WO2017031980A1 - 一种微波毫米波双频天线 - Google Patents

一种微波毫米波双频天线 Download PDF

Info

Publication number
WO2017031980A1
WO2017031980A1 PCT/CN2016/076362 CN2016076362W WO2017031980A1 WO 2017031980 A1 WO2017031980 A1 WO 2017031980A1 CN 2016076362 W CN2016076362 W CN 2016076362W WO 2017031980 A1 WO2017031980 A1 WO 2017031980A1
Authority
WO
WIPO (PCT)
Prior art keywords
microwave
millimeter wave
array
millimeter
dual
Prior art date
Application number
PCT/CN2016/076362
Other languages
English (en)
French (fr)
Inventor
邹克利
肖凌文
孟洪福
王宗新
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2017031980A1 publication Critical patent/WO2017031980A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/20Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements characterised by the operating wavebands

Definitions

  • the present invention relates to the field of antennas, and more particularly to a microwave millimeter wave dual frequency antenna.
  • the microstrip antenna Due to its small thickness, easy integration, low cost, and easy fabrication, the microstrip antenna has been widely used in the field of microwave and millimeter waves.
  • An omnidirectional microstrip antenna using circumferential electric scanning including an upper mounting plate, a reflecting plate, a microstrip antenna, a supporting column, a radome, a lower mounting plate, a bottom sealing plate, an electronic switch, and a total of 8 reflecting plates
  • the upper octahedron is enclosed by the upper mounting plate, the lower mounting plate and the bottom sealing plate, and the microstrip antenna is 8 pieces, and is installed on the outer side of the regular octahedron surrounded by the reflecting plate through the supporting column, and the spacing between each microstrip antenna and the corresponding reflecting plate It is ⁇ /4.
  • the surface of the reflector has a high surface finish, and all of the energy radiated inward by the microstrip antenna can be reflected outward.
  • the radome is disposed outside the microstrip antenna, the electronic switch is mounted on the lower mounting plate, and the electronic switch is connected to the 8 microstrip antennas through the coaxial cable, so that each adjacent two microstrip antennas of the 8 microstrip antennas are at 3 dB. Intersecting, forming 8 double-beam time-divisionally and sequentially working in turn, radiating energy to the outside, and receiving the energy of the target echo signal to realize 360° circumferential scanning of the antenna.
  • each adjacent two microstrip antennas of 8 microstrip antennas intersect at 3dB, and the beam width of each microstrip antenna reaches 45 degrees, and the gain of the antenna in a single direction is low, which is disadvantageous for long distance. Communication.
  • each microstrip antenna does not have a scanning function, and the microstrip antenna achieves 3dB coverage within ⁇ 22.5 degrees, which makes the antenna anti-interference ability weak.
  • the antenna operates in a single frequency band.
  • Another millimeter wave 360° omnidirectional scanning dielectric cylindrical lens antenna includes three dielectric cylindrical lenses, three feed antenna arrays with scanning ranges of 120°, and four metal disks; four metal disks A dielectric cylindrical lens is coaxially mounted therebetween, and one of the feeding antenna arrays is respectively disposed at an edge of two adjacent metal disk edges, and the three feeding antenna arrays are 120° apart on the horizontal projection surface.
  • the phase center plane of each of the feed antenna arrays coincides with the focal plane of the respective dielectric cylindrical lens.
  • the antenna realizes 360° omnidirectional scanning in the horizontal direction; the three dielectric column lens antennas are separated by metal disc-shaped parallel plates, and the scanning of each uniform dielectric cylindrical lens is not interfered by the other two lenses, so each layer of cylindrical lenses
  • the scanning beam of the antenna is exactly the same; it can be easily connected to the printed integrated circuit.
  • a dielectric cylindrical lens is used as the antenna main body, so that the antenna has a large weight.
  • each scanning beam corresponds to a unit on the feed antenna array.
  • the number of units of the feeding antenna array is large, and the feeding network is complicated.
  • the antenna also works only in the millimeter wave band.
  • the invention provides a microwave millimeter wave dual frequency antenna for expanding the working frequency band of the antenna.
  • a microwave millimeter wave dual-frequency antenna includes: a plurality of dual-frequency sub-array antennas, and the plurality of dual-frequency sub-array antennas are annularly arranged to form a regular polygonal cylinder shape, and further includes a millimeter wave feed network and a microwave feed network respectively located on both end faces of the enclosed regular polygonal cylinder; wherein
  • Each dual-frequency sub-array antenna includes: a metal plate, and a second dielectric layer, a millimeter wave radiation array, a first dielectric layer and a second dielectric layer laminated on the metal plate in a direction away from a side of the enclosed regular polygonal cylinder An array of microwave radiation, and the array of microwave radiation is coupled to the microwave feed network, the millimeter wave radiation array being coupled to the millimeter wave feed network.
  • the microwave radiation array includes: a plurality of microwave linear arrays, each of which is provided with a microwave phase shift on the microstrip feed line And a plurality of microwave radiating units are disposed at equal intervals on the same side of each microstrip feeder.
  • the plurality of microwave linear arrays are arranged in an array manner.
  • the number of the linear array of microwaves is four, eight, or sixteen.
  • the microwave feed network includes multiple microwave switches and a microstrip power division network corresponding to each microwave switch, and The microstrip power dividing network is connected to the microwave radiation array in a one-to-one correspondence.
  • a feeding port of the microstrip feeder is located on an end of the microwave radiation array adjacent to the microwave feeding network.
  • the millimeter wave radiation array comprises: a plurality of millimeter wave linear arrays arranged in an array, and each millimeter wave linearity The array is connected with a millimeter wave waveguide microstrip conversion, and the millimeter wave phase shifter is disposed on the output microstrip line of the millimeter wave waveguide microstrip, and the same side of the output microstrip line is further provided with a plurality of four patches mm Wave radiation unit;
  • the other side of the output microstrip line is provided with a plurality of two patch millimeter wave radiating elements, and each two patch millimeter wave radiating elements Between two adjacent four-ply millimeter wave radiating elements on an output microstrip line adjacent thereto.
  • the millimeter wave feed network includes a millimeter wave rotary joint and a millimeter wave power split connected to each millimeter wave rotary joint a network, and the millimeter wave power division network is connected in one-to-one correspondence with the millimeter wave radiation array.
  • the millimeter wave waveguide microstrip conversion is located on an end of the millimeter wave radiation array adjacent to the millimeter wave feed network.
  • the first possible aspect of the first aspect, the first possible implementation of the first aspect, the second possible implementation of the first aspect, the third possible implementation of the first aspect, and the fourth possible aspect of the first aspect further includes a support base, the plurality of dual-frequency sub-array antennas are disposed around the side of the support base The shape of the regular polygonal cylinder is enclosed, and the millimeter wave feeding network and the microwave feeding network are respectively disposed at two end faces of the support base.
  • the frequency band selection of the antenna is enhanced by using the millimeter wave radiation array and the microwave radiation array, and the working frequency band of the antenna is expanded.
  • FIG. 1 is a perspective view of a microwave millimeter wave dual-frequency antenna according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a dual-frequency sub-array antenna of a microwave millimeter wave dual-frequency antenna according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a microwave radiation array of a microwave millimeter wave dual-frequency antenna according to an embodiment of the present invention
  • FIG. 4 is a schematic structural diagram of a millimeter wave radiation array of a microwave millimeter wave dual-frequency antenna according to an embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of a microwave feeding network of a microwave millimeter wave dual-frequency antenna according to an embodiment of the present disclosure
  • FIG. 6 is a schematic structural diagram of a millimeter wave feed network of a microwave millimeter wave dual frequency antenna according to an embodiment of the present invention.
