WO2017031897A1 - 导光材、背光模块及显示设备 - Google Patents

导光材、背光模块及显示设备 Download PDF

Info

Publication number
WO2017031897A1
WO2017031897A1 PCT/CN2015/099434 CN2015099434W WO2017031897A1 WO 2017031897 A1 WO2017031897 A1 WO 2017031897A1 CN 2015099434 W CN2015099434 W CN 2015099434W WO 2017031897 A1 WO2017031897 A1 WO 2017031897A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
wavelength
substrate
microstructure
light guide
Prior art date
Application number
PCT/CN2015/099434
Other languages
English (en)
French (fr)
Inventor
戴永辉
陈蔚轩
Original Assignee
瑞仪光电(苏州)有限公司
瑞仪光电股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞仪光电(苏州)有限公司, 瑞仪光电股份有限公司 filed Critical 瑞仪光电(苏州)有限公司
Priority to US15/119,720 priority Critical patent/US10359558B2/en
Publication of WO2017031897A1 publication Critical patent/WO2017031897A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/004Scattering dots or dot-like elements, e.g. microbeads, scattering particles, nanoparticles
    • G02B6/0043Scattering dots or dot-like elements, e.g. microbeads, scattering particles, nanoparticles provided on the surface of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/00362-D arrangement of prisms, protrusions, indentations or roughened surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0051Diffusing sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0058Means for improving the coupling-out of light from the light guide varying in density, size, shape or depth along the light guide
    • G02B6/0061Means for improving the coupling-out of light from the light guide varying in density, size, shape or depth along the light guide to provide homogeneous light output intensity
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0065Manufacturing aspects; Material aspects

