WO2017035956A1 - 吸音材料制备方法、吸音材料及其填充方法 - Google Patents

吸音材料制备方法、吸音材料及其填充方法 Download PDF

Info

Publication number
WO2017035956A1
WO2017035956A1 PCT/CN2015/095003 CN2015095003W WO2017035956A1 WO 2017035956 A1 WO2017035956 A1 WO 2017035956A1 CN 2015095003 W CN2015095003 W CN 2015095003W WO 2017035956 A1 WO2017035956 A1 WO 2017035956A1
Authority
WO
WIPO (PCT)
Prior art keywords
sound absorbing
absorbing material
skeleton
sound absorption
formed body
Prior art date
Application number
PCT/CN2015/095003
Other languages
English (en)
French (fr)
Inventor
曹晓东
Original Assignee
歌尔声学股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔声学股份有限公司 filed Critical 歌尔声学股份有限公司
Priority to US15/757,814 priority Critical patent/US10889525B2/en
Publication of WO2017035956A1 publication Critical patent/WO2017035956A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/063Preparing or treating the raw materials individually or as batches
    • C04B38/0635Compounding ingredients
    • C04B38/0645Burnable, meltable, sublimable materials
    • C04B38/065Burnable, meltable, sublimable materials characterised by physical aspects, e.g. shape, size or porosity
    • C04B38/0655Porous materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/0615Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances the burned-out substance being a monolitic element having approximately the same dimensions as the final article, e.g. a porous polyurethane sheet or a prepreg obtained by bonding together resin particles
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/162Selection of materials
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/172Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using resonance effects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • H04R1/28Transducer mountings or enclosures modified by provision of mechanical or acoustic impedances, e.g. resonator, damping means
    • H04R1/2803Transducer mountings or enclosures modified by provision of mechanical or acoustic impedances, e.g. resonator, damping means for loudspeaker transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R31/00Apparatus or processes specially adapted for the manufacture of transducers or diaphragms therefor
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/52Sound-insulating materials
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • H04R1/28Transducer mountings or enclosures modified by provision of mechanical or acoustic impedances, e.g. resonator, damping means
    • H04R1/2869Reduction of undesired resonances, i.e. standing waves within enclosure, or of undesired vibrations, i.e. of the enclosure itself
    • H04R1/2884Reduction of undesired resonances, i.e. standing waves within enclosure, or of undesired vibrations, i.e. of the enclosure itself by means of the enclosure structure, i.e. strengthening or shape of the enclosure
    • H04R1/2888Reduction of undesired resonances, i.e. standing waves within enclosure, or of undesired vibrations, i.e. of the enclosure itself by means of the enclosure structure, i.e. strengthening or shape of the enclosure for loudspeaker transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/06Loudspeakers