  • FIG. 1 is a schematic structural diagram of a microwave millimeter wave dual-frequency antenna according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a dual-frequency sub-array antenna according to an embodiment of the present invention
  • FIG. 6 is a schematic structural diagram of a millimeter wave feed network of a microwave millimeter wave dual frequency antenna according to an embodiment of the present invention.
  • An embodiment of the present invention provides a microwave millimeter wave dual-band antenna, the antenna includes: a plurality of dual-frequency sub-array antennas 1, and a plurality of dual-frequency sub-array antennas 1 are annularly arranged to form a regular polygonal cylinder shape, and further includes a millimeter wave feed network 3 and a microwave feed network 2 respectively located on both end faces of the enclosed regular polygonal cylinder;
  • Each of the dual-frequency sub-array antennas 1 includes a metal plate 15, and a second dielectric layer 14, a millimeter wave radiation array 13, and a first dielectric layer laminated on the metal plate 15 in a direction away from the side of the enclosed regular polygonal cylinder. 12 and the microwave radiation array 11, and the microwave radiation array 11 is connected to the microwave feed network 2, and the millimeter wave radiation array 13 is connected to the millimeter wave feed network 3.
  • the frequency band selection of the antenna is enhanced by using the millimeter wave radiation array 13 and the microwave radiation array 11, and the selection of the operating frequency band of the microwave millimeter wave dual frequency antenna is expanded.
  • a support base 4 is provided in this embodiment.
  • the plurality of dual-frequency sub-array antennas 1 are circumferentially disposed in the The sides of the support base 4 are enclosed in the shape of the regular polygonal cylinder, and the millimeter wave feed network 3 and the microwave feed network 2 are respectively disposed at both end faces of the support base 4.
  • Support seat 4 when specifically selected You can choose different shapes, such as: circular columns, regular polygonal cylinders, etc.
  • the support base 4 provided in this embodiment is a regular polygonal cylinder
  • the positive multi-deformation cylinder is a straight prism
  • the end surface of the straight prism is a regular polygon
  • the number of sides of the regular polygon can be determined according to needs.
  • the end face of the regular polygonal cylinder in this embodiment is a regular octagon, that is, the regular polygonal cylinder is a regular octagonal cylinder.
  • the antenna comprises a dual-frequency sub-array antenna 1 disposed on each side of a regular octagonal cylinder, a microwave feeding network 2 and a millimeter wave feeding network 3 respectively disposed at two end faces, wherein the dual-frequency sub-array antenna 1
  • the five-layer structure is as shown in FIG. 2 , specifically, the three-layer metal is placed at intervals with the two-layer medium, and the microwave radiation array 11 , the first dielectric layer 12 , the millimeter wave radiation array 13 , and the second dielectric layer are sequentially arranged from the outside to the inside.
  • the microwave radiation array 11 and the millimeter wave radiation array 13 are respectively disposed on the metal layer of the dual-frequency sub-array antenna 1, and are specifically fabricated, fabricated by using a printed circuit board, and in a dual frequency
  • the sub-array antenna 1 is fixed to the side of the regular octagonal cylinder, the microwave radiation array 11 is outward, and the metal plate 15 is inward.
  • FIG. 3 shows a schematic structural view of the microwave radiation array 11.
  • the microwave radiation array 11 includes a plurality of microwave linear arrays 111.
  • Each of the microstrip feed lines 112 in the microwave linear array 111 is provided with a microwave phase shifter 113, and each microstrip feed line 112 is provided with a plurality of equally spaced sides.
  • the microwave radiating unit 114 has a plurality of microwave linear arrays 111 arranged in an array.
  • the microwave radiation array 11 is disposed on the top metal layer (the outermost metal layer) of the dual-frequency sub-array antenna 1, and the microwave radiation array 11 is composed of a plurality of vertical-direction string feed arrays (microwave linear arrays 111), each of which The same side of the line array is arranged with a microwave radiating unit 114, and the microstrip feeding port of each line array is disposed at the top of the array, and the direction shown in FIG. 2 is referred to as a reference direction, that is, the feeding port of the microstrip feeder 112 is located.
  • a microwave phase shifter 113 is disposed on the microstrip feed line 112 of each of the line arrays.
  • the number of the microwave linear arrays 111 is 4, 8, or 16. The specific number is determined by the beam width of the microwave scanning beam at the azimuth plane and the microwave beam gain.
  • FIG. 3 shows that the microwave linear array 111 adopts four structures, and the four microwave linear arrays 111 are arranged in the horizontal direction (the direction shown in FIG. 3 as a reference direction), and eight or At 16 o'clock, the arrangement continued in the horizontal direction on the structure using the four microwave linear arrays 111.
  • FIG. 5 shows a schematic structural diagram of a microwave feeding network 2, in which a microwave feed
  • the electrical network 2 is located on the top surface of the regular polygonal cylinder, and the microwave feeding network 2 includes a plurality of microwave switches 21 and a microstrip power dividing network 22 corresponding to each microwave switch 21, and the microstrip power dividing network 22 and the microwave radiation
  • the arrays 11 are connected one by one.
  • the microwave switch 21 for controlling the microwave switch network can connect the microwave switch network to one of the microstrip power distribution networks 22, and disconnects from the remaining microstrip power split network 22 to implement the microwave signal in the microstrip power split network 22 For each switching, each microstrip power dividing network 22 is connected to the microstrip feed port of the corresponding side microwave radiation array 11.
  • the microwave feeding network 2 includes eight microwave switches 21 and eight microstrip power dividing networks 22, and the microwave feeding network 2 is disposed on the top surface of the regular octagonal cylinder.
  • Each microstrip power dividing network 22 is connected to a microwave radiation array 11 on each side of the regular octagonal cylinder, respectively.
  • FIG. 4 shows a millimeter wave radiation array 13 provided by an embodiment of the present invention.
  • the millimeter wave radiation array 13 includes a plurality of millimeter wave linear arrays 131 arranged in an array, and each millimeter wave linear array 131
  • the millimeter wave waveguide microstrip conversion 132 is connected, and the millimeter wave phase shifter 134 is disposed on the output microstrip line 133 of the millimeter wave waveguide microstrip conversion 132.
  • the same side of the output microstrip line 133 is also provided with a plurality of four patch mm.
  • the wave radiating unit 135 when the other output microstrip line 133 is on the other side of the output microstrip line 133, the other side of the output microstrip line 133 is provided with a plurality of two patch millimeter wave radiating units 136, and each Two patch millimeter wave radiating elements 136 are located between two adjacent four patch millimeter wave radiating elements 135 on an output microstrip line 133 adjacent thereto.
  • the millimeter wave radiation array 13 is disposed in an intermediate metal layer of the dual frequency sub-array antenna 1, and the millimeter wave radiation array 13 is composed of a plurality of vertical millimeter wave series feed line arrays (ie, a millimeter wave linear array 131), each of which The millimeter wave radiating element is arranged on the left and right sides of the feeding microstrip line of the millimeter wave series feed line array, and the millimeter wave radiating elements of two adjacent millimeter wave string feeding line arrays are arranged in an interdigitated manner, and each millimeter wave string feeding line array is composed of a waveguide microstrip
  • the switching feed port is fed and disposed at the bottom of the array, that is, as shown in FIG.
  • the placement direction of the millimeter wave radiation array 13 shown in FIG. 4 is the reference direction, and the millimeter wave waveguide microstrip conversion 132 is set on the regular polygonal column. One end of the body is near the end of the bottom surface.
  • a millimeter wave phase shifter 134 is also disposed on the microstrip feed line 112 of each line array.
