WO2017035731A1 - 移相器、天线和基站 - Google Patents

移相器、天线和基站 Download PDF

Info

Publication number
WO2017035731A1
WO2017035731A1 PCT/CN2015/088574 CN2015088574W WO2017035731A1 WO 2017035731 A1 WO2017035731 A1 WO 2017035731A1 CN 2015088574 W CN2015088574 W CN 2015088574W WO 2017035731 A1 WO2017035731 A1 WO 2017035731A1
Authority
WO
WIPO (PCT)
Prior art keywords
input port
phase shifter
tapping
antenna
signal
Prior art date
Application number
PCT/CN2015/088574
Other languages
English (en)
French (fr)
Inventor
肖伟宏
廖志强
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP15902538.6A priority Critical patent/EP3331090B1/en
Priority to CN201580082558.1A priority patent/CN107925143B/zh
Priority to PCT/CN2015/088574 priority patent/WO2017035731A1/zh
Publication of WO2017035731A1 publication Critical patent/WO2017035731A1/zh
Priority to US15/907,548 priority patent/US10560856B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • H01P1/184Strip line phase-shifters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • H01Q21/245Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction provided with means for varying the polarisation 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • H01Q25/001Crossed polarisation dual antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components

Definitions

  • Embodiments of the present invention relate to communication technologies, and in particular, to a phase shifter, an antenna, and a base station.
  • the phase shifter can adjust the down-tilt angle of the antenna beam by changing the phase distribution of each radiating element of the antenna, thereby improving network coverage and facilitating network optimization.
  • the multi-band antenna can include a plurality of phase shifters, wherein each phase shifter can connect a plurality of radiating elements.
  • the phase shifter can adjust the phase of the electromagnetic wave signal corresponding to the frequency band of each phase shifter on the plurality of radiation units connected to each phase shifter, and realize the electromagnetic wave signal of the frequency band in the plurality of radiation
  • the frequency division of the cells is transmitted by each of the plurality of radiating elements connected by each of the phase shifters.
  • the phase shifter can be connected to a radio remote unit (RRU) of the base station by using a cable to receive an electromagnetic wave signal corresponding to the frequency band of each phase shifter sent by the RRU. That is to say, the plurality of phase shifters of the multi-band antenna may be connected to the RRU through a plurality of cables.
  • RRU radio remote unit
  • Embodiments of the present invention provide a phase shifter, an antenna, and a base station to solve the problem of signal error transmitted by a base station.
  • an embodiment of the present invention provides a phase shifter, including: a feeding unit, at least one tapping component, at least one conductor segment, and a grounding component; and the feeding unit and the at least one tapping component The first tapping element is electrically connected, and the at least one tapping element is electrically connected in sequence;
  • the at least one conductor segment is concentrically disposed at least one arcuate conductor segment; each of the tapping members is electrically connected to one conductor segment; each of the tapping members is rotated by a center of the at least one conductor segment a core, moving along a conductor segment connected to each of the tapping elements for changing flow through said each
  • the phases of the signals of the conductor segments connected by the tapping elements are then output through the output ports of the conductor segments to which each tapping element is connected;
  • An output port of each of the conductor segments connected to each of the tapping elements is a starting position, and if each of the tapping members moves a predetermined angle, a tapping member is electrically connected to the grounding member for A signal transmitted by a tap element is reflected to an input port of the feed unit such that a signal of the input port generates a standing wave, and then a cable of the input port is determined to be correctly connected according to a signal of the input port.
  • the input port is further connected to the detecting component
  • the input port is further configured to transmit a signal of the input port to the detecting component
  • the detecting component is further configured to determine, according to a signal of the input port, whether a cable of the input port is correctly connected.
  • the detecting component is further configured to determine a standing wave ratio of a signal of the input port according to a signal of the input port, If the standing wave ratio is greater than a preset standing wave ratio value, the cable connection of the input port is correct; if the standing wave ratio is less than or equal to the preset standing wave ratio value, the line of the input port The cable connection is incorrect.
  • the detecting component is further configured to determine an emission coefficient of the input port according to a signal of the input port, if If the reflection coefficient of the input port is greater than the preset reflection time value, the cable connection of the input port is correct; if the reflection coefficient of the input port is less than or equal to the preset reflection coefficient value, the input port is The cable connection is incorrect.
  • the feeding unit and the at least one conductor segment are both microstrip line structures
  • the grounding element is electrically coupled to the feed unit and/or the ground plane of the microstrip line structure of the at least one conductor segment.
  • the feeding unit and the at least one conductor segment are stripline structures
  • the grounding element is electrically coupled to the feed unit and/or the ground plane of the stripline structure of the at least one conductor segment.
  • the preset angle is corresponding to an antenna polarization manner of the phase shifter. Angle; the preset angle of the phase shifter of different antenna polarization modes is different.
  • an embodiment of the present invention provides an antenna, including: a plurality of phase shifters, and a plurality of radiating elements; wherein each phase shifter is any phase shifter as described above;
  • each phase shifter is connected to a radiating unit; the input port of each phase shifter is connected to a radio remote unit RRU.
  • the tapping component is electrically connected to the grounding component in each phase shifter, the tapping component The angle of movement is the same.
  • the antenna is a dual-polarized antenna
  • a tapping component of the phase shifter corresponding to the same polarization mode in the plurality of phase shifters When electrically connected to the grounding element, the tapping element moves at the same angle;
  • the tapping elements of the phase shifters corresponding to different polarization modes of the plurality of phase shifters are electrically connected to the grounding elements, the angles at which the tapping elements move are different.
  • the embodiment of the present invention further provides a base station, including: an antenna, a radio remote unit RRU, and a baseband processing unit BBU;
  • the antenna includes: a plurality of phase shifters, and a plurality of radiating elements; wherein each phase shifter is any phase shifter as described above; an output port of each of the phase shifters is connected to a radiating element
  • the input port of each phase shifter is connected to the RRU; the RRU is connected to the BBU.
  • the phase shifter, the antenna and the base station are provided by the embodiment of the invention, and the phase shifter comprises a feeding unit, at least one tapping component, at least one conductor segment, a grounding component, and an output port of the conductor segment connected by each tapping component
  • a tapping element can be electrically connected to the grounding element, so that the grounding element can reflect the signal transmitted by the tapping element connected to the grounding element to the feeding
  • the input port of the unit causes the signal of the input port to generate a standing wave, and then determines whether the cable of the input port is correctly connected according to the signal of the input port, ensures the correct connection between the antenna and the RRU, and ensures the accuracy of the signal transmitted by the antenna.
  • FIG. 1 is a schematic structural diagram of a phase shifter according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic structural diagram of a phase shifter according to Embodiment 2 of the present invention.
  • FIG. 3 is a cross-sectional view showing a state in which a tapping component and a grounding component are electrically connected in a phase shifter according to a second embodiment of the present invention
  • FIG. 4 is a cross-sectional view showing another state in which a tapping element and a grounding element are electrically connected in a phase shifter according to Embodiment 2 of the present invention
  • FIG. 5 is a schematic structural diagram of a phase shifter according to Embodiment 3 of the present invention.
  • FIG. 7 is a VSWR diagram of an input port in a phase shifter according to Embodiment 3 of the present invention.
  • FIG. 8 is a schematic structural diagram of an antenna according to Embodiment 4 of the present invention.
  • FIG. 9 is a schematic structural diagram of a base station according to Embodiment 5 of the present invention.
  • the phase shifter provided by the embodiments of the present invention may be a phase shifter in the antenna, and the phase shifter may be connected to the radiation unit in the antenna.
  • the antenna may be an antenna of a base station, and the phase shifter may also be connected to the RRU of the base station through a cable.
  • the base station may be an evolved base station (eNodeB).
  • eNodeB evolved base station
  • the “electrical connection” in the following embodiments of the present invention may be a contact electrical connection or a coupling electrical connection, which is not limited herein.
  • Embodiment 1 of the present invention provides a phase shifter.
  • FIG. 1 is a schematic structural diagram of a phase shifter according to Embodiment 1 of the present invention.
  • the phase shifter 100 can include a feed unit 101, at least one tap element 102, at least one conductor segment 103, and a ground element 104. Feed unit 101 and at least one The first one of the tapping elements 102 is electrically connected, and at least one of the tapping elements 102 is electrically connected in sequence.
  • the at least one conductor segment 103 is at least one arcuate conductor segment that is concentrically disposed.
  • Each tapping element 102 is electrically connected to a conductor segment; each tapping element 102 is pivoted about the center 105 of at least one conductor segment 103, along which the conductor segments connected to each tapping element 102 are moved to change the flow.
  • the phase of the signal entering the conductor segments of each tap element 102 is then output through the output port 106 of the conductor segment to which each tap element 102 is connected.
  • One output port of the conductor segment to which each tapping element 102 is connected is a starting position. If each tapping element 102 moves by a predetermined angle, a tapping component is electrically connected to the grounding component 104 for dividing the one. The signal transmitted by the component is reflected to the input port 107 of the feed unit 101 such that the signal of the input port 107 generates a standing wave, and then the cable of the input port 107 is determined to be correctly connected according to the signal of the input port 107.
  • the input port 107 of the feeding unit 101 may be a signal input port of the phase shifter 100.
  • the input port 107 of the feeding unit 101 can be connected to the RRU of the base station through the DIN head of the cable to receive the electromagnetic wave signal output by the RRU.
  • the output port 106 of each of the conductor segments in the at least one conductor segment 103 can be the signal output of the phase shifter.
  • An output port 106 of one of the at least one conductor segment 103 can be connected to a radiating element.
  • At least one of the conductor segments 103 is concentrically disposed at least one of the arcuate conductor segments, and thus the at least one conductor segment 103 is at the same center.
  • the phase change of the signals of the two output ports of the conductor segment closest to the center of the circle in the at least one conductor segment 103 is minimal, and the signal phase changes of the two output ports of the conductor segment furthest from the center of the at least one conductor segment 103 are greatest.
  • the input port 107 of the feeding unit 101 can receive the microwave signal outputted by the RRU, and the center of the at least one conductor segment 103 is a rotation axis, and the conductor segments connected along each of the tapping elements 102 are moved to change the electromagnetic wave signals on the conductor segments.
  • the length of the transmission path, thereby changing the phase of the signal flowing through the conductor segments to which each tapping element 102 is connected, is then output through the output port 106 of the conductor segment to which each tapping element 102 is connected.