Definitions

  • the invention relates to a light guiding component and an application thereof, in particular to a light guiding material, a backlight module and a display device.
  • the backlight module mainly includes a light source and a light guide plate, and the light generated by the light source directly enters the light guide plate.
  • light generated by the light source enters the light guide plate
  • light of a shorter wavelength for example, blue light
  • the amount of light of the shorter wavelength light emitted from the light exit surface of the light guide plate is less, which causes the light exit surface of the light guide plate to generate a longer wavelength from the portion farther from the light source.
  • the color shift phenomenon of light (such as yellow light).
  • one of the objects of the present invention is to provide a light guide material and a backlight module, which can improve the color shift problem of the backlight module.
  • the light guide material includes a substrate and a first microstructure layer.
  • the substrate has a first major surface.
  • the first microstructure layer is disposed on the first major surface.
  • the refractive index of the substrate to the first light wavelength is greater than the refractive index of the first microstructure layer to the first light wavelength
  • the refractive index of the substrate to the second light wavelength is smaller than the first microstructure layer to the second light wavelength Refractive index.
  • the first light wavelength is less than the second light wavelength.
  • the first light wavelength is less than or equal to 500 nm
  • the second light wavelength is greater than 500 nm
  • the first light wavelength ranges from 400 nm to 500 nm, includes endpoint values of 400 nm and 500 nm
  • the second light wavelength ranges from 500 nm to 700 nm, including an endpoint value of 700 nm, excluding The endpoint value is 500 nm.
  • the absolute value of the difference between the refractive index of the substrate to the first light wavelength and the refractive index of the first microstructure layer to the first light wavelength is less than or equal to 0.5.
  • the absolute value of the difference between the refractive index of the substrate for the second light wavelength and the refractive index of the first microstructure layer to the second light wavelength is less than or equal to 0.5.
  • the substrate further includes a light incident surface that connects the first major surface.
  • the first microstructure layer includes a plurality of first microstructures. There is a spacing between adjacent first microstructures, and these spacings decrease as the distance between the first microstructure and the entrance surface increases.
  • the first microstructure is a dot structure.
  • the substrate further includes a light incident surface that connects the first major surface.
  • the first microstructures are strip-like structures, and the strip-like structures extend in a direction parallel to the light-incident surface.
  • the substrate further includes a light incident surface that connects the first major surface.
  • the first microstructure layer includes a plurality of first microstructures, and the size of the first microstructures increases as the distance between the first microstructure and the light incident surface increases.
  • the first microstructure is a dot structure.
  • the substrate further includes a light incident surface that connects the first major surface.
  • the first microstructures are strip-shaped structures, and the strip structures extend in a direction parallel to the light-incident surface.
  • the light guiding material further includes a second microstructure layer.
  • the second microstructure layer is disposed on the second major surface of the substrate.
  • the second major surface is opposite the first major surface.
  • the refractive index of the substrate to the first wavelength of light is greater than the second
  • the refractive index of the microstructure layer to the first wavelength of light and the refractive index of the substrate to the second wavelength of light is less than the refractive index of the second microstructure layer to the second wavelength of light.
  • the second microstructure layer includes a plurality of dot structures.
  • the substrate further includes a light incident surface connecting the first major surface and the second major surface.
  • the second microstructure layer includes a plurality of second microstructures, and the second microstructures are strip structures.
  • the strip structures extend in a direction perpendicular to the light incident surface.
  • a backlight module is further proposed.
  • the backlight module includes the above light guide material and a light source.
  • the light source is used to provide light into the light guide.
  • a display device is further proposed.
  • This display device includes the aforementioned backlight module and a display panel.
  • the display panel is located in front of the light guide of the backlight module.
  • the light guide of the present invention mainly comprises a substrate and a microstructure layer of different materials, and the substrate and the microstructure layer have different refractive indices for different wavelengths.
  • the traveling distance of the light of the shorter wavelength can be increased, and the traveling distance of the light of the longer wavelength can be reduced, so as to balance and adjust the color of the light of the entire backlight module, thereby solving the problem of color shift.
  • FIG. 1 is a schematic view showing an apparatus of a backlight module according to a first embodiment of the present invention
  • FIG. 2 is a schematic view showing a relationship between a refractive index of a first microstructure layer and a substrate and a wavelength of light according to a first embodiment of the present invention
  • FIG. 3 is a schematic diagram showing a light travel path of a backlight module according to a first embodiment of the present invention
  • FIG. 4 is a schematic view showing a manufacturing process of a light guiding material according to a first embodiment of the present invention
  • 5A to 5E are schematic views respectively showing a first micro-structure according to different arrangements of the first embodiment of the present invention.
  • FIG. 6 is a schematic diagram showing an apparatus of a backlight module according to a second embodiment of the present invention.
  • FIG. 7 is a schematic diagram showing an apparatus of a backlight module according to a third embodiment of the present invention.
  • FIG. 8 is a view showing a relationship between a refractive index of a first microstructure layer, a second microstructure layer, and a substrate, and a wavelength of light according to a third embodiment of the present invention
  • FIG. 9 is a schematic view showing an apparatus of a backlight module according to a fourth embodiment of the present invention.
  • FIG. 10 is a schematic diagram showing an apparatus of a backlight module according to a fifth embodiment of the present invention.
  • FIG. 11 is a schematic view showing an apparatus of a backlight module according to a sixth embodiment of the present invention.
  • FIG. 12 is a schematic diagram showing an apparatus of a display device according to an embodiment of the present invention.
  • the backlight module 100 of the present embodiment mainly includes a light guide member 120 and a light source 140.
  • the light source 140 is mainly used to provide light into the light guide material 120, and the light guide material 120 can refract the light provided by the reflective light source 140, and enhance the optical brightness of the backlight module 100, and can make the light output color of the backlight module 100 uniform. .
  • the light guide material 120 of the present invention adopts a light guide film having the same thickness or less thickness as the light source 140 to conform to the design trend of the thinned backlight module. If there is no extreme thinning like the backlight module in the technical field of lighting fixtures In this case, the light guide member 120 can be formed by injection molding or the like using a light guide plate having a large thickness. Therefore, the description of the light guide member 120 in the present invention is not limited to the film material, and other plate materials, sheets, and the like are also within the scope of the present invention.
  • the light guide material 120 primarily includes a substrate 122 and a first microstructure layer 124 disposed on the substrate 122 .
