WO2017031876A1 - 级联hybrid放大器的控制方法及系统 - Google Patents
级联hybrid放大器的控制方法及系统 Download PDFInfo
- Publication number
- WO2017031876A1 WO2017031876A1 PCT/CN2015/097825 CN2015097825W WO2017031876A1 WO 2017031876 A1 WO2017031876 A1 WO 2017031876A1 CN 2015097825 W CN2015097825 W CN 2015097825W WO 2017031876 A1 WO2017031876 A1 WO 2017031876A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- raman
- optical power
- working mode
- hybrid
- edfa
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
- H01S3/10007—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers
- H01S3/10015—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers by monitoring or controlling, e.g. attenuating, the input signal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/29—Repeaters
- H04B10/291—Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
- H04B10/293—Signal power control
- H04B10/294—Signal power control in a multiwavelength system, e.g. gain equalisation
- H04B10/2942—Signal power control in a multiwavelength system, e.g. gain equalisation using automatic gain control [AGC]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/063—Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
- H01S3/067—Fibre lasers
- H01S3/06754—Fibre amplifiers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
- H01S3/10007—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers
- H01S3/1001—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers by controlling the optical pumping
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
- H01S3/13—Stabilisation of laser output parameters, e.g. frequency or amplitude
- H01S3/1301—Stabilisation of laser output parameters, e.g. frequency or amplitude in optical amplifiers
- H01S3/13013—Stabilisation of laser output parameters, e.g. frequency or amplitude in optical amplifiers by controlling the optical pumping
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/23—Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
- H01S3/2375—Hybrid lasers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/29—Repeaters
- H04B10/291—Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
- H04B10/293—Signal power control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/29—Repeaters
- H04B10/291—Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
- H04B10/293—Signal power control
- H04B10/2933—Signal power control considering the whole optical path
- H04B10/2935—Signal power control considering the whole optical path with a cascade of amplifiers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S2301/00—Functional characteristics
- H01S2301/04—Gain spectral shaping, flattening
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/0014—Monitoring arrangements not otherwise provided for
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/063—Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
- H01S3/067—Fibre lasers
- H01S3/06754—Fibre amplifiers
- H01S3/06758—Tandem amplifiers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
- H01S3/10069—Memorized or pre-programmed characteristics, e.g. look-up table [LUT]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/14—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
- H01S3/16—Solid materials
- H01S3/1601—Solid materials characterised by an active (lasing) ion
- H01S3/1603—Solid materials characterised by an active (lasing) ion rare earth
- H01S3/1608—Solid materials characterised by an active (lasing) ion rare earth erbium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/30—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range using scattering effects, e.g. stimulated Brillouin or Raman effects
- H01S3/302—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range using scattering effects, e.g. stimulated Brillouin or Raman effects in an optical fibre
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/07—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
- H04B10/071—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using a reflected signal, e.g. using optical time domain reflectometers [OTDR]
Definitions
- the invention belongs to the field of power distribution operation, and particularly relates to a control method and system for a cascaded Hybrid amplifier.
- Hybrid amplifiers Hybrid amplifiers
- Such control methods have proven to be effective in practical engineering applications, but are not perfect in Raman's gain control accuracy. Therefore, some control techniques using gain calibration methods to improve Raman's gain accuracy have been proposed, so that Raman's gain control accuracy is improved for a single Hybrid in the laboratory; however, in practical engineering applications, for multiple This method of gain calibration will be ineffective when the Hybrid cascade is used.
- Hybrid1 Hybrid2, and Hybrid3, respectively
- each Hybrid amplifier includes a Raman fiber amplifier and an erbium doped fiber amplifier, which are cascaded in sequence. Because this method of gain calibration requires the input light in the Hybrid amplifier to remain unchanged, and then the gain calibration is implemented according to the change of the input light.
- the control timing is shown in Figure 2. It provides the first Hybrid pump timing diagram and the second Hybrid pump timing diagram in the cascade.
- Hybrid's control determines whether the input light is stable by changing the slope of the input optical power. If it is determined that the input optical power is stable, Raman and EDFA will simultaneously turn on the pump, then Raman will enter the automatic gain calibration A process. After the gain calibration is completed, Raman will Switch to the target mode, AGC (Automatic Gain Control) mode. For EDFA, the EDFA will quickly enter the AGC mode after the pump is turned on.
- AGC Automatic Gain Control
- the output of the EDFA is the output of the first Hybrid, thus cascaded in multiple amplifiers
- the latter Hybrid will use the previous output optical power for gain calibration.
