WO2016182047A1 - ユーザ端末、無線基地局及び無線通信方法 - Google Patents

ユーザ端末、無線基地局及び無線通信方法 Download PDF

Info

Publication number
WO2016182047A1
WO2016182047A1 PCT/JP2016/064240 JP2016064240W WO2016182047A1 WO 2016182047 A1 WO2016182047 A1 WO 2016182047A1 JP 2016064240 W JP2016064240 W JP 2016064240W WO 2016182047 A1 WO2016182047 A1 WO 2016182047A1
Authority
WO
WIPO (PCT)
Prior art keywords
user terminal
transmission
modulation order
csi
index
Prior art date
Application number
PCT/JP2016/064240
Other languages
English (en)
French (fr)
Inventor
一樹 武田
聡 永田
リフェ ワン
リュー リュー
ホイリン ジャン
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to CN201680027921.4A priority Critical patent/CN107615807A/zh
Priority to JP2017517998A priority patent/JPWO2016182047A1/ja
Priority to US15/572,855 priority patent/US20180139732A1/en
Publication of WO2016182047A1 publication Critical patent/WO2016182047A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • H04L1/0004Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes applied to control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • H04L1/001Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding applied to control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0072Error control for data other than payload data, e.g. control data
    • H04L1/0073Special arrangements for feedback channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the present invention relates to a user terminal, a radio base station, and a radio communication method in a next-generation mobile communication system.
  • LTE Long Term Evolution
  • Non-Patent Document 1 a LTE successor system (also referred to as LTE-A) called LTE Advanced has been studied for the purpose of further broadbanding and speeding up from LTE, and LTE Rel. It is specified as 10-12.
  • the system band 10-12 includes at least one component carrier (CC: Component Carrier) having the system band of the LTE system as a unit.
  • CC Component Carrier
  • CA carrier aggregation
  • Rel. 13 operation in a license-free frequency band, that is, an unlicensed band is also considered as a target.
  • the unlicensed band for example, the same 2.4 GHz or 5 GHz band as Wi-Fi is used.
  • Rel. 13 LTE considers carrier aggregation (LAA: License-Assisted Access) between licensed and unlicensed bands, but dual connectivity and unlicensed band standalone may also be considered in the future. There is.
  • LAA License-Assisted Access
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • LTE Rel In the 10-12 carrier aggregation, the number of component carriers that can be set per user terminal is limited to a maximum of five. LTE Rel. In carrier aggregation after 13th, in order to realize further band expansion, it has been studied to expand the number of component carriers that can be set per user terminal to 6 or more.
  • the existing system supports an aperiodic CSI report (Aperiodic CSI report) in which a user terminal transmits channel state information (CSI) in response to a transmission instruction from a radio base station.
  • aperiodic CSI report Aperiodic CSI report
  • CSI channel state information
  • the existing system assumes 5 cells (CC) or less. For this reason, if the method of the existing system is used as it is when the number of CCs is expanded to 6 or more, there is a possibility that the aperiodic CSI report cannot be appropriately performed corresponding to the expanded number of CCs.
  • the present invention has been made in view of such a point, and even if the number of component carriers that can be set per user terminal is expanded from the existing system, a user who can appropriately perform aperiodic CSI reporting
  • An object is to provide a terminal, a radio base station, and a radio communication method.
  • One aspect of the user terminal of the present invention includes a receiving unit that receives downlink control information including information related to a transmission instruction for aperiodic channel state information, and a control unit that controls transmission of aperiodic channel state information.
  • the control unit may be a first modulation order defined in advance according to an index related to a modulation and coding scheme included in downlink control information and / or the number of serving cells instructed to transmit aperiodic channel state information, A transmission order of aperiodic channel state information is controlled by selecting a second modulation order that is equal to or greater than the modulation order.
  • the present invention even if the number of component carriers that can be set per user terminal is expanded from the existing system, it is possible to appropriately perform aperiodic CSI reporting.
  • FIG. 1 is an explanatory diagram of carrier aggregation (CA).
  • CA carrier aggregation
  • LTE Rel LTE Rel.
  • CA carrier aggregation
  • CC # 1 to CC # 5 component carriers
  • CC component carriers
  • UE User Equipment
  • LTE Rel In the carrier aggregation after 13th, it is considered to further expand the bandwidth by bundling 6 or more CCs. That is, LTE Rel. In 13 carrier aggregations, it is considered to expand the number of CCs that can be set per user terminal to 6 or more (CA enhancement). For example, as shown in FIG. 1, when 32 CCs (CC # 1 to CC # 32) are bundled, a maximum bandwidth of 640 MHz can be secured if 20 MHz per CC.
  • LAA License-Assisted Access
  • the introduction of an interference control function is being studied in order to coexist with LTE, Wi-Fi or other systems of other operators.
  • LBT Listen Before Talk
  • CCA Carrier Channel Assessment
  • LTE Rel. 10-12 supports aperiodic CSI reporting in which a user terminal transmits channel state information (CSI) in response to a transmission instruction from a radio base station.
  • a transmission instruction from the radio base station (hereinafter referred to as A-CSI trigger) is included in an uplink scheduling grant (hereinafter referred to as UL grant) transmitted through the downlink control channel (PDCCH: Physical Downlink Control Channel).
  • PDCCH Physical Downlink Control Channel
  • the user terminal uses the uplink shared channel (PUSCH) specified by the UL grant according to the A-CSI trigger included in the UL grant, and performs CSI.
  • CSI transmitted according to the A-CSI trigger may be referred to as Aperiodic CSI (A-CSI).
  • the CSI includes at least one of a channel quality identifier (CQI: Channel Quality Indicator), a precoding matrix identifier (PMI), and a rank identifier (RI: Rank Indicator).
  • CQI Channel Quality Indicator
  • PMI precoding matrix identifier
  • RI rank identifier
  • the CSI request field (A-CSI trigger) included in the UL grant can be 1 bit or 2 bits.
  • A-CSI trigger can be transmitted using DCI format 0
  • a 2-bit A-CSI trigger can be transmitted using DCI format 4.
  • the 1-bit A-CSI trigger it is instructed whether or not to transmit CSI. For example, when the value of the A-CSI trigger is “0”, no CSI transmission is instructed, and when the value is “1”, the CSI of the serving cell that transmits the PUSCH is instructed to be transmitted.
  • the 2-bit A-CSI trigger in addition to whether or not to transmit CSI, which serving cell CSI is to be transmitted is instructed. LTE Rel. In 10-12 carrier aggregation, 2-bit A-CSI trigger is supported.
  • FIG. 2 is an explanatory diagram of an example of a 2-bit A-CSI trigger.
  • the value of the A-CSI trigger (CSI Request field) is “00”, no CSI transmission is instructed, and when the value is “01”, the serving cell (CC ) CSI transmission is instructed.
  • the values are “10” and “11”, the transmission of CSI is instructed in the first serving cell combination (1 st set) and the second serving cell combination (2 nd set), respectively.
  • a serving cell combination is a set of serving cells, and includes at least one serving cell.
  • the information indicating the serving cells constituting the first and second serving cell sets can be notified in advance from the radio base station to the user terminal by higher layer signaling such as RRC signaling.
  • the radio base station can notify the user terminal of the downlink control information by including information on the modulation and coding scheme applied to the PUSCH transmission by the user terminal.
  • the radio base station uses a bit field (Modulation and coding scheme and redundancy version) related to a modulation and coding scheme or the like set in downlink control information (UL grant) to a user terminal with a predetermined index (MCS index, I MCS Also called).
  • the user terminal can control transmission of the uplink shared channel (PUSCH) by applying a predetermined modulation scheme based on the modulation order associated with the MCS index (I MCS ). Further, the user terminal can control the PUSCH transmission using a table in which each MCS index and a modulation order applied to the PUSCH transmission are defined (see FIG. 3).
  • the user terminal when the MCS index is 0-28 (0 ⁇ I MCS ⁇ 28), the user terminal refers to the table of FIG. 3 and performs PUSCH transmission using the modulation order (modulation scheme) corresponding to each MCS index. Control. When the MCS index 0-28 is notified, the user terminal controls the data signal (UL-SCH) using the modulation order associated with each MCS index. As described above, in the existing system, the MCS index 29-31 is not used for the data signal.
  • (A) CSI request field is 1 bit and A-CSI report is triggered and PRB number is 4 or less, or
  • CSI request field is 2 bits and A-CSI report for 1 serving cell is triggered Or when the number of PRBs is 4 or less, or
  • the CSI request field is 2 bits and an A-CSI report for more than one serving cell is triggered and the number of PRBs is 20 or less
  • Rel. 12 or earlier is premised on CA up to a maximum of 5 CCs, and therefore, the modulation order (modulation scheme) and the maximum number of physical resource blocks (PRB) that can be used when a user terminal transmits A-CSI via PUSCH are limited.
  • N PRB the maximum number of PRBs that can be used for A-CSI transmission is 20 or less.
  • the number of CCs that can be set per user terminal is expanded to 6 or more (for example, 32 CCs)
  • the number of CCs that can be applied to A-CSI transmission is limited and / or the number of PRBs is limited.
  • A-CSI corresponding to the number of CCs cannot be transmitted properly.
  • the total is 360 bits for 5 CCs.
  • the total is 2304 bits, which is 116 bits per PRB. This means that the number of bits transmitted with the same resource is 6 times or more compared to the case of 5CC.
  • A-CSI reporting is performed in a configuration in which the number of CCs is expanded to 6 or more using the method of the existing system (Rel. 12 or earlier), the number of CCs set in the user terminal increases. A-CSI reporting may not be performed properly.
  • the present inventors have applied a modulation to be applied to A-CSI report transmission based on a predetermined condition (for example, the number of cells for which A-CSI report is performed) when a cell (CC) is extended from an existing system.
  • a predetermined condition for example, the number of cells for which A-CSI report is performed
  • CC cell
  • the first modulation order (first modulation scheme) fixedly defined in advance is applied.
  • the second order (modulation scheme) that is equal to or higher than the first modulation order and / or an A- using a PRB number greater than the predetermined number. Allow transmission of CSI.
  • the second modulation order can be changed dynamically or semi-statically.
  • the first index for example, I MCS is 29
  • the first modulation order first modulation scheme defined in advance
  • the MCS index for example, I MCS is 30 or 31
  • the second modulation order and / or the predetermined number that is equal to or higher than the first modulation order.
  • A-CSI transmission using a larger number of PRBs may be allowed.
  • the present inventors cope with the expanded number of CCs by increasing the types of serving cell sets indicated by the A-CSI trigger. The idea was to ensure the flexibility of A-CSI reporting.
  • (First aspect) a case in which transmission of A-CSI using a predetermined modulation order and / or a PRB frequency resource greater than a predetermined number (for example, 20 PRBs) is allowed for a user terminal that satisfies a predetermined condition will be described.
  • a predetermined modulation order for example, a modulation order with Qm of 4 or more (modulation scheme of 16QAM or more) can be used.
  • the radio base station is Rel.
  • a plurality of cells of 6 cells or more are set as a cell set (1 st set and / or 2 nd set) defined in the table of FIG. it can.
  • the number of CCs that can be included in the cell set may be reported in advance by the user terminal to the radio base station as UE capability information. At this time, the number of CCs that can be included in the cell set may be different depending on the type of frequency band (for example, license frequency and unlicensed frequency), and is determined for each user terminal regardless of the frequency band. Also good. If different cell counts can be included in the cell set depending on the frequency band type, for example, the A-CSI report similar to the previous CA is applied at the license frequency, and more CCs are included in the CSI set at the unlicensed frequency. Thus, an unlicensed frequency with a wider bandwidth can be efficiently operated.
  • the type of frequency band for example, license frequency and unlicensed frequency
  • LBT Listen-Before-Talk
  • the number of CCs that can be included in the cell set may be different depending on the amount of CSI information reported by A-CSI. For example, a wideband CSI with a small amount of information may include many CCs in the cell set, and a narrowband CSI with a large amount of information may include CCs with a small amount in the cell set.
  • the maximum number of CCs that can be included in these cell sets is reported as UE capability information from the user terminal to the radio base station in advance, and the CCs included in the cell set actually set in the user terminal are The UE may be notified by higher layer signaling.
  • the radio base station can notify the user terminal of information related to the A-CSI transmission instruction using the CSI request field of the downlink control information (for example, DCI format 0 or 4 serving as UL grant).
  • the user terminal controls A-CSI transmission based on an A-CSI transmission instruction (A-CSI trigger) transmitted from the radio base station.
  • A-CSI transmission instruction A-CSI trigger
  • the CSI request field is “10” (or “11”)
  • the user terminal pushes the A-CSI of multiple cells (for example, 6 cells or more) set as 1 st set (or 2 nd set) into PUSCH. Assign to and send.
  • the user terminal performs modulation applied to A-CSI transmission based on the number of CCs instructed to transmit A-CSI and / or the MCS index (I MCS ) specified in the bit field related to the modulation and coding scheme.
  • the order (modulation method) can be determined. For example, it is possible to allow A-CSI transmission using a predetermined modulation scheme and / or more frequency resources than 20 PRB to a user terminal satisfying a predetermined condition.
  • the cells of a predetermined number or more can be 6 cells (6CC).
  • a case where an A-CSI report for a predetermined number of cells or more is instructed includes a case where 6 cells or more are set as a cell set defined by “10”, “11”, etc. in the table of FIG.
  • the radio base station can control the modulation order and / or the PRB number applied to A-CSI depending on whether or not the user terminal satisfies a predetermined condition. For example, the radio base station may notify a user terminal satisfying a predetermined condition of a predetermined MCS index (I MCS ) that is not used in the existing system and control the A-CSI reporting operation of the user terminal. it can.
  • a predetermined MCS index for example, I MCS is 30 or 31
  • the user terminal is based on higher layer signaling and / or downlink control information (for example, I MCS ) instead of the modulation order defined in advance.
  • a predetermined modulation order can be selected.
  • the A-CSI transmission operation of the user terminal can be defined as follows. In the following description, a case where the modulation order applied by the user terminal is selected using a different method will be described.
  • the user terminal indicates the modulation order and / or the allowable maximum PRB number (for example, a predetermined number larger than 20 PRB) notified by higher layer signaling. ) Can be used to control A-CSI transmission.
  • the user terminal operation can be defined as follows.
  • (A) CSI request field is 1 bit and A-CSI report is triggered and PRB number is 4 or less, or
  • CSI request field is 2 bits and A-CSI report for 1 serving cell is triggered Or when the number of PRBs is 4 or less, or
  • the CSI request field is 2 bits and an A-CSI report for more than one serving cell is triggered and the number of PRBs is 20 or less
  • (D) CSI request field is 1 bit and A-CSI report is triggered and PRB number is 4 or less, or (e) CSI request field is 2 bits and A-CSI report for 1 serving cell is triggered Or if (f) the CSI request field is 2 bits and an A-CSI report for a serving cell greater than 1 and less than 5 is triggered and the number of PRBs is less than 20, or (g ) When the CSI request field is 2 bits, an A-CSI report for more than 5 serving cells is triggered, and the number of PRBs is less than a predetermined number (for example, 100)
  • the user terminal A-CSI transmission can be controlled by determining to apply a predetermined modulation order notified by layer signaling.
  • notification method 2 in higher layer signaling a predetermined modulation in which a user terminal is notified by higher layer signaling only when the number of cells instructed to transmit A-CSI is larger than a predetermined value (for example, 6 cells).
  • a predetermined value for example, 6 cells.
  • the system is applied (see FIG. 4).
  • the user terminal operation can be defined as follows.
  • (A) CSI request field is 1 bit and A-CSI report is triggered and PRB number is 4 or less, or
  • CSI request field is 2 bits and A-CSI report for 1 serving cell is triggered Or when the number of PRBs is 4 or less, or
  • the CSI request field is 2 bits and an A-CSI report for more than one serving cell is triggered and the number of PRBs is 20 or less
  • the modulation order / modulation method notified by higher layer signaling is used instead of the fixedly defined modulation order (see FIG. 4).