Definitions

  • the invention relates to the technical field of material preparation, and more particularly to a method for preparing a sound absorbing material, a sound absorbing material and a filling method thereof.
  • the speaker (SPK) or speaker box (SPK BOX) has higher and higher requirements for response frequency (f 0 ).
  • response frequency (f 0 ) of the speaker (SPK) is to be lowered, a sound absorbing material needs to be added inside.
  • the sound absorbing materials commonly used in speakers (SPK) mainly include foaming foams such as polyurethane and melamine; and non-foaming sound absorbing materials such as activated carbon and zeolite.
  • non-foaming sound absorbing materials are superior to foaming sound absorbing materials in acoustic performance gain, and non-foaming sound absorbing materials are in powder state.
  • PP polypropylene
  • SPK sound chamber of the speaker
  • the commonly used granulation scheme in the industry is a non-foaming sound absorbing material (activated carbon, zeolite, etc.) powder, which is extruded, spray granulated, boiled granulation or disc rolling.
  • the particles obtained by the above method are denser, the specific surface area and the pore volume are small, and the mass transfer efficiency of the gas flow inside the sound absorbing particles during the operation of the speaker (SPK) is affected, and the sound absorbing effect is greatly reduced.
  • SPK sound absorbing effect
  • a method of preparing a sound absorbing material comprising the steps of:
  • the dried shaped body is fired, and the combustible material skeleton is burned in the roasting process to form a three-dimensional through passage in the sound absorbing material.
  • the non-foamed material slurry comprises a non-foamed powder material, a binder, and a pore former.
  • the non-foamed powder material is one or more of natural zeolite powder, white carbon black, activated carbon powder or molecular sieve.
  • the binder is a silicone sol-based binder.
  • the combustible material skeleton is an activated carbon fiber material.
  • Another object of the present invention is to provide a sound absorbing material having good mass transfer efficiency and sound absorbing effect.
  • a sound absorbing material prepared according to the preparation method provided by the present invention.
  • a sound absorbing material is provided, the sound absorbing material being made of a non-foaming material, the sound absorbing material having a set spatial structure, and the set spatial structure internally forming a three-dimensional through passage .
  • the sound absorbing material has a specific surface area of from 150 to 450 m 2 /g and a density of from 0.3 to 0.7 g/cm 3 .
  • the inside of the sound absorbing material forms pores having a pore volume of 0.5 to 1.7 cm 3 /g and a macropore diameter of 0.1 to 50 ⁇ m.
  • Another object of the present invention is to provide a new technique for filling a sound absorbing material. Program.
  • a sound absorbing material filling method comprising the steps of:
  • the sound absorbing material preparation method provided by the invention is simple in operation, and the sound absorbing material can be filled with a set space structure, such as a rear acoustic cavity of a speaker (SPK), to maximize the space of the rear sound cavity.
  • the combustible material skeleton is manufactured according to the set structure. After the combustible material skeleton is burned in the roasting process, a three-dimensional through passage is formed inside the sound absorbing material, and the sound airflow is rapidly propagated in the three-dimensional through passage, thereby improving the work of the speaker (SPK) product.
  • SPK speaker
  • the addition of the pore-forming agent further enriches the microscopic pore structure of the sound absorbing material, improves the air molecular friction and viscous resistance of the sound airflow, improves the sound absorbing effect, and the sound absorbing member prepared from the sound absorbing material, the speaker (SPK)
  • SPK sound absorbing member prepared from the sound absorbing material
  • the sound absorbing material provided by the invention has a set space structure, the space structure can be designed according to the structure of the space to be filled, the space structure has a three-dimensional through passage, and the sound airflow rapidly propagates in the three-dimensional through passage, thereby improving the speaker (SPK) product.
  • the sound absorbing material also has a rich microscopic pore structure, and has the characteristics of large specific surface area and large pore volume, and the effect of optimizing the debugging of the acoustic performance of the speaker (SPK) product is obviously improved.
  • the sound absorbing material filling method provided by the invention has simple operation and high reliability. This method can The sound absorbing material fills the space to be filled, that is, the rear sound chamber of the speaker (SPK) to maximize the space of the rear sound chamber. Moreover, the sound absorbing material has a three-dimensional through passage inside, which improves the mass transfer efficiency and sound absorbing effect of the airflow generated by the speaker (SPK) product in the sound absorbing material.
  • the inventors of the present invention have found that in the prior art, limited to the complicated structure of the acoustic cavity after the speaker (SPK), the sound absorbing member package portion occupies a considerable portion of the space of the rear acoustic cavity, and it is difficult to make full use of the filling space of the rear acoustic cavity, and the airflow passage of the sound absorbing material. Single, affecting the sound absorbing material to optimize the acoustic performance of the speaker (SPK). Therefore, the technical task to be achieved by the present invention or the technical problem to be solved is not thought of or expected by those skilled in the art, so the present invention is a new technical solution.
  • FIG. 1 is a structural view of a skeleton of a combustible material according to an embodiment of the present invention
  • Figure 2 is a structural view of a coated container according to an embodiment of the present invention.
  • Figure 3 is an assembled view of Figures 1 and 2;
  • Figure 4 is a structural view of a sound absorbing material in accordance with an embodiment of the present invention.
  • 1 combustible material skeleton
  • 2 coated container
  • 4 three-dimensional through passage.
  • This embodiment provides a method for preparing a sound absorbing material. Referring to Figures 1-4, the following steps are included:
  • the non-foamed material slurry includes a non-foamed powder material, a binder, and a pore former.
  • a templating agent, a humectant, a dispersing agent or a surfactant may be added in the preparation of the slurry to improve the quality of the slurry.
  • the non-foamed powder material is one or more of natural zeolite powder, white carbon black, activated carbon powder or molecular sieve.
  • the binder is a silicone sol-based binder, although other types of binders may be used.
  • the preparation of the slurry is to be thoroughly mixed. Alternatively, methods such as quantitative addition, atomization, and the like are employed to increase slurry uniformity.
  • a combustible material skeleton 1 and a coating container 2 are produced, and the combustible material skeleton 1 is placed in the coating container 2.
  • the set structure such as the rear sound chamber of the speaker (SPK) is used to manufacture the overlying container 2 and the combustible material skeleton 1 in accordance with the structure of the rear sound chamber.
  • the combustible material skeleton 1 is burned in the roasting process, in order to form a three-dimensional through passage 4 inside the formed sound absorbing material, so that the sound airflow is quickly discharged, and the mass transfer efficiency and the sound absorbing effect are improved.
  • the combustible material skeleton 1 is an activated carbon fiber material. Of course, other combustible materials can also be used as the skeleton 1.
  • the non-foamed material slurry is molded in the coating container 2 to form a wet molded body, and the wet molded body is separated from the coated container 2.
  • the forming method may be extrusion, spray granulation, boiling granulation, disk rolling, oil ammonia column forming or oil column forming.
  • other methods may be used for forming, which are not limited by the present invention. It needs to be placed for a while after forming to drive out the intermediate bubbles.
  • the activated carbon fiber material has many pores, the slurry will penetrate into the pores, eventually forming a fibrous shape (not shown), and the fine fibers are mechanically vibrated to convert the acoustic energy into heat energy, and this structure further improves the sound absorbing effect of the sound absorbing material.
  • the wet molded body is dried to form a dried molded body. Further, the drying is carried out in air or an inert gas at a drying temperature of 40 to 150 ° C; and a drying time is 0.5 to 96 hours. It will be readily apparent to those skilled in the art that the lower the drying temperature, the longer the drying time, and correspondingly, the higher the drying temperature, the shorter the drying time.
  • the dried shaped body is fired, and the combustible material skeleton 1 is burned during the firing to form a three-dimensional through passage 4 in the sound absorbing material.
  • the calcination temperature is 120-850 ° C
  • the temperature increase rate is 20-120 ° C
  • the calcination time is 0.5-96 hours. It is easily found by those skilled in the art that the lower the calcination temperature, the longer the calcination time, and correspondingly, the higher the calcination temperature, the shorter the calcination time.
