WO2017035918A1 - 一种高强度抗冲击型金属陶瓷复合衬板及其制备方法 - Google Patents

一种高强度抗冲击型金属陶瓷复合衬板及其制备方法 Download PDF

Info

Publication number
WO2017035918A1
WO2017035918A1 PCT/CN2015/091831 CN2015091831W WO2017035918A1 WO 2017035918 A1 WO2017035918 A1 WO 2017035918A1 CN 2015091831 W CN2015091831 W CN 2015091831W WO 2017035918 A1 WO2017035918 A1 WO 2017035918A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
ceramic particles
composite liner
powder
mixture
Prior art date
Application number
PCT/CN2015/091831
Other languages
English (en)
French (fr)
Inventor
钱兵
孙书刚
Original Assignee
南通高欣耐磨科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南通高欣耐磨科技股份有限公司 filed Critical 南通高欣耐磨科技股份有限公司
Publication of WO2017035918A1 publication Critical patent/WO2017035918A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously

Definitions

  • the invention relates to a composite liner, in particular to a high-strength impact-resistant cermet composite liner and a preparation method thereof.
  • Ball mill and crusher, roller press are the key equipment widely used in the grinding materials of building materials, mining, metallurgy, electric power and other industries. Grinding balls, liners and hammers are the most commonly used grinding media in ball mill crushers, and also grinding.
  • Abrasive body with high wear resistance keeps the grading constant for a long time, not only improves the grinding efficiency, reduces the number and time of opening and closing replenishment, but also prolongs the clearance period, reduces the labor intensity of workers, and at the same time improves the mill crusher. It is of great significance to produce at the time of the stage, to ensure the quality of the abrasive and to reduce the power consumption and the consumption of the grinding body.
  • abrasive body ball lining hammer For the abrasive body ball lining hammer, not only high wear resistance is required, but also high mechanical toughness and impact resistance are required.
  • Various abrasive bodies such as grinding ball lining hammers are used in a large amount and consume an astonishing amount. According to statistics, only China's annual grinding ball is about 2 million tons, and the ball mill lining hammer consumption is 600,000 tons, worth several billion yuan.
  • the main grinding ball production methods in China are: 1. Forging grinding balls, 2. Casting grinding balls; The grinding balls produced by these two production methods have large consumption of raw materials, large environmental pollution, manual operation and high labor intensity of workers. High quality fluctuations and low mechanization result in low production efficiency.
  • the main materials for the grinding ball and lining of the ball mill, the hammer head of the crusher and the roller sleeve of the roller press are: 1. High chromium alloy, 2, low chromium alloy, 3. Medium and high carbon steel forged ball, 4. Medium chromium medium manganese Alloys (casting balls), etc.; the above-mentioned products are all in the metal category. It is well known that mechanical toughness, impact resistance and wear resistance are difficult to achieve a perfect balance in a single metal material.
  • the grinding ball and the lining and the hammer of the crusher are also subjected to high stress impact during the working process. If the hardness is too high, the toughness will be reduced, which may lead to the occurrence of fatigue peeling and crushing of the wear parts during use. If the hardness is too low, it will cause a waste of resources in a short period of time. In practical applications, the toughness and hardness of the material are a contradiction. Often high hardness means low toughness, and it is difficult to combine high hardness and high toughness.
  • the present invention introduces a hard ceramic particle phase into the metal phase. In order to increase the hardness of the product without reducing the toughness.
  • the present invention provides a high-strength resistance which is excellent in wear resistance, impact resistance, chemical corrosion resistance and low temperature toughness, and has excellent processing properties and low material cost. Impact type cermet composite liner and preparation method thereof.
  • a high-strength impact-resistant cermet composite liner according to the present invention comprises the following parts by mass:
  • the ceramic particles are oxide ceramic particles, nitride ceramic particles, carbide ceramic particles or boride ceramic particles, or a mixture of two or more thereof.
  • the ceramic particles are: the oxide ceramic particles comprise: alumina ceramic particles, zirconia ceramic particles; the carbide ceramic particles comprise: silicon carbide ceramic particles, boron carbide ceramic particles, tungsten carbide ceramic particles, carbonization
  • the titanium ceramic particles; the boride ceramic particles comprise: titanium diboride ceramic particles, zirconium diboride ceramic particles; the nitride ceramic particles comprise aluminum nitride ceramic particles, silicon nitride ceramic particles, boron nitride ceramic particles.
  • the metal powder may be high carbon ferrochrome metal powder, molybdenum iron powder, iron powder, molybdenum powder, nickel powder, copper powder, ferromanganese powder, ferrochrome alloy powder, boron iron alloy powder, ferrosilicon alloy powder, titanium iron alloy Powder, vanadium-iron alloy powder or rare earth alloy powder, or a mixture of two or more thereof.
  • the ceramic particles have a particle size diameter of 0.5 mm to 5 mm; and the metal powder has a particle size of 100 mesh to 200 mesh.
  • auxiliary agent is: motor oil, ethanol, zinc stearate, lithium stearate, synthetic wax, water or a mixture of two or more thereof.
  • the coupling agent is a silane coupling agent KH550 or a silane coupling agent KH560.
  • the antistatic agent is ethoxylated laurylamine.
  • the invention also discloses a preparation method of a high-strength impact-resistant cermet composite liner, comprising the following steps:
  • step (3) adding ultra high molecular weight polyethylene, medium density polyethylene, low density polyethylene, diatomaceous earth, glass fiber, coupling agent, antistatic agent and curing agent to the mixture of step (2) and stirring at high speed 2-3 minutes to obtain a mixture B;
  • the primary preform is placed in an atmosphere furnace for sintering, the sintering temperature is 1100-1250 ° C, and the sintering time is 20-50 minutes, and a semi-finished product is obtained;
  • the semi-finished product is quenched in a heat treatment furnace, and the quenching temperature is 920 ° C - 1000 ° C;
  • the tempering temperature is 260-280 ° C, and a high-strength impact-resistant cermet composite liner is obtained.
  • the atmosphere of the atmosphere furnace is: decomposition of ammonia, nitrogen, hydrogen or endothermic gas.
  • the cermet composite lining plate of the invention has the characteristics of excellent wear resistance, impact resistance, chemical corrosion resistance and low temperature toughness, and has the advantages of good processing performance and low material cost.
  • the invention perfectly combines the wear resistance of the ceramic particles and the mechanical properties of the metal materials, thereby greatly improving the hardness and wear resistance of the conventional metal materials.
  • the invention fully utilizes the advantages of high wear resistance of the ceramic material and fully exerts the high toughness (impact toughness Akv/J at 25) achieved by burning the carbon steel metal powder into the wear pad layer, and can fully satisfy the large ball mill crusher.
  • the toughness requirements of the wear parts are saved, and at the same time, the alloy materials with higher value are saved, so that the wear resistance and toughness of the obtained wear parts are highly unified.
  • the ceramic particles used in the invention have a specific gravity smaller than that of the metal material, and the specific gravity is only 5.5 to 6.8 (depending on the amount of ceramics added), the grinding machine is loaded with the same volume of the same size of the grinding balls and the lining plate is relatively light in weight, and the mill load is relatively relatively high. Light, electricity and energy consumption will be relatively low.
  • a high-strength impact-resistant cermet composite liner comprising the following parts by mass:
  • the ceramic particles are oxide ceramic particles, nitride ceramic particles, carbide ceramic particles or boride ceramic particles, or a mixture of two or more thereof.