  • Examples of the modulation order / modulation method notified by higher layer signaling include 16QAM and 64QAM.
  • QPSK can be used depending on the number of cells and / or the number of PRBs to be used.
  • the above (d) may be added.
  • the modulation order defined in advance is applied in any of the cases (a) to (c), and the modulation order notified by higher layer signaling is applied in the case of (d). Can do.
  • the user terminal defines a predefined modulation order and / or a PRB number equal to or less than the predetermined number.
  • the user terminal supports the MCS index.
  • the assigned modulation order can be applied.
  • the modulation order to be applied to uplink data (UL-SCH) is determined in the same manner as described above.
  • the user terminal operation can be defined as follows.
  • (A) CSI request field is 1 bit and A-CSI report is triggered and PRB number is 4 or less, or
  • CSI request field is 2 bits and A-CSI report for 1 serving cell is triggered Or when the number of PRBs is 4 or less, or
  • the CSI request field is 2 bits and an A-CSI report for more than one serving cell is triggered and the number of PRBs is 20 or less
  • -DCI format 0 I MCS is 29-31
  • DCI format 4 I MCS in which only one transport block (1TB) is set is 29-31
  • Is set to the modulation order associated with the I MCS .
  • D When the CSI request field is 2 bits, an A-CSI report for more than 5 serving cells is triggered, and the number of PRBs is a predetermined number (for example, 100) or less
  • the correspondence between the MCS index and the modulation order can be defined in a table (MCS table) (see FIG. 5).
  • MCS table a table
  • the user terminal can determine the modulation order applied to A-CSI based on the notified MCS index and the table of FIG.
  • the modulation order / modulation scheme associated with a predetermined MCS index is used instead of the fixedly defined modulation order.
  • the user terminal determines the index of the first index group included in the already received downlink control information.
  • A-CSI transmission can be controlled using the modulation order associated with the latest MCS index.
  • the first index group can be composed of indexes 0-28.
  • the user terminal operation can be defined as follows.
  • (A) CSI request field is 1 bit and A-CSI report is triggered and PRB number is 4 or less, or
  • CSI request field is 2 bits and A-CSI report for 1 serving cell is triggered Or when the number of PRBs is 4 or less, or
  • the CSI request field is 2 bits and an A-CSI report for more than one serving cell is triggered and the number of PRBs is 20 or less
  • CSI request field is 1 bit and A-CSI report is triggered and PRB number is 4 or less, or (e) CSI request field is 2 bits and A-CSI report for 1 serving cell is triggered Or if (f) the CSI request field is 2 bits and an A-CSI report for a serving cell greater than 1 and less than 5 is triggered and the number of PRBs is less than 20, or (g ) When the CSI request field is 2 bits, an A-CSI report for more than 5 serving cells is triggered, and the number of PRBs is less than a predetermined number (for example, 100)
  • UL-SCH uplink data
  • condition (g) may be set without setting the conditions (d) to (f).
  • CCs are assigned to the first and second serving cell sets indicated by the A-CSI trigger values “10” and “11”. It is assumed that a serving cell is allocated (for example, CC # 1- # 16 is assigned to the first serving cell set and CC # 17- # 32 is assigned to the second serving cell set). However, in such a case, even if the radio base station wants to instruct the transmission of CSI of four serving cells CC # 1-CC # 4 or eight serving cells CC # 1- # 8, the value of the A-CSI trigger It is necessary to instruct the CSI transmission of the first serving cell set (CC # 1-CC # 16) using “10”. This may impair the flexibility of A-CSI reporting.
  • the maximum number of serving cells constituting each serving cell set is limited to a predetermined value (for example, 8) or less, and the serving cell (for example, the SCell cell index) that has received the A-CSI transmission instruction is used. Based on this, it is assumed that different cell sets are applied.
  • each cell set is configured by four cells (4CC)
  • the first set (1 st set) is composed of CC1-CC4
  • the second set (2 nd set) is composed of CC5-CC8
  • the third set (3 rd set) is CC9.
  • the table of FIG. 7A is used
  • an A-CSI transmission instruction is received by a cell constituting the second set.
  • the table of FIG. 7B is used.
  • the number of CCs constituting the cell set and the combination of CCs are not limited to this.
  • the user terminal can replace the cell set indicated by the A-CSI trigger values “10” and “11” based on the serving cell that has received the A-CSI transmission instruction information. For example, it is assumed that the user terminal receives a UL grant including an A-CSI trigger in a cell (here, CC1) belonging to the first set. In this case, if the value of the A-CSI trigger is “10”, it is interpreted as a CSI transmission instruction of the serving cell set of the first set (CC # 1- # 4) (see FIGS. 6 and 7A). . If the value of the A-CSI trigger is “11”, it is interpreted as a CSI transmission instruction of the serving cell set of the second set (CC # 5- # 8).
  • the user terminal when the user terminal receives an UL grant including an A-CSI trigger in a cell (in this case, CC5) belonging to the second set, the user terminal receives the first grant if the value of the A-CSI trigger is “10”. This is interpreted as a CSI transmission instruction of the serving cell set of the set (CC # 1- # 4) and the second set (CC # 5- # 8) (see FIGS. 6 and 7B). If the value of the A-CSI trigger is “11”, it is interpreted as a CSI transmission instruction of the serving cell set of the second set (CC # 5- # 8) and the third set (CC # 9- # 12). To do.
  • FIG. 7B shows a case where A-CSI trigger values “10” and “11” are read as a plurality of cell sets.
  • a network for example, a radio base station
  • a user terminal receives an UL grant including an A-CSI trigger in a certain serving cell based on the information notified by higher layer signaling, which serving cell set (one or a plurality of sets) has a value of the A-CSI trigger.
  • the CSI transmission instruction is reread.
  • the user terminal has different serving cell sets depending on the serving cell that has received (detected) the UL grant.
  • This is interpreted as a CSI transmission instruction. Therefore, when uplink carrier aggregation is set, the number of serving cell sets that can report CSI can be increased without increasing the number of bits of the A-CSI trigger. As a result, the flexibility of A-CSI reporting can be ensured even when the number of CCs (number of serving cells) that can be set per user terminal is expanded to 6 or more.
  • the A-CSI trigger value “10” may be defined in the same manner as the existing one.
  • the user terminal transmits the A-CSI of the serving cell that transmitted the UL grant including the A-CSI trigger. Also, the user terminal can interpret the table in FIG. 7 based on the type of the serving cell that transmits A-CSI, not the serving cell that has received (detected) the UL grant.
  • wireless communication system Wireless communication system
  • the wireless communication methods according to the above embodiments of the present invention are applied.
  • wireless communication method which concerns on each said aspect may be applied independently, respectively, and may be applied in combination.
  • FIG. 8 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment of the present invention.
  • carrier aggregation (CA) and / or dual connectivity (DC) in which a plurality of basic frequency blocks (component carriers) each having a system bandwidth (for example, 20 MHz) of the LTE system as one unit are applied.
  • the wireless communication system 1 may be referred to as SUPER 3G, LTE-A (LTE-Advanced), IMT-Advanced, 4G, 5G, FRA (Future Radio Access), or the like.
  • the radio communication system 1 shown in FIG. 8 includes a radio base station 11 that forms a macro cell C1, and radio base stations 12a to 12c that are arranged in the macro cell C1 and form a small cell C2 that is narrower than the macro cell C1. . Moreover, the user terminal 20 is arrange
  • the user terminal 20 can be connected to both the radio base station 11 and the radio base station 12. It is assumed that the user terminal 20 uses the macro cell C1 and the small cell C2 that use different frequencies simultaneously by CA or DC. In addition, the user terminal 20 can apply CA or DC using a plurality of cells (CC) (for example, six or more CCs).
  • CC cells
  • Communication between the user terminal 20 and the radio base station 11 can be performed using a carrier having a relatively low frequency band (for example, 2 GHz) and a narrow bandwidth (referred to as an existing carrier or a legacy carrier).
  • a carrier having a relatively high frequency band for example, 3.5 GHz, 5 GHz, etc.
  • the same carrier may be used.
  • the configuration of the frequency band used by each radio base station is not limited to this.
  • a wired connection for example, an optical fiber compliant with CPRI (Common Public Radio Interface), an X2 interface, etc.
  • a wireless connection It can be set as the structure to do.
  • the radio base station 11 and each radio base station 12 are connected to the higher station apparatus 30 and connected to the core network 40 via the higher station apparatus 30.
  • the upper station device 30 includes, for example, an access gateway device, a radio network controller (RNC), a mobility management entity (MME), and the like, but is not limited thereto.
  • RNC radio network controller
  • MME mobility management entity
  • Each radio base station 12 may be connected to the higher station apparatus 30 via the radio base station 11.
  • the radio base station 11 is a radio base station having a relatively wide coverage, and may be called a macro base station, an aggregation node, an eNB (eNodeB), a transmission / reception point, or the like.
  • the radio base station 12 is a radio base station having local coverage, and includes a small base station, a micro base station, a pico base station, a femto base station, a HeNB (Home eNodeB), an RRH (Remote Radio Head), and transmission / reception. It may be called a point.
  • the radio base stations 11 and 12 are not distinguished, they are collectively referred to as a radio base station 10.
  • Each user terminal 20 is a terminal compatible with various communication methods such as LTE and LTE-A, and may include not only a mobile communication terminal but also a fixed communication terminal.
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier-frequency division multiple access
  • OFDMA is a multi-carrier transmission scheme that performs communication by dividing a frequency band into a plurality of narrow frequency bands (subcarriers) and mapping data to each subcarrier.
  • SC-FDMA is a single-carrier transmission scheme that reduces interference between terminals by dividing the system bandwidth into bands consisting of one or continuous resource blocks for each terminal and using a plurality of terminals with mutually different bands. is there.
  • the uplink and downlink radio access methods are not limited to these combinations.
  • downlink channels include a downlink shared channel (PDSCH) shared by each user terminal 20, a broadcast channel (PBCH: Physical Broadcast Channel), a downlink L1 / L2 control channel, and the like. Used. User data, higher layer control information, SIB (System Information Block), etc. are transmitted by PDSCH. Also, MIB (Master Information Block) is transmitted by PBCH.
  • PDSCH downlink shared channel
  • PBCH Physical Broadcast Channel
  • SIB System Information Block
  • MIB Master Information Block
  • Downlink L1 / L2 control channels include PDCCH (Physical Downlink Control Channel), EPDCCH (Enhanced Physical Downlink Control Channel), PCFICH (Physical Control Format Indicator Channel), PHICH (Physical Hybrid-ARQ Indicator Channel), and the like.
  • Downlink control information (DCI: Downlink Control Information) including scheduling information of PDSCH and PUSCH is transmitted by PDCCH.
  • the number of OFDM symbols used for PDCCH is transmitted by PCFICH.
  • the HAICH transmission confirmation signal (ACK / NACK) for PUSCH is transmitted by PHICH.
  • EPDCCH is frequency-division multiplexed with PDSCH (downlink shared data channel), and is used for transmission of DCI and the like in the same manner as PDCCH.
  • an uplink shared channel (PUSCH: Physical Uplink Shared Channel), an uplink control channel (PUCCH: Physical Uplink Control Channel), and a random access channel (PRACH) shared by each user terminal 20 are used. Physical Random Access Channel) is used.
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • PRACH random access channel
  • Physical Random Access Channel Physical Random Access Channel
  • User data and higher layer control information are transmitted by PUSCH.
  • downlink radio quality information (CQI: Channel Quality Indicator), a delivery confirmation signal, and the like are transmitted by PUCCH.
  • a random access preamble for establishing connection with a cell is transmitted by the PRACH.
  • FIG. 9 is a diagram illustrating an example of the overall configuration of a radio base station according to an embodiment of the present invention.
  • the radio base station 10 includes a plurality of transmission / reception antennas 101, an amplifier unit 102, a transmission / reception unit 103, a baseband signal processing unit 104, a call processing unit 105, and a transmission path interface 106.
  • the transmission / reception antenna 101, the amplifier unit 102, and the transmission / reception unit 103 may each be configured to include one or more.
  • User data transmitted from the radio base station 10 to the user terminal 20 via the downlink is input from the higher station apparatus 30 to the baseband signal processing unit 104 via the transmission path interface 106.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • HARQ Hybrid Automatic Repeat reQuest
  • the downlink control signal is also subjected to transmission processing such as channel coding and inverse fast Fourier transform, and is transferred to the transmission / reception unit 103.
  • the transmission / reception unit 103 converts the baseband signal output by precoding for each antenna from the baseband signal processing unit 104 to a radio frequency band and transmits the converted signal.
  • the radio frequency signal frequency-converted by the transmission / reception unit 103 is amplified by the amplifier unit 102 and transmitted from the transmission / reception antenna 101.
  • the transmission / reception unit 103 can be configured by a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device which is described based on common recognition in the technical field according to the present invention.
  • the transmission / reception part 103 may be comprised as an integral transmission / reception part, and may be comprised from a transmission part and a receiving part.
  • the radio frequency signal received by the transmission / reception antenna 101 is amplified by the amplifier unit 102.
  • the transmission / reception unit 103 receives the uplink signal amplified by the amplifier unit 102.
  • the transmission / reception unit 103 converts the frequency of the received signal into a baseband signal and outputs it to the baseband signal processing unit 104.
  • the baseband signal processing unit 104 performs fast Fourier transform (FFT) processing, inverse discrete Fourier transform (IDFT: Inverse Discrete Fourier Transform) processing, and error correction on user data included in the input upstream signal.
  • FFT fast Fourier transform
  • IDFT inverse discrete Fourier transform
  • Decoding, MAC retransmission control reception processing, RLC layer and PDCP layer reception processing are performed and transferred to the upper station apparatus 30 via the transmission path interface 106.
  • the call processing unit 105 performs call processing such as communication channel setting and release, state management of the radio base station 10, and radio resource management.
  • the transmission / reception unit 103 transmits, to the user terminal 20, a downlink signal including uplink transmission power control information generated by a transmission signal generation unit 302 described later, PHR setting information, and the like.
  • the transmission path interface 106 transmits and receives signals to and from the higher station apparatus 30 via a predetermined interface.
  • the transmission path interface 106 transmits and receives (backhaul signaling) signals to and from the adjacent radio base station 10 via an interface between base stations (for example, an optical fiber compliant with CPRI (Common Public Radio Interface), X2 interface). Also good.
  • CPRI Common Public Radio Interface
  • X2 interface also good.
  • FIG. 10 is a diagram illustrating an example of a functional configuration of the radio base station according to the present embodiment. Note that FIG. 10 mainly shows functional blocks of characteristic portions in the present embodiment, and the wireless base station 10 also has other functional blocks necessary for wireless communication. As illustrated in FIG. 10, the baseband signal processing unit 104 includes at least a control unit (scheduler) 301, a transmission signal generation unit 302, a mapping unit 303, and a reception signal processing unit 304.
  • the baseband signal processing unit 104 includes at least a control unit (scheduler) 301, a transmission signal generation unit 302, a mapping unit 303, and a reception signal processing unit 304.
  • the control unit (scheduler) 301 controls the entire radio base station 10.
  • the control part 301 can be comprised from the controller, the control circuit, or control apparatus demonstrated based on the common recognition in the technical field which concerns on this invention.
  • the control unit 301 controls signal generation by the transmission signal generation unit 302 and signal allocation by the mapping unit 303, for example.
  • the control unit 301 also controls signal reception processing and signal measurement by the reception signal processing unit 304.
  • the control unit 301 controls scheduling (for example, resource allocation) of system information, a downlink data signal transmitted on the PDSCH, and a downlink control signal transmitted on the PDCCH and / or EPDCCH. It also controls scheduling of synchronization signals and downlink reference signals such as CRS (Cell-specific Reference Signal), CSI-RS (Channel State Information Reference Signal), DM-RS (Demodulation Reference Signal).
