WO2017036182A1 - 一种采油废水处理及其循环利用方法 - Google Patents

一种采油废水处理及其循环利用方法 Download PDF

Info

Publication number
WO2017036182A1
WO2017036182A1 PCT/CN2016/082615 CN2016082615W WO2017036182A1 WO 2017036182 A1 WO2017036182 A1 WO 2017036182A1 CN 2016082615 W CN2016082615 W CN 2016082615W WO 2017036182 A1 WO2017036182 A1 WO 2017036182A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
ultrafiltration
filtration
recycling
wastewater
Prior art date
Application number
PCT/CN2016/082615
Other languages
English (en)
French (fr)
Inventor
张世文
Original Assignee
波鹰(厦门)科技有限公司
张世文
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 波鹰(厦门)科技有限公司, 张世文 filed Critical 波鹰(厦门)科技有限公司
Publication of WO2017036182A1 publication Critical patent/WO2017036182A1/zh

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Definitions

  • the invention belongs to the field of water pollution control of environmental engineering, and more specifically to a method for treating oil production wastewater and recycling thereof.
  • the produced water in the oil field is mainly the sewage that the crude oil is released during the production process.
  • the treatment of oilfield produced water can be carried out in various ways according to different requirements of discharge or reuse.
  • As the water supply of steam generator or boiler it is necessary to strictly control the easily scalded ion content such as calcium ion and magnesium ion in water, total salinity and water.
  • the main pollutants after the oilfield produced water has been removed by general pretreatment to remove most of the oil content and suspended solids are: Calcium ion 200 ⁇ 3000mg/L, magnesium ion 20 ⁇ 500mg/L, sodium ion 200 ⁇ 8000mg/L, chloride ion 200 ⁇ 10000mg/L, oil 30 ⁇ 300 Mg/L and COD are 100-500mg/L .
  • Calcium ions, magnesium ions, hydrogencarbonate ions and the like are still high.
  • the total hardness is too high, and the membrane separation technology is used for desalination treatment, which is easy to cause calcification and fouling of the membrane.
  • the pores of the membrane material are filled with calcium carbonate, magnesium carbonate and the like.
  • the effluent quality of the membrane is deteriorated, serious Affecting the stable operation of the membrane treatment system
  • the calcification of the membrane makes the membrane material brittle and easily broken, resulting in the service life of the membrane being shortened from the usual three years or more to less than one year, reducing the operational life of the membrane. Frequent replacement of membrane modules is not economically viable.
  • the invention provides a method for treating oil production wastewater and recycling thereof, and the main purpose thereof is to overcome the defects of membrane calcification, serious fouling and high cost in the prior art oilfield water film processing.
  • a method for treating oil production wastewater and recycling thereof comprises the following steps:
  • Degreasing 200-3000 mg/L of calcium ion, 20-500 mg/L of magnesium ion, 200-8000 mg/L of sodium ion, 200-10000 mg/L of chloride ion, 30-300 oil
  • the oil-removing wastewater with mg/L and COD of 100-500 mg/L is subjected to degreasing process to remove oil stains, and the degreasing process is a kind of air flotation, activated carbon adsorption, clay adsorption or diatomaceous earth adsorption;
  • step (1) After de-oiling through step (1), it contains 200-3000 mg/L of calcium ions, 20-500 mg/L of magnesium ions, 200-8000 mg/L of sodium ions, 200-10000 mg/L of chloride ions and 30-150 mg of COD. /L oil recovery wastewater is added with lime milk, sodium carbonate and coagulant, flocculant to precipitate calcium carbonate and magnesium carbonate, and precipitates to remove calcium carbonate and magnesium carbonate precipitate, thereby controlling the concentration of calcium and magnesium ions to be less than 80mg/L;
  • membrane filtration the oil recovery wastewater after the step (2) is subjected to filtration and clarification, and then subjected to microfiltration, ultrafiltration or nanofiltration membrane filtration to remove particulate impurities;
  • step (2) The de-hardening also includes a calcium carbonate precipitation treatment process in which calcium carbonate is heated and oxidatively decomposed into calcium oxygen.
  • a step of removing COD is also included, and the COD removal step is a kind of electrolysis, electrofloating or Fenton reaction, and the wastewater is removed by removing COD.
  • COD concentration drops to 50 Below mg/L.
  • a precipitation separation and filtration step is further included, and the precipitation is separated into one of a sedimentation tank sedimentation, a inclined tube precipitation or a centrifugal sedimentation separation; For sand filtration, multi-media filtration or fiber filter filtration, remove large particles of impurities to ensure membrane filtration.
  • the membrane filtration of the above step (3) is microfiltration membrane filtration, ultrafiltration membrane filtration or MBR;
  • the microfiltration membrane As one of an organic film, a metal film or a ceramic film, the pore diameter is between 1 ⁇ m and 10 ⁇ m.
  • the ultrafiltration is one of submerged ultrafiltration, column ultrafiltration, tubular ultrafiltration, coil ultrafiltration or plate ultrafiltration, and the molecular weight cut off is 1000 to 50000 MWCO, and the working condition is: normal temperature to 45 °C.
  • the working pressure of the immersion ultrafiltration is -1 to -50 kPa, and the working pressure of the column ultrafiltration, the tubular ultrafiltration, the coil ultrafiltration and the plate ultrafiltration is 3 to 300 kPa; the membrane pore size of the MBR membrane module is 0.10. ⁇ 0.2 ⁇ m, working pressure is -1 to -50 kPa, and operating temperature is 5 to 45 °C.
  • the membrane filtration of the above step (3) is a nanofiltration membrane filtration
  • the nanofiltration membrane adopts a nanofiltration membrane with a magnesium sulfate rejection rate of at least 98%, the molecular weight cutoff of the nanofiltration membrane is 200 MWCO-500 MWCO, the inlet pressure is 6 bar-45 bar, the pressure is 4.5 bar-43.5 bar, and the membrane module thereof
  • the structure is a roll membrane module or a tubular membrane module,
  • the working temperature is 20 to 45 ° C, and the nanofiltration can remove not only the precipitation of particles but also 40 to 70% of the salt.
  • the desalting in the above step (4) is reverse osmosis desalination
  • the reverse osmosis membrane module in the reverse osmosis is a roll membrane module
  • the membrane material is an acetate membrane or a composite membrane in the organic membrane, and the molecular weight cutoff of the membrane material is 50 ⁇ . 200MWCO
  • the inlet pressure is 6.0 ⁇ 35.0bar
  • the pressure is 4.5 ⁇ 33.5 Bar.
  • the desalination of the above step (4) is a forward osmosis
  • the forward osmosis membrane module is one of a plate and frame membrane module, a roll membrane module, a tubular membrane module, and a bag membrane module.
  • the desalination in the above step (4) is electrodialysis
  • the working conditions of electrodialysis are an operating voltage of 0.5 to 3.0 kg/cm 2 , an operating voltage of 50 to 250 V, and a current intensity of 1 to 3 A.
  • the desalination in the above step (4) is capacitive adsorption, and the operating condition of the capacitive adsorption is a direct current voltage of 110V to 2 ⁇ 10 6 V.
  • the above method for treating oil recovery wastewater and recycling thereof further comprises the steps of recovering salt from a concentrated liquid, wherein the step of recovering the salt from the concentrated liquid is carried out by multi-effect evaporation and crystallization and separation.