  • the signal outputted by the output port 106 of the conductor segment is an electromagnetic wave signal whose phase has changed through the phase shifter 100, and the signal output from the output port 106 of the conductor segment is transmitted to the radiation unit connected to the output port 106 of the conductor segment.
  • the signal output from the output port 106 of the conductor segment is transmitted through the radiation unit, and the downtilt angle of the antenna beam including the radiation unit and the phase shifter 100 can be changed to satisfy different regions.
  • the user's demand for signals enhances the beam coverage of the base station.
  • One of the conductor segments of the at least one conductor segment 103 includes two output ports, and the sum of the phases of the signals output by the two output ports may be zero or 180°. For example, if the output signal of one of the output ports has a phase of 18°, the phase of the signal of the other output port can be -18°.
  • the feed unit 101 can have one or two ports. If the feeding unit 101 has a port, the one port is the output port. If the feeding unit 101 includes two ports, one of the ports may be an input port and the other port is an output port. It should be noted that the phase of the signal of the output port of the feeding unit 101 may be the same as the phase of the signal of the input port. That is, the phase of the signal of the input port of the feed unit 101 and the output port may not change. In FIG. 1, only the phase shifter 101 including two ports is used for example. However, the phase shifter 101 may also have only one port, that is, an input port, and details are not described herein again.
  • the connection of the first one of the at least one tapping element 102 to the feeding unit 101 may include: a rotating shaft.
  • the axis of the rotating shaft may be the center 105 of the at least one conductor segment 103, that is, the axis of rotation.
  • the at least one tapping element 102 is movable along the conductor segments connected to each of the tapping elements 102 by the rotation of the rotating shaft.
  • the ground element 104 can be electrically coupled to the line ground of the phase shifter and electrically coupled to the tap element 102 after the tap element 102 has been swung to a certain angle.
  • the ground layer of the phase shifter may be a ground layer corresponding to any structure of the feeding unit 101 and the at least one conductor segment 103.
  • the grounding element 104 can be located at a gap between the conductor segments of the at least one conductor segment 103 and the feed unit 101; it can also be located at a gap between any two conductor segments of the at least one conductor segment 103. Although the grounding element 104 is located at the gap between the conductor segment and the feeding unit 101 in FIG.
  • the grounding element 104 in the embodiment of the present invention may also be used.
  • Other locations such as may be located in the gap between any two conductor segments in at least one conductor segment 103, or near one side of the second output port of the conductor segment.
  • the first output port and the second output port can be located at two ports of one conductor segment.
  • each of the tapping elements 102 moves by a predetermined angle, one of the at least one tapping element 102 is electrically connected to the grounding element 104. Since the resistance of the grounding element 104 is large, approaching infinity, the grounding element 104 is caused.
  • the signal transmitted by the connected tap element is transmitted to the feeding unit 101
  • the input port 107, the reflected signal causes the signal at the input port 107 to generate a standing wave.
  • the grounding element 104 Since the standing wave generated by the signal of the input port 107 is caused by the grounding element 104, the grounding element 104 is connected to the ground so that its resistance is large. Therefore, according to the impedance matching principle, the grounding element 104 has a large emission coefficient and is reflected. The signal is large, causing the signal of the input port 107 to generate a large standing wave. Therefore, it is determined whether the cable of the input port 107 is correctly connected according to the signal of the input port 107, for example, the standing wave ratio of the signal of the input port 107 and/or the signal transmission coefficient may determine whether the cable of the input port 107 is correctly connected. .
  • the cable of the input port 107 can be, for example, a connection cable between the input port and the RRU.
  • the standing wave ratio may be a Voltage Standing Wave Ratio (VSWR).
  • the signal reflection coefficient can be the input reflection coefficient.
  • the input reflection coefficient can be expressed as S11.
  • a phase shifter includes a power feeding unit, at least one tapping component, at least one conductor segment, and a grounding component, and an output port of the conductor segment connected to each tapping component is a starting position.
  • a tapping component can be electrically connected to the grounding component, so that the grounding component can reflect the signal transmitted by the tapping component connected to the grounding component to the input port of the feeding unit, so that The signal of the input port generates a standing wave, and then the cable of the input port is determined to be correctly connected according to the signal of the input port.
  • the phase shifter including the grounding element in the first embodiment of the present invention can determine whether the cable of the input port is correctly connected according to the signal of the input port of the feeding unit of the phase shifter, and determine the input port of the phase shifter. Whether the connection cable with the RRU is correctly connected, ensure that the cable between the antenna and the RRU is properly connected, and ensure the accuracy of the signal transmitted by the antenna.
  • Embodiment 2 of the present invention further provides a phase shifter.
  • FIG. 2 is a schematic structural diagram of a phase shifter according to Embodiment 2 of the present invention.
  • the input port 107 of the phase shifter 100 shown in FIG. 1 can also be connected to the detecting component 201.
  • the input port 107 is also used to transmit the signal of the input port 107 to the detecting element 201.
  • the detecting component 201 is further configured to determine whether the cable of the input port 1007 is correctly connected according to the signal of the input port.
  • the detecting component 201 can be, for example, a computer, a processor, or any other device having a processing function, and the like, and details are not described herein again.
  • the detecting component 201 is further configured to determine a standing wave ratio of the signal of the input port 107 according to the signal of the input port 107. If the standing wave ratio is greater than a preset standing wave ratio, the cable connection of the input port 107 is correct. If the standing wave ratio is less than or equal to the preset standing wave ratio, the input port is The cable connection is incorrect.
  • the detecting component 201 can be further configured to determine the number of times the input port is transmitted according to the signal of the input port 107. If the reflection coefficient of the input port 107 is greater than a preset reflection number, the cable connection of the input port 107 is correct. If the reflection coefficient of the input port is less than or equal to the preset reflection coefficient value, the cable connection of the input port 107 is incorrect.
  • the detecting component 201 can also be connected to the alarm device to issue an alarm signal to notify the antenna installer of the cable connection error of the input port 107 if the detecting component 201 determines that the cable connection of the input port 107 is incorrect.
  • the alarm device may be a display device and/or an audio device. If the alarm device is a display device, the alarm signal may be a text signal on the display device, and if the alarm device is an audio device, such as a microphone, The alarm signal can be a sound signal.
  • the sliding device 202 is located between the connected tap elements in the at least one tapping element 102.
  • a connecting member is included in the sliding device 202.
  • Adjacent tapping elements of the at least one tap element 102 are electrically connected by a connecting member in the sliding device 202.
  • Each of the at least one tapping element 102 can also be electrically connected to one of the at least one conductor segment 103 by a connecting component.
  • the sliding device 202 and the at least one tapping component 102 can be located on a separate Printed Circuit Board (PCB).
  • PCB Printed Circuit Board
  • the feeding unit 101 and the at least one conductor segment 103 are both microstrip line structures. That is to say, the phase shifter 100 can be a phase shifter of a microstrip line structure.
  • the grounding element 104 is electrically connected to the grounding layer of the microstrip line structure of the feed unit 101 and/or the at least one conductor segment.
  • the feed unit 101, the at least one conductor segment 103 can be located on a different PCB than the PCB on which the at least one tapping element 102 is located.
  • the phase shifter 100 can include two PCBs, one of which can include a feed unit 101, at least one conductor segment 103, and another PCB can include at least one tap element. Therefore, the feeding unit 101 and the at least one conductor segment 103 can be metal wiring on the one PCB. At least one of the tapping elements 102 can be a metal wiring on another PCB.
  • the center 105 of the at least one conductor segment 103 can be the axis of rotation, the PCB on which the at least one tapping element 102 is rotated, each of the tapping elements 102 moving along the conductor segments to which each tapping element 102 is connected.
  • the feed unit 101 and the at least one conductor segment 103 are both microstrip line structures, that is, the phase shifter 100 can be a phase shifter of a microstrip line structure. Since the signal transmission speed in the microstrip line structure is fast and the anti-interference ability is poor, the antenna of the phase shifter including the microstrip line structure can be applied to a scenario where the signal transmission rate is high and the anti-interference requirement is small.
  • PCB 301 includes tap element 102 and PCB dielectric layer 302. That is, the tap element 102 can be, for example, a metal wiring on the PCB 301.
  • the tap element 102 is electrically coupled to the ground element 104, which may be electrically coupled to the ground plane 303.
  • the ground layer 303 can be a ground plane of the microstrip line structure of the feed unit 101 and/or the at least one conductor segment 103.
  • the tap element 102 can be electrically coupled to the ground plane 303 via the ground element 104.
  • the feed unit 101 and the at least one conductor segment 103 are both stripline structures.
  • the grounding element 104 is electrically connected to the grounding layer of the stripline structure of the feed unit 101 and or at least one conductor segment 103.
  • the strip line structure is also referred to as a suspended microstrip line structure, which may include an upper ground layer and a lower ground layer.
  • the upper ground layer further includes a side plate that can be obtained by a die casting process.
  • the lower ground layer may be a cover plate which may be obtained by a sheet metal process.
  • the upper ground layer and the lower ground layer are fastened to form a cavity.
  • the feed unit 101, the at least one tap element 102 and the at least one conductor segment 103 may be metal lines in the cavity of the strip line structure. If the feed unit 101, the at least one tap element 102, and the at least one conductor segment 103 are both stripline structures, the phase shifter 100 can be a phase shifter with a stripline structure. Since the signal transmission rate in the strip line structure is slow and the anti-interference ability is strong, the antenna of the phase shifter including the strip line structure can be applied to an antenna having low requirements on signal transmission rate and high anti-interference requirements.
  • FIG. 4 is a cross-sectional view showing another state in which a tapping element and a grounding element are electrically connected in a phase shifter according to Embodiment 2 of the present invention.
  • the tap element 102 is electrically coupled to the ground element 104.
  • the ground element 104 is electrically connected to the ground layer 401.
  • the ground layer 401 may be a ground layer of a strip line structure of the feeding unit 101 and/or the at least one conductor segment 102.
  • the tap element 102 can be electrically connected to the ground plane 401 via the ground element 104.
  • the preset angle is an angle corresponding to the antenna polarization mode of the phase shifter 100; the preset angle of the phase shifter 100 of different antenna polarization modes is different.
  • the position of the grounding element in the phase shifter 100 of different antenna polarization modes may also be different.
  • the feeding unit, the at least one tapping component and the at least one conductor segment may all be a microstrip line structure or a strip line structure, the phase shifter can be applied to different scenarios.
