのCGでしかUL送信が起こらないと想定してUL送信を制御することができる。ユーザ端末は、一方のCGでしかUL送信が起こらないと想定し、許容最大送信電力すべてを当該CGのUL送信に割当ててもよい。
 また、ユーザ端末は、複数の通信システムに対するUL同時送信能力を有していないことをあらかじめUE能力情報(UE Capability)として無線基地局へ報告してもよい。無線基地局(LTE基地局及び/又はNew-RAT基地局)は、ユーザ端末から報告されるUE能力情報に基づいてユーザ端末に対するスケジューリングを制御することができる。
 仮に、無線基地局から(又は、MACレイヤシグナリングで)複数の通信システムに対するUL同時送信を指示された場合、ユーザ端末は特定の通信システムのCGに対するUL送信を優先して行うように制御することができる。この場合、ユーザ端末は、他のCGに対するUL送信は行わない(ドロップする)ように制御することができる。
 LTEシステムとNew-RATに対するUL同時送信が指示された場合、ユーザ端末は、LTEシステムのCGに対するUL送信を優先し、New-RATのCGに対するUL送信はドロップすることができる。これにより、広く確保されたLTEシステムのカバレッジにおいて通信の接続性を確保することができる。
 あるいは、低遅延・大容量通信を優先したい場合には、ユーザ端末は、New-RATのCGに対するUL送信を優先し、LTEシステムのCGに対するUL送信はドロップしてもよい。あるいは、ユーザ端末は、所定のセル(例えばPCell)を含むセルグループのUL送信を優先し、当該所定のセルを含まないセルグループのUL送信をドロップしてもよい。
 このように、所定のユーザ端末において異なる通信システムに対するUL同時送信が起こらないように制御することにより、UL同時送信をサポートできないユーザ端末もLTEシステム及びNew-RATを利用した通信を行うことが可能となる。なお、ユーザ端末が異なる通信システムに対するUL同時送信の能力を有する場合には、無線基地局は、UL同時送信を許容してスケジューリングを制御すればよい。
(第2の実施形態)
 第2の実施形態では、New-RATにおいて、LTEシステムのTTI(1サブフレーム)より短いTTI(短縮TTI)が設定される場合について説明する。TTIは、チャネル符号化された1データ・パケット(トランスポートブロック)の送信時間単位であり、スケジューリング(Scheduling)、リンクアダプテーション(Link Adaptation)などの処理単位とすることができる。
 上述したように、New-RATでは、LTEシステムよりも高い周波数で利用することが考えられる。このため、New-RATでは、サブキャリア間隔を広げてOFDMシンボル長を短くした無線フレーム構成を利用することが考えられる(図3参照)。このように、TTI長を短く(短縮TTIを適用)することにより、制御の処理遅延を低減して遅延時間の短縮を図ることが可能となる。
 また、New-RATでは、スケジューリングやHARQ-ACKにかかる制御遅延を低減するために、ULデータ送信やHARQ-ACKのフィードバックタイミングをLTEシステムより大幅に短くすることも考えられる。既存のLTEシステムでは、ユーザ端末がUL送信指示(ULグラント)を受信してからULデータ送信するまでにかかる遅延時間、及びDL信号を受信してからHARQ-ACK送信にかかる遅延時間は4ms以上となっている。New-RATでは、当該遅延時間を短縮して(例えば、1ms以下で)通信を行うことも考えられる(図4参照)。
 図4Aは、短縮TTIを利用するTDDセルにおいて、HARQ-ACK(ACK/NACK)フィードバックを1ms以下で行う場合を示している。また、図4Bは、短縮TTIを利用するFDDセルにおいて、HARQ-ACKフィードバックを1ms以下で行う場合を示している。また、図4Cでは、短縮TTIを利用するFDDセルにおいて、DL送信に対するHARQ-ACKフィードバックを、当該DL送信を行ったDLサブフレームに連続するULサブフレームで行う場合を示している。
 このように、New-RATでは、遅延短縮を実現するためにLTEシステムよりも短い送信時間間隔(TTI)でUL送信とDL送信を切り替えて通信を行うことが考えられる。したがって、ユーザ端末が異なる通信システムに対するUL同時送信を行わないように制御する場合、New-RATキャリアにおいて短縮TTIを利用したUL送信とDL送信を繰り返す時間区間では、LTEキャリアにおけるUL送信を制限する必要がある。また、LTEキャリア(LTEセル)でUL送信が制限されると、当該DL信号の割当ても制限する必要が生じる(図5参照)。
 特に、LTEシステムにFDDセルが設定される場合、各DLサブフレームに対する上り制御情報(例えば、HARQ-ACK)を所定タイミングで送信する必要があるため、UL送信の制限によりDL信号の割当ても大きく制限されることとなる。このように、New-RATキャリアのUL送信の制限を低減する場合、LTEキャリアにおいてUL送信及びDL送信を行える時間区間が短くなる。その結果、LTE基地局から送信される重要な信号(システム情報等)を受信できずLTE基地局との通信に障害が発生し、カバレッジの確保が困難となることも考えられる。
 また、LTEキャリアでUL送信を行う場合には、New-RATキャリアにおけるUL送信が制限される。このため、LTEキャリア(例えば、LTE-FDDセル)のUL送信の時間区間を確保し、New-RATキャリアのUL送信の制限を大きくすると、LTEキャリアの性能は担保できるが、New-RATキャリアによる性能改善効果が十分に得られなくなる。
 そこで、本実施の形態では、ユーザ端末は、TTIが相対的に長い通信システム(例えば、LTEシステム)でユーザデータやHARQ-ACK等のUL信号を送信する場合、所定のサブフレームに集約して送信するように制御する。以下に、本実施の形態について具体例を挙げて説明する。
(第1の態様)
 第1の態様では、TDDで規定されているスケジューリング及び/又はHARQ-ACK送信タイミング(例えば、UL/DL構成)を利用してLTEシステムのUL送信タイミングを制御する場合について説明する。
 LTEシステム及びNew-RATに接続するユーザ端末は、LTE-FDDセルでUL信号(例えば、PUCCH、PUSCH)を送信する場合に、TDDで規定されているUL/DL構成を利用してUL送信を制御する。なお、ユーザ端末がLTE-FDDセルでUL信号を送信する場合としては、LTEキャリア(LTE-CG)がFDDセルの場合だけでなく、LTE-CGがTDDキャリアを含むが当該LTE-CGにおいてPUCCHを送信するセル(PUCCHセル)がFDDセルの場合も含まれる。
 図6は、ユーザ端末がLTEシステムと短縮TTIを利用するNew-RATに接続し、LTEシステムにおいてFDDセルで上り制御信号を送信する場合のUL伝送及びDL伝送の制御方法の一例を示している。また、FDDセルのUL信号(ULデータ及び/又はHARQ-ACK)を、TDDで規定されているUL/DL構成2(UL-DL configuration #2)の送信タイミングに基づいてユーザ端末が送信する場合を示している。なお、LTE-FDDセル(FDDキャリア)に適用するUL/DL構成(DL-reference UL-DL configuration)はUL/DL構成2に限られない。
 TDDで規定されているUL/DL構成2では、サブフレーム2(ULサブフレーム2)とサブフレーム7(ULサブフレーム)を用いて、それぞれ4つのDLサブフレームに対するACK/NACKをフィードバックする(図8A参照)。また、ユーザデータについてもサブフレーム2とサブフレーム7を利用して送信される。
 ユーザ端末は、LTEキャリア(又は、LTE-CG)に対して、サブフレーム2とサブフレーム7を利用してUL送信を行うように制御する。また、LTE基地局は、当該サブフレーム2とサブフレーム7でUL送信が行われるようにUL送信指示(ULグラント)をユーザ端末に通知する。
 また、New-RAT基地局及び/又はユーザ端末は、LTEシステムのサブフレーム2、7の時間区間では、New-RATにおいてUL送信を行わないように制御する。例えば、New-RAT基地局及び/又はユーザ端末は、LTEシステムのサブフレーム2、7に対応するNew-RATのTTIではDL送信のみを行うように制御することができる。一方で、LTEシステムのサブフレーム2、7以外の時間区間では、New-RATにおいてUL送信とDL送信を適宜切り替えて通信を行うことができる。
 また、LTE基地局及び/又はNew-RAT基地局は、LTEシステムのFDDキャリア(又は、LTE-CG)で適用するスケジューリング及び/又はHARQタイミングに関する情報を上位レイヤシグナリング等でユーザ端末に通知することができる。例えば、LTE基地局は、LTE-FDDセルにおける送信タイミングに関する情報として、TDDで規定されている所定のUL/DL構成をユーザ端末に設定することができる。なお、ユーザ端末に設定するUL/DL構成は、参照UL/DL構成、基準UL/DL構成、reference UL-DL configurationとも呼ぶ。ユーザ端末は、参照UL/DL構成が設定された場合、当該参照UL/DL構成が設定されたキャリア(例えば、LTEキャリア、LTE-FDDセル、LTE-CG)において、ULデータの送信タイミングとHARQタイミングを参照UL/DL構成の送信タイミングに切り替える。
 このように、TTIが相対的に長いシステム(例えば、LTEシステム)において、UL信号を所定のサブフレームに集約して送信することにより、LTEキャリア(LTE-CG)のDL割当てサブフレームに対する制約を低減すると共に、他の通信システムのUL送信機会を十分に確保して通信を行うことが可能となる。
<変形例>
 ユーザ端末は、PCellをTDDキャリア(TDD-PCell)とするTDD-FDD CAにおいて、SCellとなるFDDキャリア(FDD-SCell)に対して適用される送信タイミングを利用してUL送信とDL受信を制御してもよい。FDD-SCellに対して適用される送信方法では、LTE-FDDセルの全てのDLサブフレームに対してDL割当てが可能となるようにスケジューリング及び/又はDL HARQタイミングが規定されている。