  • the ceramic particles are: the oxide ceramic particles comprise: alumina ceramic particles, zirconia ceramic particles; the carbide ceramic particles comprise: silicon carbide ceramic particles, boron carbide ceramic particles, tungsten carbide ceramic particles, carbonization
  • the titanium ceramic particles; the boride ceramic particles comprise: titanium diboride ceramic particles, zirconium diboride ceramic particles; the nitride ceramic particles comprise aluminum nitride ceramic particles, silicon nitride ceramic particles, boron nitride ceramic particles.
  • the metal powder may be high carbon ferrochrome metal powder, molybdenum iron powder, iron powder, molybdenum powder, nickel powder, copper powder, ferromanganese powder, ferrochrome alloy powder, boron iron alloy powder, ferrosilicon alloy powder, titanium iron alloy Powder, vanadium-iron alloy powder or rare earth alloy powder, or a mixture of two or more thereof.
  • the ceramic particles have a particle size diameter of 0.5 mm to 5 mm; and the metal powder has a particle size of 100 mesh to 200 mesh.
  • auxiliary agent is: motor oil, ethanol, zinc stearate, lithium stearate, synthetic wax, water or a mixture of two or more thereof.
  • the coupling agent is a silane coupling agent KH550 or a silane coupling agent KH560.
  • the antistatic agent is ethoxylated laurylamine.
  • the preparation method of the above high-strength impact-resistant cermet composite liner comprises the following steps:
  • step (3) adding ultra high molecular weight polyethylene, medium density polyethylene, low density polyethylene, diatomaceous earth, glass fiber, coupling agent, antistatic agent and curing agent to the mixture of step (2) and stirring at high speed 2 minutes, the mixture B;
  • the primary preform is placed in an atmosphere furnace for sintering, the sintering temperature is 1100 ° C, and the sintering time is 20 minutes to obtain a semi-finished product, the atmosphere of the atmosphere furnace is: decomposition of ammonia, nitrogen, hydrogen or endothermic gas;
  • the semi-finished product is quenched in a heat treatment furnace, and the quenching temperature is 920 ° C;
  • the tempering temperature is 260 ° C, and a high-strength impact-resistant cermet composite liner is obtained.
  • a high-strength impact-resistant cermet composite liner comprising the following parts by mass:
  • the ceramic particles are oxide ceramic particles, nitride ceramic particles, carbide ceramic particles or boride ceramic particles, or a mixture of two or more thereof.
  • the ceramic particles are: the oxide ceramic particles comprise: alumina ceramic particles, zirconia ceramic particles; the carbide ceramic particles comprise: silicon carbide ceramic particles, boron carbide ceramic particles, tungsten carbide ceramic particles, carbonization
  • the titanium ceramic particles; the boride ceramic particles comprise: titanium diboride ceramic particles, zirconium diboride ceramic particles; the nitride ceramic particles comprise aluminum nitride ceramic particles, silicon nitride ceramic particles, boron nitride ceramic particles.
  • the metal powder may be high carbon ferrochrome metal powder, molybdenum iron powder, iron powder, molybdenum powder, nickel powder, copper powder, ferromanganese powder, ferrochrome alloy powder, boron iron alloy powder, ferrosilicon alloy powder, titanium iron alloy Powder, vanadium-iron alloy powder or rare earth alloy powder, or a mixture of two or more thereof.
  • the ceramic particles have a particle size diameter of 0.5 mm to 5 mm; and the metal powder has a particle size of 100 mesh to 200 mesh.
  • auxiliary agent is: motor oil, ethanol, zinc stearate, lithium stearate, synthetic wax, water or a mixture of two or more thereof.
  • the coupling agent is a silane coupling agent KH550 or a silane coupling agent KH560.
  • the antistatic agent is ethoxylated laurylamine.
  • the preparation method of the above high-strength impact-resistant cermet composite liner comprises the following steps:
  • the primary preform is placed in an atmosphere furnace for sintering, the sintering temperature is 1250 ° C, and the sintering time is 50 minutes to obtain a semi-finished product, the atmosphere of the atmosphere furnace is: decomposing ammonia, nitrogen, hydrogen or endothermic gas;
  • the semi-finished product is quenched in a heat treatment furnace, and the quenching temperature is 1000 ° C;
  • a high-strength impact-resistant cermet composite liner comprising the following parts by mass:
  • the ceramic particles are oxide ceramic particles, nitride ceramic particles, carbide ceramic particles or boride ceramic particles, or a mixture of two or more thereof.
  • the ceramic particles are: the oxide ceramic particles comprise: alumina ceramic particles, zirconia ceramic particles; the carbide ceramic particles comprise: silicon carbide ceramic particles, boron carbide ceramic particles, tungsten carbide ceramic particles, carbonization
  • the titanium ceramic particles; the boride ceramic particles comprise: titanium diboride ceramic particles, zirconium diboride ceramic particles; the nitride ceramic particles comprise aluminum nitride ceramic particles, silicon nitride ceramic particles, boron nitride ceramic particles.
  • the metal powder may be high carbon ferrochrome metal powder, molybdenum iron powder, iron powder, molybdenum powder, nickel powder, copper powder, ferromanganese powder, ferrochrome alloy powder, boron iron alloy powder, ferrosilicon alloy powder, titanium iron alloy Powder, vanadium-iron alloy powder or rare earth alloy powder, or a mixture of two or more thereof.
  • the ceramic particles have a particle size diameter of 0.5 mm to 5 mm; and the metal powder has a particle size of 100 mesh to 200 mesh.
  • auxiliary agent is: motor oil, ethanol, zinc stearate, lithium stearate, synthetic wax, water or a mixture of two or more thereof.
  • the coupling agent is a silane coupling agent KH550 or a silane coupling agent KH560.
  • the antistatic agent is ethoxylated laurylamine.
  • the preparation method of the above high-strength impact-resistant cermet composite liner comprises the following steps:
  • step (3) adding ultra high molecular weight polyethylene, medium density polyethylene, low density polyethylene, diatomaceous earth, glass fiber, coupling agent, antistatic agent and curing agent to the mixture of step (2) and stirring at high speed 2 minutes, the mixture B;
  • the primary preform is placed in an atmosphere furnace for sintering, the sintering temperature is 1200 ° C, and the sintering time is 35 minutes to obtain a semi-finished product, the atmosphere of the atmosphere furnace is: decomposition of ammonia, nitrogen, hydrogen or endothermic gas;
  • the semi-finished product is quenched in a heat treatment furnace, and the quenching temperature is 960 ° C;
  • the tempering temperature is 270 ° C, and a high-strength impact-resistant cermet composite liner is obtained.
  • the cermet composite lining plate of the invention has the characteristics of excellent wear resistance, impact resistance, chemical corrosion resistance and low temperature toughness, and has the advantages of good processing performance and low material cost.
  • the invention perfectly combines the wear resistance of the ceramic particles and the mechanical properties of the metal materials, thereby greatly improving the hardness and wear resistance of the conventional metal materials.
  • the invention fully utilizes the advantages of high wear resistance of the ceramic material and fully exerts the high toughness (impact toughness Akv/J at 25) achieved by burning the carbon steel metal powder into the wear pad layer, and can fully satisfy the large ball mill crusher.
  • the toughness requirements of the wear parts are saved, and at the same time, the alloy materials with higher value are saved, so that the wear resistance and toughness of the obtained wear parts are highly unified.
  • the ceramic particles used in the invention have a specific gravity smaller than that of the metal material, and the specific gravity is only 5.5 to 6.8 (depending on the amount of ceramics added), the grinding machine is loaded with the same volume of the same size of the grinding balls and the lining plate is relatively light in weight, and the mill load is relatively relatively high. Light, electricity and energy consumption will be relatively low.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