  • the number of millimeter wave linear arrays 131 included in the millimeter wave radiation array 13 may be 4, 8, 16, etc., and the specific number is determined by the beam width of the millimeter wave scanning beam at the azimuth plane and the millimeter wave beam gain.
  • FIG. 4 shows that the millimeter wave linear array 131 adopts four structures, four millimeters.
  • the meter wave linear array 131 is arranged in the horizontal direction (the direction indicated by the direction shown in FIG. 4), and in the case where 8 or 16 are used, the arrangement is continued in the horizontal direction on the structure using the 4 millimeter wave linear array 131. .
  • FIG. 6 shows a schematic structural view of the millimeter wave feed network 3.
  • the millimeter wave feed network 3 includes a millimeter wave rotary joint 31 and a millimeter wave power division network 32 connected to each millimeter wave rotary joint 31, and the millimeter wave power division network 31 is connected in one-to-one correspondence with the millimeter wave radiation array 13.
  • the millimeter wave feeding network 3 is disposed at the bottom of the regular polygonal cylinder, that is, the millimeter wave feeding network 3 is located on the bottom surface of the regular polygonal cylinder.
  • the rotating millimeter wave rotating joint 31 can connect the millimeter wave rotating joint 31 with one of the millimeter wave power dividing networks 32, and disconnects from the remaining millimeter wave power dividing network 32 to realize millimeter wave signal in millimeter wave work. Switched between sub-networks 32, each millimeter wave power division network 32 is coupled to a waveguide microstrip switching feed port of a corresponding side millimeter wave radiation array 13.
  • the microwave millimeter wave dual-band is fed up and down hierarchically, and the microwave feeding network 2 is a microwave switch 21 switching network, which is located at the top of the multi-faceted cylindrical antenna.
  • the millimeter wave feeding network 3 is a switching network of the millimeter wave rotating joint 31, which is located at the bottom of the multi-faceted cylindrical antenna.
  • the layered string feed array layout of the microwave millimeter wave radiation array in the microwave millimeter wave dual frequency sub-array the microwave radiation array 11 is located at the top layer, the vertical direction is a string feed line array, and the microwave radiation unit 114 is on the same side of the feeding microstrip line Arranged, fed from the top by the microstrip feed network, the millimeter wave radiation array 13 is located in the middle layer, the vertical direction is the string feed line array, the millimeter wave radiation unit is staggered on the left and right of the feed microstrip line, and the millimeter wave is from the bottom The feed network 3 is fed.
  • the layered layout of the microwave millimeter wave radiation array 13 is convenient for the microwave millimeter wave band feed network design, and the vertical direction string feed line array can realize the horizontal direction electricity by using fewer phase shifters. Scanning, the millimeter wave radiation unit is staggered on the left and right sides of the feeder line to reduce the pitch side lobe level.
  • microwave millimeter wave dual-frequency antenna In order to facilitate the understanding of the above microwave millimeter wave dual-frequency antenna, the working principle of the microwave millimeter wave dual-frequency antenna is described in detail below.
  • the microwave radiation array 11 includes four microwave linear arrays 111, which are vertical linear arrays, and microstrip feed lines 112 of each microwave linear array 111.
  • the microwave phase shifters 113 are disposed on the same side of the microstrip feed line 112, and the eight microwave radiation units 111 are arranged at equal intervals in the azimuth plane to form an array in the azimuth plane.
  • the four microwave phase shifters 113 on the microwave radiation array 11 are controlled such that when the phase shifts of the four microwave phase shifters 113 are the same, the microwave beam can be directed to the normal direction of the microwave radiation array 11 when the microwave radiation array 11 is controlled.
  • the four microwave phase shifters 113 can cause the microwave beam to be directed to the range of ⁇ 22.5 degrees of the azimuth plane of the microwave radiation array 11 when the phase shift of the insertion of the four microwave phase shifters 113 is sequentially increased from left to right or sequentially decreased. Internal scanning.
  • the microwave feeding network 2 includes eight microwave switches 21 and eight microstrip power dividing networks 22, and the microwave feeding network 2 is disposed on the top surface of the regular octagonal cylinder, and each of the microstrip power dividing networks 22 is located on the positive octagon
  • the microwave radiation array 11 on each side of the cylindrical body is connected, and after the microwave signal is fed into the microwave feeding network 2, the opening and closing of the eight microwave switches 21 are controlled, so that one of the channels is closed, and the remaining seven channels are opened, and the microwave signal is sent.
  • the microwave switch 21 is connected to the microstrip power distribution network 22 connected to the microstrip, and the microstrip power distribution network 22 is fed into the microwave radiation array 11 connected to the microstrip power distribution network 22 to implement a microwave beam in the microwave radiation array 11 .
  • the radiation in the direction is matched with the four microwave phase shifters 113 on the microwave radiation array 11, so that the microwave beam is scanned within ⁇ 22.5 degrees of the side of the regular octagonal cylinder, and eight microwave switches 21 are switched to realize the microwave beam. In the 8 ⁇ 22.5 degree range switching, the omnidirectional scanning of the microwave beam at 360° of the azimuth plane is achieved.
  • the millimeter wave radiation array 13 includes four millimeter wave linear arrays 131, and the millimeter wave linear array 131 is a vertical line array, and each millimeter wave linear array 131 is converted by a millimeter wave waveguide microstrip. 132 is fed, and a millimeter wave phase shifter 134 is disposed on the output microstrip line 133 of the millimeter wave waveguide microstrip conversion 132, all of which are located on the left side of the microstrip feed line 112 of the middle and leftmost millimeter wave linear array 131, etc.
  • the spacing is provided with eight four-ply millimeter wave radiating elements 135, seven right-pitch millimeter wave radiating elements 136 are disposed on the right side, and the left side of the microstrip feed line 112 of the rightmost millimeter wave linear array 131 is equally spaced.
  • the four millimeter wave phase shifters 134 on the array 13 enable the millimeter wave beams to be directed to the normal of the millimeter wave radiation array 13 when the phase shifts of the four millimeter wave phase shifters 134 are the same, when controlling the millimeter wave radiation array
  • the millimeter wave beams can be directed to the millimeter wave radiation array 13 Scanning within ⁇ 22.5 degrees of the azimuth plane.
  • the millimeter wave feeding network 3 includes a millimeter wave rotating joint 31 and eight millimeter wave power dividing networks 32, and the millimeter wave feeding network 3 is disposed on the bottom surface of the regular octagonal cylinder, and each millimeter wave power dividing network 32 is located at the positive eight
  • the millimeter wave radiation array 13 on each side of the prismatic cylinder is connected, and after the millimeter wave signal is fed into the millimeter wave rotary joint 31, the steering of the millimeter wave rotary joint 31 is adjusted, and the output end thereof is connected to one of the millimeter wave power division networks 32.
  • the millimeter wave signal is sent to the connected millimeter wave power division network 32, and is fed into the millimeter wave radiation array 13 connected to the millimeter wave power division network 32 via the millimeter wave power division network 32 to realize the millimeter wave beam at the millimeter wave.
  • the radiation in the direction of the radiation array 13 is matched with the four millimeter wave phase shifters 134 on the millimeter wave radiation array 13, so that the millimeter wave beam is scanned within ⁇ 22.5 degrees of the side of the regular octagonal cylinder, and the millimeter wave rotary joint 31 is rotated.
  • the millimeter wave beam can be switched in the range of 8 ⁇ 22.5 degrees, and the omnidirectional scanning of the millimeter wave beam at 360° of the azimuth plane is realized.
  • the frequency band selection of the antenna is enhanced by using the millimeter wave radiation array 13 and the microwave radiation array 11, and the selection of the operating frequency band of the microwave millimeter wave dual frequency antenna is expanded.
  • the dual-frequency sub-array antenna 1 on each side of the regular polygonal cylinder, the gain of the antenna in a single direction and the anti-interference are increased.