  • CRS Cell-specific Reference Signal
  • CSI-RS Channel State Information Reference Signal
  • DM-RS Demodulation Reference Signal
  • the control unit 301 also transmits an uplink data signal transmitted on the PUSCH, an uplink control signal transmitted on the PUCCH and / or PUSCH (for example, a delivery confirmation signal (HARQ-ACK)), a random access preamble transmitted on the PRACH, Controls scheduling of uplink reference signals and the like. Further, the control unit 301 controls the transmission signal generation unit 302 and the mapping unit 303 for uplink data transmission of the user terminal 20 connected to the radio base station 10.
  • HARQ-ACK delivery confirmation signal
  • control unit 301 can instruct the user terminal to transmit A-CSI for a single cell or a plurality of cells. For example, the control unit 301 sets a plurality of cells of 6 cells or more as the cell set (1 st set and / or 2 nd set) defined in the tables of FIGS. 2 and 4 and notifies the user terminal. Control. Further, the control unit 301 instructs the transmission signal generation unit 302 to include information related to the A-CSI transmission instruction in the CSI request field of the downlink control information (for example, DCI format 0 or 4 serving as UL grant). Note that the number of CCs that can be set in each cell set can be limited and notified to the user terminal (second mode).
  • the transmission signal generation unit 302 generates a downlink signal (downlink control signal, downlink data signal, downlink reference signal, etc.) based on an instruction from the control unit 301, and outputs it to the mapping unit 303.
  • the transmission signal generation unit 302 can be configured by a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present invention.
  • the transmission signal generation unit 302 Based on an instruction from the control unit 301, the transmission signal generation unit 302 generates a DL assignment for notifying downlink signal allocation information and a UL grant for notifying uplink signal allocation information. For example, the transmission signal generation unit 302 generates a UL grant including information related to an A-CSI transmission instruction. Also, the transmission signal generation unit 302 sets a bit field related to the modulation and coding scheme in downlink control information, and sets a predetermined MCS index (I MCS ). The predetermined MCS index can be controlled based on the number of cells instructing the user terminal to transmit A-CSI.
  • I MCS index predetermined MCS index
  • the downlink data signal is subjected to coding processing and modulation processing according to a coding rate, a modulation scheme, and the like determined based on channel state information (CSI) from each user terminal 20.
  • CSI channel state information
  • the mapping unit 303 maps the downlink signal generated by the transmission signal generation unit 302 to a predetermined radio resource based on an instruction from the control unit 301, and outputs it to the transmission / reception unit 103.
  • the mapping unit 303 can be configured by a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present invention.
  • the reception signal processing unit 304 performs reception processing (for example, demapping, demodulation, decoding, etc.) on the reception signal input from the transmission / reception unit 103.
  • the received signal is, for example, an uplink signal (uplink control signal, uplink data signal, uplink reference signal, etc.) transmitted from the user terminal 20.
  • the reception signal processing unit 304 can be configured by a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present invention.
  • the reception signal processing unit 304 outputs the information decoded by the reception processing to the control unit 301.
  • the received signal processing unit 304 can perform measurement on the received signal.
  • the received signal processing unit 304 can be configured by a measuring instrument, a measuring circuit, or a measuring device described based on common recognition in the technical field according to the present invention.
  • the received signal processing unit 304 may measure, for example, received power (for example, RSRP (Reference Signal Received Power)), reception quality (for example, RSRQ (Reference Signal Received Quality)), channel state, and the like of the received signal. .
  • the measurement result may be output to the control unit 301.
  • FIG. 11 is a diagram illustrating an example of the overall configuration of the user terminal according to the present embodiment.
  • the user terminal 20 includes a plurality of transmission / reception antennas 201, an amplifier unit 202, a transmission / reception unit 203, a baseband signal processing unit 204, and an application unit 205.
  • the transmission / reception antenna 201, the amplifier unit 202, and the transmission / reception unit 203 may each be configured to include one or more.
  • the radio frequency signal received by the transmission / reception antenna 201 is amplified by the amplifier unit 202.
  • the transmission / reception unit 203 receives the downlink signal amplified by the amplifier unit 202.
  • the transmission / reception unit 203 converts the frequency of the received signal into a baseband signal and outputs it to the baseband signal processing unit 204.
  • the transmission / reception unit 203 can be configured by a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on common recognition in the technical field according to the present invention.
  • the transmission / reception unit 203 may be configured as an integral transmission / reception unit, or may be configured from a transmission unit and a reception unit.
  • the transmission / reception unit 203 receives information related to an A-CSI transmission instruction and transmits A-CSI. Further, the transmission / reception unit 203 receives an index (I MCS ) specified by a bit field related to the modulation and coding scheme of downlink control information.
  • I MCS index
  • the baseband signal processing unit 204 performs FFT processing, error correction decoding, retransmission control reception processing, and the like on the input baseband signal.
  • the downlink user data is transferred to the application unit 205.
  • the application unit 205 performs processing related to layers higher than the physical layer and the MAC layer.
  • broadcast information in the downlink data is also transferred to the application unit 205.
  • uplink user data is input from the application unit 205 to the baseband signal processing unit 204.
  • the baseband signal processing unit 204 performs transmission / reception by performing retransmission control transmission processing (for example, HARQ transmission processing), channel coding, precoding, discrete Fourier transform (DFT) processing, IFFT processing, and the like. Is transferred to the unit 203.
  • the transmission / reception unit 203 converts the baseband signal output from the baseband signal processing unit 204 into a radio frequency band and transmits it.
  • the radio frequency signal frequency-converted by the transmission / reception unit 203 is amplified by the amplifier unit 202 and transmitted from the transmission / reception antenna 201.
  • FIG. 12 is a diagram illustrating an example of a functional configuration of the user terminal according to the present embodiment.
  • FIG. 12 mainly shows functional blocks of characteristic portions in the present embodiment, and the user terminal 20 also has other functional blocks necessary for wireless communication.
  • the baseband signal processing unit 204 included in the user terminal 20 includes a control unit 401, a transmission signal generation unit 402, a mapping unit 403, a reception signal processing unit 404, and a measurement unit 405. At least.
  • the control unit 401 controls the entire user terminal 20.
  • the control unit 401 can be composed of a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present invention.
  • the control unit 401 controls, for example, signal generation by the transmission signal generation unit 402 and signal allocation by the mapping unit 403.
  • the control unit 401 controls signal reception processing by the reception signal processing unit 404 and signal measurement by the measurement unit 405.
  • the control unit 401 obtains, from the received signal processing unit 404, a downlink control signal (a signal transmitted by PDCCH / EPDCCH) and a downlink data signal (a signal transmitted by PDSCH) transmitted from the radio base station 10.
  • the control unit 401 generates an uplink control signal (for example, an acknowledgment signal (HARQ-ACK)) or an uplink data signal based on a downlink control signal, a result of determining whether retransmission control is necessary for the downlink data signal, or the like.
  • HARQ-ACK acknowledgment signal
  • the control unit 401 controls A-CSI transmission when the downlink control signal includes A-CSI transmission instruction information.
  • the control unit 401 applies to A-CSI transmission according to the number of serving cells instructed to transmit A-CSI and / or the index (I MCS ) specified in the bit field related to the modulation and coding scheme of downlink control information.
  • the modulation order and / or PRB can be controlled. As the modulation order, a first modulation order defined in advance or a second modulation order equal to or higher than the first modulation order can be selected.
  • control unit 401 can determine the second modulation order based on higher layer signaling and / or MCS index (I MCS ). For example, it is assumed that a plurality of MCS indexes (I MCS ) are classified into a first index group and a second index group. In this case, the control unit 401 can determine the second modulation order from the modulation order associated with the MCS index included in the second index group.
  • I MCS MCS index
  • the control unit 401 modulates the MCS index included in the first index group received last, among the MCS indexes included in the first index group obtained by receiving the downlink control information.
  • the order may be used as the second modulation order.
  • the first index group is configured with MCS indexes 0-28 mainly applied to uplink data (UL-SCH), and the second index group is configured with other MCS indexes 29-31. Can do.
  • control unit 401 can control transmission of channel state information of different cell sets based on a serving cell that receives downlink control information including an A-CSI transmission instruction (see FIGS. 6 and 7).
  • the transmission signal generation unit 402 generates an uplink signal (uplink control signal, uplink data signal, uplink reference signal, etc.) based on an instruction from the control unit 401 and outputs the uplink signal to the mapping unit 403.
  • the transmission signal generation unit 402 can be configured by a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present invention.
  • the transmission signal generation unit 402 generates an uplink control signal related to a delivery confirmation signal (HARQ-ACK) or channel state information (CSI) based on an instruction from the control unit 401, for example.
  • the modulation order (modulation scheme) and the number of PRBs applied to transmission of channel state information can be determined by an instruction from the control unit 401.
  • the transmission signal generation unit 402 generates an uplink data signal based on an instruction from the control unit 401. For example, the transmission signal generation unit 402 is instructed by the control unit 401 to generate an uplink data signal when the UL grant is included in the downlink control signal notified from the radio base station 10.
  • the mapping unit 403 maps the uplink signal generated by the transmission signal generation unit 402 to a radio resource based on an instruction from the control unit 401, and outputs the radio signal to the transmission / reception unit 203.
  • the mapping unit 403 can be configured by a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present invention.
  • the reception signal processing unit 404 performs reception processing (for example, demapping, demodulation, decoding, etc.) on the reception signal input from the transmission / reception unit 203.
  • the received signal is, for example, a downlink signal (downlink control signal, downlink data signal, downlink reference signal, etc.) transmitted from the radio base station 10.
  • the reception signal processing unit 404 can be configured by a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present invention. Further, the reception signal processing unit 404 can constitute a reception unit according to the present invention.
  • the reception signal processing unit 404 outputs the information decoded by the reception processing to the control unit 401.
  • the reception signal processing unit 404 outputs broadcast information, system information, RRC signaling, DCI, and the like to the control unit 401, for example.
  • the reception signal processing unit 404 outputs the reception signal and the signal after reception processing to the measurement unit 405.
  • the measurement unit 405 performs measurement on the received signal.
  • the measurement part 405 can be comprised from the measuring device, measurement circuit, or measurement apparatus demonstrated based on common recognition in the technical field which concerns on this invention.
  • the measurement unit 405 may measure, for example, received power (for example, RSRP), reception quality (for example, RSRQ), channel state, and the like of the received signal.
  • the measurement result may be output to the control unit 401.
  • each functional block is realized by one physically coupled device, or may be realized by two or more physically separated devices connected by wire or wirelessly and by a plurality of these devices. Good.
  • the radio base station 10 and the user terminal 20 are realized using hardware such as ASIC (Application Specific Integrated Circuit), PLD (Programmable Logic Device), and FPGA (Field Programmable Gate Array). May be.
  • the radio base station 10 and the user terminal 20 are each a computer device including a processor (CPU: Central Processing Unit), a communication interface for network connection, a memory, and a computer-readable storage medium holding a program. It may be realized. That is, the radio base station, user terminal, and the like according to an embodiment of the present invention may function as a computer that performs processing of the radio communication method according to the present invention.
  • Computer-readable recording media include, for example, flexible disks, magneto-optical disks, ROM (Read Only Memory), EPROM (Erasable Programmable ROM), CD-ROM (Compact Disc-ROM), RAM (Random Access Memory), A storage medium such as a hard disk.
  • the program may be transmitted from a network via a telecommunication line.
  • the radio base station 10 and the user terminal 20 may include an input device such as an input key and an output device such as a display.
  • the functional configurations of the radio base station 10 and the user terminal 20 may be realized by the hardware described above, may be realized by a software module executed by a processor, or may be realized by a combination of both.
  • the processor controls the entire user terminal by operating an operating system. Further, the processor reads programs, software modules and data from the storage medium into the memory, and executes various processes according to these.
  • the program may be a program that causes a computer to execute the operations described in the above embodiments.
  • the control unit 401 of the user terminal 20 may be realized by a control program stored in a memory and operated by a processor, and may be realized similarly for other functional blocks.
  • software, instructions, etc. may be transmitted / received via a transmission medium.
  • software may use websites, servers, or other devices using wired technology such as coaxial cable, fiber optic cable, twisted pair and digital subscriber line (DSL) and / or wireless technology such as infrared, wireless and microwave.
  • wired technology such as coaxial cable, fiber optic cable, twisted pair and digital subscriber line (DSL) and / or wireless technology such as infrared, wireless and microwave.
  • DSL digital subscriber line
  • wireless technology such as infrared, wireless and microwave.
  • the radio resource may be indicated by an index.
  • the channel and / or symbol may be a signal (signaling).
  • the signal may be a message.
  • the component carrier (CC) may be called a carrier frequency, a cell, or the like.
  • notification of predetermined information is not limited to explicitly performed, but is performed implicitly (for example, notification of the predetermined information is not performed). Also good.
  • notification of information is not limited to the aspect / embodiment shown in this specification, and may be performed by other methods.
  • notification of information includes physical layer signaling (for example, DCI (Downlink Control Information), UCI (Uplink Control Information)), upper layer signaling (for example, RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling), It may be implemented by broadcast information (MIB (Master Information Block), SIB (System Information Block)), other signals, or a combination thereof, and RRC signaling is, for example, an RRC connection setup (RRCConnectionSetup) message, an RRC connection. It may be a reconfiguration message (RRCConnectionReconfiguration).
  • the information, signals, etc. shown in this specification may be represented using any of a variety of different technologies.
  • data, commands, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these May be represented by a combination of
  • Each aspect / embodiment shown in this specification includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G, 5G, FRA (Future Radio Access), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802.20, UWB (Ultra-WideBand), Bluetooth (registered trademark), and other appropriate systems
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • SUPER 3G IMT-Advanced
  • 4G 5G
  • FRA Full Radio Access
  • CDMA2000 Code Division Multiple Access 2000
  • UMB User Mobile Broadband
  • IEEE 802.11 Wi-Fi
  • IEEE 802.16 WiMAX
  • IEEE 802.20 UWB (Ultra-WideBand)
  • Bluetooth registered trademark

