WO2017038295A1 - 圧粉コア、該圧粉コアの製造方法、該圧粉コアを備える電気・電子部品、および該電気・電子部品が実装された電気・電子機器 - Google Patents

圧粉コア、該圧粉コアの製造方法、該圧粉コアを備える電気・電子部品、および該電気・電子部品が実装された電気・電子機器 Download PDF

Info

Publication number
WO2017038295A1
WO2017038295A1 PCT/JP2016/071488 JP2016071488W WO2017038295A1 WO 2017038295 A1 WO2017038295 A1 WO 2017038295A1 JP 2016071488 W JP2016071488 W JP 2016071488W WO 2017038295 A1 WO2017038295 A1 WO 2017038295A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
magnetic material
dust core
core
mass
Prior art date
Application number
PCT/JP2016/071488
Other languages
English (en)
French (fr)
Inventor
中林 亮
世一 安彦
小島 章伸
水嶋 隆夫
Original Assignee
アルプス電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプス電気株式会社 filed Critical アルプス電気株式会社
Publication of WO2017038295A1 publication Critical patent/WO2017038295A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/08Metallic powder characterised by particles having an amorphous microstructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • H01F17/06Fixed inductances of the signal type  with magnetic core with core substantially closed in itself, e.g. toroid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets

Definitions

  • the present invention relates to a dust core, a method for producing the dust core, an electric / electronic component including the dust core, and an electric / electronic device on which the electric / electronic component is mounted.
  • Powder cores used in boosters such as hybrid vehicles, reactors used in power generation and substation facilities, transformers and choke coils, etc. are compacted from a number of soft magnetic powders, and the resulting molded products are heat treated. Can be obtained.
  • Patent Document 1 a magnetic powder, a resin, a low-boiling solvent, and a high-boiling solvent are mixed to produce a slurry-like mixture; and the slurry-like mixture is heated to prepare the low-boiling-point solvent.
  • a second drying step of obtaining magnetic particles by evaporating the material, and a method for producing the granulated product, and an inductor using the granulated product produced by the method for producing the granulated product are disclosed. Has been.
  • Patent Document 1 shows a specific example in which magnetic powder made of carbonyl iron powder (Carbonyl Iron Powder, hereinafter referred to as “CIP”) having a particle size of 3 to 5 ⁇ m is used. Yes. CIP is mainly used because it has high magnetic permeability and improves DC superposition characteristics.
  • CIP Carbonyl Iron Powder
  • An object of the present invention is to provide a dust core containing a powder of a crystalline magnetic material such as CIP and having excellent magnetic properties.
  • the present invention also provides a method for producing such a dust core, provides an electric / electronic component including such a dust core, and also provides an electric / electronic device mounted with such an electric / electronic component. Let it be an issue.
  • the dust core contains not only a crystalline magnetic material powder such as CIP but also a predetermined amount of amorphous magnetic material powder. New knowledge that it is possible to improve the magnetic properties.
  • the present invention completed based on such knowledge is, in one aspect, a powder core containing a powder of a crystalline magnetic material and a powder of an amorphous magnetic material, the content of the powder of the crystalline magnetic material,
  • the first mixing ratio which is the mass ratio of the content of the crystalline magnetic material powder to the total content of the amorphous magnetic material powder, is 75% by mass to 95% by mass. It is a compacted core.
  • the dust core contains not only the crystalline magnetic material powder but also a predetermined amount of the amorphous magnetic material powder, the iron loss Pcv is likely to decrease.
  • the first mixing ratio is preferably 80% by mass or more and 90% by mass or less because the magnetic properties of the dust core are more stably improved.
  • the crystalline magnetic material powder is preferably made of an insulating material.
  • the crystalline magnetic material is Fe-Si-Cr alloy, Fe-Ni alloy, Fe-Co alloy, Fe-V alloy, Fe-Al alloy, Fe-Si alloy, Fe-Si-Al.
  • One or two or more materials selected from the group consisting of a system alloy, carbonyl iron (CIP) and pure iron may be included.
  • the crystalline magnetic material may be preferably made of carbonyl iron (CIP).
  • the amorphous magnetic material includes one or more materials selected from the group consisting of an Fe—Si—B alloy, an Fe—PC alloy, and a Co—Fe—Si—B alloy. You may go out. Among these, the amorphous magnetic material may be preferably made of an Fe—PC alloy.
  • the median diameter D50 of the powder of the amorphous magnetic material is preferably 20 ⁇ m or less.
  • a binder component that binds the crystalline magnetic material powder and the amorphous magnetic material powder to another material contained in the dust core may be included.
  • the binding component preferably includes a component based on a resin material.
  • the present invention provides a method for producing a powder core according to the present invention, wherein the binder component comprises the crystalline magnetic material powder, the amorphous magnetic material powder, and the resin material.
  • a method for producing a dust core comprising a molding step of obtaining a molded product by a molding process including pressure molding of a mixture including
  • the molded product obtained by the molding step may be the green core. Or you may provide the heat processing process of obtaining the said powder core by the heat processing which heats the said molded product obtained by the said shaping
  • the present invention is an electric / electronic component comprising the dust core according to the present invention, a coil, and a connection terminal connected to each end of the coil, At least a part is an electric / electronic component arranged to be located in an induced magnetic field generated by the current when a current is passed through the coil via the connection terminal.
  • Such an electric / electronic component can reduce iron loss based on the excellent characteristics of the powder core.
  • an electrical / electronic device on which the electrical / electronic component according to the present invention is mounted, wherein the electrical / electronic component is connected to a substrate by the connection terminal.
  • Electric / electronic equipment Examples of such electrical / electronic devices include a power supply device including a power supply switching circuit, a voltage raising / lowering circuit, and a smoothing circuit, and a small portable communication device. Since the electrical / electronic device according to the present invention includes the electrical / electronic component according to the present invention, it is easy to cope with a large current and high speed.
  • the dust core according to the above invention can have excellent magnetic properties as compared with a dust core provided with a magnetic powder made of a crystalline magnetic material powder. Moreover, according to this invention, the manufacturing method of said powder core, the electric / electronic component provided with said powder core, and the electric / electronic device by which this electric / electronic component was mounted are provided.
  • Median diameter D50 is a graph showing the dependence of the fitting result for the first mixing ratio of the amorphous magnetic constant k h in the dust core containing powdered material of 5 [mu] m.
  • Median diameter D50 is a graph showing the fitting result of dependence on a first mixing ratio of amorphous magnetic constant k e in the dust core containing powdered material of 5 [mu] m.
  • Median diameter D50 is a graph showing the dependence of the fitting result for the first mixing ratio of the amorphous magnetic constant k h in the dust core containing powdered material of 8 [mu] m.
  • Median diameter D50 is a graph showing the fitting result of dependence on a first mixing ratio of amorphous magnetic constant k e in the dust core containing powdered material of 8 [mu] m. It is a graph which shows the fitting result of the dependence with respect to the 1st mixing ratio of the relative magnetic permeability (micro
  • the iron loss ratio, initial permeability ratio and Isat ratio are It is the graph shown collectively.
  • the dust core 1 according to one embodiment of the present invention shown in FIG. 1 is ring-shaped in appearance, and contains a powder of a crystalline magnetic material and a powder of an amorphous magnetic material.
  • the powder core 1 according to the present embodiment is manufactured by a manufacturing method including a molding process including pressure molding of a mixture containing these powders.
  • the dust core 1 according to the present embodiment includes a crystalline magnetic material powder and an amorphous magnetic material powder as other materials (same type of material) contained in the dust core 1. Or it may be a dissimilar material).
  • these components will be described.
  • the crystalline magnetic material that gives the powder of crystalline magnetic material contained in the dust core 1 according to one embodiment of the present invention is crystalline (general X-ray diffraction)
  • the specific type is not limited as long as the diffraction spectrum having a clear peak that can identify the material type is obtained by measurement) and is a ferromagnetic substance.
  • Specific examples of crystalline magnetic materials include Fe—Si—Cr alloys, Fe—Ni alloys, Fe—Co alloys, Fe—V alloys, Fe—Al alloys, Fe—Si alloys, Fe—Si. -Al based alloys, carbonyl iron (CIP) and pure iron.
  • Said crystalline magnetic material may be comprised from one type of material, and may be comprised from multiple types of material.
  • the crystalline magnetic material that gives the powder of the crystalline magnetic material is preferably one or more materials selected from the group consisting of the above materials, and among these, preferably contains CIP, More preferably, it consists of CIP.
  • the shape of the powder of the crystalline magnetic material contained in the dust core 1 is not limited.
  • the shape of the powder may be spherical or non-spherical. In the case of a non-spherical shape, it may have a shape anisotropy such as a scale shape, an oval sphere shape, a droplet shape, a needle shape, or an indefinite shape having no special shape anisotropy. Good.
  • Examples of the amorphous powder include a case where a plurality of spherical powders are bonded in contact with each other, or are bonded so as to be partially embedded in other powders. Such an amorphous powder is easily observed in CIP.
  • the shape of the powder may be a shape obtained at the stage of producing the powder, or a shape obtained by secondary processing of the produced powder.
  • the former shape include a spherical shape, an oval shape, a droplet shape, and a needle shape, and examples of the latter shape include a scale shape.
  • the particle size of the powder of the crystalline magnetic material contained in the dust core 1 is not limited. If this particle size is defined by the median diameter D50 (particle size when the volume cumulative value in the volume distribution of the soft magnetic powder measured by the laser diffraction scattering method is 50%), it is usually 1 ⁇ m to 20 ⁇ m. Scope. From the viewpoint of improving the handleability and the viewpoint of increasing the packing density of the crystalline magnetic material powder in the dust core, the median diameter D50 (also referred to as “first median diameter d1” in the present specification) of the crystalline magnetic material powder. .) Is preferably 1 ⁇ m or more and 15 ⁇ m or less, more preferably 1 ⁇ m or more and 10 ⁇ m or less, and particularly preferably 1 ⁇ m or more and 5 ⁇ m or less.
  • the crystalline magnetic material powder is made of an insulating material, and it is more preferable that the crystalline magnetic material powder is made of an insulating material.
  • the insulation resistance of the dust core tends to be improved.
  • the type of insulation treatment applied to the crystalline magnetic material powder is not limited. Examples include phosphoric acid treatment, phosphate treatment, oxidation treatment, and sol-gel method.
  • the mass ratio of the content of the crystalline magnetic material powder to the sum of the content of the crystalline magnetic material powder and the content of the amorphous magnetic material powder (unit: mass%, in this specification, “first The mixing ratio ”) is preferably 75% by mass or more and 95% by mass or less.
  • the first mixing ratio is more preferably 78% by mass to 93% by mass, and further preferably 80% by mass to 90% by mass. .