  • a sound absorbing material molded body having a set structure and having a three-dimensional through passage 4 therein is finally formed.
  • the method for preparing the sound absorbing material provided by the invention has simple operation and can make the sound absorbing material fill the space of the set structure, such as the rear sound chamber of the speaker (SPK), to maximize the space of the rear sound chamber.
  • the combustible material skeleton 1 is manufactured according to the structure of the rear acoustic cavity of the speaker (SPK). After the combustible material skeleton 1 is burned in the roasting process, a three-dimensional through passage 4 is formed inside the sound absorbing material, and the sound airflow rapidly propagates in the three-dimensional through passage 4.
  • the mass transfer efficiency of the airflow generated by the speaker (SPK) product in the sound absorbing material is improved, the sound absorbing area of the non-foaming sound absorbing material is increased, and the sound absorbing effect is improved.
  • the addition of the pore-forming agent further enriches the microscopic pore structure of the sound absorbing material, improves the air molecular friction and viscous resistance of the sound airflow, improves the sound absorbing effect, and the sound absorbing member pair speaker (SPK) prepared from the sound absorbing material.
  • SPK sound absorbing member pair speaker
  • This embodiment provides a sound absorbing material that is applied to the rear acoustic cavity of a speaker (SPK).
  • the sound absorbing material is prepared by the preparation method provided by the present invention.
  • the non-foamed material slurry used in the embodiment includes a non-foamed powder material, a binder, and a pore former.
  • a templating agent, a humectant, a dispersing agent or a surfactant may be added in the preparation of the slurry to improve the quality of the slurry.
  • the non-foamed powder material is a natural zeolite powder, and of course, one or more of white carbon black, activated carbon powder or molecular sieve may also be used.
  • the binder is a silicone sol-based binder. The purpose of adding the binder is to increase the viscosity of the slurry to better form spherical particles.
  • the templating agent acts as a structure guide.
  • the combustible material skeleton 1 is an activated carbon fiber material.
  • drying was carried out in the air at a drying temperature of 80 ° C and a drying time of 50 hours to obtain a qualified dried molded body.
  • the temperature was 500 ° C
  • the temperature increase rate was 80 ° C / hour
  • the baking time was 60 hours.
  • the skeleton of the activated carbon fiber material is burned during the firing process to form a three-dimensional through passage 4 .
  • the obtained sound absorbing material molded body had a density of 0.5 g/cm 3 , a specific surface area of 280 m 2 /g, a pore volume of 1.3 cm 3 /g, and a macropore diameter of 10 ⁇ m.
  • the drying is carried out in an inert gas at a drying temperature of 40 ° C and a drying time of 96 hours to obtain a qualified dried shaped body.
  • the temperature was 120 ° C
  • the temperature increase rate was 20 ° C / hour
  • the baking time was 96 hours.
  • the skeleton of the activated carbon fiber material is burned during the firing process to form a three-dimensional through passage 4 .
  • the obtained sound absorbing material molded body had a density of 0.3 g/cm 3 , a specific surface area of 150 m 2 /g, a pore volume of 0.5 cm 3 /g, and a macropore diameter of 0.1 ⁇ m.
  • the drying is carried out in an inert gas at a drying temperature of 150 ° C and a drying time of 0.5 hours to obtain a qualified dried shaped body.
  • the temperature was 850 ° C
  • the temperature increase rate was 120 ° C / hour
  • the baking time was 0.5 hour.
  • the skeleton of the activated carbon fiber material is burned during the firing process to form a three-dimensional through passage 4 .
  • the obtained sound absorbing material molded body had a density of 0.7 g/cm 3 , a specific surface area of 450 m 2 /g, a pore volume of 1.7 cm 3 /g, and a macropore diameter of 50 ⁇ m.
  • the sound absorbing material provided in this embodiment has a three-dimensional through passage 4 therein, which improves the mass transfer efficiency and sound absorbing effect of the airflow generated by the speaker (SPK) product in the sound absorbing material.
  • the sound absorbing material also has a rich microscopic pore structure, and has the characteristics of large specific surface area and large pore volume, and the effect of optimizing the debugging of the acoustic performance of the speaker (SPK) product is obviously improved.
  • the embodiment provides a sound absorbing material, and the sound absorbing material is made of a non-foaming material, and the non-foaming material has superior performance to the acoustic performance gain of the foaming material.
  • the sound absorbing material has a set spatial structure, and a three-dimensional through passage 4 is formed inside the set space structure. Specifically, the sound absorbing material has a specific surface area of 150 to 450 m 2 /g and a density of 0.3 to 0.7 g/cm 3 . Further, the inside of the sound absorbing material forms pores having a pore volume of 0.5 to 1.7 cm 3 /g and a macropore diameter of 0.1 to 50 ⁇ m.
  • the sound absorbing material provided in this embodiment has a three-dimensional through passage 4 therein, which improves the mass transfer efficiency and sound absorbing effect of the airflow generated by the speaker (SPK) product in the sound absorbing material.
  • the sound absorbing material also has a rich microscopic pore structure, and has the characteristics of large specific surface area and large pore volume, and the effect of optimizing the debugging of the acoustic performance of the speaker (SPK) product is obviously improved.
  • the present embodiment provides a sound absorbing material filling method.
  • the filling space provided in this embodiment is a rear acoustic cavity of a speaker (SPK).
  • SPK speaker
  • the non-foamed material slurry includes a non-foamed powder material, a binder, and a pore former.
  • a templating agent, a humectant, a dispersing agent or a surfactant may be added in the preparation of the slurry.
  • the non-foamed powder material is one or more of natural zeolite powder, white carbon black, activated carbon powder or molecular sieve.
  • the preparation of the slurry is to be thoroughly mixed.
  • the binder is a silicone sol-based binder, and other types of binders may of course be used.
  • the combustible material skeleton 1 and the coating container 2 are prepared, and the combustible material skeleton 1 is placed in the coating container 2.
  • the set structure such as the rear sound chamber of the speaker (SPK) is used to manufacture the overlying container 2 and the combustible material skeleton 1 in accordance with the structure of the rear sound chamber.
  • the combustible material skeleton 1 is burned in the roasting process, in order to form a three-dimensional through passage 4 inside the formed sound absorbing material, so that the sound airflow is quickly discharged, and the mass transfer efficiency and the sound absorbing effect are improved.
  • the combustible material skeleton 1 is an activated carbon fiber material. Of course, other combustible materials can also be used as the skeleton.
  • the non-foamed material slurry is molded in the coating container 2 to form a wet molded body, and then the wet molded body is separated from the coated container 2.
  • the forming method may be extrusion, spray granulation, boiling granulation, disk rolling, oil ammonia column forming or oil column forming. Of course, other methods may be used to form a section after forming. Time to drive out the middle bubble. Since the activated carbon fiber material has many pores, the slurry will penetrate into the pores, eventually forming a fibrous shape (not shown), and the fine fibers are mechanically vibrated to convert the acoustic energy into heat energy, and this structure further improves the sound absorbing effect of the sound absorbing material. .
  • the wet molded body is dried to form a dried molded body. Further, the drying is carried out in air or an inert gas at a drying temperature of 40 to 150 ° C; and a drying time is 0.5 to 96 hours.
  • the dried shaped body is fired, and the combustible material skeleton 1 is burned during the firing to form a three-dimensional through passage 4 in the sound absorbing material.
  • the calcination temperature is 120-850 ° C
  • the temperature increase rate is 20-120 ° C
  • the calcination time is 0.5-96 hours.
  • the sound absorbing material filling method provided by the invention has the advantages of simple operation and high reliability. Since the polypropylene (PP) tray or the non-woven fabric package is not required, the sound absorbing material can be filled with the space to be filled, that is, the rear sound chamber of the speaker (SPK). To maximize the use of the space behind the sound cavity. Moreover, the sound absorbing material has a three-dimensional through passage 4 therein, which improves the mass transfer efficiency of the airflow generated by the speaker (SPK) product in the sound absorbing material, increases the sound absorbing area of the non-foaming sound absorbing material, and improves the sound absorbing effect.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Dispersion Chemistry (AREA)
  • Building Environments (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
  • Exhaust Silencers (AREA)
  • Details Of Audible-Bandwidth Transducers (AREA)