 図7は、ユーザ端末がLTEシステムと短縮TTIを利用するNew-RATに接続し、LTE-CGにおいてFDDセルで上り制御信号を送信する場合のUL伝送及びDL伝送の制御方法の一例を示している。ここでは、TDDがPCellとなるTDD-FDD CAにおいてFDD-SCellに適用されるHARQタイミング(ここでは、UL/DL構成2)を利用して、ユーザ端末がLTE-FDDセルにおけるUL送信を制御する場合を示している。なお、FDDキャリアに適用する参照UL/DL構成(DL-reference UL-DL configuration)はUL/DL構成2に限られない。
 TDDがPCellとなるTDD-FDD CAにおいてFDD-SCell用に規定されている参照UL/DL構成2では、サブフレーム2とサブフレーム7を用いて、それぞれ5つのDLサブフレームに対するACK/NACKをフィードバックする(図8B参照)。つまり、図6、図8Aの場合には、サブフレーム2、7におけるDL送信がサポートされていないが、第2の態様では当該サブフレーム2、7においてもDL送信をサポートすることができる(図7、図8B参照)。これにより、LTE-FDDセルの全てのDLサブフレームを利用してDL送信を行うことが可能となる。
 ユーザ端末は、LTEキャリア(又は、LTE-CG)に対して、サブフレーム2とサブフレーム7を利用してUL送信を行うように制御する。また、LTE基地局は、当該サブフレーム2とサブフレーム7でUL送信が行われるようにUL送信指示(ULグラント)をユーザ端末に通知する。
 また、New-RAT基地局及び/又はユーザ端末は、LTEシステムのサブフレーム2、7の時間区間では、New-RATにおいてUL送信を行わないように制御する。例えば、New-RAT基地局及び/又はユーザ端末は、LTEシステムのサブフレーム2、7に対応するNew-RATのTTIではDL送信のみを行うように制御することができる。一方で、LTEシステムのサブフレーム2、7以外の時間区間では、New-RATにおいてUL送信とDL送信を適宜切り替えて通信を行うことができる。
 このように、TDDがPCellとなるTDD-FDD CAにおいてFDD-SCell用に規定されているUL送信タイミングを利用することにより、LTEキャリア(例えば、LTE-FDDセル)の全てのDLサブフレームを利用して通信を行うことができる。
(第2の態様)
 無線基地局は、LTEシステムのFDDキャリア(又は、当該FDDキャリアをPUCCHセルとするLTE-CG)に対して適用する参照UL/DL構成に関する情報をユーザ端末に通知することができる。
 例えば、LTE基地局は、上位レイヤシグナリング(例えば、RRCシグナリング等)を用いてユーザ端末に所定の参照UL/DL構成を設定(Configure)する。この場合、ユーザ端末は、無線基地局から参照UL/DL構成に関する情報が通知されない限り、既存のスケジューリング及び/又はHARQタイミングを適用する構成とすることができる。一方で、ユーザ端末は、無線基地局から参照UL/DL構成が設定された場合、New-RATセルグループが設定(Active又はSchedule)されているか否かに関わらず、設定された参照UL/DL構成に基づく送信タイミングを適用することができる。
 あるいは、無線基地局は、上位レイヤシグナリングで参照UL/DL構成の適用をユーザ端末に指定し、MAC CEにより当該参照UL/DL構成の適用を解除してもよい。この場合、MAC CEが通知されたユーザ端末は、参照UL/DL構成に基づく送受信タイミング制御から既存のスケジューリング及び/又はHARQタイミングの適用に切り替えてUL送信を制御することができる。なお、MAC CEを用いたユーザ端末への指示は、New-RATセルグループの設定/解除(Activation/de-activation)に関する指示であってもよい。
 あるいは、無線基地局は、物理シグナリング(PHYシグナリング)を用いて、ユーザ端末における参照UL/DL構成の適用を動的に切り替える構成としてもよい。例えば、無線基地局は、上位レイヤシグナリング等でユーザ端末にあらかじめ設定したタイミングを下り制御情報(PDCCH)で動的に切り替えることができる。
 参照UL/DL構成が設定されたユーザ端末は、物理レイヤシグナリングの指示に基づいて、所定の時間区間、当該参照UL/DL構成に基づくタイミングを利用して送受信を制御する。この場合、ユーザ端末は、物理シグナリングを受信しない限り、既存のスケジューリング及び/又はHARQタイミングを利用する。また、物理レイヤシグナリングによりユーザ端末に所定の参照UL/DL構成を通知してもよい。
 あるいは、ユーザ端末は、物理シグナリングで参照UL/DL構成の適用解除が通知された場合に、所定の時間区間、既存の送信タイミング(例えば、LTE-FDDセルで規定されているスケジューリング及び/又はHARQタイミング)に切り替えて適用する構成としてもよい。この場合、上位レイヤシグナリングで参照UL/DL構成が設定された後、物理レイヤシグナリングによる解除通知がない限り、参照UL/DL構成に基づく送信タイミングを適用する。
 物理シグナリングは、既存のLTEシステムにおいて、TDDのUL/DL構成を変更する際に利用するeIMTAシグナリングであってもよい。
(第3の態様)
 上記第1の態様に示すように、参照UL/DL構成に基づいてFDDキャリアで送信タイミングを制御するユーザ端末には、FDDキャリアであってもTDDと同様のスケジューリング及び/又はHARQタイミングが適用される。そのため、LTE基地局は、ユーザ端末にスケジューリング(UL割当てやDL割当て)を通知する下り制御情報(DCIフォーマット)として、既存のFDD用のDCIフォーマットでなくTDD用のDCIフォーマットを用いることが望ましい。
 この場合、FDDキャリアに対して参照UL/DL構成が設定されたユーザ端末は、当該FDDキャリアで受信する下り制御チャネル(PDCCH及び/又はEPDCCH)のDCIフォーマットが、TDD向けに規定されたDCIフォーマットであると想定して受信処理(例えば、ブラインド復号)を行う。
 TDDでは、HARQプロセス数(HPN)がFDDのHARQプロセス数(3ビット)より多く規定されている。また、TDDではUL/DL構成1-6を利用する場合に、無線基地局は、下り割当て情報を示すDAI(Downlink Assignment Indicator(Index))を下り制御情報に含めてユーザ端末に通知する。また、TDDではUL/DL構成0を利用する場合に、無線基地局は、ULインデックスを下り制御情報に含めてユーザ端末に通知する。
 このため、FDDキャリアに対して参照UL/DL構成が設定されたユーザ端末は、DCIフォーマットにおいて、HARQプロセス数が4ビットであると想定して下り制御情報の受信処理を行うことができる。また、当該ユーザ端末は、UL/DL構成1-6を適用する場合に、DCIフォーマットにおいて、下り割当て情報を示すDAI用のフィールド(2ビット)が含まれると想定して下り制御情報の受信処理を行うことができる。また、当該ユーザ端末は、UL/DL構成0を利用する場合に、ULインデックス用のフィールド(2ビット)が含まれると想定して下り制御情報の受信処理を行うことができる。
 また、無線基地局は、LTEシステムのFDDキャリア(及び当該FDDキャリアをPUCCHセルとする同一CGに含まれるSCell)のHARQプロセス数を、ユーザ端末に通知する参照UL/DL構成に基づいて設定することができる(図9参照)。
 図9Aは、TDD又はTDD CAの際のDL HARQプロセス数とUL/DL構成の関係を示すテーブルである。第1の態様(図6、図8A参照)で示したようにFDDキャリアに対して参照UL/DL構成を設定する場合、LTE基地局とユーザ端末は、図9Aのテーブルと設定される参照UL/DL構成に基づいて、DL HARQプロセス数の最大値を把握することができる。
 図9Bは、TDDがPCellとなるTDD-FDD CAにおいてFDD-SCell用のDL HARQプロセス数とUL/DL構成の関係を示すテーブルである。第1の態様の変形例(図7、図8B参照)で示したようにFDDキャリアに対して参照UL/DL構成を設定する場合、LTE基地局とユーザ端末は、図9Bのテーブルと設定される参照UL/DL構成に基づいて、DL HARQプロセス数の最大値を把握することができる。
 図9Cは、TDD又はTDD CAの際のUL HARQプロセス数とUL/DL構成の関係を示すテーブルである。第1の態様又は変形例で示したようにFDDキャリアに対して参照UL/DL構成を設定する場合、LTE基地局とユーザ端末は、図9Cのテーブルと設定される参照UL/DL構成に基づいて、UL HARQプロセス数の最大値を把握することができる。
(第4の態様)
 上記第1の態様に示すように、ユーザ端末が参照UL/DL構成を利用してLTE-FDDセル(LTE-CG、LTEキャリア)のUL送信を制御する場合、UL送信タイミングをユーザ端末間で分散するように制御してもよい。例えば、参照UL/DL構成に基づくスケジューリング及び/又はHARQタイミングに対してユーザ端末固有のオフセットを適用する。
 図10は、参照UL/DL構成2を利用する第1のユーザ端末(UE#1)にサブフレームオフセット0を適用し、第2のユーザ端末(UE#2)にサブフレームオフセット1を適用する場合を示している。この場合、第1のユーザ端末は、サブフレーム2、7を利用してUL送信を行う。一方で、第2ユーザ端末は、参照UL/DL構成に基づく送信タイミングにオフセット1が加えられたサブフレーム3、8を利用してUL送信を行う。これにより、同じUL/DL構成が設定されたユーザ端末から送信されるUL信号が特定のサブフレームに集中することを抑制し、各サブフレームに分散することができる。
 LTE基地局は、参照UL/DL構成を利用するユーザ端末に対して、サブフレームオフセットに関する情報を上位レイヤシグナリング、MAC CE、物理シグナリング等を利用して通知することができる。例えば、LTE基地局は、上記図8A、図8Bで示したテーブルに適用するオフセットに関する情報(Xの値)をユーザ端末に通知する(図11A、図11B参照)。ユーザ端末は、LTE基地局から通知された参照UL/DL構成とオフセット値に関する情報に基づいて、UL送信を制御する。