  • the amorphous magnetic material that provides the amorphous magnetic material powder contained in the dust core 1 according to an embodiment of the present invention is amorphous (generally As long as the X-ray diffraction measurement does not provide a diffraction spectrum with a clear peak that can identify the material type), and the material is a ferromagnetic material, particularly a soft magnetic material, the specific types are limited. Not. Specific examples of the amorphous magnetic material include Fe—Si—B alloys, Fe—PC alloys, and Co—Fe—Si—B alloys. Said amorphous magnetic material may be comprised from one type of material, and may be comprised from multiple types of material.
  • the magnetic material constituting the powder of the amorphous magnetic material is preferably one or two or more materials selected from the group consisting of the above materials, and among these, an Fe—PC alloy is used. It is preferably contained, and more preferably made of an Fe—PC alloy.
  • Fe-P-C-based alloy composition formula, shown in Fe 100 atomic% -a-b-c-x -y-z-t Ni a Sn b Cr c P x C y B z Si t 0 atom% ⁇ a ⁇ 10 atom%, 0 atom% ⁇ b ⁇ 3 atom%, 0 atom% ⁇ c ⁇ 6 atom%, 6.8 atom% ⁇ x ⁇ 12.8 atom%, 2.2 atom
  • Fe-based amorphous alloys in which% ⁇ y ⁇ 11.8 atomic%, 0 atomic% ⁇ z ⁇ 9.6 atomic%, and 0 atomic% ⁇ t ⁇ 7 atomic%.
  • Ni, Sn, Cr, B, and Si are optional added elements.
  • the addition amount a of Ni is preferably 0 atom% or more and 6 atom% or less, and more preferably 0 atom% or more and 4 atom% or less.
  • the addition amount b of Sn is preferably 0 atom% or more and 2 atom% or less, and more preferably 1 atom% or more and 2 atom% or less.
  • the addition amount c of Cr is preferably 0 atom% or more and 3 atom% or less, and more preferably 1 atom% or more and 2.5 atom% or less.
  • the addition amount x of P is preferably 8.8 atomic% or more.
  • the addition amount y of C may be preferably 5.8 atomic% or more and 8.8 atomic% or less.
  • the addition amount z of B is preferably 0 atom% or more and 9 atom% or less, and more preferably 0 atom% or more and 8 atom% or less.
  • the addition amount t of Si is preferably 0 atom% or more and 6 atom% or less, and more preferably 0 atom% or more and 5.5 atom% or less.
  • the shape of the powder of the amorphous magnetic material contained in the dust core 1 is not limited. Since the kind of the powder shape is the same as that of the crystalline magnetic material powder, the description thereof is omitted. In some cases, the amorphous magnetic material can be easily formed into a spherical shape or an elliptical spherical shape because of the manufacturing method. In general, since an amorphous magnetic material is harder than a crystalline magnetic material, it may be preferable to make the crystalline magnetic material non-spherical so that it is easily deformed during pressure molding.
  • the shape of the powder of the amorphous magnetic material contained in the dust core 1 may be the shape obtained in the stage of producing the powder, or the produced powder is secondary
  • the shape obtained by processing may be sufficient.
  • the former shape include a sphere, an oval sphere, and a needle shape, and examples of the latter shape include a scale shape.
  • the particle size of the powder of the amorphous magnetic material contained in the dust core 1 is not limited. If this particle diameter is defined by the median diameter D50, it may be preferable to be 20 ⁇ m or less. From the viewpoint of improving the handleability, the median diameter D50 (also referred to as “second median diameter d2” in this specification) of the powder of the amorphous magnetic material is preferably 1 ⁇ m or more, and preferably 2 ⁇ m or more. Is more preferable, and the thickness is particularly preferably 3 ⁇ m or more.
  • the median diameter D50 (second median diameter d2) of the amorphous magnetic material powder is 15 ⁇ m or less. Is preferable, it is more preferable to set it as 12 micrometers or less, and it is especially preferable to set it as 8 micrometers or less.
  • the relationship between the first median diameter d1 and the second median diameter d2 is not limited.
  • amorphous magnetic materials are harder than crystalline magnetic materials, voids formed when the first median diameter d1 is made relatively small and powders of amorphous magnetic materials are filled.
  • the crystalline magnetic material powder is easily filled.
  • d1 / d2 is preferably 0.8 or less, and sometimes 0.5 or less.
  • the binder component includes a crystalline magnetic material powder and an amorphous magnetic material powder contained in the dust core 1 according to the present embodiment (in this specification, these powders are referred to as “magnetic
  • the composition is not limited as long as it is a material that contributes to fixing.
  • an organic material such as a resin material and a thermal decomposition residue of the resin material (in this specification, these are collectively referred to as “components based on a resin material”), an inorganic material, and the like
  • the resin material include acrylic resin, silicone resin, epoxy resin, phenol resin, urea resin, and melamine resin.
  • the binder component made of an inorganic material is exemplified by a glass-based material such as water glass.
  • the binder component may be composed of one type of material or may be composed of a plurality of materials.
  • the binder component may be a mixture of an organic material and an inorganic material.
  • An insulating material is usually used as a binding component. Thereby, it becomes possible to improve the insulation as the dust core 1.
  • the manufacturing method of the powder core 1 according to an embodiment of the present invention may include a molding step, which will be described below, and may further include a heat treatment step.
  • a mixture containing magnetic powder and a component that provides a binding component in the powder core 1 is prepared.
  • the component that gives the binding component (also referred to as “binder component” in this specification) may be the binding component itself or may be a material different from the binding component. Specific examples of the latter include a case where the binder component is a resin material and the binder component is a thermal decomposition residue thereof.
  • a molded product can be obtained by a molding process including pressure molding of this mixture.
  • the pressurizing condition is not limited and is appropriately determined based on the composition of the binder component.
  • the binder component is made of a thermosetting resin, it is preferable to heat the resin together with pressure to advance the resin curing reaction in the mold.
  • the pressing force is high, heating is not a necessary condition and pressurization is performed for a short time.
  • the mixture is granulated powder and compression molding. Since the granulated powder is excellent in handleability, it is possible to improve the workability of the compression molding process in which the molding time is short and the productivity is excellent.
  • the granulated powder contains magnetic powder and a binder component.
  • the content of the binder component in the granulated powder is not particularly limited. When this content is too low, it becomes difficult for the binder component to hold the magnetic powder.
  • the binder component composed of the thermal decomposition residue of the binder component causes a plurality of magnetic powders to be separated from each other. It becomes difficult to insulate.
  • the content of the binder component is excessively high, the content of the binder component contained in the powder core 1 obtained through the heat treatment step tends to be high.
  • the content of the binder component in the granulated powder is preferably set to an amount that is 0.5% by mass or more and 5.0% by mass or less with respect to the entire granulated powder. From the viewpoint of more stably reducing the possibility that the magnetic properties of the dust core 1 will decrease, the content of the binder component in the granulated powder is 1.0 mass% or more with respect to the entire granulated powder. The amount is preferably 5% by mass or less, and more preferably 1.2% by mass or more and 3.0% by mass or less.
  • the granulated powder may contain materials other than the above magnetic powder and binder component.
  • materials include lubricants, silane coupling agents, and insulating fillers.
  • the type is not particularly limited. It may be an organic lubricant or an inorganic lubricant. Specific examples of the organic lubricant include metal soaps such as zinc stearate and aluminum stearate. It is considered that such an organic lubricant is vaporized in the heat treatment step and hardly remains in the powder core 1.
  • the method for producing the granulated powder is not particularly limited.
  • the ingredients that give the granulated powder may be kneaded as they are, and the resulting kneaded product may be pulverized by a known method to obtain granulated powder, or a dispersion medium (water as an example) It is also possible to obtain a granulated powder by preparing a slurry to which is added, and drying and pulverizing the slurry. Screening and classification may be performed after pulverization to control the particle size distribution of the granulated powder.
  • a method using a spray dryer can be mentioned.
  • a rotator 201 is provided in the spray dryer apparatus 200, and the slurry S is injected toward the rotor 201 from the upper part of the spray dryer apparatus 200.
  • the rotor 201 rotates at a predetermined number of revolutions, and sprays the slurry S as droplets by centrifugal force in a chamber inside the spray dryer apparatus 200. Further, hot air is introduced into the chamber inside the spray dryer apparatus 200, whereby the dispersion medium (water) contained in the droplet-like slurry S is volatilized while maintaining the droplet shape.
  • the granulated powder P is formed from the slurry S.
  • the granulated powder P is collected from the lower part of the spray dryer apparatus 200.
  • Each parameter such as the number of rotations of the rotor 201, the temperature of hot air introduced into the spray dryer apparatus 200, and the temperature at the bottom of the chamber may be set as appropriate. Specific examples of the setting ranges of these parameters include a rotation speed of the rotor 201 of 4000 to 6000 rpm, a hot air temperature introduced into the spray dryer apparatus 200 of 130 to 170 ° C., and a temperature in the lower portion of the chamber of 80 to 90 ° C. .
  • the atmosphere in the chamber and its pressure may be set as appropriate.
  • the inside of the chamber is an air atmosphere
  • the pressure is 2 mmH 2 O (about 0.02 kPa) as a differential pressure from the atmospheric pressure. You may further control the particle size distribution of the obtained granulated powder P by sieving.
  • the pressing conditions in compression molding are not particularly limited. What is necessary is just to set suitably in consideration of the composition of granulated powder, the shape of the molded product obtained by the molding process, and the like. If the pressure applied when the granulated powder is compression-molded is excessively low, the mechanical strength of the molded product decreases. For this reason, it becomes easy to produce the problem that the handleability of a molded product falls and the mechanical strength of the powder core 1 obtained from the molded product falls. Moreover, the magnetic characteristics of the dust core 1 may deteriorate or the insulating properties may decrease. On the other hand, if the applied pressure during compression molding of the granulated powder is excessively high, it becomes difficult to create a molding die that can withstand the pressure.
  • the applied pressure is preferably 0.3 GPa to 2 GPa, more preferably 0.5 GPa to 2 GPa, and particularly preferably 0.8 GPa to 2 GPa.
  • pressurization may be performed while heating, or pressurization may be performed at room temperature.
  • the molded product obtained in the molding step may be the powder core 1 according to the present embodiment, or the molded product may be subjected to a heat treatment step and pressed as described below. A powder core 1 may be obtained.
  • the molded product obtained by the above molding process is heated to adjust the magnetic properties by correcting the distance between the magnetic powders and to relax the strain applied to the magnetic powder in the molding process.
  • the powder core 1 is obtained by adjusting the magnetic characteristics.
  • the heat treatment conditions such as the heat treatment temperature are set so that the magnetic properties of the dust core 1 are the best.
  • a method for setting the heat treatment conditions it is possible to change the heating temperature of the molded product and to make other conditions constant, such as the heating rate and the holding time at the heating temperature.