一种高强度抗冲击型金属陶瓷复合衬板,其包括如下质量份数的组分:陶瓷颗粒20-80份,金属粉末30-80份,超高分子量聚乙烯30-50份,中密度聚乙烯5-10份,低密度聚乙烯6-8份,氢氧化镁1-3份,硅藻土1-2份,玻璃纤维10-15份,过氧化二异丙苯0.5-1份,偶联剂1-5份,抗静电剂1-3份,固化剂1-3份,助剂1-2份。还公开了复合衬板的制备方法,其包括步骤:先将陶瓷颗粒、金属粉末与助剂混合制得混合物A,然后其他组分混合得混合物B,再将上述两个组分混合成型、烧结、淬火、回火。该金属陶瓷复合衬板除具有优异的耐磨性、抗冲击性、耐化学腐蚀性和低温韧性之外,还具有良好的加工性能和材料成本低的特点。

Description

一种高强度抗冲击型金属陶瓷复合衬板及其制备方法 技术领域
本发明涉及一种复合衬板,具体涉及一种高强度抗冲击型金属陶瓷复合衬板及其制备方法。
背景技术
球磨机及破碎机,辊压机是广泛用于建材、矿山、冶金、电力等行业粉磨物料的关键设备,磨球,衬板及锤头是球磨机破碎机中最常用的研磨介质,也是磨粉行业中易磨损件消耗量最大的零件;随着各种行业不断的发展,对材料的比表面积和细度要求逾益更高,作为企业对研磨体的正确选材显得尤为重要。耐磨性高的研磨体,在长时间保持级配不变的同时不仅提高粉磨效率、减少开停机补仓更换次数和时间,也延长清仓周期、减轻工人劳动强度,同时对提高磨机破碎机台时产量、保证磨料质量以及降低电耗和研磨体的消耗有着重要的意义。
对于研磨体磨球衬板锤头而言,不仅要求高的耐磨性能,也需要较高的机械韧性及抗冲击能力,各种研磨体如磨球衬板锤头使用量巨大,并且消耗惊人,据统计,仅我国每年消耗的磨球约为200多万吨,球磨机衬板锤头消耗达60万吨,价值几十亿元。目前,国内主要的磨球生产方法有:1、锻造磨球、2、铸造磨球、;这两种生产方法生产的磨球,原料消耗大,环境污染大,手工操作且工人劳动强度大,质量波动大,机械化程度低造成生产效率低。
生产球磨机的磨球及衬板,破碎机的锤头及辊压机辊套主要材料有:1、高铬合金、2、低铬合金,3、中高碳钢锻球,4、中铬中锰合金(铸球)等;上述产品生产材料都是属于金属内范畴,众所周知,机械韧性、抗冲击性、耐磨性在单一的金属材料中很难得到完美的平衡。
另外磨球和衬板及破碎机锤头在工作过程中还受到高应力冲击作用,硬度过高就会造成韧性下降,从而导致此类耐磨件在使用时疲劳剥落和破碎等现象的发生,而硬度过低又会在短时间磨损严重造成资源的浪费。在实际应用中,材料的韧性和硬度是一对矛盾,往往高硬度就意味着低韧性,很难将高硬度和高韧性结合于一体,而本发明是将硬质陶瓷颗粒相引入到金属相,从而达到提高产品的硬度而不降低韧性。
发明内容
发明目的:本发明针对不足,提出一种具有优异的耐磨性、抗冲击性、耐化学腐蚀性和低温韧性的特点外,同时具有很好的加工性能,材料成本低的特点的高强度抗冲击型金属陶瓷复合衬板及其制备方法。
技术方案:本发明所述的一种高强度抗冲击型金属陶瓷复合衬板,包括如下质量份数的组分:
陶瓷颗粒20-80份,金属粉末30-80份,超高分子量聚乙烯30-50份,中密度聚乙烯5-10份,低密度聚乙烯6-8份,氢氧化镁1-3份,硅藻土1-2份,玻璃纤维10-15份,过氧化二异丙苯0.5-1份,偶联剂1-5份,抗静电剂1-3份,固化剂1-3份,助剂1-2份。
进一步的,所述陶瓷颗粒为氧化物陶瓷颗粒、氮化物陶瓷颗粒、碳化物陶瓷颗粒或硼化物陶瓷颗粒,或其中两种以上混合物。
进一步的,所述陶瓷颗粒为:氧化物陶瓷颗粒包括:三氧化二铝陶瓷颗粒、二氧化锆陶瓷颗粒;碳化物陶瓷颗粒包括:碳化硅陶瓷颗粒、碳化硼陶瓷颗粒、碳化钨陶瓷颗粒、碳化钛陶瓷颗粒;硼化物陶瓷颗粒包括:二硼化钛陶瓷颗粒、二硼化锆陶瓷颗粒;氮化物陶瓷颗粒包括氮化铝陶瓷颗粒、氮化硅陶瓷颗粒、氮化硼陶瓷颗粒。
进一步的,所述金属粉末可以是高碳铬铁金属粉末、钼铁粉、铁粉、钼粉、镍粉、铜粉、锰铁合金粉末、铬铁合金粉末、硼铁合金粉末、硅铁合金粉末、钛铁合金粉末、钒铁合金粉末或稀土合金粉末,或其中两种以上的混合物。
进一步的,所述陶瓷颗粒的粒度直径为0.5mm~5mm;金属粉末的粒度为100目~200目。
进一步的,所述助剂为:机油、乙醇、硬脂酸锌、硬脂酸锂、合成蜡、水或其中两种以上的混合物。
进一步的,所述偶联剂为硅烷偶联剂KH550或硅烷偶联剂KH560。
进一步的,所述抗静电剂为乙氧基月桂酷胺。
本发明还公开了一种高强度抗冲击型金属陶瓷复合衬板的制备方法,包括如下步骤:
(1)制备金属陶瓷颗粒预制件;将陶瓷颗粒与金属粉末用助剂混合均匀得到混合物A;
(2)将氢氧化镁和过氧化二异丙苯加入高速搅拌机,高速搅拌2-5分钟;