 また、New-RAT基地局は、LTE基地局からオフセット値に関する情報を取得して、New-RATセルにおけるUL送信タイミングを制御することができる。
(第3の実施形態)
 第3の実施形態では、LTEシステムのUL送信の時間区間にNew-RATから送信されるDL信号に対する送達確認信号の送信方法について説明する。
 図12は、ユーザ端末が、参照UL/DL構成を利用してLTEキャリアにおけるUL送信を制御すると共に、LTEキャリアのUL送信区間においてNew-RATに対するUL送信を行わずDL信号を受信する場合を示している。なお、New-RAT基地局とユーザ端末は、LTEシステムのUL送信の時間区間以外では、New-RATにおいて短縮TTIを利用したUL送信とDL送信を切り替えた通信を行うことができる。
 ユーザ端末は、LTEキャリアがULとなる時間区間では、New-RATでDL受信のみ行うことができるため、当該時間区間で受信したDLデータの送達確認信号を当該時間区間で送信することができない。このため、ユーザ端末は、LTEシステムにおけるUL送信が終了し、New-RATでUL送信が可能となってから当該時間区間で受信したDLデータの送達確認信号をフィードバックする。
 つまり、ユーザ端末は、LTEシステムでUL送信を行う時間区間にNew-RATで送信されたDL信号の送達確認信号は、当該時間区間以外にNew-RATで送信されたDL信号の送達確認信号よりも遅いタイミングでフィードバックするように制御する。これにより、ユーザ端末は、LTEシステムでUL送信を行う時間区間にNew-RATで送信されたDL信号の送達確認信号についても適切にフィードバックすることができる。
 この場合、ユーザ端末は、LTEシステムでUL送信を行う時間区間にNew-RATで送信されたDL信号の送達確認信号に対して、排他的論理和によるバンドリング(ACK/NACKバンドリング)を適用することができる。あるいは、ユーザ端末は、当該時間区間にNew-RATで送信されたDL信号の送達確認信号をそれぞれ異なるビットとしてフィードバックしてもよい。
 ユーザ端末及び/又はNew-RAT基地局は、LTEシステムでUL送信が行われる時間区間について、LTEキャリアに対して設定される参照UL/DL構成等から暗示的(Implicit)に把握することができる。
 このように、LTEシステムでUL送信を行う時間区間にNew-RATで送信されたDL信号の送達確認信号のフィードバック(例えば、送信タイミング)を制御することにより、New-RATで短縮TTIを利用する場合であってもACK/NACKを適切にフィードバックすることができる。
(無線通信システム)
 以下、本発明の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、上記各実施の形態及び各態様に係る無線通信方法が適用される。なお、上記各実施の形態及び各態様に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。
 図13は、本発明の一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1(例えば、LTEシステム)と無線通信システム2(例えば、New-RAT)ではキャリアアグリゲーション(CA)及び/又はデュアルコネクティビティ(DC)を適用することができる。なお、無線通信システム2は、5G、FRA(Future Radio Access)などと呼ばれても良い。
 図13では、マクロセルC1を形成する無線基地局11(例えば、LTE基地局)と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する無線基地局12a~12c(例えば、New-RAT基地局)とを備えている。また、マクロセルC1及び各スモールセルC2には、ユーザ端末20が配置されている。
 ユーザ端末20は、無線基地局11及び無線基地局12の双方に接続することができる。ユーザ端末20は、異なる周波数を用いるマクロセルC1とスモールセルC2を、CA又はDCにより同時に使用することが想定される。また、ユーザ端末20は、複数のセル(CC)(例えば、6個以上のCC)を用いてCA又はDCを適用することができる。また、ユーザ端末20と無線基地局12間のUL送信及び/又はDL送信に短縮TTIを適用することができる。
 ユーザ端末20と無線基地局11との間は、相対的に低い周波数帯域(例えば、2GHz)で帯域幅が狭いキャリア(既存キャリア、Legacy carrierなどと呼ばれる)を用いて通信を行うことができる。一方、ユーザ端末20と無線基地局12との間は、相対的に高い周波数帯域(例えば、3.5GHz、5GHzなど)で帯域幅が広いキャリア(例えば、New-RATキャリア)が用いられてもよいし、無線基地局11との間と同じキャリアが用いられてもよい。なお、各無線基地局が利用する周波数帯域の構成はこれに限られない。
 無線基地局11と無線基地局12との間(又は、2つの無線基地局12間)は、有線接続(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェースなど)又は無線接続する構成とすることができる。
 無線基地局11及び各無線基地局12は、それぞれ上位局装置30に接続され、上位局装置30を介してコアネットワーク40に接続される。なお、上位局装置30には、例えば、アクセスゲートウェイ装置、無線ネットワークコントローラ(RNC)、モビリティマネジメントエンティティ(MME)などが含まれるが、これに限定されるものではない。また、各無線基地局12は、無線基地局11を介して上位局装置30に接続されてもよい。
 なお、無線基地局11は、相対的に広いカバレッジを有する無線基地局であり、マクロ基地局、集約ノード、eNB(eNodeB)、送受信ポイント、LTE基地局などと呼ばれてもよい。また、無線基地局12は、局所的なカバレッジを有する無線基地局であり、スモール基地局、マイクロ基地局、ピコ基地局、フェムト基地局、HeNB(Home eNodeB)、RRH(Remote Radio Head)、送受信ポイント、New-RAT基地局などと呼ばれてもよい。以下、無線基地局11及び12を区別しない場合は、無線基地局10と総称する。
 各ユーザ端末20は、LTE、LTE-Aなどの各種通信方式に対応した端末であり、移動通信端末だけでなく固定通信端末を含んでもよい。
 無線通信システム1、2においては、無線アクセス方式として、下りリンクにOFDMA(直交周波数分割多元接続)が適用され、上りリンクにSC-FDMA(シングルキャリア-周波数分割多元接続)が適用される。OFDMAは、周波数帯域を複数の狭い周波数帯域(サブキャリア)に分割し、各サブキャリアにデータをマッピングして通信を行うマルチキャリア伝送方式である。SC-FDMAは、システム帯域幅を端末毎に1つ又は連続したリソースブロックからなる帯域に分割し、複数の端末が互いに異なる帯域を用いることで、端末間の干渉を低減するシングルキャリア伝送方式である。なお、上り及び下りの無線アクセス方式は、これらの組み合わせに限られず、上りリンクでOFDMAが用いられてもよい。
 無線通信システム1、2では、下りリンクのチャネルとして、各ユーザ端末20で共有される下り共有チャネル(PDSCH:Physical Downlink Shared Channel)、報知チャネル(PBCH:Physical Broadcast Channel)、下りL1/L2制御チャネルなどが用いられる。PDSCHにより、ユーザデータや上位レイヤ制御情報、SIB(System Information Block)などが伝送される。また、PBCHにより、MIB(Master Information Block)が伝送される。
 下りL1/L2制御チャネルは、下り制御チャネル(PDCCH(Physical Downlink Control Channel)、EPDCCH(Enhanced Physical Downlink Control Channel))、PCFICH(Physical Control Format Indicator Channel)、PHICH(Physical Hybrid-ARQ Indicator Channel)などを含む。PDCCHにより、PDSCH及びPUSCHのスケジューリング情報を含む下り制御情報(DCI:Downlink Control Information)などが伝送される。PCFICHにより、PDCCHに用いるOFDMシンボル数が伝送される。PHICHにより、PUSCHに対するHARQの送達確認情報(ACK/NACK)が伝送される。EPDCCHは、PDSCH(下り共有データチャネル)と周波数分割多重され、PDCCHと同様にDCIなどの伝送に用いられる。
 無線通信システム1、2では、上りリンクのチャネルとして、各ユーザ端末20で共有される上り共有チャネル(PUSCH:Physical Uplink Shared Channel)、上り制御チャネル(PUCCH:Physical Uplink Control Channel)、ランダムアクセスチャネル(PRACH:Physical Random Access Channel)などが用いられる。PUSCHにより、ユーザデータ、上位レイヤ制御情報が伝送される。送達確認情報(ACK/NACK)や無線品質情報(CQI)などの少なくも一つを含む上り制御情報(UCI:Uplink Control Information)は、PUSCH又はPUCCHにより、伝送される。PRACHにより、セルとの接続確立のためのランダムアクセスプリアンブルが伝送される。
<無線基地局>
 図14は、本発明の一実施形態に係る無線基地局の全体構成の一例を示す図である。無線基地局10は、複数の送受信アンテナ101と、アンプ部102と、送受信部103と、ベースバンド信号処理部104と、呼処理部105と、伝送路インターフェース106とを備えている。なお、送受信部103は、送信部及び受信部で構成される。
 下りリンクにより無線基地局10からユーザ端末20に送信されるユーザデータは、上位局装置30から伝送路インターフェース106を介してベースバンド信号処理部104に入力される。