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

ユーザ端末あたりに設定可能なコンポーネントキャリア数が既存システムより拡張される場合であっても、非周期CSI報告を適切に行うこと。非周期チャネル状態情報の送信指示に関する情報を含む下り制御情報を受信する受信部と、非周期チャネル状態情報の送信を制御する制御部と、を有し、前記制御部は、非周期チャネル状態情報の送信が指示されるサービングセル数及び/又は下り制御情報に含まれる変調符号化方式に関するインデックスに応じて、あらかじめ定義された第1の変調次数、又は第1の変調次数以上となる第2の変調次数を選択して非周期チャネル状態情報の送信を制御する。

Description

ユーザ端末、無線基地局及び無線通信方法
 本発明は、次世代移動通信システムにおけるユーザ端末、無線基地局及び無線通信方法に関する。
 UMTS(Universal Mobile Telecommunications System)ネットワークにおいて、さらなる高速データレート、低遅延などを目的としてロングタームエボリューション(LTE:Long Term Evolution)が仕様化された(非特許文献1)。そして、LTEからのさらなる広帯域化及び高速化を目的として、LTEアドバンストと呼ばれるLTEの後継システム(LTE-Aとも呼ばれる)が検討され、LTE Rel.10-12として仕様化されている。
 LTE Rel.10-12のシステム帯域は、LTEシステムのシステム帯域を一単位とする少なくとも1つのコンポーネントキャリア(CC:Component Carrier)を含んでいる。このように、複数のCCを集めて広帯域化することをキャリアアグリゲーション(CA:Carrier Aggregation)という。
 また、Rel.8-12のLTEでは、事業者に免許された周波数帯、すなわちライセンスバンドにおいて排他的な運用がなされることを想定して仕様化が行われた。ライセンスバンドとしては、たとえば800MHz、2GHzまたは1.7GHzなどが使用される。
 Rel.13以降のLTEでは、免許不要の周波数帯、すなわちアンライセンスバンドにおける運用もターゲットとして検討されている。アンライセンスバンドとしては、たとえばWi-Fiと同じ2.4GHzまたは5GHz帯などが使用される。Rel.13 LTEでは、ライセンスバンドとアンライセンスバンドの間でのキャリアアグリゲーション(LAA:License-Assisted Access)を検討対象としているが、将来的にデュアルコネクティビティやアンライセンスバンドのスタンドアローンも検討対象となる可能性がある。
 LTE Rel.10-12のキャリアアグリゲーションでは、ユーザ端末あたりに設定可能なコンポーネントキャリア数が最大5個に制限されている。LTE Rel.13以降のキャリアアグリゲーションでは、更なる帯域拡張を実現するため、ユーザ端末あたりに設定可能なコンポーネントキャリア数を6個以上に拡張することが検討されている。
 ユーザ端末に設定可能なCC数が6個以上(例えば、32個)に拡張される場合、既存システム(Rel.10-12)の送信方法をそのまま適用することが困難になると考えられる。例えば、既存システムでは、無線基地局からの送信指示に応じてユーザ端末がチャネル状態情報(CSI:Channel State Information)を送信する非周期CSI報告(Aperiodic CSI report)がサポートされている。
 しかし、既存システムではセル(CC)が5個以下を前提としている。このため、CC数が6個以上に拡張される場合に既存システムの方法をそのまま利用すると、拡張されたCC数に対応して非周期CSI報告を適切に行うことができないおそれがある。
 本発明はかかる点に鑑みてなされたものであり、ユーザ端末あたりに設定可能なコンポーネントキャリア数が既存システムより拡張される場合であっても、非周期CSI報告を適切に行うことが可能なユーザ端末、無線基地局及び無線通信方法を提供することを目的の一つとする。
 本発明のユーザ端末の一態様は、非周期チャネル状態情報の送信指示に関する情報を含む下り制御情報を受信する受信部と、非周期チャネル状態情報の送信を制御する制御部と、を有し、前記制御部は、非周期チャネル状態情報の送信が指示されるサービングセル数及び/又は下り制御情報に含まれる変調符号化方式に関するインデックスに応じて、あらかじめ定義された第1の変調次数、又は第1の変調次数以上となる第2の変調次数を選択して非周期チャネル状態情報の送信を制御することを特徴とする。
 本発明によれば、ユーザ端末あたりに設定可能なコンポーネントキャリア数が既存システムより拡張される場合であっても、非周期CSI報告を適切に行うことができる。
キャリアアグリゲーションの説明図である。 2ビットのA-CSIトリガのテーブルの説明図である。 変調符号化方式のインデックスと変調次数等の対応を規定したテーブルの一例を示す図である。 第1の態様における変調次数の決定方法の一例を示す図である。 MCSインデックスと変調次数との関係が規定されたテーブルの一例を示す図である。 第2の態様における非周期CSI報告の一例の説明図である。 第2の態様におけるA-CSIトリガのテーブルの説明図である。 本実施の形態に係る無線通信システムの概略構成の一例を示す図である。 本実施の形態に係る無線基地局の全体構成の一例を示す図である。 本実施の形態に係る無線基地局の機能構成の一例を示す図である。 本実施の形態に係るユーザ端末の全体構成の一例を示す図である。 本実施の形態に係るユーザ端末の機能構成の一例を示す図である。
 図1は、キャリアアグリゲーション(CA)の説明図である。図1に示すように、LTE Rel.12までのCAでは、LTE Rel.8のシステム帯域を一単位とするコンポーネントキャリア(CC)が最大5個(CC#1~CC#5)束ねられる。すなわち、LTE Rel.12までのキャリアアグリゲーションでは、ユーザ端末(UE:User Equipment)あたりに設定可能なCC数は、最大5個に制限される。
 一方、LTE Rel.13以降のキャリアアグリゲーションでは、6個以上のCCを束ねて、更なる帯域拡張を図ることが検討されている。すなわち、LTE Rel.13のキャリアアグリゲーションでは、ユーザ端末あたりに設定可能なCC数を6個以上に拡張すること(CA enhancement)が検討されている。例えば、図1に示すように、32個のCC(CC#1~CC#32)を束ねる場合、1CCあたり20MHzとすれば、最大640MHzの帯域を確保可能となる。
 このように、ユーザ端末あたりに設定可能なCC数を拡張することにより、より柔軟且つ高速な無線通信を実現することが期待されている。また、このようなCC数の拡張は、ライセンスバンドとアンライセンスバンドとの間のキャリアアグリゲーション(LAA:License-Assisted Access)による広帯域化に効果的である。例えば、ライセンスバンドの5個のCC(=100MHz)とアンライセンスバンドの15個のCC(=300MHz)とを束ねる場合、400MHzの帯域を確保可能となる。
 LAAが運用されるアンライセンスバンドでは、他事業者のLTE、Wi-Fi又はその他のシステムとの共存のため、干渉制御機能の導入が検討されている。干渉制御機能としては、CCA(Clear Channel Assessment)に基づくLBT(Listen Before Talk)が検討されている。したがって、アンライセンスバンドを利用するセル(CC)は、リスニング(LBT等)を適用するセルとすることもできる。
 ところで、LTE Rel.10-12では、無線基地局からの送信指示に応じて、ユーザ端末がチャネル状態情報(CSI)を送信する非周期CSI報告がサポートされている。無線基地局からの送信指示(以下、A-CSIトリガという)は、下り制御チャネル(PDCCH:Physical Downlink Control Channel)で送信される上りスケジューリンググラント(以下、ULグラント(Uplink grant)という)に含まれる。
 非周期CSI(A-CSI)報告では、ユーザ端末は、ULグラントに含まれるA-CSIトリガに従って、当該ULグラントで指定された上り共有チャネル(PUSCH:Physical Uplink Shared Channel)を用いて、CSIを送信する。なお、A-CSIトリガに従って送信されるCSIは、非周期CSI(A-CSI:Aperiodic CSI)などと呼ばれてもよい。このCSIは、チャネル品質識別子(CQI:Channel Quality Indicator)、プリコーディングマトリクス識別子(PMI:Precoding Matrix Indicator)、ランク識別子(RI:Rank Indicator)の少なくとも一つを含む。
 A-CSI報告において、ULグラントに含まれるCSI要求フィールド(A-CSIトリガ)は、1ビット又は2ビットとすることができる。例えば、DCIフォーマット0を用いて1ビットのA-CSIトリガを送信し、DCIフォーマット4を用いて2ビットのA-CSIトリガを送信することができる。
 1ビットのA-CSIトリガでは、CSIを送信するか否かが指示される。例えば、A-CSIトリガの値が“0”である場合、CSIの送信無しが指示され、当該値が“1”である場合、PUSCHを送信するサービングセルのCSIを送信が指示される。一方、2ビットのA-CSIトリガでは、CSIを送信するか否かに加えて、どのサービングセルのCSIを送信するかが指示される。LTE Rel.10-12のキャリアアグリゲーションでは、2ビットのA-CSIトリガがサポートされている。
 図2は、2ビットのA-CSIトリガの一例の説明図である。例えば、図2では、A-CSIトリガ(CSI Request field)の値が“00”である場合、CSIの送信無しが指示され、当該値が“01”である場合、PUSCHを送信するサービングセル(CC)のCSIの送信が指示される。また、当該値が“10”、“11”である場合、それぞれ、第1のサービングセルの組み合わせ(1st set)、第2のサービングセルの組み合わせ(2nd set)におけるCSIの送信が指示される。
 サービングセルの組み合わせ(サービングセルセット)とは、サービングセルの集合であり、少なくとも一つのサービングセルで構成される。図2において、第1、第2のサービングセルセットを構成するサービングセルを示す情報は、RRCシグナリングなどの上位レイヤシグナリングにより無線基地局からユーザ端末に予め通知することができる。
 また、無線基地局は、ユーザ端末がPUSCH送信に適用する変調符号化方式に関する情報を下り制御情報に含めてユーザ端末に通知することができる。例えば、無線基地局は、下り制御情報(ULグラント)に設定される変調符号化方式等に関するビットフィールド(Modulation and coding scheme and redundancy version)を用いてユーザ端末に所定のインデックス(MCSインデックス、IMCSとも呼ぶ)を通知することができる。
 ユーザ端末は、MCSインデックス(IMCS)に対応づけられた変調次数(modulation order)に基づいて所定の変調方式を適用して上り共有チャネル(PUSCH)の送信を制御することができる。また、ユーザ端末は、各MCSインデックスと、PUSCH送信に適用する変調次数等が規定されたテーブルを利用してPUSCHの送信を制御することができる(図3参照)。ユーザ端末は、変調次数が2(Qm=2)の場合QPSKを適用し、変調次数が4(Qm=4)の場合16QAMを適用し、変調次数が6(Qm=6)の場合64QAMを適用することができる。
 例えば、ユーザ端末は、MCSインデックスが0-28の場合(0≦IMCS≦28)、図3のテーブルを参照して各MCSインデックスに対応する変調次数(変調方式)等を用いてPUSCH送信を制御する。MCSインデックス0-28が通知される場合、ユーザ端末は各MCSインデックスに対応づけられた変調次数を用いてデータ信号(UL-SCH)を制御する。このように、既存システムでは、データ信号に対してMCSインデックス29-31が未使用(reserved)となっている。
 また、既存システムでは、MCSインデックスが29の場合(IMCS=29)、PUSCHを用いたA-CSIの送信に適用する変調次数等があらかじめ固定的に定義されている。つまり、A-CSIとデータ信号(UL-SCH)をPUSCHに同時に多重せずに、A-CSIだけを送信する場合にIMCS=29が利用される。具体的には、以下の通り規定されている。
・DCIフォーマット0のIMCSが29の場合、又は1トランスポートブロック(1TB)のみが設定されたDCIフォーマット4のIMCSが29の場合であって、以下の(a)-(c)のいずれかの場合には、変調次数(modulation order)が2(Q=2)に設定される。
(a)CSI要求フィールドが1ビットであり、A-CSI報告がトリガされ、PRB数が4以下の場合、又は
(b)CSI要求フィールドが2ビットであり、1サービングセルに対するA-CSI報告がトリガされ、PRB数が4以下の場合、又は
(c)CSI要求フィールドが2ビットであり、1より多いサービングセルに対するA-CSI報告がトリガされ、PRB数が20以下の場合
 このように、Rel.12以前では最大5CCまでのCAを前提としているため、ユーザ端末がA-CSIをPUSCHで送信する場合に利用できる変調次数(変調方式)と最大PRB(Physical Resource Block)数が制限されている。例えば、ユーザ端末がデータ信号(UL-SCH)は送信せずにA-CSIを送信する場合(UCI on PUSCH without UL-SCH)、あらかじめ固定的に定義された変調次数(Qm=2)/変調方式(QPSK)が設定される。また、複数CCのA-CSIを送信するであっても、A-CSI送信に利用可能な最大PRB数(NPRB)は20以下となる。
 しかし、ユーザ端末あたりに設定可能なCC数が6個以上(例えば、32CC)に拡張される場合、A-CSIの送信に適用する変調次数及び/又はPRB数が制限されると、拡張されたCC数に対応するA-CSIを適切に送信できなくなるおそれがある。
 例えば、1CCあたりのCSIを72ビットであると想定すると、5CCでは合計360ビットとなる。A-CSIの送信に20PRBを利用する場合、1PRBあたり18ビットとなる。一方で、同じ仮定のもとで、32CC分のA-CSIを報告する場合、合計2304ビットとなり、1PRBあたり116ビットとなる。これは5CCの場合と比べて同一リソースで送信するビット数が6倍以上になることを意味している。
 このように、既存システム(Rel.12以前)の方法を用いて、CC数が6個以上に拡張された構成においてA-CSI報告を行う場合、ユーザ端末に設定されるCC数の増加に伴いA-CSI報告を適切に行えなくおそれがある。
 そこで、本発明者等は、既存システムよりセル(CC)が拡張される場合に、所定条件(例えば、A-CSI報告を行うセル数等)に基づいてA-CSI報告の送信に適用する変調次数及び/又は割当てPRB数を制御することを着想した。
 例えば、A-CSI報告を行うセル数が所定数(例えば、5セル)以下の場合にはあらかじめ固定的に定義された第1の変調次数(第1の変調方式)を適用する。一方で、A-CSI報告を行うセル数が所定値より大きい場合には、第1の変調次数以上となる第2の次数(変調方式)及び/又は所定数より多いPRB数を利用したA-CSIの送信を許容する。第2の変調次数は、動的又は準静的に変更可能な構成とすることができる。
 あるいは、第1のインデックス(例えば、IMCSが29)がユーザ端末に通知された場合にはあらかじめ固定的に定義された第1の変調次数(第1の変調方式)を適用する。一方で、既存システムで利用されていないMCSインデックス(例えば、IMCSが30又は31)がユーザ端末に通知された場合には第1の変調次数以上となる第2の変調次数及び/又は所定数より多いPRB数を利用したA-CSIの送信を許容してもよい。
 また、本発明者らは、ユーザ端末あたりに設定可能なCC数が6個以上に拡張される場合、A-CSIトリガが示すサービングセルセットの種類を増加させることで、拡張されたCC数に対応するA-CSI報告の柔軟性を確保することを着想した。
 以下、本実施の形態について詳細に説明する。以下の説明では、CAにおいてユーザ端末あたりに設定可能なCC数が32個である例を説明するが、これに限られない。また、以下の構成は、PUSCHに上りデータ(UL-SCH)を割当てずにA-CSIを送信する場合(例えば、UCI on PUSCH without UL-SCH)に好適に適用できるが、本実施の形態はこれに限られない。また、以下の説明では、ユーザ端末に通知するインデックスとしてMCSインデックスを利用する場合を説明するが、本実施の形態はこれに限られない。MCSインデックスと異なるインデックスを利用することも可能である。
(第1の態様)
 第1の態様では、所定条件を満たすユーザ端末に対して、所定の変調次数及び/又は所定数(例えば、20PRB)より多いPRBの周波数リソースを用いたA-CSIの送信を許容する場合について説明する。所定の変調次数(変調方式)としては、例えば、Qmが4以上の変調次数(16QAM以上の変調方式)とすることができる。