(3)将超高分子量聚乙烯、中密度聚乙烯、低密度聚乙烯、硅藻土、玻璃纤维、偶联剂、抗静电剂和固化剂加入到步骤(2)的混合料中再高速搅拌2-3分钟,得混合物B;
(4)将上述混合物A和混合物B混合搅拌,并将混合物料倒入模具成型,得到初型预制件;
(5)将初型预制件放入气氛炉内烧结,烧结温度为1100—1250℃,烧结时间为20~50分钟,得半成品;
(6)将半成品放入热处理炉中淬火,淬火温度为920℃—1000℃;
(7)放入热处理炉中回火,回火温度为260-280℃,得到高强度抗冲击型金属陶瓷复合衬板。
进一步的,所述气氛炉气氛为:分解氨、氮气、氢气或吸热性煤气。
有益效果:本发明的金属陶瓷复合衬板具有优异的耐磨性、抗冲击性、耐化学腐蚀性和低温韧性的特点外,同时具有很好的加工性能,材料成本低的特点。本发明将陶瓷颗粒的耐磨性和金属材料的机械性能完美结合,极大的提高传统金属材料的硬度、耐磨性。本发明即充分利用了陶瓷材料高耐磨性的优点又充分发挥碳钢金属粉末烧制成耐磨垫层所达到的高韧性(冲击韧性Akv/J在25),可以完全满足大型球磨机破碎机对耐磨件的韧性要求,同时又节约了价值较高价值的合金材料,使制得的耐磨件耐磨性韧性达到高度的统一。本发明使用的陶瓷颗粒比重比金属材料比重小,比重只有5.5至6.8,(根据加入陶瓷数量而不同),磨机装载同体积同尺寸的磨球及衬板重量相对轻,磨机负载相对较轻,电力能源消耗会相对降低。
具体实施方式
下面结合具体实施例对本发明作进一步说明:
实施例1
一种高强度抗冲击型金属陶瓷复合衬板,包括如下质量份数的组分:
陶瓷颗粒20份,金属粉末30份,超高分子量聚乙烯30份,中密度聚乙烯5份,低密度聚乙烯6份,氢氧化镁1份,硅藻土1份,玻璃纤维10份,过氧化二异丙苯0.5份,偶联剂1份,抗静电剂1份,固化剂1份,助剂1份。
进一步的,所述陶瓷颗粒为氧化物陶瓷颗粒、氮化物陶瓷颗粒、碳化物陶瓷颗粒或硼化物陶瓷颗粒,或其中两种以上混合物。
进一步的,所述陶瓷颗粒为:氧化物陶瓷颗粒包括:三氧化二铝陶瓷颗粒、二氧化锆陶瓷颗粒;碳化物陶瓷颗粒包括:碳化硅陶瓷颗粒、碳化硼陶瓷颗粒、碳化钨陶瓷颗粒、碳化钛陶瓷颗粒;硼化物陶瓷颗粒包括:二硼化钛陶瓷颗粒、二硼化锆陶瓷颗粒;氮化物陶瓷颗粒包括氮化铝陶瓷颗粒、氮化硅陶瓷颗粒、氮化硼陶瓷颗粒。
进一步的,所述金属粉末可以是高碳铬铁金属粉末、钼铁粉、铁粉、钼粉、镍粉、铜粉、锰铁合金粉末、铬铁合金粉末、硼铁合金粉末、硅铁合金粉末、钛铁合金粉末、钒铁合金粉末或稀土合金粉末,或其中两种以上的混合物。
进一步的,所述陶瓷颗粒的粒度直径为0.5mm~5mm;金属粉末的粒度为100目~200目。
进一步的,所述助剂为:机油、乙醇、硬脂酸锌、硬脂酸锂、合成蜡、水或其中两种以上的混合物。
进一步的,所述偶联剂为硅烷偶联剂KH550或硅烷偶联剂KH560。进一步的,所述抗静电剂为乙氧基月桂酷胺。
上述一种高强度抗冲击型金属陶瓷复合衬板的制备方法,包括如下步骤:
(1)制备金属陶瓷颗粒预制件;将陶瓷颗粒与金属粉末用助剂混合均匀得到混合物A;
(2)将氢氧化镁和过氧化二异丙苯加入高速搅拌机,高速搅拌2分钟;
(3)将超高分子量聚乙烯、中密度聚乙烯、低密度聚乙烯、硅藻土、玻璃纤维、偶联剂、抗静电剂和固化剂加入到步骤(2)的混合料中再高速搅拌2分钟,得混合物B;
(4)将上述混合物A和混合物B混合搅拌,并将混合物料倒入模具成型,得到初型预制件;
(5)将初型预制件放入气氛炉内烧结,烧结温度为1100℃,烧结时间为20分钟,得半成品,所述气氛炉气氛为:分解氨、氮气、氢气或吸热性煤气;
(6)将半成品放入热处理炉中淬火,淬火温度为920℃;
(7)放入热处理炉中回火,回火温度为260℃,得到高强度抗冲击型金属陶瓷复合衬板。
实施例2
一种高强度抗冲击型金属陶瓷复合衬板,包括如下质量份数的组分:
陶瓷颗粒80份,金属粉末80份,超高分子量聚乙烯50份,中密度聚乙烯10份,低密度聚乙烯8份,氢氧化镁3份,硅藻土2份,玻璃纤维15份,过氧化二异丙苯1份,偶联剂5份,抗静电剂3份,固化剂3份,助剂2份。
进一步的,所述陶瓷颗粒为氧化物陶瓷颗粒、氮化物陶瓷颗粒、碳化物陶瓷颗粒或硼化物陶瓷颗粒,或其中两种以上混合物。
进一步的,所述陶瓷颗粒为:氧化物陶瓷颗粒包括:三氧化二铝陶瓷颗粒、二氧化锆陶瓷颗粒;碳化物陶瓷颗粒包括:碳化硅陶瓷颗粒、碳化硼陶瓷颗粒、碳化钨陶瓷颗粒、碳化钛陶瓷颗粒;硼化物陶瓷颗粒包括:二硼化钛陶瓷颗粒、二硼化锆陶瓷颗粒;氮化物陶瓷颗粒包括氮化铝陶瓷颗粒、氮化硅陶瓷颗粒、氮化硼陶瓷颗粒。
进一步的,所述金属粉末可以是高碳铬铁金属粉末、钼铁粉、铁粉、钼粉、镍粉、铜粉、锰铁合金粉末、铬铁合金粉末、硼铁合金粉末、硅铁合金粉末、钛铁合金粉末、钒铁合金粉末或稀土合金粉末,或其中两种以上的混合物。