  • Sodium chloride and distilled water, or the concentrate is discharged into a drying bath, and after natural evaporation or forced evaporation, the sodium chloride is separated by crystallization.
  • the invention has the following advantages:
  • the oil content in the oil production wastewater is relatively high.
  • the invention can effectively remove oil and reduce CODcr by air flotation.
  • a small amount of oil can be removed by using activated carbon adsorption and clay adsorption.
  • the chemically treated wastewater is filtered through a membrane to reduce the SS and turbidity of the wastewater to meet the requirements of reverse osmosis.
  • the oil recovery wastewater after membrane filtration treatment is desalted to remove metal ions in water and reduce the salt content.
  • the recovery rate of the oil recovery wastewater is 50 to 65% by the method of the invention.
  • Embodiment 1 is a process flow diagram of Embodiment 1 of the present invention.
  • Embodiment 2 is a process flow diagram of Embodiment 2 of the present invention.
  • Embodiment 3 is a process flow diagram of Embodiment 3 of the present invention.
  • Embodiment 4 is a process flow diagram of Embodiment 4 of the present invention.
  • a method for treating oil production wastewater and recycling thereof comprises the following steps:
  • the oil-containing wastewater containing calcium ion 3000mg/L, magnesium ion 500mg/L, sodium ion 8000mg/L, chloride ion 10000mg/L, oil content 300mg/L and COD 500mg/L is removed by oil removal process, wherein degreasing
  • the process is a kind of air flotation, activated carbon adsorption, clay adsorption or diatomaceous earth adsorption.
  • the magnesium ion concentration is controlled to be less than 80 mg/L.
  • the de-hardening may further include a calcium carbonate precipitation treatment step by which the calcium carbonate is thermally oxidized and decomposed into calcium oxygen.
  • membrane filtration is one of microfiltration membrane filtration, ultrafiltration membrane filtration, MBR or nanofiltration membrane filtration.
  • Microfiltration membrane As one of an organic film, a metal film or a ceramic film, the pore diameter is between 1 ⁇ m and 10 ⁇ m.
  • Ultrafiltration is one of immersion ultrafiltration, column ultrafiltration, tubular ultrafiltration, coil ultrafiltration or plate ultrafiltration.
  • the molecular weight cut off is 1000 ⁇ 50000MWCO, and the working conditions are: normal temperature ⁇ 45°C, immersion
  • the working pressure of ultrafiltration is -1 to -50 kPa, and the working pressure of column ultrafiltration, tubular ultrafiltration, coil ultrafiltration and plate ultrafiltration is 3 to 300 kPa;
  • the membrane pore size of the MBR membrane module is 0.10-0.2 ⁇ m, the working pressure is -1 to -50 kPa, and the working temperature is 5 to 45 ° C;
  • the nanofiltration membrane adopts a nanofiltration membrane with a magnesium sulfate rejection rate of at least 98%, the molecular weight cutoff of the nanofiltration membrane is 200 MWCO-500 MWCO, the inlet pressure is 6 bar-45 bar, the pressure is 4.5 bar-43.5 bar, and the membrane module thereof
  • the structure is a roll membrane module or a tubular membrane module,
  • the working temperature is 20 to 45 ° C, and the nanofiltration can remove not only the precipitation of particles but also 40 to 70%
  • the oil recovery wastewater obtained by the membrane filtration in the step 3 is subjected to desalting treatment to obtain recycled water and a concentrated liquid.
  • desalination is one of reverse osmosis, forward osmosis, electrodialysis or capacitive adsorption.
  • the reverse osmosis membrane module in reverse osmosis is a roll membrane module.
  • the membrane material is an acetate membrane or a composite membrane in an organic membrane.
  • the molecular weight cutoff of the membrane material is 50-200 MWCO, the inlet pressure is 6.0-35.0 bar, and the pressure is 4.5-.
  • the positively permeable membrane module is one of a plate-and-frame membrane module, a wound membrane module, a tubular membrane module and a package membrane module;
  • the working condition of electrodialysis is an operating voltage pressure of 0.5 to 3.0 kg/cm 2 , the operating voltage of 50 ⁇ 250V, the current strength of 1 ⁇ 3A; adsorption capacitor DC working voltage conditions of 110V ⁇ 2 ⁇ 10 6 V.
  • a method for treating oil production wastewater and recycling thereof comprises the following steps:
  • the oil-containing wastewater containing 200 mg/L of calcium ion, 20 mg/L of magnesium ion, 200 mg/L of sodium ion, 200 mg/L of chloride ion, 30 mg/L of oil, and 100 mg/L of COD is subjected to a degreasing process to remove oil, wherein degreasing
  • the process is a kind of air flotation, activated carbon adsorption, clay adsorption or diatomaceous earth adsorption.
  • the de-hardening may further include a calcium carbonate precipitation treatment step by which the calcium carbonate is thermally oxidized and decomposed into calcium oxygen.
  • the COD process in the de-hardened step 2 is subjected to a COD removal process to reduce the COD concentration in the wastewater.
  • the COD removal step is a kind of electrolysis, electrofloating or Fenton reaction, and the COD concentration in the wastewater is reduced to 50 by removing COD. Below mg/L.
  • the oil recovery wastewater after removing COD in step 3 is filtered and clarified, and then subjected to membrane filtration to remove particulate impurities.
  • membrane filtration is one of microfiltration membrane filtration, ultrafiltration membrane filtration, MBR or nanofiltration membrane filtration.
  • Microfiltration membrane As one of an organic film, a metal film or a ceramic film, the pore diameter is between 1 ⁇ m and 10 ⁇ m.
  • Ultrafiltration is one of immersion ultrafiltration, column ultrafiltration, tubular ultrafiltration, coil ultrafiltration or plate ultrafiltration.
  • the molecular weight cut off is 1000 ⁇ 50000MWCO, and the working conditions are: normal temperature ⁇ 45°C, immersion
  • the working pressure of ultrafiltration is -1 to -50 kPa, and the working pressure of column ultrafiltration, tubular ultrafiltration, coil ultrafiltration and plate ultrafiltration is 3 to 300 kPa;
  • the membrane pore size of the MBR membrane module is 0.10-0.2 ⁇ m, the working pressure is -1 to -50 kPa, and the working temperature is 5 to 45 ° C;
  • the nanofiltration membrane adopts a nanofiltration membrane with a magnesium sulfate rejection rate of at least 98%, the molecular weight cutoff of the nanofiltration membrane is 200 MWCO-500 MWCO, the inlet pressure is 6 bar-45 bar, the pressure is 4.5 bar-43.5 bar, and the membrane module thereof
  • the structure is a roll membrane module or a tubular membrane module,
  • the working temperature is 20 to 45 ° C, and the nanofiltration can remove not only the precipitation of particles but also 40 to 70%
  • the oil recovery wastewater obtained by the membrane filtration in the step 4 is subjected to desalting treatment to obtain recycled water and a concentrated liquid.
  • desalination is one of reverse osmosis, forward osmosis, electrodialysis or capacitive adsorption.
  • the reverse osmosis membrane module in reverse osmosis is a roll membrane module.
  • the membrane material is an acetate membrane or a composite membrane in an organic membrane.
  • the molecular weight cutoff of the membrane material is 50-200 MWCO, the inlet pressure is 6.0-35.0 bar, and the pressure is 4.5-.
  • the positively permeable membrane module is one of a plate-and-frame membrane module, a wound membrane module, a tubular membrane module and a package membrane module;
  • the working condition of electrodialysis is an operating voltage pressure of 0.5 to 3.0 kg/cm 2 , the operating voltage of 50 ⁇ 250V, the current strength of 1 ⁇ 3A; adsorption capacitor DC working voltage conditions of 110V ⁇ 2 ⁇ 10 6 V.