Abstract

一种吸音材料制备方法、吸音材料及其填充方法。该制备方法包括:S1、制备非发泡材料浆料;S2、制作可燃材料骨架和覆形容器,将可燃材料骨架放入覆形容器中;S3、将非发泡材料浆料在覆形容器中成形,形成湿润成形体;S4、将湿润成形体进行干燥,形成干燥成形体;S5、将干燥成形体进行焙烧,所述可燃材料骨架在焙烧过程中燃毁,以在吸音材料中形成三维贯通通道。该制备方法操作简单,在吸音材料内部形成三维贯通通道,提高了吸音效果。该吸音材料由该制备方法制备而成,该吸音材料内部具有三维贯通通道,吸音效果好。该填充方法为先将吸音材料预制成形,再将其填充到待填充空间,可使吸音材料充满待填充空间。

Description

吸音材料制备方法、吸音材料及其填充方法 技术领域
本发明涉及材料制备技术领域,更具体地,涉及一种吸音材料制备方法、吸音材料及其填充方法。
背景技术
为了追求更好的音质,扬声器(SPK)或者扬声器盒子(SPK BOX)对响应频率(f0)的要求越来越高。受制于微型扬声器日益轻薄的结构及其性能特点,如果要降低扬声器(SPK)的响应频率(f0),需要在其内部加入吸音材料。目前,扬声器(SPK)常用的吸音材料主要有发泡类泡棉,如聚氨酯、三聚氰胺等;以及非发泡类吸音材料如活性炭、沸石等。其中,非发泡类吸音材料较发泡类吸音材料对声学性能增益表现更优越,非发泡类吸音材料常规态为粉末态,出于定量和工艺填充的可行性,需将其先制备成颗粒,再由聚丙烯(PP)托盒加无纺布或全部无纺布封装后装填到扬声器(SPK)后声腔,或者直接将吸音材料颗粒填充到后声腔。
目前,行业比较常用的造粒方案是非发泡类吸音材料(活性炭、沸石等)粉末,采用挤压法、喷雾造粒、沸腾制粒法或圆盘滚球法。采用上述方法制得颗粒较为密实,比表面积、孔体积小,影响扬声器(SPK)工作时气流在吸音颗粒内部的传质效率,吸音效果大大降低。油氨柱成形、油柱成形法等虽然能够获得粒径和内部物理结构较为均一的颗粒,但限于扬声器(SPK)产品后声腔的复杂结构,吸音件的封装部分占据相当部分后声腔空间,难以充分利用后声腔填充空间,对扬声器(SPK)产品声学性能优化效果有限。
发明内容
本发明的一个目的是提供一种吸音材料制备方法的新技术方案。
根据本发明的第一方面,提供了一种吸音材料制备方法,该制备方法包括以下步骤:
S1、制备非发泡材料浆料,混合均匀;
S2、按照设定的结构,制作可燃材料骨架和覆形容器,将所述可燃材料骨架放入所述覆形容器中;
S3、将非发泡材料浆料在所述覆形容器中成形,形成湿润成形体,将所述湿润成形体与所述覆形容器分离;
S4、将所述湿润成形体进行干燥,形成干燥成形体;
S5、将所述干燥成形体进行焙烧,所述可燃材料骨架在焙烧过程中燃毁,以在吸音材料中形成三维贯通通道。
优选地,所述非发泡材料浆料包括非发泡粉体材料、粘结剂和造孔剂。
优选地,所述非发泡粉体材料为天然沸石粉、白炭黑、活性炭粉末或者分子筛中的一种或多种。
优选地,所述粘结剂为有机硅溶胶类粘结剂。
优选地,所述可燃材料骨架为活性碳纤维材料。
本发明的另一个目的是提供一种具有良好传质效率和吸音效果的吸音材料。
根据本发明的另一方面,提供了一种吸音材料,所述吸音材料根据本发明提供的制备方法制备而成。
本发明的又一个目的是提供一种具有良好传质效率和吸音效果的吸音材料。
根据本发明的又一方面,提供了一种吸音材料,所述吸音材料由非发泡材料制成,所述吸音材料具有设定的空间结构,所述设定的空间结构内部形成三维贯通通道。
优选地,所述吸音材料的比表面积为150-450m2/g,密度为0.3-0.7g/cm3
优选地,所述吸音材料的内部形成孔隙,孔体积为0.5-1.7cm3/g,大孔孔径为0.1-50μm。
除此之外,本发明的再一个目的是提供一种吸音材料填充方法的新技 术方案。
根据本发明的再一方面,提供了一种吸音材料填充方法,包括以下步骤:
SS1、制备非发泡材料浆料,混合均匀;
SS2、按照待填充空间的结构,制作可燃材料骨架和覆形容器,将所述可燃材料骨架放入所述覆形容器中;
SS3、将所述非发泡材料浆料在所述覆形容器中成形,形成湿润成形体,将所述湿润成形体与所述覆形容器分离;
SS4、将所述湿润成形体进行干燥,形成干燥成形体;
SS5、将所述干燥成形体进行焙烧,得到具有填充空间结构的吸音材料块,所述可燃材料骨架在焙烧过程中燃毁,以在所述吸音材料块中形成三维贯通通道;
SS6、将所述吸音材料块填充到所述待填充空间中。
本发明提供的吸音材料制备方法,操作简单,可使吸音材料充满设定的空间结构,如扬声器(SPK)的后声腔,以最大程度利用后声腔的空间。根据设定的结构制造可燃材料骨架,所述可燃材料骨架在焙烧过程中燃毁后,在吸音材料内部形成三维贯通通道,声音气流在三维贯通通道中迅速传播,提高了扬声器(SPK)产品工作时产生的气流在吸音材料中的传质效率,增大了非发泡吸音材料的吸音面积,提高了吸音效果。并且,造孔剂的添加进一步丰富了吸音材料的微观孔道结构,提高了声音气流的空气分子摩擦和粘滞阻力,提高了吸音效果,由该吸音材料制备而成的吸音件,对扬声器(SPK)产品声学性能的优化调试的效果有了较为明显的提升。
本发明提供的吸音材料具有设定的空间结构,空间结构可以根据待填充空间的结构进行设计,空间结构内部具有三维贯通通道,声音气流在三维贯通通道中迅速传播,提高了扬声器(SPK)产品工作时产生的气流在吸音材料中的传质效率和吸音效果。该吸音材料还具有丰富的微观孔道结构,具有比表面积大,孔体积大的特点,对扬声器(SPK)产品声学性能的优化调试的效果有了较为明显的提升。