 無線基地局は、Rel.13以降のユーザ端末に対して、例えば、図2のテーブルで規定されるセルセット(1st set及び/又は2nd set)として6セル以上の複数セルを設定してユーザ端末に通知することができる。
 セルセットに含めることができるCC数を、ユーザ端末が無線基地局にあらかじめUE capability情報として報告するものとしてもよい。このとき、セルセットに含めることができるCCの数は、周波数帯域の種別(例えばライセンス周波数とアンライセンス周波数)によって異なるものとしてもよいし、周波数帯域によらず、ユーザ端末ごとに定められるものとしてもよい。周波数帯域の種別に応じて異なるCC数をセルセットに含めることができれば、例えばライセンス周波数では従前のCAと同様のA-CSI報告を適用し、アンライセンス周波数ではより多くのCCをCSIセットに含める、といった運用が可能となり、より帯域が広いアンライセンス周波数を効率的に運用できるようになる。
 一方、周波数帯域の種別に関わらずユーザ端末ごとにセルセットに含められるCC数を決めることにより、ユーザ端末が報告するUE capability情報に含められる情報量を減らし、オーバーヘッドを削減することが可能となる。周波数帯域の種別によるものとするのではなく、例えばListen-Before-Talk(LBT)が必要な周波数か否かに応じて異なるものとしてもよい。
 また、セルセットに含めることができるCC数は、A-CSIで報告するCSIの情報量に応じて違うものとしてもよい。例えば情報量が小さい広帯域CSIは多くのCCをセルセットに含めることができ、情報量が大きい狭帯域CSIは少ないCCをセルセットに含めることができる、としてもよい。これらのセルセットに含めることができる最大CC数は、いずれのケースでも、ユーザ端末から無線基地局にあらかじめUE capability情報として報告するものとし、実際にユーザ端末に設定するセルセットに含まれるCCは上位レイヤシグナリングによりUEに通知されるものとしてもよい。
 また、無線基地局は、A-CSIの送信指示に関する情報を、下り制御情報(例えば、ULグラントとなるDCIフォーマット0又は4)のCSI要求フィールドを用いてユーザ端末に通知することができる。ユーザ端末は、無線基地局から送信されるA-CSIの送信指示(A-CSIトリガ)に基づいて、A-CSIの送信を制御する。ユーザ端末は、CSI要求フィールドが“10”(又は、“11”)であれば1st set(又は、2nd set)として設定された複数セル(例えば、6セル以上)のA-CSIをPUSCHに割当てて送信する。
 また、ユーザ端末は、A-CSIの送信が指示されるCC数及び/又は変調符号化方式に関するビットフィールドで指定されるMCSインデックス(IMCS)に基づいて、A-CSIの送信に適用する変調次数(変調方式)を決定することができる。例えば、所定条件を満たすユーザ端末に対して、所定の変調方式及び/又は20PRBより多い周波数リソースを用いたA-CSIの送信を許容することができる。
 所定条件としては、(1)所定数以上のセルを利用したCAが設定された場合、(2)所定数以上のセルのA-CSI報告が指示された場合、(3)アンライセンス周波数バンドに対応するセルがSCellとして設定された場合、等が挙げられる。所定数以上のセルとしては、一例として、6セル(6CC)とすることができる。所定数以上のセルのA-CSI報告が指示される場合とは、図2のテーブルの“10”、“11”等で規定されるセルセットとして6セル以上が設定される場合が挙げられる。
 無線基地局は、ユーザ端末が所定条件を満たすか否かに応じて、A-CSIに適用する変調次数及び/又はPRB数を制御することができる。例えば、無線基地局は、所定条件を満たすユーザ端末に対して、既存システムで利用されていない所定のMCSインデックス(IMCS)を通知して、ユーザ端末のA-CSI報告動作を制御することができる。ユーザ端末は、所定のMCSインデックス(例えば、IMCSが30又は31)が通知された場合にあらかじめ定義された変調次数でなく、上位レイヤシグナリング及び/又は下り制御情報(例えば、IMCS)に基づいて所定の変調次数を選択することができる。
 本実施の形態では、ユーザ端末のA-CSIの送信動作を以下の通り規定することができる。なお、以下の説明では、ユーザ端末が適用する変調次数を異なる方法を用いて選択する場合について説明する。
<上位レイヤシグナリングでの通知法1>
 上位レイヤシグナリングでの通知法1では、無線基地局が、所定条件を満たすユーザ端末に対して、所定のMCSインデックス(IMCS=30又は31)を通知すると共に、変調次数に関する情報を上位レイヤシグナリングで通知する構成とすることができる。
 この場合、ユーザ端末は、MCSインデックスが29(IMCS=29)の場合には、既存システムと同様にあらかじめ定義された変調次数/変調方式(Qm=2/QPSK)と、及び/又は許容最大PRB数を利用する。一方で、ユーザ端末はMCSインデックスが所定値(例えば、IMCS=30又は31)の場合には、上位レイヤシグナリングで通知される変調次数及び/又は許容最大PRB数(例えば、20PRBより大きい所定数)を用いてA-CSI送信を制御することができる。例えば、ユーザ端末動作を以下の通り規定することができる。
・DCIフォーマット0のIMCSが29の場合、又は1トランスポートブロック(1TB)のみが設定されたDCIフォーマット4のIMCSが29の場合であって、以下の(a)-(c)のいずれかの場合には、変調次数が2(Q=2)に設定される。
(a)CSI要求フィールドが1ビットであり、A-CSI報告がトリガされ、PRB数が4以下の場合、又は
(b)CSI要求フィールドが2ビットであり、1サービングセルに対するA-CSI報告がトリガされ、PRB数が4以下の場合、又は
(c)CSI要求フィールドが2ビットであり、1より多いサービングセルに対するA-CSI報告がトリガされ、PRB数が20以下の場合
・DCIフォーマット0のIMCSが30の場合、又は1トランスポートブロック(1TB)のみが設定されたDCIフォーマット4のIMCSが30の場合であって、以下の(d)-(g)のいずれかの場合には、変調次数が上位レイヤシグナリングで設定される。
(d)CSI要求フィールドが1ビットであり、A-CSI報告がトリガされ、PRB数が4以下の場合、又は
(e)CSI要求フィールドが2ビットであり、1サービングセルに対するA-CSI報告がトリガされ、PRB数が4以下の場合、又は
(f)CSI要求フィールドが2ビットであり、1より多く5以下のサービングセルに対するA-CSI報告がトリガされ、PRB数が20以下の場合、又は
(g)CSI要求フィールドが2ビットであり、5より多いサービングセルに対するA-CSI報告がトリガされ、PRB数が所定数(例えば、100)以下の場合
 このように、上位レイヤシグナリングでの通知法1では、既存システムでは利用されていない所定のMCSインデックス(例えば、IMCS=30又は31)が下り制御情報で通知された場合、ユーザ端末は、上位レイヤシグナリングで通知される所定の変調次数を適用すると判断して、A-CSI送信を制御することができる。これにより、CC数が6個以上に拡張された構成においてA-CSI報告を行う場合であっても、ユーザ端末はA-CSI報告を適切に行うことができる。
<上位レイヤシグナリングでの通知法2>
 上位レイヤシグナリングでの通知法2では、A-CSIの送信が指示されるセル数が所定値より大きい場合(例えば、6セル)に限って、ユーザ端末が上位レイヤシグナリングで通知される所定の変調方式を適用する構成とする(図4参照)。例えば、ユーザ端末動作を以下の通り規定することができる。
・DCIフォーマット0のIMCSが29の場合、又は1トランスポートブロック(1TB)のみが設定されたDCIフォーマット4のIMCSが29の場合であって、以下の(a)-(c)のいずれかの場合には、変調次数が2(Q=2)に設定される。
(a)CSI要求フィールドが1ビットであり、A-CSI報告がトリガされ、PRB数が4以下の場合、又は
(b)CSI要求フィールドが2ビットであり、1サービングセルに対するA-CSI報告がトリガされ、PRB数が4以下の場合、又は
(c)CSI要求フィールドが2ビットであり、1より多いサービングセルに対するA-CSI報告がトリガされ、PRB数が20以下の場合
・DCIフォーマット0のIMCSが30の場合、又は1トランスポートブロック(1TB)のみが設定されたDCIフォーマット4のIMCSが30の場合であって、以下の(d)の場合には、変調次数が上位レイヤシグナリングで設定される。
(d)CSI要求フィールドが2ビットであり、5より多いサービングセルに対するA-CSI報告がトリガされ、PRB数が所定数(例えば、100)以下の場合
 このように、ユーザ端末は、A-CSIの送信に指示されるセル数が5以下の場合には、既存システムと同様にあらかじめ定義された変調次数/変調方式(Qm=2/QPSK)を利用する。一方で、セル数が5より多い場合には、固定的に定義された変調次数でなく上位レイヤシグナリングで通知される変調次数/変調方式を用いる(図4参照)。上位レイヤシグナリングで通知される変調次数/変調方式としては、16QAM、64QAM等が挙げられる。また、セル数及び/又は利用するPRB数によっては、QPSKを利用することも可能である。
 あるいは、既存システムで利用されているMCSインデックス(IMCS=29)を用いる場合(上記(a)-(c))において、上記(d)を追加する構成としてもよい。この場合、(a)-(c)のいずれかの場合にはあらかじめ定義された変調次数を適用し、(d)の場合には上位レイヤシグナリングで通知される変調次数を適用する構成とすることができる。
<IMCSでの通知法1>
 IMCSでの通知法1では、無線基地局は、ユーザ端末に対して、所定のMCSインデックス(例えば、IMCS=29-31)を通知する。ユーザ端末は、MCSインデックスが29(IMCS=29)でA-CSIの送信が指示されるサービングセル数が所定値以下の場合には、あらかじめ定義された変調次数及び/又は所定数以下のPRB数を適用する。
 一方で、ユーザ端末は、MCSインデックスが所定値(例えば、IMCSが29、30又は31)であり、A-CSIの送信が指示されるサービングセル数が所定値より大きい場合、当該MCSインデックスに対応づけられた変調次数を適用することができる。
 この場合、ユーザ端末は、変調符号化方式に関するビットフィールドで指定可能な複数のMCSインデックス(IMCS=0-31)において、IMCS=0-28(第1のインデックスグループ)を用いて既存システムと同様に上りデータ(UL-SCH)に適用する変調次数を決定する。一方で、ユーザ端末は、IMCS=29-31(第2のインデックスグループ)を用いてA-CSIに適用する変調次数を決定する構成とすることができる。例えば、ユーザ端末動作を以下の通り規定することができる。
・DCIフォーマット0のIMCSが29の場合、又は1トランスポートブロック(1TB)のみが設定されたDCIフォーマット4のIMCSが29の場合であって、以下の(a)-(c)のいずれかの場合には、変調次数が2(Q=2)に設定される。
(a)CSI要求フィールドが1ビットであり、A-CSI報告がトリガされ、PRB数が4以下の場合、又は
(b)CSI要求フィールドが2ビットであり、1サービングセルに対するA-CSI報告がトリガされ、PRB数が4以下の場合、又は
(c)CSI要求フィールドが2ビットであり、1より多いサービングセルに対するA-CSI報告がトリガされ、PRB数が20以下の場合
・DCIフォーマット0のIMCSが29-31の場合、又は1トランスポートブロック(1TB)のみが設定されたDCIフォーマット4のIMCSが29-31の場合であって、以下の(d)の場合には、IMCSに対応づけられた変調次数が設定される。
(d)CSI要求フィールドが2ビットであり、5より多いサービングセルに対するA-CSI報告がトリガされ、PRB数が所定数(例えば、100)以下の場合
 MCSインデックスと変調次数の対応関係はテーブル(MCSテーブル)に規定することができる(図5参照)。この場合、ユーザ端末は、下り制御情報に含まれるMCSインデックスが29-31の場合、通知されたMCSインデックスと図5のテーブルに基づいてA-CSIに適用する変調次数を決定することができる。
 このように、ユーザ端末は、A-CSIの送信に指示されるセル数が5以下の場合には、既存システムと同様にあらかじめ定義された変調次数/変調方式(Qm=2/QPSK)を利用する。一方で、セル数が5より多い場合には、固定的に定義された変調次数でなく所定のMCSインデックスに対応づけられた変調次数/変調方式を用いる。MCSインデックスに対応づけられる変調次数/変調方式としては、Qm=2(QPSK)以上の複数の変調次数/変調方式が挙げられる。これにより、CC数が6個以上に拡張された構成においてA-CSI報告を行う場合であっても、ユーザ端末はA-CSI報告を適切に行うことができる。
<IMCSでの通知法2>
 IMCSでの通知法2では、A-CSIの送信に適用する変調次数として、上りデータ(UL-SCH)に適用する変調次数(例えば、IMCS=0-28に対応する変調次数)を適用する。
 無線基地局は、所定条件を満たすユーザ端末に対して、既存システムでは利用されていないMCSインデックス(例えば、IMCS=30又は31)を通知することができる。ユーザ端末は、下り制御情報(ULグラント)に含まれるMCSインデックスが所定値(IMCS=29)の場合、既存システムと同様にあらかじめ定義された変調次数/変調方式(Qm=2/QPSK)を利用する。
 一方で、ユーザ端末は、下り制御情報(ULグラント)に含まれるMCSインデックスが所定値(IMCS=30又は31)の場合、既に受信した下り制御情報に含まれる第1のインデックスグループのインデックスのうち、最新のMCSインデックスに対応づけられた変調次数を用いてA-CSI送信を制御することができる。なお、第1のインデックスグループは、インデックス0-28で構成することができる。例えば、ユーザ端末動作を以下の通り規定することができる。
・DCIフォーマット0のIMCSが29の場合、又は1トランスポートブロック(1TB)のみが設定されたDCIフォーマット4のIMCSが29の場合であって、以下の(a)-(c)のいずれかの場合には、変調次数が2(Q=2)に設定される。
(a)CSI要求フィールドが1ビットであり、A-CSI報告がトリガされ、PRB数が4以下の場合、又は
(b)CSI要求フィールドが2ビットであり、1サービングセルに対するA-CSI報告がトリガされ、PRB数が4以下の場合、又は
(c)CSI要求フィールドが2ビットであり、1より多いサービングセルに対するA-CSI報告がトリガされ、PRB数が20以下の場合
・DCIフォーマット0のIMCSが30の場合、又は1トランスポートブロック(1TB)のみが設定されたDCIフォーマット4のIMCSが30の場合であって、以下の(d)-(g)のいずれかの場合には、既に受信した下り制御情報のうち、最後に受信した第1のインデックスグループに含まれるインデックスに対応づけられた変調次数が設定される。
(d)CSI要求フィールドが1ビットであり、A-CSI報告がトリガされ、PRB数が4以下の場合、又は
(e)CSI要求フィールドが2ビットであり、1サービングセルに対するA-CSI報告がトリガされ、PRB数が4以下の場合、又は
(f)CSI要求フィールドが2ビットであり、1より多く5以下のサービングセルに対するA-CSI報告がトリガされ、PRB数が20以下の場合、又は
(g)CSI要求フィールドが2ビットであり、5より多いサービングセルに対するA-CSI報告がトリガされ、PRB数が所定数(例えば、100)以下の場合
 高い変調方式を使うほど効率的な送信が可能となり、同一の情報量を送信するために必要な無線リソースの量を減らすことができる。高速移動環境を除き、チャネルの状況はサブフレーム単位で大きく変動することは少ない。したがって、高い変調方式を使える環境で通信を行うユーザ端末は、直後にA-CSIの送信を行う場合にも、同じ変調方式を使える可能性が高い。このように、最新の上りデータ(UL-SCH)送信に適用した変調次数を、A-CSIの送信に適用することにより、新たに変調方式を指定するためのシグナリングオーバーヘッドを減らしつつ、適切な変調方式でA-CSIを報告することができる。
 なお、下り制御情報に含まれるIMCSが30の場合、上記(d)-(f)の条件は設定せずに、条件(g)のみを設定する構成としてもよい。
(第2の態様)
 第2の態様では、ユーザ端末に対してA-CSIの送信を指示するサービングセルの通知方法について説明する。
 ユーザ端末に対して、所定数より多いセル(例えば、6セル以上)のA-CSIの送信を指示する場合、図2のテーブルに規定されたセルの組み合わせ(セルセット)を利用して複数のセルを設定することが考えられる。しかし、図2に示すA-CSIトリガでは、上位レイヤシグナリングで通知される値“10”、“11”が示す2種類のサービングセルセットでしかCSIの送信を指示できない。