  • the antenna since the feeding unit, the at least one tapping component and the at least one conductor segment may all be a microstrip line structure or a strip line structure, the phase shifter can be applied to different scenarios. In the antenna.
  • Embodiment 3 of the present invention further provides a phase shifter.
  • FIG. 5 is a schematic structural diagram of a phase shifter according to Embodiment 3 of the present invention.
  • the phase shifter may include a feed unit 501, a first conductor segment 502, a second conductor segment 503, a third conductor segment 504, a first tap element 505, a second tap element 506, a third tap element 507, and a ground. Element 508.
  • the feeding unit 501 has an input port P0.
  • the first conductor segment 502 has an output port P1 and an output port P2, the second conductor segment 503 has output ports P3 and P4, and the third conductor segment 504 has output ports P5 and P6.
  • the feed unit 501 also has an output port P7.
  • the first conductor segment 502, the second conductor segment 503, and the third conductor segment 504 may be three arcuate conductor segments concentrically disposed on one plane.
  • the first tapping element 505, the second tapping element 506, and the third tapping element 507 can also be located in one plane.
  • the plane of the first conductor segment 502, the second conductor segment 503, and the third conductor segment 504 may be parallel to the plane of the first tapping member 505, the second tapping member 506, and the third tapping member 507.
  • the feeding unit 501 can be electrically connected to the first tapping element 505.
  • the second tapping element 506 and the third tapping element 507 further include: a sliding device 509.
  • the sliding device 509 may include a connecting member such that the first tapping member 505 and the second tapping member 506 and the third tapming member 507 are sequentially electrically connected.
  • the connecting member can also electrically connect the first tapping member 505 with the first conductor segment 502, the second tapping member 506 and the second conductor segment 503, the third tapping member 507, and the third conductor segment 504.
  • the connection between the first tapping element 505 and the feeding unit 501 further includes: a rotating shaft 510.
  • the junction of the first tapping element 505 and the feed unit 501 may be at the center of a concentric circle of the first conductor segment 502, the second conductor segment 503, and the third conductor segment 504.
  • the grounding element 508 may, for example, be located in the gap of the first grounding element 505 and the feeding unit, and located to the right of the line L1 as shown in FIG.
  • the straight line L1 may be a straight line perpendicular to the feeding unit 501 on a plane parallel to the plane in which the first conductor segments 505 are located.
  • the straight line L2 may be a straight line parallel to the feeding unit 501 on a plane in which the planes of the first conductor segments 505 are parallel to each other.
  • the direction of the first conductor segment 502 to the third conductor segment 504 in the straight line L1 may be represented as 90°.
  • the direction of the output port P7 to the input port P0 in the straight line L2 can be expressed as 0°.
  • the connecting members 507 are movable along the respective connected conductor segments for changing the phase of the signals flowing through the conductor segments to which the tapping members are connected, and then outputting through the output ports of the conductor segments to which the tapping members are connected.
  • phase change of the first output port P1 and the second output port P2 may be smaller than the phase change of the third output port P3 and the fourth output port P4; the third output port P3 and the fourth output port P4
  • the phase change may be smaller than the phase change of the fifth output port P5 and the sixth output port P6.
  • the phase change of the first output port P1 and the second output port P2, the phase change of the third output port P3 and the fourth output port P4, and the phase change of the fifth output port P5 and the sixth output port P6 may be, for example, 1 :2:3.
  • the ratio can be determined by the radius of the respective arc of the first conductor segment 502, the second conductor segment 503, and the third conductor segment 504.
  • the first tap element 505 can be coupled to the ground element 508 if the first tap element 505 is moved from 0° to an angle ⁇ as shown.
  • the grounding element 508 can cause the signal input by the input port P0 to flow through the first tapping element 505, and the reflected signal causes the input port P0 to generate a standing wave.
  • the angle ⁇ may be greater than 0° and less than 90°, then [ 0°, ⁇ °] can represent the detection angle of the phase shifter, and ( ⁇ °, 180°) can be the working angle of the phase shifter.
  • the first tapping element 505 rotates counterclockwise from the angle 0° to the angle ⁇ .
  • the phase shifter can be in the detection state.
  • the phase shifter is in the detection phase, and can be in the antenna installation phase, that is, the stage of connecting the phase shifter and the RRU in the antenna. When the phase shifter is in operation, it can only be within the working angle range. Move the tapping element, ie move at ( ⁇ °, 180°).
  • the grounding element 508 can also be located on the left side of the line L1 in FIG. 5, and the angle ⁇ can be greater than 90° and less than 180°, then [ ⁇ °, 180°] can represent the detection angle of the phase shifter, ( ⁇ °, 0) °] can be the working angle of the phase shifter.
  • the first tapping element 505 moves clockwise from an angle of 180° to an angle ⁇ , so that the phase shifter is in the detection state. When the phase shifter is in operation, it can only be at the working angle. Move the tapping element within the range, ie move at ( ⁇ °, 0°).
  • grounding element 508 can be rotated counterclockwise or rotated clockwise.
  • the antenna in which the phase shifter is located may be a single-polarized antenna
  • the position of the grounding element 508 in each phase shifter in the antenna may be the same.
  • the position of the phase shifter can be represented by the angle ⁇
  • the position of the grounding element 508 is the same
  • the angle ⁇ corresponding to the grounding element 508 can be the same.
  • the same polarization mode in the antenna corresponds to
  • the position of the grounding element 508 in the phase shifter can be the same, and the positions of the grounding elements in the phase shifters corresponding to different polarization modes are different.
  • the angle ⁇ corresponding to the grounding element 508 in the phase shifter corresponding to one polarization mode may be 30°
  • the angle ⁇ corresponding to the grounding element 508 in the phase shifter corresponding to the other polarization mode may be -30°. .
  • the input port P0 can also be connected to the detecting element 511.
  • the detecting component 511 may determine the standing wave ratio of the signal of the input port P0 according to the signal of the input port P0. If the standing wave ratio is greater than the preset standing wave ratio value, it is determined that the cable connection of the input port P0 is correct; If the ratio is less than or equal to the preset standing wave ratio, it is determined that the cable connection error of the input port P0. Alternatively, the detecting component 511 may further determine the transmission coefficient of the input port P0 according to the signal of the input port P0. If the reflection coefficient of the input port P0 is greater than the preset reflection number value, it is determined that the cable connection of the input port P0 is correct.
  • the cable connection of the input port is incorrect. If the detecting component 511 determines that the cable connection of the input port P0 is incorrect, an alarm signal may be issued to inform the antenna installer that the cable connection of the input port 107 is incorrect.
  • FIG. 6 is a Smith chart of an input port in a phase shifter according to Embodiment 3 of the present invention.
  • FIG. 7 is a VSWR diagram of an input port in a phase shifter according to Embodiment 3 of the present invention.
  • Line 1 in FIG. 6 can be used to indicate the signal reflection coefficient of the input port of the phase shifter when the tapping element corresponding to the polarization mode of the antenna is electrically connected to the ground element; the line 2 in FIG. 6 can be used.
  • the signal reflection coefficient of the input port of the phase shifter when the tapping element and the grounding element in the phase shifter corresponding to any polarization mode are not electrically connected, that is, in a normal working state.
  • Line 1 in Fig. 7 can be used to indicate the VSWR of the input port of the phase shifter when the tapping element of the phase shifter corresponding to the antenna polarization mode is electrically connected to the ground element;
  • line 2 in Fig. 7 can be used to indicate Another antenna polarization mode corresponds to the phase shifter in the phase shifter when electrically connected to the ground element, the VSWR of the input port of the phase shifter;
  • line 3 can represent the polarization mode of the antenna and the polarization of the other antenna In the phase shifter corresponding to any polarization mode, the tapping component and the grounding component are not electrically connected, that is, the VSWR of the input port of the phase shifter in a normal working state.
  • the VSWR when the tapping component corresponding to the antenna polarization mode is electrically connected to the ground component, that is, when the phase shifter is in the detecting state, the VSWR can be greater than the preset standing wave ratio of 1.8, phase shifting.
  • the tapping component is not electrically connected to the grounding component, that is, when the phase shifter is in operation, the VSWR can Less than the preset standing wave ratio.
  • the feeder unit, each conductor segment, and each tapping component in the phase shifter in FIG. 5 may be a microstrip line structure or a strip line structure. If the feed unit, each conductor segment, and each tap element in the phase shifter in FIG. 5 may be a microstrip line structure, the phase shifter may be a phase shifter of a microstrip line structure. If the feed unit, each conductor segment, and each tap element in the phase shifter in FIG. 5 may be a strip line structure, the phase shifter may be a phase shifter with a strip line structure.
  • the feed unit and each conductor segment in Figure 5 can be located on one PCB, and each tap element can be located on another PCB. Thus, the phase shifter shown in FIG. 5 can be moved by rotating the PCB on which the tapping element is located, on the conductor segments to which the tapping elements are connected.
  • Embodiment 4 of the present invention further provides an antenna.
  • FIG. 8 is a schematic structural diagram of an antenna according to Embodiment 4 of the present invention. As shown in FIG. 8, the antenna 800 includes a plurality of phase shifters 801, and a plurality of radiating elements 802. An output port of each phase shifter 801 is coupled to a radiating element 802;
  • each phase shifter 801 is also connected to the RRU 803 through a plurality of cables.
  • Each of the phase shifters 801 may be a phase shifter as described in any one of Embodiments 1 to 3.
  • the tapping component moves at the same angle.
  • the antenna is a dual-polarized antenna
  • the tapping component of the phase shifter corresponding to the same polarization mode when electrically connected to the ground component, the tapping component moves at the same angle;
  • the tapping elements of the phase shifters corresponding to different polarization modes of the plurality of phase shifters 801 are electrically connected to the grounding elements, the angles at which the tapping elements move are different.
  • the antenna provided in the fourth embodiment of the present invention may include the phase shifter according to any one of the first embodiment to the third embodiment, and the beneficial effects thereof may be similar to the foregoing embodiments, and details are not described herein again.
  • Embodiment 5 of the present invention further provides a base station.
  • FIG. 9 is a schematic structural diagram of a base station according to Embodiment 5 of the present invention. As shown in FIG. 9, the base station may include an antenna 901, an RRU 902, and a Building Base Band Unit (BBU) 903.
  • BBU Building Base Band Unit
  • the antenna 901 includes: a plurality of phase shifters 904, and a plurality of radiating elements 905; wherein each phase shifter 904 is the phase shifter described in any of the above embodiments 1 to 3; each phase shifter 904 The output port is connected to a radiating unit 905; the input port of each phase shifter 904 and the RRU 902 Connection; RRU 902 is connected to BBU 903.
  • the antenna in the base station provided in the fifth embodiment of the present invention may include the phase shifter according to any one of the foregoing Embodiments 1 to 3, and the beneficial effects are similar to those in the foregoing embodiment, and details are not described herein again.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)