 ベースバンド信号処理部104では、ユーザデータに関して、PDCP(Packet Data Convergence Protocol)レイヤの処理、ユーザデータの分割・結合、RLC(Radio Link Control)再送制御などのRLCレイヤの送信処理、MAC(Medium Access Control)再送制御(例えば、HARQ(Hybrid Automatic Repeat reQuest)の送信処理)、スケジューリング、伝送フォーマット選択、チャネル符号化、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)処理、プリコーディング処理などの送信処理が行われて送受信部103に転送される。また、下り制御信号に関しても、チャネル符号化や逆高速フーリエ変換などの送信処理が行われて、送受信部103に転送される。
 送受信部103は、ベースバンド信号処理部104からアンテナ毎にプリコーディングして出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部103で周波数変換された無線周波数信号は、アンプ部102により増幅され、送受信アンテナ101から送信される。
 送受信部(受信部)103は、ユーザ端末から送信されるUL信号(例えば、ULデータ、HARQ-ACK等)を受信する。また、送受信部(送信部)103は、DL信号(例えば、ULグラント)を送信する。また、送受信部(送信部)103は、ユーザ端末がUL送信のタイミングに利用する参照UL/DL構成に関する情報を、上位レイヤシグナリング、MAC CE(Media Access Control Control Element)及び物理シグナリングの少なくとも一つを利用して送信することができる。なお、送受信部103は、本発明に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部103は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。
 一方、上り信号については、送受信アンテナ101で受信された無線周波数信号がアンプ部102で増幅される。送受信部103はアンプ部102で増幅された上り信号を受信する。送受信部103は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部104に出力する。
 ベースバンド信号処理部104では、入力された上り信号に含まれるユーザデータに対して、高速フーリエ変換(FFT:Fast Fourier Transform)処理、逆離散フーリエ変換(IDFT:Inverse Discrete Fourier Transform)処理、誤り訂正復号、MAC再送制御の受信処理、RLCレイヤ及びPDCPレイヤの受信処理がなされ、伝送路インターフェース106を介して上位局装置30に転送される。呼処理部105は、通信チャネルの設定や解放などの呼処理や、無線基地局10の状態管理や、無線リソースの管理を行う。
 伝送路インターフェース106は、所定のインターフェースを介して、上位局装置30と信号を送受信する。また、伝送路インターフェース106は、基地局間インターフェース(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェース)を介して隣接無線基地局10と信号を送受信(バックホールシグナリング)してもよい。
 図15は、本実施形態に係る無線基地局の機能構成の一例を示す図である。なお、図15では、本実施形態における特徴部分の機能ブロックを主に示しており、無線基地局10は、無線通信に必要な他の機能ブロックも有しているものとする。図15に示すように、ベースバンド信号処理部104は、制御部(スケジューラ)301と、送信信号生成部(生成部)302と、マッピング部303と、受信信号処理部304と、を備えている。
 制御部(スケジューラ)301は、PDSCHで送信される下りデータ信号、PDCCH及び/又はEPDCCHで伝送される下り制御信号のスケジューリング(例えば、リソース割り当て)を制御する。また、システム情報、同期信号、ページング情報、CRS(Cell-specific Reference Signal)、CSI-RS(Channel State Information Reference Signal)等のスケジューリングの制御も行う。また、上り参照信号、PUSCHで送信される上りデータ信号、PUCCH及び/又はPUSCHで送信される上り制御信号等のスケジューリングを制御する。
 制御部301は、ユーザ端末が異なる通信システムに対してUL信号を同時に送信しないようにULグラントの送信を制御する。なお、制御部301は、本発明に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置とすることができる。
 送信信号生成部302は、制御部301からの指示に基づいて、DL信号(下りデータ信号、下り制御信号を含む)を生成して、マッピング部303に出力する。具体的には、送信信号生成部302は、ユーザデータを含む下りデータ信号(PDSCH)を生成して、マッピング部303に出力する。また、送信信号生成部302は、DCI(ULグラント、DLアサイメント)を含む下り制御信号(PDCCH/EPDCCH)を生成して、マッピング部303に出力する。なお、送信信号生成部302は、本発明に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置とすることができる。
 マッピング部303は、制御部301からの指示に基づいて、送信信号生成部302で生成されたDL信号を、所定の無線リソースにマッピングして、送受信部103に出力する。マッピング部303は、本発明に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置とすることができる。
 受信信号処理部304は、ユーザ端末20から送信されるUL信号(HARQ-ACK、PUSCH等)に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。処理結果は、制御部301に出力される。
 受信信号処理部304は、本発明に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置、並びに、測定器、測定回路又は測定装置から構成することができる。
<ユーザ端末>
 図16は、本発明の一実施形態に係るに係るユーザ端末の全体構成の一例を示す図である。ユーザ端末20は、MIMO伝送のための複数の送受信アンテナ201と、アンプ部202と、送受信部203と、ベースバンド信号処理部204と、アプリケーション部205と、を備えている。なお、送受信部203は、送信部及び受信部から構成されてもよい。
 複数の送受信アンテナ201で受信された無線周波数信号は、それぞれアンプ部202で増幅される。各送受信部203はアンプ部202で増幅された下り信号を受信する。送受信部203は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部204に出力する。
 送受信部(受信部)203は、複数の通信システムから送信されるDL信号を受信する。また、送受信部(送信部)203は、複数の通信システムにUL信号を送信する。送受信部(受信部)203は、ユーザ端末がUL送信のタイミングに利用する参照UL/DL構成に関する情報を、上位レイヤシグナリング、MAC CE(Media Access Control Control Element)及び物理シグナリングの少なくとも一つを利用して受信することができる。また、送受信部(受信部)203は、送達確認信号の送信を行うリソース及び/又は信号系列に関する情報を既存の下り制御情報(例えば、DLアサイメント)で受信することができる。なお、送受信部203は、本発明に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置とすることができる。
 ベースバンド信号処理部204は、入力されたベースバンド信号に対して、FFT処理や、誤り訂正復号、再送制御の受信処理などを行う。下りリンクのユーザデータは、アプリケーション部205に転送される。アプリケーション部205は、物理レイヤやMACレイヤより上位のレイヤに関する処理などを行う。また、下りリンクのデータのうち、報知情報もアプリケーション部205に転送される。
 一方、上りリンクのユーザデータについては、アプリケーション部205からベースバンド信号処理部204に入力される。ベースバンド信号処理部204では、再送制御の送信処理(例えば、HARQの送信処理)や、チャネル符号化、プリコーディング、離散フーリエ変換(DFT:Discrete Fourier Transform)処理、IFFT処理などが行われて各送受信部203に転送される。送受信部203は、ベースバンド信号処理部204から出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部203で周波数変換された無線周波数信号は、アンプ部202により増幅され、送受信アンテナ201から送信される。
 図17は、本実施形態に係るユーザ端末の機能構成の一例を示す図である。なお、図17においては、本実施形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有しているものとする。図17に示すように、ユーザ端末20が有するベースバンド信号処理部204は、制御部401と、送信信号生成部402と、マッピング部403と、受信信号処理部404と、判定部405と、を備えている。なお、受信信号処理部404と送受信部203を用いて受信部を構成してもよい。
 制御部401は、無線基地局10から送信された下り制御信号(PDCCH/EPDCCHで送信された信号)及び下りデータ信号(PDSCHで送信された信号)を、受信信号処理部404から取得する。制御部401は、下り制御信号や、下りデータ信号に対する再送制御の要否を判定した結果などに基づいて、上り制御信号(例えば、送達確認信号(HARQ-ACK)など)や上りデータ信号の生成を制御する。具体的には、制御部401は、送信信号生成部402、マッピング部403及び受信信号処理部404の制御を行うことができる。