 例えば、ユーザ端末あたりに設定可能なCC数が32個に拡張される場合、A-CSIトリガの値“10”、“11”が示す第1、第2のサービングセルセットに16個ずつのCCのサービングセルを割り当てる(例えば、第1のサービングセルセットにCC#1-#16、第2のサービングセルセットにCC#17-#32)ことが想定される。しかし、かかる場合、無線基地局は、CC#1-CC#4の4個、又はCC#1-#8の8個のサービングセルのCSIの送信を指示したくても、A-CSIトリガの値“10”を用いて第1のサービングセルセット(CC#1-CC#16)のCSIの送信を指示する必要がある。これにより、A-CSI報告の柔軟性を損なうおそれがある。
 そのため、本実施の形態では、各サービングセルセットを構成する最大のサービングセル数を所定値(例えば、8)以下に制限し、A-CSIの送信指示を受信したサービングセル(例えば、SCellセルインデックス等)に基づいて、異なるセルセットを適用する構成とする。
 以下に、各セルセットを4つのセル(4CC)で構成する場合を例に挙げて説明する。以下の説明では、第1のセット(1st set)がCC1-CC4で構成され、第2のセット(2nd set)がCC5-CC8で構成され、第3のセット(3rd set)がCC9-CC12で構成される場合を想定する。また、A-CSIの送信指示を第1のセットを構成するセルで受信した場合に図7Aのテーブルを利用し、A-CSIの送信指示を第2のセットを構成するセルで受信した場合に図7Bのテーブルを利用する場合を想定する。なお、セルセットを構成するCC数、CCの組み合わせはこれに限られない。
 ユーザ端末は、A-CSIの送信指示情報を受信したサービングセルに基づいて、A-CSIトリガの値“10”、“11”が示すセルセットを読み替えることができる。例えば、ユーザ端末は、A-CSIトリガを含むULグラントを第1のセットに属するセル(ここでは、CC1)で受信した場合を想定する。この場合、当該A-CSIトリガの値が“10”であるなら第1のセット(CC#1-#4)のサービングセルセットのCSIの送信指示であると解釈する(図6、図7A参照)。また、A-CSIトリガの値が“11”であるなら第2のセット(CC#5-#8)のサービングセルセットのCSIの送信指示であると解釈する。
 また、ユーザ端末は、A-CSIトリガを含むULグラントを第2のセットに属するセル(ここでは、CC5)で受信した場合、当該A-CSIトリガの値が“10”であるなら第1のセット(CC#1-#4)と第2のセット(CC#5-#8)のサービングセルセットのCSIの送信指示であると解釈する(図6、図7B参照)。A-CSIトリガの値が“11”であるなら第2のセット(CC#5-#8)と第3のセット(CC#9-#12)のサービングセルセットのCSIの送信指示であると解釈する。
 図7Bでは、A-CSIトリガの値“10”、“11”がそれぞれ示すセルセットとして複数セットに読み替える場合を示している。ネットワーク(例えば、無線基地局)は、サービングセル(CC)と、当該A-CSIトリガの値と、サービングセルセットとを関連付ける情報を、RRCシグナリングなどの上位レイヤシグナリングにより、ユーザ端末に通知する。ユーザ端末は、上位レイヤシグナリングにより通知される上記情報に基づいて、あるサービングセルでA-CSIトリガを含むULグラントを受信した場合、当該A-CSIトリガの値がどのサービングセルセット(1又は複数セット)のCSIの送信指示であるのかを読み替える。
 このように、ユーザ端末は、ULグラントに含まれるA-CSIトリガの値が同一(例えば、“10”)であっても、当該ULグラントを受信(検出)したサービングセルに応じて、異なるサービングセルセットのCSIの送信指示であると解釈する。このため、上りのキャリアアグリゲーションが設定される場合、A-CSIトリガのビット数を増加させずに、CSIを報告可能なサービングセルセット数を増加させることができる。この結果、ユーザ端末あたりに設定可能なCC数(サービングセル数)が6個以上に拡張される場合にも、A-CSI報告の柔軟性を確保できる。
 なお、図7に示すテーブルにおいて、A-CSIトリガの値“10”は既存と同様に規定してもよい。この場合、ユーザ端末は、A-CSIトリガを含むULグラントを送信したサービングセルのA-CSIを送信する。また、ユーザ端末は、ULグラントを受信(検出)したサービングセルでなく、A-CSIの送信を行うサービングセルの種別に基づいて、図7のテーブルを解釈することも可能である。
(無線通信システム)
 以下、本発明の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本発明の上記各実施の態様に係る無線通信方法が適用される。なお、上記各実施の態様に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。
 図8は、本発明の一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1では、LTEシステムのシステム帯域幅(例えば、20MHz)を1単位とする複数の基本周波数ブロック(コンポーネントキャリア)を一体としたキャリアアグリゲーション(CA)及び/又はデュアルコネクティビティ(DC)を適用することができる。なお、無線通信システム1は、SUPER 3G、LTE-A(LTE-Advanced)、IMT-Advanced、4G、5G、FRA(Future Radio Access)などと呼ばれても良い。
 図8に示す無線通信システム1は、マクロセルC1を形成する無線基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する無線基地局12a~12cとを備えている。また、マクロセルC1及び各スモールセルC2には、ユーザ端末20が配置されている。
 ユーザ端末20は、無線基地局11及び無線基地局12の双方に接続することができる。ユーザ端末20は、異なる周波数を用いるマクロセルC1とスモールセルC2を、CA又はDCにより同時に使用することが想定される。また、ユーザ端末20は、複数のセル(CC)(例えば、6個以上のCC)を用いてCA又はDCを適用することができる。
 ユーザ端末20と無線基地局11との間は、相対的に低い周波数帯域(例えば、2GHz)で帯域幅が狭いキャリア(既存キャリア、Legacy carrierなどと呼ばれる)を用いて通信を行うことができる。一方、ユーザ端末20と無線基地局12との間は、相対的に高い周波数帯域(例えば、3.5GHz、5GHzなど)で帯域幅が広いキャリアが用いられてもよいし、無線基地局11との間と同じキャリアが用いられてもよい。なお、各無線基地局が利用する周波数帯域の構成はこれに限られない。
 無線基地局11と無線基地局12との間(又は、2つの無線基地局12間)は、有線接続(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェースなど)又は無線接続する構成とすることができる。
 無線基地局11及び各無線基地局12は、それぞれ上位局装置30に接続され、上位局装置30を介してコアネットワーク40に接続される。なお、上位局装置30には、例えば、アクセスゲートウェイ装置、無線ネットワークコントローラ(RNC)、モビリティマネジメントエンティティ(MME)などが含まれるが、これに限定されるものではない。また、各無線基地局12は、無線基地局11を介して上位局装置30に接続されてもよい。
 なお、無線基地局11は、相対的に広いカバレッジを有する無線基地局であり、マクロ基地局、集約ノード、eNB(eNodeB)、送受信ポイント、などと呼ばれてもよい。また、無線基地局12は、局所的なカバレッジを有する無線基地局であり、スモール基地局、マイクロ基地局、ピコ基地局、フェムト基地局、HeNB(Home eNodeB)、RRH(Remote Radio Head)、送受信ポイントなどと呼ばれてもよい。以下、無線基地局11及び12を区別しない場合は、無線基地局10と総称する。
 各ユーザ端末20は、LTE、LTE-Aなどの各種通信方式に対応した端末であり、移動通信端末だけでなく固定通信端末を含んでもよい。
 無線通信システム1においては、無線アクセス方式として、下りリンクにOFDMA(直交周波数分割多元接続)が適用され、上りリンクにSC-FDMA(シングルキャリア-周波数分割多元接続)が適用される。OFDMAは、周波数帯域を複数の狭い周波数帯域(サブキャリア)に分割し、各サブキャリアにデータをマッピングして通信を行うマルチキャリア伝送方式である。SC-FDMAは、システム帯域幅を端末毎に1つ又は連続したリソースブロックからなる帯域に分割し、複数の端末が互いに異なる帯域を用いることで、端末間の干渉を低減するシングルキャリア伝送方式である。なお、上り及び下りの無線アクセス方式は、これらの組み合わせに限られない。
 無線通信システム1では、下りリンクのチャネルとして、各ユーザ端末20で共有される下り共有チャネル(PDSCH:Physical Downlink Shared Channel)、報知チャネル(PBCH:Physical Broadcast Channel)、下りL1/L2制御チャネルなどが用いられる。PDSCHにより、ユーザデータや上位レイヤ制御情報、SIB(System Information Block)などが伝送される。また、PBCHにより、MIB(Master Information Block)が伝送される。
 下りL1/L2制御チャネルは、PDCCH(Physical Downlink Control Channel)、EPDCCH(Enhanced Physical Downlink Control Channel)、PCFICH(Physical Control Format Indicator Channel)、PHICH(Physical Hybrid-ARQ Indicator Channel)などを含む。PDCCHにより、PDSCH及びPUSCHのスケジューリング情報を含む下り制御情報(DCI:Downlink Control Information)などが伝送される。PCFICHにより、PDCCHに用いるOFDMシンボル数が伝送される。PHICHにより、PUSCHに対するHARQの送達確認信号(ACK/NACK)が伝送される。EPDCCHは、PDSCH(下り共有データチャネル)と周波数分割多重され、PDCCHと同様にDCIなどの伝送に用いられる。
 無線通信システム1では、上りリンクのチャネルとして、各ユーザ端末20で共有される上り共有チャネル(PUSCH:Physical Uplink Shared Channel)、上り制御チャネル(PUCCH:Physical Uplink Control Channel)、ランダムアクセスチャネル(PRACH:Physical Random Access Channel)などが用いられる。PUSCHにより、ユーザデータや上位レイヤ制御情報が伝送される。また、PUCCHにより、下りリンクの無線品質情報(CQI:Channel Quality Indicator)、送達確認信号などが伝送される。PRACHにより、セルとの接続確立のためのランダムアクセスプリアンブルが伝送される。
<無線基地局>
 図9は、本発明の一実施形態に係る無線基地局の全体構成の一例を示す図である。無線基地局10は、複数の送受信アンテナ101と、アンプ部102と、送受信部103と、ベースバンド信号処理部104と、呼処理部105と、伝送路インターフェース106とを備えている。なお、送受信アンテナ101、アンプ部102、送受信部103は、それぞれ1つ以上を含むように構成されればよい。
 下りリンクにより無線基地局10からユーザ端末20に送信されるユーザデータは、上位局装置30から伝送路インターフェース106を介してベースバンド信号処理部104に入力される。
 ベースバンド信号処理部104では、ユーザデータに関して、PDCP(Packet Data Convergence Protocol)レイヤの処理、ユーザデータの分割・結合、RLC(Radio Link Control)再送制御などのRLCレイヤの送信処理、MAC(Medium Access Control)再送制御(例えば、HARQ(Hybrid Automatic Repeat reQuest)の送信処理)、スケジューリング、伝送フォーマット選択、チャネル符号化、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)処理、プリコーディング処理などの送信処理が行われて送受信部103に転送される。また、下り制御信号に関しても、チャネル符号化や逆高速フーリエ変換などの送信処理が行われて、送受信部103に転送される。
 送受信部103は、ベースバンド信号処理部104からアンテナ毎にプリコーディングして出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部103で周波数変換された無線周波数信号は、アンプ部102により増幅され、送受信アンテナ101から送信される。送受信部103は、本発明に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部103は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。
 一方、上り信号については、送受信アンテナ101で受信された無線周波数信号がアンプ部102で増幅される。送受信部103はアンプ部102で増幅された上り信号を受信する。送受信部103は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部104に出力する。
 ベースバンド信号処理部104では、入力された上り信号に含まれるユーザデータに対して、高速フーリエ変換(FFT:Fast Fourier Transform)処理、逆離散フーリエ変換(IDFT:Inverse Discrete Fourier Transform)処理、誤り訂正復号、MAC再送制御の受信処理、RLCレイヤ及びPDCPレイヤの受信処理がなされ、伝送路インターフェース106を介して上位局装置30に転送される。呼処理部105は、通信チャネルの設定や解放などの呼処理や、無線基地局10の状態管理や、無線リソースの管理を行う。
 なお、送受信部103は、ユーザ端末20に対して、後述の送信信号生成部302が生成する上り送信電力制御情報や、PHR設定情報などを含む下り信号を送信する。
 伝送路インターフェース106は、所定のインターフェースを介して、上位局装置30と信号を送受信する。また、伝送路インターフェース106は、基地局間インターフェース(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェース)を介して隣接無線基地局10と信号を送受信(バックホールシグナリング)してもよい。
 図10は、本実施形態に係る無線基地局の機能構成の一例を示す図である。なお、図10では、本実施形態における特徴部分の機能ブロックを主に示しており、無線基地局10は、無線通信に必要な他の機能ブロックも有しているものとする。図10に示すように、ベースバンド信号処理部104は、制御部(スケジューラ)301と、送信信号生成部302と、マッピング部303と、受信信号処理部304と、を少なくとも備えている。
 制御部(スケジューラ)301は、無線基地局10全体の制御を実施する。制御部301は、本発明に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。
 制御部301は、例えば、送信信号生成部302による信号の生成や、マッピング部303による信号の割り当てを制御する。また、制御部301は、受信信号処理部304による信号の受信処理や、信号の測定を制御する。
 制御部301は、システム情報、PDSCHで送信される下りデータ信号、PDCCH及び/又はEPDCCHで伝送される下り制御信号のスケジューリング(例えば、リソース割り当て)を制御する。また、同期信号や、CRS(Cell-specific Reference Signal)、CSI-RS(Channel State Information Reference Signal)、DM-RS(Demodulation Reference Signal)などの下り参照信号のスケジューリングの制御を行う。
 また、制御部301は、PUSCHで送信される上りデータ信号、PUCCH及び/又はPUSCHで送信される上り制御信号(例えば、送達確認信号(HARQ-ACK))、PRACHで送信されるランダムアクセスプリアンブルや、上り参照信号などのスケジューリングを制御する。また、制御部301は、無線基地局10に接続するユーザ端末20の上りデータ送信のために、送信信号生成部302及びマッピング部303を制御する。
 また、制御部301は、ユーザ端末に対して単一セル又は複数セルについてA-CSIの送信を指示することができる。例えば、制御部301は、図2、図4等のテーブルで規定されるセルセット(1st set及び/又は2nd set)として6セル以上の複数セルを設定してユーザ端末に通知するように制御する。さらに、制御部301は、A-CSIの送信指示に関する情報を、下り制御情報(例えば、ULグラントとなるDCIフォーマット0又は4)のCSI要求フィールドに含めるように送信信号生成部302に指示する。なお、各セルセットに設定可能なCC数を制限してユーザ端末に通知することができる(上記第2の態様)。