Abstract

本发明实施例提供一种移相器、天线和基站。本发明的移相器包括馈电单元、分接元件、导体段、接地元件;馈电单元与分接元件电连接;导体段的一个端口为起始,分接元件移动预设角度时与接地元件电连接,将传输信号反射至馈电单元的输入端口,根据输入端口的信号线缆是否连接正确。本发明实施例可保证天线传输信号的准确性。

Description

移相器、天线和基站 技术领域
本发明实施例涉及通信技术,尤其涉及一种移相器、天线和基站。
背景技术
移相器作为天线的主要组件,可通过改变天线各辐射单元的相位分布来调节天线波束的下倾角,从而提高网络覆盖,方便网络优化。
随着移动通信技术的发展,多频多制式通信也正逐步发展,这使得支持多频带多制式通信的多频天线应运而生。该多频带天线可包括多个移相器,其中,每个移相器可连接多个辐射单元。该每个移相器可通过对该每个移相器对应频带的电磁波信号在该每个移相器连接的多个辐射单元上的相位进行调节,实现该频带的电磁波信号在该多个辐射单元的频分,并通过该每个移相器连接的多个辐射单元中每个辐射单元进行发射。其中,该每个移相器可通过线缆与基站的射频拉远模块(Radio Remote Unit,简称RRU)连接,从而接收该RRU发送的该每个移相器对应频带的电磁波信号。也就是说,该多频带天线的多个移相器可以是通过多条线缆与该RRU连接。
然而,天线与RRU之间连接的线缆较多,很容易出现连接错误,使得移相器接收错误频带的电磁波信号,从而导致天线传输信号出错。
发明内容
本发明实施例提供一种移相器、天线和基站,以解决基站传输的信号出错的问题。
第一方面,本发明实施例提供一种移相器,包括:馈电单元、至少一个分接元件、至少一个导体段、接地元件;所述馈电单元与所述至少一个分接元件中的第一个分接元件电连接,且,所述至少一个分接元件依次电连接;
所述至少一个导体段为同心设置的至少一个弧形导体段;所述每个分接元件与一个导体段电连接;所述每个分接元件以所述至少一个导体段的圆心为旋转轴心,沿所述每个分接元件连接的导体段移动,用以改变流经所述每 个分接元件连接的导体段的信号的相位,继而通过所述每个分接元件连接的导体段的输出端口进行输出;
所述每个分接元件连接的导体段的一个输出端口为起始位置,若所述每个分接元件移动预设角度时,一个分接元件与所述接地元件电连接,用以将所述一个分接元件传输的信号反射至所述馈电单元的输入端口,使得所述输入端口的信号产生驻波,继而根据所述输入端口的信号确定所述输入端口的线缆是否连接正确。
根据第一方面,在第一方面的第一种可能实现的方式中,所述输入端口还与检测元件连接;
所述输入端口,还用于将所述输入端口的信号传输至所述检测元件;
所述检测元件,还用于根据所述输入端口的信号确定所述输入端口的线缆是否连接正确。
根据第一方面的第一种可能实现的方式,在第二种可能实现的方式中,所述检测元件,还用于根据所述输入端口的信号确定所述输入端口的信号的驻波比,若所述驻波比大于预设的驻波比值,则所述输入端口的线缆连接正确;若所述驻波比小于或等于所述预设的驻波比值,则所述输入端口的线缆连接错误。
根据第一方面的第一种可能实现的方式,在第三种可能实现的方式中,所述检测元件,还用于根据所述输入端口的信号确定所述输入端口的发射系数,若所述输入端口的反射系数大于预设的反射次数值,则所述输入端口的线缆连接正确;若所述输入端口的反射系数小于或等于所述预设的反射系数值,则所述输入端口的线缆连接错误。
根据第一方面至第一方面的第三种可能实现的方式中任意一种,在第四种可能实现的方式中,所述馈电单元和所述至少一个导体段均为微带线结构;
所述接地元件与所述馈电单元和/或所述至少一个导体段的微带线结构的接地层电连接。
根据第一方面至第一方面的第三种可能实现的方式中任意一种,在第五种可能实现的方式中,所述馈电单元和所述至少一个导体段均为带状线结构;
所述接地元件与所述馈电单元和/或所述至少一个导体段的带状线结构的接地层电连接。
根据第一方面至第一方面的第五种可能实现的方式中任意一种,在第六种可能实现的方式中,所述预设角度为所述移相器对应的天线极化方式对应的角度;不同天线极化方式的所述移相器的所述预设角度不同。
第二方面,本发明实施例提供一种天线,包括:多个移相器,和多个辐射单元;其中,每个移相器为如上所述的任一移相器;
所述每个移相器的输出端口与一个辐射单元连接;所述每个移相器的输入端口与射频拉远单元RRU连接。
根据第二方面,在第二方面的第一种可能实现的方式中,若所述天线为单极化天线,所述每个移相器中分接元件与接地元件电连接时,分接元件移动的角度均相同。
根据第二方面,在第二方面的第二种可能实现的方式中,若所述天线为双极化天线,所述多个移相器中相同极化方式对应的移相器的分接元件与接地元件电连接时,分接元件移动的角度相同;
所述多个移相器中不同极化方式对应的移相器的分接元件与接地元件电连接时,分接元件移动的角度不同。
第三方面,本发明实施例还提供一种基站,包括:天线、射频拉远单元RRU和基带处理单元BBU;
所述天线包括:多个移相器,和多个辐射单元;其中,每个移相器为如上所述的任一移相器;所述每个移相器的输出端口与一个辐射单元连接;所述每个移相器的输入端口与所述RRU连接;所述RRU与所述BBU连接。
本发明实施例提供的移相器、天线和基站,移相器包括馈电单元、至少一个分接元件、至少一个导体段、接地元件,以每个分接元件连接的导体段的一个输出端口为起始位置,若该每个分接元件移动预设角度时,一个分接元件可以与接地元件电连接,从而使得接地元件可以将该接地元件连接的分接元件传输的信号反射至馈电单元的输入端口,使得输入端口的信号产生驻波,继而可根据输入端口的信号确定该输入端口的线缆是否连接正确,保证天线与RRU之间线缆正确连接,保证天线传输信号的准确性。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实 施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例一提供的移相器的结构示意图;
图2为本发明实施例二提供的移相器的结构示意图;
图3为本发明实施例二提供的一种移相器中分接元件与接地元件在电连接状态的剖面示意图;
图4为本发明实施例二提供的另一种移相器中分接元件与接地元件在电连接状态的剖面示意图;
图5为本发明实施例三提供的移相器的结构示意图;
图6为本发明实施例三中的移相器中输入端口的史密斯图;
图7为本发明实施例三中的移相器中输入端口的VSWR图;
图8为本发明实施例四提供的天线的结构示意图;
图9为本发明实施例五提供的基站的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明各实施例提供的移相器可以为天线中的移相器,该移相器可以与该天线中的辐射单元连接。该天线可以为基站的天线,该移相器还可通过线缆与该基站的RRU连接。其中,该基站可以为演进型基站(evolved Node Base,简称eNodeB)。需要说明的是,本发明下述各实施例中的“电连接”可以为接触电连接,也可以为耦合电连接,在此不做限制。
本发明实施例一提供一种移相器。图1为本发明实施例一提供的移相器的结构示意图。如图1所示,该移相器100可包括馈电单元101、至少一个分接元件102、至少一个导体段103、接地元件104。馈电单元101与至少一 个分接元件102中的第一个分接元件电连接,且,至少一个分接元件102依次电连接。
至少一个导体段103为同心设置的至少一个弧形导体段。每个分接元件102与一个导体段电连接;每个分接元件102以至少一个导体段103的圆心105为旋转轴心,沿每个分接元件102连接的导体段移动,用以改变流进每个分接元件102连接的导体段的信号的相位,继而通过每个分接元件102连接的导体段的输出端口106进行输出。
每个分接元件102连接的导体段的一个输出端口为起始位置,若每个分接元件102移动预设角度时,一个分接元件与该接地元件104电连接,用以将该一个分接元件传输的信号反射至馈电单元101的输入端口107,使得输入端口107的信号产生驻波,继而根据输入端口107的信号确定输入端口107的线缆是否连接正确。
具体地,馈电单元101的输入端口107可以为移相器100的信号输入端口。该馈电单元101的输入端口107可以通过线缆的DIN头与基站的RRU连接,以接收RRU输出的电磁波信号。至少一个导体段103中各导体段的输出端口106可以为移相器的信号输出端。该至少一个导体段103中一个导体段的输出端口106可连接一个辐射单元。
至少一个导体段103中为同心设置的至少一个弧形导体段,因此,该至少一个导体段103同一个圆心。该至少一个导体段103中距离圆心最近的导体段两个输出端口的信号的相位变化最小,该至少一个导体段103中距离圆心最远的导体段的两个输出端口的信号相位变化最大。
