WO2017037760A1 - 車両走行制御方法及び車両走行制御装置 - Google Patents

車両走行制御方法及び車両走行制御装置 Download PDF

Info

Publication number
WO2017037760A1
WO2017037760A1 PCT/JP2015/004444 JP2015004444W WO2017037760A1 WO 2017037760 A1 WO2017037760 A1 WO 2017037760A1 JP 2015004444 W JP2015004444 W JP 2015004444W WO 2017037760 A1 WO2017037760 A1 WO 2017037760A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
reduction effect
energy regeneration
speed
deceleration energy
Prior art date
Application number
PCT/JP2015/004444
Other languages
English (en)
French (fr)
Inventor
匡史 岩本
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to CN201580082811.3A priority Critical patent/CN107949513B/zh
Priority to RU2018111238A priority patent/RU2700911C1/ru
Priority to MX2018002439A priority patent/MX371180B/es
Priority to US15/756,912 priority patent/US10532731B2/en
Priority to KR1020187008575A priority patent/KR102292291B1/ko
Priority to PCT/JP2015/004444 priority patent/WO2017037760A1/ja
Priority to MYPI2018700788A priority patent/MY193546A/en
Priority to CA2997232A priority patent/CA2997232C/en
Priority to JP2017537037A priority patent/JP6536678B2/ja
Priority to BR112018004146-7A priority patent/BR112018004146B1/pt
Priority to EP15902886.9A priority patent/EP3345798B1/en
Publication of WO2017037760A1 publication Critical patent/WO2017037760A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • B60W20/14Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion in conjunction with braking regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/40Controlling the engagement or disengagement of prime movers, e.g. for transition between prime movers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18072Coasting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18109Braking
    • B60W30/18127Regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/105Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/0097Predicting future conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/10Interpretation of driver requests or demands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/40Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the assembly or relative disposition of components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18072Coasting
    • B60W2030/1809Without torque flow between driveshaft and engine, e.g. with clutch disengaged or transmission in neutral
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2530/00Input parameters relating to vehicle conditions or values, not covered by groups B60W2510/00 or B60W2520/00
    • B60W2530/13Mileage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/02Clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/92Hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/18Propelling the vehicle
    • B60Y2300/18008Propelling the vehicle related to particular drive situations
    • B60Y2300/18108Braking
    • B60Y2300/18125Regenerative braking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/93Conjoint control of different elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/951Assembly or relative location of components