  • the evaluation criteria for the magnetic properties of the dust core 1 when setting the heat treatment conditions are not particularly limited.
  • the iron loss Pcv of the powder core 1 can be given as a specific example of the evaluation item. In this case, what is necessary is just to set the heating temperature of a molded product so that the iron loss Pcv of the powder core 1 may become the minimum.
  • the measurement conditions of the iron loss Pcv are set as appropriate, and as an example, the conditions of a frequency of 100 kHz and a maximum magnetic flux density of 100 mT can be mentioned.
  • the atmosphere during the heat treatment is not particularly limited.
  • an oxidizing atmosphere the possibility of excessive thermal decomposition of the binder component and the possibility of progress of oxidation of the magnetic powder increases, so that an inert atmosphere such as nitrogen or argon, or a reducing property such as hydrogen Heat treatment is preferably performed in an atmosphere.
  • An electrical / electronic component according to an embodiment of the present invention includes a dust core 1 according to an embodiment of the present invention, a coil, and a connection terminal connected to each end of the coil. .
  • the dust core 1 is disposed so as to be located in an induced magnetic field generated by the current when a current is passed through the coil via the connection terminal.
  • the toroidal coil 10 includes a coil 2 a formed by winding a coated conductive wire 2 around a ring-shaped dust core (toroidal core) 1.
  • the portions (exposed end portions) 2b and 2c where the conductive wires are exposed at both ends of the covered conductive wire 2 constitute connection terminals.
  • Ends 2d and 2e of the coil 2a can be defined in a portion of the coated conductive wire 2 located between the coil 2a and the exposed ends 2b and 2c.
  • the member constituting the coil and the member constituting the connection terminal may be constituted by one member.
  • the electric / electronic component according to an embodiment of the present invention may include a dust core having a shape different from that of the dust core 1 according to the embodiment of the present invention.
  • a specific example of such an electric / electronic component is an inductance element 20 shown in FIG.
  • FIG. 4 is a perspective view showing a part of the entire configuration of the inductance element 20 according to the embodiment of the present invention.
  • the lower surface (mounting surface) of the inductance element 20 is shown in an upward posture.
  • FIG. 5 is a partial front view showing a state in which the inductance element 20 shown in FIG. 4 is mounted on the mounting substrate 100.
  • the inductance element 20 shown in FIG. 4 includes a dust core 3, a coil 5 embedded in the dust core 3, and a pair of terminal portions 4 as connection terminals electrically connected to the coil 5 by welding. It is configured with.
  • the coil 5 is formed by spirally winding a conductive wire with an insulating coating.
  • the coil 5 includes a winding part 5a and lead-out end parts 5b and 5b drawn from the winding part 5a.
  • the number of turns of the coil 5 is appropriately set according to the required inductance.
  • an accommodation recess 30 for accommodating a part of the terminal portion 4 is formed on the mounting surface 3 a with respect to the mounting substrate.
  • the storage recesses 30 are formed on both sides of the mounting surface 3 a and are formed to be released toward the side surfaces 3 b and 3 c of the powder core 3.
  • Part of the terminal portion 4 protruding from the side surfaces 3 b and 3 c of the powder core 3 is bent toward the mounting surface 3 a and stored in the storage recess 30.
  • the terminal part 4 is formed of a thin plate-like Cu base material.
  • the terminal part 4 is embedded in the dust core 3 and exposed to the connection end 40 electrically connected to the lead-out ends 5b, 5b of the coil 5, and the outer surface of the dust core 3.
  • the dust core 3 includes a first bent portion 42a and a second bent portion 42b that are bent in order from the side surfaces 3b and 3c to the mounting surface 3a.
  • the connection end 40 is a welded portion that is welded to the coil 5.
  • the first bent portion 42 a and the second bent portion 42 b are solder joint portions that are soldered to the mounting substrate 100.
  • the solder joint portion is a portion of the terminal portion 4 that is exposed from the dust core 3 and means a surface that faces at least the outside of the dust core 3.
  • connection end portion 40 of the terminal portion 4 and the extraction end portion 5b of the coil 5 are joined by resistance welding.
  • the inductance element 20 is mounted on the mounting substrate 100.
  • a conductor pattern that is electrically connected to an external circuit is formed on the surface of the mounting substrate 100, and a pair of land portions 110 for mounting the inductance element 20 is formed by a part of the conductor pattern.
  • the mounting surface 3a is directed to the mounting substrate 100 side, and the first bent portion 42a and the second bent portion 42b that are exposed to the outside from the dust core 3 are mounted.
  • the solder layer 120 is bonded to the land portion 110 of the substrate 100.
  • the inductance element 20 is mounted so that the second bent part 42b faces the land part 110, and the solder melts in the heating process.
  • the second bent portion 42 b faces the land portion 110 of the mounting substrate 100, and the first bent portion 42 a is exposed on the side surfaces 3 b and 3 c of the inductance element 20.
  • the solder layer 120 is fixed to the land portion 110 and is sufficiently spread and fixed to the surfaces of both the second bent portion 42b and the first bent portion 42a which are solder joint portions.
  • An electrical / electronic device is mounted with an electrical / electronic component including the dust core according to the embodiment of the present invention.
  • a power supply device including a power switching circuit, a voltage raising / lowering circuit, a smoothing circuit, etc., through which a large current (for example, about 1 A or more in the case of a small inductor of several mm square) flows is exemplified. .
  • the iron loss Pcv of the dust core included in the electric / electronic component incorporated in the power supply device is high, the degree of heat generation And the reliability of the device is significantly reduced. For this reason, it is strongly required to reduce the iron loss Pcv of the dust core and increase the efficiency.
  • the dust core used in the electrical / electronic component included in the electrical / electronic device according to the embodiment of the present invention has high iron loss Pcv, and thus has high efficiency, and a large current flows through the electrical / electronic device. Even so, the degree of heat generation is relatively low. For this reason, the electrical / electronic device according to an embodiment of the present invention is excellent in reliability.
  • Example 1 (1) Preparation of Fe-based amorphous alloy powder Using a water atomization method, weighed so as to have a composition of Fe 71 atomic% Ni 6 atomic% Cr 2 atomic% P 11 atomic% C 8 atomic% B 2 atomic%
  • the amorphous magnetic material powder thus obtained was prepared as a magnetic powder.
  • the first mixing ratio (the mass ratio of the content of the crystalline magnetic material powder to the total content of the crystalline magnetic material powder and the amorphous magnetic material powder) was 0% by mass.
  • the particle size distribution of the obtained magnetic powder was measured by volume distribution using “Microtrack particle size distribution measuring device MT3300EX” manufactured by Nikkiso Co., Ltd. As a result, the median diameter D50, which is a particle diameter of 50% in the volume distribution, was 5 ⁇ m.
  • Example 2 When preparing the magnetic powder, the powder of the amorphous magnetic material used in Example 1 and the powder of the crystalline magnetic material made of carbonyl iron (CIP) subjected to insulation treatment (median diameter D50: 4.3 ⁇ m) ) And a toroidal core was produced in the same manner as in Example 1 except that the magnetic powder having the following first mixing ratio was used.
  • Example 2 5% by mass
  • Example 3 10% by mass
  • Example 5 20% by mass
  • Example 7 When the magnetic powder was prepared, instead of the amorphous magnetic material powder used in Example 1, all of the CIP subjected to insulation treatment used in Example 2 was used. A toroidal core was produced in the same manner as in Example 1 except that the first mixing ratio was 100% by mass.
  • Example 8 An amorphous magnetic material powder was prepared in the same manner as in the production method of Example 1 except that the median diameter D50 was 8 ⁇ m. Using this amorphous magnetic material powder, a toroidal core was produced in the same manner as in Example 1.
  • the two constants k h and k e of the powder core containing the powder of the amorphous magnetic material having a median diameter D50 of 5 ⁇ m are used, and the first mixing ratio is 50 mass. % To 100% by mass.
  • a powder of an amorphous magnetic material having a median diameter D50 of 5 ⁇ m is contained, and the first mixing ratio is in the range of 50% by mass to 100% by mass.
  • the core iron loss Pcv (frequency f: 2 MHz, effective maximum magnetic flux density Bm: 15 mT) was calculated.
  • Table 2 the iron loss Pcv of the dust core when the first mixing ratio is 50% to 90% by mass is normalized with the iron loss Pcv of the dust core when the first mixing ratio is 100% by mass. The obtained value was shown as the iron loss ratio.
  • Example 8 using the results of constant k h and constant k e in Examples 2 6 and Example 7, in the dust core of the median diameter D50 contains a powder of amorphous magnetic material of 8 ⁇ m
  • the dependence on the first mixing ratio was determined for each of the two constants k h and k e .
  • dependence of the fitting result for the first mixing ratio of the constant k h became formula given by the following equation (4).
  • the correlation coefficient of the following formula (4) was 0.9980.
  • Test Example 2 Measurement of magnetic permeability
  • the initial permeability ⁇ ′ was measured under the condition of 100 kHz.
  • Table 5 In the column of D50 in Table 5, the median diameter D50 of the powder of the amorphous magnetic material contained in the dust core is shown.
  • the Isat of the powder core containing the powder of the amorphous magnetic material having a median diameter D50 of 5 ⁇ m and the first mixing ratio in the range of 50% by mass to 100% by mass was calculated. .
  • the results are shown in Table 9.
  • Table 9 shows the Isat of the dust core when the first mixing ratio is 50% to 90% by mass, and the value Isat normalized by the Isat of the dust core when the first mixing ratio is 100% by mass. Shown as a ratio.
  • FIG. 12 shows an iron loss ratio and an initial permeability ratio for a dust core containing a powder of an amorphous magnetic material having a median diameter D50 of 5 ⁇ m and a first mixing ratio in the range of 50% by mass to 100% by mass. And Isat ratio are collectively shown in one graph.
  • the powder core Example 7
  • the magnetic powder is made of CIP
  • the magnetic powder contained in the powder core includes an amorphous magnetic material powder
  • C i is the iron loss ratio when the first mixing ratio is i mass%
  • P i is the initial permeability ratio when the first mixing ratio is i mass%. Therefore, R1 i is an index indicating how much the iron loss Pcv has decreased with reference to the amount of decrease in the initial permeability ⁇ ′ when the first mixing ratio is i mass%.
  • I i is the Isat ratio when the first mixing ratio is i mass%. Therefore, R2 i is an index indicating how much the iron loss Pcv is reduced based on the decrease amount of Isat when the first mixing ratio is i mass%. Table 11 shows the calculation results.
  • the larger the first mixing ratio that is, by reducing the degree of mixing the magnetic powder made of amorphous magnetic material powder into the powder core made of CIP, the magnetic powder becomes more effective (others It is understood that the iron loss Pcv can be reduced (with less influence on the magnetic properties).
  • the electric / electronic component using the dust core of the present invention can be suitably used as a booster circuit for a hybrid vehicle or the like, a reactor, a transformer, a choke coil, or the like used for power generation or substation facilities.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Soft Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