  • the substrate 122 mainly includes a first major surface 122a, a second major surface 122b, and a light incident surface 122c.
  • the light incident surface 122c connects the first main surface 122a and the second main surface 122b, and the first main surface 122a is opposite to the second main surface 122b.
  • the first major surface 122a is a reflective surface of the light guide material 120
  • the second major surface 122b is a light exit surface of the light guide material 120.
  • the first microstructure layer 124 is disposed on the first major surface 122a of the light guide material 120.
  • FIG. 2 is a schematic view showing the relationship between the refractive index of the first microstructure layer and the substrate and the wavelength of the light according to the first embodiment of the present invention
  • FIG. 3 is a view showing the relationship according to the present invention.
  • the material of the substrate 122 is different from the material of the first microstructure layer 124.
  • the broken line A1 in the figure represents the relationship between the refractive index of the substrate and the wavelength of the light
  • the three solid lines A2, A3 and A4 in the figure represent the relationship between the refractive index of the first microstructure layer and the wavelength of the light.
  • the refractive index of the substrate 122 for the first wavelength of light is greater than the refractive index of the first microstructure layer 124 for the first wavelength of light.
  • the refractive index of the substrate 122 for the second wavelength of light is less than the refractive index of the first microstructure layer 124 for the second wavelength of light.
  • the first light wavelength is less than the second light wavelength.
  • the absolute value of the difference between the refractive index of the substrate 122 for the first wavelength of light and the refractive index of the first microstructure layer 124 for the first wavelength of light ⁇ n1 Equal to 0.5.
  • the absolute value of the difference ⁇ n2 between the refractive index of the substrate 122 for the second wavelength of light and the refractive index of the first microstructure layer 124 for the second wavelength of light is equal to 0.5.
  • the absolute values of ⁇ n1 and ⁇ n2 are less than 0.5.
  • the first wavelength of the light emitted by the source 140 is greater than the refractive index of the first microstructure layer 124 to the first wavelength of light. Therefore, when the first wavelength light L1 enters the first microstructure layer 124, the degree of deflection is increased because the angle of refraction becomes larger, and may travel to the substrate 122 after traveling to a greater distance in the first microstructure layer 124. Then, it is emitted from the second main surface 122b of the substrate 122.
  • the second wavelength light L2 of the light emitted by the light source 140 is on the substrate.
  • the angle of refraction ⁇ 3 entering the first microstructured layer 124 is less than the angle of incidence ⁇ 4. Therefore, when the second wavelength ray L2 enters the first microstructure layer 124, the degree of deflection is reduced because the angle of refraction becomes smaller, so the distance traveled in the first microstructure layer 124 is shorter than the first wavelength ray L1, and then The substrate 122 is again introduced and is ejected from the second major surface 122b of the substrate 122.
  • the design of the substrate 122 and the first microstructure layer 124 having different refractive indices for different wavelengths can control the refraction angle and the travel distance of the first wavelength light L1 and the second wavelength light L2 to avoid the backlight module. 100 produces a color shift.
  • the first wavelength light L1 and the second wavelength light L2 may be complementary color light, for example, the first wavelength light L1 is blue light, and the second wavelength light L2 is yellow light.
  • the light generated by the light source 140 enters the light guide plate, and when a shorter wavelength light (for example, blue light) propagates in the light guide plate, As the propagation distance increases, the light of the shorter wavelength is absorbed more, and the light exiting surface of the light guide plate appears to be biased toward the longer wavelength light color (for example, yellow light) in a portion away from the light source 140.
  • a shorter wavelength light for example, blue light
  • the design of the substrate 122 and the first microstructure layer 124 having different refractive indices for different wavelengths by the light guiding material 120 of the present embodiment can simultaneously increase the traveling distance of light of a shorter wavelength (for example, blue light) and The traveling distance of the longer wavelength light (for example, yellow light) is reduced to achieve the purpose of balancing and harmonizing the light output color of the entire backlight module 100, thereby solving the problem of color shift.
  • a shorter wavelength for example, blue light
  • the traveling distance of the longer wavelength light for example, yellow light
  • the first wavelength of light ranges from 400 to 500 nm and includes endpoint values of 400 nm and 500 nm.
  • the second wavelength of light ranges between 500 and 700 nm and includes an endpoint value of 700 nm, but does not include an endpoint value of 500 nm.
  • the first microstructure layer 124 of the light guide material 120 is coated on the first main surface 122a of the substrate 122 by directly applying UV-cured acrylate resin, and then irradiated with ultraviolet light.
  • the UV glue is formed by curing. That is, the first microstructure layer 124 can be a coating having a thickness that is extremely thin relative to the substrate 122, which can meet the design requirements of the thinned backlight module.
  • FIG. 5A to FIG. 5E are respectively schematic diagrams showing a first micro-structure according to different arrangements according to the first embodiment of the present invention.
  • the first microstructure layer 124 includes a plurality of first microstructures 124a, and the first microstructures 124a are point structures.
  • each of the first microstructures 124a on the light guide 120 has the same size and is arranged to form a plurality of microstructure columns.
  • each microstructure column is substantially parallel to the edge of the light incident surface 122c of the light guide material 120.
  • the arrangement of the first microstructures 124a is relatively thin, and the arrangement of the first microstructures 124a is denser in the microstructure columns farther away from the light source 140. That is, the arrangement density of the microstructures may increase as the distance between the microstructure columns and the light source 140 increases. Further, in the embodiment shown in Fig. 5A, the distance between each of the microstructure columns is the same. In other embodiments, as shown in FIG. 5B, the first microstructures 124a may also be randomly arranged, and the adjacent first microstructures 124a have a spacing between the first microstructures 124a and the light source 140. (or the light incident surface 122c) the distance increases and decreases.
  • the size of the first microstructure 124a may increase as the distance between the first microstructure 124a and the light source 140 (or light incident surface 122c) increases.
  • the first micro-junction The size of the structure 124a is small, while in the column of microstructures that are further from the source 140, the size of the first microstructure 124a is larger.
  • each of the first microstructures 124a is the same size, but the distance between each of the microstructure columns becomes smaller as it moves away from the light source 140.
  • FIG. 5C in the microstructure column closer to the light source 140, the first micro-junction The size of the structure 124a is small, while in the column of microstructures that are further from the source 140, the size of the first microstructure 124a is larger.
  • each of the first microstructures 124a is the same size, but the distance between each of the microstructure columns becomes smaller as it moves away from the light source 140.
  • each of the first microstructures 124a has the same size, and the microstructure columns adjacent to the light source 140 are divergently arranged along the light emitted by the light source 140. Thereby, the light emission can be made more uniform by the first microstructures 124a of different configurations.
  • FIG. 6 is a schematic diagram showing a device of a backlight module according to a second embodiment of the present invention.