Definitions

  • the present invention relates to a vehicle travel control method and a vehicle travel control device.
  • Patent Document 1 when an automatic stop condition in a predetermined deceleration state in which a required torque is small with respect to running resistance is satisfied during operation of the engine, control is performed to automatically stop the engine, and a clutch is set after the engine is automatically stopped.
  • An automatic start / stop device having control means for controlling the starting clutch to be in a disconnected state when the disconnection condition is satisfied is described.
  • An object of the present invention is to reduce deterioration in fuel consumption due to the fact that deceleration energy regeneration cannot be performed due to inertial running.
  • the driver's intention to accelerate while the vehicle is traveling is determined, and when it is determined that there is no acceleration intention, the power transmission between the engine of the vehicle and the drive wheels is cut off.
  • the fuel efficiency reduction effect of inertial traveling for running the vehicle and the fuel efficiency reduction effect by deceleration energy regeneration that inputs the rotational power of the driving wheels of the vehicle to the electric motor is high.
  • Inertia travel is performed when the fuel efficiency reduction effect of inertial driving is predicted to be higher than the fuel efficiency reduction effect of deceleration energy regeneration, and the fuel efficiency reduction effect of inertial driving is predicted not to be higher than the fuel efficiency reduction effect of deceleration energy regeneration. If this is the case, deceleration energy regeneration is executed.
  • 1 is a schematic configuration diagram of a vehicle equipped with a vehicle travel control device according to a first embodiment. It is a functional lineblock diagram of the vehicle run control device concerning a 1st embodiment. It is a flowchart explaining an example of a process of the vehicle travel control apparatus which concerns on 1st Embodiment. It is a flowchart explaining an example of a process of the vehicle travel control apparatus which concerns on 2nd Embodiment. It is a schematic block diagram of the vehicle by which the vehicle travel control apparatus which concerns on 3rd Embodiment is mounted. It is a functional block diagram of the vehicle travel control apparatus which concerns on 3rd Embodiment. It is explanatory drawing of an example of the map used for determination of a relative speed threshold value.
  • a torque converter 3 is provided on the output side of the engine 2 that is an internal combustion engine of the vehicle 1.
  • a belt type continuously variable transmission 4 is connected to the output side of the torque converter 3.
  • the rotational driving force output from the engine 2 is input to the continuously variable transmission 4 via the torque converter 3, and after being shifted by a desired gear ratio, is transmitted to the drive wheels 6 a and 6 b via the differential gear 5.
  • the engine 2 includes a motor 7 that starts the engine and an alternator 8 that generates power.
  • the motor 7 may be a starter motor for starting the engine, for example.
  • the engine 2 may be started using an SSG (Separated starter generator) motor provided separately from the starter motor as the motor 7.
  • the motor 7 drives the motor 7 using the power supplied from the battery 9 based on the engine start command, and performs engine cranking. Further, when the fuel is injected into the engine and then the engine 2 can rotate independently, the motor 7 is stopped.
  • the alternator 8 generates power by being rotationally driven by the engine 2 and supplies the generated power to the battery 9 and the like.
  • the alternator 8 may be an SSG motor.
  • the alternator 8 When an SSG motor is used as the alternator 8, the alternator 8 generates a driving force by the electric power supplied from the battery 9 and assists the driving force of the engine 2, and a power generation function that generates electric power by the driving force of the engine 2.
  • the alternator 8 corresponds to an electric motor.
  • the torque converter 3 performs torque amplification at a low vehicle speed.
  • the torque converter 3 has a lock-up clutch 10.
  • the torque converter 3 connects the lockup clutch 10 and restricts the relative rotation between the output shaft of the engine 2 and the input shaft of the continuously variable transmission 4.
  • the predetermined speed V1 may be about 14 km / h, for example.
  • the continuously variable transmission 4 includes a forward / reverse switching mechanism 11, a primary pulley 12 and a secondary pulley 13, and a belt 14 that is stretched over the primary pulley 12 and the secondary pulley 13.
  • a desired gear ratio is achieved by changing the groove widths of the primary pulley 12 and the secondary pulley 13 by hydraulic control.
  • the forward / reverse switching mechanism 11 includes a forward clutch 16 and a reverse brake 17.
  • the forward clutch 16 and the reverse brake 17 are friction engagement elements for transmitting the rotation transmitted from the secondary pulley 13 in the forward direction (forward direction) and the reverse direction (reverse direction), respectively.
  • the forward clutch 16 and the reverse brake 17 correspond to a clutch that transmits power between the engine 2 and the alternator 8 and the drive wheels 6a and 6b.
  • An oil pump 15 driven by the engine 2 is provided in the continuously variable transmission 4. When the engine is operating, the converter pressure of the torque converter 3 and the clutch pressure of the lockup clutch 10 are supplied using the oil pump 15 as a hydraulic pressure source.
  • the continuously variable transmission 4 is provided with an electric oil pump 18 in addition to the oil pump 15, and when the oil pump 15 cannot supply hydraulic pressure due to the engine being stopped, the electric oil pump 18 operates. Necessary hydraulic pressure can be supplied to each actuator. Therefore, even when the engine is stopped, the hydraulic oil leakage can be compensated and the clutch engagement pressure can be maintained.
  • the operating state of the engine 2 is controlled by the engine control unit 20.
  • the engine control unit 20 receives an accelerator pedal operation amount signal from an accelerator pedal opening sensor 24 that detects an operation amount of the accelerator pedal 23 by the driver.
  • the accelerator pedal 23 is an example of an operator that is operated by the driver to instruct the driving force of the vehicle 1.
  • the accelerator pedal opening sensor 24 corresponds to an accelerator depression amount detection device that detects an accelerator depression amount that is the depression amount of the accelerator pedal 23 by the driver.
  • the engine control unit 20 receives wheel speed signals indicating wheel speeds detected by wheel speed sensors 29a and 29b provided on the drive wheels 6a and 6b, respectively.
  • the wheel speed sensors 29a and 29b may be collectively referred to as “wheel speed sensor 29”.
  • the wheel speed sensor 29 may be provided on a wheel other than the driving wheel.
  • the wheels other than the drive wheels 6a and 6b and the drive wheels may be collectively referred to as “wheel 6”.
  • the engine control unit 20 receives a rotation speed signal indicating the engine rotation speed Re from the rotation speed sensor 2 a that detects the engine rotation speed Re of the engine 2. Further, the engine control unit 20 receives signals such as the cooling water temperature of the engine 2, the intake air temperature of the air supplied to the engine 2, the air flow rate, the absolute pressure in the intake pipe, and the crank angle. Further, a transmission state signal from a transmission control unit 30 described later is input to the engine control unit 20.
  • the engine control unit 20 starts the engine 2 and controls the driving force of the engine 2 based on the various signals.
  • the engine control unit 20 calculates engine torque based on the various signals, and determines an engine torque command value based on the calculation result.
  • the engine control unit 20 controls the output torque of the engine 2 by controlling parameters such as the intake air amount, the fuel injection amount, and the ignition timing based on the command value.
  • the engine control unit 20 also outputs a power generation command value signal that indicates the target power generation voltage of the alternator 8.
  • the engine control unit 20 increases the target power generation voltage instructed to the alternator 8, thereby executing deceleration energy regeneration and charging the battery 9.
  • the engine control unit 20 suppresses power generation by the alternator 8 by lowering the target power generation voltage. Thereby, the load of the engine 2 is reduced and the fuel efficiency is improved.
  • the engine control unit 20 receives a brake signal from a brake switch 22 that outputs an ON signal when the driver operates the brake pedal 21.
  • the brake pedal 21 is an example of a second operator that is operated by the driver to instruct the braking force of the vehicle 1.
  • a master cylinder 25 and a master back 27 are provided at the tip of the brake pedal 21.
  • the master back 27 amplifies the brake operation force using the intake negative pressure of the engine 2.
  • the engine control unit 20 receives a brake pedal operation amount signal from a master cylinder pressure sensor 26 that detects the master cylinder pressure of the master cylinder 25 that is generated based on the operation amount of the brake pedal 21.
  • a brake pedal operation amount is detected by using a sensor for detecting a brake pedal stroke amount and a brake pedal depression force, a sensor for detecting a wheel cylinder pressure, and the like, and is input to the engine control unit 20. May be.
  • the transmission control unit 30 receives an engine state signal indicating the engine operating state from the engine control unit 20, and transmits a transmission state signal indicating the state of the continuously variable transmission 4 to the engine control unit 20.
  • the transmission control unit 30 controls the gear ratio of the continuously variable transmission 4 according to these signals and the position of the shift lever. For example, when the D range is selected, the transmission control unit 30 connects the forward clutch 16 and determines the gear ratio from the gear ratio map based on the accelerator pedal opening and the vehicle speed, Control the pressure.
  • D range travel forward travel in which the vehicle 1 travels in a state where the forward clutch 16 is connected by selecting the D range and fuel is supplied to the engine 2 may be referred to as “D range travel”. is there.
  • the engine control unit 20 and the transmission control unit 30 correspond to a control device that controls the forward clutch 16, the reverse brake 17, and the alternator 8.
  • the engine control unit 20 and the transmission control unit 30 may be, for example, a computer including a CPU (Central Processing Unit) and CPU peripheral components such as a storage device. Each function of these computers described in this specification is implemented by each CPU executing a computer program stored in a storage device.
  • CPU Central Processing Unit
  • the automatic stop process is a process in which the engine control unit 20 automatically stops and restarts the engine 2 when a predetermined condition is satisfied.
  • the engine control unit 20 includes a wheel speed signal from the wheel speed sensor 29, an accelerator pedal operation amount signal from the accelerator pedal opening sensor 24, a brake pedal operation amount signal from the master cylinder pressure sensor 26, and a charge state signal of the battery 9.
  • the automatic stop process is performed based on the above.
  • the engine control unit 20, the transmission control unit 30, the wheel speed sensor 29, the accelerator pedal opening sensor 24, and the master cylinder pressure sensor 26 constitute a vehicle travel control device 40 that performs an automatic stop process of the engine 2.
  • FIG. 2 shows a functional configuration of the vehicle travel control device 40.
  • the vehicle travel control device 40 includes an idle stop control unit 41, an inertia travel control unit 42, a fuel consumption reduction effect prediction unit 43, an engine control unit 44, and a power generation amount control unit 45.
  • the idle stop control unit 41 performs so-called idle stop (also referred to as idle reduction) control that stops engine idling when a predetermined condition is satisfied when the vehicle 1 is stopped. A detailed description of the idle stop control is omitted.
  • the inertial traveling control unit 42 stops the fuel supply to the engine 2 and stops the engine 2 when the driver does not intend to accelerate while the vehicle is traveling.
  • the vehicle 1 is caused to travel in a state where the vehicle is stopped and the forward clutch 16 is disconnected to disconnect the engine 2 and the drive wheels 6a and 6b.
  • the traveling in the state where the traveling speed Vv is faster than the predetermined speed V1, the fuel supply to the engine 2 is stopped, and the engine 2 and the drive wheels 6a and 6b are separated is referred to as “inertial traveling”. write.
  • the vehicle travels with the forward clutch 16 disconnected, so that the rotational driving force of the drive wheels 6a and 6b cannot be input to the alternator 8 and deceleration energy regeneration cannot be performed.
  • the fuel efficiency reduction effect prediction unit 43 determines that there is no intention to accelerate, the fuel efficiency reduction effect E1 of coasting travel causes the fuel efficiency reduction effect by the deceleration energy regeneration that inputs the rotational power of the drive wheels 6a and 6b to the alternator 8. Predict whether it is higher than E2.
  • the inertia traveling control unit 42 executes inertia traveling. For example, the inertial traveling control unit 42 executes inertial traveling when all of the following conditions (A1) to (A3) are satisfied, and performs inertial traveling when any of the conditions (A1) to (A3) is not satisfied. Ban. (A1) The driver does not intend to accelerate. For example, the inertia traveling control unit 42 receives an accelerator pedal operation amount signal from the accelerator pedal opening sensor 24.
  • the predetermined time is a period during which the accelerator pedal 23 set to determine that the driver does not intend to accelerate is not operated, and may be, for example, 2 seconds.
  • the driver does not perform a braking operation of the vehicle 1 such as depressing the brake pedal 21.
  • the inertia traveling control unit 42 receives a brake pedal operation amount signal from the master cylinder pressure sensor 26, determines that the braking operation is not performed when the operation amount of the brake pedal 21 is zero, and When the operation amount is not zero, it may be determined that the driver has performed a braking operation. It may be determined whether or not a braking operation has been performed based on a brake signal from the brake switch 22.
  • coasting is executed when the conditions (A1) to (A5) obtained by adding the following conditions (A4) and (A5) to the conditions (A1) to (A3) are all satisfied, and the conditions (A1) to (A5) If any of A5) is not established, coasting may be prohibited.
  • the traveling speed Vv is equal to or less than the speed V2.
  • the speed V2 may be about 80 km / h.
  • the inertial traveling control unit 42 may receive the wheel speed signal from the wheel speed sensor 29 and determine the traveling speed Vv based on the wheel speed signal.
  • a predetermined idle stop permission condition is satisfied.
  • the idle stop permission condition may be, for example, that the engine is not warming up and the charging rate of the battery 9 is equal to or higher than a predetermined value.
  • the inertia traveling control unit 42 executes deceleration energy regeneration.
  • the inertial running control unit 42 executes deceleration energy regeneration when all of the conditions (A1), (A3) and the next condition (B1) are satisfied, and any of the conditions (A1), (A3) and (B1) If it does not hold, deceleration energy regeneration is not performed.
  • A1 The driver does not intend to accelerate.
  • A3) The driver does not perform a braking operation of the vehicle 1 such as depressing the brake pedal 21.
  • B1 It is predicted that the fuel efficiency reduction effect E1 of inertia traveling is not higher than the fuel efficiency reduction effect E2 due to deceleration energy regeneration.
  • inertial traveling control unit 42 When starting inertial traveling, inertial traveling control unit 42 outputs an inertial traveling start command to engine control unit 44.
  • the engine control unit 44 stops the fuel injection by the fuel injection device and stops the fuel supply to the engine 2.
  • the engine control unit 44 outputs an operation prohibition command for the electric oil pump 18 to the continuously variable transmission 4. Since the oil pump 15 is stopped by the stop of the engine 2 and the electric oil pump 18 is not operated, the forward clutch 16 of the forward / reverse switching mechanism 11 is released. Thereby, the engine 2 and the drive wheels 6a and 6b are separated. The lockup clutch 10 is also released. Thereby, the running state of the vehicle 1 shifts from the D range running to the inertia running.
  • inertial traveling control unit 42 When starting deceleration energy regeneration, inertial traveling control unit 42 outputs a regeneration start command to engine control unit 44 and power generation amount control unit 45.
  • the engine control unit 44 stops the fuel injection by the fuel injection device and stops the fuel supply to the engine 2. Alternatively, the engine control unit 44 reduces the fuel injection amount.
  • the engine control unit 44 operates the electric oil pump 18 and maintains the engagement of the forward clutch 16 of the forward / reverse switching mechanism 11. As a result, the connection between the engine 2 and the drive wheels 6 a and 6 b is maintained, and the rotational driving force of the drive wheels 6 a and 6 b is input to the alternator 8.