カルボニル鉄のような結晶質磁性材料の粉末を含有する圧粉コアであって、優れた磁気特性を備える圧粉コアとして、結晶質磁性材料の粉末および非晶質磁性材料の粉末を含有する圧粉コアであって、前記結晶質磁性材料の粉末の含有量と前記非晶質磁性材料の粉末の含有量との総和に対する前記結晶質磁性材料の粉末の含有量の質量比率である第一混合比率が、75質量%以上95質量%以下であることを特徴とする圧粉コアが提供される。

Description

圧粉コア、該圧粉コアの製造方法、該圧粉コアを備える電気・電子部品、および該電気・電子部品が実装された電気・電子機器
 本発明は、圧粉コア、該圧粉コアの製造方法、該圧粉コアを備える電気・電子部品、および該電気・電子部品が実装された電気・電子機器に関する。
 ハイブリッド自動車等の昇圧回路や、発電、変電設備に用いられるリアクトル、トランスやチョークコイル等に使用される圧粉コアは、多数の軟磁性粉末を圧粉成形し、得られた成形製造物を熱処理することにより得ることができる。
 特許文献1には、磁性粉末と、樹脂と、低沸点溶剤、高沸点溶剤とを混合し、スラリー状混合物を製造する混合物製造工程と;前記スラリー状混合物を加熱して、前記低沸点溶剤を蒸発させ、ペースト状混合物を製造する第1乾燥工程と;前記ペースト状混合物を、メッシュを通して解砕することによって製粒し、粒子を得る整粒工程と;前記粒子を加熱して前記高沸点溶剤を蒸発させて、磁性粒子を得る第2乾燥工程と;を備えることを特徴とする、造粒物の製造方法およびその造粒物の製造方法により製造された造粒物を使用したインダクタが開示されている。
特開2014-125655号公報
 上記の特許文献1には、粒子径が3~5μmのカルボニル鉄粉(Carbonyl Iron Powder、以下、「CIP」ということがある。)からなる磁性粉末が用いられた場合が具体例として示されている。CIPを主として使用することが、透磁率が高く、直流重畳特性が向上するために好ましいとされている。
 本発明は、CIPのような結晶質磁性材料の粉末を含有する圧粉コアであって、優れた磁気特性を備える圧粉コアを提供することを目的とする。本発明は、かかる圧粉コアの製造方法を提供すること、かかる圧粉コアを備える電気・電子部品を提供すること、およびかかる電気・電子部品が実装された電気・電子機器を提供することも課題とする。
 上記課題を解決するために本発明者らが検討した結果、圧粉コアが、CIPのような結晶質磁性材料の粉末だけでなく、所定量の非晶質磁性材料の粉末を含有することにより、磁気特性を改善させることが可能であるとの新たな知見を得た。
 かかる知見に基づき完成された本発明は、一態様において、結晶質磁性材料の粉末および非晶質磁性材料の粉末を含有する圧粉コアであって、前記結晶質磁性材料の粉末の含有量と前記非晶質磁性材料の粉末の含有量との総和に対する前記結晶質磁性材料の粉末の含有量の質量比率である第一混合比率が、75質量%以上95質量%以下であることを特徴とする圧粉コアである。圧粉コアが、結晶質磁性材料の粉末だけでなく、所定量の非晶質磁性材料の粉末を含有することにより、鉄損Pcvが低下しやすくなる。
 前記第一混合比率が80質量%以上90質量%以下であることが、圧粉コアの磁気特性がより安定的に改善するため、好ましい。
 前記結晶質磁性材料の粉末は絶縁処理が施された材料からなることが好ましい場合がある。
 前記結晶質磁性材料は、Fe-Si-Cr系合金、Fe-Ni系合金、Fe-Co系合金、Fe-V系合金、Fe-Al系合金、Fe-Si系合金、Fe-Si-Al系合金、カルボニル鉄(CIP)および純鉄からなる群から選ばれた1種または2種以上の材料を含んでいてもよい。これらの中でも、前記結晶質磁性材料はカルボニル鉄(CIP)からなることが好ましい場合がある。
 前記非晶質磁性材料は、Fe-Si-B系合金、Fe-P-C系合金およびCo-Fe-Si-B系合金からなる群から選ばれた1種または2種以上の材料を含んでいてもよい。これらの中でも、前記非晶質磁性材料はFe-P-C系合金からなることが好ましい場合がある。
 前記非晶質磁性材料の粉末のメジアン径D50は20μm以下であることが好ましい場合がある。
 前記結晶質磁性材料の粉末および前記非晶質磁性材料の粉末を、前記圧粉コアに含有される他の材料に対して結着させる結着成分を含有してもよい。この場合において、前記結着成分は、樹脂材料に基づく成分を含むことが好ましい。
 本発明は、他の一態様において、上記の本発明に係る圧粉コアの製造方法であって、前記結晶質磁性材料の粉末および前記非晶質磁性材料の粉末ならびに前記樹脂材料からなるバインダー成分を含む混合物の加圧成形を含む成形処理により成形製造物を得る成形工程を備えることを特徴とする圧粉コアの製造方法である。
 前記成形工程により得られた前記成形製造物が前記圧粉コアであってもよい。あるいは、前記成形工程により得られた前記成形製造物を加熱する熱処理により前記圧粉コアを得る熱処理工程を備えてもよい。
 本発明は、別の一態様において、上記の本発明に係る圧粉コア、コイルおよび前記コイルのそれぞれの端部に接続された接続端子を備える電気・電子部品であって、前記圧粉コアの少なくとも一部は、前記接続端子を介して前記コイルに電流を流したときに前記電流により生じた誘導磁界内に位置するように配置されている電気・電子部品である。かかる電気・電子部品は、上記の圧粉コアの優れた特性に基づいて、鉄損を低減させることが可能である。
 本発明は、また別の一態様において、上記の本発明に係る電気・電子部品が実装された電気・電子機器であって、前記電気・電子部品は前記接続端子にて基板に接続されている電気・電子機器である。かかる電気・電子機器として、電源スイッチング回路、電圧昇降回路、平滑回路等を備えた電源装置や小型携帯通信機器等が例示される。本発明に係る電気・電子機器は、上記の本発明に係る電気・電子部品を備えるため、大電流化・高速化に対応しやすい。
 上記の発明に係る圧粉コアは、結晶質磁性材料の粉末からなる磁性粉末を備える圧粉コアに比べて優れた磁気特性を有することができる。また、本発明によれば、上記の圧粉コアの製造方法、上記の圧粉コアを備える電気・電子部品、およびこの電気・電子部品が実装された電気・電子機器が提供される。
本発明の一実施形態に係る圧粉コアの形状を概念的に示す斜視図である。 造粒粉を製造する方法の一例において使用されるスプレードライヤー装置およびその動作を概念的に示す図である。 本発明の一実施形態に係る圧粉コアを備える電気・電子部品であるトロイダルコアの形状を概念的に示す斜視図である。 本発明の別の一実施形態に係る圧粉コアを備える電気・電子部品であるインダクタンス素子の全体構成を一部透視して示す斜視図である。 図4に示すインダクタンス素子を実装基板上に実装した状態を示す部分正面図である。 メジアン径D50が5μmの非晶質磁性材料の粉末を含有する圧粉コアにおける常数kの第一混合比率に対する依存性のフィッティング結果を示すグラフである。 メジアン径D50が5μmの非晶質磁性材料の粉末を含有する圧粉コアにおける常数kの第一混合比率に対する依存性のフィッティング結果を示すグラフである。 メジアン径D50が8μmの非晶質磁性材料の粉末を含有する圧粉コアにおける常数kの第一混合比率に対する依存性のフィッティング結果を示すグラフである。 メジアン径D50が8μmの非晶質磁性材料の粉末を含有する圧粉コアにおける常数kの第一混合比率に対する依存性のフィッティング結果を示すグラフである。 メジアン径D50が5μmの非晶質磁性材料の粉末を含有する圧粉コアにおける比透磁率μ’の第一混合比率に対する依存性のフィッティング結果を示すグラフである。 メジアン径D50が5μmの非晶質磁性材料の粉末を含有する圧粉コアにおけるIsatの第一混合比率に対する依存性のフィッティング結果を示すグラフである。 メジアン径D50が5μmの非晶質磁性材料の粉末を含有し、第一混合比率が50質量%から100質量%の範囲にある圧粉コアについて、鉄損比、初透磁率比およびIsat比をまとめて示したグラフである。
 以下、本発明の実施形態について詳しく説明する。
1.圧粉コア
 図1に示す本発明の一実施形態に係る圧粉コア1は、その外観がリング状であって、結晶質磁性材料の粉末および非晶質磁性材料の粉末を含有する。本実施形態に係る圧粉コア1は、これらの粉末を含む混合物の加圧成形を含む成形処理を備える製造方法により製造されたものである。限定されない一例として、本実施形態に係る圧粉コア1は、結晶質磁性材料の粉末および非晶質磁性材料の粉末を、圧粉コア1に含有される他の材料(同種の材料である場合もあれば、異種の材料である場合もある。)に対して結着させる結着成分を含有する。以下、これらの成分について説明する。
(1)結晶質磁性材料の粉末
 本発明の一実施形態に係る圧粉コア1が含有する結晶質磁性材料の粉末を与える結晶質磁性材料は、結晶質であること(一般的なX線回折測定により、材料種類を特定できる程度に明確なピークを有する回折スペクトルが得られること)、および強磁性体であることを満たす限り、具体的な種類は限定されない。結晶質磁性材料の具体例として、Fe-Si-Cr系合金、Fe-Ni系合金、Fe-Co系合金、Fe-V系合金、Fe-Al系合金、Fe-Si系合金、Fe-Si-Al系合金、カルボニル鉄(CIP)および純鉄が挙げられる。上記の結晶質磁性材料は1種類の材料から構成されていてもよいし複数種類の材料から構成されていてもよい。結晶質磁性材料の粉末を与える結晶質磁性材料は、上記の材料からなる群から選ばれた1種または2種以上の材料であることが好ましく、これらの中でも、CIPを含有することが好ましく、CIPからなることがより好ましい。
 本発明の一実施形態に係る圧粉コア1が含有する結晶質磁性材料の粉末の形状は限定されない。粉末の形状は球状であってもよいし非球状であってもよい。非球状である場合には、鱗片状、楕円球状、液滴状、針状といった形状異方性を有する形状であってもよいし、特段の形状異方性を有しない不定形であってもよい。不定形の粉体の例として、球状の粉体の複数が、互いに接して結合していたり、他の粉体に部分的に埋没するように結合していたりする場合が挙げられる。このような不定形の粉体は、CIPにおいて観察されやすい。
 粉末の形状は、粉末を製造する段階で得られた形状であってもよいし、製造された粉末を二次加工することにより得られた形状であってもよい。前者の形状としては、球状、楕円球状、液滴状、針状などが例示され、後者の形状としては、鱗片状が例示される。
 本発明の一実施形態に係る圧粉コア1が含有する結晶質磁性材料の粉末の粒径は限定されない。かかる粒径を、メジアン径D50(レーザー回折散乱法により測定された軟磁性粉末の粒径の体積分布における体積累積値が50%のときの粒径)により規定すれば、通常、1μmから20μmの範囲とされる。取扱い性を高める観点、圧粉コアにおける結晶質磁性材料の粉末の充填密度を高める観点などから、結晶質磁性材料の粉末のメジアン径D50(本明細書において、「第一メジアン径d1」ともいう。)は、1μm以上15μm以下とすることが好ましく、1μm以上10μm以下とすることがより好ましく、1μm以上5μm以下とすることが特に好ましい。