Abstract

一种微波毫米波双频天线。该天线包括:多个双频子阵列天线,且多个双频子阵列天线呈环形设置围成正多边形柱体形状,还包括分别位于围成的的正多边形柱体的两个端面上的毫米波馈电网络及微波馈电网络;其中,每个双频子阵列天线包括:金属板,以及层叠在金属板上的第二介质层、毫米波辐射阵列、第一介质层及微波辐射阵列,且微波辐射阵列与微波馈电网络连接,毫米波辐射阵列与毫米波馈电网络连接。通过采用毫米波辐射阵列及微波辐射阵列增强了天线的频段选择,扩大了天线的工作频段。

Description

一种微波毫米波双频天线
本申请要求在2015年08月21日提交中国专利局、申请号为201510520920.0、发明名称为“一种微波毫米波双频天线”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及天线领域,尤其是涉及一种微波毫米波双频天线。
背景技术
微带天线由于厚度小、易于集成,且成本低,加工制作容易,在微波毫米波领域得到了大量应用。
随着通信技术的不断发展,对双频段微带天线的应用需求不断增大,特别是随着微波毫米波技术在无线通信高速数据回传业务中的应用,需要实现多个数据结点之间的点对点通信,希望天线波束能够在空间实现全向扫描,因此,需要设计毫米波与微波频段的双频全向扫描天线。
现有的一种采用圆周电扫描的全向微带天线,包括上安装盘、反射板、微带天线、支撑柱、天线罩、下安装盘、底封板、电子开关,反射板共8件,通过上安装盘、下安装盘和底封板围成正八面体,微带天线共8件,通过支撑柱安装在反射板围成的正八面体外侧,每块微带天线与对应的反射板间距为λ/4。反射板表面光洁度很高,可以将微带天线向内辐射的能量全部向外反射。天线罩设置在微带天线外侧,电子开关安装在下安装盘上,电子开关通过同轴电缆线与8个微带天线相连接,使8个微带天线中的每相邻两微带天线在3dB相交,形成8个双波束分时按序轮流工作,向外辐射发射能量,并接收目标回波信号能量,实现天线360°圆周扫描。
该技术方案中,8个微带天线中的每相邻两个微带天线在3dB相交,每个微带天线波束宽度达到45度,天线在单个方向上的增益低,不利于远距离 通信。同时,每个微带天线不带有扫描功能,微带天线在±22.5度范围内实现3dB覆盖,使天线抗干扰能力弱。另外,该天线工作在单一频段。
现有的另一种毫米波360°全向扫描介质柱透镜天线,包括三个介质柱透镜、三个扫描范围分别为120°的馈源天线阵列和四个金属圆盘;四个金属圆盘间分别同轴安装有一个介质柱透镜,相邻两个金属圆盘边缘中间处分别安装一个所述馈源天线阵列,所述三个馈源天线阵列在水平投影面上两两相差120°,所述每一个馈源天线阵列的相位中心平面与各自的介质柱透镜的焦平面重合。天线在水平方向实现了360°全向扫描;三个介质柱透镜天线之间有金属圆盘形平行板相隔,各个均匀介质柱透镜的扫描不受其它两个透镜的干扰,因此每层柱透镜天线的扫描波束完全一致;可以方便地与印刷集成电路连接。
该技术方案中,采用介质柱透镜作为天线主体,使天线重量大。同时,天线扫描时,每一个扫描波束对应着馈源天线阵列上的一个单元,当需要的扫描波束较多时,馈源天线阵列的单元数多,馈电网络复杂。另外,该天线也仅工作在毫米波频段。
发明内容
本发明提供了一种微波毫米波双频天线,用以扩大天线工作频带。
第一方面,提供了一种微波毫米波双频天线,该天线包括:多个双频子阵列天线,且所述多个双频子阵列天线呈环形设置围成正多边形柱体形状,还包括分别位于所述围成的的正多边形柱体的两个端面上的毫米波馈电网络及微波馈电网络;其中,
每个双频子阵列天线包括:金属板,以及沿远离所述围成的正多边形柱体侧面的方向层叠在所述金属板上的第二介质层、毫米波辐射阵列、第一介质层及微波辐射阵列,且所述微波辐射阵列与所述微波馈电网络连接,所述毫米波辐射阵列与所述毫米波馈电网络连接。
结合上述第一方面,在第一种可能的实现方式中,所述微波辐射阵列包括:多个微波线性阵列,每个微波线性阵列中的微带馈线上设置有微波移相 器,且每个微带馈线的同侧等间距设置有多个微波辐射单元。
结合上述第一方面的第一种可能的实现方式,在第二种可能的实现方式中,所述多个微波线性阵列呈阵列方式排列。
结合上述第一方面的第一种可能的实现方式,在第三种可能的实现方式中,所述微波线性阵列的个数为4个、8个或16个。
结合上述第一方面的第一种可能的实现方式,在第四种可能的实现方式中,所述微波馈电网络包括多个微波开关以及与每个微波开关对应的微带功分网络,且所述微带功分网络与所述微波辐射阵列一一对应连接。
结合上述第一方面的第四种可能的实现方式,在第五种可能的实现方式中,所述微带馈线的馈电口位于所述微波辐射阵列上靠近所述微波馈电网络的一端。
结合上述第一方面、第一方面的第一种可能的实现方式、第一方面的第二种可能的实现方式、第一方面的第三种可能的实现方式、第一方面的第四种可能的实现方式、第一方面的第五种可能的实现方式,在第六种可能的实现方式中,所述毫米波辐射阵列包括:多个阵列排列的毫米波线性阵列,且每个毫米波线性阵列连接有毫米波波导微带转换,所述毫米波波导微带转换的输出微带线上设置有毫米波移相器,所述输出微带线的同一侧还设置有多个四贴片毫米波辐射单元;
在所述输出微带线的另一侧具有其他输出微带线时,该输出微带线的另一侧设置有多个两贴片毫米波辐射单元,且每个两贴片毫米波辐射单元位于与其相邻的一个输出微带线上的两个相邻的四贴片毫米波辐射单元之间。
结合上述第一方面的第六种可能的实现方式,在第七种可能的实现方式中,所述毫米波馈电网络包括毫米波旋转关节以及与每个毫米波旋转关节连接的毫米波功分网络,且所述毫米波功分网络与所述毫米波辐射阵列一一对应连接。
结合上述第一方面,在第八种可能的实现方式中,所述毫米波波导微带转换位于所述毫米波辐射阵列上靠近所述毫米波馈电网络的一端。
结合上述第一方面、第一方面的第一种可能的实现方式、第一方面的第二种可能的实现方式、第一方面的第三种可能的实现方式、第一方面的第四种可能的实现方式、第一方面的第五种可能的实现方式,在第九种可能的实现方式中,还包括支撑座,所述多个双频子阵列天线环绕设置在所述支撑座的侧面并围成所述正多边形柱体形状,所述毫米波馈电网络及微波馈电网络分别设置在所述支撑座的两个端面。
根据第一方面提供的微波毫米波双频天线,通过采用毫米波辐射阵列及微波辐射阵列增强了天线的频段选择,扩大了天线的工作频段。
附图说明
图1为本发明实施例提供的微波毫米波双频天线的立体图;
图2为本发明实施例提供的微波毫米波双频天线的双频子阵列天线的结构示意图;
图3为本发明实施例提供的微波毫米波双频天线的微波辐射阵列的结构示意图;
图4为本发明实施例提供的微波毫米波双频天线的毫米波辐射阵列的结构示意图;
图5为本发明实施例提供的微波毫米波双频天线的微波馈电网络的结构示意图;
图6为本发明实施例提供的微波毫米波双频天线的毫米波馈电网络的结构示意图。
附图标记:
1-双频子阵列天线     11-微波辐射阵列      111-微波线性阵列
112-微带馈线         113-微波移相器       114-微波辐射单元
12-第一介质层        13-毫米波辐射阵列    131-毫米波线性阵列
132-毫米波波导微带转换   133-输出微带线    134-毫米波移相器
135-四贴片毫米波辐射单元     136-两贴片毫米波辐射单元
14-第二介质层         15-金属板          2-微波馈电网络
21-微波开关           22-微带功分网络      3-毫米波馈电网络
31-毫米波旋转关节     32-毫米波功分网络   4-支撑座
具体实施方式
以下结合附图对本发明的具体实施例进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
如图1、图2及图6所示,图1示出了本发明实施例提供的微波毫米波双频天线的结构示意图,图2示出了本发明实施例提供的双频子阵列天线的结构示意图;图6为本发明实施例提供的微波毫米波双频天线的毫米波馈电网络的结构示意图。
本发明实施例提供了一种微波毫米波双频天线,该天线包括:多个双频子阵列天线1,且多个双频子阵列天线1成环形设置围成正多边形柱体形状,还包括分别位于围成的正多边形柱体的两个端面上的毫米波馈电网络3及微波馈电网络2;其中,
每个双频子阵列天线1包括:金属板15,以及沿远离围成的正多边形柱体侧面的方向层叠在金属板15上的第二介质层14、毫米波辐射阵列13、第一介质层12及微波辐射阵列11,且微波辐射阵列11与微波馈电网络2连接,毫米波辐射阵列13与毫米波馈电网络3连接。
在上述实施例中,通过采用毫米波辐射阵列13及微波辐射阵列11增强了天线的频段选择,扩大了微波毫米波双频天线的工作频段的选择。
为了方便对本发明实施例提供的天线的结构及工作原理,下面结合具体的附图以及实施例对其进行详细的说明。
如图1所示,为了本发明实施例提供的天线的设置,在本实施例中提供了一个支撑座4,如图1所示,所述多个双频子阵列天线1环绕设置在所述支撑座4的侧面并围成所述正多边形柱体形状,所述毫米波馈电网络3及微波馈电网络2分别设置在所述支撑座4的两个端面。在具体选择时,支撑座4 可以选择不同的形状,如:圆形柱、正多边形柱体等。