  • the power generation amount control unit 45 When the regeneration start command is received, the power generation amount control unit 45 outputs a power generation command value signal for increasing the target power generation voltage of the alternator 8 to the alternator 8.
  • the rotational driving force of the drive wheels 6a and 6b is input to the alternator 8, and when the target power generation voltage instructed to the alternator 8 is increased, deceleration energy regeneration is executed and the battery 9 is charged.
  • inertial traveling control unit 42 determines whether or not a predetermined end condition is satisfied. For example, the end condition is satisfied when, for example, one of the following two conditions (C1) and (C2) is satisfied. (C1) The driver intends to accelerate. (C2) The driver performs a braking operation on the vehicle 1. If the end condition is satisfied, the inertial traveling control unit 42 stops the inertial traveling. In the case where the condition (A5) is set as the starting condition for inertial running, the inertial running may be stopped even when the condition (A5) is not satisfied. When stopping inertial traveling, inertial traveling control unit 42 outputs an inertial traveling stop command to engine control unit 44.
  • C1 The driver intends to accelerate.
  • C2 The driver performs a braking operation on the vehicle 1. If the end condition is satisfied, the inertial traveling control unit 42 stops the inertial traveling. In the case where the condition (A5) is set as the starting condition for inertial running, the inertial running may be stopped even when the condition (A5) is
  • the engine control unit 44 When receiving the coasting stop command, the engine control unit 44 resumes fuel injection, drives the motor 7 and performs engine cranking.
  • the forward clutch 16 of the forward / reverse switching mechanism 11 is connected by operating the oil pump 15. As described above, the engine restart and the reconnection of the forward clutch 16 are completed, and the traveling state of the vehicle 1 shifts from inertia traveling to D range traveling.
  • the inertial traveling control unit 42 determines whether or not the driver intends to accelerate. If the driver intends to accelerate, inertial running control unit 42 stops deceleration energy regeneration. When stopping deceleration energy regeneration, inertial traveling control unit 42 outputs a regeneration stop command to engine control unit 44 and power generation amount control unit 45. When receiving the regeneration stop command, the engine control unit 44 resumes fuel injection of the engine 2. In addition, the power generation amount control unit 45 outputs a power generation command value signal that lowers the target power generation voltage to the alternator 8, suppresses power generation by the alternator 8, and reduces the load on the engine 2. Thereby, deceleration energy regeneration is completed.
  • step S10 the inertial traveling control unit 42 determines whether or not the driver has an intention to accelerate. If the driver intends to accelerate (step S10: Y), the process returns to step S10. In this case, coasting and deceleration energy regeneration are not started. If the driver does not intend to accelerate (step S10: N), the process proceeds to step S11.
  • step S11 the inertial traveling control unit 42 determines whether or not the driver has performed a braking operation. If a braking operation has been performed (step S11: Y), the process returns to step S10. In this case, coasting and deceleration energy regeneration are not started. When the braking operation is not performed (step S11: N), the process proceeds to step S12.
  • step S12 the fuel consumption reduction effect prediction unit 43 determines whether or not the fuel consumption reduction effect E1 of inertia traveling is higher than the fuel consumption reduction effect E2 due to deceleration energy regeneration. If the fuel efficiency reduction effect E1 is higher than the fuel efficiency reduction effect E2 (step S12: Y), the process proceeds to step S13. When the fuel consumption reduction effect E1 is not higher than the fuel consumption reduction effect E2 (step S12: N), the process proceeds to step S14. In step S13, the inertial traveling control unit 42 performs inertial traveling. Thereafter, the process ends. In step S14, the inertial traveling control unit 42 executes deceleration energy regeneration. Thereafter, the process ends.
  • the inertial traveling control unit 42 determines the driver's intention to accelerate while the vehicle 1 is traveling.
  • the fuel consumption reduction effect predicting unit 43 cuts off the power transmission between the engine 2 of the vehicle 1 and the drive wheels 6a and 6b, and travels the vehicle 1 to reduce the fuel consumption reduction effect E1. Then, it is predicted which of the fuel consumption reduction effects E2 by the deceleration energy regeneration that inputs the rotational power of the drive wheels 6a and 6b of the vehicle 1 to the alternator 8 is higher.
  • the inertia traveling control unit 42 executes the inertia traveling.
  • the inertia traveling control unit 42 executes the deceleration energy regeneration. For this reason, the cruising time of inertial traveling is short, and it is possible to reduce the deterioration of fuel efficiency caused by the loss due to the inability to regenerate deceleration energy more than the fuel efficiency reduction effect by inertial traveling.
  • the vehicle travel control device 40 can also be applied to a vehicle that employs an automatic transmission of a type other than the continuously variable transmission 4.
  • the vehicle travel control device 40 can also be applied to a vehicle that employs a parallel shaft gear type automatic transmission.
  • the vehicle travel control device 40 can be applied to both a vehicle including only an internal combustion engine as a drive source and a hybrid vehicle.
  • the vehicle travel control device 40 may output a release signal for actively releasing the forward clutch 16 to the continuously variable transmission 4 instead of the operation prohibition command for the electric oil pump 18.
  • the vehicle travel control apparatus 40 predicts whether or not the fuel efficiency reduction effect E1 of inertia traveling is higher than the fuel efficiency reduction effect E2 of deceleration energy regeneration based on the travel speed Vv of the vehicle 1.
  • the configuration of the vehicle travel control device 40 of the second embodiment is the same as the configuration of the vehicle travel control device 40 of the first embodiment described with reference to FIG.
  • the fuel consumption reduction effect prediction unit 43 receives the wheel speed signal from the wheel speed sensor 29. When it is determined that the driver does not intend to accelerate, the fuel consumption reduction effect prediction unit 43 detects the traveling speed Vv of the vehicle 1 based on the wheel speed signal. The fuel consumption reduction effect predicting unit 43 predicts that the fuel consumption reduction effect E1 of inertia traveling is higher than the fuel consumption reduction effect E2 of deceleration energy regeneration when the traveling speed Vv is equal to or higher than a predetermined speed threshold Vt. The fuel efficiency reduction effect prediction unit 43 predicts that the fuel efficiency reduction effect E1 of inertia traveling is not higher than the fuel efficiency reduction effect E2 of deceleration energy regeneration when the travel speed Vv is less than the speed threshold.
  • the predetermined speed threshold value Vt may be 50 km / h, for example.
  • step S20 and S21 are the same as the processes in steps S10 and S11 described with reference to FIG.
  • step S21: N the process proceeds to step S22.
  • step S22 the fuel consumption reduction effect prediction unit 43 detects the traveling speed Vv when it is determined that the driver does not intend to accelerate.
  • step S23 the fuel consumption reduction effect prediction unit 43 determines whether or not the traveling speed Vv is equal to or higher than the speed threshold value. If the traveling speed Vv is equal to or higher than the speed threshold (step S23: Y), the process proceeds to step S24. If the traveling speed Vv is less than the speed threshold (step S23: Y), the process proceeds to step S25.
  • the processes in steps S24 and S25 are the same as the processes in steps S13 and S14 described with reference to FIG.
  • the fuel consumption reduction effect prediction unit 43 detects the traveling speed Vv of the vehicle 1 when it is determined that the driver does not intend to accelerate.
  • the fuel consumption reduction effect predicting unit 43 predicts that the fuel consumption reduction effect E1 of inertia traveling is higher than the fuel consumption reduction effect E2 of deceleration energy regeneration when the traveling speed Vv is equal to or higher than the speed threshold value Vt.
  • the fuel consumption reduction effect predicting unit 43 predicts that the fuel consumption reduction effect E1 of inertia traveling is not higher than the fuel consumption reduction effect E2 of deceleration energy regeneration when the traveling speed Vv is less than the speed threshold Tt.
  • inertial running stops when the vehicle 1 stops, inertial running stops. Therefore, when there is an object that can cause an acceleration operation or a brake operation or stop the inertial running by stopping the vehicle 1, the distance between the object and the vehicle 1, the relative speed, The cruising time of coasting varies depending on. For this reason, the vehicle travel control device 40 according to the third embodiment detects the distance and relative speed between the object and the vehicle 1 that can be a cause of stopping inertial travel when it is determined that there is no intention to accelerate. .
  • the vehicle travel control device 40 predicts whether or not the fuel efficiency reduction effect E1 of inertia traveling is higher than the fuel efficiency reduction effect E2 due to deceleration energy regeneration according to the detected distance and relative speed.
  • an object that can be a cause of stopping inertial running may be simply referred to as an “object”.
  • the vehicle travel control device 40 determines the other threshold of the distance to the object and the relative speed according to either the distance to the object or the relative speed. Then, the vehicle travel control device 40 determines that the fuel efficiency reduction effect E1 of inertial travel is reduced by reducing energy regeneration according to the comparison result between the threshold value determined in this way and the distance between the target and the relative speed. It is predicted whether it is higher than the effect E2.
  • the vehicle travel control device 40 determines the threshold value of the relative speed with the target object according to the distance to the target object, and when the relative speed with the target object is less than the threshold value, the fuel efficiency reduction effect E1 of inertial driving is When the fuel efficiency reduction effect E2 due to deceleration energy regeneration is higher and the relative speed with the object is equal to or higher than the threshold value, it is determined that the fuel efficiency reduction effect E1 of coasting is not higher than the fuel efficiency reduction effect E2 due to deceleration energy regeneration.
  • the vehicle travel control device 40 determines a threshold value of the distance to the target object according to the relative speed with the target object, and when the distance from the target object exceeds the threshold value, the fuel efficiency reduction effect E1 of the inertia traveling is decelerated.
  • the fuel efficiency reduction effect E2 by energy regeneration is higher and the distance to the object is equal to or less than the threshold value, it is determined that the fuel efficiency reduction effect E1 of coasting is not higher than the fuel efficiency reduction effect E2 by deceleration energy regeneration.
  • the vehicle travel control device 40 has a fuel efficiency reduction effect E1 of inertial travel that is higher than a fuel efficiency reduction effect E2 due to deceleration energy regeneration. May be determined that the fuel efficiency reduction effect E1 of inertial traveling is not higher than the fuel efficiency reduction effect E2 by deceleration energy regeneration.
  • the coasting stop factor may be, for example, a factor that causes a braking operation of the vehicle 1 by the driver.
  • the coasting stop factor may be a factor that causes the driver to accelerate the vehicle 1, for example.
  • An example of an object that can be a cause of stopping inertial traveling is a preceding vehicle that travels in front of the vehicle 1. This is because, when there is a preceding vehicle, coasting stops by the operation of the brake pedal 21 and the subsequent reacceleration when the vehicle 1 approaches the preceding vehicle.
  • the vehicle travel control device 40 includes a distance measuring unit 50 that measures an inter-vehicle distance Dv between the vehicle 1 and a preceding vehicle, and a relative speed measuring unit 51 that measures a relative speed Vr.
  • the distance measuring unit 50 and the relative velocity measuring unit 51 may be, for example, a radar device such as a laser radar or a millimeter wave radar that scans a front area of the vehicle.
  • the distance measuring unit 50 may be an imaging device that captures an image of a front area of the vehicle and an information processing apparatus that calculates an inter-vehicle distance Dv based on an image of the front area.
  • the relative speed measuring unit 51 may be an information processing apparatus that calculates a temporal change in the inter-vehicle distance Dv calculated based on the image of the front area as the relative speed Vr.
  • FIG. 6 shows a functional configuration of the vehicle travel control device 40 of the third embodiment.
  • the same reference numerals are used for the same components as those in the first embodiment described with reference to FIG.
  • the vehicle travel control device 40 includes a threshold value determination unit 46 that determines a relative speed threshold value Vrt, which is a threshold value of the relative speed Vr, according to the inter-vehicle distance Dv.
  • the threshold determination unit 46 determines the relative speed threshold Vrt according to the inter-vehicle distance Dv between the vehicle 1 and the preceding vehicle when it is determined that the driver does not intend to accelerate, for example, according to the map shown in FIG. This map can be determined in advance by experiments or the like and stored in a storage device provided in the engine control unit 20.
  • a distance D1 where 0 ⁇ D1 is set in advance for the inter-vehicle distance Dv.
  • the distance D1 is set to a value such that the fuel efficiency reduction effect E1 does not become higher than the fuel efficiency reduction effect E2 due to deceleration energy regeneration, regardless of the relative speed Vr, when the inter-vehicle distance Dv is equal to or less than D1.
  • the relative speed threshold Vrt is 0 regardless of the inter-vehicle distance Dv. In the range where the inter-vehicle distance Dv is larger than D1, the relative speed threshold value Vrt increases as the inter-vehicle distance Dv increases.
  • the threshold value determination unit 46 may determine the relative speed threshold value Vrt according to a predetermined calculation formula for calculating the relative speed threshold value Vrt according to the inter-vehicle distance Dv.
  • the fuel consumption reduction effect prediction unit 43 determines that the inertial fuel consumption reduction effect E1 is greater than the fuel consumption reduction effect E2 of deceleration energy regeneration when the relative speed Vr when it is determined that the driver does not intend to accelerate is less than the relative speed threshold Vrt. Expect to be high.
  • the fuel consumption reduction effect prediction unit 43 predicts that the fuel consumption reduction effect E1 of inertia traveling is not higher than the fuel consumption reduction effect E2 of deceleration energy regeneration when the relative speed Vr is equal to or greater than the relative speed threshold Vrt.
  • steps S30 and S31 are the same as the processes in steps S10 and S11 described with reference to FIG.
  • step S32 the distance measuring unit 50 detects the inter-vehicle distance Dv when it is determined that the driver does not intend to accelerate.
  • step S33 the threshold value determination unit 46 determines the relative speed threshold value Vrt according to the inter-vehicle distance Dv.
  • step S34 the relative speed measurement unit 51 detects the relative speed Vr when it is determined that the driver does not intend to accelerate.
  • the process of step S33 may be executed after the process of step S34.
  • step S35 the fuel consumption reduction effect prediction unit 43 determines whether or not the relative speed Vr is less than the relative speed threshold value Vrt. When the relative speed Vr is less than the relative speed threshold value Vrt (step S35: Y), the process proceeds to step S36. If the relative speed Vr is greater than or equal to the relative speed threshold value Vrt (step S35: N), the process proceeds to step S37.
  • the processes in steps S36 and S37 are the same as the processes in steps S13 and S14 described with reference to FIG.
  • the distance measuring unit 50 and the relative speed measuring unit 51 calculate the distance and the relative speed between the object and the vehicle 1 that can be a cause of stopping inertial driving when it is determined that the driver does not intend to accelerate. To detect.
  • the fuel consumption reduction effect prediction unit 43 predicts whether or not the fuel consumption reduction effect E1 of inertia traveling is higher than the fuel consumption reduction effect E2 due to deceleration energy regeneration according to the detected distance and relative speed. For this reason, when there is a coasting stop factor, it is predicted whether the coasting fuel efficiency reduction effect E1 is higher than the deceleration energy regeneration fuel efficiency reduction effect E2, and either inertia coasting or deceleration energy regeneration is performed. Or the appropriate one can be selected.