本发明提供的吸音材料填充方法,操作简单,可靠性高。该方法可使 吸音材料充满待填充空间,即扬声器(SPK)的后声腔,以最大程度利用后声腔的空间。并且,吸音材料内部具有三维贯通通道,提高了扬声器(SPK)产品工作时产生的气流在吸音材料中的传质效率和吸音效果。
本发明的发明人发现,在现有技术中,限于扬声器(SPK)后声腔的复杂结构,吸音件封装部分占据相当部分后声腔的空间,难以充分利用后声腔的填充空间,且吸音材料气流通道单一,影响吸音材料对扬声器(SPK)声学性能的优化效果。因此,本发明所要实现的技术任务或者所要解决的技术问题是本领域技术人员从未想到的或者没有预期到的,故本发明是一种新的技术方案。
通过以下参照附图对本发明的示例性实施例的详细描述,本发明的其它特征及其优点将会变得清楚。
附图说明
被结合在说明书中并构成说明书的一部分的附图示出了本发明的实施例,并且连同其说明一起用于解释本发明的原理。
图1是本发明实施例可燃材料骨架的结构图;
图2是本发明实施例覆形容器的结构图;
图3是图1和图2的装配图;
图4是本发明实施例吸音材料结构图。
其中,1:可燃材料骨架;2:覆形容器;4:三维贯通通道。
具体实施方式
现在将参照附图来详细描述本发明的各种示例性实施例。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本发明的范围。
以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。
在这里示出和讨论的所有例子中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它例子可以具有不同的值。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
实施例一
本实施例提供了一种吸音材料制备方法,参照图1-4,包括以下步骤:
S1、制备非发泡材料浆料,混合均匀。非发泡材料浆料包括非发泡粉体材料、粘结剂和造孔剂。当然,根据实际需要,在制备浆料时可加入模板剂、增润剂、分散剂或者表面活性剂等,以改善浆料质量。非发泡粉体材料为天然沸石粉、白炭黑、活性炭粉末或者分子筛中的一种或多种。粘结剂为有机硅溶胶类粘结剂,当然也可以选用其他类型粘结剂。制备浆料要充分混合。可选择地,采用定量滴加、雾化加入等方法以提高浆料均匀度。
S2、按照设定的结构,参照图1-3,制作可燃材料骨架1和覆形容器2,将可燃材料骨架1放入覆形容器2中。设定的结构例如扬声器(SPK)的后声腔,按照后声腔的结构制造覆形容器2和可燃材料骨架1。可燃材料骨架1在焙烧过程中燃毁,目的是为了在成形后的吸音材料内部形成三维贯通通道4,以使声音气流快速流出,提高传质效率和吸音效果。可燃材料骨架1为活性碳纤维材料。当然,也可以采用其他可燃材料作为骨架1。
S3、将非发泡材料浆料在覆形容器2中成形,形成湿润成形体,将湿润成形体与覆形容器2分离。可选择地,成形方法可以采用挤压法、喷雾造粒、沸腾制粒法、圆盘滚球法、油氨柱成形或者油柱成形法。当然,也可以采用其他方法成形,本发明对此不做限定。成形后需放置一段时间,以使中间气泡赶出。由于活性碳纤维材料具有许多孔隙,浆料会渗入孔隙中,最终形成纤维状(未示出),细小纤维作机械振动,使声能转变为热能,这种结构进一步提高了吸音材料的吸音效果。
S4、将湿润成形体进行干燥,形成干燥成形体。进一步地,干燥在空气或者惰性气体中进行,干燥温度为40-150℃;干燥时间为0.5-96小时。本领域技术人员很容易得出,干燥温度越低,则干燥时间越长,相对应地,干燥温度越高,则干燥时间越短。
S5、将干燥成形体进行焙烧,所述可燃材料骨架1在焙烧过程中燃毁,以在吸音材料中形成三维贯通通道4。进一步地,焙烧温度为120-850℃,升温速度为20-120℃;焙烧时间为0.5-96小时。本领域技术人员很容易得出,焙烧温度越低则焙烧时间越长,相对应地,焙烧温度越高则焙烧时间越短。参照图4,最终形成具有设定结构且内部具有三维贯通通道4的吸音材料成形体。
本发明提供的吸音材料制备方法,操作简单,可使吸音材料充满设定结构的空间,如扬声器(SPK)的后声腔,以最大程度利用后声腔的空间。根据扬声器(SPK)的后声腔的结构制造可燃材料骨架1,所述可燃材料骨架1在焙烧过程中燃毁后,在吸音材料内部形成三维贯通通道4,声音气流在三维贯通通道4中迅速传播,提高了扬声器(SPK)产品工作时产生的气流在吸音材料中的传质效率,增大了非发泡吸音材料的吸音面积,提高了吸音效果。并且,造孔剂的添加进一步丰富了吸音材料的微观孔道结构,提高了声音气流的空气分子摩擦和粘滞阻力,提高了吸音效果,由该吸音材料制备而成的吸音件对扬声器(SPK)产品声学性能的优化调试的效果有了较为明显的提升。
实施例二
本实施例提供了一种吸音材料,该吸音材料应用到扬声器(SPK)的后声腔。吸音材料由本发明提供的制备方法制备而成。