进一步的,所述陶瓷颗粒的粒度直径为0.5mm~5mm;金属粉末的粒度为100目~200目。
进一步的,所述助剂为:机油、乙醇、硬脂酸锌、硬脂酸锂、合成蜡、水或其中两种以上的混合物。
进一步的,所述偶联剂为硅烷偶联剂KH550或硅烷偶联剂KH560。进一步的,所述抗静电剂为乙氧基月桂酷胺。
上述一种高强度抗冲击型金属陶瓷复合衬板的制备方法,包括如下步骤:
(1)制备金属陶瓷颗粒预制件;将陶瓷颗粒与金属粉末用助剂混合均匀得到混合物A;
(2)将氢氧化镁和过氧化二异丙苯加入高速搅拌机,高速搅拌5分钟;
(3)将超高分子量聚乙烯、中密度聚乙烯、低密度聚乙烯、硅藻土、玻璃纤维、偶联剂、 抗静电剂和固化剂加入到步骤(2)的混合料中再高速搅拌3分钟,得混合物B;
(4)将上述混合物A和混合物B混合搅拌,并将混合物料倒入模具成型,得到初型预制件;
(5)将初型预制件放入气氛炉内烧结,烧结温度为1250℃,烧结时间为50分钟,得半成品,所述气氛炉气氛为:分解氨、氮气、氢气或吸热性煤气;
(6)将半成品放入热处理炉中淬火,淬火温度为1000℃;
(7)放入热处理炉中回火,回火温度为280℃,得到高强度抗冲击型金属陶瓷复合衬板。实施例3
一种高强度抗冲击型金属陶瓷复合衬板,包括如下质量份数的组分:
陶瓷颗粒50份,金属粉末55份,超高分子量聚乙烯40份,中密度聚乙烯7份,低密度聚乙烯7份,氢氧化镁2份,硅藻土1.5份,玻璃纤维12份,过氧化二异丙苯0.7份,偶联剂3份,抗静电剂2份,固化剂2份,助剂1.5份。
进一步的,所述陶瓷颗粒为氧化物陶瓷颗粒、氮化物陶瓷颗粒、碳化物陶瓷颗粒或硼化物陶瓷颗粒,或其中两种以上混合物。
进一步的,所述陶瓷颗粒为:氧化物陶瓷颗粒包括:三氧化二铝陶瓷颗粒、二氧化锆陶瓷颗粒;碳化物陶瓷颗粒包括:碳化硅陶瓷颗粒、碳化硼陶瓷颗粒、碳化钨陶瓷颗粒、碳化钛陶瓷颗粒;硼化物陶瓷颗粒包括:二硼化钛陶瓷颗粒、二硼化锆陶瓷颗粒;氮化物陶瓷颗粒包括氮化铝陶瓷颗粒、氮化硅陶瓷颗粒、氮化硼陶瓷颗粒。
进一步的,所述金属粉末可以是高碳铬铁金属粉末、钼铁粉、铁粉、钼粉、镍粉、铜粉、锰铁合金粉末、铬铁合金粉末、硼铁合金粉末、硅铁合金粉末、钛铁合金粉末、钒铁合金粉末或稀土合金粉末,或其中两种以上的混合物。
进一步的,所述陶瓷颗粒的粒度直径为0.5mm~5mm;金属粉末的粒度为100目~200目。
进一步的,所述助剂为:机油、乙醇、硬脂酸锌、硬脂酸锂、合成蜡、水或其中两种以上的混合物。
进一步的,所述偶联剂为硅烷偶联剂KH550或硅烷偶联剂KH560。进一步的,所述抗静电剂为乙氧基月桂酷胺。
上述一种高强度抗冲击型金属陶瓷复合衬板的制备方法,包括如下步骤:
(1)制备金属陶瓷颗粒预制件;将陶瓷颗粒与金属粉末用助剂混合均匀得到混合物A;
(2)将氢氧化镁和过氧化二异丙苯加入高速搅拌机,高速搅拌3分钟;
(3)将超高分子量聚乙烯、中密度聚乙烯、低密度聚乙烯、硅藻土、玻璃纤维、偶联剂、抗静电剂和固化剂加入到步骤(2)的混合料中再高速搅拌2分钟,得混合物B;
(4)将上述混合物A和混合物B混合搅拌,并将混合物料倒入模具成型,得到初型预制 件;
(5)将初型预制件放入气氛炉内烧结,烧结温度为1200℃,烧结时间为35分钟,得半成品,所述气氛炉气氛为:分解氨、氮气、氢气或吸热性煤气;
(6)将半成品放入热处理炉中淬火,淬火温度为960℃;
(7)放入热处理炉中回火,回火温度为270℃,得到高强度抗冲击型金属陶瓷复合衬板。
本发明的金属陶瓷复合衬板具有优异的耐磨性、抗冲击性、耐化学腐蚀性和低温韧性的特点外,同时具有很好的加工性能,材料成本低的特点。本发明将陶瓷颗粒的耐磨性和金属材料的机械性能完美结合,极大的提高传统金属材料的硬度、耐磨性。本发明即充分利用了陶瓷材料高耐磨性的优点又充分发挥碳钢金属粉末烧制成耐磨垫层所达到的高韧性(冲击韧性Akv/J在25),可以完全满足大型球磨机破碎机对耐磨件的韧性要求,同时又节约了价值较高价值的合金材料,使制得的耐磨件耐磨性韧性达到高度的统一。本发明使用的陶瓷颗粒比重比金属材料比重小,比重只有5.5至6.8,(根据加入陶瓷数量而不同),磨机装载同体积同尺寸的磨球及衬板重量相对轻,磨机负载相对较轻,电力能源消耗会相对降低。
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明,任何熟悉本专业的技术人员,在不脱离本发明技术方案范围内,当可利用上述揭示的技术内容作出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