  • a method for treating oil production wastewater and recycling thereof comprises the following steps:
  • the oil-containing wastewater containing calcium ion 1500mg/L, magnesium ion 250mg/L, sodium ion 4000mg/L, chloride ion 5000mg/L, oil 150mg/L and COD 250mg/L is removed by oil removal process, wherein degreasing
  • the process is a kind of air flotation, activated carbon adsorption, clay adsorption or diatomaceous earth adsorption.
  • the de-hardening may further include a calcium carbonate precipitation treatment step by which the calcium carbonate is thermally oxidized and decomposed into calcium oxygen.
  • the oil recovery wastewater after the de-hardening of step 2 is subjected to a precipitation separation and filtration step to remove large particle impurities to ensure the membrane filtration effect.
  • the precipitate is separated into a sedimentation tank sedimentation, a inclined tube sedimentation or a centrifugal sedimentation separation; the filtration is sand filtration, multi-media filtration or fiber filter filtration.
  • the oil separation wastewater separated and precipitated in step 3 is filtered and clarified, and then filtered to remove particulate impurities.
  • membrane filtration is one of microfiltration membrane filtration, ultrafiltration membrane filtration, MBR or nanofiltration membrane filtration.
  • Microfiltration membrane As one of an organic film, a metal film or a ceramic film, the pore diameter is between 1 ⁇ m and 10 ⁇ m.
  • Ultrafiltration is one of immersion ultrafiltration, column ultrafiltration, tubular ultrafiltration, coil ultrafiltration or plate ultrafiltration.
  • the molecular weight cut off is 1000 ⁇ 50000MWCO, and the working conditions are: normal temperature ⁇ 45°C, immersion
  • the working pressure of ultrafiltration is -1 to -50 kPa, and the working pressure of column ultrafiltration, tubular ultrafiltration, coil ultrafiltration and plate ultrafiltration is 3 to 300 kPa;
  • the membrane pore size of the MBR membrane module is 0.10-0.2 ⁇ m, the working pressure is -1 to -50 kPa, and the working temperature is 5 to 45 ° C;
  • the nanofiltration membrane adopts a nanofiltration membrane with a magnesium sulfate rejection rate of at least 98%, the molecular weight cutoff of the nanofiltration membrane is 200 MWCO-500 MWCO, the inlet pressure is 6 bar-45 bar, the pressure is 4.5 bar-43.5 bar, and the membrane module thereof
  • the structure is a roll membrane module or a tubular membrane module,
  • the working temperature is 20 to 45 ° C, and the nanofiltration can remove not only the precipitation of particles but also 40 to 70%
  • the oil recovery wastewater obtained by the membrane filtration in the step 4 is subjected to desalting treatment to obtain recycled water and a concentrated liquid.
  • desalination is one of reverse osmosis, forward osmosis, electrodialysis or capacitive adsorption.
  • the reverse osmosis membrane module in reverse osmosis is a roll membrane module.
  • the membrane material is an acetate membrane or a composite membrane in an organic membrane.
  • the molecular weight cutoff of the membrane material is 50-200 MWCO, the inlet pressure is 6.0-35.0 bar, and the pressure is 4.5-.
  • the positively permeable membrane module is one of a plate-and-frame membrane module, a wound membrane module, a tubular membrane module and a package membrane module;
  • the working condition of electrodialysis is an operating voltage pressure of 0.5 to 3.0 kg/cm 2 , the operating voltage of 50 ⁇ 250V, the current strength of 1 ⁇ 3A; adsorption capacitor DC working voltage conditions of 110V ⁇ 2 ⁇ 10 6 V.
  • the oil-containing wastewater containing 800 mg/L of calcium ion, 80 mg/L of magnesium ion, 800 mg/L of sodium ion, 800 mg/L of chloride ion, 90 mg/L of oil and 200 mg/L of COD is subjected to degreasing process to remove oil, wherein degreasing
  • the process is a kind of air flotation, activated carbon adsorption, clay adsorption or diatomaceous earth adsorption.
  • the de-hardening also includes a calcium carbonate precipitation treatment process in which calcium carbonate is heated and oxidatively decomposed into calcium oxygen.
  • the COD process in the de-hardened step 2 is subjected to a COD removal process to reduce the COD concentration in the wastewater.
  • the COD removal step is a kind of electrolysis, electrofloating or Fenton reaction, and the COD concentration in the wastewater is reduced to 50 by removing COD. Below mg/L.
  • the oil recovery wastewater after removing COD in step 3 is subjected to a precipitation separation and filtration step to remove large particle impurities to ensure membrane filtration effect.
  • the precipitate is separated into a sedimentation tank sedimentation, a inclined tube sedimentation or a centrifugal sedimentation separation; the filtration is sand filtration, multi-media filtration or fiber filter filtration.
  • membrane filtration is one of microfiltration membrane filtration, ultrafiltration membrane filtration, MBR or nanofiltration membrane filtration.
  • Microfiltration membrane As one of an organic film, a metal film or a ceramic film, the pore diameter is between 1 ⁇ m and 10 ⁇ m.
  • Ultrafiltration is one of immersion ultrafiltration, column ultrafiltration, tubular ultrafiltration, coil ultrafiltration or plate ultrafiltration.
  • the molecular weight cut off is 1000 ⁇ 50000MWCO, and the working conditions are: normal temperature ⁇ 45°C, immersion
  • the working pressure of ultrafiltration is -1 to -50 kPa, and the working pressure of column ultrafiltration, tubular ultrafiltration, coil ultrafiltration and plate ultrafiltration is 3 to 300 kPa;
  • the membrane pore size of the MBR membrane module is 0.10-0.2 ⁇ m, the working pressure is -1 to -50 kPa, and the working temperature is 5 to 45 ° C;
  • the nanofiltration membrane adopts a nanofiltration membrane with a magnesium sulfate rejection rate of at least 98%, the molecular weight cutoff of the nanofiltration membrane is 200 MWCO-500 MWCO, the inlet pressure is 6 bar-45 bar, the pressure is 4.5 bar-43.5 bar, and the membrane module thereof
  • the structure is a roll membrane module or a tubular membrane module,
  • the working temperature is 20 to 45 ° C, and the nanofiltration can remove not only the precipitation of particles but also 40 to 70%
  • the oil recovery wastewater obtained by the membrane filtration in the step 5 is desalted to obtain recycled water and a concentrated liquid.
  • desalination is one of reverse osmosis, forward osmosis, electrodialysis or capacitive adsorption.
  • the reverse osmosis membrane module in reverse osmosis is a roll membrane module.
  • the membrane material is an acetate membrane or a composite membrane in an organic membrane.
  • the molecular weight cutoff of the membrane material is 50-200 MWCO, the inlet pressure is 6.0-35.0 bar, and the pressure is 4.5-.
  • the positively permeable membrane module is one of a plate-and-frame membrane module, a wound membrane module, a tubular membrane module and a package membrane module;
  • the working condition of electrodialysis is an operating voltage pressure of 0.5 to 3.0 kg/cm 2 , the operating voltage of 50 ⁇ 250V, the current strength of 1 ⁇ 3A; adsorption capacitor DC working voltage conditions of 110V ⁇ 2 ⁇ 10 6 V.
  • Step 6 The desalted separation concentrate is subjected to multi-effect evaporation and concentrated to obtain sodium chloride and distilled water, or the concentrate is discharged into a drying bath, and after natural evaporation or forced evaporation, crystallized and separated to obtain sodium chloride.
  • the present invention is easy to implement in the industry and has good industrial applicability.