- a prerequisite for gain calibration is that the input light from Raman must be kept stable to correct the calibration.
- the input of the first Hybrid begins to change from scratch. This change is a relatively slow process.
- the Hybrid amplifier detects whether the input light has reached a stable input.
- the object of the present invention is to overcome the shortcomings of the prior art, and to perform timing matching control between Raman and EDFA in Raman during the gain calibration of the Hybrid amplifier, so that multiple Hybrid amplifiers can also achieve very much when performing cascade application. High control accuracy.
- the technical solution of the present invention provides a control method of a cascaded Hybrid amplifier, which includes a plurality of Hybrid amplifiers cascaded in sequence, the Hybrid amplifiers represent hybrid amplifiers, and each Hybrid amplifier includes a Raman fiber amplifier Raman With the erbium-doped fiber amplifier EDFA, each Hybrid amplifier in the cascaded Hybrid amplifier starts the following pumping process at the same time.
- Step 1 when the Hybrid amplifier receives the pump request, proceeds to step 2;
- Step 2 Determine whether the input signal optical power is greater than the LOS threshold set by the Hybrid amplifier and whether there is a Raman reflection alarm, until the input signal optical power is greater than the LOS threshold and there is no Raman reflection alarm, and the process proceeds to step 3; the LOS threshold is an input signal. Loss threshold
- Step 3 performing Raman's input optical power stability determination, including determining whether the input optical power is stable by a change in the slope of the input optical power. If the change value of the input optical power is less than a preset comparison value, the input optical power is considered to be stable. Go to step 4, otherwise turn Raman off the pump and return to step 2 to continue the judgment; at the same time, turn the EDFA on, the EDFA enters the APC working mode; the APC working mode is the automatic power control working mode;
- Step 4 recording the input optical power before the Raman pump is turned into the value PINU1 and saving;
- Step 5 the Raman pump is turned on
- Step 6 After Raman starts pumping, judge whether there is a Raman reflection alarm. If not, go to step 7. If there is a reflection alarm, Raman turns off the pump. If Raman turns off the pump and detects Raman reflection alarm cancellation, return to step 2. Re-evaluate;
- Step 8 Adjust the Raman gain according to the Goffset obtained in step 7. After the Raman gain calibration is completed, switch to the AGC working mode, where the AGC working mode is an automatic gain control working mode;
- step 9 the working mode of the EDFA is switched to the AGC working mode, and the pumping process ends.
- the present invention also provides a control system for a cascaded Hybrid amplifier, including the cascaded Hybrid amplifier Multiple Hybrid amplifiers cascaded in turn, the Hybrid amplifiers represent hybrid amplifiers, and each Hybrid amplifier includes a Raman fiber amplifier Raman and an erbium doped fiber amplifier EDFA, including the following modules,
- a request response module for commanding operation when the Hybrid amplifier receives a pump request
- the initial judging module is configured to determine whether the optical power of the input signal is greater than the LOS threshold set by the Hybrid amplifier and whether there is a Raman reflection alarm, and the command input light judging module works until the optical power of the input signal is greater than the LOS threshold and there is no Raman reflection alarm;
- the LOS threshold is the input signal loss threshold;
- the input light judging module is configured to perform Raman input optical power stability determination, including determining whether the input optical power is stable by a slope change of the input optical power, and if the input optical power change value is less than a preset comparison value, the input is considered The optical power is stable, and the initial input optical power recording module is commanded to work. Otherwise, Raman shuts down the pump and commands the initial judgment module to continue to judge; meanwhile, the EDFA is turned on, and the EDFA enters the APC working mode; the APC working mode is the automatic power control working mode. ;
- An initial input optical power recording module for recording the input optical power before the Raman is turned on as the value PINU1 and saving;
- Raman pumping module for pumping Raman
- the reflection alarm judging module is configured to judge whether there is a Raman reflection alarm after the Raman is turned on, and if not, the command gain deviation extraction module works, if there is a reflection alarm, the Raman turns off the pump, and if the Raman turns off the pump, the Raman reflection is detected. If the alarm is cleared, the initial judgment module is commanded to re-determine;
- a gain calibration module configured to adjust a Raman gain according to a Goffset obtained by the gain deviation extraction module, and after the Raman gain calibration is completed, switch to an AGC working mode, where the AGC working mode is an automatic gain control working mode;
- the EDFA switching module is used to switch the working mode of the EDFA to the AGC working mode, and the pumping process ends.