继续参考图1,本实施例提供的支撑座4为正多边形柱体,该正多变形柱体为直棱柱,且直棱柱的端面为正多边形,且该正多边形的边数可以根据需要而定,如8、16、64个等。为了方便描述,本实施例中的正多边形柱体的端面为正八边形,即该正多边形柱体为正八边形柱体。该天线包括设置在正八边形柱体的每个侧面的双频子阵列天线1、分别设置在两个端面的微波馈电网络2及毫米波馈电网络3,其中,双频子阵列天线1为五层结构,如图2所示,具体为三层金属与两层介质间隔放置,从外到内依次为微波辐射阵列11、第一介质层12、毫米波辐射阵列13、第二介质层14和金属板15,其中,微波辐射阵列11及毫米波辐射阵列13分别设置在双频子阵列天线1的金属层上,在具体制作时,采用印刷电路板的制作方式制作,且在双频子阵列天线1在固定在正八边形柱体的侧面时,微波辐射阵列11向外,金属板15向内。
如图3所示,图3示出了微波辐射阵列11的结构示意图。该微波辐射阵列11包括多个微波线性阵列111,每个微波线性阵列111中的微带馈线112上设置有微波移相器113,且每个微带馈线112的同侧等间距设置有多个微波辐射单元114,且多个微波线性阵列111呈阵列方式排列。具体的,微波辐射阵列11设置在双频子阵列天线1的顶层金属层(最外层金属层)上,微波辐射阵列11为多个垂直方向的串馈线阵(微波线性阵列111)组成,每个线阵的同侧排布有微波辐射单元114,每个线阵的微带馈电口设置于阵列顶部,以图2所示的方向为参考方向,即微带馈线112的馈电口位于正多边形柱体侧面上靠近顶面的一端,在每个线阵的微带馈线112上设置有微波移相器113。
其中,微波线性阵列111的个数为4个、8个或16个,具体数目由微波扫描波束在方位面的波束宽度和微波波束增益确定。继续参考图3,图3示出了微波线性阵列111采用4个的结构,4个微波线性阵列111沿水平方向(以图3所示的方向为参考方向)上排列,在其采用8个或16个时,在采用4个微波线性阵列111的结构上在水平方向继续排列。
如图5所示,图5示出了微波馈电网络2的结构示意图,其中,微波馈 电网络2位于正多边形柱体的顶面,且微波馈电网络2包括多个微波开关21以及与每个微波开关21对应的微带功分网络22,且微带功分网络22与微波辐射阵列11一一对应连接。其中,控制微波开关网络的微波开关21可以将微波开关网络与其中一路微带功分网络22连通,而与其余路微带功分网络22断开,实现微波信号在微带功分网络22之间切换,每个微带功分网络22均与对应侧面的微波辐射阵列11的微带馈电口连接。在本实施例中采用8个微波线性阵列111时,微波馈电网络2包括8个微波开关21和8个微带功分网络22,微波馈电网络2设置于正八边形柱体的顶面,每个微带功分网络22分别与位于正八边形柱体每个侧面的微波辐射阵列11相连。
如图4所示,图4示出了本发明实施例提供的毫米波辐射阵列13,该毫米波辐射阵列13包括:多个阵列排列的毫米波线性阵列131,且每个毫米波线性阵列131连接有毫米波波导微带转换132,毫米波波导微带转换132的输出微带线133上设置有毫米波移相器134,输出微带线133的同一侧还设置有多个四贴片毫米波辐射单元135;在输出微带线133的另一侧具有其他输出微带线133时,该输出微带线133的另一侧设置有多个两贴片毫米波辐射单元136,且每个两贴片毫米波辐射单元136位于与其相邻的一个输出微带线133上的两个相邻的四贴片毫米波辐射单元135之间。具体的,毫米波辐射阵列13设置在双频子阵列天线1的中间金属层,该毫米波辐射阵列13为多个垂直方向的毫米波串馈线阵(即毫米波线性阵列131)组成,每个毫米波串馈线阵的馈电微带线左右交错排布有毫米波辐射单元,相邻两个毫米波串馈线阵的毫米波辐射单元交指排列,每个毫米波串馈线阵由波导微带转换馈电口馈电,且设置于阵列底部,即如图4所示,以图4所示的毫米波辐射阵列13的放置方向为参考方向,毫米波波导微带转换132设置在正多边形柱体侧面上靠近底面的一端。此外,在每个线阵的微带馈线112上还设置有毫米波移相器134。
其中,毫米波辐射阵列13所包含的毫米波线性阵列131的数目可以是4、8、16等,具体数目由毫米波扫描波束在方位面的波束宽度和毫米波波束增益确定。如图4所示,图4示出了毫米波线性阵列131采用4个的结构,4个毫 米波线性阵列131沿水平方向(以图4所示的方向为参考方向)上排列,在其采用8个或16个时,在采用4个毫米波线性阵列131的结构上在水平方向继续排列。
如图6所示,图6示出了毫米波馈电网络3的结构示意图。该毫米波馈电网络3包括毫米波旋转关节31以及与每个毫米波旋转关节31连接的毫米波功分网络32,且毫米波功分网络31与毫米波辐射阵列13一一对应连接。具体的,毫米波馈电网络3设置在正多边形柱体底部,即毫米波馈电网络3位于正多边形柱体的底面。在具体使用时,转动毫米波旋转关节31可以将毫米波旋转关节31与其中一路毫米波功分网络32连通,而与其余路毫米波功分网络32断开,实现毫米波信号在毫米波功分网络32之间切换,每个毫米波功分网络32与对应侧面的毫米波辐射阵列13的波导微带转换馈电口连接。
通过上述描述可以看出,本实施例提供的微波毫米波双频天线中,微波毫米波双频段上下分层馈电,微波馈电网络2为微波开关21切换网络,位于多面柱体天线顶部,毫米波馈电网络3为毫米波旋转关节31切换网络,位于多面柱体天线底部,采用上述结构时,微波毫米波馈电网络3上下分离便于结构布局,微波开关21切换网络结构简单、技术成熟,毫米波旋转关节31切换网络损耗小;
此外,微波毫米波双频子阵列中的微波毫米波辐射阵列的分层串馈线阵布局,微波辐射阵列11位于顶层,垂直方向为串馈线阵,微波辐射单元114在馈电微带线同侧排布,从顶部由微带馈电网络馈电,毫米波辐射阵列13位于中间层,垂直方向为串馈线阵,毫米波辐射单元在馈电微带线左右交错排布,从底部由毫米波馈电网络3馈电,在采用上述结构时,微波毫米波辐射阵列13分层布局便于微波毫米波频段馈电网络设计,垂直方向串馈线阵可以利用较少的移相器实现水平方向的电扫描,毫米波辐射单元在馈线左右交错排布可以降低俯仰面副瓣电平。
为了方便对上述微波毫米波双频天线的理解,下面结合微波毫米波双频天线的结构对其工作原理进行详细的说明。
一并参考图1、图2、图3及图5,微波辐射阵列11包括4个微波线性阵列111,微波线性阵列111为竖直方向的线阵,每个微波线性阵列111的微带馈线112上均设置有微波移相器113,微带馈线112的同侧等间距设置有8个微波辐射单元114,4个微波线性阵列111在方位面内等间距布置,在方位面内组成阵列,当控制微波辐射阵列11上的4个微波移相器113,使4个微波移相器113的插入相移相同时,可以使微波波束指向微波辐射阵列11的法向,当控制微波辐射阵列11上的4个微波移相器113,使4个微波移相器113的插入相移从左至右依次增大或依次减小时,可以使微波波束指向在微波辐射阵列11的方位面±22.5度范围内扫描。
微波馈电网络2包括8个微波开关21和8个微带功分网络22,微波馈电网络2设置于正八边形柱体的顶面,每个微带功分网络22分别与位于正八边形柱体每个侧面的微波辐射阵列11相连,微波信号馈入微波馈电网络2后,控制8个微波开关21的开与关,使其中1路关闭,其余7路打开,将微波信号送入微波开关21打开一路所连接的微带功分网络22,经微带功分网络22后馈入该微带功分网络22所连接的微波辐射阵列11,实现微波波束在该微波辐射阵列11方向的辐射,配合该微波辐射阵列11上的4个微波移相器113,实现微波波束在正八边形柱体该侧面±22.5度范围内扫描,切换8个微波开关21,即可实现微波波束在8个±22.5度范围的切换,组合实现微波波束在方位面360°的全向扫描。
一并参考图4及图6,毫米波辐射阵列13包括4个毫米波线性阵列131,毫米波线性阵列131为竖直方向的线阵,每个毫米波线性阵列131通过毫米波波导微带转换132馈电,并在毫米波波导微带转换132的输出微带线133上设置有毫米波移相器134,所有位于中间及最左侧的毫米波线性阵列131的微带馈线112左侧等间距设置有8个四贴片毫米波辐射单元135,右侧等间距设置有7个两贴片毫米波辐射单元136,最右侧的毫米波线性阵列131的微带馈线112左侧等间距设置有8个四贴片毫米波辐射单元135,4个毫米波线性阵列131在方位面内等间距布置,在方位面内组成线阵,当控制毫米波辐射 阵列13上的4个毫米波移相器134,使4个毫米波移相器134的插入相移相同时,可以使毫米波波束指向毫米波辐射阵列13的法向,当控制毫米波辐射阵列13上的4个毫米波移相器134,使4个毫米波移相器134的插入相移从左至右依次增大或依次减小时,可以使毫米波波束指向在毫米波辐射阵列13的方位面±22.5度范围内扫描。
毫米波馈电网络3包括毫米波旋转关节31和8个毫米波功分网络32,毫米波馈电网络3设置于正八边形柱体的底面,每个毫米波功分网络32分别与位于正八边形柱体每个侧面的毫米波辐射阵列13相连,毫米波信号馈入毫米波旋转关节31后,调节毫米波旋转关节31的转向,使其输出端连接至其中一个毫米波功分网络32,将毫米波信号送入连接的毫米波功分网络32,经毫米波功分网络32后馈入该毫米波功分网络32所连接的毫米波辐射阵列13,实现毫米波波束在该毫米波辐射阵列13方向的辐射,配合该毫米波辐射阵列13上的4个毫米波移相器134,实现毫米波波束在正八边形柱体该侧面±22.5度范围内扫描,转动毫米波旋转关节31,即可实现毫米波波束在8个±22.5度范围的切换,组合实现毫米波波束在方位面360°的全向扫描。
通过上述描述可以看出,通过采用毫米波辐射阵列13及微波辐射阵列11增强了天线的频段选择,扩大了微波毫米波双频天线的工作频段的选择。同时,通过在正多边形柱体的每个侧面设置双频子阵列天线1,增大了天线在单个方向上的增益,以及抗干扰性。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (10)