  • the backlight module 200 of the present embodiment is substantially the same as the backlight module 100 described above, except that the light guide 220 of the backlight module 200 has a different structural design.
  • the light guide 220 includes a substrate 222 and a first microstructure layer 224.
  • the first microstructure layer 224 includes a plurality of first microstructures 224a, and the first microstructures 224a are V-shaped strip structures.
  • the extending direction of the first microstructure 224a is parallel to the extending direction of the light incident surface 222a of the substrate 222, thereby achieving the same effect as the first microstructure 124a. I will not repeat them here.
  • the backlight module 300 of the present embodiment is substantially the same as the backlight module 100 described above, except that the light guide material 320 of the backlight module 300 has a different structural design.
  • the light guide 320 includes a substrate 322, a first microstructure layer 324, and a second microstructure layer 326.
  • the substrate 322 has a first major surface 322a, a second major surface 322b, and a light incident surface 322c.
  • the first major surface 322a is opposite the second major surface 322b, and the light incident surface 322c connects the first major surface 322a and the second major surface 322b. Moreover, the first microstructure layer 324 and the second microstructure layer 326 are disposed on the first major surface 322a and the second major surface 322b, respectively.
  • FIG. 8 is a schematic view showing the relationship between the refractive index of the first microstructure layer, the second microstructure layer, and the substrate and the wavelength of light according to the third embodiment of the present invention.
  • the material of the substrate 322 is different from the material of the first microstructure layer 324 and the second microstructure layer 326, respectively.
  • the materials of the first microstructure layer 324 and the second microstructure layer 326 may be the same or different.
  • a broken line A5 in the figure represents a relationship between the refractive index of the substrate and the wavelength of the light
  • a solid line A6 in the figure represents a relationship between the refractive index of the first microstructured layer and the wavelength of the light
  • the three point links A7, A8 and A9 represent three different embodiments of the relationship between the refractive index of the second microstructure layer and the wavelength of the light.
  • the refractive index of the substrate 322 for the first wavelength of light is greater than the refractive index of the first microstructure layer 324 and the second microstructure layer 326 for the first wavelength of light.
  • the refractive index of the substrate 322 for the second wavelength of light is less than the refractive index of the first microstructure layer 324 and the second microstructure layer 326 for the second wavelength of light.
  • the first light wavelength is smaller than the second light wavelength.
  • the design of the substrate 322, the first microstructure layer 324 and the second microstructure layer 326 having different refractive indices for different wavelengths by the light guide 320 of the present embodiment can simultaneously increase the light of shorter wavelengths.
  • the distance can also be balanced and harmonized for the color of the backlight module 300 to solve the problem of color shift.
  • the relationship between the refractive index of the second microstructure layer 326 and the wavelength of the light A7 is exactly between the refractive index of the substrate 322 and the wavelength of the light, and the first microstructure layer.
  • the relationship between the refractive index of 324 and the wavelength of light is between line A6.
  • the relationship between the refractive index of the second microstructure layer 326 and the wavelength of the light A8, A9 is located on the relationship between the refractive index of the substrate 322 and the wavelength of the light A5 and the refractive index of the first microstructure layer 324. A range other than the relationship between the wavelength A6 and the wavelength of light.
  • the first microstructure layer 324 includes a plurality of first microstructures 324a
  • the second microstructure layer 326 includes a plurality of second microstructures 326a.
  • the first microstructure 324a and the second microstructure 326a are both in a dot-like structure, and the arrangement and effect thereof are the same as those in the embodiment of FIG. 5A to FIG. 5E, and details are not described herein again.
  • FIG. 9 is a schematic diagram showing an apparatus of a backlight module according to a fourth embodiment of the present invention.
  • the backlight module 400 of the present embodiment is substantially the same as the backlight module 300 described above, except that the light guide member 420 of the backlight module 400 has a different structural design.
  • the light guide 420 also includes a substrate 422, a first microstructure layer 424, and a second microstructure layer 426.
  • the first microstructure layer 424 includes a plurality of first microstructures 424a, and the first microstructures 424a are strip structures.
  • the second microstructure layer 426 includes a plurality of second microstructures 426a. As shown in FIG.
  • the extending direction of the first microstructure 424 a is parallel to the extending direction of the light incident surface 422 a of the substrate 422
  • the extending direction of the second microstructure 426 a is perpendicular to the substrate 422 .
  • FIG. 10 it is a schematic diagram showing a device of a backlight module according to a fifth embodiment of the present invention.
  • the backlight module 600 of the present embodiment is substantially the same as the backlight module 400 described above, except that the light guide member 620 of the backlight module 600 has a different structural design.
  • the light guide 620 also includes a substrate 622, a first microstructure layer 624, and a second microstructure layer 626.
  • the first microstructure layer 624 includes a plurality of first microstructures 624a, and the first microstructures 624a are point structures, and the arrangement and effect thereof are the same as those of the embodiment of FIGS. 5A to 5E. Narration.
  • the second microstructure layer 626 includes a plurality of second microstructures 626a, and the second microstructures 626a are strip structures. As shown in FIG. 10, the extending direction of the second microstructure 626a in this embodiment is perpendicular to the extending direction of the light incident surface 622a of the substrate 622, thereby improving the problem of uneven light emission.
  • the backlight module 500 of the present embodiment is substantially the same as the backlight module 100 shown in FIG. 1 except that the backlight module 500 further includes a reflective sheet 510, a lower diffusion sheet 520, a lower prism sheet 530, an upper prism sheet 540, and an upper diffusion sheet. 550.
  • the reflection sheet 510 is disposed under the light guide member 120, and the lower diffusion sheet 520, the lower prism sheet 530, the upper prism sheet 540, and the upper diffusion sheet 550 are sequentially disposed above the light guide member 120, whereby the backlight module 500 can be generated. Better optical effect.
  • the display device 700 of the present embodiment includes the backlight module 500 and the display panel 710 shown in FIG. As shown in FIG. 12, the display panel 710 is disposed in front of the backlight module 500. After the light generated by the light source 140 enters the light guide material 120, the light may be sequentially incident on the display panel 710 through the light guide member 120, the lower diffusion sheet 520, the lower prism sheet 530, the upper prism sheet 540, and the upper diffusion sheet 550. The same purpose as described above can be achieved.
  • the light guide material of the present invention mainly comprises a substrate and a microstructure layer of different materials, and the substrate and the microstructure layer have different refractive indices for different wavelengths.
  • the traveling distance of the light of the shorter wavelength can be increased, and the traveling distance of the light of the longer wavelength can be reduced, so as to balance and adjust the color of the light of the entire backlight module, thereby solving the problem of color shift.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Planar Illumination Modules (AREA)