  • the threshold value determination unit 46 determines the distance according to either the distance between the object and the vehicle 1 that may be a cause of stopping inertial driving or the relative speed when it is determined that the driver does not intend to accelerate. And the other threshold of the relative speed is determined.
  • the fuel consumption reduction effect prediction unit 43 determines whether or not the fuel consumption reduction effect E1 of inertial traveling is higher than the fuel consumption reduction effect E2 due to deceleration energy regeneration according to the comparison result between the determined threshold value, the distance, and the relative speed. Predict.
  • the fuel consumption reduction effect prediction unit 43 sets the inter-vehicle distance Dv and the relative speed Vr between the preceding vehicle and the vehicle 1. Based on this, it is predicted whether or not the fuel efficiency reduction effect E1 of inertia traveling is higher than the fuel efficiency reduction effect E2 due to deceleration energy regeneration. For this reason, when there is a preceding vehicle traveling in front of the vehicle 1, it is predicted whether the fuel efficiency reduction effect E1 of inertial traveling is higher than the fuel efficiency reduction effect E2 of deceleration energy regeneration, and inertial traveling and deceleration energy are predicted. One of the appropriate regenerations can be selected.
  • the threshold determination unit 46 may determine the threshold D of the inter-vehicle distance Dv according to the relative speed Vr.
  • the fuel consumption reduction effect prediction unit 43 may predict that the fuel consumption reduction effect E1 of inertia traveling is higher than the fuel consumption reduction effect E2 of deceleration energy regeneration when the inter-vehicle distance Dv is longer than the threshold value D.
  • the fuel consumption reduction effect prediction unit 43 may predict that the fuel consumption reduction effect E1 of inertia traveling is not higher than the fuel consumption reduction effect E2 of deceleration energy regeneration when the inter-vehicle distance Dv is equal to or less than the threshold value D.
  • the coasting stop factor may be a factor that stops the vehicle 1, for example.
  • An example of an object that can be a cause of stopping inertial running by stopping the vehicle 1 is a red light.
  • the vehicle travel control device 40 of the fourth embodiment corresponds to the distance Dr between the red signal and the vehicle 1 present in the course of the vehicle 1 and the travel speed Vv of the vehicle 1 that is the relative speed between the red signal and the vehicle 1. It is predicted whether the fuel efficiency reduction effect E1 of inertial traveling is higher than the fuel efficiency reduction effect E2 due to deceleration energy regeneration.
  • the vehicle 1 includes a traffic light detection unit 52 that detects a distance Dr to a traffic light with a red signal that exists in front of the vehicle 1.
  • the traffic light detection unit 52 is, for example, a GPS (Global Positioning System) device that measures the current position of the vehicle 1 or a positioning device such as an inertial navigation device, and an information processing device such as a navigation device that stores the positional information of traffic signals on the road. You may be comprised by the receiver which receives the lighting state of the apparatus and the signal apparatus on a road via road-to-vehicle communication or vehicle-to-vehicle communication. Further, the traffic signal detection unit 52 may be an imaging device that images a front area of the vehicle, and an information processing apparatus that calculates a distance Dr to a red signal existing ahead of the course of the vehicle 1 based on an image of the front area. Good.
  • GPS Global Positioning System
  • FIG. 10 shows a functional configuration of the vehicle travel control device 40 of the fourth embodiment.
  • the same reference numerals are used for the same components as those in the first embodiment described with reference to FIG.
  • the fuel efficiency reduction effect predicting unit 43 determines that the fuel efficiency reduction effect E1 of inertial traveling is the fuel efficiency of deceleration energy regeneration regardless of the distance Dr to the red signal. It is predicted that it is not higher than the reduction effect E2.
  • the traveling speed Vv is less than the first speed threshold Vt1
  • the inertial traveling control unit 42 executes deceleration energy regeneration regardless of the distance Dr.
  • the vehicle travel control device 40 includes a threshold value determination unit 46 that determines a variable second speed threshold value Vt2 that is a threshold value of the travel speed Vv according to the distance Dr to the red signal.
  • the threshold value determination unit 46 determines the second speed threshold value Vt2 according to the distance Dr from the vehicle 1 to the red signal when it is determined that the driver does not intend to accelerate, for example, according to the map shown in FIG. This map can be determined in advance by experiments or the like and stored in a storage device provided in the engine control unit 20.
  • a distance D2 where 0 ⁇ D2 is set in advance for the distance Dr to the red signal.
  • the distance D2 is set to a value such that the fuel efficiency reduction effect E1 does not become higher than the fuel efficiency reduction effect E2 due to deceleration energy regeneration regardless of the travel speed Vv when the distance Dr is equal to or less than D2.
  • the second speed threshold value Vt2 is 0 regardless of the distance Dr.
  • the second speed threshold Vt2 increases from the first speed threshold Vt1 as the distance Dr increases.
  • the threshold value determination unit 46 may determine the second speed threshold value Vt2 according to a predetermined calculation formula for calculating the second speed threshold value Vt2 according to the distance Dr to the red signal. .
  • the fuel consumption reduction effect predicting unit 43 predicts that the inertial fuel consumption reduction effect E1 is higher than the fuel consumption reduction effect E2 of deceleration energy regeneration when the traveling speed Vv is less than the second speed threshold value Vt2.
  • the fuel consumption reduction effect predicting unit 43 predicts that the fuel consumption reduction effect E1 of inertia traveling is not higher than the fuel consumption reduction effect E2 of deceleration energy regeneration when the traveling speed Vv is equal to or higher than the second speed threshold Vt2.
  • step S40 and S41 are the same as the processes in steps S10 and S11 described with reference to FIG.
  • step S42 the traffic light detector 52 detects the distance Dr from the vehicle 1 to the red signal when it is determined that the driver does not intend to accelerate.
  • step S43 the fuel consumption reduction effect prediction unit 43 determines whether there is a red signal within a predetermined distance. If there is a red signal within the predetermined distance (step S43: Y), the process proceeds to step S44.
  • step S43: N the fuel consumption reduction effect prediction unit 43 determines that the fuel consumption reduction effect E1 of inertia traveling is higher than the fuel consumption reduction effect E2 of deceleration energy regeneration, and the process is performed. Proceed to S48.
  • step S44 the fuel consumption reduction effect prediction unit 43 detects the traveling speed Vv when it is determined that the driver does not intend to accelerate.
  • step S45 the fuel consumption reduction effect prediction unit 43 determines whether or not the traveling speed Vv is less than the first speed threshold value Vt1.
  • the fuel efficiency reduction effect prediction unit 43 determines that the fuel efficiency reduction effect E1 of inertia traveling is not higher than the fuel efficiency reduction effect E2 of deceleration energy regeneration. Then, the process proceeds to step S49. If the traveling speed Vv is equal to or higher than the first speed threshold value Vt1 (step S45: N), the process proceeds to step S46.
  • step S46 the threshold value determination unit 46 determines the second speed threshold value Vt2 according to the distance Dr to the red signal.
  • step S47 the fuel consumption reduction effect prediction unit 43 determines whether or not the traveling speed Vv is less than the second speed threshold value Vt2. If the traveling speed Vv is less than the second speed threshold Vt2 (step S47: Y), the process proceeds to step S48. If the traveling speed Vv is equal to or higher than the second speed threshold value Vt2 (step S47: N), the process proceeds to step S49.
  • the processes in steps S48 and S49 are the same as the processes in steps S13 and S14 described with reference to FIG.
  • the fuel consumption reduction effect prediction unit 43 determines the distance Dr between the vehicle 1 and the red signal, Based on the traveling speed Vv of the vehicle 1 which is a relative speed with respect to the red signal, it is predicted whether or not the fuel efficiency reduction effect E1 of the inertia traveling is higher than the fuel efficiency reduction effect E2 by the deceleration energy regeneration. Therefore, when there is a red signal in the course of the vehicle 1, it is predicted whether or not the fuel efficiency reduction effect E1 of inertia traveling is higher than the fuel efficiency reduction effect E2 of deceleration energy regeneration. Any one of them can be selected.
  • the threshold determination unit 46 may determine the threshold D of the distance Dr to the red signal according to the traveling speed Vv.
  • the fuel consumption reduction effect prediction unit 43 may predict that the fuel consumption reduction effect E1 of inertia traveling is higher than the fuel consumption reduction effect E2 of deceleration energy regeneration when the distance Dr is longer than the threshold value D.
  • the fuel efficiency reduction effect predicting unit 43 may predict that the fuel efficiency reduction effect E1 of inertia traveling is not higher than the fuel efficiency reduction effect E2 of deceleration energy regeneration when the distance Dr is equal to or less than the threshold value D.
  • the vehicle travel control device 40 includes a distance Dt between the intersection where the vehicle 1 is scheduled to turn right or left next on the predetermined course of the vehicle 1 and the vehicle 1 and the relative relationship between the intersection and the vehicle 1. It is predicted whether or not the fuel efficiency reduction effect E1 of inertia traveling is higher than the fuel efficiency reduction effect E2 by deceleration energy regeneration according to the traveling speed Vv of the vehicle 1 that is the speed.
  • the vehicle 1 includes an intersection detection unit 53 that detects the distance Dt between the vehicle 1 and the intersection where the vehicle 1 is scheduled to turn right or left next on a predetermined course of the vehicle 1.
  • the intersection detection unit 53 includes, for example, a positioning device such as a GPS (Global Positioning System) device or an inertial navigation device that measures the current position of the vehicle 1, and a map database that includes position information of the intersection. It is an information processing device such as a navigation device that provides guidance.
  • the intersection detection unit 53 detects the position of the intersection that is scheduled to turn right or left next in the planned course of the vehicle 1 set by the route search of the vehicle 1, and based on the position of the intersection and the current position of the vehicle 1, A distance Dt between the vehicle 1 and the intersection is calculated.
  • FIG. 14 shows a functional configuration of the vehicle travel control device 40 of the fifth embodiment.
  • the same reference numerals are used for the same components as those in the first embodiment described with reference to FIG.
  • the fuel efficiency reduction effect prediction unit 43 performs the fuel efficiency reduction effect of inertial traveling regardless of the distance Dt to the next intersection that is scheduled to turn right or left. It is predicted that E1 is not higher than the fuel efficiency reduction effect E2 of the deceleration energy regeneration.
  • the inertial traveling control unit 42 executes deceleration energy regeneration regardless of the distance Dt.
  • the vehicle travel control device 40 includes a threshold value determination unit 46 that determines a variable second speed threshold value Vt2 that is a threshold value of the travel speed Vv according to a distance Dt to an intersection that is scheduled to turn right or left next. For example, according to the map shown in FIG. 15, the threshold value determination unit 46 determines the second speed threshold value Vt2 according to the distance Dt from the vehicle 1 when it is determined that the driver does not intend to accelerate to the next intersection that is scheduled to turn right or left. To decide.
  • This map can be determined in advance by experiments or the like and stored in a storage device provided in the engine control unit 20.
  • a distance D3 that satisfies 0 ⁇ D3 is set in advance for the distance Dt to the intersection that is scheduled to turn right or left next.
  • the distance D3 is set to a value such that the fuel efficiency reduction effect E1 does not become higher than the fuel efficiency reduction effect E2 due to deceleration energy regeneration regardless of the traveling speed Vv when the distance Dt is equal to or less than D3.
  • the second speed threshold Vt2 is 0 regardless of the distance Dt. In a range where the distance Dt is greater than D3, the second speed threshold Vt2 increases from the third speed threshold Vt3 as the distance Dt increases.
  • the second speed threshold value Vt2 may be determined according to a predetermined formula that calculates the second speed threshold value Vt2 according to the distance Dt to the intersection that is scheduled to turn right or left next. Good.
  • the fuel consumption reduction effect predicting unit 43 predicts that the inertial fuel consumption reduction effect E1 is higher than the fuel consumption reduction effect E2 of deceleration energy regeneration when the traveling speed Vv is less than the second speed threshold value Vt2.
  • the fuel consumption reduction effect predicting unit 43 predicts that the fuel consumption reduction effect E1 of inertia traveling is not higher than the fuel consumption reduction effect E2 of deceleration energy regeneration when the traveling speed Vv is equal to or higher than the second speed threshold Vt2.
  • step S50 and S51 are the same as the processes in steps S10 and S11 described with reference to FIG.
  • step S51: N the process proceeds to step S52.
  • the traffic light detection unit 52 detects the distance Dt from the vehicle 1 when it is determined that the driver does not intend to accelerate to the intersection that is scheduled to turn right or left next.
  • step S ⁇ b> 53 the fuel consumption reduction effect prediction unit 43 determines whether or not the next intersection that is scheduled to turn right or left is within a predetermined distance.
  • step S53: Y If there is an intersection within the predetermined distance (step S53: Y), the process proceeds to step S54.
  • step S53: N the fuel consumption reduction effect prediction unit 43 determines that the fuel consumption reduction effect E1 of inertia traveling is higher than the fuel consumption reduction effect E2 of deceleration energy regeneration, and the process is performed in step S58. Proceed to
  • step S54 the fuel consumption reduction effect prediction unit 43 detects the traveling speed Vv when it is determined that the driver does not intend to accelerate.
  • step S55 the fuel consumption reduction effect prediction unit 43 determines whether or not the traveling speed Vv is less than the third speed threshold value Vt3.
  • step S55: Y the fuel efficiency reduction effect prediction unit 43 determines that the fuel efficiency reduction effect E1 of inertia traveling is not higher than the fuel efficiency reduction effect E2 of deceleration energy regeneration. Then, the process proceeds to step S59.
  • step S55: N the process proceeds to step S56.
  • step S56 the threshold value determination unit 46 determines the second speed threshold value Vt2 according to the distance Dt to the intersection that is scheduled to turn right or left next.
  • the processing in steps S57 to S59 is the same as the processing in steps S47 to S49 described with reference to FIG.
  • the threshold value determination unit 46 may determine a threshold value D of the distance Dt between the vehicle 1 and the intersection where the vehicle 1 is scheduled to turn right or left next according to the traveling speed Vv.
  • the fuel consumption reduction effect prediction unit 43 may predict that the fuel consumption reduction effect E1 of inertia traveling is higher than the fuel consumption reduction effect E2 of deceleration energy regeneration when the distance Dt is longer than the threshold value D.
  • the fuel consumption reduction effect prediction unit 43 may predict that the fuel consumption reduction effect E1 of inertia traveling is not higher than the fuel consumption reduction effect E2 of deceleration energy regeneration when the distance Dt is equal to or less than the threshold value D.
  • Accelerator pedal, 24 ... Accelerator pedal opening sensor, 25 ... Master cylinder, 26 ... Master cylinder pressure sensor, 27 ... Master Back, 29a-29b ... wheel speed sensor, 30 ... transmission control unit , 40 ... Vehicle travel control device, 41 ... Idle stop control unit, 42 ... Inertia travel control unit, 43 ... Fuel consumption reduction effect prediction unit, 44 ... Engine control unit, 45 ... Power generation amount control unit, 46 ... Threshold determination unit, 50 ... distance measuring section, 51 ... relative speed measuring section, 52 ... traffic light detecting section, 53 ... intersection detecting section