 結晶質磁性材料の粉末の少なくとも一部は絶縁処理が施された材料からなることが好ましく、結晶質磁性材料の粉末は絶縁処理が施された材料からなることがより好ましい。結晶質磁性材料の粉末に絶縁処理が施されている場合には、圧粉コアの絶縁抵抗が向上する傾向がみられる。
 結晶質磁性材料の粉末に施す絶縁処理の種類は限定されない。リン酸処理、リン酸塩処理、酸化処理、ゾル・ゲル法などが例示される。
 結晶質磁性材料の粉末の含有量と非晶質磁性材料の粉末の含有量との総和に対する結晶質磁性材料の粉末の含有量の質量比率(単位:質量%、本明細書において、「第一混合比率」ともいう。)は、75質量%以上95質量%以下であることが好ましい。第一混合比率が上記の範囲内であることにより鉄損Pcvが低下しやすくなる傾向がみられる。透磁率など他の磁気特性とのバランスに優れる観点から、第一混合比率は、78質量%以上93質量%以下であることがより好ましく、80質量%以上90質量%以下であることがさらに好ましい。
(2)非晶質磁性材料の粉末
 本発明の一実施形態に係る圧粉コア1が含有する非晶質磁性材料の粉末を与える非晶質磁性材料は、非晶質であること(一般的なX線回折測定により、材料種類を特定できる程度に明確なピークを有する回折スペクトルが得られないこと)、および強磁性体、特に軟磁性体であることを満たす限り、具体的な種類は限定されない。非晶質磁性材料の具体例として、Fe-Si-B系合金、Fe-P-C系合金およびCo-Fe-Si-B系合金が挙げられる。上記の非晶質磁性材料は1種類の材料から構成されていてもよいし複数種類の材料から構成されていてもよい。非晶質磁性材料の粉末を構成する磁性材料は、上記の材料からなる群から選ばれた1種または2種以上の材料であることが好ましく、これらの中でも、Fe-P-C系合金を含有することが好ましく、Fe-P-C系合金からなることがより好ましい。
 Fe-P-C系合金の具体例として、組成式が、Fe100原子%-a-b-c-x-y-z-tNiSnCrSiで示され、0原子%≦a≦10原子%、0原子%≦b≦3原子%、0原子%≦c≦6原子%、6.8原子%≦x≦12.8原子%、2.2原子%≦y≦11.8原子%、0原子%≦z≦9.6原子%、0原子%≦t≦7原子%であるFe基非晶質合金が挙げられる。上記の組成式において、Ni,Sn,Cr,BおよびSiは任意添加元素である。
 Niの添加量aは、0原子%以上6原子%以下とすることが好ましく、0原子%以上4原子%以下とすることがより好ましい。Snの添加量bは、0原子%以上2原子%以下とすることが好ましく、1原子%以上2原子%以下とすることがより好ましい。Crの添加量cは、0原子%以上3原子%以下とすることが好ましく、1原子%以上2.5原子%以下とすることがより好ましい。Pの添加量xは、8.8原子%以上とすることが好ましい場合もある。Cの添加量yは、5.8原子%以上8.8原子%以下とすることが好ましい場合もある。Bの添加量zは、0原子%以上9原子%以下とすることが好ましく、0原子%以上8原子%以下とすることがより好ましい。Siの添加量tは、0原子%以上6原子%以下とすることが好ましく、0原子%以上5.5原子%以下とすることがより好ましい。
 本発明の一実施形態に係る圧粉コア1が含有する非晶質磁性材料の粉末の形状は限定されない。粉末の形状の種類については結晶質磁性材料の粉末の場合と同様であるから説明を省略する。製造方法の関係で非晶質磁性材料は球状または楕円球状とすることが容易である場合もある。また、一般論として非晶質磁性材料は結晶質磁性材料よりも硬質であるから、結晶質磁性材料を非球状として加圧成形の際に変形しやすいようにすることが好ましい場合もある。
 本発明の一実施形態に係る圧粉コア1が含有する非晶質磁性材料の粉末の形状は、粉末を製造する段階で得られた形状であってもよいし、製造された粉末を二次加工することにより得られた形状であってもよい。前者の形状としては、球状、楕円球状、針状などが例示され、後者の形状としては、鱗片状が例示される。
 本発明の一実施形態に係る圧粉コア1が含有する非晶質磁性材料の粉末の粒径は限定されない。かかる粒径をメジアン径D50により規定すれば、20μm以下とすることが好ましい場合がある。取扱い性を高める観点から、非晶質磁性材料の粉末のメジアン径D50(本明細書において、「第二メジアン径d2」ともいう。)を、1μm以上とすることが好ましく、2μm以上とすることがより好ましく、3μm以上とすることが特に好ましい。圧粉コア1における非晶質および結晶質の磁性材料の粉末の充填密度を高める観点などから、非晶質磁性材料の粉末のメジアン径D50(第二メジアン径d2)を、15μm以下とすることが好ましく、12μm以下とすることがより好ましく、8μm以下とすることが特に好ましい。
 第一メジアン径d1と第二メジアン径d2との関係は限定されない。一般論として、非晶質磁性材料は結晶質磁性材料よりも硬質であるから、第一メジアン径d1を相対的に小さくして、非晶質磁性材料の粉末が充填されたときに生じる空隙部を結晶質磁性材料の粉末が充填しやすいようにすることが好ましい場合もある。この場合において、d1/d2は0.8以下とすることが好ましく、0.5以下とすることが好ましいこともある。
(3)結着成分
 結着成分は、本実施形態に係る圧粉コア1に含有される結晶質磁性材料の粉末および非晶質磁性材料の粉末(本明細書において、これらの粉末を「磁性粉末」と総称することもある。)を固定することに寄与する材料である限り、その組成は限定されない。結着成分を構成する材料として、樹脂材料および樹脂材料の熱分解残渣(本明細書において、これらを「樹脂材料に基づく成分」と総称する。)などの有機系の材料、無機系の材料などが例示される。樹脂材料として、アクリル樹脂、シリコーン樹脂、エポキシ樹脂、フェノール樹脂、尿素樹脂、メラミン樹脂などが例示される。無機系の材料からなる結着成分は水ガラスなどガラス系材料が例示される。結着成分は一種類の材料から構成されていてもよいし、複数の材料から構成されていてもよい。結着成分は有機系の材料と無機系の材料との混合体であってもよい。
 結着成分として、通常、絶縁性の材料が使用される。これにより、圧粉コア1としての絶縁性を高めることが可能となる。
2.圧粉コアの製造方法
 上記の本発明の一実施形態に係る圧粉コア1の製造方法は特に限定されないが、次に説明する製造方法を採用すれば、圧粉コア1をより効率的に製造することが実現される。
 本発明の一実施形態に係る圧粉コア1の製造方法は、次に説明する、成形工程を備え、さらに熱処理工程を備えていてもよい。
(1)成形工程
 まず、磁性粉末、および圧粉コア1において結着成分を与える成分を含む混合物を用意する。結着成分を与える成分(本明細書において、「バインダー成分」ともいう。)とは、結着成分そのものである場合もあれば、結着成分と異なる材料である場合もある。後者の具体例として、バインダー成分が樹脂材料であって、結着成分がその熱分解残渣である場合が挙げられる。
 この混合物の加圧成形を含む成形処理により成形製造物を得ることができる。加圧条件は限定されず、バインダー成分の組成などに基づき適宜決定される。例えば、バインダー成分が熱硬化性の樹脂からなる場合には、加圧とともに加熱して、金型内で樹脂の硬化反応を進行させることが好ましい。一方、圧縮成形の場合には、加圧力が高いものの、加熱は必要条件とならず、短時間の加圧となる。
 以下、混合物が造粒粉であって、圧縮成形を行う場合について、やや詳しく説明する。造粒粉は取り扱い性に優れるため、成形時間が短く生産性に優れる圧縮成形工程の作業性を向上させることができる。
(1-1)造粒粉
 造粒粉は、磁性粉末およびバインダー成分を含有する。造粒粉におけるバインダー成分の含有量は特に限定されない。かかる含有量が過度に低い場合には、バインダー成分が磁性粉末を保持しにくくなる。また、バインダー成分の含有量が過度に低い場合には、熱処理工程を経て得られた圧粉コア1中で、バインダー成分の熱分解残渣からなる結着成分が、複数の磁性粉末を互いに他から絶縁しにくくなる。一方、上記のバインダー成分の含有量が過度に高い場合には、熱処理工程を経て得られた圧粉コア1に含有される結着成分の含有量が高くなりやすい。圧粉コア1中の結着成分の含有量が高くなると、圧粉コア1の磁気特性が低下しやすくなる。それゆえ、造粒粉中のバインダー成分の含有量は、造粒粉全体に対して、0.5質量%以上5.0質量%以下となる量にすることが好ましい。圧粉コア1の磁気特性が低下する可能性をより安定的に低減させる観点から、造粒粉中のバインダー成分の含有量は、造粒粉全体に対して、1.0質量%以上3.5質量%以下となる量にすることが好ましく、1.2質量%以上3.0質量%以下となる量にすることがより好ましい。
 造粒粉は、上記の磁性粉末およびバインダー成分以外の材料を含有してもよい。そのような材料として、潤滑剤、シランカップリング剤、絶縁性のフィラーなどが例示される。潤滑剤を含有させる場合において、その種類は特に限定されない。有機系の潤滑剤であってもよいし、無機系の潤滑剤であってもよい。有機系の潤滑剤の具体例として、ステアリン酸亜鉛、ステアリン酸アルミニウムなどの金属石鹸が挙げられる。こうした有機系の潤滑剤は、熱処理工程において気化し、圧粉コア1にはほとんど残留していないと考えられる。
 造粒粉の製造方法は特に限定されない。上記の造粒粉を与える成分をそのまま混錬し、得られた混練物を公知の方法で粉砕するなどして造粒粉を得てもよいし、上記の成分に分散媒(水が一例として挙げられる。)を添加してなるスラリーを調製し、このスラリーを乾燥させて粉砕することにより造粒粉を得てもよい。粉砕後にふるい分けや分級を行って、造粒粉の粒度分布を制御してもよい。
 上記のスラリーから造粒粉を得る方法の一例として、スプレードライヤーを用いる方法が挙げられる。図2に示されるように、スプレードライヤー装置200内には回転子201が設けられ、スプレードライヤー装置200の上部からスラリーSを回転子201に向けて注入する。回転子201は所定の回転数により回転しており、スプレードライヤー装置200内部のチャンバーにてスラリーSを遠心力により小滴状として噴霧する。さらにスプレードライヤー装置200内部のチャンバーに熱風を導入し、これにより小滴状のスラリーSに含有される分散媒(水)を、小滴形状を維持したまま揮発させる。その結果、スラリーSから造粒粉Pが形成される。この造粒粉Pをスプレードライヤー装置200の下部から回収する。回転子201の回転数、スプレードライヤー装置200内に導入する熱風温度、チャンバー下部の温度など各パラメータは適宜設定すればよい。これらのパラメータの設定範囲の具体例として、回転子201の回転数として4000~6000rpm、スプレードライヤー装置200内に導入する熱風温度として130~170℃、チャンバー下部の温度として80~90℃が挙げられる。またチャンバー内の雰囲気およびその圧力も適宜設定すればよい。一例として、チャンバー内をエアー(空気)雰囲気として、その圧力を大気圧との差圧で2mmHO(約0.02kPa)とすることが挙げられる。得られた造粒粉Pの粒度分布をふるい分けなどによりさらに制御してもよい。
(1-2)加圧条件