Abstract

一种导光材(120)、背光模块(100)及显示设备。导光材(120)包括基材(122)以及第一微结构层(124)。基材(122)具有第一主表面(122a)。第一微结构层(124)设置在第一主表面上(122a)。基材(122)对第一光波长的折射率大于第一微结构层(124)对第一光波长的折射率。基材(122)对第二光波长的折射率小于第一微结构层(124)对第二光波长的折射率。而且,第一光波长小于第二光波长。

Description

导光材、背光模块及显示设备 技术领域
本发明涉及一种导光组件及其应用,特别是涉及一种导光材、背光模块及显示设备。
背景技术
一般背光模块主要包括光源以及导光板,且光源所产生的光线直接进入导光板。然而,当光源所产生的光线进入导光板后,较短波长的光线(例如蓝光)容易被导光板吸收。而且,随着光线在导光板传播的距离增加,光线中较短波长光线从导光板的出光面射出的量就越少,如此将造成导光板的出光面较远离光源的部分产生较长波长的光线(例如黄光)的色偏现象。
发明内容
因此,本发明目的之一是提供一种导光材及背光模块,其可改善背光模块的色偏问题。
根据本发明上述目的,提出一种导光材。此导光材包括基材以及第一微结构层。基材具有第一主表面。第一微结构层设置在第一主表面上。其中,基材对第一光波长的折射率大于第一微结构层对第一光波长的折射率,且基材对第二光波长的折射率小于第一微结构层对第二光波长的折射率。而且,第一光波长小于第二光波长。
根据本发明一实施例,上述第一光波长小于或等于500nm,第二光波长大于500nm。
根据本发明另一实施例,上述第一光波长的范围在400nm至500nm之间,包含端点值400nm与500nm,且第二光波长的范围在500nm至700nm之间,包含端点值700nm,不包含端点值500nm。
根据本发明又一实施例,上述基材对第一光波长的折射率与第一微结构层对第一光波长的折射率的差值的绝对值小于或等于0.5。
根据本发明再一实施例,上述基材对第二光波长的折射率与第一微结构层对第二光波长的折射率的差值的绝对值小于或等于0.5。
根据本发明再一实施例,上述基材还包括连接第一主表面的入光面。第一微结构层包括复数个第一微结构。相邻的第一微结构之间具有间距,且这些间距随着第一微结构与入光面距离增加而减少。
根据本发明再一实施例,上述第一微结构为点状结构。
根据本发明再一实施例,上述基材还包括连接第一主表面的入光面。第一微结构为条状结构,且这些条状结构的延伸方向平行于入光面。
根据本发明再一实施例,上述基材还包括连接第一主表面的入光面。上述第一微结构层包括复数个第一微结构,且这些第一微结构的尺寸随着第一微结构与入光面距离增加而增加。
根据本发明再一实施例,上述第一微结构为点状结构。
根据本发明再一实施例,上述基材还包括连接第一主表面的入光面。上述第一微结构为条状结构,且这些条状结构的延伸方向平行于入光面。
根据本发明再一实施例,上述导光材还包括第二微结构层。第二微结构层设置在基材的第二主表面上。第二主表面与第一主表面相对。其中,基材对第一光波长的折射率大于第二 微结构层对第一光波长的折射率,且基材对第二光波长的折射率小于第二微结构层对第二光波长的折射率。
根据本发明再一实施例,上述第二微结构层包括复数个点状结构。
根据本发明再一实施例,上述基材还包括连接第一主表面以及第二主表面的入光面。第二微结构层包括复数个第二微结构,且这些第二微结构为条状结构。这些条状结构的延伸方向垂直于入光面。
根据本发明上述目的,另提出一种背光模块。此背光模块包括上述导光材以及光源。光源用来提供光线至导光材中。
根据本发明上述目的,另提出一种显示设备。此显示设备包括前述背光模块以及显示面板。显示面板位于背光模块的导光材的前方。
由上述可知,本发明导光材主要包括不同材料的基材及微结构层,且基材与微结构层对于不同波长具有不同的折射率。藉此,可增加较短波长的光线的行进距离,以及减少较长波长的光线的行进距离,以达到平衡与调和整体背光模块的出光颜色的目的,进而解决色偏的问题。
附图说明
为了更完整了解实施例及其优点,现参照附图进行下列描述,其中:
图1是示出根据本发明第一实施方式的一种背光模块的装置示意图;
图2是示出根据本发明第一实施方式的一种第一微结构层与基材的折射率与光波长的关系示意图;
图3是示出根据本发明第一实施方式的一种背光模块的光线行进路径示意图;
图4示出根据本发明第一实施方式的一种导光材的制作过程示意图;
图5A至图5E是分别示出根据本发明第一实施方式的不同排列方式的第一微结构示意图;
图6是示出根据本发明第二实施方式的一种背光模块的装置示意图;
图7是示出根据本发明第三实施方式的一种背光模块的装置示意图;
图8是示出根据本发明第三实施方式的一种第一微结构层、第二微结构层与基材的折射率与光波长的关系示意图;
图9是示出根据本发明第四实施方式的一种背光模块的装置示意图;
图10是示出根据本发明第五实施方式的一种背光模块的装置示意图;
图11是示出根据本发明第六实施方式的一种背光模块的装置示意图;以及
图12是示出根据本发明实施方式的一种显示设备的装置示意图。
具体实施方式
参照图1,其是示出根据本发明第一实施方式的一种背光模块的装置示意图。本实施方式的背光模块100主要包括导光材120以及光源140。光源140主要用来提供光线至导光材120中,且导光材120可折射与反射光源140所提供的光线,并提升背光模块100的光学辉度,且可使背光模块100的出光色彩均匀。
另外说明的是,本发明的导光材120是采用跟光源140相同厚度或更小厚度的导光膜,以顺应薄形化背光模块的设计趋势。如果在照明灯具的技术领域没有如同背光模块的极度薄化 的要求,此时的导光材120就可以使用较大厚度的导光板,以射出成型等方式来制作成型。所以本发明中针对导光材120的叙述并不只限于膜材,其他板材、片材等,也属于本发明想要保护的范围。
继续参照图1,导光材120主要包括基材122以及设置在基材122上的第一微结构层124。基材122主要包括第一主表面122a、第二主表面122b以及入光面122c。其中,入光面122c连接第一主表面122a以及第二主表面122b,且第一主表面122a相对于第二主表面122b。在一些实施例中,第一主表面122a为导光材120的反射面,第二主表面122b为导光材120的出光面。在本实施例中,第一微结构层124设置在导光材120的第一主表面122a上。
同时参照图2和图3,其中图2是示出根据本发明第一实施方式的一种第一微结构层与基材的折射率与光波长的关系示意图,图3是示出根据本发明第一实施方式的一种背光模块的光线行进路径示意图。本实施例中,基材122的材料与第一微结构层124的材料不同。此外,如图2所示,图中的虚线A1代表基材折射率与光波长的关系线,而图中的三条实线A2、A3及A4代表第一微结构层折射率与光波长的关系线的三种不同实施形态。在本实施例中,基材122对于第一光波长的折射率大于第一微结构层124对第一光波长的折射率。基材122对第二光波长的折射率小于第一微结构层124对第二光波长的折射率。而且,第一光波长小于第二光波长。
在一些实施例中,如图2的A4实施形态所示,基材122对第一光波长的折射率与第一微结构层124对第一光波长的折射率的差值△n1的绝对值等于0.5。基材122对第二光波长的折射率与第一微结构层124对第二光波长的折射率的差值△n2的绝对值等于0.5。在其他实施形态中,例如A1、A2、A3,则△n1、△n2的绝对值小于0.5。
继续参照图2和图3所示,由于基材122对第一光波长的折射率大于第一微结构层124对第一光波长的折射率,故光源140所发出的光线中的第一波长光线L1在从基材122进入第一微结构层124的折射角θ1大于入射角θ2。因此,当第一波长光线L1进入第一微结构层124时,因为折射角变大而增加偏斜程度,可以在第一微结构层124中行进至较远的距离后,再进入基材122,再从基材122的第二主表面122b射出。另一方面,由于基材122对第二光波长的折射率小于第一微结构层124对第二光波长的折射率,故光源140所发出的光线中的第二波长光线L2在从基材122进入第一微结构层124的折射角θ3小于入射角θ4。因此,当第二波长光线L2进入第一微结构层124时,因为折射角变小而减少偏斜程度,因此在第一微结构层124中所行进的距离较第一波长光线L1短,然后再进入基材122,再从基材122的第二主表面122b射出。藉此,通过对不同波长而有不同折射率的基材122与第一微结构层124的设计,可控制第一波长光线L1及第二波长光线L2的折射角以及行进距离,以避免背光模块100产生色偏。
在实施例中,第一波长光线L1与第二波长光线L2可为互补色光,例如第一波长光线L1为蓝光,第二波长光线L2为黄光。在使用传统导光板而非使用本实施方式的导光材120的情况下,光源140所产生的光线在进入导光板后,较短波长的光线(例如蓝光)在导光板中传播时,随着传播距离增加,较短波长的光线被吸收的越多,而使导光板的出光面在远离光源140的部分看起来会偏向较长波长的光线颜色(例如黄光)。因此,通过本实施方式的导光材120的对不同波长而有不同折射率的基材122与第一微结构层124的设计,可同时增加较短波长的光线(例如蓝光)的行进距离以及减少较长波长的光线(例如黄光)的行进距离,以达到平衡与调和整体背光模块100的出光颜色的目的,藉此可解决色偏的问题。
在一些实施例中,第一光波长的范围在400~500nm之间,且包含端点值400nm与500nm。第二光波长的范围在500~700nm之间,包含端点值700nm,但不包含端点值500nm。
参照图4,其示出根据本发明第一实施方式的一种导光材的制作过程示意图。在本实施例中,导光材120的第一微结构层124藉由直接将UV胶(UV-cured acrylate resin)涂布于基材122的第一主表面122a上,再以紫外光照射而使UV胶经过固化(aged)所形成。也就是说,第一微结构层124可为涂层,其厚度相对于基材122是极薄,可以达到薄形化背光模块的设计需求。