 送信信号生成部302は、制御部301からの指示に基づいて、下り信号(下り制御信号、下りデータ信号、下り参照信号など)を生成して、マッピング部303に出力する。送信信号生成部302は、本発明に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。
 送信信号生成部302は、例えば、制御部301からの指示に基づいて、下り信号の割り当て情報を通知するDLアサインメント及び上り信号の割り当て情報を通知するULグラントを生成する。例えば、送信信号生成部302は、A-CSIの送信指示に関する情報を含むULグラントを生成する。また、送信信号生成部302は、変調符号化方式に関するビットフィールドを下り制御情報に設定して、所定のMCSインデックス(IMCS)を設定する。所定のMCSインデックスとしては、ユーザ端末にA-CSIの送信を指示するセル数等に基づいて制御することができる。
 また、下りデータ信号には、各ユーザ端末20からのチャネル状態情報(CSI)などに基づいて決定された符号化率、変調方式などに従って符号化処理、変調処理が行われる。
 マッピング部303は、制御部301からの指示に基づいて、送信信号生成部302で生成された下り信号を、所定の無線リソースにマッピングして、送受信部103に出力する。マッピング部303は、本発明に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。
 受信信号処理部304は、送受信部103から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。ここで、受信信号は、例えば、ユーザ端末20から送信される上り信号(上り制御信号、上りデータ信号、上り参照信号など)である。受信信号処理部304は、本発明に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。
 受信信号処理部304は、受信処理により復号された情報を制御部301に出力する。また、受信信号処理部304は、受信した信号に関する測定を実施することができる。つまり、受信信号処理部304は、本発明に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。
 受信信号処理部304は、例えば、受信した信号の受信電力(例えば、RSRP(Reference Signal Received Power))、受信品質(例えば、RSRQ(Reference Signal Received Quality))やチャネル状態などについて測定してもよい。測定結果は、制御部301に出力されてもよい。
<ユーザ端末>
 図11は、本実施形態に係るユーザ端末の全体構成の一例を示す図である。ユーザ端末20は、複数の送受信アンテナ201と、アンプ部202と、送受信部203と、ベースバンド信号処理部204と、アプリケーション部205と、を備えている。なお、送受信アンテナ201、アンプ部202、送受信部203は、それぞれ1つ以上を含むように構成されればよい。
 送受信アンテナ201で受信された無線周波数信号は、アンプ部202で増幅される。送受信部203は、アンプ部202で増幅された下り信号を受信する。送受信部203は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部204に出力する。送受信部203は、本発明に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部203は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。
 送受信部203は、A-CSIの送信指示に関する情報を受信すると共に、A-CSIを送信する。また、送受信部203は、下り制御情報の変調符号化方式に関するビットフィールドで指定されるインデックス(IMCS)を受信する。
 ベースバンド信号処理部204は、入力されたベースバンド信号に対して、FFT処理や、誤り訂正復号、再送制御の受信処理などを行う。下りリンクのユーザデータは、アプリケーション部205に転送される。アプリケーション部205は、物理レイヤやMACレイヤより上位のレイヤに関する処理などを行う。また、下りリンクのデータのうち、報知情報もアプリケーション部205に転送される。
 一方、上りリンクのユーザデータについては、アプリケーション部205からベースバンド信号処理部204に入力される。ベースバンド信号処理部204では、再送制御の送信処理(例えば、HARQの送信処理)や、チャネル符号化、プリコーディング、離散フーリエ変換(DFT:Discrete Fourier Transform)処理、IFFT処理などが行われて送受信部203に転送される。送受信部203は、ベースバンド信号処理部204から出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部203で周波数変換された無線周波数信号は、アンプ部202により増幅され、送受信アンテナ201から送信される。
 図12は、本実施形態に係るユーザ端末の機能構成の一例を示す図である。なお、図12においては、本実施形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有しているものとする。図12に示すように、ユーザ端末20が有するベースバンド信号処理部204は、制御部401と、送信信号生成部402と、マッピング部403と、受信信号処理部404と、測定部405と、を少なくとも備えている。
 制御部401は、ユーザ端末20全体の制御を実施する。制御部401は、本発明に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。
 制御部401は、例えば、送信信号生成部402による信号の生成や、マッピング部403による信号の割り当てを制御する。また、制御部401は、受信信号処理部404による信号の受信処理や、測定部405による信号の測定を制御する。
 制御部401は、無線基地局10から送信された下り制御信号(PDCCH/EPDCCHで送信された信号)及び下りデータ信号(PDSCHで送信された信号)を、受信信号処理部404から取得する。制御部401は、下り制御信号や、下りデータ信号に対する再送制御の要否を判定した結果などに基づいて、上り制御信号(例えば、送達確認信号(HARQ-ACK)など)や上りデータ信号の生成を制御する。
 また、制御部401は、下り制御信号にA-CSIの送信指示情報が含まれている場合には、A-CSIの送信を制御する。制御部401は、A-CSIの送信が指示されるサービングセル数及び/又は下り制御情報の変調符号化方式に関するビットフィールドで指定されるインデックス(IMCS)に応じて、A-CSI送信に適用する変調次数及び/又はPRBを制御することができる。変調次数としては、あらかじめ定義された第1の変調次数、又は前記第1の変調次数以上となる第2の変調次数を選択することができる。
 例えば、制御部401は、A-CSIをフィードバックするサービングセル数が所定値以下及び/又はMCSインデックスが第1のインデックス(例えば、IMCS=29)である場合には、第1の変調次数(例えば、Qm=2)を適用する。また、サービングセル数が所定値より大きい場合及び/又はMCSインデックスが第2のインデックス(例えば、IMCS=30又は31)である場合には、第2の変調次数及び/又は所定数より多いリソースブロック数を適用する。
 また、制御部401は、上位レイヤシグナリング及び/又はMCSインデックス(IMCS)に基づいて第2の変調次数を決定することができる。例えば、複数のMCSインデックス(IMCS)を第1のインデックスグループと、第2のインデックスグループに分類した場合を仮定する。この場合、制御部401は、第2のインデックスグループに含まれるMCSインデックスに対応づけられた変調次数から第2の変調次数を決定することができる。
 あるいは、制御部401は、下り制御情報を受信して得られた第1のインデックスグループに含まれるMCSインデックスのうち、最後に受信した第1のインデックスグループに含まれるMCSインデックスに対応づけられた変調次数を第2の変調次数として利用してもよい。ここで、第1のインデックスグループは、主に上りデータ(UL-SCH)に適用されるMCSインデックス0-28で構成され、第2のインデックスグループは、その他のMCSインデックス29-31で構成することができる。
 あるいは、制御部401は、A-CSIの送信指示を含む下り制御情報を受信するサービングセルに基づいて、異なるセルセットのチャネル状態情報の送信を制御することができる(図6、図7参照)。
 送信信号生成部402は、制御部401からの指示に基づいて、上り信号(上り制御信号、上りデータ信号、上り参照信号など)を生成して、マッピング部403に出力する。送信信号生成部402は、本発明に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。
 送信信号生成部402は、例えば、制御部401からの指示に基づいて、送達確認信号(HARQ-ACK)やチャネル状態情報(CSI)に関する上り制御信号を生成する。チャネル状態情報の送信に適用する変調次数(変調方式)やPRB数は、制御部401からの指示により決定することができる。また、送信信号生成部402は、制御部401からの指示に基づいて上りデータ信号を生成する。例えば、送信信号生成部402は、無線基地局10から通知される下り制御信号にULグラントが含まれている場合に、制御部401から上りデータ信号の生成を指示される。
 マッピング部403は、制御部401からの指示に基づいて、送信信号生成部402で生成された上り信号を無線リソースにマッピングして、送受信部203へ出力する。マッピング部403は、本発明に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。
 受信信号処理部404は、送受信部203から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。ここで、受信信号は、例えば、無線基地局10から送信される下り信号(下り制御信号、下りデータ信号、下り参照信号など)である。受信信号処理部404は、本発明に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。また、受信信号処理部404は、本発明に係る受信部を構成することができる。
 受信信号処理部404は、受信処理により復号された情報を制御部401に出力する。受信信号処理部404は、例えば、報知情報、システム情報、RRCシグナリング、DCIなどを、制御部401に出力する。また、受信信号処理部404は、受信信号や、受信処理後の信号を、測定部405に出力する。
 測定部405は、受信した信号に関する測定を実施する。測定部405は、本発明に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。測定部405は、例えば、受信した信号の受信電力(例えば、RSRP)、受信品質(例えば、RSRQ)やチャネル状態などについて測定してもよい。測定結果は、制御部401に出力されてもよい。
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの任意の組み合わせによって実現される。また、各機能ブロックの実現手段は特に限定されない。すなわち、各機能ブロックは、物理的に結合した1つの装置により実現されてもよいし、物理的に分離した2つ以上の装置を有線又は無線で接続し、これら複数の装置により実現されてもよい。
 例えば、無線基地局10やユーザ端末20の各機能の一部又は全ては、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを用いて実現されても良い。また、無線基地局10やユーザ端末20は、プロセッサ(CPU:Central Processing Unit)と、ネットワーク接続用の通信インターフェースと、メモリと、プログラムを保持したコンピュータ読み取り可能な記憶媒体と、を含むコンピュータ装置によって実現されてもよい。つまり、本発明の一実施形態に係る無線基地局、ユーザ端末などは、本発明に係る無線通信方法の処理を行うコンピュータとして機能してもよい。
 ここで、プロセッサやメモリなどは情報を通信するためのバスで接続される。また、コンピュータ読み取り可能な記録媒体は、例えば、フレキシブルディスク、光磁気ディスク、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、CD-ROM(Compact Disc-ROM)、RAM(Random Access Memory)、ハードディスクなどの記憶媒体である。また、プログラムは、電気通信回線を介してネットワークから送信されても良い。また、無線基地局10やユーザ端末20は、入力キーなどの入力装置や、ディスプレイなどの出力装置を含んでいてもよい。
 無線基地局10及びユーザ端末20の機能構成は、上述のハードウェアによって実現されてもよいし、プロセッサによって実行されるソフトウェアモジュールによって実現されてもよいし、両者の組み合わせによって実現されてもよい。プロセッサは、オペレーティングシステムを動作させてユーザ端末の全体を制御する。また、プロセッサは、記憶媒体からプログラム、ソフトウェアモジュールやデータをメモリに読み出し、これらに従って各種の処理を実行する。
 ここで、当該プログラムは、上記の各実施形態で説明した各動作を、コンピュータに実行させるプログラムであれば良い。例えば、ユーザ端末20の制御部401は、メモリに格納され、プロセッサで動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
 また、ソフトウェア、命令などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、同軸ケーブル、光ファイバケーブル、ツイストペア及びデジタル加入者回線(DSL)などの有線技術及び/又は赤外線、無線及びマイクロ波などの無線技術を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び/又は無線技術は、伝送媒体の定義内に含まれる。
 なお、本明細書中で説明した及び/又は本明細書の理解に必要な各用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、無線リソースはインデックスで指示されるものであってもよい。また、チャネル及び/又はシンボルは信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(CC)は、キャリア周波数、セルなどと呼ばれてもよい。
 本明細書で示した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わないこと)によって行われてもよい。
 情報の通知は、本明細書で示した態様/実施形態に限られず、他の方法で行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、報知情報(MIB(Master Information Block)、SIB(System Information Block))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、例えば、RRC接続セットアップ(RRCConnectionSetup)メッセージ、RRC接続再構成(RRCConnectionReconfiguration)メッセージなどであってもよい。
 本明細書で示した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 本明細書で示した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G、5G、FRA(Future Radio Access)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及び/又はこれらに基づいて拡張された次世代システムに適用されてもよい。
 本明細書で示した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本明細書で示した方法については、例示的な順序で様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 以上、本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されるものではないということは明らかである。本発明は、特許請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本明細書の記載は、例示説明を目的とするものであり、本発明に対して何ら制限的な意味を有するものではない。
 本出願は、2015年5月14日出願の特願2015-099439に基づく。この内容は、全てここに含めておく。