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

一种采油废水处理及其循环利用方法,包括如下步骤:(1)除油;(2)脱硬度;(3)膜过滤;(4)脱盐,经过反渗透、正渗透、电渗析、电容吸附处理得到再生水和浓缩液。该方法可有效除油,防止膜钙化、膜污堵。

Description

一种采油废水处理及其循环利用方法 技术领域
本发明属于环境工程的水污染治理领域,更为具体地说是指一种采油废水处理及其循环利用方法。
背景技术
油田采出水主要是原油在生产处理过程中脱出的污水。油田采出水的处理根据排放或回用不同要求有多种方式,作为蒸汽发生器或锅炉的给水,要严格控制水中的钙离子、镁离子等易结垢的离子含量,总矿化度、水中的含油量等。利用膜分离技术对油田采出水进行脱盐处理,使得产水再生循环利用等方面的报道不少。油田采出水经过一般的预处理去除了大部分的含油量和悬浮物之后的主要污染物指标为: 钙离子200~3000mg/L、镁离子20~500mg/L、钠离子200~8000mg/L、氯离子200~10000mg/L、含油30~300 mg/L和COD为100~500mg/L 。钙离子、镁离子、碳酸氢根离子等含量仍然很高。总硬度过高,直接采用膜分离技术进行脱盐处理,容易造成膜的钙化和污堵,膜材料的孔隙中填满了碳酸钙、碳酸镁等物质,一方面使得膜的出水水质变差,严重影响膜处理系统的稳定运行,另一方面膜的钙化会使得膜材料变脆,容易断丝,导致膜的使用寿命由通常的三年以上,缩短到不到壹年,减少膜的运行寿命,频繁更换膜组件,经济上不可行。
技术问题
本发明提供一种采油废水处理及其循环利用方法,其主要目的在于克服现有技术中油田采出水膜法处理过程存在膜钙化、污堵严重、成本高的缺陷。
技术解决方案
本发明采用如下技术方案:
一种采油废水处理及其循环利用方法,包括如下步骤:
(1)除油:将含钙离子200~3000mg/L、镁离子20~500mg/L、钠离子200~8000mg/L、氯离子200~10000mg/L、含油30~300 mg/L和COD为100~500mg/L的采油废水经过除油工艺除去油污,所述的除油工艺是气浮、活性炭吸附、粘土吸附或硅藻土吸附的一种;
(2) 脱硬度:往经过步骤(1)除油后含钙离子200~3000mg/L、镁离子20~500mg/L、钠离子200~8000mg/L、氯离子200~10000mg/L和COD为30~150mg/L的采油废水中投加石灰乳、碳酸钠并配合混凝剂、絮凝剂使生成碳酸钙、碳酸镁沉淀,经过沉淀分离去除碳酸钙、碳酸镁沉淀,从而将钙镁离子浓度控制在小于80mg/L;
(3)膜过滤:将步骤(2)脱硬度后的采油废水经过过滤澄清后,经过微滤、超滤或纳滤膜过滤,去除颗粒性杂质;
(4)脱盐:将步骤(3)膜过滤所得的采油废水经过反渗透、正渗透、电渗析、电容吸附处理得循环利用的再生水和浓缩液。
进一步地,步骤(2)的 脱硬度还包括一个碳酸钙沉淀处理工序,通过这个工序将碳酸钙加热氧化分解成氧气钙。
进一步地, 在步骤(2)的脱硬度和步骤(3)的膜过滤之间,还包括一个去除COD的步骤,该去除COD步骤是电解、电气浮或芬顿反应的一种,通过去除COD使废水中的COD浓度下降到50 mg/L以下。
进一步地, 在步骤(2)的脱硬度和步骤(3)的膜过滤之间,还包括沉淀分离和过滤工序,所述沉淀分离为沉淀池沉淀、斜管沉淀或离心沉淀分离的一种;所述过滤为砂滤、多介质过滤或纤维滤芯过滤,除去较大颗粒杂质,保证膜过滤效果。
进一步地,上述步骤(3)的膜过滤是微滤膜过滤、超滤膜过滤或MBR;所述微滤膜 为有机膜、金属膜或陶瓷膜中的一种,其孔径介于1μm-10μm之间 ;所述超滤为浸没式超滤、柱式超滤、管式超滤、卷式超滤或板式超滤中的一种,截留分子量为1000~50000MWCO,工作条件为:常温~45℃,浸没式超滤的工作压力为-1~-50kPa,柱式超滤、管式超滤、卷式超滤和板式超滤的工作压力为3~300kPa;所述MBR膜组件的膜孔径为0.10~0.2μm,工作压力为-1~-50kPa,工作温度为5~45℃。
进一步地,上述步骤(3)的膜过滤是纳滤膜过滤, 纳滤膜采用对硫酸镁截留率为至少98%的纳滤膜,纳滤膜的截留分子量为200MWCO-500MWCO,进压为6bar-45bar,出压为4.5bar-43.5bar,且其膜组件的结构为卷式膜组件或管式膜组件, 工作温度为20~45℃,纳滤不仅可以去除颗粒沉淀,还可以除去40~70%的盐。
进一步地,上述步骤(4)的脱盐为反渗透脱盐,反渗透中的反渗透膜组件为卷式膜组件,膜材料为有机膜中醋酸纤维膜或复合膜,膜材料的截留分子量为50~200MWCO,进压为6.0~35.0bar,出压为4.5~33.5 bar。
进一步地,上述步骤(4)的脱盐为正渗透,正渗透的膜组件为板框式膜组件、卷式膜组件、管式膜组件和包式膜组件中的一种。
进一步地,上述步骤(4)的脱盐为电渗析,电渗析的工作条件是操作电压压力0.5~3.0㎏/㎝2,操作电压50~250V,电流强度1~3A。
进一步地,上述步骤(4)的脱盐为电容吸附,电容吸附的工作条件是直流电压为110V~2×106V。
进一步地,上述一种采油废水处理及其循环利用方法,还包括从一个浓缩液中回收盐的步骤,所述从浓缩液中回收盐的步骤是将浓缩液经过多效蒸发浓缩后结晶分离得氯化钠和蒸馏水,或者将浓缩液排入晾晒池中经过自然蒸发或者强制蒸发后结晶分离得氯化钠。
有益效果
经过以上工序处理后的效果如下表1:
表1采油废水各处理工序的效果
工序 钙离子(mg/L) 镁离子(mg/L) 钠离子(mg/L) 氯离子(mg/L) 含油量(mg/L) COD(mg/L)
测定值 去除率% 测定值 去除率% 测定值 去除率% 测定值 去除率% 测定值 去除率% 测定值 去除率%
原水 3000 500 8000 10000 300 500
除油 3000 0% 500 0% 8000 0% 10000 0% 15 95% 200 60%
脱硬度 300 90% 50 90% 8000 0% 10000 0% 14 5% 180 10%
除COD 285 5% 48 5% 8000 0% 10000 0% 3 80% 90 50%
膜过滤 271 5% 46 5% 8000 0% 10000 0% <1 >90% 81 10%
脱盐 <5 98% <1 98% 560 93% 700 93% <1 8 90%
本发明和现有技术相比,具有如下优点:
1 、采油废水中油含量较高,本发明通过气浮可有效除油、降低CODcr,此外,还可以采用活性炭吸附、粘土吸附等方法除去少量的油。
2 、采油废水中钙、镁含量高,容易造成膜钙化和污堵,在预处理过程,通过投加石灰乳、碳酸钠并配合混凝剂、絮凝剂将钙、镁离子去除,并去除一部分硫酸根离子,从而将钙、镁离子的浓度控制在小于80mg/L,不仅解决了膜钙化和污堵问题,而且降低了废水渗透压。
3 、经过化学方法处理后的废水再经过膜过滤,降低废水的SS、浊度等指标,以满足反渗透的进膜要求;
4、膜过滤处理后的采油废水经过脱盐处理,脱除水中的金属离子,降低含盐量。