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Human Computer Interaction (AREA)
  • Mathematical Physics (AREA)
  • Physics & Mathematics (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Control Of Transmission Device (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Controls For Constant Speed Travelling (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

車両(1)の走行中の運転者の加速意図を判断し、加速意図が無いと判断した時に、車両(1)のエンジン(2)と駆動輪(6a、6b)との間の動力伝達を遮断して車両(1)を走行させる惰性走行の燃費低減効果(E1)と、車両(1)の駆動輪(6a、6b)の回転動力を電動機(8)へ入力する減速エネルギ回生による燃費低減効果(E2)のいずれが高いかを予測し、惰性走行の燃費低減効果(E1)が減速エネルギ回生の燃費低減効果(E2)よりも高いと予測される場合に惰性走行を実行し、惰性走行の燃費低減効果(E1)が減速エネルギ回生の燃費低減効果(E2)よりも高くないと予測される場合に減速エネルギ回生を実行することを特徴とする車両走行制御方法。

Description

車両走行制御方法及び車両走行制御装置
 本発明は、車両走行制御方法及び車両走行制御装置に関する。
 特許文献1には、エンジンの運転中に走行抵抗に対して要求トルクが微小となる所定減速状態の自動停止条件を満足する場合はエンジンを自動停止すべく制御するとともにこのエンジンの自動停止後にクラッチ断絶条件を満足する場合は発進クラッチを断絶状態にすべく制御する制御手段を有する自動始動停止装置が記載されている。
特開平7-266932号公報
 エンジンと駆動輪との間で動力を伝達するクラッチを切断した状態で車両が走行する惰性走行では、駆動輪の回転駆動力を電動機に入力できないために減速エネルギ回生ができない。このため、惰性走行の航続時間が短い場合には、惰性走行による燃費低減効果よりも減速エネルギ回生ができないことによる損失が上回ることにより燃費が悪化する虞がある。
 本発明は、惰性走行のために減速エネルギ回生ができないことによる燃費の悪化を低減することを目的とする。
 本発明の一態様に係る車両走行制御方法では、車両の走行中の運転者の加速意図を判断し、加速意図が無いと判断した時に、車両のエンジンと駆動輪との間の動力伝達を遮断して車両を走行させる惰性走行の燃費低減効果と、車両の駆動輪の回転動力を電動機へ入力する減速エネルギ回生による燃費低減効果のいずれが高いかを予測する。惰性走行の燃費低減効果が減速エネルギ回生の燃費低減効果よりも高いと予測される場合に惰性走行を実行し、惰性走行の燃費低減効果が減速エネルギ回生の燃費低減効果よりも高くないと予測される場合に減速エネルギ回生を実行する。
 本発明の一態様によれば、惰性走行のために減速エネルギ回生ができないことによる燃費の悪化を低減することができる。
 本発明の目的及び利点は、特許請求の範囲に示した要素及びその組合せを用いて具現化され達成される。前述の一般的な記述及び以下の詳細な記述の両方は、単なる例示及び説明であり、特許請求の範囲のように本発明を限定するものでないと解するべきである。
第1実施形態に係る車両走行制御装置が搭載された車両の概略構成図である。 第1実施形態に係る車両走行制御装置の機能構成図である。 第1実施形態に係る車両走行制御装置の処理の一例を説明するフローチャートである。 第2実施形態に係る車両走行制御装置の処理の一例を説明するフローチャートである。 第3実施形態に係る車両走行制御装置が搭載された車両の概略構成図である。 第3実施形態に係る車両走行制御装置の機能構成図である。 相対速度閾値の決定に用いるマップの一例の説明図である。 第3実施形態に係る車両走行制御装置の処理の一例を説明するフローチャートである。 第4実施形態に係る車両走行制御装置が搭載された車両の概略構成図である。 第4実施形態に係る車両走行制御装置の機能構成図である。 第2速度閾値の決定に用いるマップの一例の説明図である。 第4実施形態に係る車両走行制御装置の処理の一例を説明するフローチャートである。 第5実施形態に係る車両走行制御装置が搭載された車両の概略構成図である。 第5実施形態に係る車両走行制御装置の機能構成図である。 第2速度閾値の決定に用いるマップの一例の説明図である。 第5実施形態に係る車両走行制御装置の処理の一例を説明するフローチャートである。
 以下、本発明の実施形態について、図面を参照しつつ説明する。
 (第1実施形態)
 (構成)
 図1を参照する。車両1の内燃機関であるエンジン2の出力側には、トルクコンバータ3が設けられている。トルクコンバータ3の出力側には、ベルト式の無段階変速機4が接続されている。エンジン2から出力された回転駆動力は、トルクコンバータ3を介して無段階変速機4に入力され、所望の変速比によって変速された後に、ディファレンシャルギア5を介して駆動輪6a及び6bに伝達される。エンジン2には、エンジン始動を行うモータ7と、発電を行うオルタネータ8とが備えられている。
 モータ7は、例えばエンジン始動用のスタータモータであってよい。スタータモータとは別に設けられたSSG(Separated starter generator)モータをモータ7として用いてエンジン2を始動してもよい。モータ7は、エンジン始動命令に基づき、バッテリ9の供給する電力を用いてモータ7を駆動し、エンジンクランキングを行う。また、エンジン内に燃料が噴射され、その後、エンジン2が自立回転可能となるとモータ7を停止する。
 オルタネータ8は、エンジン2により回転駆動されることで発電し、発電した電力をバッテリ9等に供給する。オルタネータ8は、SSGモータであってもよい。オルタネータ8としてSSGモータが使用される場合、オルタネータ8は、バッテリ9から供給される電力により駆動力を生じてエンジン2の駆動力を補助するモータ機能と、エンジン2の駆動力により発電する発電機能を有する。なお、オルタネータ8は電動機に対応する。
 トルクコンバータ3は、低車速時にトルク増幅を行う。トルクコンバータ3は、ロックアップクラッチ10を有する。トルクコンバータ3は、車両の走行速度Vvが所定速度V1以上の場合、ロックアップクラッチ10を接続して、エンジン2の出力軸と無段階変速機4の入力軸との相対回転を規制する。所定速度V1は、例えば14km/h程度であってよい。
 無段階変速機4は、前後進切換機構11と、プライマリプーリ12及びセカンダリプーリ13と、プライマリプーリ12及びセカンダリプーリ13に掛け渡されたベルト14を備える。プライマリプーリ12及びセカンダリプーリ13の溝幅が油圧制御によって変化することで所望の変速比を達成する。
 前後進切換機構11は、前進用クラッチ16及び後進用ブレーキ17を備える。前進用クラッチ16及び後進用ブレーキ17は、セカンダリプーリ13から伝達された回転を、それぞれ正方向(前進方向)及び逆方向(後進方向)に伝達するための摩擦締結要素である。前進用クラッチ16及び後進用ブレーキ17は、エンジン2及びオルタネータ8と駆動輪6a及び6bとの間で動力を伝達するクラッチに対応する。
 また、無段階変速機4内には、エンジン2によって駆動されるオイルポンプ15が設けられている。エンジン作動時には、このオイルポンプ15を油圧源として、トルクコンバータ3のコンバータ圧やロックアップクラッチ10のクラッチ圧が供給される。
 また、このオイルポンプ15を油圧源として、無段階変速機4のプーリ圧や前進用クラッチ16及び後進用ブレーキ17のクラッチ締結圧が供給される。さらに、無段階変速機4には、オイルポンプ15とは別に電動オイルポンプ18が設けられており、エンジンの停止によってオイルポンプ15による油圧供給ができない場合には、電動オイルポンプ18が作動し、必要な油圧を各アクチュエータに供給可能に構成されている。よって、エンジン停止時であっても、作動油のリークを補償し、また、クラッチ締結圧を維持することができる。
 エンジン2の作動状態は、エンジンコントロールユニット20によって制御される。エンジンコントロールユニット20には、運転者によるアクセルペダル23の操作量を検出するアクセルペダル開度センサ24からのアクセルペダル操作量信号が入力される。アクセルペダル23は、運転者が操作して車両1の駆動力を指示する操作子の一例である。アクセルペダル開度センサ24は、運転者によるアクセルペダル23の踏み込み量であるアクセル踏込量を検出するアクセル踏込量検出装置に対応する。
 さらにエンジンコントロールユニット20には、駆動輪6a及び6bにそれぞれ設けられた車輪速センサ29a及び29bにより検出された車輪速を示す車輪速信号が入力される。以下の説明において、車輪速センサ29a及び29bを総称して「車輪速センサ29」と表記することがある。なお、車輪速センサ29は、駆動輪以外の車輪に設けられてもよい。以下、駆動輪6a及び6b及び駆動輪以外の車輪を総称して「車輪6」と表記することがある。
 また、エンジンコントロールユニット20には、エンジン2のエンジン回転数Reを検出する回転数センサ2aから、エンジン回転数Reを示す回転数信号が入力される。
 さらにエンジンコントロールユニット20には、エンジン2の冷却水温、エンジン2に供給される空気の吸気温度、空気流量、吸気管内絶対圧、クランク角等の信号が入力される。また、エンジンコントロールユニット20には、後述する変速機コントロールユニット30からの変速機状態信号が入力される。
 エンジンコントロールユニット20は、上記各種信号に基づいて、エンジン2の始動を行いエンジン2の駆動力を制御する。エンジンコントロールユニット20は、上記各種信号に基づいて、エンジントルクの演算を行い、当該演算結果に基づいてエンジントルク指令値を決定する。エンジンコントロールユニット20は、当該指令値に基づいて吸入空気量、燃料噴射量、点火時期などのパラメータを制御することで、エンジン2の出力トルクを制御する。
 また、エンジンコントロールユニット20は、オルタネータ8の目標発電電圧を指示する発電指令値信号を出力する。車両1が減速状態である場合には、エンジンコントロールユニット20は、オルタネータ8に指示する目標発電電圧を上昇させることにより、減速エネルギ回生を実行してバッテリ9を充電する。一方で、定常走行時や加速時には、エンジンコントロールユニット20は、目標発電電圧を下げることによりオルタネータ8による発電を抑制する。それにより、エンジン2の負荷が低減し燃費性能が向上する。
 さらに、エンジンコントロールユニット20には、運転者によるブレーキペダル21の操作によりオン信号を出力するブレーキスイッチ22からのブレーキ信号が入力される。ブレーキペダル21は、運転者が操作して車両1の制動力を指示する第2の操作子の一例である。
 ブレーキペダル21の先には、マスタシリンダ25及びマスタバック27が設けられている。このマスタバック27は、エンジン2の吸気負圧を用いてブレーキ操作力を増幅する。エンジンコントロールユニット20には、ブレーキペダル21の操作量に基づいて生じるマスタシリンダ25のマスタシリンダ圧を検出するマスタシリンダ圧センサ26からのブレーキペダル操作量信号が入力される。
 なお、マスタシリンダ圧センサ26に代えてブレーキペダルストローク量やブレーキペダル踏力を検出するセンサ、またはホイルシリンダ圧を検出するセンサ等を用いてブレーキペダル操作量を検出し、エンジンコントロールユニット20に入力してもよい。
 一方、変速機コントロールユニット30は、エンジン作動状態を示すエンジン状態信号をエンジンコントロールユニット20から受信し、無段階変速機4の状態を示す変速機状態信号をエンジンコントロールユニット20へ送信する。変速機コントロールユニット30は、これら信号と、シフトレバーのポジションに応じて、無段階変速機4の変速比等を制御する。
 例えば変速機コントロールユニット30は、Dレンジが選択されているときは、前進用クラッチ16の接続を行うと共に、アクセルペダル開度と車速とに基づいて変速比マップから変速比を決定し、各プーリ圧を制御する。
 以下の説明において、Dレンジが選択されることにより前進用クラッチ16が接続され、且つエンジン2へ燃料が供給された状態で車両1を走行させる前進走行を「Dレンジ走行」と表記することがある。
 また、車両の走行速度Vvが所定速度V1未満のときはロックアップクラッチ10を解放しているが、所定速度V1以上のときはロックアップクラッチを接続して、エンジン2と無段階変速機4とを直結状態としている。
 なお、エンジンコントロールユニット20及び変速機コントロールユニット30は、前進用クラッチ16、後進用ブレーキ17、及びオルタネータ8を制御する制御装置に対応する。
 エンジンコントロールユニット20及び変速機コントロールユニット30は、例えば、CPU(Central Processing Unit)と、記憶装置等のCPU周辺部品とを含むコンピュータであってよい。本明細書で説明するこれらのコンピュータの各機能は、記憶装置に格納されたコンピュータプログラムを各々のCPUが実行することによって実装される。
 (エンジンの自動停止処理)
 次に、エンジン2の自動停止処理について説明する。自動停止処理とは、所定の条件が成立した場合に、エンジンコントロールユニット20がエンジン2の自動停止と再始動を行う処理である。
 エンジンコントロールユニット20は、車輪速センサ29からの車輪速信号、アクセルペダル開度センサ24からのアクセルペダル操作量信号、マスタシリンダ圧センサ26からのブレーキペダル操作量信号、及びバッテリ9の充電状態信号に基づいて自動停止処理を実施する。
 エンジンコントロールユニット20、変速機コントロールユニット30、車輪速センサ29、アクセルペダル開度センサ24、及びマスタシリンダ圧センサ26は、エンジン2の自動停止処理を行う車両走行制御装置40を構成する。
 図2に、車両走行制御装置40の機能構成を示す。車両走行制御装置40は、アイドルストップ制御部41と、惰性走行制御部42と、燃費低減効果予測部43と、エンジン制御部44と、発電量制御部45を備える。
 アイドルストップ制御部41は、車両1が停止時に、所定の条件が成立したときは、エンジンアイドリングを停止する、いわゆるアイドルストップ(アイドルリダクションとも呼ぶ)制御を行う。なお、アイドルストップ制御についての詳細な説明は省略する。
 惰性走行制御部42は、車両の走行速度Vvが所定速度V1よりも早い状態でも、車両の走行中の運転者の加速意図がない場合に、エンジン2への燃料供給を停止してエンジン2を停止し、前進用クラッチ16を切断してエンジン2と駆動輪6a及び6bとを切り離した状態で車両1を走行させる。本明細書において、走行速度Vvが所定速度V1よりも早く、エンジン2への燃料供給が停止し、かつエンジン2と駆動輪6a及び6bとを切り離された状態での走行を「惰性走行」と表記する。
 惰性走行中は、前進用クラッチ16を切断した状態で車両が走行するため、駆動輪6a及び6bの回転駆動力をオルタネータ8に入力できず減速エネルギ回生ができない。惰性走行の航続時間が短い場合には、惰性走行による燃費低減効果よりも減速エネルギ回生ができないことによる損失が上回ることにより燃費が悪化する虞がある。
 このため、燃費低減効果予測部43は、加速意図が無いと判断した時に、惰性走行の燃費低減効果E1が、駆動輪6a及び6bの回転動力をオルタネータ8へ入力する減速エネルギ回生による燃費低減効果E2より高いか否かを予測する。
 惰性走行の燃費低減効果E1が減速エネルギ回生による燃費低減効果E2より高いと判断した場合には、惰性走行制御部42は惰性走行を実行する。例えば、惰性走行制御部42は、次の条件(A1)~(A3)が全て成立する場合に惰性走行を実行し、条件(A1)~(A3)のいずれかが成立しない場合に惰性走行を禁止する。
 (A1)運転者の加速意図がない。例えば、惰性走行制御部42は、アクセルペダル開度センサ24からのアクセルペダル操作量信号を受信する。アクセル操作量(すなわちアクセル踏込量)がゼロになってから所定時間以上経過している場合に運転者の加速意図がないと判断してよい。所定時間は、運転者の加速意図がないことを判断するために設定されるアクセルペダル23が操作されない期間であり、例えば2秒でよい。
 (A2)惰性走行の燃費低減効果E1が減速エネルギ回生による燃費低減効果E2より高いと予測される。
 (A3)運転者がブレーキペダル21を踏むなどの車両1の制動操作を行っていない。例えば、惰性走行制御部42は、マスタシリンダ圧センサ26からのブレーキペダル操作量信号を受信し、ブレーキペダル21の操作量がゼロの場合に制動操作を行っていないと判断し、ブレーキペダル21の操作量がゼロでない場合に運転者が制動操作を行ったと判断してもよい。ブレーキスイッチ22からのブレーキ信号に基づいて制動操作が行われたか否かを判断してもよい。
 なお、条件(A1)~(A3)に次の条件(A4)及び(A5)を加えた条件(A1)~(A5)が全て成立する場合に惰性走行を実行し、条件(A1)~(A5)のいずれかが成立しない場合に惰性走行を禁止してもよい。
 (A4)走行速度Vvが速度V2以下である。例えば、速度V2は80km/h程度でよい。惰性走行制御部42は、車輪速センサ29からの車輪速信号を受信し、車輪速信号に基づいて走行速度Vvを判断してよい。