 制御部401は、複数の通信システムに対するDL信号の受信及びUL信号の送信を制御すると共に、異なる通信システムに対してUL信号を同時に送信しないように制御することができる(図2参照)。
 また、制御部401は、送受信部203がLTEシステムのFDDセルでUL信号を送信する場合、LTEシステムのTDDで規定されているUL/DL構成に適用される第1のUL送信タイミングに基づいて、UL信号の送信を制御することができる(図6、図8A参照)。あるいは、制御部401は、送受信部203がLTEシステムのFDDセルでUL信号を送信する場合、TDDがPCellとなるTDDとFDDのCAにおいてSCellとなるFDDセルに適用される第2のUL送信タイミングに基づいて、UL信号の送信を制御することができる(図7、図8B参照)。
 また、制御部401は、第1のUL送信タイミング又は第2の送信タイミングを適用する場合、FDDセルで受信する下り制御チャネルのDCIフォーマットがTDD用に規定されているDCIフォーマットであると想定して復号処理を行うように制御することができる。また、制御部401は、第1のUL送信タイミング又は第2の送信タイミングを適用する場合、さらにユーザ端末固有に設定されるサブフレームオフセットに基づいてUL信号の送信タイミングを制御することができる(図10、図11参照)。
 また、制御部401は、LTEシステムでUL送信を行う時間区間に他の通信システムで受信したDL信号に対する送達確認信号を、LTEシステムでUL送信を行わない時間区間に他の通信システムで受信したDL信号に対する送達確認信号とは異なるタイミングでフィードバックするように制御することができる(図12参照)。なお、制御部401は、本発明に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置とすることができる。
 送信信号生成部402は、制御部401からの指示に基づいて、UL信号を生成して、マッピング部403に出力する。例えば、送信信号生成部402は、制御部401からの指示に基づいて、送達確認信号(HARQ-ACK)やチャネル状態情報(CSI)等の上り制御信号を生成する。
 また、送信信号生成部402は、制御部401からの指示に基づいて上りデータ信号を生成する。例えば、送信信号生成部402は、無線基地局10から通知される下り制御信号にULグラントが含まれている場合に、制御部401から上りデータ信号の生成を指示される。送信信号生成部402は、本発明に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置とすることができる。
 マッピング部403は、制御部401からの指示に基づいて、送信信号生成部402で生成された上り信号(上り制御信号及び/又は上りデータ)を無線リソースにマッピングして、送受信部203へ出力する。マッピング部403は、本発明に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置とすることができる。
 受信信号処理部404は、DL信号(例えば、無線基地局から送信された下り制御信号、PDSCHで送信された下りデータ信号等)に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。受信信号処理部404は、無線基地局10から受信した情報を、制御部401、判定部405に出力する。受信信号処理部404は、例えば、報知情報、システム情報、RRCシグナリング、DCIなどを、制御部401に出力する。なお、受信信号処理部404は、本発明に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置、並びに、測定器、測定回路又は測定装置から構成することができる。また、受信信号処理部404は、本発明に係る受信部を構成することができる。
 判定部405は、受信信号処理部404の復号結果に基づいて、再送制御判定(ACK/NACK)を行うと共に、判定結果を制御部401に出力する。複数CC(例えば、6個以上のCC)から下り信号(PDSCH)が送信される場合には、各CCについてそれぞれ再送制御判定(ACK/NACK)を行い制御部401に出力する。判定部405は、本発明に係る技術分野での共通認識に基づいて説明される判定回路又は判定装置から構成することができる。
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの任意の組み合わせによって実現される。また、各機能ブロックの実現手段は特に限定されない。すなわち、各機能ブロックは、物理的に結合した1つの装置により実現されてもよいし、物理的に分離した2つ以上の装置を有線又は無線で接続し、これら複数の装置により実現されてもよい。
 例えば、無線基地局10やユーザ端末20の各機能の一部又は全ては、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを用いて実現されても良い。また、無線基地局10やユーザ端末20は、プロセッサ(CPU:Central Processing Unit)と、ネットワーク接続用の通信インターフェースと、メモリと、プログラムを保持したコンピュータ読み取り可能な記憶媒体と、を含むコンピュータ装置によって実現されてもよい。つまり、本発明の一実施形態に係る無線基地局、ユーザ端末などは、本発明に係る無線通信方法の処理を行うコンピュータとして機能してもよい。
 ここで、プロセッサやメモリなどは情報を通信するためのバスで接続される。また、コンピュータ読み取り可能な記録媒体は、例えば、フレキシブルディスク、光磁気ディスク、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、CD-ROM(Compact Disc-ROM)、RAM(Random Access Memory)、ハードディスクなどの記憶媒体である。また、プログラムは、電気通信回線を介してネットワークから送信されても良い。また、無線基地局10やユーザ端末20は、入力キーなどの入力装置や、ディスプレイなどの出力装置を含んでいてもよい。
 無線基地局10及びユーザ端末20の機能構成は、上述のハードウェアによって実現されてもよいし、プロセッサによって実行されるソフトウェアモジュールによって実現されてもよいし、両者の組み合わせによって実現されてもよい。プロセッサは、オペレーティングシステムを動作させてユーザ端末の全体を制御する。また、プロセッサは、記憶媒体からプログラム、ソフトウェアモジュールやデータをメモリに読み出し、これらに従って各種の処理を実行する。
 ここで、当該プログラムは、上記の各実施形態で説明した各動作を、コンピュータに実行させるプログラムであれば良い。例えば、ユーザ端末20の制御部401は、メモリに格納され、プロセッサで動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
 また、ソフトウェア、命令などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、同軸ケーブル、光ファイバケーブル、ツイストペア及びデジタル加入者回線(DSL)などの有線技術及び/又は赤外線、無線及びマイクロ波などの無線技術を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び/又は無線技術は、伝送媒体の定義内に含まれる。
 なお、本明細書で説明した用語及び/又は本明細書の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及び/又はシンボルは信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(CC)は、キャリア周波数、セルなどと呼ばれてもよい。
 また、本明細書で説明した情報、パラメータなどは、絶対値で表されてもよいし、所定の値からの相対値で表されてもよいし、対応する別の情報で表されてもよい。例えば、無線リソースはインデックスで指示されるものであってもよい。
 本明細書で説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 本明細書で説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的に(例えば、当該所定の情報の通知を行わないことによって)行われてもよい。
 情報の通知は、本明細書で説明した態様/実施形態に限られず、他の方法で行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、報知情報(MIB(Master Information Block)、SIB(System Information Block)))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRCConnectionSetup)メッセージ、RRC接続再構成(RRCConnectionReconfiguration)メッセージなどであってもよい。
 本明細書で説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G、5G、FRA(Future Radio Access)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及び/又はこれらに基づいて拡張された次世代システムに適用されてもよい。
 本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本明細書で説明した方法については、例示的な順序で様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 以上、本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されるものではないということは明らかである。本発明は、特許請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本明細書の記載は、例示説明を目的とするものであり、本発明に対して何ら制限的な意味を有するものではない。
 本出願は、2015年8月31日出願の特願2015-171450に基づく。この内容は、全てここに含めておく。
 