Claims (10)

  1. 一种高强度抗冲击型金属陶瓷复合衬板,其特征在于:包括如下质量份数的组分:
    陶瓷颗粒20-80份,金属粉末30-80份,超高分子量聚乙烯30-50份,中密度聚乙烯5-10份,低密度聚乙烯6-8份,氢氧化镁1-3份,硅藻土1-2份,玻璃纤维10-15份,过氧化二异丙苯0.5-1份,偶联剂1-5份,抗静电剂1-3份,固化剂1-3份,助剂1-2份。
  2. 根据权利要求1所述的一种高强度抗冲击型金属陶瓷复合衬板,其特征在于:所述陶瓷颗粒为氧化物陶瓷颗粒、氮化物陶瓷颗粒、碳化物陶瓷颗粒或硼化物陶瓷颗粒,或其中两种以上混合物。
  3. 根据权利要求2所述的一种高强度抗冲击型金属陶瓷复合衬板,其特征在于:所述陶瓷颗粒为:氧化物陶瓷颗粒包括:三氧化二铝陶瓷颗粒、二氧化锆陶瓷颗粒;碳化物陶瓷颗粒包括:碳化硅陶瓷颗粒、碳化硼陶瓷颗粒、碳化钨陶瓷颗粒、碳化钛陶瓷颗粒;硼化物陶瓷颗粒包括:二硼化钛陶瓷颗粒、二硼化锆陶瓷颗粒;氮化物陶瓷颗粒包括氮化铝陶瓷颗粒、氮化硅陶瓷颗粒、氮化硼陶瓷颗粒。
  4. 根据权利要求1所述的一种高强度抗冲击型金属陶瓷复合衬板,其特征在于:所述金属粉末可以是高碳铬铁金属粉末、钼铁粉、铁粉、钼粉、镍粉、铜粉、锰铁合金粉末、铬铁合金粉末、硼铁合金粉末、硅铁合金粉末、钛铁合金粉末、钒铁合金粉末或稀土合金粉末,或其中两种以上的混合物。
  5. 根据权利要求1所述的一种高强度抗冲击型金属陶瓷复合衬板,其特征在于:所述陶瓷颗粒的粒度直径为0.5mm~5mm;金属粉末的粒度为100目~200目。
  6. 根据权利要求1所述的一种高强度抗冲击型金属陶瓷复合衬板,其特征在于:所述助剂为:机油、乙醇、硬脂酸锌、硬脂酸锂、合成蜡、水或其中两种以上的混合物。
  7. 根据权利要求1所述的一种高强度抗冲击型金属陶瓷复合衬板,其特征在于:所述偶联剂为硅烷偶联剂KH550或硅烷偶联剂KH560。
  8. 根据权利要求1所述的一种高强度抗冲击型金属陶瓷复合衬板,其特征在于:所述抗静电剂为乙氧基月桂酷胺。
  9. 根据权利要求1-8任一一项所述的一种高强度抗冲击型金属陶瓷复合衬板的制备方法,其特征在于:包括如下步骤:
    (1)制备金属陶瓷颗粒预制件;将陶瓷颗粒与金属粉末用助剂混合均匀得到混合物A;
    (2)将氢氧化镁和过氧化二异丙苯加入高速搅拌机,高速搅拌2-5分钟;
    (3)将超高分子量聚乙烯、中密度聚乙烯、低密度聚乙烯、硅藻土、玻璃纤维、偶联剂、抗静电剂和固化剂加入到步骤(2)的混合料中再高速搅拌2-3分钟,得混合物B;
    (4)将上述混合物A和混合物B混合搅拌,并将混合物料倒入模具成型,得到初型预制件;
    (5)将初型预制件放入气氛炉内烧结,烧结温度为1100—1250℃,烧结时间为20~50分钟,得半成品;
    (6)将半成品放入热处理炉中淬火,淬火温度为920℃—1000℃;
    (7)放入热处理炉中回火,回火温度为260-280℃,得到高强度抗冲击型金属陶瓷复合衬板。
  10. 根据权利要求9所述的一种高强度抗冲击型金属陶瓷复合衬板的制备方法,其特征在于:所述气氛炉气氛为:分解氨、氮气、氢气或吸热性煤气。
PCT/CN2015/091831 2015-08-28 2015-10-13 一种高强度抗冲击型金属陶瓷复合衬板及其制备方法 WO2017035918A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510538160.6 2015-08-28
CN201510538160.6A CN105081327A (zh) 2015-08-28 2015-08-28 一种高强度抗冲击型金属陶瓷复合衬板及其制备方法