5、通过本发明方法,实现对采油废水50~65%的回收率。
附图说明
图1为本发明实施例1的工艺流程图。
图2为本发明实施例2的工艺流程图。
图3为本发明实施例3的工艺流程图。
图4为本发明实施例4的工艺流程图。
本发明的最佳实施方式
实施例1
一种采油废水处理及其循环利用方法,包括如下步骤:
1、除油
将含钙离子3000mg/L、镁离子500mg/L、钠离子8000mg/L、氯离子10000mg/L、含油300mg/L和COD为500mg/L的采油废水经过除油工艺除去油污,其中,除油工艺是气浮、活性炭吸附、粘土吸附或硅藻土吸附的一种。
2、脱硬度
往经过步骤1除油后的采油废水中投加石灰乳、碳酸钠并配合混凝剂、絮凝剂使生成碳酸钙、碳酸镁沉淀,经过沉淀分离去除碳酸钙、碳酸镁沉淀,从而将钙、镁离子浓度控制在小于80mg/L。该 脱硬度还可包括一个碳酸钙沉淀处理工序,通过这个工序将碳酸钙加热氧化分解成氧气钙。
3、膜过滤
将步骤2脱硬度后的采油废水经过过滤澄清后,经过膜过滤去除颗粒性杂质。其中,膜过滤是微滤膜过滤、超滤膜过滤、MBR或纳滤膜过滤中的一种。微滤膜 为有机膜、金属膜或陶瓷膜中的一种,其孔径介于1μm-10μm之间 ;超滤为浸没式超滤、柱式超滤、管式超滤、卷式超滤或板式超滤中的一种,截留分子量为1000~50000MWCO,工作条件为:常温~45℃,浸没式超滤的工作压力为-1~-50kPa,柱式超滤、管式超滤、卷式超滤和板式超滤的工作压力为3~300kPa; MBR膜组件的膜孔径为0.10~0.2μm,工作压力为-1~-50kPa,工作温度为5~45℃; 纳滤膜采用对硫酸镁截留率为至少98%的纳滤膜,纳滤膜的截留分子量为200MWCO-500MWCO,进压为6bar-45bar,出压为4.5bar-43.5bar,且其膜组件的结构为卷式膜组件或管式膜组件, 工作温度为20~45℃,纳滤不仅可以去除颗粒沉淀,还可以除去40~70%的盐。
4、脱盐
将步骤3膜过滤所得的采油废水经过脱盐处理得循环利用的再生水和浓缩液。其中,脱盐为反渗透、正渗透、电渗析或电容吸附中的一种。反渗透中的反渗透膜组件为卷式膜组件,膜材料为有机膜中醋酸纤维膜或复合膜,膜材料的截留分子量为50~200MWCO,进压为6.0~35.0bar,出压为4.5~33.5 bar;正渗透的膜组件为板框式膜组件、卷式膜组件、管式膜组件和包式膜组件中的一种;电渗析的工作条件是操作电压压力0.5~3.0㎏/㎝2,操作电压50~250V,电流强度1~3A;电容吸附的工作条件是直流电压为110V~2×106V。
表2采油废水各处理工序的效果
工序 钙离子(mg/L) 镁离子(mg/L) 钠离子(mg/L) 氯离子(mg/L) 含油量(mg/L) COD(mg/L)
测定值 去除率% 测定值 去除率% 测定值 去除率% 测定值 去除率% 测定值 去除率% 测定值 去除率%
原水 3000 500 8000 10000 300 500
除油 3000 0% 500 0% 8000 0% 10000 0% 15 95% 200 60%
脱硬度 300 90% 50 90% 8000 0% 10000 0% 14 5% 180 10%
除COD 285 5% 48 5% 8000 0% 10000 0% 3 80% 90 50%
膜过滤 271 5% 46 5% 8000 0% 10000 0% <1 >90% 81 10%
脱盐 <5 98% <1 98% 560 93% 700 93% <1 8 90%
本发明的实施方式
实施例2
一种采油废水处理及其循环利用方法,包括如下步骤:
1、除油
将含钙离子200mg/L、镁离子20mg/L、钠离子200mg/L、氯离子200mg/L、含油30mg/L和COD为100mg/L的采油废水经过除油工艺除去油污,其中,除油工艺是气浮、活性炭吸附、粘土吸附或硅藻土吸附的一种。
2、脱硬度
往经过步骤1除油后的采油废水中投加石灰乳、碳酸钠并配合混凝剂、絮凝剂使生成碳酸钙、碳酸镁沉淀,经过沉淀分离去除碳酸钙、碳酸镁沉淀,从而将钙镁离子浓度控制在小于80mg/L。该 脱硬度还可包括一个碳酸钙沉淀处理工序,通过这个工序将碳酸钙加热氧化分解成氧气钙。
3、去除COD
将步骤2脱硬度后的采油废水经过去除COD工艺使废水中的COD浓度下降,该去除COD步骤是电解、电气浮或芬顿反应的一种,通过去除COD使废水中的COD浓度下降到50 mg/L以下。
4、膜过滤
将步骤3去除COD后的采油废水经过过滤澄清后,经过膜过滤去除颗粒性杂质。其中,膜过滤是微滤膜过滤、超滤膜过滤、MBR或纳滤膜过滤中的一种。微滤膜 为有机膜、金属膜或陶瓷膜中的一种,其孔径介于1μm-10μm之间 ;超滤为浸没式超滤、柱式超滤、管式超滤、卷式超滤或板式超滤中的一种,截留分子量为1000~50000MWCO,工作条件为:常温~45℃,浸没式超滤的工作压力为-1~-50kPa,柱式超滤、管式超滤、卷式超滤和板式超滤的工作压力为3~300kPa; MBR膜组件的膜孔径为0.10~0.2μm,工作压力为-1~-50kPa,工作温度为5~45℃; 纳滤膜采用对硫酸镁截留率为至少98%的纳滤膜,纳滤膜的截留分子量为200MWCO-500MWCO,进压为6bar-45bar,出压为4.5bar-43.5bar,且其膜组件的结构为卷式膜组件或管式膜组件, 工作温度为20~45℃,纳滤不仅可以去除颗粒沉淀,还可以除去40~70%的盐。
5、脱盐
将步骤4膜过滤所得的采油废水经过脱盐处理得循环利用的再生水和浓缩液。其中,脱盐为反渗透、正渗透、电渗析或电容吸附中的一种。反渗透中的反渗透膜组件为卷式膜组件,膜材料为有机膜中醋酸纤维膜或复合膜,膜材料的截留分子量为50~200MWCO,进压为6.0~35.0bar,出压为4.5~33.5 bar;正渗透的膜组件为板框式膜组件、卷式膜组件、管式膜组件和包式膜组件中的一种;电渗析的工作条件是操作电压压力0.5~3.0㎏/㎝2,操作电压50~250V,电流强度1~3A;电容吸附的工作条件是直流电压为110V~2×106V。
表3采油废水各处理工序的效果
工序 钙离子(mg/L) 镁离子(mg/L) 钠离子(mg/L) 氯离子(mg/L) 含油量(mg/L) COD(mg/L)
测定值 去除率% 测定值 去除率% 测定值 去除率% 测定值 去除率% 测定值 去除率% 测定值 去除率%
原水 200 20 200 200 30 100
除油 200 0% 20 0% 200 0% 200 0% 3 90% 45 55%
脱硬度 22 89% 3 88% 200 0% 200 0% 3 0% 40 11%
除COD 21 5% 2.8 5% 200 0% 200 0% <1 80% 20 50%
膜过滤 20 5% 2.7 5% 200 0% 200 0% <1 18 10%
脱盐 <1 98% <1 98% 16 92% 16 92% <1 2 89%
实施例3
一种采油废水处理及其循环利用方法,包括如下步骤:
1、除油