Claims (10)

  1.  非周期チャネル状態情報の送信指示に関する情報を含む下り制御情報を受信する受信部と、
     非周期チャネル状態情報の送信を制御する制御部と、を有し、
     前記制御部は、非周期チャネル状態情報の送信が指示されるサービングセル数及び/又は下り制御情報に含まれる変調符号化方式に関するインデックスに応じて、あらかじめ定義された第1の変調次数、又は第1の変調次数以上となる第2の変調次数を選択して非周期チャネル状態情報の送信を制御することを特徴とするユーザ端末。
  2.  前記制御部は、上位レイヤシグナリング及び/又は前記インデックスに基づいて第2の変調次数を決定することを特徴とする請求項1に記載のユーザ端末。
  3.  前記制御部は、前記サービングセル数が所定値以下及び/又は前記インデックスが第1のインデックスである場合には、第1の変調次数を適用して非周期チャネル状態情報を送信し、前記サービングセル数が所定値より大きい場合及び/又は前記インデックスが第2のインデックスである場合には、第2の変調次数及び/又は所定数より多いリソースブロック数を適用した非周期チャネル状態情報の送信を制御することを特徴とする請求項1又は請求項2に記載のユーザ端末。
  4.  変調符号化方式に関する複数のインデックスは、第1のインデックスグループと、第2のインデックスグループに分類され、
     前記制御部は、第2のインデックスグループに含まれるインデックスに対応づけられた変調次数から第2の変調次数を決定することを特徴とする請求項1から請求項3のいずれかに記載のユーザ端末。
  5.  変調符号化方式に関する複数のインデックスは、第1のインデックスグループと、第2のインデックスグループに分類され、
     前記制御部は、下り制御情報を受信して得られた第1のインデックスグループに含まれるインデックスのうち、最後に受信した第1のインデックスグループに含まれるインデックスに対応づけられた変調次数を第2の変調次数として利用することを特徴とする請求項1から請求項3のいずれかに記載のユーザ端末。
  6.  第1のインデックスグループは、インデックス0-28で構成され、第2のインデックスグループは、インデックス29-31で構成されることを特徴とする請求項4又は請求項5に記載のユーザ端末。
  7.  前記制御部は、非周期チャネル状態情報を、上り共有チャネル(UL-SCH)が割当てられない物理上り共有チャネル(PUSCH)を用いて送信することを特徴とする請求項1から請求項6のいずれかに記載のユーザ端末。
  8.  前記制御部は、非周期チャネル状態情報の送信指示に関する情報を含む下り制御情報を受信するサービングセルに基づいて、異なるセルセットのチャネル状態情報の送信を制御することを特徴とする請求項1から請求項7のいずれかに記載のユーザ端末。
  9.  複数のセルに接続可能なユーザ端末と通信する無線基地局であって、
     非周期チャネル状態情報の送信指示に関する情報を含む下り制御情報を送信する送信部と、
     ユーザ端末から送信される非周期チャネル状態情報を受信する受信部と、を有し、
     前記受信部は、非周期チャネル状態情報の送信を指示するサービングセル数及び/又は下り制御情報に含まれる変調符号化方式に関するインデックスに応じて、あらかじめ定義された第1の変調次数、又は第1の変調次数以上となる第2の変調次数が適用された非周期チャネル状態情報を受信することを特徴とする無線基地局。
  10.  複数のセルに接続可能なユーザ端末の無線通信方法であって、
     非周期チャネル状態情報の送信指示に関する情報を含む下り制御情報を受信する工程と、
     非周期チャネル状態情報の送信が指示されるサービングセル数及び/又は下り制御情報に含まれる変調符号化方式に関するインデックスに応じて、あらかじめ定義された第1の変調次数、又は第1の変調次数以上となる第2の変調次数を選択して非周期チャネル状態情報を送信する工程と、を有することを特徴とする無線通信方法。
PCT/JP2016/064240 2015-05-14 2016-05-13 ユーザ端末、無線基地局及び無線通信方法 WO2016182047A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680027921.4A CN107615807A (zh) 2015-05-14 2016-05-13 用户终端、无线基站以及无线通信方法
JP2017517998A JPWO2016182047A1 (ja) 2015-05-14 2016-05-13 ユーザ端末、無線基地局及び無線通信方法
US15/572,855 US20180139732A1 (en) 2015-05-14 2016-05-13 User terminal, radio base station, and radio communication method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-099439 2015-05-14
JP2015099439 2015-05-14

Publications (1)

Publication Number Publication Date
WO2016182047A1 true WO2016182047A1 (ja) 2016-11-17

Family

ID=57248871

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/064240 WO2016182047A1 (ja) 2015-05-14 2016-05-13 ユーザ端末、無線基地局及び無線通信方法

Country Status (4)

Country Link
US (1) US20180139732A1 (ja)
JP (1) JPWO2016182047A1 (ja)
CN (1) CN107615807A (ja)
WO (1) WO2016182047A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108093479A (zh) * 2016-11-23 2018-05-29 普天信息技术有限公司 一种提升lte系统上行速率的方法
CN112567792A (zh) * 2018-08-10 2021-03-26 株式会社Ntt都科摩 用户终端以及无线通信方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111164902B (zh) * 2017-09-29 2023-11-24 上海诺基亚贝尔股份有限公司 用于下行链路传输调制的方法、设备和计算机可读介质
CN112119667B (zh) * 2018-03-22 2024-03-26 株式会社Ntt都科摩 用户终端以及无线通信方法
CN110475354A (zh) * 2018-05-11 2019-11-19 中兴通讯股份有限公司 控制信息的发送,接收方法及装置、通信系统
WO2020014843A1 (zh) * 2018-07-16 2020-01-23 株式会社Ntt都科摩 通信方法及相应的用户终端、基站
CN110740508B (zh) * 2018-07-18 2022-09-23 珠海市魅族科技有限公司 控制信息发送和接收方法、发送和接收装置及通信设备
WO2020021770A1 (ja) * 2018-07-25 2020-01-30 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 端末、基地局及び通信方法
CA3113126A1 (en) * 2018-09-27 2020-04-02 Ntt Docomo, Inc. User terminal and radio communication method
CN111988760B (zh) * 2019-05-22 2022-05-24 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
WO2020250398A1 (ja) * 2019-06-13 2020-12-17 株式会社Nttドコモ 通信装置
CN114009072A (zh) * 2019-06-27 2022-02-01 松下电器(美国)知识产权公司 通信系统、管理装置、通信设备及通信控制方法
CN114600553B (zh) * 2019-11-01 2023-12-22 株式会社Ntt都科摩 终端及通信方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015064738A1 (ja) * 2013-11-01 2015-05-07 シャープ株式会社 端末装置、基地局装置および方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9209932B2 (en) * 2010-11-08 2015-12-08 Qualcomm Incorporated CQI-only transmission on the PUSCH
AU2010366219B2 (en) * 2010-12-22 2015-01-29 Fujitsu Limited Resource allocation method, Channel State Information transmission method, Base Station and user equipment
WO2012094821A1 (zh) * 2011-01-14 2012-07-19 富士通株式会社 信道状态信息的传输方法、基站和用户设备
US9973955B2 (en) * 2012-03-16 2018-05-15 Futurewei Technologies, Inc. Systems and methods for reference signals and CSI feedback
US20160226623A1 (en) * 2013-09-20 2016-08-04 Telefonaktiebolaget L M Ericsson (Publ) Network Node, User Equipment and Methods for Obtaining a Modulation and Coding Scheme

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015064738A1 (ja) * 2013-11-01 2015-05-07 シャープ株式会社 端末装置、基地局装置および方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "Aperiodic CSI feedback enhancements for eCA", 3GPP TSG-RAN WG1#83 R1-156457, 22 November 2015 (2015-11-22), pages 1 - 5, XP051002917, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_83/Docs/Rl-156457.zip> *
NTT DOCOMO, INC.: "UE behavior for simultaneous transmission of P-CSI and HARQ-ACK/SR", 3GPP TSG-RAN WG1#83 R1-157231, 22 November 2015 (2015-11-22), XP051003454, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_83/Docs/Rl-157231.zip> *
ZTE: "On CSI Measurements for LAA", 3GPP TSG-RAN WG1#80B R1-151805, 24 April 2015 (2015-04-24), pages 2, XP050934666, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_80b/Docs/R1-151805.zip> *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108093479A (zh) * 2016-11-23 2018-05-29 普天信息技术有限公司 一种提升lte系统上行速率的方法
CN112567792A (zh) * 2018-08-10 2021-03-26 株式会社Ntt都科摩 用户终端以及无线通信方法
CN112567792B (zh) * 2018-08-10 2024-02-23 株式会社Ntt都科摩 用户终端以及无线通信方法

Also Published As

Publication number Publication date
US20180139732A1 (en) 2018-05-17
JPWO2016182047A1 (ja) 2018-04-05
CN107615807A (zh) 2018-01-19

Similar Documents

Publication Publication Date Title
US10536963B2 (en) User terminal, radio base station and radio communication method
JP6291088B2 (ja) ユーザ端末、無線基地局及び無線通信方法
JP6100829B2 (ja) ユーザ端末、無線基地局及び無線通信方法
JP6081531B2 (ja) ユーザ端末、無線基地局及び無線通信方法
JP6125590B2 (ja) ユーザ端末、無線基地局及び無線通信方法
WO2016182047A1 (ja) ユーザ端末、無線基地局及び無線通信方法
JP6479963B2 (ja) ユーザ端末、無線基地局及び無線通信方法
JP6042505B1 (ja) ユーザ端末、無線基地局及び無線通信方法
JP6105672B2 (ja) ユーザ端末及び無線通信方法
WO2017051716A1 (ja) ユーザ端末、無線基地局及び無線通信方法
CN107211280B (zh) 用户终端、无线基站及无线通信方法
JP6326160B2 (ja) ユーザ端末、無線基地局及び無線通信方法
WO2016121914A1 (ja) ユーザ端末、無線基地局及び無線通信方法
JP6894841B2 (ja) 端末、無線基地局及び無線通信方法
WO2017038674A1 (ja) ユーザ端末、無線基地局及び無線通信方法
WO2017135344A1 (ja) ユーザ端末、無線基地局及び無線通信方法
WO2017078032A1 (ja) ユーザ端末、無線基地局及び無線通信方法
WO2017038672A1 (ja) ユーザ端末、無線基地局及び無線通信方法
JP6517978B2 (ja) ユーザ端末及び基地局

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16792771

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15572855

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017517998

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16792771

Country of ref document: EP

Kind code of ref document: A1