 (A5)所定のアイドルストップ許可条件が成立する。アイドルストップ許可条件は、例えば、エンジン暖機中でなく且つバッテリ9の充電率が所定値以上であることであってよい。
 一方で、惰性走行の燃費低減効果E1が減速エネルギ回生による燃費低減効果E2より高くないと判断した場合には、惰性走行制御部42は減速エネルギ回生を実行する。例えば、惰性走行制御部42は条件(A1)、(A3)及び次の条件(B1)が全て成立する場合に減速エネルギ回生を実行し、条件(A1)、(A3)及び(B1)のいずれかが成立しない場合に減速エネルギ回生をしない。
 (A1)運転者の加速意図がない。
 (A3)運転者がブレーキペダル21を踏むなどの車両1の制動操作を行っていない。
 (B1)惰性走行の燃費低減効果E1が減速エネルギ回生による燃費低減効果E2より高くないと予測される。
 惰性走行を開始する場合、惰性走行制御部42は惰性走行開始命令をエンジン制御部44に出力する。
 惰性走行開始命令を受信すると、エンジン制御部44は燃料噴射装置による燃料噴射を停止して、エンジン2への燃料供給を停止する。また、エンジン制御部44は、電動オイルポンプ18の作動禁止命令を無段階変速機4へ出力する。エンジン2の停止によりオイルポンプ15が停止し、さらに電動オイルポンプ18が作動しないため、前後進切換機構11の前進用クラッチ16が解放される。これにより、エンジン2と駆動輪6a及び6bとが切り離される。また、ロックアップクラッチ10も解放される。これにより、車両1の走行状態は、Dレンジ走行から惰性走行からへ移行する。
 減速エネルギ回生を開始する場合、惰性走行制御部42は回生開始命令をエンジン制御部44及び発電量制御部45へ出力する。
 回生開始命令を受信すると、エンジン制御部44は燃料噴射装置による燃料噴射を停止して、エンジン2への燃料供給を停止する。もしくは、エンジン制御部44は燃料噴射量を低減させる。
 エンジン制御部44は、電動オイルポンプ18を作動させ、前後進切換機構11の前進用クラッチ16の締結を維持する。これにより、エンジン2と駆動輪6a及び6bとの接続が維持され、駆動輪6a及び6bの回転駆動力がオルタネータ8に入力される。
 また、回生開始命令を受信すると、発電量制御部45はオルタネータ8の目標発電電圧を上昇させる発電指令値信号をオルタネータ8へ出力する。駆動輪6a及び6bの回転駆動力がオルタネータ8に入力され、オルタネータ8に指示する目標発電電圧が上昇することにより減速エネルギ回生が実行されてバッテリ9が充電される。
 惰性走行の間、惰性走行制御部42は、所定の終了条件が成立するか否かを判断する。例えば、例えば次の2条件(C1)及び(C2)のいずれかを満たす場合に、終了条件が成立する。
 (C1)運転者の加速意図がある。
 (C2)運転者が車両1の制動操作を行う。
 終了条件が成立する場合には、惰性走行制御部42は惰性走行を停止する。上記条件(A5)を惰性走行の開始条件にする場合には、条件(A5)が成立しない場合にも惰性走行を停止してもよい。
 惰性走行を停止する場合、惰性走行制御部42は、惰性走行停止命令をエンジン制御部44に出力する。惰性走行停止命令を受信すると、エンジン制御部44は、燃料噴射を再開してモータ7を駆動しエンジンクランキングを行う。エンジン2が始動すると、オイルポンプ15が作動することにより前後進切換機構11の前進用クラッチ16が接続される。以上により、エンジン再始動及び前進用クラッチ16の再接続が完了し、車両1の走行状態は、惰性走行からDレンジ走行へ移行する。
 一方で、減速エネルギ回生の間、惰性走行制御部42は、運転者の加速意図があるか否かを判断する。運転者の加速意図がある場合には、惰性走行制御部42は減速エネルギ回生を停止する。
 減速エネルギ回生を停止する場合、惰性走行制御部42は、回生停止命令をエンジン制御部44及び発電量制御部45へ出力する。回生停止命令を受信すると、エンジン制御部44は、エンジン2の燃料噴射を再開する。また、発電量制御部45は、目標発電電圧を下げる発電指令値信号をオルタネータ8へ出力し、オルタネータ8による発電を抑制して、エンジン2の負荷を低減する。これにより減速エネルギ回生が終了する。
 (動作)
 次に、第1実施形態に係る車両走行制御装置40の処理の一例を説明する。図3を参照する。
 ステップS10において惰性走行制御部42は、運転者の加速意図があるか否かを判断する。運転者の加速意図がある場合(ステップS10:Y)に、処理はステップS10に戻る。この場合、惰性走行及び減速エネルギ回生は開始しない。運転者の加速意図がない場合(ステップS10:N)に、処理はステップS11に進む。
 ステップS11において惰性走行制御部42は、運転者が制動操作を行ったか否かを判断する。制動操作が行われた場合(ステップS11:Y)に、処理はステップS10に戻る。この場合、惰性走行及び減速エネルギ回生は開始しない。制動操作が行われていない場合(ステップS11:N)に、処理はステップS12に進む。
 ステップS12において燃費低減効果予測部43は、惰性走行の燃費低減効果E1が減速エネルギ回生による燃費低減効果E2より高いか否かを判断する。燃費低減効果E1が燃費低減効果E2より高い場合(ステップS12:Y)に処理はステップS13に進む。
 燃費低減効果E1が燃費低減効果E2より高くない場合(ステップS12:N)に、処理はステップS14に進む。
 ステップS13において惰性走行制御部42は、惰性走行を実行する。その後に処理は終了する。
 ステップS14において惰性走行制御部42は、減速エネルギ回生を実行する。その後に処理は終了する。
 (第1実施形態の効果)
 惰性走行制御部42は、車両1の走行中の運転者の加速意図を判断する。加速意図が無いと判断した時に、燃費低減効果予測部43は、車両1のエンジン2と駆動輪6a及び6bとの間の動力伝達を遮断して車両1を走行させる惰性走行の燃費低減効果E1と、車両1の駆動輪6a及び6bの回転動力をオルタネータ8へ入力する減速エネルギ回生による燃費低減効果E2のいずれが高いかを予測する。惰性走行の燃費低減効果E1が減速エネルギ回生の燃費低減効果E2よりも高いと予測される場合に、惰性走行制御部42は惰性走行を実行する。惰性走行の燃費低減効果E1が減速エネルギ回生の燃費低減効果E2よりも高くないと予測される場合に惰性走行制御部42は減速エネルギ回生を実行する。
 このため、惰性走行の航続時間が短く、惰性走行による燃費低減効果よりも減速エネルギ回生ができないことによる損失が上回ることによって生じる燃費の悪化を低減することができる。
 (変形例)
 (1)車両走行制御装置40は、無段階変速機4の以外の形式の自動変速機を採用した車両にも適用することができる。例えば、車両走行制御装置40は、平行軸歯車式の自動変速機を採用した車両にも適用することができる。また、車両走行制御装置40は、駆動源として内燃機関のみを備える車両にもハイブリッド車両にも適用することができる。
 (2)惰性走行時に車両走行制御装置40は、電動オイルポンプ18の作動禁止命令の代わりに、前進用クラッチ16を積極的に解放する解放信号を無段階変速機4へ出力してもよい。
 (第2実施形態)
 次に、第2実施形態を説明する。車両1の走行速度Vvが高い場合には、車両1は安定した状態で走行していると考えられ、惰性走行が始まると惰性走行が比較的長く続くと考えられる。したがって、車両1の走行速度Vvが高い場合ほど惰性走行の燃費低減効果E1が大きくなると考えられる。このため、第2実施形態に係る車両走行制御装置40は、車両1の走行速度Vvに基づいて、惰性走行の燃費低減効果E1が減速エネルギ回生の燃費低減効果E2よりも高いか否かを予測する。
 第2実施形態の車両走行制御装置40の構成は、図2を参照して説明した第1実施形態の車両走行制御装置40の構成と同様である。
 燃費低減効果予測部43は、車輪速センサ29からの車輪速信号を受信する。運転者の加速意図が無いと判断した時、燃費低減効果予測部43は、車輪速信号に基づいて車両1の走行速度Vvを検出する。燃費低減効果予測部43は、走行速度Vvが所定の速度閾値Vt以上の場合に惰性走行の燃費低減効果E1が減速エネルギ回生の燃費低減効果E2よりも高いと予測する。燃費低減効果予測部43は、走行速度Vvが速度閾値未満の場合に惰性走行の燃費低減効果E1が減速エネルギ回生の燃費低減効果E2よりも高くないと予測する。所定の速度閾値Vtは例えば50km/hであってよい。
 次に、第2実施形態に係る車両走行制御装置40の処理の一例を説明する。図4を参照する。
 ステップS20及びS21の処理は、図3を参照して説明したステップS10及びS11の処理と同様である。制動操作が行われていない場合(ステップS21:N)に、処理はステップS22に進む。
 ステップS22において燃費低減効果予測部43は、運転者の加速意図が無いと判断した時の走行速度Vvを検出する。
 ステップS23において燃費低減効果予測部43は、走行速度Vvが速度閾値以上であるか否かを判断する。走行速度Vvが速度閾値以上である場合(ステップS23:Y)に処理はステップS24に進む。走行速度Vvが速度閾値未満である場合(ステップS23:Y)に処理はステップS25に進む。
 ステップS24及びS25の処理は、図3を参照して説明したステップS13及びS14の処理と同様である。
 (第2実施形態の効果)
 燃費低減効果予測部43は、運転者の加速意図が無いと判断した時の車両1の走行速度Vvを検出する。燃費低減効果予測部43は、走行速度Vvが速度閾値Vt以上の場合に惰性走行の燃費低減効果E1が減速エネルギ回生の燃費低減効果E2よりも高いと予測する。燃費低減効果予測部43は、走行速度Vvが速度閾値Tt未満の場合に惰性走行の燃費低減効果E1が減速エネルギ回生の燃費低減効果E2よりも高くないと予測する。
 このため、比較的簡易な方法で、惰性走行の燃費低減効果E1が減速エネルギ回生の燃費低減効果E2よりも高いか否かを予測して、惰性走行及び減速エネルギ回生のうちいずれか適切な一方を選択することができる。
 (変形例)
 (1)惰性走行の途中で走行速度Vvが速度閾値Vt未満に低下し車両1の状態が惰性走行から減速エネルギ回生に切り替わると、車両挙動の変化によって運転者が違和感を覚えるおそれがある。このため、速度閾値Vt以上の走行速度Vvの車両1が惰性走行を開始した後、この惰性走行の実行中に走行速度Vvが速度閾値Vt未満に低下した場合に、惰性走行制御部42は惰性走行を続行してもよい。このように車両1の状態が惰性走行から減速エネルギ回生に切り替わるのを防止することによって、運転者の違和感を防ぐことができる。
 (2)下り坂での減速エネルギ回生の途中で走行速度Vvが速度閾値Vt以上に増加して車両1の状態が減速エネルギ回生から惰性走行に切り替わると、車両挙動の変化によって運転者が違和感を覚えるおそれがある。このため、速度閾値Vt未満の走行速度Vvの車両1が減速エネルギ回生を開始した後、この減速エネルギ回生を下り坂で実行している間に走行速度Vvが速度閾値Vt以上に増加した場合に、惰性走行制御部42は減速エネルギ回生を続行してもよい。このように車両1の状態が減速エネルギ回生から惰性走行に切り替わるのを防止することによって、運転者の違和感を防ぐことができる。
 (第3実施形態)
 次に、第3実施形態を説明する。運転者が加速操作やブレーキ操作を行うと惰性走行は停止する。また、車両1が停止すると惰性走行は停止する。したがって、加速操作やブレーキ操作を招いたり車両1を停止させることで惰性走行を停止させる停止要因となりうる対象物が存在する場合には、この対象物と車両1との間の距離と相対速度とに応じて惰性走行の航続時間が異なる。
 このため、第3実施形態に係る車両走行制御装置40は、加速意図が無いと判断した時の、惰性走行の停止要因となりうる対象物と車両1との間の距離と相対速度とを検出する。車両走行制御装置40は、検出した距離と相対速度とに応じて、惰性走行の燃費低減効果E1が減速エネルギ回生による燃費低減効果E2よりも高いか否かを予測する。以下の説明において、惰性走行の停止要因となりうる対象物を単に「対象物」と表記することがある。
 例えば、車両走行制御装置40は、対象物との距離と相対速度のいずれか一方に応じて、対象物との距離と相対速度のいずれか他方の閾値を決定する。そして、車両走行制御装置40は、このように決定した閾値と対象物との距離と相対速度のいずれか他方との比較結果に応じて、惰性走行の燃費低減効果E1が減速エネルギ回生による燃費低減効果E2よりも高いか否かを予測する。
 すなわち、車両走行制御装置40は、対象物との距離に応じて対象物との相対速度の閾値を決定し、対象物との相対速度が閾値未満の場合に、惰性走行の燃費低減効果E1が減速エネルギ回生による燃費低減効果E2よりも高く、対象物との相対速度が閾値以上の場合に、惰性走行の燃費低減効果E1が減速エネルギ回生による燃費低減効果E2よりも高くないと判断する。
 または、車両走行制御装置40は、対象物との相対速度に応じて対象物との距離の閾値を決定し、対象物との距離が閾値を超える場合に、惰性走行の燃費低減効果E1が減速エネルギ回生による燃費低減効果E2よりも高く、対象物との距離が閾値以下の場合に、惰性走行の燃費低減効果E1が減速エネルギ回生による燃費低減効果E2よりも高くないと判断する。
 あるいは、車両走行制御装置40は、対象物との距離を相対速度で除算した比が閾値を超える場合に、惰性走行の燃費低減効果E1が減速エネルギ回生による燃費低減効果E2よりも高く、この比が閾値以下の場合に、惰性走行の燃費低減効果E1が減速エネルギ回生による燃費低減効果E2よりも高くないと判断してもよい。
 (構成)
 惰性走行の停止要因は、例えば運転者による車両1の制動操作を招く要因であってよい。また、惰性走行の停止要因は、例えば運転者による車両1の加速操作を招く要因であってもよい。
 惰性走行の停止要因となりうる対象物の一例は、車両1の前を走行する先行車である。先行車が存在する場合には、先行車へ車両1が接近した際のブレーキペダル21の操作及びその後の再加速によって惰性走行が停止するからである。
 第3実施形態の車両走行制御装置40の一例は、車両1の前を走行する先行車との車間距離Dvと相対速度Vrに応じて惰性走行の燃費低減効果E1が減速エネルギ回生による燃費低減効果E2よりも高いか否かを予測する。
 図5を参照する。図1を参照して説明した第1実施形態と同じ構成要素には同じ参照符号を使用する。車両1は、車両1と先行車との車間距離Dvを測定する距離測定部50及び相対速度Vrを測定する相対速度測定部51を備える。以下、先行車との車間距離Dv及び相対速度Vrをそれぞれ単に「車間距離Dv」及び「相対速度Vr」と表記することがある。
 距離測定部50及び相対速度測定部51は、例えば、車両の前方領域を走査するレーザレーダやミリ波レーダ等のレーダ装置であってもよい。また、距離測定部50は、車両の前方領域を撮像する撮像装置、及び前方領域の画像に基づいて車間距離Dvを算出する情報処理装置であってもよい。相対速度測定部51は、前方領域の画像に基づいて算出された車間距離Dvの時間変化を相対速度Vrとして算出する情報処理装置であってもよい。
 図6に第3実施形態の車両走行制御装置40の機能構成を示す。図2を参照して説明した第1実施形態と同じ構成要素には同じ参照符号を使用する。車両走行制御装置40は、相対速度Vrの閾値である相対速度閾値Vrtを車間距離Dvに応じて決定する閾値決定部46を備える。
 閾値決定部46は、例えば図7に示すマップに従って、運転者の加速意図が無いと判断した時の車両1と先行車との間の車間距離Dvに応じて相対速度閾値Vrtを決定する。このマップは、例えば実験等により予め決定してエンジンコントロールユニット20が備える記憶装置内に格納しておくことができる。
 このマップでは、車間距離Dvについて0<D1となる距離D1が予め設定される。なお、距離D1は、車間距離DvがD1以下である場合には相対速度Vrに関わらず燃費低減効果E1が減速エネルギ回生による燃費低減効果E2よりも高くならない値に設定される。車間距離Dvが0以上D1以下の範囲にある場合、車間距離Dvに関わらず相対速度閾値Vrtは0である。車間距離DvがD1より大きい範囲では、車間距離Dvが長いほど相対速度閾値Vrtは大きくなる。
 図7に示すマップを使用する代わりに、閾値決定部46は、車間距離Dvに応じて相対速度閾値Vrtを算出する所定の計算式に従って相対速度閾値Vrtを決定してもよい。
 燃費低減効果予測部43は、運転者の加速意図が無いと判断した時の相対速度Vrが相対速度閾値Vrt未満の場合に惰性走行の燃費低減効果E1が減速エネルギ回生の燃費低減効果E2よりも高いと予測する。燃費低減効果予測部43は、相対速度Vrが相対速度閾値Vrt以上の場合に惰性走行の燃費低減効果E1が減速エネルギ回生の燃費低減効果E2よりも高くないと予測する。
 (動作)
 次に、第3実施形態に係る車両走行制御装置40の処理の一例を説明する。図8を参照する。
 ステップS30及びS31の処理は、図3を参照して説明したステップS10及びS11の処理と同様である。制動操作が行われていない場合(ステップS31:N)に、処理はステップS22に進む。
 ステップS32において距離測定部50は、運転者の加速意図が無いと判断した時の車間距離Dvを検出する。
 ステップS33において閾値決定部46は、車間距離Dvに応じて相対速度閾値Vrtを決定する。ステップS34において相対速度測定部51は、運転者の加速意図が無いと判断した時の相対速度Vrを検出する。ステップS34の処理の後にステップS33の処理が実行されてもよい。