  1. 一种微波毫米波双频天线,其特征在于,包括:多个双频子阵列天线,且所述多个双频子阵列天线呈环形设置围成正多边形柱体形状,还包括分别位于所述围成的的正多边形柱体的两个端面上的毫米波馈电网络及微波馈电网络;其中,
    每个双频子阵列天线包括:金属板,以及沿远离所述围成的正多边形柱体侧面的方向层叠在所述金属板上的第二介质层、毫米波辐射阵列、第一介质层及微波辐射阵列,且所述微波辐射阵列与所述微波馈电网络连接,所述毫米波辐射阵列与所述毫米波馈电网络连接。
  2. 如权利要求1所述的微波毫米波双频天线,其特征在于,所述微波辐射阵列包括:多个微波线性阵列,每个微波线性阵列中的微带馈线上设置有微波移相器,且每个微带馈线的同侧等间距设置有多个微波辐射单元。
  3. 如权利要求2所述的微波毫米波双频天线,其特征在于,所述多个微波线性阵列呈阵列方式排列。
  4. 如权利要求2所述的微波毫米波双频天线,其特征在于,所述微波线性阵列的个数为4个、8个或16个。
  5. 如权利要求2所述的微波毫米波双频天线,其特征在于,所述微波馈电网络包括多个微波开关以及与每个微波开关对应的微带功分网络,且所述微带功分网络与所述微波辐射阵列一一对应连接。
  6. 如权利要求5所述的微波毫米波双频天线,其特征在于,所述微带馈线的馈电口位于所述微波辐射阵列上靠近所述微波馈电网络的一端。
  7. 如权利要求1~6任一项所述的微波毫米波双频天线,其特征在于,所述毫米波辐射阵列包括:多个阵列排列的毫米波线性阵列,且每个毫米波线性阵列连接有毫米波波导微带转换,所述毫米波波导微带转换的输出微带线上设置有毫米波移相器,所述输出微带线的同一侧还设置有多个四贴片毫米波辐射单元;
    在所述输出微带线的另一侧具有其他输出微带线时,该输出微带线的另一侧设置有多个两贴片毫米波辐射单元,且每个两贴片毫米波辐射单元位于与其相邻的一个输出微带线上的两个相邻的四贴片毫米波辐射单元之间。
  8. 如权利要求7所述的微波毫米波双频天线,其特征在于,所述毫米波馈电网络包括毫米波旋转关节以及与每个毫米波旋转关节连接的毫米波功分网络,且所述毫米波功分网络与所述毫米波辐射阵列一一对应连接。
  9. 如权利要求8所述的微波毫米波双频天线,其特征在于,所述毫米波波导微带转换位于所述毫米波辐射阵列上靠近所述毫米波馈电网络的一端。
  10. 如权利要求1~6任一项所述的微波毫米波双频天线,其特征在于,还包括支撑座,所述多个双频子阵列天线环绕设置在所述支撑座的侧面并围成所述正多边形柱体形状,所述毫米波馈电网络及微波馈电网络分别设置在所述支撑座的两个端面。
PCT/CN2016/076362 2015-08-21 2016-03-15 一种微波毫米波双频天线 WO2017031980A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510520920.0 2015-08-21
CN201510520920.0A CN106469854B (zh) 2015-08-21 2015-08-21 一种微波毫米波双频天线