 圧縮成形における加圧条件は特に限定されない。造粒粉の組成、成形工程により得られる成形製造物の形状などを考慮して適宜設定すればよい。造粒粉を圧縮成形する際の加圧力が過度に低い場合には、成形製造物の機械的強度が低下する。このため、成形製造物の取り扱い性が低下する、成形製造物から得られた圧粉コア1の機械的強度が低下する、といった問題が生じやすくなる。また、圧粉コア1の磁気特性が低下したり絶縁性が低下したりする場合もある。一方、造粒粉を圧縮成形する際の加圧力が過度に高い場合には、その圧力に耐えうる成形金型を作成するのが困難になってくる。圧縮加圧工程が圧粉コア1の機械特性や磁気特性に悪影響を与える可能性をより安定的に低減させ、工業的に大量生産を容易に行う観点から、造粒粉を圧縮成形する際の加圧力は、0.3GPa以上2GPa以下とすることが好ましく、0.5GPa以上2GPa以下とすることがより好ましく、0.8GPa以上2GPa以下とすることが特に好ましい。
 圧縮成形では、加熱しながら加圧を行ってもよいし、常温で加圧を行ってもよい。
(2)熱処理工程
 成形工程により得られた成形製造物が本実施形態に係る圧粉コア1であってもよいし、次に説明するように成形製造物に対して熱処理工程を実施して圧粉コア1を得てもよい。
 熱処理工程では、上記の成形工程により得られた成形製造物を加熱することにより、磁性粉末間の距離を修正することによる磁気特性の調整および成形工程において磁性粉末に付与された歪を緩和させて磁気特性の調整を行って、圧粉コア1を得る。
 熱処理工程は上記のように圧粉コア1の磁気特性の調整が目的であるから、熱処理温度などの熱処理条件は、圧粉コア1の磁気特性が最も良好となるように設定される。熱処理条件を設定する方法の一例として、成形製造物の加熱温度を変化させ、昇温速度および加熱温度での保持時間など他の条件は一定とすることが挙げられる。
 熱処理条件を設定する際の圧粉コア1の磁気特性の評価基準は特に限定されない。評価項目の具体例として圧粉コア1の鉄損Pcvを挙げることができる。この場合には、圧粉コア1の鉄損Pcvが最低となるように成形製造物の加熱温度を設定すればよい。鉄損Pcvの測定条件は適宜設定され、一例として、周波数100kHz、最大磁束密度100mTとする条件が挙げられる。
 熱処理の際の雰囲気は特に限定されない。酸化性雰囲気の場合には、バインダー成分の熱分解が過度に進行する可能性や、磁性粉末の酸化が進行する可能性が高まるため、窒素、アルゴンなどの不活性雰囲気や、水素などの還元性雰囲気で熱処理を行うことが好ましい。
3.電気・電子部品
 本発明の一実施形態に係る電気・電子部品は、上記の本発明の一実施形態に係る圧粉コア1、コイルおよびこのコイルのそれぞれの端部に接続された接続端子を備える。ここで、圧粉コア1の少なくとも一部は、接続端子を介してコイルに電流を流したときにこの電流により生じた誘導磁界内に位置するように配置されている。
 このような電気・電子部品の一例として、図3に示されるトロイダルコイル10が挙げられる。トロイダルコイル10は、リング状の圧粉コア(トロイダルコア)1に、被覆導電線2を巻回することによって形成されたコイル2aを備える。被覆導電線2の両端部における導電線が露出した部分(露出端部)2b,2cは接続端子を構成している。被覆導電線2におけるコイル2aと露出端部2b,2cとの間に位置する部分において、コイル2aの端部2d,2eを定義することができる。このように、本実施形態に係る電気・電子部品は、コイルを構成する部材と接続端子を構成する部材とが一つの部材から構成されていてもよい。
 本発明の一実施形態に係る電気・電子部品は、上記の本発明の一実施形態に係る圧粉コア1とは異なる形状を有する圧粉コアを備えていてもよい。そのような電気・電子部品の具体例として、図4に示されるインダクタンス素子20が挙げられる。図4は、本発明の一実施形態に係るインダクタンス素子20の全体構成を一部透視して示す斜視図である。図4では、インダクタンス素子20の下面(実装面)が上向きの姿勢で示されている。図5は、図4に示すインダクタンス素子20を実装基板100上に実装した状態を示す部分正面図である。
 図4に示すインダクタンス素子20は、圧粉コア3と、圧粉コア3の内部に埋め込まれたコイル5と、溶接によってコイル5に電気的に接続される接続端子としての一対の端子部4とを備えて構成される。
 コイル5は、絶縁被膜された導線を螺旋状に巻回して形成されたものである。コイル5は、巻回部5aと巻回部5aから引き出された引出端部5b,5bとを有して構成される。コイル5の巻き数は必要なインダクタンスに応じて適宜設定される。
 図4に示すように、圧粉コア3において、実装基板に対する実装面3aに、端子部4の一部を収納するための収納凹部30が形成されている。収納凹部30は、実装面3aの両側に形成されており、圧粉コア3の側面3b,3cに向けて解放されて形成されている。圧粉コア3の側面3b,3cから突出する端子部4の一部が実装面3aに向けて折り曲げられて、収納凹部30の内部に収納される。
 端子部4は、薄板状のCu基材で形成されている。端子部4は圧粉コア3の内部に埋設されてコイル5の引出端部5b,5bに電気的に接続される接続端部40と、圧粉コア3の外面に露出し、前記圧粉コア3の側面3b,3cから実装面3aにかけて順に折り曲げ形成される第1曲折部42aおよび第2曲折部42bとを有して構成される。接続端部40は、コイル5に溶接される溶接部である。第1曲折部42aと第2曲折部42bは、実装基板100に対して半田接合される半田接合部である。半田接合部は、端子部4のうちの圧粉コア3から露出している部分であって、少なくとも圧粉コア3の外側に向けられる表面を意味している。
 端子部4の接続端部40とコイル5の引出端部5bとは、抵抗溶接によって接合されている。
 図5に示すように、インダクタンス素子20は、実装基板100上に実装される。
 実装基板100の表面には外部回路と導通する導体パターンが形成され、この導体パターンの一部によって、インダクタンス素子20を実装するための一対のランド部110が形成されている。
 図5に示すように、インダクタンス素子20においては、実装面3aが実装基板100側に向けられて、圧粉コア3から外部に露出している第1曲折部42aと第2曲折部42bが実装基板100のランド部110との間で半田層120にて接合される。
 ハンダ付け工程は、ランド部110にペースト状の半田が印刷工程で塗布された後に、ランド部110に第2曲折部42bが対面するようにしてインダクタンス素子20が実装され、加熱工程で半田が溶融する。図4と図5に示すように、第2曲折部42bは実装基板100のランド部110に対向し、第1曲折部42aはインダクタンス素子20の側面3b,3cに露出しているため、フィレット状の半田層120は、ランド部110に固着するとともに、半田接合部である第2曲折部42bと第1曲折部42aの双方の表面に十分に広がって固着される。
4.電気・電子機器
 本発明の一実施形態に係る電気・電子機器は、上記の本発明の一実施形態に係る圧粉コアを備える電気・電子部品が実装されたものである。そのような電気・電子機器として、大電流(例えば数mm角程度の小型インダクタの場合は1A程度以上)が流れる、電源スイッチング回路、電圧昇降回路、平滑回路等を備えた電源装置が例示される。
 電源スイッチング回路、電圧昇降回路、平滑回路などを備える電源装置に大電流を流した場合に、電源装置に組み込まれた電気・電子部品が備える圧粉コアの鉄損Pcvが高いと発熱の程度が高くなり、装置の信頼性が著しく低下する。このため、かかる圧粉コアの鉄損Pcvを低くして高効率とすることが強く求められている。本発明の一実施形態に係る電気・電子機器が備える電気・電子部品に用いられている圧粉コアは鉄損Pcvが低いため、高効率であり、電気・電子機器に大電流を流した場合であっても、発熱の程度が比較的低い。このため、本発明の一実施形態に係る電気・電子機器は信頼性に優れる。
 以上説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。
 以下、実施例等により本発明をさらに具体的に説明するが、本発明の範囲はこれらの実施例等に限定されるものではない。
(実施例1)
(1)Fe基非晶質合金粉末の作製
 水アトマイズ法を用いて、Fe71原子%Ni6原子%Cr2原子%11原子%8原子%2原子%なる組成になるように秤量して得られた非晶質磁性材料の粉末を磁性粉末として作製した。第一混合比率(結晶質磁性材料の粉末の含有量と非晶質磁性材料の粉末の含有量との総和に対する結晶質磁性材料の粉末の含有量の質量比率)は0質量%であった。得られた磁性粉末の粒度分布は、日機装社製「マイクロトラック粒度分布測定装置 MT3300EX」を用いて体積分布で測定した。その結果、体積分布において50%となる粒径であるメジアン径D50は5μmであった。
(2)造粒粉の作製
 上記の非晶質磁性材料の粉末97.2質量部と、アクリル樹脂およびフェノール樹脂からなる絶縁性結着材2.5質量部と、潤滑剤を0.3質量部とを、溶媒としての水に混合してスラリーを得た。得られたスラリーをスプレードライヤー装置を用いて乾燥、造粒し、メジアン径D50が80μmの造粒粉を得た。
(3)圧縮成形
 得られた造粒粉を金型に充填し、面圧1.0GPaで加圧成形して、外径20mm×内径12mm×厚さ3mmのリング形状を有する成形製造物を得た。
(4)熱処理
 得られた成形製造物を、窒素気流雰囲気の炉内に載置し、炉内温度を、室温(23℃)から昇温速度10℃/分で400℃まで加熱し、この温度にて1時間保持し、その後、炉内で室温まで冷却する熱処理を行い、圧粉コアからなるトロイダルコアを得た。
(実施例2から6)
 磁性粉末を調製する際に、実施例1において使用した非晶質磁性材料の粉末と、絶縁処理が施されたカルボニル鉄(CIP)からなる結晶質磁性材料の粉末(メジアン径D50:4.3μm)とを混合して、第一混合比率が次の値となる磁性粉末を用いたこと以外は、実施例1と同様にして、トロイダルコアを製造した。
  実施例2   5質量%
  実施例3  10質量%
  実施例4  15質量%
  実施例5  20質量%
  実施例6  30質量%
(実施例7)
 磁性粉末を調製する際に、実施例1において使用した非晶質磁性材料の粉末に代えて、実施例2などで使用した、絶縁処理が施されたCIPを全量用いたこと、すなわち磁性粉末の第一混合比率を100質量%としたこと以外は、実施例1と同様にして、トロイダルコアを製造した。
(実施例8)
 メジアン径D50が8μmであること以外は実施例1の製造方法と同様にして非晶質磁性材料の粉末を調製した。この非晶質磁性材料の粉末を用いて、実施例1と同様にして、トロイダルコアを製造した。
(試験例1)鉄損Pcvの測定およびシミュレーション
 実施例1から8により作製したトロイダルコアに被覆銅線をそれぞれ1次側15回、2次側10回巻いて得られたトロイダルコイルについて、BHアナライザー(岩崎通信機社製「SY-8217」)を用いて、実効最大磁束密度Bmを15mTとする条件で、鉄損Pcv(単位:kW/m)の周波数依存性(測定周波数範囲:100kHz~3MHz)を測定した。
 鉄損Pcvの周波数依存性を表す式の一例として、下記式(1)に示される式が挙げられる。
  Pcv=k×f×Bm1.6+k×f×Bm   (1)
 ここで、fは周波数(単位:kHz)、Bmは実効最大磁束密度(単位:mT)であり、kおよびkは常数であって、単位は、前者(常数k)がkW/m/kHz/(mT)1.6以下、後者(常数k)がkW/m/(kHz)/(mT)である。