另同时参照图1和图5A至图5E,其中图5A至图5E分别是示出根据本发明第一实施方式的不同排列方式的第一微结构示意图。在一些实施例中,第一微结构层124包括复数个第一微结构124a,且这些第一微结构124a为点状结构。在图5A所示实施例中,导光材120上的每一个第一微结构124a的尺寸均相同且排列而形成数个微结构列。其中,每一微结构列实质平行于导光材120的入光面122c的边缘。而且,在较靠近光源140的微结构列中,第一微结构124a的排列较疏,较远离光源140的微结构列中,第一微结构124a的排列较密。也就是说,微结构的排列密度可随着微结构列与光源140的距离增加而增加。此外,在第5A图所示实施例中,每一微结构列之间的距离相同。在其他实施例中,如图5B所示,第一微结构124a亦可为随机排列,且相邻的第一微结构124a之间具有间距,而这些间距随着第一微结构124a与光源140(或入光面122c)距离增加而减少。
在一些实施例中,第一微结构124a的尺寸可随着第一微结构124a与光源140(或入光面122c)距离增加而增加。在图5C所示实施例中,在较靠近光源140的微结构列中,第一微结 构124a的尺寸较小,而在较远离光源140的微结构列中,第一微结构124a的尺寸较大。在图5D所示实施例中,每一个第一微结构124a的尺寸皆相同,但每一微结构列之间的距离随着远离光源140而变小。另如图5E所示实施例中,每一个第一微结构124a的尺寸皆相同,且靠近光源140的微结构列沿着光源140所发出的光呈发散排列。藉此,通过不同配置方式的第一微结构124a,可使出光更均匀。
另参照图6,其是示出根据本发明第二实施方式的一种背光模块的装置示意图。本实施方式的背光模块200大致上与前述背光模块100相同,差异仅在于背光模块200的导光材220具有不同的结构设计。如图6所示,导光材220包括基材222以及第一微结构层224。此第一微结构层224包括复数个第一微结构224a,且这些第一微结构224a为V形条状结构。如图6所示,在本实施例中,第一微结构224a的延伸方向平行于基材222的入光面222a的延伸方向,藉此可达到与前述第一微结构124a相同的效果,故在此不再赘述。
参照图7,其是示出根据本发明第三实施方式的一种背光模块的装置示意图。本实施方式的背光模块300大致上与前述背光模块100相同,差异仅在于背光模块300的导光材320具有不同的结构设计。如图7所示,导光材320包括基材322、第一微结构层324以及第二微结构层326。同样地,基材322具有第一主表面322a、第二主表面322b以及入光面322c。第一主表面322a与第二主表面322b相对,且入光面322c连接第一主表面322a和第二主表面322b。而且,第一微结构层324与第二微结构层326分别设置在第一主表面322a及第二主表面322b上。
同时参照图7和图8,其中图8是示出根据本发明第三实施方式的一种第一微结构层、第二微结构层与基材的折射率与光波长的关系示意图。在图7所示实施例中,基材322的材料分别与第一微结构层324与第二微结构层326的材料不同。在一些实 施例中,第一微结构层324与第二微结构层326的材料可为相同或不相同。而且,如图8所示,图中的虚线A5代表基材折射率与光波长的关系线,图中的实线A6代表第一微结构层折射率与光波长的关系线,而图中的三条一点链线A7、A8及A9代表第二微结构层折射率与光波长的关系线的三种不同实施形态。由图8可知,基材322对第一光波长的折射率大于第一微结构层324和第二微结构层326对第一光波长的折射率。基材322对第二光波长的折射率小于第一微结构层324和第二微结构层326对第二光波长的折射率。其中,第一光波长小于第二光波长。藉此,通过本实施方式的导光材320的对不同波长而有不同折射率的基材322、第一微结构层324与第二微结构层326的设计,可同时增加较短波长的光线(例如第一波长光线L3)的行进距离以及减少较长波长的光线(例如第二波长光线L4)的行进距离。也就是说,图7所示的第三实施例相较于图1所示的第一实施例多了第二微结构层326,其可增加较短波长的光线的折射角,而增加其行径距离,同样可达到平衡与调和整体背光模块300的出光颜色的目的,以解决色偏的问题。
在一些实施例中,如图8所示,第二微结构层326的折射率与光波长的关系线A7恰恰介于基材322的折射率与光波长的关系线A5与第一微结构层324的折射率与光波长的关系线A6之间。在其他实施形态中,例如第二微结构层326的折射率与光波长的关系线A8、A9则位于基材322的折射率与光波长的关系线A5与第一微结构层324的折射率与光波长的关系线A6之间的以外的范围。
如图7所示,在本实施例中,第一微结构层324包括复数个第一微结构324a,第二微结构层326包括复数个第二微结构326a。在本实施例中,第一微结构324a与第二微结构326a均为点状结构,且其排列方式与效果均与图5A至图5E的实施例相同,在此不再赘述。
另参照图9,其是示出根据本发明第四实施方式的一种背光模块的装置示意图。本实施方式的背光模块400大致上与前述背光模块300相同,差异仅在于背光模块400的导光材420具有不同的结构设计。如图9所示,导光材420同样包括基材422、第一微结构层424以及第二微结构层426。此第一微结构层424包括复数个第一微结构424a,且这些第一微结构424a为条状结构。第二微结构层426包括复数个第二微结构426a。如图9所示,在本实施例中,第一微结构424a的延伸方向平行于基材422的入光面422a的延伸方向,且第二微结构426a的延伸方向垂直于基材422的入光面422a的延伸方向,藉此改善出光不均匀的问题。
另参照图10,其是示出根据本发明第五实施方式的一种背光模块的装置示意图。本实施方式的背光模块600大致上与前述背光模块400相同,差异仅在于背光模块600的导光材620具有不同的结构设计。如图10所示,导光材620同样包括基材622、第一微结构层624以及第二微结构层626。此第一微结构层624包括复数个第一微结构624a,且这些第一微结构624a为点状结构,且其排列方式与效果均与图5A至图5E的实施例相同,于此不再赘述。第二微结构层626包括复数个第二微结构626a,且这些第二微结构626a为条状结构。如图10所示,本实施例中的第二微结构626a的延伸方向垂直于基材622的入光面622a的延伸方向,藉此可改善出光不均匀的问题。
参照图11,其是示出根据本发明第六实施方式的一种背光模块的装置示意图。本实施方式的背光模块500大致上与图1所示的背光模块100相同,差异仅在于背光模块500还包括反射片510、下扩散片520、下棱镜片530、上棱镜片540及上扩散片550。反射片510设置在导光材120的下方,下扩散片520、下棱镜片530、上棱镜片540及上扩散片550则依次设置在导光材120的上方,藉此可使背光模块500产生较佳的光学效果。
参照图12,其是示出根据本发明的实施方式的一种显示设备的装置示意图。本实施方式的显示设备700包括图11所示背光模块500以及显示面板710。如图12所示,显示面板710设置在背光模块500的前方。光源140所产生的光线进入导光材120后,可依次经由导光材120、下扩散片520、下棱镜片530、上棱镜片540及上扩散片550出光而射入显示面板710中,并可达到与前述相同的目的。
由上述本发明实施方式可知,本发明的导光材主要包括不同材料的基材及微结构层,且基材与微结构层对于不同波长具有不同的折射率。藉此,可增加较短波长的光线的行进距离,以及减少较长波长的光线的行进距离,以达到平衡与调和整体背光模块的出光颜色的目的,进而解决色偏的问题。
虽然本发明已经以实施方式揭露如上,然而该实施方式并非用来限定本发明,任何本领域的技术人员在不脱离本发明的精神和范围内应当可以作各种更改和润饰,因此本发明的保护范围应当以权利要求书所界定的范围为准。
符号说明
100   背光模块
120   导光材
122   基材
122a  第一主表面
122b  第二主表面
122c  入光面
124   第一微结构层
124a  第一微结构
140   光源
200   背光模块
220   导光材
222   基材
222a  入光面
224   第一微结构层
224a  第一微结构
300   背光模块
320   导光材
322   基材
322a  第一主表面
322b  第二主表面
322c  入光面
324   第一微结构层
324a  第一微结构
326   第二微结构层
326a  第二微结构
400   背光模块
422   基材
424   第一微结构层
424a  第一微结构
426   第二微结构层
426a  第二微结构
500   背光模块
510   反射片
520   下扩散片
530   下棱镜片
540   上棱镜片
550   上扩散片
600   背光模块
620   导光材
622   基材
622a  入光面
624   第一微结构层
624a  第一微结构
626   第二微结构层
626a  第二微结构
700   显示设备
710   显示面板
A1    基材折射率与光波长之关系线
A2    第一微结构层折射率与光波长之关系线
A3    第一微结构层折射率与光波长之关系线
A4    第一微结构层折射率与光波长之关系线
A5    基材折射率与光波长之关系线
A6    第一微结构层折射率与光波长之关系线
A7    第二微结构层折射率与光波长之关系线
A8    第二微结构层折射率与光波长之关系线
A9    第二微结构层折射率与光波长之关系线
L1    第一波长光线
L2    第二波长光线
L3    第一波长光线
L4    第二波长光线
θ1   折射角
θ2   入射角
θ3   折射角
θ4   入射角