- the invention can accurately control the gain of the RAMAN when the cascaded Hybrid amplifier is used, improve the control precision, and improve the performance of the cascaded Hybrid amplifier.
- FIG. 1 is a schematic diagram of a cascade of Hybrid amplifiers in the prior art.
- FIG. 2 is a timing control diagram of a cascaded Hybrid amplifier in the prior art.
- Figure 3 is a timing diagram of the cascaded Hybrid amplifier of the present invention.
- the invention mainly aims at realizing the automatic gain calibration function of Raman in the Hybrid pumping process by using the Raman and EDFA joint control of the Hybrid amplifier in the pumping process when the Hybrid amplifier is used in cascade.
- a unit responsible for controlling Raman and EDFA which is generally controlled by an MCU (Microprocessor) and an FPGA (Programmable Logic Array).
- the control objective is that the Raman amplifier will eventually operate in AGC mode, the EDFA amplifier also needs to operate in AGC mode, and the AGC mode represents automatic gain control mode.
- a person skilled in the art can implement the method provided by the present invention in a software manner based on the control unit, and realize the automatic operation of the corresponding process.
- step 3 determine whether the input signal optical power is greater than the Hybrid setting LOS (input signal loss) threshold and whether there is a Raman reflection alarm. If it is greater than the LOS threshold and there is no Raman reflection alarm, go to step 3. Otherwise, continue to judge.
- LOS input signal loss
- Raman input optical power stability judgment whether the input optical power is stable by the change of the slope of the input optical power, if the change value of the input optical power is less than a certain set comparison value (the specific implementation may be preset by a person skilled in the art) If the input optical power is stable, go to step 4. Otherwise, Raman will stop the pump and continue to judge whether the second step meets the condition. At the same time as this step, there is a third step, the EDFA is pumped, and then the fourth is entered. 'Step, enter the APC (automatic power control) mode of operation, EDFA output a suitable fixed power, and keep to the 8th step to complete.
- APC automatic power control
- step 6 After Raman starts pumping, judge whether there is Raman reflection alarm. If there is no reflection alarm, go to step 7. If there is a reflection alarm, Raman turns off the pump. If Raman turns off the pump and detects the Raman reflection alarm, then Go to step 2 and repeat the judgment;
- step 8 the control of the EDFA is entered from the 4th step to the 5th step, that is, after the RAMAN gain calibration is completed, the EDFA operation mode is switched to the target (AGC) mode.
- AGC target
- Raman's gain calibration process is complete and the pumping process ends.
- the time when the EDFA outputs the APC can completely cover the time period during which Raman performs the gain calibration.
- the time margin can be preset, and the working mode of the EDFA is switched to the predetermined time.
- Target AGC mode can be preset, and the working mode of the EDFA is switched to the predetermined time.
- FIG. 3 is a timing control diagram of the cascaded Hybrid amplifier of the present invention.
- the EDFA enters the open pump state and allows The EDFA works in the APC (Automatic Power Control) mode of operation and outputs a suitable amount of optical power.
- APC Automatic Power Control
- Raman begins to judge the stability of the input light.
- Raman determines that the input optical power is stable, and then the pump is turned on.
- the process of automatic gain calibration by Raman in the first and second Hybrids is recorded as automatic gain calibration A and B respectively; at time 3, Raman automatic gain calibration is completed, because EDFA works at APC (automatically) Power control mode, so the output of the EDFA is not affected by the Raman automatic gain calibration process. At time 4, the EDFA switches from APC to AGC mode. Because it is cascaded, for the second Hybrid, its control process is exactly the same as the first one, except that the input of the second Hybrid is the output of the first Hybrid (ie EDFA).
- the output light as can be seen from the figure, in the process B of automatic gain calibration of Raman in the second Hybrid (time 2 to time 3), the EDFA in the previous Hybrid always maintains the APC mode output, which is also It ensures that the input light of Raman in the second Hybrid is stable when the gain calibration is performed. Therefore, Raman can correctly complete the automatic gain calibration process, and finally switch to the target (AGC) mode, and the accuracy of the gain control can be guaranteed.
- APC target
- the corresponding system can also be implemented in a modular manner.