具体地,本实施例采用的非发泡材料浆料,包括非发泡粉体材料、粘结剂和造孔剂。在制备浆料时可加入模板剂、增润剂、分散剂或者表面活性剂以提高浆料质量。非发泡粉体材料采用天然沸石粉,当然,也可以采用白炭黑、活性炭粉末或者分子筛中的一种或多种。粘结剂为有机硅溶胶类粘结剂。加入粘结剂的目的是增加浆料粘度,以更好的形成球形颗粒。 本领域技术人员可以根据粘结剂的种类和粘度设定粘结剂的质量比例。模板剂起到结构导向作用。可燃材料骨架1为活性碳纤维材料。在本实施例中,干燥在空气中进行,干燥温度为80℃,干燥时间为50小时,得到了合格的干燥成形体。焙烧时,温度为500℃,升温速度为80℃/小时,焙烧时间为60小时。活性碳纤维材料骨架在焙烧过程中燃毁,形成三维贯通通道4。本实施例中,得到的吸音材料成形体的密度为0.5g/cm3,比表面积为280m2/g,孔体积为1.3cm3/g,大孔孔径为10μm。
在另一个实施方式中,干燥在惰性气体中进行,干燥温度为40℃,干燥时间为96小时,得到了合格的干燥成形体。焙烧时,温度为120℃,升温速度为20℃/小时,焙烧时间为96小时。活性碳纤维材料骨架在焙烧过程中燃毁,形成三维贯通通道4。得到的吸音材料成形体的密度为0.3g/cm3,比表面积为150m2/g,孔体积为0.5cm3/g,大孔孔径为0.1μm。
在又一个实施方式中,干燥在惰性气体中进行,干燥温度为150℃,干燥时间为0.5小时,得到了合格的干燥成形体。焙烧时,温度为850℃,升温速度为120℃/小时,焙烧时间为0.5小时。活性碳纤维材料骨架在焙烧过程中燃毁,形成三维贯通通道4。得到的吸音材料成形体的密度为0.7g/cm3,比表面积为450m2/g,孔体积为1.7cm3/g,大孔孔径为50μm。
本实施例未述及的实施方式与实施例一中相同。
本实施例提供的吸音材料内部具有三维贯通通道4,提高了扬声器(SPK)产品工作时产生的气流在吸音材料中的传质效率和吸音效果。该吸音材料还具有丰富的微观孔道结构,具有比表面积大,孔体积大的特点,对扬声器(SPK)产品声学性能的优化调试的效果有了较为明显的提升。
实施例三
本实施例提供了一种吸音材料,吸音材料由非发泡材料制成,非发泡类材料较发泡类材料对声学性能增益表现更优越。吸音材料具有设定的空间结构,设定的空间结构内部形成三维贯通通道4。具体地,吸音材料的比表面积为150-450m2/g,密度为0.3-0.7g/cm3。进一步地,吸音材料的内部形成孔隙,孔体积为0.5-1.7cm3/g,大孔孔径为0.1-50μm。
本实施例提供的吸音材料内部具有三维贯通通道4,提高了扬声器(SPK)产品工作时产生的气流在吸音材料中的传质效率和吸音效果。该吸音材料还具有丰富的微观孔道结构,具有比表面积大,孔体积大的特点,对扬声器(SPK)产品声学性能的优化调试的效果有了较为明显的提升。
实施例四
本实施例提供了一种吸音材料填充方法,本实施例提供的填充空间为扬声器(SPK)的后声腔,参照图1-4,所述填充方法包括以下步骤:
SS1、制备非发泡材料浆料,混合均匀。非发泡材料浆料包括非发泡粉体材料、粘结剂和造孔剂。当然,根据实际需要,在制备浆料时可加入模板剂、增润剂、分散剂或者表面活性剂等。非发泡粉体材料为天然沸石粉、白炭黑、活性炭粉末或者分子筛中的一种或多种。制备浆料要充分混合。粘结剂为有机硅溶胶类粘结剂,当然也可以选用其他种类的粘结剂。
SS2、按照后声腔的结构,制作可燃材料骨架1和覆形容器2,将可燃材料骨架1放入覆形容器2中。设定的结构例如扬声器(SPK)的后声腔,按照后声腔的结构制造覆形容器2和可燃材料骨架1。可燃材料骨架1在焙烧过程中燃毁,目的是为了在成形后的吸音材料内部形成三维贯通通道4,以使声音气流快速流出,提高传质效率和吸音效果。可燃材料骨架1为活性碳纤维材料。当然,也可以采用其他可燃材料作为骨架。
SS3、将非发泡材料浆料在覆形容器2中成形,形成湿润成形体,然后,将湿润成形体与覆形容器2分离。可选择地,成形方法可以采用挤压法、喷雾造粒、沸腾制粒法、圆盘滚球法、油氨柱成形或者油柱成形法,当然也可以采用其他方法成形,成形后需放置一段时间以使中间气泡赶出。由于活性碳纤维材料具有许多孔隙,浆料会渗入孔隙中,最终形成纤维状(未示出),细小纤维作机械振动,使声能转变为热能,这种结构也进一步提高了吸音材料的吸音效果。
SS4、将湿润成形体进行干燥,形成干燥成形体。进一步地,干燥在空气或者惰性气体中进行,干燥温度为40-150℃;干燥时间为0.5-96小时。
SS5、将干燥成形体进行焙烧,所述可燃材料骨架1在焙烧过程中燃毁,以在吸音材料中形成三维贯通通道4。进一步地,焙烧温度为120-850℃,升温速度为20-120℃;焙烧时间为0.5-96小时。最终形成具有设定结构且内部具有三维贯通通道4的吸音材料块。
SS6、将所述吸音材料块填充到待填充空间中。
本发明提供的吸音材料填充方法,操作简单,可靠性高,由于不需使用聚丙烯(PP)托盒或者无纺布封装,可使吸音材料充满待填充空间,即扬声器(SPK)的后声腔,以最大程度利用后声腔的空间。并且,吸音材料内部具有三维贯通通道4,提高了扬声器(SPK)产品工作时产生的气流在吸音材料中的传质效率,增大了非发泡吸音材料的吸音面积,提高了吸音效果。
虽然已经通过例子对本发明的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上例子仅是为了进行说明,而不是为了限制本发明的范围。本领域的技术人员应该理解,可在不脱离本发明的范围和精神的情况下,对以上实施例进行修改。本发明的范围由所附权利要求来限定。