 

Claims (10)

  1.  複数の通信システムと通信を行うユーザ端末であって、
     各通信システムから送信されるDL信号を受信する受信部と、
     各通信システムにUL信号を送信する送信部と、
     前記DL信号の受信及び前記UL信号の送信を制御する制御部と、を有し、
     前記制御部は、異なる通信システムに対してUL信号を同時に送信しないように制御することを特徴とするユーザ端末。
  2.  前記複数の通信システムにLTEシステムが含まれ、
     前記送信部がLTEシステムのFDDセルで前記UL信号を送信する場合、前記制御部は、LTEシステムのTDDで規定されているUL/DL構成に適用される第1のUL送信タイミングに基づいて、前記UL信号の送信を制御することを特徴とする請求項1に記載のユーザ端末。
  3.  前記複数の通信システムにLTEシステムが含まれ、
     前記送信部がLTEシステムのFDDセルで前記UL信号を送信する場合、前記制御部は、TDDがプライマリセルとなるTDDとFDDのキャリアアグリゲーションにおいてセカンダリセルとなるFDDセルに適用される第2のUL送信タイミングに基づいて、前記UL信号の送信を制御することを特徴とする請求項1に記載のユーザ端末。
  4.  前記受信部は、前記第1のUL送信タイミング又は前記第2の送信タイミングの適用有無に関する情報を、上位レイヤシグナリング、MAC CE(Media Access Control Control Element)及び物理シグナリングの少なくとも一つを利用して受信することを特徴とする請求項2又は請求項3に記載のユーザ端末。
  5.  前記制御部は、前記第1のUL送信タイミング又は前記第2の送信タイミングを適用する場合、前記FDDセルで受信する下り制御チャネルのDCIフォーマットがTDD用に規定されているDCIフォーマットであると想定して復号処理を行うように制御することを特徴とする請求項2から請求項4のいずれかに記載のユーザ端末。
  6.  前記制御部は、前記第1のUL送信タイミング又は前記第2の送信タイミングを適用する場合、さらにユーザ端末固有に設定されるサブフレームオフセットに基づいて前記UL信号の送信タイミングを制御することを特徴とする請求項2から請求項5のいずれかに記載のユーザ端末。
  7.  前記制御部は、前記LTEシステムでUL送信を行う時間区間に他の通信システムで受信したDL信号に対する送達確認信号を、前記LTEシステムでUL送信を行わない時間区間に前記他の通信システムで受信したDL信号に対する送達確認信号とは異なるタイミングでフィードバックするように制御することを特徴とする請求項2から請求項6のいずれかに記載のユーザ端末。
  8.  複数の通信システムが異なる無線フレーム構成を適用することを特徴とする請求項1から請求項7のいずれかに記載のユーザ端末。
  9.  複数の通信システムと接続するユーザ端末と通信する無線基地局であって、
     前記ユーザ端末から送信されるUL信号を受信する受信部と、
     前記ユーザ端末に対するULグラントの送信を制御する制御部と、を有し、
     前記制御部は、前記ユーザ端末が異なる通信システムに対してUL信号を同時に送信しないようにULグラントの送信を制御することを特徴とする無線基地局。
  10.  複数の通信システムと通信を行うユーザ端末の無線通信方法であって、
     各通信システムから送信されるDL信号を受信する工程と、
     各通信システムにUL信号を送信する工程と、を有し、
     異なる通信システムに対してUL信号を同時に送信しないように制御することを特徴とする無線通信方法。
     