 実施例1から7に係るトロイダルコイルの鉄損Pcvの測定結果のうち、周波数が1MHzから3MHzの範囲の測定結果を用いて、2つの常数kおよびkを実施例ごとに求めた。その結果を表1に示す。表1では、常数kおよび常数kの単位の記載を省略している。
Figure JPOXMLDOC01-appb-T000001
 表1に示される結果から、メジアン径D50が5μmの非晶質磁性材料の粉末を含有する圧粉コアにおける2つの常数kおよびkのそれぞれについて、第一混合比率に対する依存性を求めた。その結果、図6に示されるように、常数kの第一混合比率に対する依存性のフィッティング結果は下記式(2)により示される式となった。下記式(2)の相関係数は0.9980であった。一方、図7に示されるように、常数kの第一混合比率に対する依存性のフィッティング結果は下記式(3)により示される式となった。下記式(3)の相関係数は0.9816であった。なお、下記式(2)および(3)において、xは第一混合比率(単位:質量%)である。
  k=2.290×10-7+4.737×10-6x-3.748×10-5   (2)
  k=2.193×10-11-6.411×10-10x+2.499×10-7   (3)
 上記式(2)および(3)に基づいて、メジアン径D50が5μmの非晶質磁性材料の粉末を含有する圧粉コアの2つの常数kおよびkを、第一混合比率が50質量%から100質量%の範囲で求めた。そして、こうして求めた2つの常数kおよびkから、メジアン径D50が5μmの非晶質磁性材料の粉末を含有し、第一混合比率が50質量%から100質量%の範囲にある圧粉コアの鉄損Pcv(周波数f:2MHz、実効最大磁束密度Bm:15mT)を算出した。その結果を表2に示す。表2には、第一混合比率が50質量%から90質量%の場合における圧粉コアの鉄損Pcvを、第一混合比率が100質量%の場合における圧粉コアの鉄損Pcvで規格化した値を鉄損比として示した。
Figure JPOXMLDOC01-appb-T000002
 実施例8に係るトロイダルコイルの鉄損Pcvの測定結果のうち、周波数が1MHzから3MHzの範囲の測定結果を用いて、2つの常数kおよびkを求めた。その結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3に示される実施例8に係る2つの常数kおよびkの結果は、表1に示される実施例1に係る2つの常数kおよびkの結果と近い結果となった。そこで、実施例8、実施例2から6、および実施例7における常数kおよび常数kの結果を用いて、メジアン径D50が8μmの非晶質磁性材料の粉末を含有する圧粉コアにおける2つの常数kおよびkのそれぞれについて、第一混合比率に対する依存性を求めた。その結果、図8に示されるように、常数kの第一混合比率に対する依存性のフィッティング結果は下記式(4)により示される式となった。下記式(4)の相関係数は0.9980であった。一方、図9に示されるように、常数kの第一混合比率に対する依存性のフィッティング結果は下記式(5)により示される式となった。下記式(5)の相関係数は0.9843であった。なお、下記式(4)および(5)において、xは第一混合比率(単位:質量%)である。
  k=2.290×10-7+4.737×10-6x-3.748×10-5   (4)
  k=2.032×10-11-4.509×10-10x+2.468×10-7   (5)
 上記式(4)および(5)に基づいて、メジアン径D50が8μmの非晶質磁性材料の粉末を含有する圧粉コアの2つの常数kおよびkを、第一混合比率が50質量%から100質量%の範囲で求めた。そして、こうして求めた2つの常数kおよびkから、メジアン径D50が8μmの非晶質磁性材料の粉末を含有し、第一混合比率が50質量%から100質量%の範囲にある圧粉コアの鉄損Pcv(周波数f:2MHz、実効最大磁束密度Bm:15mT)を算出した。その結果および表2と同様にして求めた鉄損比を表4に示す。
Figure JPOXMLDOC01-appb-T000004
(試験例2)透磁率の測定
 実施例1から8により作製したトロイダルコアに被覆銅線をそれぞれ1次側40回、2次側10回巻いて得られたトロイダルコイルについて、インピーダンスアナライザー(HP社製「4192A」)を用いて、100kHzの条件で、初透磁率μ’を測定した。結果を表5に示す。表5におけるD50の列には、圧粉コアに含有される非晶質磁性材料の粉末のメジアン径D50を示した。
Figure JPOXMLDOC01-appb-T000005
 表5に示される結果から、メジアン径D50が5μmの非晶質磁性材料の粉末を含有する圧粉コアにおける初透磁率μ’の第一混合比率に対する依存性を求めた。その結果、図10に示されるように、初透磁率μ’の第一混合比率に対する依存性のフィッティング結果は下記式(6)により示される式となった。下記式(6)の相関係数は0.9934であった。なお、下記式(6)において、xは第一混合比率(単位:質量%)である。
  μ’=-7.244×10-4+1.529×10-1x+2.859×10   (6)
 上記式(6)に基づいて、メジアン径D50が5μmの非晶質磁性材料の粉末を含有し、第一混合比率が50質量%から100質量%の範囲にある圧粉コアの初透磁率μ’を算出した。その結果を表6に示す。表6には、第一混合比率が50質量%から90質量%の場合における圧粉コアの初透磁率μ’を、第一混合比率が100質量%の場合における圧粉コアの初透磁率μ’で規格化した値を初透磁率比として示した。
Figure JPOXMLDOC01-appb-T000006
 メジアン径D50が8μmの非晶質磁性材料の粉末を含有する圧粉コアにおける初透磁率μ’の第一混合比率に対する依存性は一次直線により表されると仮定して、実施例8および7の初透磁率μ’の測定結果から、メジアン径D50が8μmの非晶質磁性材料の粉末を含有する圧粉コアにおける第一混合比率が50質量%から100質量%の範囲での初透磁率μ’を算出した。その結果および表5と同様にして求めた初透磁率比を表7に示す。
Figure JPOXMLDOC01-appb-T000007
(試験例3)直流重畳特性の測定
 実施例1から8により作製したトロイダルコアから形成されたトロイダルコイルを用いて、JIS C2560-2に準拠して、直流電流をトロイダルコイルに重畳した。重畳電流の印加前(初期)のインダクタンスLの値Lに対するインダクタンスLの変化量ΔLの割合(ΔL/L)が30%となったときの印加電流値Isat(単位:A)により、直流重畳特性を評価した。結果を表8に示す。表8におけるD50の列には、圧粉コアに含有される非晶質磁性材料の粉末のメジアン径D50を示した。
Figure JPOXMLDOC01-appb-T000008
 表8に示される結果から、メジアン径D50が5μmの非晶質磁性材料の粉末を含有する圧粉コアにおけるIsatの第一混合比率に対する依存性を求めた。その結果、図11に示されるように、Isatの第一混合比率に対する依存性のフィッティング結果は下記式(7)により示される式となった。下記式(7)の相関係数は0.9954であった。なお、下記式(7)において、xは第一混合比率(単位:質量%)である。
  Isat=6.602×10-2x+1.149×10   (7)
 上記式(7)に基づいて、メジアン径D50が5μmの非晶質磁性材料の粉末を含有し、第一混合比率が50質量%から100質量%の範囲にある圧粉コアのIsatを算出した。その結果を表9に示す。表9には、第一混合比率が50質量%から90質量%の場合における圧粉コアのIsatを、第一混合比率が100質量%の場合における圧粉コアのIsatで規格化した値をIsat比として示した。
Figure JPOXMLDOC01-appb-T000009
 メジアン径D50が8μmの非晶質磁性材料の粉末を含有する圧粉コアにおけるIsatの第一混合比率に対する依存性は一次直線により表されると仮定して、実施例8および7のIsatの測定結果から、メジアン径D50が8μmの非晶質磁性材料の粉末を含有し、第一混合比率が50質量%から100質量%の範囲にある圧粉コアのIsatを算出した。その結果および表9と同様にして求めたIsat比を表10に示す。
Figure JPOXMLDOC01-appb-T000010
 図12は、メジアン径D50が5μmの非晶質磁性材料の粉末を含有し、第一混合比率が50質量%から100質量%の範囲にある圧粉コアについて、鉄損比、初透磁率比およびIsat比を一つのグラフにまとめて示したものである。図12に示されるように、磁性粉末がCIPからなる圧粉コア(実施例7)との対比で、圧粉コアに含有される磁性粉末に非晶質磁性材料の粉末を含ませると、鉄損比、初透磁率比およびIsat比のいずれも低下するが、鉄損比が他の2つの比に比べて大きく低減することが確認された。この結果は、磁性粉末がCIPからなる圧粉コアに非晶質磁性材料の粉末からなる磁性粉末を混ぜることにより、初透磁率やIsatの低下を少なくしつつ、鉄損を大きく低減させることが可能であることを示している。そして、図12から明らかなように、圧粉コアに混ぜる非晶質磁性材料の粉末からなる磁性粉末の割合が大きくなるほど、鉄損Pcvの低下は顕著となる。
 鉄損Pcvの低下の程度が他の磁気特性の低下の程度とどのような関係にあるかを確認するために、下記式(8)および下記式(9)により評価した。
   R1=(1-C)/(1-P)   (8)
   R2=(1-C)/(1-I)   (9)
 ここで、Cは第一混合比率がi質量%のときの鉄損比であり、Pは第一混合比率がi質量%のときの初透磁率比である。したがって、R1は、第一混合比率がi質量%のときに、初透磁率μ’の低下量を基準にして鉄損Pcvがどの程度低下したかを示す指標である。また、Iは第一混合比率がi質量%のときのIsat比である。したがって、R2は、第一混合比率がi質量%のときに、Isatの低下量を基準にして鉄損Pcvがどの程度低下したかを示す指標である。これらの算出結果を表11に示す。
Figure JPOXMLDOC01-appb-T000011
 表11から、第一混合比率が大きいほど、すなわち、磁性粉末がCIPからなる圧粉コアに非晶質磁性材料の粉末からなる磁性粉末を混ぜる程度を少なくすることにより、より効果的に(他の磁気特性が受ける影響を少なくして)鉄損Pcvを低下させることができることが理解される。
 本発明の圧粉コアを用いた電気・電子部品は、ハイブリッド自動車等の昇圧回路や、発電、変電設備に用いられるリアクトル、トランスやチョークコイル等として好適に使用されうる。
1…圧粉コア(トロイダルコア)
10…トロイダルコイル
2…被覆導電線
2a…コイル
2b,2c…露出端部
2d,2e…コイル2aの端部
20…インダクタンス素子
3…圧粉コア
3a…圧粉コア3の実装面
3b,3c…圧粉コア3の側面
4…端子部
5…コイル
5a…コイル5の巻回部
5b…コイル5の引出端部
30…収納凹部
40…接続端部
42a…第1曲折部
42b…第2曲折部
100…実装基板
110…ランド部
120…半田層
200…スプレードライヤー装置
201…回転子
S…スラリー
P…造粒粉