Claims (10)

  1. 一种吸音材料制备方法,其特征在于,包括以下步骤:
    S1、制备非发泡材料浆料,混合均匀;
    S2、按照设定的结构,制作可燃材料骨架和覆形容器,将所述可燃材料骨架放入所述覆形容器中;
    S3、将非发泡材料浆料在所述覆形容器中成形,形成湿润成形体,将所述湿润成形体与所述覆形容器分离;
    S4、将所述湿润成形体进行干燥,形成干燥成形体;
    S5、将所述干燥成形体进行焙烧,所述可燃材料骨架在焙烧过程中燃毁,以在吸音材料中形成三维贯通通道。
  2. 根据权利要求1所述的吸音材料制备方法,其特征在于,所述非发泡材料浆料包括非发泡粉体材料、粘结剂和造孔剂。
  3. 根据权利要求2所述的吸音材料制备方法,其特征在于,所述非发泡粉体材料为天然沸石粉、白炭黑、活性炭粉末或者分子筛中的一种或多种。
  4. 根据权利要求2所述的吸音材料制备方法,其特征在于,所述粘结剂为有机硅溶胶类粘结剂。
  5. 根据权利要求1所述的吸音材料制备方法,其特征在于,所述可燃材料骨架为活性碳纤维材料。
  6. 一种吸音材料,其特征在于,所述吸音材料根据权利要求1-5任意一项的所述的制备方法制备而成。
  7. 一种吸音材料,其特征在于,所述吸音材料由非发泡材料制成,所述吸音材料具有设定的空间结构,所述设定的空间结构内部形成三维贯通通道。
  8. 根据权利要求7所述的吸音材料,其特征在于,所述吸音材料的比表面积为150-450m2/g,密度为0.3-0.7g/cm3
  9. 根据权利要求7所述的吸音材料,其特征在于,所述吸音材料的内部形成孔隙,孔体积为0.5-1.7cm3/g,大孔孔径为0.1-50μm。
  10. 一种吸音材料填充方法,其特征在于,包括以下步骤:
    SS1、制备非发泡材料浆料,混合均匀;
    SS2、按照待填充空间的结构,制作可燃材料骨架和覆形容器,将所述可燃材料骨架放入所述覆形容器中;
    SS3、将所述非发泡材料浆料在所述覆形容器中成形,形成湿润成形体,将所述湿润成形体与所述覆形容器分离;
    SS4、将所述湿润成形体进行干燥,形成干燥成形体;
    SS5、将所述干燥成形体进行焙烧,得到具有填充空间结构的吸音材料块,所述可燃材料骨架在焙烧过程中燃毁,以在所述吸音材料块中形成三维贯通通道;
    SS6、将所述吸音材料块填充到所述待填充空间中。
PCT/CN2015/095003 2015-09-06 2015-11-19 吸音材料制备方法、吸音材料及其填充方法 WO2017035956A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/757,814 US10889525B2 (en) 2015-09-06 2015-11-19 Sound absorption material preparation method, sound absorption material and filling method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510560859.2 2015-09-06
CN201510560859.2A CN105237033B (zh) 2015-09-06 2015-09-06 吸音材料制备方法、吸音材料及其填充方法

Publications (1)

Publication Number Publication Date
WO2017035956A1 true WO2017035956A1 (zh) 2017-03-09

Family

ID=55034912

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/095003 WO2017035956A1 (zh) 2015-09-06 2015-11-19 吸音材料制备方法、吸音材料及其填充方法

Country Status (3)

Country Link
US (1) US10889525B2 (zh)
CN (1) CN105237033B (zh)
WO (1) WO2017035956A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114827799A (zh) * 2021-01-28 2022-07-29 镇江贝斯特新材料有限公司 多孔块状材料及其应用、降低风噪的电子装置及其应用

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105503247B (zh) * 2015-12-03 2018-03-23 歌尔股份有限公司 介孔吸音材料颗粒的制备方法和介孔吸音材料颗粒
CN105681999B (zh) * 2016-01-28 2019-02-01 歌尔股份有限公司 吸音件的制备方法和吸音件
CN105731848B (zh) * 2016-01-28 2018-03-06 歌尔股份有限公司 吸音材料颗粒的制备方法和吸音材料颗粒
CN105733244A (zh) * 2016-02-29 2016-07-06 歌尔声学股份有限公司 吸音件的制备方法和吸音件
CN105872920A (zh) * 2016-04-19 2016-08-17 碗海鹰 一种用于扬声器的吸音材料
WO2017211244A1 (en) 2016-06-06 2017-12-14 Sound Solutions International Co., Ltd. Loudspeaker, mobile device and method of manufacturing a loudspeaker
CN106162468A (zh) * 2016-08-31 2016-11-23 歌尔股份有限公司 扬声器模组
CN107046665B (zh) * 2017-03-30 2019-10-22 歌尔股份有限公司 复合陶瓷吸音件和发声装置模组
CN107022107A (zh) * 2017-04-18 2017-08-08 尹东海 一种固态调音体及其制作工艺
CN108059388A (zh) * 2017-11-29 2018-05-22 瑞声科技(新加坡)有限公司 吸音颗粒及其制作方法、扬声器箱
CN108337615A (zh) * 2018-03-01 2018-07-27 周漫辉 多孔调音件及包含它的扬声器模组
CN109348395B (zh) * 2018-11-08 2023-07-04 苏州夸克新材料科技有限公司 一种吸音材料薄片的制备方法
CN109511056B (zh) * 2018-11-29 2021-05-18 歌尔股份有限公司 无定型活性炭粒子和吸音颗粒以及发声装置
CN109640237B (zh) * 2018-11-29 2021-05-18 歌尔股份有限公司 一种活性炭吸音材料和发声装置
CN109660924B (zh) * 2018-11-29 2021-05-18 歌尔股份有限公司 活性炭吸音颗粒和发声装置
CN109448688B (zh) * 2018-11-29 2022-04-05 歌尔股份有限公司 一种活性炭吸音材料和发声装置
CN109511057B (zh) * 2018-11-29 2021-05-18 歌尔股份有限公司 无定型活性炭粒子和吸音颗粒以及发声装置
CN109511058B (zh) * 2018-11-29 2021-05-18 歌尔股份有限公司 无定型活性炭粒子和吸音颗粒以及发声装置
CN109874089B (zh) * 2019-01-25 2022-05-10 歌尔股份有限公司 二氧化硅气凝胶吸音材料和发声装置
CN109769182B (zh) * 2019-01-31 2021-03-30 歌尔股份有限公司 一种吸音材料的制备方法、吸音材料及扬声器模组
CN109922408B (zh) * 2019-01-31 2021-06-11 歌尔股份有限公司 吸音件的制备方法
CN110012383A (zh) * 2019-03-14 2019-07-12 歌尔股份有限公司 用于降低发声装置谐振频率的活性炭吸音颗粒和发声装置
CN109963243A (zh) * 2019-03-14 2019-07-02 歌尔股份有限公司 用于降低发声装置谐振频率的活性炭吸音颗粒和发声装置
CN109922414A (zh) * 2019-03-14 2019-06-21 歌尔股份有限公司 用于降低发声装置谐振频率的活性炭吸音材料和发声装置
TWI714086B (zh) * 2019-05-14 2020-12-21 富祐鴻科技股份有限公司 吸音顆粒的製造方法
CN110467477A (zh) * 2019-07-31 2019-11-19 广州美术学院 陶瓷吸音材料及其制备方法
TWI754998B (zh) * 2020-07-22 2022-02-11 台灣立訊精密有限公司 聲學塊材的製作方法及聲學裝置
CN113754453A (zh) * 2021-08-23 2021-12-07 深圳市安芯精密组件有限公司 碳纤维增益陶瓷雾化芯及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04104974A (ja) * 1990-08-24 1992-04-07 Sk Kaken Co Ltd 連通多孔質体とその形成方法
US20030183799A1 (en) * 2000-11-29 2003-10-02 Tsutomu Oishi Porous sound absorbing material and method of manufacturing the material
CN101333608A (zh) * 2008-05-30 2008-12-31 中国科学院固体物理研究所 高孔隙率通孔泡沫金属的制备方法
CN104108902A (zh) * 2014-07-22 2014-10-22 四川正升声学科技有限公司 一种微粒吸声板及其制备方法
CN104202703A (zh) * 2014-09-01 2014-12-10 歌尔声学股份有限公司 扬声器模组
CN104446132A (zh) * 2014-08-18 2015-03-25 四川正升声学科技有限公司 一种微粒隔声板及其制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101279850B (zh) * 2008-05-12 2011-07-06 西安理工大学 一种孔结构可控的多孔陶瓷的制备方法
JP2014113510A (ja) * 2011-04-01 2014-06-26 Hitachi Metals Ltd セラミックハニカムフィルタ及びその製造方法
CN102876063B (zh) * 2012-09-19 2015-06-17 中国林业科学研究院木材工业研究所 一种复合木质吸音材料及其制造方法
JP6245896B2 (ja) * 2013-08-27 2017-12-13 イビデン株式会社 ハニカム触媒及び排ガス浄化装置
CN104549553A (zh) * 2013-10-29 2015-04-29 中国石油化工股份有限公司 一种球形分子筛催化剂的制备方法
JP6434752B2 (ja) * 2014-09-08 2018-12-05 イビデン株式会社 ハニカム焼成体、ハニカムフィルタ及びハニカム焼成体の製造方法
CN204350287U (zh) * 2015-01-06 2015-05-20 歌尔声学股份有限公司 一种扬声器模组
DE102015218288A1 (de) * 2015-09-23 2017-03-23 Hochschule Wismar Dämmstoffplatte und Verfahren zur Herstellung einer Dämmstoffplatte