PCT/JP2016/074550 2015-08-31 2016-08-23 ユーザ端末、無線基地局及び無線通信方法 WO2017038563A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA2996405A CA2996405C (en) 2015-08-31 2016-08-23 User terminal, radio base station and radio communication method
EP16841595.8A EP3346796A4 (en) 2015-08-31 2016-08-23 USER DEVICE, RADIAL BASE STATION, AND RADIO COMMUNICATION METHOD
EP22215480.9A EP4171169A1 (en) 2015-08-31 2016-08-23 User terminal, radio base station and radio communication method
JP2017537772A JP6826037B2 (ja) 2015-08-31 2016-08-23 ユーザ端末、無線基地局及び無線通信方法
US15/755,909 US10841935B2 (en) 2015-08-31 2016-08-23 User terminal, radio base station and radio communication method
CN201680050155.3A CN107926076B (zh) 2015-08-31 2016-08-23 用户终端、无线基站以及无线通信方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-171450 2015-08-31
JP2015171450 2015-08-31

Publications (1)

Publication Number Publication Date
WO2017038563A1 true WO2017038563A1 (ja) 2017-03-09

Family

ID=58187415

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/074550 WO2017038563A1 (ja) 2015-08-31 2016-08-23 ユーザ端末、無線基地局及び無線通信方法

Country Status (6)

Country Link
US (1) US10841935B2 (ja)
EP (2) EP4171169A1 (ja)
JP (1) JP6826037B2 (ja)
CN (1) CN107926076B (ja)
CA (1) CA2996405C (ja)
WO (1) WO2017038563A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3648504A4 (en) * 2017-06-30 2020-07-01 Vivo Mobile Communication Co., Ltd. METHOD FOR SENDING RESOURCE INFORMATION, RELATED DEVICE AND SYSTEM
EP4145940A1 (en) * 2017-06-13 2023-03-08 Ntt Docomo, Inc. User terminal and radio communication method

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10524255B2 (en) * 2016-05-20 2019-12-31 Lg Electronics Inc. Method and apparatus for handling DC subcarrier in NR carrier in wireless communication system
EP3520289B1 (en) * 2016-09-30 2021-05-26 Telefonaktiebolaget LM Ericsson (PUBL) Transport block size determination for short transmission time interval
KR102292044B1 (ko) * 2017-06-08 2021-08-20 엘지전자 주식회사 Nr에서 이중 연결을 지원하는 방법 및 장치
WO2018229878A1 (ja) * 2017-06-13 2018-12-20 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
WO2019027209A1 (ko) * 2017-07-31 2019-02-07 엘지전자 주식회사 무선 통신 시스템에서 lte 및 nr에 기반한 신호 송수신 방법 및 이를 위한 장치
WO2019031528A1 (ja) 2017-08-09 2019-02-14 日本電気株式会社 通信端末、基地局、及び通信方法
US11259351B2 (en) * 2018-04-19 2022-02-22 Qualcomm Incorporated EN-DC time division multiplexing and carrier aggregation
US20210266849A1 (en) * 2018-09-26 2021-08-26 Ntt Docomo, Inc. User equipment
CN113316960B (zh) * 2018-11-22 2024-03-26 株式会社Ntt都科摩 用户终端以及无线通信方法
EP3713121B1 (en) * 2019-03-20 2023-08-23 Vodafone IP Licensing Limited Multiple radio access technologies interference reduction
CN113785636A (zh) * 2019-05-10 2021-12-10 株式会社Ntt都科摩 用户装置和通信方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012004608A (ja) * 2010-05-17 2012-01-05 Ntt Docomo Inc 移動局、無線基地局及び通信制御方法
WO2014113325A1 (en) * 2013-01-16 2014-07-24 Qualcomm Incorporated Apparatus and method for mitigating voltage droop in dual-transceiver wireless communication device
JP2015149723A (ja) * 2014-02-05 2015-08-20 アップル インコーポレイテッド ライセンス不要周波数帯域における共存のためのセルラーデバイスによるWi−Fiシグナリング