将含钙离子1500mg/L、镁离子250mg/L、钠离子4000mg/L、氯离子5000mg/L、含油150mg/L和COD为250mg/L的采油废水经过除油工艺除去油污,其中,除油工艺是气浮、活性炭吸附、粘土吸附或硅藻土吸附的一种。
2、脱硬度
往经过步骤1除油后的采油废水中投加石灰乳、碳酸钠并配合混凝剂、絮凝剂使生成碳酸钙、碳酸镁沉淀,经过沉淀分离去除碳酸钙、碳酸镁沉淀,从而将钙镁离子浓度控制在小于80mg/L。该 脱硬度还可包括一个碳酸钙沉淀处理工序,通过这个工序将碳酸钙加热氧化分解成氧气钙。
3、沉淀分离和过滤
将步骤2脱硬度后的采油废水经过沉淀分离和过滤步骤,除去较大颗粒杂质,保证膜过滤效果。其中,沉淀分离为沉淀池沉淀、斜管沉淀或离心沉淀分离的一种;过滤为砂滤、多介质过滤或纤维滤芯过滤。
4、膜过滤
将步骤3沉淀分离和过滤后的采油废水经过过滤澄清后,经过膜过滤去除颗粒性杂质。其中,膜过滤是微滤膜过滤、超滤膜过滤、MBR或纳滤膜过滤中的一种。微滤膜 为有机膜、金属膜或陶瓷膜中的一种,其孔径介于1μm-10μm之间 ;超滤为浸没式超滤、柱式超滤、管式超滤、卷式超滤或板式超滤中的一种,截留分子量为1000~50000MWCO,工作条件为:常温~45℃,浸没式超滤的工作压力为-1~-50kPa,柱式超滤、管式超滤、卷式超滤和板式超滤的工作压力为3~300kPa; MBR膜组件的膜孔径为0.10~0.2μm,工作压力为-1~-50kPa,工作温度为5~45℃; 纳滤膜采用对硫酸镁截留率为至少98%的纳滤膜,纳滤膜的截留分子量为200MWCO-500MWCO,进压为6bar-45bar,出压为4.5bar-43.5bar,且其膜组件的结构为卷式膜组件或管式膜组件, 工作温度为20~45℃,纳滤不仅可以去除颗粒沉淀,还可以除去40~70%的盐。
5、脱盐
将步骤4膜过滤所得的采油废水经过脱盐处理得循环利用的再生水和浓缩液。其中,脱盐为反渗透、正渗透、电渗析或电容吸附中的一种。反渗透中的反渗透膜组件为卷式膜组件,膜材料为有机膜中醋酸纤维膜或复合膜,膜材料的截留分子量为50~200MWCO,进压为6.0~35.0bar,出压为4.5~33.5 bar;正渗透的膜组件为板框式膜组件、卷式膜组件、管式膜组件和包式膜组件中的一种;电渗析的工作条件是操作电压压力0.5~3.0㎏/㎝2,操作电压50~250V,电流强度1~3A;电容吸附的工作条件是直流电压为110V~2×106V。
表4采油废水各处理工序的效果
工序 钙离子(mg/L) 镁离子(mg/L) 钠离子(mg/L) 氯离子(mg/L) 含油量(mg/L) COD(mg/L)
测定值 去除率% 测定值 去除率% 测定值 去除率% 测定值 去除率% 测定值 去除率% 测定值 去除率%
原水 1500 250 4000 5000 150 250
除油 1500 0% 250 0% 4000 0% 5000 0% 12 92% 100 60%
脱硬度 180 88% 28 89% 4000 0% 5000 0% 11 5% 90 10%
除COD 170 5% 27 5% 4000 0% 5000 0% 2 80% 41 55%
膜过滤 160 5% 26 5% 4000 0% 5000 0% <1 >90% 37 10%
脱盐 <5 97% <1 98% 280 93% 350 93% <1 4 89%
实施例4
1、除油
将含钙离子800mg/L、镁离子80mg/L、钠离子800mg/L、氯离子800mg/L、含油90mg/L和COD为200mg/L的采油废水经过除油工艺除去油污,其中,除油工艺是气浮、活性炭吸附、粘土吸附或硅藻土吸附的一种。
2、脱硬度
往经过步骤1除油后的采油废水中投加石灰乳、碳酸钠并配合混凝剂、絮凝剂使生成碳酸钙、碳酸镁沉淀,经过沉淀分离去除碳酸钙、碳酸镁沉淀,从而将钙镁离子浓度控制在小于80mg/L。该 脱硬度还包括一个碳酸钙沉淀处理工序,通过这个工序将碳酸钙加热氧化分解成氧气钙。
3、去除COD
将步骤2脱硬度后的采油废水经过去除COD工艺使废水中的COD浓度下降,该去除COD步骤是电解、电气浮或芬顿反应的一种,通过去除COD使废水中的COD浓度下降到50 mg/L以下。
4、沉淀分离和过滤
将步骤3去除COD后的采油废水经过沉淀分离和过滤步骤,除去较大颗粒杂质,保证膜过滤效果。其中,沉淀分离为沉淀池沉淀、斜管沉淀或离心沉淀分离的一种;过滤为砂滤、多介质过滤或纤维滤芯过滤。
5、膜过滤
将步骤4沉淀分离和过滤后的采油废水经过过滤澄清后,经过膜过滤去除颗粒性杂质。其中,膜过滤是微滤膜过滤、超滤膜过滤、MBR或纳滤膜过滤中的一种。微滤膜 为有机膜、金属膜或陶瓷膜中的一种,其孔径介于1μm-10μm之间 ;超滤为浸没式超滤、柱式超滤、管式超滤、卷式超滤或板式超滤中的一种,截留分子量为1000~50000MWCO,工作条件为:常温~45℃,浸没式超滤的工作压力为-1~-50kPa,柱式超滤、管式超滤、卷式超滤和板式超滤的工作压力为3~300kPa; MBR膜组件的膜孔径为0.10~0.2μm,工作压力为-1~-50kPa,工作温度为5~45℃; 纳滤膜采用对硫酸镁截留率为至少98%的纳滤膜,纳滤膜的截留分子量为200MWCO-500MWCO,进压为6bar-45bar,出压为4.5bar-43.5bar,且其膜组件的结构为卷式膜组件或管式膜组件, 工作温度为20~45℃,纳滤不仅可以去除颗粒沉淀,还可以除去40~70%的盐。
6、脱盐
将步骤5膜过滤所得的采油废水经过脱盐处理得循环利用的再生水和浓缩液。其中,脱盐为反渗透、正渗透、电渗析或电容吸附中的一种。反渗透中的反渗透膜组件为卷式膜组件,膜材料为有机膜中醋酸纤维膜或复合膜,膜材料的截留分子量为50~200MWCO,进压为6.0~35.0bar,出压为4.5~33.5 bar;正渗透的膜组件为板框式膜组件、卷式膜组件、管式膜组件和包式膜组件中的一种;电渗析的工作条件是操作电压压力0.5~3.0㎏/㎝2,操作电压50~250V,电流强度1~3A;电容吸附的工作条件是直流电压为110V~2×106V。
7、回收盐
步骤6脱盐分离得到的浓缩液经过多效蒸发浓缩后结晶分离得氯化钠和蒸馏水,或者将浓缩液排入晾晒池中经过自然蒸发或者强制蒸发后结晶分离得氯化钠。
表5采油废水各处理工序的效果
工序 钙离子(mg/L) 镁离子(mg/L) 钠离子(mg/L) 氯离子(mg/L) 含油量(mg/L) COD(mg/L)
测定值 去除率% 测定值 去除率% 测定值 去除率% 测定值 去除率% 测定值 去除率% 测定值 去除率%
原水 800 80 800 800 90 200
除油 800 0% 80 0% 800 0% 800 0% 6 93% 88 56%
脱硬度 110 86% 9 89% 800 0% 800 0% 6 4% 81 7%
除COD 105 5% 8.5 5% 800 0% 800 0% 2 70% 45 45%
膜过滤 100 5% 8 5% 800 0% 800 0% <1 >90% 40 10%
脱盐 <2 98% <1 98% 64 92% 64 92% <1 4 90%
工业实用性
本发明易于在工业上实施,具备良好的工业实用性。