Claims (16)

  1. 一种导光材,包括:
    基材,具有第一主表面;以及
    第一微结构层,设置在所述第一主表面上;
    其中,所述基材对第一光波长的折射率大于所述第一微结构层对所述第一光波长的折射率,且所述基材对第二光波长的折射率小于所述第一微结构层对所述第二光波长的折射率,所述第一光波长小于所述第二光波长。
  2. 根据权利要求1所述的导光材,其中,所述第一光波长小于或等于500nm,所述第二光波长大于500nm。
  3. 根据权利要求1所述的导光材,其中,所述第一光波长的范围在400nm至500nm之间,包含端点值400nm与500nm,所述第二光波长的范围在500nm至700nm之间,包含端点值700nm,不包含端点值500nm。
  4. 根据权利要求1所述的导光材,其中,所述基材对所述第一光波长的折射率与所述第一微结构层对所述第一光波长的折射率的差值的绝对值小于或等于0.5。
  5. 根据权利要求1所述的导光材,其中,所述基材对所述第二光波长的折射率与所述第一微结构层对所述第二光波长的折射率的差值的绝对值小于或等于0.5。
  6. 根据权利要求1所述的导光材,其中
    所述基材还包括连接所述第一主表面的入光面;并且
    所述第一微结构层包括复数个第一微结构,相邻的所述第一微结构之间具有间距,且所述间距随着所述第一微结构与所述入光面距离增加而减少。
  7. 根据权利要求6所述的导光材,其中,所述第一微结构为点状结构。
  8. 根据权利要求6所述的导光材,其中
    所述基材还包括连接所述第一主表面的入光面;并且
    所述第一微结构为条状结构,且所述条状结构的延伸方向平行于所述入光面。
  9. 根据权利要求1所述的导光材,其中
    所述基材还包括连接所述第一主表面的入光面;并且
    所述第一微结构层包括复数个第一微结构,所述第一微结构的尺寸随着所述第一微结构与所述入光面距离增加而增加。
  10. 根据权利要求9所述的导光材,其中,所述第一微结构为点状结构。
  11. 根据权利要求9所述的导光材,其中
    所述基材还包括连接所述第一主表面的入光面;并且
    所述第一微结构为条状结构,且所述条状结构的延伸方向平行于所述入光面。
  12. 根据权利要求1所述的导光材,还包括第二微结构层,其设置在所述基材的第二主表面上,其中,所述第二主表面与所述第一主表面相对;
    其中,所述基材对所述第一光波长的折射率大于所述第二微结构层对所述第一光波长的折射率,且所述基材对所述第二光波长的折射率小于所述第二微结构层对所述第二光波长的折射率。
  13. 根据权利要求12所述的导光材,其中,所述第二微结构层包括复数个第二微结构,所述第二微结构为点状结构。
  14. 根据权利要求12所述的导光材,其中
    所述基材还包括连接所述第一主表面以及所述第二主表面的入光面;并且
    所述第二微结构层包括复数个第二微结构,所述第二微结构为条状结构,且所述条状结构的延伸方向垂直于所述入光面。
  15. 一种背光模块,包括:
    根据权利要求1至14中任一项所述的导光材;以及
    光源,用于提供光线至所述导光材中。
  16. 一种显示设备,包括:
    根据权利要求15所述的背光模块;以及
    显示面板,其位于所述背光模块的所述导光材的前方。
PCT/CN2015/099434 2015-08-24 2015-12-29 导光材、背光模块及显示设备 WO2017031897A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/119,720 US10359558B2 (en) 2015-08-24 2015-12-29 Light guide composition, backlight module having light guide composition and display device having backlight module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510519746.8 2015-08-24
CN201510519746.8A CN106483597B (zh) 2015-08-24 2015-08-24 导光材、背光模块

Publications (1)

Publication Number Publication Date
WO2017031897A1 true WO2017031897A1 (zh) 2017-03-02

Family

ID=57445128

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/099434 WO2017031897A1 (zh) 2015-08-24 2015-12-29 导光材、背光模块及显示设备

Country Status (4)