Publications (1)

Publication Number Publication Date
WO2017031980A1 true WO2017031980A1 (zh) 2017-03-02

Family

ID=58099420

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/076362 WO2017031980A1 (zh) 2015-08-21 2016-03-15 一种微波毫米波双频天线

Country Status (2)

Country Link
CN (1) CN106469854B (zh)
WO (1) WO2017031980A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107317107A (zh) * 2017-07-11 2017-11-03 深圳市鼎耀科技有限公司 抗干扰阵列集成天线
CN107819194A (zh) * 2017-11-30 2018-03-20 苏州优函信息科技有限公司 方向可重构共型机载天线、馈电网络及无人机
CN111123383A (zh) * 2019-12-25 2020-05-08 中国科学院上海微系统与信息技术研究所 一种稀疏阵列信号处理方法、装置、电路和成像系统
CN114142875A (zh) * 2021-11-08 2022-03-04 网络通信与安全紫金山实验室 一种毫米波相控阵发射组件及装置
CN114300837A (zh) * 2021-12-30 2022-04-08 青岛智慧蓝色海洋工程研究院有限公司 一种5g无人机天线
CN114914698A (zh) * 2022-05-30 2022-08-16 湖北汽车工业学院 一种覆层型双频毫米波超材料卦形微带天线的设计方法
CN116953610A (zh) * 2023-09-21 2023-10-27 国网浙江省电力有限公司信息通信分公司 一种无人机定位系统及方法
WO2023245849A1 (zh) * 2022-06-22 2023-12-28 上海海积信息科技股份有限公司 一种天线阵
WO2024040606A1 (zh) * 2022-08-26 2024-02-29 京东方科技集团股份有限公司 一种可调天线阵列及电子设备