馈电单元101的输入端口107可接收RRU输出的微波信号,以至少一个导体段103的圆心105为旋转轴心,沿每个分接元件102连接的导体段移动,改变各导体段上电磁波信号的传输路径长度,从而改变流经每个分接元件102连接的导体段的信号的相位,继而通过每个分接元件102连接的导体段的输出端口106进行输出。该导体段的输出端口106输出的信号即为经过移相器100相位发生变化的电磁波信号,将该导体段的输出端口106输出的信号传输至与该导体段的输出端口106连接的辐射单元,通过该辐射单元发送至空间。将该导体段的输出端口106输出的信号,通过辐射单元进行发射,可改变包括该辐射单元和该移相器100的天线波束的下倾角,从而满足不同区域 用户对信号的需求,增强基站的波束覆盖范围。
该至少一个导体段103中一个导体段包括两个输出端口,该两个输出端口输出的信号的相位之和可以为零或180°。举例来说,若其中一个输出端口输出信号的相位为18°,则另一个输出端口的信号的相位可以为-18°。
该馈电单元101可具有一个或两个端口。若馈电单元101具有一个端口,则该一个端口即为该输出端口,若该馈电单元101包括两个端口,则其中一个端口可以为输入端口,另一个端口则为输出端口。需要说明的是,该馈电单元101的输出端口的信号的相位可以与该输入端口的信号的相位相同。也就是说,该馈电单元101的输入端口的和输出端口的信号的相位可不发生变化。图1中仅以包括两个端口的移相器中101进行实例,然而,移相器101的也可仅具有一个端口即输入端口,在此不再赘述。
其中,该至少一个分接元件102中第一个分接元件与馈电单元101的连接处可包括:旋转轴。该旋转轴的轴心可以为该至少一个导体段103的圆心105,即该旋转轴心。该至少一个分接元件102可该旋转轴的旋转带动下,沿每个分接元件102连接的导体段移动。
接地元件104可以与移相器的线地层电连接,与分接元件102在分接元件102摆动到一定角度后电连接。其中,该移相器的接地层可以为馈电单元101和至少一个导体段103任一结构对应的接地层。接地元件104可位于至少一个导体段103中导体段与馈电单元101间的空隙处;也可位于至少一个导体段103中任两个导体段间的空隙处。接地虽然,图1中以接地元件104位于导体段与馈电单元101间的空隙处,且靠近导体段的第一输出端口的一侧进行说明,但本发明实施例中的接地元件104还可位于其他的位置,如可以位于至少一个导体段103中任两个导体段间的空隙处,或者,靠近导体段的第二输出端口的一侧进行说明。其中,该第一输出端口和该第二输出端口可以位一个导体段的两个端口。需要说明的是,在本发明实施例中第一、第二等仅为了描述本发明实施例中的相似或相同特征,并不代表相应的特征的排序,或是使用顺序。
若每个分接元件102移动预设角度后,至少一个分接元件102中的一个分接元件与该接地元件104电连接,由于接地元件104的电阻较大,接近无穷大,因而使得接地元件104连接的分接元件传输的信号发射至馈电单元101 的输入端口107,该反射的信号使得输入端口107的信号产生驻波。
由于该输入端口107的信号产生的驻波是由于接地元件104造成的,该接地元件104与地连接,使得其电阻较大,因此根据阻抗匹配原则,可知接地元件104发射系数较大,反射的信号较大,使得该输入端口107的信号产生驻波较大。因而,根据输入端口107的信号确定输入端口107的线缆是否连接正确,例如可以是通过该输入端口107的信号的驻波比和/或信号发射系数确定该输入端口107的线缆是否连接正确。该输入端口107的线缆例如可以为输入端口与RRU的连接线缆。其中,该驻波比可以为电压驻波比(VoltageStanding Wave Ratio,简称VSWR)。信号反射系数可以为输入反射系数。输入反射系数可表示为S11。
本发明实施例一提供的移相器,包括馈电单元、至少一个分接元件、至少一个导体段、接地元件,以每个分接元件连接的导体段的一个输出端口为起始位置,若该每个分接元件移动预设角度时,一个分接元件可以与接地元件电连接,从而使得接地元件可以将该接地元件连接的分接元件传输的信号反射至馈电单元的输入端口,使得输入端口的信号产生驻波,继而可根据输入端口的信号确定该输入端口的线缆是否连接正确。因此,本发明实施例一中包括接地元件的移相器,可根据该移相器的馈电单元的输入端口的信号确定该输入端口的线缆是否连接正确,确定该移相器的输入端口与RRU的连接线缆是否连接正确,保证天线与RRU之间线缆正确连接,保证天线传输信号的准确性。
本发明实施例二还提供一种移相器。图2为本发明实施例二提供的移相器的结构示意图。如图2所示,可选的,图1所示的移相器100中输入端口107还可与检测元件201连接。
输入端口107,还用于将该输入端口107的信号传输至检测元件201。检测元件201,还用于根据输入端口的信号确定输入端口1007的线缆是否连接正确。检测元件201例如可以为计算机、处理器或其他任一具有处理功能的器件等,在此不再赘述。
可选的,检测元件201,还用于根据输入端口107的信号确定输入端口107的信号的驻波比,若该驻波比大于预设的驻波比值,则输入端口107的线缆连接正确;若该驻波比小于或等于该预设的驻波比值,则该输入端口的 线缆连接错误。
可替代地,检测元件201,还可用于根据该输入端口107的信号确定该输入端口的发射次数,若输入端口107的反射系数大于预设的反射次数值,则输入端口107的线缆连接正确;若该输入端口的反射系数小于或等于该预设的反射系数值,则输入端口107的线缆连接错误。
可选的,检测元件201还可连接报警器件,以在检测元件201确定该输入端口107的线缆连接错误的情况下,发出报警信号,以告知天线安装人员该输入端口107的线缆连接错误。举例来说,该报警器件可以为显示器件和/或音频器件,若该报警器件为显示器件,该报警信号可以为该显示器件上的文字信号,若该报警器件为音频器件,如麦克风,该报警信号可以为声音信号。
可选的,滑动器件202位于该至少一个分接元件102中相连分接元件间。滑动器件202中包括连接部件。
该至少一个分接元件102中相邻分接元件通过滑动器件202中的连接部件电连接。该至少一个分接元件102中每个分接元件102还可以是通过连接部件与至少一个导体段103中的一个导体段电连接。
需要说明的是,滑动器件202、至少一个分接元件102可以位于一个独立的印制电路板(Printed Circuit Board,简称PCB)上。
可选的,馈电单元101和至少一个导体段103均为微带线结构。也就是说就,移相器100可以为微带线结构的移相器。接地元件104与馈电单元101和/或至少一个导体段的微带线结构的接地层电连接。
具体地,该馈电单元101、至少一个导体段103可位于与至少一个分接元件102所在的PCB不同的一个PCB上。也就是说,移相器100可包括两个PCB,其中一个PCB可包括馈电单元101、至少一个导体段103,另一个PCB可包括至少一个分接元件。因此,该馈电单元101、至少一个导体段103可为该一个PCB上的金属布线。至少一个分接元件102可以为另一个PCB上的金属布线。
因而,可以至少一个导体段103的圆心105为旋转轴心,旋转至少一个分接元件102所在的PCB实现,每个分接元件102沿每个分接元件102连接的导体段移动。
馈电单元101和至少一个导体段103均为微带线结构,也就是说,该移相器100可以为微带线结构的移相器。由于微带线结构中信号传输速度快,抗干扰能力差,因此,包括该微带线结构的移相器的天线可适用于对信号传输速率要求较高,抗干扰要求较小的场景。
图3为本发明实施例二提供的一种移相器中分接元件与接地元件在电连接状态的剖面示意图。如图3所示,PCB 301包括分接元件102和PCB介质层302。也就是说,分接元件102例如可以为PCB 301上的金属布线。分接元件102与接地元件104电连接,接地元件104可以与接地层303电连接。该接地层303可以为馈电单元101和/或至少一个导体段103的微带线结构的接地层。因而,分接元件102可通过接地元件104与接地层303电连接。
可替代地,馈电单元101和至少一个导体段103均为带状线结构。该接地元件104与馈电单元101和或至少一个导体段103的带状线结构的接地层电连接。
具体地,带状线结构又称悬置微带线结构,其可包括上接地层、下接地层。该上接地层还包括侧板,该上接地层可以由压铸工艺获得。该下接地层可以为盖板,该上地面可以由钣金工艺获得。该上接地层和该下接地层扣合,构成一个腔体。馈电单元101、至少一个分接元件102和至少一个导体段103可以为该带状线结构的腔体中的金属部线。若馈电单元101、至少一个分接元件102和至少一个导体段103均为带状线结构,则该移相器100可以为带状线结构的移相器。由于带状线结构中信号传输速率慢,抗干扰能力强,因此,包括该带状线结构的移相器的天线可适用于对信号传输速率要求低,抗干扰要求较高的天线中。
图4为本发明实施例二提供的另一种移相器中分接元件与接地元件在电连接状态的剖面示意图。如图4所示,分接元件102与接地元件104电连接。接地元件104与接地层401电连接。其中,接地层401可以为馈电单元101和/或至少一个导体段102的的带状线结构的接地层。因而,分接元件102可通过接地元件104与接地层401电连接。
可选的,该预设角度为移相器100对应的天线极化方式对应的角度;不同天线极化方式的移相器100的该预设角度不同。
不同天线极化方式的移相器100中接地元件所在的位置也可不同。