 ステップS35において燃費低減効果予測部43は、相対速度Vrが相対速度閾値Vrt未満であるか否かを判断する。相対速度Vrが相対速度閾値Vrt未満である場合(ステップS35:Y)に、処理はステップS36へ進む。相対速度Vrが相対速度閾値Vrt以上である場合(ステップS35:N)に、処理はステップS37へ進む。
 ステップS36及びS37の処理は、図3を参照して説明したステップS13及びS14の処理と同様である。
 (第3実施形態の効果)
 (1)距離測定部50及び相対速度測定部51は、運転者の加速意図が無いと判断した時の、惰性走行の停止要因となりうる対象物と車両1との間の距離と相対速度とを検出する。燃費低減効果予測部43は、検出した距離と相対速度とに応じて、惰性走行の燃費低減効果E1が減速エネルギ回生による燃費低減効果E2よりも高いか否かを予測する。
 このため、惰性走行の停止要因が存在する場合において、惰性走行の燃費低減効果E1が減速エネルギ回生の燃費低減効果E2よりも高いか否かを予測して、惰性走行及び減速エネルギ回生のうちいずれか適切な一方を選択することができる。
 (2)閾値決定部46は、運転者の加速意図が無いと判断した時の、惰性走行の停止要因となりうる対象物と車両1との間の距離と相対速度のいずれか一方に応じて距離と相対速度のいずれか他方の閾値を決定する。燃費低減効果予測部43は、決定した閾値と距離と相対速度のいずれか他方との比較結果に応じて惰性走行の燃費低減効果E1が減速エネルギ回生による燃費低減効果E2よりも高いか否かを予測する。
 このため、性走行の停止要因となりうる対象物と車両1との間の距離と相対速度に基づいて惰性走行の燃費低減効果E1が減速エネルギ回生の燃費低減効果E2よりも高いか否かを予測して、惰性走行及び減速エネルギ回生のうちいずれか適切な一方を選択することができる。
 (3)惰性走行の停止要因となりうる対象物として車両1の前を走行する先行車が存在する場合、燃費低減効果予測部43は、先行車と車両1との車間距離Dv及び相対速度Vrに基づいて惰性走行の燃費低減効果E1が減速エネルギ回生による燃費低減効果E2よりも高いか否かを予測する。
 このため、車両1の前を走行する先行車が存在する場合において、惰性走行の燃費低減効果E1が減速エネルギ回生の燃費低減効果E2よりも高いか否かを予測して、惰性走行及び減速エネルギ回生のうちいずれか適切な一方を選択することができる。
 (変形例)
 閾値決定部46は、相対速度Vrに応じて車間距離Dvの閾値Dを決定してもよい。燃費低減効果予測部43は、車間距離Dvが閾値Dより長い場合に惰性走行の燃費低減効果E1が減速エネルギ回生の燃費低減効果E2よりも高いと予測してもよい。燃費低減効果予測部43は、車間距離Dvが閾値D以下の場合に惰性走行の燃費低減効果E1が減速エネルギ回生の燃費低減効果E2よりも高くないと予測してもよい。
 (第4実施形態)
 次に、第4実施形態を説明する。惰性走行の停止要因は、例えば車両1を停止させる要因であってよい。車両1を停止させることにより惰性走行の停止要因となりうる対象物の一例は赤信号である。
 第4実施形態の車両走行制御装置40は、車両1の進路に存在する赤信号と車両1との距離Drと、赤信号と車両1との相対速度である車両1の走行速度Vvに応じて惰性走行の燃費低減効果E1が減速エネルギ回生による燃費低減効果E2よりも高いか否かを予測する。
 (構成)
 図9を参照する。図1を参照して説明した第1実施形態と同じ構成要素には同じ参照符号を使用する。車両1は、車両1の進路前方に存在する赤信号の信号機までの距離Drを検出する信号機検出部52を備える。
 信号機検出部52は、例えば、車両1の現在位置を測定するGPS(Global Positioning System)装置や慣性航法装置等の測位装置と、道路上の信号機の位置情報が記憶されたナビゲーション装置等の情報処理装置と、道路上の信号機の点灯状態を路車間通信や車車間通信を介して受信する受信機により構成されてよい。
 また、信号機検出部52は、車両の前方領域を撮像する撮像装置、及び前方領域の画像に基づいて車両1の進路前方に存在する赤信号までの距離Drを算出する情報処理装置であってもよい。
 図10に第4実施形態の車両走行制御装置40の機能構成を示す。図2を参照して説明した第1実施形態と同じ構成要素には同じ参照符号を使用する。
 燃費低減効果予測部43は、車両1の走行速度Vvが固定の第1速度閾値Vt1未満の場合には、赤信号までの距離Drに関わらず惰性走行の燃費低減効果E1が減速エネルギ回生の燃費低減効果E2よりも高くないと予測する。この結果、走行速度Vvが第1速度閾値Vt1未満の場合には、惰性走行制御部42は距離Drに関わらず減速エネルギ回生を実行する。
 車両走行制御装置40は、走行速度Vvの閾値である可変の第2速度閾値Vt2を赤信号までの距離Drに応じて決定する閾値決定部46を備える。
 閾値決定部46は、例えば図11に示すマップに従って、運転者の加速意図が無いと判断した時の車両1から赤信号までの距離Drに応じて第2速度閾値Vt2を決定する。このマップは、例えば実験等により予め決定してエンジンコントロールユニット20が備える記憶装置内に格納しておくことができる。
 このマップでは、赤信号までの距離Drについて0<D2となる距離D2が予め設定される。なお、距離D2は、距離DrがD2以下である場合には走行速度Vvに関わらず燃費低減効果E1が減速エネルギ回生による燃費低減効果E2よりも高くならない値に設定される。距離Drが0以上D2以下の範囲にある場合、距離Drに関わらず第2速度閾値Vt2は0である。距離DrがD2より大きい範囲では、距離Drが増加すると第2速度閾値Vt2は第1速度閾値Vt1から増加する。
 図11に示すマップを使用する代わりに、閾値決定部46は、赤信号までの距離Drに応じて第2速度閾値Vt2を算出する所定の計算式に従って第2速度閾値Vt2を決定してもよい。
 燃費低減効果予測部43は、走行速度Vvが第2速度閾値Vt2未満の場合に惰性走行の燃費低減効果E1が減速エネルギ回生の燃費低減効果E2よりも高いと予測する。燃費低減効果予測部43は、走行速度Vvが第2速度閾値Vt2以上の場合に惰性走行の燃費低減効果E1が減速エネルギ回生の燃費低減効果E2よりも高くないと予測する。
 (動作)
 次に、第4実施形態に係る車両走行制御装置40の処理の一例を説明する。図12を参照する。
 ステップS40及びS41の処理は、図3を参照して説明したステップS10及びS11の処理と同様である。制動操作が行われていない場合(ステップS41:N)に、処理はステップS42に進む。
 ステップS42において、信号機検出部52は、運転者の加速意図が無いと判断した時の車両1から赤信号までの距離Drを検出する。ステップS43において燃費低減効果予測部43は、所定距離内に赤信号があるか否かを判断する。所定距離内に赤信号がある場合(ステップS43:Y)に処理はステップS44に進む。所定距離内に赤信号がない場合(ステップS43:N)に燃費低減効果予測部43は、惰性走行の燃費低減効果E1が減速エネルギ回生の燃費低減効果E2よりも高いと判断し、処理をステップS48に進める。
 ステップS44において燃費低減効果予測部43は、運転者の加速意図が無いと判断した時の走行速度Vvを検出する。ステップS45において燃費低減効果予測部43は、走行速度Vvが第1速度閾値Vt1未満であるか否かを判断する。走行速度Vvが第1速度閾値Vt1未満である場合(ステップS45:Y)に燃費低減効果予測部43は、惰性走行の燃費低減効果E1が減速エネルギ回生の燃費低減効果E2よりも高くないと判断し、処理をステップS49へ進める。走行速度Vvが第1速度閾値Vt1以上である場合(ステップS45:N)に、処理はステップS46に進む。
 ステップS46において閾値決定部46は、赤信号までの距離Drに応じて第2速度閾値Vt2を決定する。
 ステップS47において燃費低減効果予測部43は、走行速度Vvが第2速度閾値Vt2未満であるか否かを判断する。走行速度Vvが第2速度閾値Vt2未満である場合(ステップS47:Y)に、処理はステップS48へ進む。走行速度Vvが第2速度閾値Vt2以上である場合(ステップS47:N)に、処理はステップS49へ進む。
 ステップS48及びS49の処理は、図3を参照して説明したステップS13及びS14の処理と同様である。
 (第4実施形態の効果)
 (1)惰性走行の停止要因となりうる対象物として車両1の進路上の赤信号が存在する場合、燃費低減効果予測部43は、車両1と赤信号との間の距離Drと、車両1と赤信号との相対速度である車両1の走行速度Vvに基づいて惰性走行の燃費低減効果E1が減速エネルギ回生による燃費低減効果E2よりも高いか否かを予測する。
 このため、車両1の進路に赤信号が存在する場合において、惰性走行の燃費低減効果E1が減速エネルギ回生の燃費低減効果E2よりも高いか否かを予測して、惰性走行及び減速エネルギ回生のうちいずれか適切な一方を選択することができる。
 (変形例)
 閾値決定部46は、走行速度Vvに応じて赤信号までの距離Drの閾値Dを決定してもよい。燃費低減効果予測部43は、距離Drが閾値Dより長い場合に惰性走行の燃費低減効果E1が減速エネルギ回生の燃費低減効果E2よりも高いと予測してもよい。燃費低減効果予測部43は、距離Drが閾値D以下の場合に惰性走行の燃費低減効果E1が減速エネルギ回生の燃費低減効果E2よりも高くないと予測してもよい。
 (第5実施形態)
 次に、第5実施形態を説明する。交差点で車両1が右折又は左折する際に運転者が車両1の制動操作を行うと惰性走行が停止する。または、右折又は左折の終了後に車両1を再加速させることによって惰性走行が停止する。
 したがって、ナビゲーション装置により車両1の予定進路が予め設定されている場合には、惰性走行の停止要因として、車両1の予定進路において車両1が次に右折又は左折する予定の交差点を検出することができる。
 第5実施形態の車両走行制御装置40は、予め設定された車両1の予定進路において車両1が次に右折又は左折する予定の交差点と車両1との距離Dtと、交差点と車両1との相対速度である車両1の走行速度Vvに応じて惰性走行の燃費低減効果E1が減速エネルギ回生による燃費低減効果E2よりも高いか否かを予測する。
 (構成)
 図13を参照する。図1を参照して説明した第1実施形態と同じ構成要素には同じ参照符号を使用する。車両1は、予め設定された車両1の予定進路において車両1が次に右折又は左折する予定の交差点と車両1との距離Dtを検出する交差点検出部53を備える。
 交差点検出部53は、例えば、車両1の現在位置を測定するGPS(Global Positioning System)装置や慣性航法装置等の測位装置と、交差点の位置情報を含む地図データベースを備え車両1の経路検索及び経路案内を行うナビゲーション装置などの情報処理装置である。交差点検出部53は、車両1の経路検索によって設定された車両1の予定進路において次に右折又は左折する予定の交差点の位置を検出し、交差点の位置と車両1との現在位置に基づいて、車両1と交差点の距離Dtを算出する。
 図14に第5実施形態の車両走行制御装置40の機能構成を示す。図2を参照して説明した第1実施形態と同じ構成要素には同じ参照符号を使用する。
 燃費低減効果予測部43は、車両1の走行速度Vvが固定の第3速度閾値Vt3未満の場合には、次に右折又は左折する予定の交差点までの距離Dtに関わらず惰性走行の燃費低減効果E1が減速エネルギ回生の燃費低減効果E2よりも高くないと予測する。この結果、走行速度Vvが第3速度閾値Vt3未満の場合には、惰性走行制御部42は距離Dtに関わらず減速エネルギ回生を実行する。
 車両走行制御装置40は、走行速度Vvの閾値である可変の第2速度閾値Vt2を、次に右折又は左折する予定の交差点までの距離Dtに応じて決定する閾値決定部46を備える。
 閾値決定部46は、例えば図15に示すマップに従って、運転者の加速意図が無いと判断した時の車両1から次に右折又は左折する予定の交差点までの距離Dtに応じて第2速度閾値Vt2を決定する。このマップは、例えば実験等により予め決定してエンジンコントロールユニット20が備える記憶装置内に格納しておくことができる。
 このマップでは、次に右折又は左折する予定の交差点までの距離Dtについて0<D3となる距離D3が予め設定される。なお、距離D3は、距離DtがD3以下である場合には走行速度Vvに関わらず燃費低減効果E1が減速エネルギ回生による燃費低減効果E2よりも高くならない値に設定される。距離Dtが0以上D3以下の範囲にある場合、距離Dtに関わらず第2速度閾値Vt2は0である。距離DtがD3より大きい範囲では、距離Dtが増加すると第2速度閾値Vt2は第3速度閾値Vt3から増加する。
 図15に示すマップを使用する代わりに、次に右折又は左折する予定の交差点までの距離Dtに応じて第2速度閾値Vt2を算出する所定の計算式に従って第2速度閾値Vt2を決定してもよい。
 燃費低減効果予測部43は、走行速度Vvが第2速度閾値Vt2未満の場合に惰性走行の燃費低減効果E1が減速エネルギ回生の燃費低減効果E2よりも高いと予測する。燃費低減効果予測部43は、走行速度Vvが第2速度閾値Vt2以上の場合に惰性走行の燃費低減効果E1が減速エネルギ回生の燃費低減効果E2よりも高くないと予測する。
 (動作)
 次に、第5実施形態に係る車両走行制御装置40の処理の一例を説明する。図16を参照する。
 ステップS50及びS51の処理は、図3を参照して説明したステップS10及びS11の処理と同様である。制動操作が行われていない場合(ステップS51:N)に、処理はステップS52に進む。
 ステップS52において、信号機検出部52は、運転者の加速意図が無いと判断した時の車両1から次に右折又は左折する予定の交差点までの距離Dtを検出する。ステップS53において燃費低減効果予測部43は、次に右折又は左折する予定の交差点が所定距離内にあるか否かを判断する。所定距離内に交差点がある場合(ステップS53:Y)に処理はステップS54に進む。所定距離内に交差点がない場合(ステップS53:N)に燃費低減効果予測部43は、惰性走行の燃費低減効果E1が減速エネルギ回生の燃費低減効果E2よりも高いと判断し、処理をステップS58に進める。
 ステップS54において燃費低減効果予測部43は、運転者の加速意図が無いと判断した時の走行速度Vvを検出する。ステップS55において燃費低減効果予測部43は、走行速度Vvが第3速度閾値Vt3未満であるか否かを判断する。走行速度Vvが第3速度閾値Vt3未満である場合(ステップS55:Y)に燃費低減効果予測部43は、惰性走行の燃費低減効果E1が減速エネルギ回生の燃費低減効果E2よりも高くないと判断し、処理をステップS59へ進める。走行速度Vvが第3速度閾値Vt3以上である場合(ステップS55:N)に、処理はステップS56に進む。
 ステップS56において閾値決定部46は、次に右折又は左折する予定の交差点までの距離Dtに応じて第2速度閾値Vt2を決定する。
 ステップS57~S59の処理は、図12を参照して説明したステップS47~S49の処理と同様である。
 (第5実施形態の効果)
 (1)惰性走行の停止要因となりうる対象物として、予め設定された車両1の予定進路において車両1が次に右折又は左折する予定の交差点を検出する。燃費低減効果予測部43は、車両1と次に右折又は左折する予定の交差点との間の距離Dtと、この交差点と車両1との相対速度である車両1の走行速度Vvに基づいて惰性走行の燃費低減効果E1が減速エネルギ回生による燃費低減効果E2よりも高いか否かを予測する。
 このため、車両1が次に右折又は左折する予定の交差点が決定されている場合において、惰性走行の燃費低減効果E1が減速エネルギ回生の燃費低減効果E2よりも高いか否かを予測して、惰性走行及び減速エネルギ回生のうちいずれか適切な一方を選択することができる。
 (変形例)
 閾値決定部46は、走行速度Vvに応じて、車両1が次に右折又は左折する予定の交差点と車両1との距離Dtの閾値Dを決定してもよい。燃費低減効果予測部43は、距離Dtが閾値Dより長い場合に惰性走行の燃費低減効果E1が減速エネルギ回生の燃費低減効果E2よりも高いと予測してもよい。燃費低減効果予測部43は、距離Dtが閾値D以下の場合に惰性走行の燃費低減効果E1が減速エネルギ回生の燃費低減効果E2よりも高くないと予測してもよい。
 ここでは、限られた数の実施形態を参照しながら説明したが、権利範囲はそれらに限定されるものではなく、上記の開示に基づく各実施形態の改変は当業者にとって自明なことである。
 1…車両、2…エンジン、2a…回転数センサ、3…トルクコンバータ、4…無段階変速機、5…ディファレンシャルギア、6a~6b…駆動輪、7…モータ、8…オルタネータ、9…バッテリ、10…ロックアップクラッチ、11…前後進切換機構、12…プライマリプーリ、13…セカンダリプーリ、14…ベルト、15…オイルポンプ、16…前進用クラッチ、17…後進用ブレーキ、18…電動オイルポンプ、19…回転数センサ、20…エンジンコントロールユニット、21…ブレーキペダル、22…ブレーキスイッチ、23…アクセルペダル、24…アクセルペダル開度センサ、25…マスタシリンダ、26…マスタシリンダ圧センサ、27…マスタバック、29a~29b…車輪速センサ、30…変速機コントロールユニット、40…車両走行制御装置、41…アイドルストップ制御部、42…惰性走行制御部、43…燃費低減効果予測部、44…エンジン制御部、45…発電量制御部、46…閾値決定部、50…距離測定部、51…相対速度測定部、52…信号機検出部、53…交差点検出部