Country Link
US (1) US10359558B2 (zh)
CN (1) CN106483597B (zh)
TW (1) TWI550313B (zh)
WO (1) WO2017031897A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10359557B2 (en) * 2017-05-03 2019-07-23 Wuhan China Star Optoelectronics Technology Co., Ltd. Light guide plate having periodic microstructure configured on light emission surface and a light waveguide layer configured within transmission layer and backlight module having a collimation structure configured with a plurality of collimation-layer units and a plurality of collimation-optical-lens units to collimate light beams emitted from the light emission surface of the light guide plate
CN108614319A (zh) * 2018-05-09 2018-10-02 合肥泰沃达智能装备有限公司 一种双层玻璃导光板背光模组
KR20200112542A (ko) * 2019-03-22 2020-10-05 엘지이노텍 주식회사 조명 모듈 및 이를 구비한 조명장치
TWI695216B (zh) * 2019-05-13 2020-06-01 茂林光電科技股份有限公司 兼具高出光輝度及高入光展角之導光板及背光模組製造方法
GB2593927A (en) * 2020-04-09 2021-10-13 Design Led Products Ltd Homogeneous colour lighting device
CN113050328B (zh) * 2021-03-15 2023-02-28 合肥京东方光电科技有限公司 前置模组和显示装置
CN115968431A (zh) * 2021-08-11 2023-04-14 瑞仪光电(苏州)有限公司 光学膜片、背光模组及显示装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070139582A1 (en) * 2003-08-19 2007-06-21 International Business Machine Corporation Color filterless display device, optical element, and manufacture
JP2011009125A (ja) * 2009-06-27 2011-01-13 Citizen Electronics Co Ltd 導光板及び面状光源
US20110199785A1 (en) * 2010-02-12 2011-08-18 Chi Lin Technology Co., Ltd. Backlight Module, Light Guide Plate Thereof and Ink Thereof
CN102681049A (zh) * 2012-03-12 2012-09-19 京东方科技集团股份有限公司 色偏平衡薄膜、侧入式背光模组及液晶显示装置
CN102966862A (zh) * 2011-08-30 2013-03-13 中强光电股份有限公司 光源装置
CN103115325A (zh) * 2011-11-16 2013-05-22 扬升照明股份有限公司 导光板模块、其制作方法及光源装置
CN203190212U (zh) * 2013-03-21 2013-09-11 创维液晶器件(深圳)有限公司 背光模组
CN205015500U (zh) * 2015-08-24 2016-02-03 瑞仪光电股份有限公司 显示设备

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102798925A (zh) * 2011-05-27 2012-11-28 奇美电子股份有限公司 显示器及其导光板
CN102913854A (zh) * 2011-07-31 2013-02-06 华新丽华股份有限公司 可调整出光角度的导光板、可调整出光角度的照明装置及其调整出光角度的方法
CN202691770U (zh) * 2012-06-05 2013-01-23 深圳市冠恒电子有限公司 侧光式背光模块
KR20140017742A (ko) * 2012-07-31 2014-02-12 삼성디스플레이 주식회사 도광판, 그 제조 방법 및 도광판을 포함하는 백라이트 유닛
CN102809105B (zh) * 2012-08-22 2015-08-19 京东方科技集团股份有限公司 背光模组及显示装置
CN103017032A (zh) * 2012-12-07 2013-04-03 康佳集团股份有限公司 一种侧入式背光模组、液晶模组及液晶显示设备
CN203069818U (zh) * 2013-02-22 2013-07-17 京东方科技集团股份有限公司 导光板、阵列基板、背光源及液晶模组
TWI522666B (zh) * 2014-08-22 2016-02-21 友達光電股份有限公司 導光板及包含導光板之背光模組

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070139582A1 (en) * 2003-08-19 2007-06-21 International Business Machine Corporation Color filterless display device, optical element, and manufacture
JP2011009125A (ja) * 2009-06-27 2011-01-13 Citizen Electronics Co Ltd 導光板及び面状光源
US20110199785A1 (en) * 2010-02-12 2011-08-18 Chi Lin Technology Co., Ltd. Backlight Module, Light Guide Plate Thereof and Ink Thereof
CN102966862A (zh) * 2011-08-30 2013-03-13 中强光电股份有限公司 光源装置
CN103115325A (zh) * 2011-11-16 2013-05-22 扬升照明股份有限公司 导光板模块、其制作方法及光源装置
CN102681049A (zh) * 2012-03-12 2012-09-19 京东方科技集团股份有限公司 色偏平衡薄膜、侧入式背光模组及液晶显示装置
CN203190212U (zh) * 2013-03-21 2013-09-11 创维液晶器件(深圳)有限公司 背光模组
CN205015500U (zh) * 2015-08-24 2016-02-03 瑞仪光电股份有限公司 显示设备

Also Published As

Publication number Publication date
US20170261677A1 (en) 2017-09-14
CN106483597B (zh) 2019-08-09
CN106483597A (zh) 2017-03-08
TW201708860A (zh) 2017-03-01
TWI550313B (zh) 2016-09-21
US10359558B2 (en) 2019-07-23

Similar Documents

Publication Publication Date Title
WO2017031897A1 (zh) 导光材、背光模块及显示设备
US11733447B2 (en) Optical device
US10222535B2 (en) Flat light guide
KR101830969B1 (ko) 고투과 광 제어 필름
TWI665479B (zh) 導光膜及具有該導光膜的背光模組
JP7046953B2 (ja) 微細構造およびパターンが施された導光板、および、それを用いた装置
TWI608258B (zh) 導光板、背光模組以及顯示裝置
WO2020192300A1 (zh) 光学准直组件、背光模组及显示装置
WO2010010694A1 (ja) 液晶表示装置
CN205015500U (zh) 显示设备
WO2010061691A1 (ja) 面光源装置
TWI483011B (zh) 雙面具有微結構之光學膜
JP2021519496A (ja) ウェッジライトガイド
US11243343B2 (en) Backlight unit and liquid crystal display device
TWI679454B (zh) 導光板、背光模組及顯示裝置
TWI566929B (zh) Integrated optical film and its diffuser
WO2017118033A1 (zh) 棱镜膜、导光板、背光模组及显示装置
US10620358B2 (en) Light guide film, backlight module and display device having the same
JP3215902U (ja) 光学フィルム及び表示装置
TWI693447B (zh) 導光膜、導光板、背光模組及顯示裝置
TWI837121B (zh) 光學裝置
TWI524102B (zh) 導光板以及光源模組
TWI664457B (zh) 導光膜、背光模組,及顯示裝置
US11267211B2 (en) Impact resistant light guide structure
TWM523864U (zh) 導光結構和背光模組

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15119720

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15902165

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15902165

Country of ref document: EP

Kind code of ref document: A1