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103460740B (zh) 2011-02-07 2017-10-10 交互数字专利控股公司 在免许可频谱中操作补充小区的方法和装置
WO2012141513A2 (ko) * 2011-04-13 2012-10-18 엘지전자 주식회사 무선통신시스템에서 제어정보 전송 방법 및 장치
KR101961807B1 (ko) * 2011-05-31 2019-07-18 삼성전자 주식회사 반송파 결합을 지원하는 tdd 통신 시스템에서 물리채널의 송수신 타이밍 및 자원 할당을 정의하는 방법 및 장치
CN102223215B (zh) * 2011-06-23 2016-09-21 电信科学技术研究院 Ack/nack的传输方法、接收方法及其装置
US9215039B2 (en) 2012-03-22 2015-12-15 Sharp Laboratories Of America, Inc. Devices for enabling half-duplex communication
JP5979968B2 (ja) * 2012-05-11 2016-08-31 株式会社Nttドコモ ユーザ端末、無線通信方法及び無線通信システム
CN103516499B (zh) * 2012-06-19 2017-06-13 电信科学技术研究院 一种ack/nack反馈比特数确定方法及装置
CN103580830B (zh) * 2012-07-18 2018-11-27 北京三星通信技术研究有限公司 一种发送harq-ack反馈信息的方法
JP5932554B2 (ja) * 2012-08-02 2016-06-08 株式会社Nttドコモ 無線通信方法、無線通信システム、無線基地局及びユーザ端末
US8811332B2 (en) * 2012-10-31 2014-08-19 Sharp Laboratories Of America, Inc. Systems and methods for carrier aggregation
US9642140B2 (en) * 2013-06-18 2017-05-02 Samsung Electronics Co., Ltd. Methods of UL TDM for inter-enodeb carrier aggregation
US9900142B2 (en) 2013-06-26 2018-02-20 Lg Electronics Inc. Method and apparatus for FDD/TDD intra-node and inter-node carrier aggregation
WO2015026274A1 (en) * 2013-08-23 2015-02-26 Telefonaktiebolaget L M Ericsson (Publ) A node and method for uplink scheduling and hybrid automatic repeat request timing
JP6031017B2 (ja) * 2013-09-26 2016-11-24 株式会社Nttドコモ ユーザ端末、基地局及び無線通信方法
US9432147B2 (en) * 2013-10-29 2016-08-30 Innovative Technology Lab Co., Ltd. Method and apparatus of transmitting control information considering TDD-FDD CA
WO2015064896A1 (ko) * 2013-10-30 2015-05-07 엘지전자 주식회사 복수의 셀에 동시 접속한 사용자 장치가 harq ack/nack을 전송하는 방법
KR20150060118A (ko) * 2013-11-25 2015-06-03 주식회사 아이티엘 Harq ack/nack의 전송방법 및 장치
US20150173102A1 (en) 2013-12-12 2015-06-18 Sharp Kabushiki Kaisha Terminal apparatus, base station apparatus, communication system, communication method, and integrated circuit
CN112564875A (zh) * 2014-01-28 2021-03-26 索尼公司 在无线通信系统中进行无线通信的方法、基站和用户设备
KR102120497B1 (ko) * 2014-01-29 2020-06-08 이노스카이 주식회사 Harq ack/nack 전송방법 및 장치
US20150215840A1 (en) 2014-01-30 2015-07-30 Intel IP Corporation Systems, methods and devices for application specific routing in dual connectivity
US9839049B2 (en) 2014-02-24 2017-12-05 Intel IP Corporation Scheduling for an unlicensed carrier type
JP2015171450A (ja) 2014-03-12 2015-10-01 ソニー株式会社 画像処理装置、画像処理方法、プログラム、および内視鏡装置
US9467975B2 (en) * 2014-09-29 2016-10-11 Qualcomm Incorporated System and methods for cancelling uplink traffic channel bursts to improve performance in a multi-SIM wireless communication device
US9648634B2 (en) * 2015-01-29 2017-05-09 Qualcomm Incorporated System and methods for providing a transmission skipping policy to improve performance in a multi-subscriber identity module (SIM) wireless communication device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012004608A (ja) * 2010-05-17 2012-01-05 Ntt Docomo Inc 移動局、無線基地局及び通信制御方法
WO2014113325A1 (en) * 2013-01-16 2014-07-24 Qualcomm Incorporated Apparatus and method for mitigating voltage droop in dual-transceiver wireless communication device
JP2015149723A (ja) * 2014-02-05 2015-08-20 アップル インコーポレイテッド ライセンス不要周波数帯域における共存のためのセルラーデバイスによるWi−Fiシグナリング

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NTT DOCOMO: "Design of TDD-FDD Carrier Aggregation for LTE Rel.12", RL-134495, 3GPP, 28 September 2013 (2013-09-28), XP050717597 *
See also references of EP3346796A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4145940A1 (en) * 2017-06-13 2023-03-08 Ntt Docomo, Inc. User terminal and radio communication method
EP3648504A4 (en) * 2017-06-30 2020-07-01 Vivo Mobile Communication Co., Ltd. METHOD FOR SENDING RESOURCE INFORMATION, RELATED DEVICE AND SYSTEM
US11659571B2 (en) 2017-06-30 2023-05-23 Vivo Mobile Communication Co., Ltd. Resource information transmission method, relevant device and system

Also Published As

Publication number Publication date
EP3346796A4 (en) 2019-04-10
EP3346796A1 (en) 2018-07-11
JP6826037B2 (ja) 2021-02-03
CA2996405A1 (en) 2017-03-09
EP4171169A1 (en) 2023-04-26
US10841935B2 (en) 2020-11-17
JPWO2017038563A1 (ja) 2018-08-30
CN107926076A (zh) 2018-04-17
CN107926076B (zh) 2022-11-01
US20180332603A1 (en) 2018-11-15
CA2996405C (en) 2024-01-16

Similar Documents

Publication Publication Date Title
JP6826037B2 (ja) ユーザ端末、無線基地局及び無線通信方法
US20210195588A1 (en) Terminal, base station, and radio communication method
US10743304B2 (en) User terminal, radio base station, and radio communication method
JP6291088B2 (ja) ユーザ端末、無線基地局及び無線通信方法
JP6282831B2 (ja) ユーザ端末、基地局及び無線通信方法
WO2016159230A1 (ja) ユーザ端末、無線基地局及び無線通信方法
WO2017038894A1 (ja) ユーザ端末、無線基地局及び無線通信方法
WO2017110956A1 (ja) ユーザ端末、無線基地局及び無線通信方法
WO2017033839A1 (ja) ユーザ端末、無線基地局及び無線通信方法
WO2017130991A1 (ja) ユーザ端末、無線基地局及び無線通信方法
JP6339739B2 (ja) ユーザ端末、無線基地局及び無線通信方法
WO2016182047A1 (ja) ユーザ端末、無線基地局及び無線通信方法
WO2016182051A1 (ja) ユーザ端末、無線基地局及び無線通信方法
WO2017038532A1 (ja) ユーザ端末、無線基地局及び無線通信方法
WO2017038533A1 (ja) ユーザ端末、無線基地局及び無線通信方法
WO2017038674A1 (ja) ユーザ端末、無線基地局及び無線通信方法
WO2017038531A1 (ja) ユーザ端末、無線基地局及び無線通信方法
WO2017051717A1 (ja) ユーザ端末、無線基地局及び無線通信方法
JP7010696B2 (ja) 端末及び無線通信方法
WO2017150448A1 (ja) ユーザ端末、無線基地局及び無線通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16841595

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2996405

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15755909

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017537772

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016841595

Country of ref document: EP