Publications (1)

Publication Number Publication Date
WO2017035918A1 true WO2017035918A1 (zh) 2017-03-09

Family

ID=54563168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/091831 WO2017035918A1 (zh) 2015-08-28 2015-10-13 一种高强度抗冲击型金属陶瓷复合衬板及其制备方法

Country Status (2)

Country Link
CN (1) CN105081327A (zh)
WO (1) WO2017035918A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112858069A (zh) * 2021-01-15 2021-05-28 山东合创明业精细陶瓷有限公司 利用水刀机评价陶瓷衬板耐磨性的检测方法和检测装置
CN113305288A (zh) * 2021-05-28 2021-08-27 江苏智林空间装备科技有限公司 军用柴油车尾气净化装置用铁铬铝铜镍合金及其制备方法
CN114378261A (zh) * 2022-02-24 2022-04-22 德清县东旭合金钢铸造有限公司 一种双金属合金钢板的铸造工艺

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105772702A (zh) * 2016-03-09 2016-07-20 苏州莱特复合材料有限公司 一种高速列车用粉末冶金刹车材料的制备方法
CN106077611A (zh) * 2016-06-21 2016-11-09 苏州洪河金属制品有限公司 一种超耐磨金属混合纳米材料及其制备方法
CN106180676A (zh) * 2016-07-13 2016-12-07 北京英科尔陶瓷耐磨制品有限公司 一种新型陶瓷合金衬板及其制备方法
CN106282857A (zh) * 2016-07-28 2017-01-04 陈林美 一种高强度氮化物基金属陶瓷衬板及其制备方法
CN106244939B (zh) * 2016-08-26 2018-09-21 江苏星源电站冶金设备制造有限公司 一种耐磨衬板及其制备方法
CN106747329A (zh) * 2016-11-30 2017-05-31 郑州仁宏医药科技有限公司 一种耐磨复合金属陶瓷材料及其制作方法
CN106591745A (zh) * 2016-12-07 2017-04-26 苏州洛特兰新材料科技有限公司 一种抗压耐热的陶瓷复合材料及其制备方法
WO2018171554A1 (en) * 2017-03-22 2018-09-27 Solvay Sa Polyolefin based composite material
WO2018170771A1 (en) * 2017-03-22 2018-09-27 Solvay Sa Polyolefin based composite material
CN107081232A (zh) * 2017-04-24 2017-08-22 东莞市昶源涂装配件有限公司 一种喷枪阀针
CN107176846A (zh) * 2017-05-17 2017-09-19 长兴县煤山工业炉料有限公司 一种耐荷重强的耐火砖
CN107297502B (zh) * 2017-06-15 2019-04-12 苏州莱特复合材料有限公司 一种高硅氧玻璃纤维改性钨基金属复合材料的制备方法
CN107058849A (zh) * 2017-06-26 2017-08-18 扬中市第蝶阀厂有限公司 一种用于制作阀体的金属陶瓷及其制备方法
CN107761803A (zh) * 2017-09-21 2018-03-06 镇江市胜得机械制造有限责任公司 用于挖掘机的液压油缸的内衬层
CN107675746A (zh) * 2017-09-21 2018-02-09 镇江市胜得机械制造有限责任公司 用于挖掘机的液压油缸的制备方法
CN107815621A (zh) * 2017-12-26 2018-03-20 苏州浩焱精密模具有限公司 一种模具用高强度金属陶瓷材料
CN108264355A (zh) * 2018-02-05 2018-07-10 合肥市大卓电力有限责任公司 一种新型高效蒸发舟用半导电陶瓷
CN108754462A (zh) * 2018-07-11 2018-11-06 佛山陵朝新材料有限公司 一种纳米氧化铝补强耐磨衬板的制备方法
CN109014135A (zh) * 2018-07-16 2018-12-18 昆明理工大学 一种复合材料汽车十字轴及其制备方法
CN109402443A (zh) * 2018-12-26 2019-03-01 广东省材料与加工研究所 一种钢铁基复合耐磨件及其制备方法
CN109402444A (zh) * 2018-12-26 2019-03-01 广东省材料与加工研究所 一种钢基复合锥体及其制备方法
CN109650922B (zh) * 2019-01-10 2021-08-31 广东昭信照明科技有限公司 Su-304l金属增强的碳化硅基复合陶瓷材料及其母粒的制备方法
CN111304561A (zh) * 2020-03-20 2020-06-19 福建省盛荣生态花卉研究院有限责任公司 一种耐磨高强度金属陶瓷材料及其制备工艺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008071184A2 (de) * 2006-12-12 2008-06-19 Technische Universität Bergakademie Freiberg Verbundwerkstoff aus metall und keramik und verfahren zu dessen herstellung
CN102139362A (zh) * 2011-01-26 2011-08-03 潘起雄 陶瓷-钢铁特种复合衬板
CN102211196A (zh) * 2011-06-07 2011-10-12 南通高欣金属陶瓷复合材料有限公司 陶瓷增强金属基耐磨复合材料及制备方法
CN102618772A (zh) * 2012-03-15 2012-08-01 洛阳鹏飞耐火耐磨材料有限公司 一种金属基复合陶瓷衬板及其制备方法
CN103418790A (zh) * 2012-05-17 2013-12-04 枣阳秦鸿新材料有限公司 一种金属陶瓷复合耐磨制品及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101344198A (zh) * 2008-08-21 2009-01-14 淄博迪浩耐磨管道有限公司 超高分子量聚乙烯耐磨管道
CN102558644B (zh) * 2011-12-06 2013-10-09 铜陵市东方矿冶机械有限责任公司 一种抗冲击耐磨复合衬板及其制备方法
CN102532651B (zh) * 2011-12-06 2013-10-09 铜陵市东方矿冶机械有限责任公司 抗冲击耐磨复合衬板及其制备方法
CN104371165A (zh) * 2014-10-28 2015-02-25 昆山艾士比高分子科技有限公司 一种高分子陶瓷复合材料