Claims (15)

  1.  結晶質磁性材料の粉末および非晶質磁性材料の粉末を含有する圧粉コアであって、
     前記結晶質磁性材料の粉末の含有量と前記非晶質磁性材料の粉末の含有量との総和に対する前記結晶質磁性材料の粉末の含有量の質量比率である第一混合比率が、75質量%以上95質量%以下であることを特徴とする圧粉コア。
  2.  前記第一混合比率が80質量%以上90質量%以下である、請求項1に記載の圧粉コア。
  3.  前記結晶質磁性材料の粉末は絶縁処理が施された材料からなる、請求項1または2に記載の圧粉コア。
  4.  前記結晶質磁性材料は、Fe-Si-Cr系合金、Fe-Ni系合金、Fe-Co系合金、Fe-V系合金、Fe-Al系合金、Fe-Si系合金、Fe-Si-Al系合金、カルボニル鉄および純鉄からなる群から選ばれた1種または2種以上の材料を含む、請求項1から3のいずれか一項に記載の圧粉コア。
  5.  前記結晶質磁性材料はカルボニル鉄からなる、請求項4に記載の圧粉コア。
  6.  前記非晶質磁性材料は、Fe-Si-B系合金、Fe-P-C系合金およびCo-Fe-Si-B系合金からなる群から選ばれた1種または2種以上の材料を含む、請求項1から5のいずれか一項に記載の圧粉コア。
  7.  前記非晶質磁性材料はFe-P-C系合金からなる、請求項6に記載の圧粉コア。
  8.  前記非晶質磁性材料の粉末のメジアン径D50は20μm以下である、請求項1から7のいずれか一項に記載の圧粉コア。
  9.  前記結晶質磁性材料の粉末および前記非晶質磁性材料の粉末を、前記圧粉コアに含有される他の材料に対して結着させる結着成分を含有する、請求項1から8のいずれか一項に記載の圧粉コア。
  10.  前記結着成分は、樹脂材料に基づく成分を含む、請求項9に記載の圧粉コア。
  11.  請求項10に記載される圧粉コアの製造方法であって、前記結晶質磁性材料の粉末および前記非晶質磁性材料の粉末ならびに前記樹脂材料からなるバインダー成分を含む混合物の加圧成形を含む成形処理により成形製造物を得る成形工程を備えることを特徴とする圧粉コアの製造方法。
  12.  前記成形工程により得られた前記成形製造物が前記圧粉コアである、請求項11に記載の製造方法。
  13.  前記成形工程により得られた前記成形製造物を加熱する熱処理により前記圧粉コアを得る熱処理工程を備える、請求項11に記載の製造方法。
  14.  請求項1から10のいずれかに記載される圧粉コア、コイルおよび前記コイルのそれぞれの端部に接続された接続端子を備える電気・電子部品であって、前記圧粉コアの少なくとも一部は、前記接続端子を介して前記コイルに電流を流したときに前記電流により生じた誘導磁界内に位置するように配置されている電気・電子部品。
  15.  請求項14に記載される電気・電子部品が実装された電気・電子機器であって、前記電気・電子部品は前記接続端子にて基板に接続されている電気・電子機器。
PCT/JP2016/071488 2015-08-31 2016-07-22 圧粉コア、該圧粉コアの製造方法、該圧粉コアを備える電気・電子部品、および該電気・電子部品が実装された電気・電子機器 WO2017038295A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015171074A JP2018170304A (ja) 2015-08-31 2015-08-31 圧粉コア、該圧粉コアの製造方法、該圧粉コアを備える電気・電子部品、および該電気・電子部品が実装された電気・電子機器
JP2015-171074 2015-08-31

Publications (1)

Publication Number Publication Date
WO2017038295A1 true WO2017038295A1 (ja) 2017-03-09

Family

ID=58187237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/071488 WO2017038295A1 (ja) 2015-08-31 2016-07-22 圧粉コア、該圧粉コアの製造方法、該圧粉コアを備える電気・電子部品、および該電気・電子部品が実装された電気・電子機器

Country Status (3)

Country Link
JP (1) JP2018170304A (ja)
TW (1) TW201712699A (ja)
WO (1) WO2017038295A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109979740A (zh) * 2018-12-24 2019-07-05 海安南京大学高新技术研究院 低损耗铁硅铝金属磁粉芯绝缘包覆方法
CN111370214A (zh) * 2019-11-20 2020-07-03 横店集团东磁股份有限公司 一种合金复合粉制备磁粉芯的方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7374669B2 (ja) * 2019-08-30 2023-11-07 太陽誘電株式会社 コイル部品及びその製造方法
CN113192716B (zh) * 2021-04-29 2022-09-06 深圳顺络电子股份有限公司 软磁合金材料及软磁合金材料的制备方法
JPWO2023149454A1 (ja) * 2022-02-07 2023-08-10

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004197218A (ja) * 2002-11-22 2004-07-15 Toko Inc 複合磁性材料とそれを用いたコア及び磁性素子
JP2005294458A (ja) * 2004-03-31 2005-10-20 Nec Tokin Corp 高周波用複合磁性粉末材料および高周波用圧粉磁芯ならびに高周波用圧粉磁芯の製造方法
JP2006237153A (ja) * 2005-02-23 2006-09-07 Toda Kogyo Corp 複合圧粉磁心及びその製造法
JP2007134381A (ja) * 2005-11-08 2007-05-31 Nec Tokin Corp 複合磁性材料、それを用いた圧粉磁心および磁性素子
JP2010118486A (ja) * 2008-11-13 2010-05-27 Nec Tokin Corp インダクタおよびインダクタの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004197218A (ja) * 2002-11-22 2004-07-15 Toko Inc 複合磁性材料とそれを用いたコア及び磁性素子
JP2005294458A (ja) * 2004-03-31 2005-10-20 Nec Tokin Corp 高周波用複合磁性粉末材料および高周波用圧粉磁芯ならびに高周波用圧粉磁芯の製造方法
JP2006237153A (ja) * 2005-02-23 2006-09-07 Toda Kogyo Corp 複合圧粉磁心及びその製造法
JP2007134381A (ja) * 2005-11-08 2007-05-31 Nec Tokin Corp 複合磁性材料、それを用いた圧粉磁心および磁性素子
JP2010118486A (ja) * 2008-11-13 2010-05-27 Nec Tokin Corp インダクタおよびインダクタの製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109979740A (zh) * 2018-12-24 2019-07-05 海安南京大学高新技术研究院 低损耗铁硅铝金属磁粉芯绝缘包覆方法
CN111370214A (zh) * 2019-11-20 2020-07-03 横店集团东磁股份有限公司 一种合金复合粉制备磁粉芯的方法

Also Published As

Publication number Publication date
TW201712699A (zh) 2017-04-01
JP2018170304A (ja) 2018-11-01

Similar Documents

Publication Publication Date Title
JP6513458B2 (ja) 圧粉コア、該圧粉コアの製造方法、該圧粉コアを備える電子・電気部品、および該電子・電気部品が実装された電子・電気機器
WO2016185940A1 (ja) 圧粉コア、当該圧粉コアの製造方法、該圧粉コアを備えるインダクタ、および該インダクタが実装された電子・電気機器
WO2017038295A1 (ja) 圧粉コア、該圧粉コアの製造方法、該圧粉コアを備える電気・電子部品、および該電気・電子部品が実装された電気・電子機器
JP6393345B2 (ja) 圧粉コア、該圧粉コアの製造方法、該圧粉コアを備える電気・電子部品、および該電気・電子部品が実装された電気・電子機器
KR102104701B1 (ko) 압분 코어, 당해 압분 코어의 제조 방법, 그 압분 코어를 구비하는 인덕터, 및 그 인덕터가 실장된 전자·전기 기기
TWI652700B (zh) 壓粉芯、該壓粉芯之製造方法、具備該壓粉芯之電氣電子零件及安裝有該電氣電子零件之電氣電子機器
JP2017108098A (ja) 圧粉コア、当該圧粉コアの製造方法、該圧粉コアを備えるインダクタ、および該インダクタが実装された電子・電気機器
CN105304259B (zh) 压粉磁芯及其制造方法、电子电气部件及电子电气设备
US20170309387A1 (en) Powder core, manufacturing method of powder core, inductor including powder core, and electronic/electric device having inductor mounted therein
WO2018207521A1 (ja) 圧粉コア、当該圧粉コアの製造方法、該圧粉コアを備えるインダクタ、および該インダクタが実装された電子・電気機器
JP6035490B2 (ja) 圧粉コア、電気・電子部品および電気・電子機器
JP6093941B2 (ja) 圧粉コア、電気・電子部品および電気・電子機器
WO2019044698A1 (ja) 圧粉コア、該圧粉コアの製造方法、該圧粉コアを備える電気・電子部品、および該電気・電子部品が実装された電気・電子機器
JP7152504B2 (ja) 圧粉成形コア、当該圧粉成形コアの製造方法、該圧粉成形コアを備えるインダクタ、および該インダクタが実装された電子・電気機器
JP6326185B1 (ja) 圧粉コア、該圧粉コアの製造方法、該圧粉コアを備える電気・電子部品、および該電気・電子部品が実装された電気・電子機器
JP6944313B2 (ja) 磁性粉末、圧粉コア、インダクタ、および電子・電気機器
WO2017221475A1 (ja) 磁性粉末、粉末混合体、圧粉コア、圧粉コアの製造方法、インダクタ、および電子・電気機器
JP2024118237A (ja) 圧粉コア、インダクタ、および電子・電気機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16841327

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 16841327

Country of ref document: EP

Kind code of ref document: A1