Claims (11)

  1. 一种采油废水处理及其循环利用方法,其特征在于,包括如下步骤:
    (1)除油:将含钙离子200~3000mg/L、镁离子20~500mg/L、钠离子200~8000mg/L、氯离子200~10000mg/L、含油30~300mg/L和COD为100~500mg/L的采油废水经过除油工艺除去油污,所述除油工艺是气浮、活性炭吸附、粘土吸附或硅藻土吸附中的一种;
    (2)脱硬度:往经过步骤(1)除油后的采油废水中投加石灰乳、碳酸钠并配合混凝剂、絮凝剂使生成碳酸钙、碳酸镁沉淀,经过沉淀分离去除碳酸钙、碳酸镁沉淀,从而将钙、镁离子浓度控制在小于80mg/L;
    (3)膜过滤:将步骤(2)脱硬度后的采油废水经过过滤澄清后,经过膜过滤处理,去除颗粒性杂质;
    (4)脱盐:将步骤(3)膜过滤所得的采油废水经过反渗透、正渗透、电渗析、电容吸附处理得循环利用的再生水和浓缩液。
  2. 如权利要求1所述的一种采油废水处理及其循环利用方法,其特征在于:所述步骤(2)脱硬度还包括一个碳酸钙沉淀处理工序,通过这个工序将碳酸钙加热氧化分解成氧气钙。
  3. 如权利要求1所述的一种采油废水处理及其循环利用方法,其特征在于:在步骤(2)的脱硬度和步骤(3)的膜过滤之间,还包括一个去除COD的步骤,该去除COD步骤是电解、电气浮或芬顿反应的一种,通过去除COD使废水中的COD浓度下降到50mg/L以下。
  4. 如权利要求1所述的一种采油废水处理及其循环利用方法,其特征在于:在步骤(2)的脱硬度和步骤(3)的膜过滤之间,还包括沉淀分离和过滤工序,所述沉淀分离为沉淀池沉淀、斜管沉淀或离心沉淀分离的一种;所述过滤为砂滤、多介质过滤或纤维滤芯过滤,除去较大颗粒杂质,保证膜过滤效果。
  5. 如权利要求1所述的一种采油废水处理及其循环利用方法,其特征在于:步骤(3)的膜过滤为微滤膜过滤、超滤膜过滤或MBR中的一种,所述微滤膜为有机膜、金属膜或陶瓷膜中的一种,其孔径介于1μm-10μm之间;所述超滤为浸没式超滤、柱式超滤、管式超滤、卷式超滤或板式超滤中的一种,截留分子量为1000~50000MWCO,工作条件为:常温~45℃,浸没式超滤的工作压力为-1~-50kPa,柱式超滤、管式超滤、卷式超滤和板式超滤的工作压力为3~300kPa;所述MBR膜组件的膜孔径为0.10~0.2μm,工作压力为-1~-50kPa,工作温度为5~45℃。
  6. 如权利要求1所述的一种采油废水处理及其循环利用方法,其特征在于:步骤(3)的膜过滤为纳滤膜过滤,纳滤膜采用对硫酸镁截留率为至少98%的纳滤膜,纳滤膜的截留分子量为200MWCO-500MWCO,进压为6bar-45bar,出压为4.5bar-43.5bar,且其膜组件的结构为卷式膜组件或管式膜组件,工作温度为20~45℃,纳滤不仅可以去除颗粒沉淀,还可以除去40~70%的盐。
  7. 如权利要求1所述的一种采油废水处理及其循环利用方法,其特征在于:步骤(4)的脱盐为反渗透脱盐,反渗透中的反渗透膜组件为卷式膜组件,膜材料为有机膜中醋酸纤维膜或复合膜,膜材料的截留分子量为50~200MWCO,进压为6.0~35.0bar,出压为4.5~33.5bar。
  8. 如权利要求1所述的一种采油废水处理及其循环利用方法,其特征在于:步骤(4)的脱盐为正渗透,正渗透的膜组件为板框式膜组件、卷式膜组件、管式膜组件和包式膜组件中的一种。
  9. 如权利要求1所述的一种采油废水处理及其循环利用方法,其特征在于:步骤(4)的脱盐为电渗析,电渗析的工作条件是操作电压压力0.5~3.0㎏/㎝2,操作电压50~250V,电流强度1~3A。
  10. 如权利要求1所述的一种采油废水处理及其循环利用方法,其特征在于:步骤(4)的脱盐为电容吸附,电容吸附的工作条件是直流电压为110V~2×106V。
  11. 如权利要求1所述的一种采油废水处理及其循环利用方法,其特征在于:还包括从一个浓缩液中回收盐的步骤,所述从浓缩液中回收盐的步骤是将浓缩液经过多效蒸发浓缩后结晶分离得氯化钠和蒸馏水,或者将浓缩液排入晾晒池中经过自然蒸发或强制蒸发后结晶分离得氯化钠。
PCT/CN2016/082615 2015-09-02 2016-05-19 一种采油废水处理及其循环利用方法 WO2017036182A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510553901.8 2015-09-02
CN201510553901.8A CN105060582A (zh) 2015-09-02 2015-09-02 一种采油废水处理及其循环利用方法

Publications (1)

Publication Number Publication Date
WO2017036182A1 true WO2017036182A1 (zh) 2017-03-09

Family

ID=54490172

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/082615 WO2017036182A1 (zh) 2015-09-02 2016-05-19 一种采油废水处理及其循环利用方法

Country Status (2)