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008071184A2 (de) * 2006-12-12 2008-06-19 Technische Universität Bergakademie Freiberg Verbundwerkstoff aus metall und keramik und verfahren zu dessen herstellung
CN102139362A (zh) * 2011-01-26 2011-08-03 潘起雄 陶瓷-钢铁特种复合衬板
CN102211196A (zh) * 2011-06-07 2011-10-12 南通高欣金属陶瓷复合材料有限公司 陶瓷增强金属基耐磨复合材料及制备方法
CN102618772A (zh) * 2012-03-15 2012-08-01 洛阳鹏飞耐火耐磨材料有限公司 一种金属基复合陶瓷衬板及其制备方法
CN103418790A (zh) * 2012-05-17 2013-12-04 枣阳秦鸿新材料有限公司 一种金属陶瓷复合耐磨制品及其制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112858069A (zh) * 2021-01-15 2021-05-28 山东合创明业精细陶瓷有限公司 利用水刀机评价陶瓷衬板耐磨性的检测方法和检测装置
CN113305288A (zh) * 2021-05-28 2021-08-27 江苏智林空间装备科技有限公司 军用柴油车尾气净化装置用铁铬铝铜镍合金及其制备方法
CN114378261A (zh) * 2022-02-24 2022-04-22 德清县东旭合金钢铸造有限公司 一种双金属合金钢板的铸造工艺
CN114378261B (zh) * 2022-02-24 2023-12-05 德清县东旭合金钢铸造有限公司 一种双金属合金钢板的铸造工艺

Also Published As

Publication number Publication date
CN105081327A (zh) 2015-11-25

Similar Documents

Publication Publication Date Title
WO2017035918A1 (zh) 一种高强度抗冲击型金属陶瓷复合衬板及其制备方法
CN103418790B (zh) 一种金属陶瓷复合耐磨制品及其制备方法
CN102071360B (zh) 一种碳化钨颗粒增强的铁基粉末冶金材料及其制备方法
CN102069317B (zh) 稀土型高铬铸铁明弧自保护药芯焊丝
CN105925918B (zh) 一种氧化铝‑碳化硅晶须增强冷作模具钢材料的制备方法
CN103586459B (zh) 一种高硬度超耐磨粉末冶金刀具及其制备方法
CN101914719A (zh) 稀土新材料合金白口铸铁耐磨微球
CN103436810A (zh) 一种马氏体耐磨钢的铸钢件生产工艺
CN108070780A (zh) 一种珠光体铬钼合金钢及其热处理方法
CN105821173A (zh) 一种纳米变质高抗拉强度灰铸铁的制备方法
CN107414087B (zh) 一种利用冶金固废、直接还原铁粉和再生铁粉通过热压铸形成高强度机械部件的方法
CN109663900A (zh) 一种钢铁基复合板锤及其制备方法
CN105983698A (zh) 一种叉车轮毂轴承的粉末锻造方法
CN112899555A (zh) 一种高铬铸铁耐磨材料及其制备方法
CN105039763A (zh) 一种钛基复合刀具材料的粉末冶金制备方法
CN109402443A (zh) 一种钢铁基复合耐磨件及其制备方法
CN107262731B (zh) 一种粉状铁矿直接还原铁热压煅轧材/机械零部件制品的方法
CN110273096B (zh) 一种SiC/M2粉末高速钢复合材料及其制备方法
CN103695750A (zh) 一种粉末冶金合金刀具及其制备方法
CN103691930B (zh) 一种硬质粉末冶金合金刀具及其制备方法
CN209255811U (zh) 一种立磨陶瓷辊套
CN106337152A (zh) 一种低铬合金磨球及其加工工艺
CN105908070A (zh) 一种抗脆性破裂性好的汽车用弹簧材料
CN104532106B (zh) 一种超细破碎机锤头耐磨材料的制备方法
CN111235467A (zh) 基于氧化物的铁基复合中间合金及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15902725

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15902725

Country of ref document: EP

Kind code of ref document: A1