本发明实施例二的移相器中,由于馈电单元、至少一个分接元件和至少一个导体段可以均为微带线结构或者带状线结构,因此,移相器可适用于不同场景的天线中。
本发明实施例三还提供一种移相器。图5为本发明实施例三提供的移相器的结构示意图。移相器可包括馈电单元501、第一导体段502、第二导体段503、第三导体段504、第一分接元件505、第二分接元件506、第三分接元件507及接地元件508。其中,馈电单元501具有输入端口P0。第一导体段502具有输出端口P1和输出端口P2,第二导体段503具有输出端口P3和P4、第三导体段504具有输出端口P5和P6。馈电单元501还具有输出端口P7。第一导体段502、第二导体段503、第三导体段504可以为一个平面上同心设置的三个弧形导体段。第一分接元件505、第二分接元件506、第三分接元件507也可位于一个平面。该第一导体段502、第二导体段503、第三导体段504所在的平面,可以与第一分接元件505、第二分接元件506、第三分接元件507所在平面,相互平行。
其中,馈电单元501可与第一分接元件505电连接。第一分接元件505与第二分接元件506间,该第二分接元件506与第三分接元件507间还包括:滑动器件509。滑动器件509可包括:连接部件,从而使得第一分接元件505与第二分接元件506、第三分接元件507依次通过电连接。
该连接部件还可使得第一分接元件505与第一导体段502、第二分接元件506与第二导体段503、第三分接元件507与第三导体段504电连接。
其中,第一分接元件505与馈电单元501的连接处还包括:旋转轴510。第一分接元件505与馈电单元501的连接处可以为第一导体段502、第二导体段503和第三导体段504的同心圆的圆心处。
接地元件508例如可以位于第一接地元件505与馈电单元的间隙,且,位于如图5所示的直线L1的右侧。直线L1可以为第一导体段505所在平面相互平行的平面上,垂直与馈电单元501的直线。图5中,直线L2可以为第一导体段505所在平面相互平行的平面上,平行与馈电单元501的直线。
其中,该直线L1中第一导体段502至第三导体段504的方向可表示为90°。直线L2中输出端口P7至输入端口P0的方向可表示为0°。
在旋转轴510的带动下,第一分接元件505、第二分接元件506、第三分 接元件507,可沿着各自连接的导体段移动,用以改变流经各分接元件连接的导体段的信号的相位,继而通过各分接元件连接的导体段的输出端口进行输出。
需要说明的是,第一输出端口P1与第二输出端口P2的相位变化,可小于,第三输出端口P3与第四输出端口P4的相位变化;第三输出端口P3与第四输出端口P4的相位变化,可小于第五输出端口P5与第六输出端口P6的相位变化。第一输出端口P1与第二输出端口P2的相位变化、第三输出端口P3与第四输出端口P4的相位变化、第五输出端口P5与第六输出端口P6的相位变化的比例例如可以为1:2:3。该比例可通过第一导体段502、第二导体段503和第三导体段504各自对应的弧形的半径确定。
若该第一分接元件505从0°移动至如图所示的角度Φ,则该第一分接元件505可与接地元件508连接。接地元件508可使得输入端口P0输入的信号流经第一分接元件505后进行反射,该反射的信号使得输入端口P0产生驻波。举例来说,若接地元件508位于第一接地元件505与馈电单元的间隙,且,位于如图5所示的直线L1的右侧,则角度Φ可大于0°,小于90°,那么[0°,Φ°]可以表示移相器的检测角度,(Φ°,180°]可以为移相器的工作角度。第一分接元件505从角度0°逆时针旋转,移动至角度Φ,可使得移相器处于检测状态。移相器处于检测阶段,可以天线安装阶段,也就是,连接天线中移相器与RRU的阶段。移相器处于工作状态时,可仅在工作角度范围内移动分接元件,即在(Φ°,180°]移动。
该接地元件508还可位于图5中直线L1的左侧,则角度Φ可大于90°,小于180°,那么[Φ°,180°]可以表示移相器的检测角度,(Φ°,0°]可以为移相器的工作角度。第一分接元件505从角度180°顺时针移动至角度Φ,可使得移相器处于检测状态。移相器处于工作状态时,可仅在工作角度范围内移动分接元件,即在(Φ°,0°]移动。
也就是说,接地元件508可逆时针旋转,也可顺时针旋转。
若移相器所在的天线可以为单极化天线,则天线中各移相器中接地元件508的位置可以相同。移相器的位置可通过角度Φ表示,接地元件508的位置相同,可以是接地元件508对应的角度Φ相同。
若移相器所在的天线可以为双极化天线,则天线中相同极化方式对应的 移相器中接地元件508的位置可以相同,不同极化方式对应的移相器中接地元件的位置不同。举例来说,一个极化方式对应的移相器中接地元件508对应的角度Φ可以为30°,则另一个极化方式对应的移相器中接地元件508对应的角度Φ可以为-30°。
该输入端口P0还可连接检测元件511。该检测元件511可以是根据输入端口P0的信号确定输入端口P0的信号的驻波比,若该驻波比大于预设的驻波比值,则确定输入端口P0的线缆连接正确;若驻波比小于或等于该预设的驻波比值,则确定输入端口P0的线缆连接错误。可替代地,该检测元件511还可以是根据输入端口P0的信号确定输入端口P0的发射系数,若输入端口P0的反射系数大于预设的反射次数值,则确定输入端口P0的线缆连接正确;若输入端口P0的反射系数小于或等于预设的反射系数值,则输入端口的线缆连接错误。若检测元件511确定该输入端口P0的线缆连接错误,可发出报警信号,以告知天线安装人员该输入端口107的线缆连接错误。
图6为本发明实施例三中的移相器中输入端口的史密斯图。图7为本发明实施例三中的移相器中输入端口的VSWR图。
图6中线条1可以用于表示一种天线极化方式对应的移相器中分接元件与接地元件电连接时,移相器的输入端口的信号反射系数;图6中的线条2可以用于表示另一种天线极化方式对应的移相器中分接元件与接地元件电连接时,移相器的输入端口的信号反射系数;线条3可表示该一种天线极化方式和另一种天线极化方式中任一极化方式对应的移相器中分接元件与接地元件没有电连接即正常工作状态时,移相器的输入端口的信号反射系数。
图7中线条1可以用于表示一种天线极化方式对应的移相器中分接元件与接地元件电连接时,移相器的输入端口的VSWR;图7中的线条2可以用于表示另一种天线极化方式对应的移相器中分接元件与接地元件电连接时,移相器的输入端口的VSWR;线条3可表示该一种天线极化方式和另一种天线极化方式中任一极化方式对应的移相器中分接元件与接地元件没有电连接,即正常工作状态时,移相器的输入端口的VSWR。
根据该图6和图7可知,任一天线极化方式对应的移相器中分接元件与接地元件电连接即移相器处于检测状态时,VSWR可大于预设驻波比值1.8,移相器中分接元件不与接地元件电连接即移相器处于工作状态时,VSWR可 小于该预设驻波比值。
本发明实施例三中通过具体实例对上述实施例进行说明,其有益效果可与上述实施例类似,在此不再赘述。
需要说明的是,图5中的移相器中馈电单元、各导体段、各分接元件可以均为微带线结构,或者,带状线结构。若图5中的移相器中馈电单元、各导体段、各分接元件可以为微带线结构,则该移相器可以为微带线结构的移相器。若图5中的移相器中馈电单元、各导体段、各分接元件可以为带状线结构,则该移相器可以为带状线结构的移相器。图5中的馈电单元与各导体段可以位于一个PCB,各分接元件可位于另一个PCB。因而图5所示的移相器可以是通过旋转分接元件所在的PCB,实现分接元件在分接元件连接的导体段上的移动。
本发明实施例四还提供一种天线。图8为本发明实施例四提供的天线的结构示意图。如图8所示,该天线800包括多个移相器801,和多个辐射单元802。每个移相器801的输出端口与一个辐射单元802连接;
每个移相器801的输入端口还通过多个线缆与RRU 803连接。
每个移相器801可以为如上实施例一至实施例三中任一所述的移相器。
可选的,若该天线为单极化天线,每个移相器中分接元件与接地元件电连接时,分接元件移动的角度均相同。
可选的,若该天线为双极化天线,该多个移相器801中相同极化方式对应的移相器的分接元件与接地元件电连接时,分接元件移动的角度相同;该多个移相器801中不同极化方式对应的移相器的分接元件与接地元件电连接时,分接元件移动的角度不同。
本发明实施例四提供的天线可包括如上实施例一至实施例三中任一所述的移相器,其有益效果可与上述实施例类似,在此不再赘述。
本发明实施例五还提供一种基站。图9为本发明实施例五提供的基站的结构示意图。如图9所示,该基站可以包括:天线901、RRU 902和基带处理单元(Building Base band Unit,简称BBU)903。
天线901包括:多个移相器904,和多个辐射单元905;其中,每个移相器904为上述实施例一至实施例三中任一所述的移相器;每个移相器904的输出端口与一个辐射单元905连接;每个移相器904的输入端口与RRU 902 连接;RRU 902与BBU 903连接。
本发明实施例五提供的基站中天线可包括上述实施例一至实施例三中任一所述的移相器,有益效果与上述实施例类似,在此不再赘述。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (11)