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108054521B (zh) * 2017-12-11 2020-12-04 重庆工业职业技术学院 一种毫米波天线窗组
WO2019208362A1 (ja) * 2018-04-26 2019-10-31 株式会社村田製作所 アンテナモジュール
CN111276824B (zh) 2018-12-04 2023-04-28 荷兰移动驱动器公司 天线结构及具有该天线结构的无线通信装置
CN110534924B (zh) * 2019-08-16 2021-09-10 维沃移动通信有限公司 天线模组和电子设备
JP7318712B2 (ja) * 2019-08-19 2023-08-01 株式会社村田製作所 アンテナ装置及び通信装置
CN112928454B (zh) * 2021-02-01 2023-01-20 中信科移动通信技术股份有限公司 一种馈电网络切换装置及天线
CN113540827B (zh) * 2021-07-16 2023-05-05 中国工程物理研究院应用电子学研究所 一种全方位辐射的高功率微波系统
CN116845522A (zh) * 2022-03-23 2023-10-03 Oppo广东移动通信有限公司 一种天线模组以及电子设备
CN114759367B (zh) * 2022-06-14 2022-10-04 西安海天天线科技股份有限公司 一种多频人工介质多波束透镜天线及使用方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030085846A1 (en) * 2001-11-07 2003-05-08 Harris Corporation Multi-frequency band antenna and related methods
CN1909400A (zh) * 2006-08-07 2007-02-07 西安交通大学 一种基于正多面体智能天线装置的波束形成及切换方法
CN101064381A (zh) * 2006-04-24 2007-10-31 中国科学院空间科学与应用研究中心 一种用于无线电掩星探测的双频gps天线
CN201616508U (zh) * 2010-02-09 2010-10-27 陕西特恩电子科技有限公司 一种全向微带天线阵
CN102386484A (zh) * 2011-08-12 2012-03-21 西安天伟电子系统工程有限公司 一种采用圆周电扫描的全向微带天线
CN203826544U (zh) * 2014-04-23 2014-09-10 王洪洋 双频wifi套筒天线

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030085846A1 (en) * 2001-11-07 2003-05-08 Harris Corporation Multi-frequency band antenna and related methods
CN101064381A (zh) * 2006-04-24 2007-10-31 中国科学院空间科学与应用研究中心 一种用于无线电掩星探测的双频gps天线
CN1909400A (zh) * 2006-08-07 2007-02-07 西安交通大学 一种基于正多面体智能天线装置的波束形成及切换方法
CN201616508U (zh) * 2010-02-09 2010-10-27 陕西特恩电子科技有限公司 一种全向微带天线阵
CN102386484A (zh) * 2011-08-12 2012-03-21 西安天伟电子系统工程有限公司 一种采用圆周电扫描的全向微带天线
CN203826544U (zh) * 2014-04-23 2014-09-10 王洪洋 双频wifi套筒天线

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107317107B (zh) * 2017-07-11 2023-09-08 深圳市鼎耀科技有限公司 抗干扰阵列集成天线
CN107317107A (zh) * 2017-07-11 2017-11-03 深圳市鼎耀科技有限公司 抗干扰阵列集成天线
CN107819194A (zh) * 2017-11-30 2018-03-20 苏州优函信息科技有限公司 方向可重构共型机载天线、馈电网络及无人机
CN107819194B (zh) * 2017-11-30 2024-05-03 台州安奇灵智能科技有限公司 方向可重构共型机载天线、馈电网络及无人机
CN111123383A (zh) * 2019-12-25 2020-05-08 中国科学院上海微系统与信息技术研究所 一种稀疏阵列信号处理方法、装置、电路和成像系统
CN114142875A (zh) * 2021-11-08 2022-03-04 网络通信与安全紫金山实验室 一种毫米波相控阵发射组件及装置
CN114300837B (zh) * 2021-12-30 2024-02-02 青岛智慧蓝色海洋工程研究院有限公司 一种5g无人机天线
CN114300837A (zh) * 2021-12-30 2022-04-08 青岛智慧蓝色海洋工程研究院有限公司 一种5g无人机天线
CN114914698A (zh) * 2022-05-30 2022-08-16 湖北汽车工业学院 一种覆层型双频毫米波超材料卦形微带天线的设计方法
CN114914698B (zh) * 2022-05-30 2024-04-26 湖北汽车工业学院 一种覆层型双频毫米波超材料卦形微带天线的设计方法
WO2023245849A1 (zh) * 2022-06-22 2023-12-28 上海海积信息科技股份有限公司 一种天线阵
WO2024040606A1 (zh) * 2022-08-26 2024-02-29 京东方科技集团股份有限公司 一种可调天线阵列及电子设备
CN116953610A (zh) * 2023-09-21 2023-10-27 国网浙江省电力有限公司信息通信分公司 一种无人机定位系统及方法
CN116953610B (zh) * 2023-09-21 2023-12-26 国网浙江省电力有限公司信息通信分公司 一种无人机定位系统及方法

Also Published As

Publication number Publication date
CN106469854B (zh) 2020-02-14
CN106469854A (zh) 2017-03-01

Similar Documents

Publication Publication Date Title
WO2017031980A1 (zh) 一种微波毫米波双频天线
CN109742556B (zh) 一种宽带圆极化毫米波多馈源多波束透镜天线
US10038240B2 (en) Wide band reconfigurable planar antenna with omnidirectional and directional radiation patterns
JP5969698B2 (ja) アンテナアレイ、アンテナ装置及び基地局
CN102122762B (zh) 毫米波360o全向扫描介质柱透镜天线
US11831084B2 (en) Dual-polarized antenna, antenna array, and communications device
US7636070B2 (en) Configurable and orientable antenna and corresponding base station
CN104137333B (zh) 天线元件以及对应的一维或二维天线阵列
WO2019034118A1 (zh) 基于人工介质圆柱透镜全向多波束天线
WO2018040141A1 (zh) 宽频三波束阵列天线
US20180145400A1 (en) Antenna
US11811141B2 (en) Active electronically scanned array system and method with optimized subarrays
US7123205B2 (en) Configurable omnidirectional antenna
Nahar et al. A Review of Design Consideration, Challenges and Technologies Used in 5G Antennas
US11374331B1 (en) Base station antenna including Fabrey-Perot cavities
WO2015133458A1 (ja) アレイアンテナ及びセクタアンテナ
CN109599665B (zh) 一种双极化阵列天线及其应用
US20220109237A1 (en) Method and apparatus for isolation enhancement and pattern improvement of high frequency sub-arrays in dense multi-band omni directional small cell antennas
Ahmed et al. Metasurface-Driven Beam Steering Antenna for Satellite Communications
Cao et al. A low-profile high-gain multi-beam antenna based on cylindrical metasurface Luneburg lens
CN212277394U (zh) 一种阵列天线子阵、阵列天线模块及阵列天线
US11283195B2 (en) Fast rolloff antenna array face with heterogeneous antenna arrangement
WO2018068803A1 (en) A multi-beam bsa with horizontal and vertical sectorizations
Hunsicker et al. Integration of an X-band microstrip patch array and beamformer for a multifunction antenna array
TWI497829B (zh) 平面多磁扇輻射裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16838243

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16838243

Country of ref document: EP

Kind code of ref document: A1