Claims (10)

  1.  車両の走行中の運転者の加速意図を判断し、
     前記加速意図が無いと判断した時に、前記車両のエンジンと駆動輪との間の動力伝達を遮断して前記車両を走行させる惰性走行の燃費低減効果と、前記車両の駆動輪の回転動力を電動機へ入力する減速エネルギ回生の燃費低減効果とのいずれが高いかを予測し、
     前記惰性走行の燃費低減効果が前記減速エネルギ回生の燃費低減効果よりも高いと予測される場合に前記惰性走行を実行し、
     前記惰性走行の燃費低減効果が前記減速エネルギ回生の燃費低減効果よりも高くないと予測される場合に前記減速エネルギ回生を実行する、
     ことを特徴とする車両走行制御方法。
  2.  前記加速意図が無いと判断した時の前記車両の速度を検出し、
     前記速度が速度閾値以上の場合に前記惰性走行の燃費低減効果が前記減速エネルギ回生の燃費低減効果よりも高いと予測し、前記速度が速度閾値未満の場合に前記惰性走行の燃費低減効果が前記減速エネルギ回生の燃費低減効果よりも高くないと予測する、
     ことを特徴とする請求項1に記載の車両走行制御方法。
  3.  前記惰性走行の実行中に前記速度が前記閾値未満になった場合に前記惰性走行を続行することを特徴とする請求項2に記載の車両走行制御方法。
  4.  下り坂での前記減速エネルギ回生の実行中に前記速度が前記閾値以上になった場合に前記減速エネルギ回生を続行することを特徴とする請求項2又は3に記載の車両走行制御方法。
  5.  前記加速意図が無いと判断した時の、前記惰性走行の停止要因となりうる対象物と前記車両との間の距離と相対速度とを検出し、
     前記距離と前記相対速度とに応じて、前記惰性走行の燃費低減効果が前記減速エネルギ回生による燃費低減効果よりも高いか否かを予測する、
     ことを特徴とする請求項1に記載の車両走行制御方法。
  6.  前記距離と前記相対速度のいずれか一方に応じて前記距離と前記相対速度のいずれか他方の閾値を決定し、
     前記いずれか他方と前記閾値との比較結果に応じて前記惰性走行の燃費低減効果が前記減速エネルギ回生による燃費低減効果よりも高いか否かを予測する、
     ことを特徴とする請求項5に記載の車両走行制御方法。
  7.  前記対象物は、前記車両の前を走行する先行車であることを特徴とする請求項5又は6に記載の車両走行制御方法。
  8.  前記対象物は前記車両の進路に存在する赤信号であり、前記相対速度は前記車両の走行速度であることを特徴とする、請求項5又は6に記載の車両走行制御方法。
  9.  前記対象物は、予め設定された前記車両の予定進路において前記車両が次に右折又は左折する交差点であり、前記相対速度は前記車両の走行速度であることを特徴とする請求項5又は6に記載の車両走行制御方法。
  10.  運転者のアクセル踏込量を検出するアクセル踏込量検出装置と、
     エンジン及び電動機と駆動輪との間で動力を伝達するクラッチ及び前記電動機を制御する制御装置と、を備え、
     前記制御装置は、前記アクセル踏込量が無くなった時に、前記エンジンと前記駆動輪との間の動力伝達を遮断して車両を走行させる惰性走行の燃費低減効果と、前記駆動輪の回転動力を前記電動機へ入力する減速エネルギ回生による燃費低減効果のいずれが高いかを予測し、前記惰性走行の燃費低減効果が前記減速エネルギ回生の燃費低減効果よりも高いと予測される場合に前記クラッチにより前記エンジンと前記駆動輪を遮断し、前記惰性走行の燃費低減効果が前記減速エネルギ回生の燃費低減効果よりも高くないと予測される場合に前記クラッチにより前記電動機と前記駆動輪を接続する、
     ことを特徴とする車両走行制御装置。
PCT/JP2015/004444 2015-09-01 2015-09-01 車両走行制御方法及び車両走行制御装置 WO2017037760A1 (ja)

Priority Applications (11)

Application Number Priority Date Filing Date Title
CN201580082811.3A CN107949513B (zh) 2015-09-01 2015-09-01 车辆行驶控制方法及车辆行驶控制装置
RU2018111238A RU2700911C1 (ru) 2015-09-01 2015-09-01 Способ управления движением транспортного средства и устройство управления движением транспортного средства
MX2018002439A MX371180B (es) 2015-09-01 2015-09-01 Método de control de desplazamiento de vehículo y dispositivo de control de desplazamiento de vehículo.
US15/756,912 US10532731B2 (en) 2015-09-01 2015-09-01 Vehicle traveling control method and vehicle traveling control device
KR1020187008575A KR102292291B1 (ko) 2015-09-01 2015-09-01 차량 주행 제어 방법 및 차량 주행 제어 장치
PCT/JP2015/004444 WO2017037760A1 (ja) 2015-09-01 2015-09-01 車両走行制御方法及び車両走行制御装置
MYPI2018700788A MY193546A (en) 2015-09-01 2015-09-01 Vehicle traveling control method and vehicle traveling control device
CA2997232A CA2997232C (en) 2015-09-01 2015-09-01 Vehicle traveling control method and vehicle traveling control device
JP2017537037A JP6536678B2 (ja) 2015-09-01 2015-09-01 車両走行制御方法及び車両走行制御装置
BR112018004146-7A BR112018004146B1 (pt) 2015-09-01 2015-09-01 Método de controle de deslocamento de veículo e dispositivo de controle de deslocamento de veículo
EP15902886.9A EP3345798B1 (en) 2015-09-01 2015-09-01 Vehicle travel control method and vehicle travel control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/004444 WO2017037760A1 (ja) 2015-09-01 2015-09-01 車両走行制御方法及び車両走行制御装置

Publications (1)

Publication Number Publication Date
WO2017037760A1 true WO2017037760A1 (ja) 2017-03-09

Family

ID=58188719

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/004444 WO2017037760A1 (ja) 2015-09-01 2015-09-01 車両走行制御方法及び車両走行制御装置

Country Status (11)

Country Link
US (1) US10532731B2 (ja)
EP (1) EP3345798B1 (ja)
JP (1) JP6536678B2 (ja)
KR (1) KR102292291B1 (ja)
CN (1) CN107949513B (ja)
BR (1) BR112018004146B1 (ja)
CA (1) CA2997232C (ja)
MX (1) MX371180B (ja)
MY (1) MY193546A (ja)
RU (1) RU2700911C1 (ja)
WO (1) WO2017037760A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019039105A1 (ja) * 2017-08-25 2019-02-28 日立オートモティブシステムズ株式会社 移動体の運動制御装置
DE102017129018A1 (de) * 2017-12-06 2019-06-06 Man Truck & Bus Ag Verfahren zum Betreiben eines Kraftfahrzeugs
US10793135B2 (en) * 2018-01-12 2020-10-06 Ford Global Technologies, Llc Hybrid electric vehicle fuel conservation system
US11117566B2 (en) * 2018-05-08 2021-09-14 Ford Global Technologies, Llc Methods and systems of a hybrid vehicle
US11345327B2 (en) 2018-08-06 2022-05-31 Xl Hybrids, Inc. Throttle signal controller for a dynamic hybrid vehicle
GB2579178B (en) * 2018-11-21 2021-04-14 Jaguar Land Rover Ltd Vehicle control method
CN112572403B (zh) * 2019-09-12 2022-07-15 比亚迪股份有限公司 混合动力汽车及其发电控制方法和系统
JP7319893B2 (ja) * 2019-11-06 2023-08-02 株式会社Subaru 車両用制御装置
CN111038512B (zh) * 2019-12-25 2022-06-28 联合汽车电子有限公司 车辆减速控制方法及整车控制器
KR102543957B1 (ko) * 2021-12-15 2023-06-15 주식회사 현대케피코 마일드 하이브리드 시스템의 코스팅 제어 방법 및 장치
CN114407875B (zh) * 2022-01-24 2024-02-13 徐州重型机械有限公司 工程机械混合动力控制方法、混合动力系统及工程机械

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07266932A (ja) * 1994-03-31 1995-10-17 Suzuki Motor Corp エンジンの自動始動停止装置
JP2006118681A (ja) * 2004-10-25 2006-05-11 Aisin Aw Co Ltd ハイブリッド車用駆動装置及びその制御方法
WO2011092855A1 (ja) * 2010-01-29 2011-08-04 トヨタ自動車株式会社 車両制御装置
JP2012131292A (ja) * 2010-12-20 2012-07-12 Daimler Ag ハイブリッド電気自動車の制御装置
JP2014159213A (ja) * 2013-02-20 2014-09-04 Masahiro Watanabe 省エネルギー減速走行制御方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009027553A1 (de) 2009-07-08 2011-01-20 Robert Bosch Gmbh Verfahren zum Betreiben einer Rekuperationseinrichtung eines Kraftfahrzeugs
JP5059246B2 (ja) 2011-01-20 2012-10-24 日野自動車株式会社 回生制御装置、ハイブリッド自動車および回生制御方法、並びにプログラム
DE102013104508A1 (de) * 2012-05-04 2013-11-07 Ford Global Technologies, Llc Verfahren und Systeme für Triebstrangmodusübergänge
US9005075B2 (en) * 2012-05-04 2015-04-14 Ford Global Technologies, Llc Methods and systems for conditionally entering a driveline sailing mode
JP6083438B2 (ja) 2013-02-07 2017-02-22 トヨタ自動車株式会社 ハイブリッド車両の走行制御装置
CN105189235B (zh) * 2013-03-14 2018-01-19 艾里逊变速箱公司 用于混合动力车的在再生过程中断开发动机动力传动系的系统及方法
DE102013219345A1 (de) 2013-09-26 2015-03-26 Robert Bosch Gmbh Verfahren zur Steuerung einer Antriebseinheit eines Kraftfahrzeugs
FR3012781B1 (fr) * 2013-11-05 2015-11-20 Renault Sas Procede et systeme de commande du freinage recuperatif d'un vehicule automobile electrique ou hybride.
CN105564424B (zh) * 2014-10-31 2018-09-14 丰田自动车株式会社 车辆控制设备和车辆控制方法
JP2017169363A (ja) * 2016-03-16 2017-09-21 三菱自動車工業株式会社 車両の制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07266932A (ja) * 1994-03-31 1995-10-17 Suzuki Motor Corp エンジンの自動始動停止装置
JP2006118681A (ja) * 2004-10-25 2006-05-11 Aisin Aw Co Ltd ハイブリッド車用駆動装置及びその制御方法
WO2011092855A1 (ja) * 2010-01-29 2011-08-04 トヨタ自動車株式会社 車両制御装置
JP2012131292A (ja) * 2010-12-20 2012-07-12 Daimler Ag ハイブリッド電気自動車の制御装置
JP2014159213A (ja) * 2013-02-20 2014-09-04 Masahiro Watanabe 省エネルギー減速走行制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3345798A4 *

Also Published As

Publication number Publication date
EP3345798B1 (en) 2022-04-20
US10532731B2 (en) 2020-01-14
MX371180B (es) 2020-01-22
BR112018004146B1 (pt) 2022-07-12
MX2018002439A (es) 2018-06-15
CN107949513A (zh) 2018-04-20
CN107949513B (zh) 2020-11-10
US20180236995A1 (en) 2018-08-23
EP3345798A4 (en) 2019-01-16
JPWO2017037760A1 (ja) 2018-07-12
MY193546A (en) 2022-10-18
KR20180044974A (ko) 2018-05-03
JP6536678B2 (ja) 2019-07-03
BR112018004146A2 (ja) 2018-10-02
EP3345798A1 (en) 2018-07-11
CA2997232A1 (en) 2017-03-09
CA2997232C (en) 2022-07-26
KR102292291B1 (ko) 2021-08-24
RU2700911C1 (ru) 2019-09-23

Similar Documents

Publication Publication Date Title
WO2017037760A1 (ja) 車両走行制御方法及び車両走行制御装置
EP2928745B1 (en) Hybrid electric vehicle control system and method
JP7024326B2 (ja) ハイブリッド車両
US20120330505A1 (en) Vehicle control device
JP5590153B2 (ja) 車両制御装置
US20160185337A1 (en) Vehicle control device
EP3179125B1 (en) Vehicle control device, and vehicle control method
CN106740850B (zh) 车辆控制设备
JP6481535B2 (ja) 惰性走行制御方法及び惰性走行制御装置
JP2008213699A (ja) 車両の運転制御装置および運転制御方法
JP6683290B2 (ja) ハイブリッド車両の制御方法
WO2017183519A1 (ja) 車両制御装置
JPWO2019069409A1 (ja) 車両の制御方法及び制御装置
JP6302269B2 (ja) 車両用制御装置
JP6468111B2 (ja) 惰性走行制御方法及び惰性走行制御装置
JP6582685B2 (ja) 車両走行制御方法及び車両走行制御装置
WO2018008536A1 (ja) 車両用制御装置
JP6389664B2 (ja) 車両用制御装置
JP2014172456A (ja) アイドルストップ車の制御装置
JP6481536B2 (ja) エンジン制御方法及びエンジン制御装置
JP2023001690A (ja) ハイブリッド車両の走行制御装置
KR20150132057A (ko) 하이브리드 차량의 hev 진입 제어 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15902886

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017537037

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2018/002439

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2997232

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15756912

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187008575

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2018111238

Country of ref document: RU

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018004146

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2015902886

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 112018004146

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180301