  1. 一种移相器,其特征在于,包括:馈电单元、至少一个分接元件、至少一个导体段、接地元件;所述馈电单元与所述至少一个分接元件中的第一个分接元件电连接,且,所述至少一个分接元件依次电连接;
    所述至少一个导体段为同心设置的至少一个弧形导体段;所述每个分接元件与一个导体段电连接;所述每个分接元件以所述至少一个导体段的圆心为旋转轴心,沿所述每个分接元件连接的导体段移动,用以改变流经所述每个分接元件连接的导体段的信号的相位,继而通过所述每个分接元件连接的导体段的输出端口进行输出;
    所述每个分接元件连接的导体段的一个输出端口为起始位置,若所述每个分接元件移动预设角度时,一个分接元件与所述接地元件电连接,用以将所述一个分接元件传输的信号反射至所述馈电单元的输入端口,使得所述输入端口的信号产生驻波,继而根据所述输入端口的信号确定所述输入端口的线缆是否连接正确。
  2. 根据权利要求1所述的移相器,其特征在于,所述输入端口还与检测元件连接;
    所述输入端口,还用于将所述输入端口的信号传输至所述检测元件;
    所述检测元件,还用于根据所述输入端口的信号确定所述输入端口的线缆是否连接正确。
  3. 根据权利要求2所述的移相器,其特征在于,
    所述检测元件,还用于根据所述输入端口的信号确定所述输入端口的信号的驻波比,若所述驻波比大于预设的驻波比值,则所述输入端口的线缆连接正确;若所述驻波比小于或等于所述预设的驻波比值,则所述输入端口的线缆连接错误。
  4. 根据权利要求2所述的移相器,其特征在于,
    所述检测元件,还用于根据所述输入端口的信号确定所述输入端口的发射系数,若所述输入端口的反射系数大于预设的反射次数值,则所述输入端口的线缆连接正确;若所述输入端口的反射系数小于或等于所述预设的反射系数值,则所述输入端口的线缆连接错误。
  5. 根据权利要求1-4中任一项所述的移相器,其特征在于,所述馈电单 元和所述至少一个导体段均为微带线结构;
    所述接地元件与所述馈电单元和/或所述至少一个导体段的微带线结构的接地层电连接。
  6. 根据权利要求1-4中任一项所述的移相器,其特征在于,所述馈电单元和所述至少一个导体段均为带状线结构;
    所述接地元件与所述馈电单元和/或所述至少一个导体段的带状线结构的接地层电连接。
  7. 根据权利要求1-6中任一项所述的移相器,其特征在于,所述预设角度为所述移相器对应的天线极化方式对应的角度;不同天线极化方式的所述移相器的所述预设角度不同。
  8. 一种天线,其特征在于,包括:多个移相器,和多个辐射单元;其中,每个移相器为上述权利要求1-7中任一项所述的移相器;
    所述每个移相器的输出端口与一个辐射单元连接;所述每个移相器的输入端口与射频拉远单元RRU连接。
  9. 根据权利要求8所述的天线,其特征在于,若所述天线为单极化天线,所述每个移相器中分接元件与接地元件电连接时,分接元件移动的角度均相同。
  10. 根据权利要求8所述的天线,其特征在于,若所述天线为双极化天线,所述多个移相器中相同极化方式对应的移相器的分接元件与接地元件电连接时,分接元件移动的角度相同;
    所述多个移相器中不同极化方式对应的移相器的分接元件与接地元件电连接时,分接元件移动的角度不同。
  11. 一种基站,其特征在于,包括:天线、射频拉远单元RRU和基带处理单元BBU;
    所述天线包括:多个移相器,和多个辐射单元;其中,每个移相器为上述权利要求1-7中任一项所述的移相器;所述每个移相器的输出端口与一个辐射单元连接;所述每个移相器的输入端口与所述RRU连接;所述RRU与所述BBU连接。
PCT/CN2015/088574 2015-08-31 2015-08-31 移相器、天线和基站 WO2017035731A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15902538.6A EP3331090B1 (en) 2015-08-31 2015-08-31 Phase shifter, antenna, and base station
CN201580082558.1A CN107925143B (zh) 2015-08-31 2015-08-31 移相器、天线和基站
PCT/CN2015/088574 WO2017035731A1 (zh) 2015-08-31 2015-08-31 移相器、天线和基站
US15/907,548 US10560856B2 (en) 2015-08-31 2018-02-28 Phase shifter, antenna, and base station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/088574 WO2017035731A1 (zh) 2015-08-31 2015-08-31 移相器、天线和基站