Country Link
CN (1) CN105060582A (zh)
WO (1) WO2017036182A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111635050A (zh) * 2019-12-16 2020-09-08 江苏久吾高科技股份有限公司 一种高矿化度矿井水处理的方法及装置
CN112744965A (zh) * 2021-01-25 2021-05-04 西南林业大学 斜板管-电气浮及过滤一体化装置及污水处理方法
CN113845267A (zh) * 2021-09-13 2021-12-28 濮阳天地人环保科技股份有限公司 一种天然气泡排采气废水电絮凝处理方法
CN114539031A (zh) * 2022-02-18 2022-05-27 南京钛净流体技术有限公司 一种间苯二胺酸性水解液中去除焦油的装置和方法
CN114570212A (zh) * 2022-03-16 2022-06-03 苏州盛虹环保科技有限公司 一种膜生物反应器膜污染抑制剂的制备及其应用方法
CN115175565A (zh) * 2019-12-19 2022-10-11 美丽生活有限责任公司 使用正渗透制备高固体和高蛋白无乳糖无菌乳浓缩物和奶粉
CN116119847A (zh) * 2021-09-28 2023-05-16 中国石油化工股份有限公司 一种气田采出软化水的处理工艺及其处理装置系统
CN116282692A (zh) * 2023-03-08 2023-06-23 三达膜环境技术股份有限公司 一种精对苯二甲酸生产中尾气洗涤塔含溴废水的资源化处理方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105060582A (zh) * 2015-09-02 2015-11-18 波鹰(厦门)科技有限公司 一种采油废水处理及其循环利用方法
CN106745087A (zh) * 2015-11-23 2017-05-31 湖南衡阳新澧化工有限公司 一种元明粉的精制方法
CN105347363A (zh) * 2015-11-26 2016-02-24 山东潍坊润丰化工股份有限公司 一种水洗吸附法处理副产工业盐的工艺
CN105542740A (zh) * 2015-12-11 2016-05-04 中国石油天然气股份有限公司 三元复合驱的制备方法、该三元复合驱及其用途
CN105668845B (zh) * 2016-01-14 2018-08-24 天津海蓝诺环保工程有限公司 以海上油田采出水作为回注水的处理方法
CN107226580A (zh) * 2016-08-31 2017-10-03 无锡市新都环保科技有限公司 一种高效处理含油废水的系统及处理方法
CN107814449A (zh) * 2016-09-13 2018-03-20 神华集团有限责任公司 一种含盐废水的处理方法
US20210230024A1 (en) * 2016-10-26 2021-07-29 Saltworks Technologies Inc. Controlled produced water desalination for enhanced hydrocarbon recovery
CN106865920B (zh) * 2017-04-18 2020-10-30 昆明标洁环保科技有限责任公司 含重金属离子酸性废水的深度处理方法及回用工艺
CN110482752A (zh) * 2018-05-14 2019-11-22 中国石油化工股份有限公司 高含盐炼油废水零排放处理系统及工艺
GB2575243A (en) * 2018-06-08 2020-01-08 Bp Exploration Operating Co Ltd Computerized control system for a desalination plant
CN109455854A (zh) * 2018-10-23 2019-03-12 中国科学院新疆生态与地理研究所 一种压裂返排液的处理方法
CN109301373B (zh) * 2018-11-16 2024-05-14 湖北楚凯冶金有限公司 一种废铅酸蓄电池电解液循环再利用的装置及方法
CN110204031B (zh) * 2019-06-05 2021-11-02 长春理工大学 光芬顿-正渗透联合处理生物难降解有机废水的一体化装置及其使用方法
CN115259429B (zh) * 2021-04-30 2023-12-26 中国石油天然气股份有限公司 返排液的处理装置
CN113480094A (zh) * 2021-07-12 2021-10-08 上海安赐环保科技股份有限公司 一种焦化废水分离系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102311187A (zh) * 2011-07-19 2012-01-11 北京博泰盛合科技有限公司 一种实现钢铁企业工业废水零排污的工艺
CN102452749A (zh) * 2011-07-19 2012-05-16 北京博泰盛合科技有限公司 一种钢铁企业污水高转化率制备除盐水的工艺
CN103253838A (zh) * 2013-06-14 2013-08-21 波鹰(厦门)科技有限公司 基于化学脱钙的造纸深度处理废水回用装置
CN103265133A (zh) * 2013-06-14 2013-08-28 波鹰(厦门)科技有限公司 基于化学脱钙的造纸深度处理废水回用方法
US20140151300A1 (en) * 2012-12-05 2014-06-05 Water & Power Technologies, Inc. Water treatment process for high salinity produced water
CN104261581A (zh) * 2014-10-14 2015-01-07 成都美富特膜科技有限公司 一体化油气田废水处理系统
CN105000726A (zh) * 2015-09-02 2015-10-28 波鹰(厦门)科技有限公司 一种高盐采油废水处理及其循环利用方法
CN105000727A (zh) * 2015-09-02 2015-10-28 波鹰(厦门)科技有限公司 一种采油废水处理及其循环利用装置
CN105060582A (zh) * 2015-09-02 2015-11-18 波鹰(厦门)科技有限公司 一种采油废水处理及其循环利用方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100513334C (zh) * 2007-06-05 2009-07-15 邯郸钢铁股份有限公司 一种冶金污水深度处理的方法
CN101353188A (zh) * 2008-09-02 2009-01-28 安徽普朗膜技术有限公司 去除含聚驱三次采油废水杂质的方法
CN102452760B (zh) * 2010-10-19 2013-07-03 中国石油化工股份有限公司 一种油田采出水回用的处理方法
CN102583862B (zh) * 2012-02-22 2015-07-01 北京纬纶华业环保科技股份有限公司 一种将含盐废水处理到零排放、并回收利用的方法及系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102311187A (zh) * 2011-07-19 2012-01-11 北京博泰盛合科技有限公司 一种实现钢铁企业工业废水零排污的工艺
CN102452749A (zh) * 2011-07-19 2012-05-16 北京博泰盛合科技有限公司 一种钢铁企业污水高转化率制备除盐水的工艺
US20140151300A1 (en) * 2012-12-05 2014-06-05 Water & Power Technologies, Inc. Water treatment process for high salinity produced water
CN103253838A (zh) * 2013-06-14 2013-08-21 波鹰(厦门)科技有限公司 基于化学脱钙的造纸深度处理废水回用装置
CN103265133A (zh) * 2013-06-14 2013-08-28 波鹰(厦门)科技有限公司 基于化学脱钙的造纸深度处理废水回用方法
CN104261581A (zh) * 2014-10-14 2015-01-07 成都美富特膜科技有限公司 一体化油气田废水处理系统
CN105000726A (zh) * 2015-09-02 2015-10-28 波鹰(厦门)科技有限公司 一种高盐采油废水处理及其循环利用方法
CN105000727A (zh) * 2015-09-02 2015-10-28 波鹰(厦门)科技有限公司 一种采油废水处理及其循环利用装置
CN105060582A (zh) * 2015-09-02 2015-11-18 波鹰(厦门)科技有限公司 一种采油废水处理及其循环利用方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111635050A (zh) * 2019-12-16 2020-09-08 江苏久吾高科技股份有限公司 一种高矿化度矿井水处理的方法及装置
CN115175565A (zh) * 2019-12-19 2022-10-11 美丽生活有限责任公司 使用正渗透制备高固体和高蛋白无乳糖无菌乳浓缩物和奶粉
CN112744965A (zh) * 2021-01-25 2021-05-04 西南林业大学 斜板管-电气浮及过滤一体化装置及污水处理方法
CN113845267A (zh) * 2021-09-13 2021-12-28 濮阳天地人环保科技股份有限公司 一种天然气泡排采气废水电絮凝处理方法
CN116119847A (zh) * 2021-09-28 2023-05-16 中国石油化工股份有限公司 一种气田采出软化水的处理工艺及其处理装置系统
CN114539031A (zh) * 2022-02-18 2022-05-27 南京钛净流体技术有限公司 一种间苯二胺酸性水解液中去除焦油的装置和方法
CN114539031B (zh) * 2022-02-18 2023-12-22 南京钛净流体技术有限公司 一种间苯二胺酸性水解液中去除焦油的装置和方法
CN114570212A (zh) * 2022-03-16 2022-06-03 苏州盛虹环保科技有限公司 一种膜生物反应器膜污染抑制剂的制备及其应用方法
CN116282692A (zh) * 2023-03-08 2023-06-23 三达膜环境技术股份有限公司 一种精对苯二甲酸生产中尾气洗涤塔含溴废水的资源化处理方法
CN116282692B (zh) * 2023-03-08 2024-05-14 三达膜环境技术股份有限公司 一种精对苯二甲酸生产中尾气洗涤塔含溴废水的资源化处理方法

Also Published As

Publication number Publication date
CN105060582A (zh) 2015-11-18

Similar Documents

Publication Publication Date Title
WO2017036182A1 (zh) 一种采油废水处理及其循环利用方法
CN105000726A (zh) 一种高盐采油废水处理及其循环利用方法
WO2015020419A1 (ko) 담수화 장치 및 이를 이용한 담수화 방법
WO2017043741A1 (ko) 담수화 장치 및 이를 이용한 담수화 방법
CN111039477A (zh) 一种焦化废水反渗透浓水资源化综合利用的方法
WO2012171365A1 (zh) 基于电化学和电渗析技术的造纸废水循环利用装置及方法
CN111268819A (zh) 一种钛白酸性废水中水回用工艺及装置
KR101662521B1 (ko) 전착도장의 수세폐수 재활용 장치
CN106745981A (zh) 一种高盐废水处理回用的系统和方法
CN106587451B (zh) 用于微污染水源水处理的去离子一体化处理方法及其装置
CN111825259A (zh) 一种钢铁废水膜浓缩分盐零排放处理方法
WO2014198179A1 (zh) 基于化学脱钙的造纸深度处理废水回用装置及方法
JP3800449B2 (ja) 高濃度の塩類を含有する有機性廃水の処理方法及び装置
CN110759570A (zh) 染料中间体废水的处理方法以及处理系统
CN104724842A (zh) 一种反渗透水处理系统以及水处理方法
WO2016047830A1 (ko) 고회수율 막여과공정을 위한 막여과장치 및 그 세정 방법
CN211921101U (zh) 一种钛白酸性废水中水回用装置
CN103508607B (zh) 提高污水深度处理产水率的方法
ZHANG et al. River water purification via a coagulation-porous ceramic membrane hybrid process
JPS61200810A (ja) 膜分離装置
KR20020040689A (ko) 가압부상조 및 연속식 정밀여과기를 이용한 하·폐수재이용 시스템의 전처리 방법
CN113233660A (zh) 一种油田污水中含盐有机废水的处理方法
CN105130069A (zh) 一种高盐采油废水处理及其循环利用装置
JPH0747364A (ja) 超純水製造装置
CN207210139U (zh) 一种焦化废水处理系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16840611

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16840611

Country of ref document: EP

Kind code of ref document: A1