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04104974A (ja) * 1990-08-24 1992-04-07 Sk Kaken Co Ltd 連通多孔質体とその形成方法
US20030183799A1 (en) * 2000-11-29 2003-10-02 Tsutomu Oishi Porous sound absorbing material and method of manufacturing the material
CN101333608A (zh) * 2008-05-30 2008-12-31 中国科学院固体物理研究所 高孔隙率通孔泡沫金属的制备方法
CN104108902A (zh) * 2014-07-22 2014-10-22 四川正升声学科技有限公司 一种微粒吸声板及其制备方法
CN104446132A (zh) * 2014-08-18 2015-03-25 四川正升声学科技有限公司 一种微粒隔声板及其制备方法
CN104202703A (zh) * 2014-09-01 2014-12-10 歌尔声学股份有限公司 扬声器模组

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114827799A (zh) * 2021-01-28 2022-07-29 镇江贝斯特新材料有限公司 多孔块状材料及其应用、降低风噪的电子装置及其应用

Also Published As

Publication number Publication date
US20180354862A1 (en) 2018-12-13
US10889525B2 (en) 2021-01-12
CN105237033B (zh) 2018-11-30
CN105237033A (zh) 2016-01-13

Similar Documents

Publication Publication Date Title
WO2017035956A1 (zh) 吸音材料制备方法、吸音材料及其填充方法
WO2017035987A1 (zh) 吸音材料制备方法以及吸音材料
CN105516880B (zh) 吸音材料制备方法、吸音材料以及扬声器
CN107046665B (zh) 复合陶瓷吸音件和发声装置模组
WO2017148011A1 (zh) 吸音件的制备方法和吸音件
CN104032157B (zh) 一种规则多孔金属材料及其制备方法与应用
WO2018176664A1 (zh) 金属有机框架吸音件和发声装置模组
CN105681999B (zh) 吸音件的制备方法和吸音件
CN113173782A (zh) 一种组合物及含有梯度分布微孔的多孔陶瓷雾化芯
CN105503247A (zh) 介孔吸音材料颗粒的制备方法和介孔吸音材料颗粒
CN105601984A (zh) 吸音材料及其制备方法
WO2021135871A1 (zh) 吸音材料制备方法、吸音材料、发声装置以及电子设备
CN110713377A (zh) 一种利用石棉尾矿制备CaO-MgO-SiO2系泡沫陶瓷的方法
CN105430589A (zh) 一种吸音组件及其制备方法
CN110104990A (zh) 吸音颗粒及其制造方法、以及扬声器结构
CN105731848B (zh) 吸音材料颗粒的制备方法和吸音材料颗粒
JP2001130973A5 (zh)
CN108377456A (zh) 一种吸音微球材料及其制备方法
CN107022107A (zh) 一种固态调音体及其制作工艺
CN105396623A (zh) 柱状活性炭、其制备方法以及钌基氨合成催化剂的载体
CN115108812A (zh) 调控陶粒结构特征和力学强度的方法、类石榴结构轻质高强陶粒及其制备方法
JPH09226035A (ja) 遮音板とその製造方法
CN106915970A (zh) 一种凹凸棒吸音颗粒及制备方法
CN109922408A (zh) 吸音件的制备方法
JPH04228949A (ja) 制振材料及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15902763

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15902763

Country of ref document: EP

Kind code of ref document: A1