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/907,548 Continuation US10560856B2 (en) 2015-08-31 2018-02-28 Phase shifter, antenna, and base station

Publications (1)

Publication Number Publication Date
WO2017035731A1 true WO2017035731A1 (zh) 2017-03-09

Family

ID=58186772

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/088574 WO2017035731A1 (zh) 2015-08-31 2015-08-31 移相器、天线和基站

Country Status (4)

Country Link
US (1) US10560856B2 (zh)
EP (1) EP3331090B1 (zh)
CN (1) CN107925143B (zh)
WO (1) WO2017035731A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109616722A (zh) * 2018-11-30 2019-04-12 江苏省东方世纪网络信息有限公司 移相器
WO2022135002A1 (zh) * 2020-12-25 2022-06-30 华为技术有限公司 一种馈电网络、基站天线及基站设备

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110462927B (zh) * 2017-03-31 2021-09-14 华为技术有限公司 天线下倾角调节装置及通信设备
CN111952698A (zh) * 2020-08-20 2020-11-17 京信通信技术(广州)有限公司 一种移相器单元、移相器和阵列天线
CN115513665A (zh) * 2022-10-28 2022-12-23 中信科移动通信技术股份有限公司 一种移相器及基站天线

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102185180A (zh) * 2011-03-11 2011-09-14 华为技术有限公司 移相器、天线系统及移相方法
CN102263313A (zh) * 2011-07-27 2011-11-30 华为技术有限公司 一种移相装置及其应用的天线系统
CN102714341A (zh) * 2012-01-10 2012-10-03 华为技术有限公司 移相器和天线

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11298212A (ja) * 1998-04-10 1999-10-29 Sumitomo Electric Ind Ltd 分配可変移相器
DE19938862C1 (de) * 1999-08-17 2001-03-15 Kathrein Werke Kg Hochfrequenz-Phasenschieberbaugruppe
GB0305619D0 (en) * 2003-03-12 2003-04-16 Qinetiq Ltd Phase shifter device
US7298233B2 (en) * 2004-10-13 2007-11-20 Andrew Corporation Panel antenna with variable phase shifter
JP4156647B2 (ja) * 2006-11-14 2008-09-24 日本電業工作株式会社 多分岐分配移相器
CN201146243Y (zh) * 2007-10-24 2008-11-05 华南理工大学 一种电调天线双侧对称弧臂移相器
EP2362822A2 (en) * 2008-09-26 2011-09-07 Mikro Systems Inc. Systems, devices, and/or methods for manufacturing castings
US8948713B2 (en) * 2009-06-16 2015-02-03 Broadcom Corporation Antenna impedance/power amplifier source impedance measurement circuitry and device operation based thereon
US20110267231A1 (en) * 2010-04-30 2011-11-03 Andrew Llc Cellular Antenna Phase Shifter Positioning Using Motorized Torque Lever

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102185180A (zh) * 2011-03-11 2011-09-14 华为技术有限公司 移相器、天线系统及移相方法
CN102263313A (zh) * 2011-07-27 2011-11-30 华为技术有限公司 一种移相装置及其应用的天线系统
CN102714341A (zh) * 2012-01-10 2012-10-03 华为技术有限公司 移相器和天线

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109616722A (zh) * 2018-11-30 2019-04-12 江苏省东方世纪网络信息有限公司 移相器
WO2022135002A1 (zh) * 2020-12-25 2022-06-30 华为技术有限公司 一种馈电网络、基站天线及基站设备

Also Published As

Publication number Publication date
EP3331090B1 (en) 2019-12-18
CN107925143B (zh) 2019-12-24
CN107925143A (zh) 2018-04-17
US20180192307A1 (en) 2018-07-05
EP3331090A4 (en) 2018-08-15
US10560856B2 (en) 2020-02-11
EP3331090A1 (en) 2018-06-06

Similar Documents

Publication Publication Date Title
US11552385B2 (en) Feed network of base station antenna, base station antenna, and base station
WO2017035731A1 (zh) 移相器、天线和基站
US8126417B2 (en) Data processing device with beam steering and/or forming antennas
US7397425B2 (en) Electronically steerable sector antenna
EP3553885B1 (en) Array antenna and network apparatus
TWI530020B (zh) 天線系統
CN102938482B (zh) 可调移相器及具有该可调移相器的天线
CN106981719B (zh) 一种圆极化阵列天线及通信设备
US11349184B2 (en) Phase shifter including first and second boards having rails thereon and configured to be rotatable with respect to each other and an antenna formed therefrom
WO2016127893A1 (zh) 辐射单元及双极化天线
WO2022213995A1 (zh) 电路板及电子设备
WO2023093254A1 (zh) 天线模组及移动终端
EP3561946B1 (en) Dual-band polariser
WO2015129089A1 (ja) アレーアンテナ装置
US10103442B2 (en) Antenna structure
EP4075593A1 (en) Half-wave oscillator, half-wave oscillator assembly and antenna
CN114267944A (zh) 天线结构、波束切换的方法及网络设备
JP2004165707A (ja) 高周波マイクロストリップ線路
CN219164575U (zh) 一种带有调试相位滑块的校准网络装置
CN106450762B (zh) 一种紧凑的对称馈电网络
WO2015198969A1 (ja) 分配移相器
RU2771751C2 (ru) Цепь питания антенны базовой станции, антенна базовой станции и базовая станция
KR102002799B1 (ko) 기생 패치를 포함하는 아크형 위상 가변기
WO2022126662A1 (zh) 天线及基站
EP2211421A1 (en) Directional coupling device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15902538

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2015902538

Country of ref document: EP