- the invention also provides a control system for a cascaded Hybrid amplifier, comprising the following modules:
- a request response module for commanding operation when the Hybrid amplifier receives a pump request
- the initial judging module is configured to determine whether the optical power of the input signal is greater than the LOS threshold set by the Hybrid amplifier and whether there is a Raman reflection alarm, and the command input light judging module works until the optical power of the input signal is greater than the LOS threshold and there is no Raman reflection alarm;
- the LOS threshold is the input signal loss threshold;
- Input light judgment module for performing Raman input optical power stability determination, including slope change through input optical power To determine whether the input optical power is stable. If the change value of the input optical power is less than the preset comparison value, the input optical power is considered to be stable, and the initial input optical power recording module is commanded to operate. Otherwise, the Raman is turned off and the initial judgment module is continued. Judging; at the same time, the EDFA is pumped, the EDFA enters the APC working mode, and outputs a fixed power; the APC working mode is an automatic power control working mode;
- An initial input optical power recording module for recording the input optical power before the Raman is turned on as the value PINU1 and saving;
- Raman pumping module for pumping Raman
- the reflection alarm judging module is configured to judge whether there is a Raman reflection alarm after the Raman is turned on, and if not, the command gain deviation extraction module works, if there is a reflection alarm, the Raman turns off the pump, and if the Raman turns off the pump, the Raman reflection is detected. If the alarm is cleared, the initial judgment module is commanded to re-determine;
- a gain calibration module configured to adjust a Raman gain according to a Goffset obtained by the gain deviation extraction module, and after the Raman gain calibration is completed, switch to an AGC working mode, where the AGC working mode is an automatic gain control working mode;
- the EDFA switching module is used to switch the working mode of the EDFA to the AGC working mode, and the pumping process ends.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Optics & Photonics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
- Lasers (AREA)
Abstract
本发明提供一种级联Hybrid放大器的控制方法及系统,级联Hybrid放大器中的各Hybrid放大器同时开始执行开泵流程:当Hybrid放大器收到开泵请求时,判断满足条件时进行Raman的输入光功率稳定判断,将EDFA开泵,EDFA进入APC工作模式;将Raman开泵,没有反射告警产生时根据计算Raman开泵前后的输入光功率计算增益偏差;根据增益偏差调整Raman增益,完成后切换到AGC工作模式,所述AGC工作模式为自动增益控制工作模式;将EDFA的工作模式切换到AGC工作模式。本发明可以精准地控制Raman的增益,提高了控制精度,改善了级联Hybrid放大器的性能。
Description
本发明属于配电运行领域,特别涉及一种级联Hybrid放大器的控制方法及系统。
目前Hybrid放大器(混合放大器)中Raman增益控制的主要方法还是基于前馈加反馈的控制方法。这样的控制方法在实际的工程应用中被证明是有效的,但是在Raman的增益控制精度上并不是很完美。因此有一些使用增益校准方法来提高Raman的增益精度的控制技术被提出,这样对于在实验室中的单台Hybrid而言,Raman的增益控制精度得到改善;然而在实际工程应用中,对于多台Hybrid级联使用的时候,此种增益校准的方法就会失效。参见图1,3台Hybrid放大器分别记为Hybrid1、Hybrid2、Hybrid3,每个Hybrid放大器都包括拉曼光纤放大器和掺铒光纤放大器,依次级联。因为此种增益校准的方法要求接入Hybrid放大器中的输入光保持不变,然后依据输入光的变化来实现增益校准,然而在级联使用Hybrid放大器的时候,由于Raman(拉曼光纤放大器)和EDFA(掺铒光纤放大器)实现同步控制,控制时序如图2所示,提供了级联中第一台Hybrid开泵时序图和第二台Hybrid开泵时序图,对于第一台Hybrid来说,Hybrid的控制是通过输入光功率的斜率变化来判断输入光是否稳定,如果判断输入光功率稳定了,Raman和EDFA会同时开泵,然后Raman会进入自动增益校准A过程,增益校准完成后Raman会切换到目标模式,即AGC(自动增益控制)模式,对EDFA来说,EDFA开泵后会很快进入到AGC模式,然而因为受到前面Raman在自动增益校准完成后输出光功率变化的影响,会导致EDFA相应的也会有一个输出光功率的变化,EDFA的输出即第一台Hybrid的输出,这样在多台放大器级联使用的时候就会出现问题,因为后一台Hybrid会使用前一台的输出光功率来进行增益校准,进行增益校准的一个前提条件是必须保持进入Raman的输入光稳定才能校准正确,图2中在时刻1,第一台Hybrid的输入光从无到有开始发生变化,这个变化是一个相对缓慢变化的过程,在时刻1Hybrid放大器会检测输入光是否达到稳定输入,通过判断输入光稳定之后,在时刻2,第一台Hybrid中Raman和Edfa会同时开泵,对第二台Hybrid来说,由于前一台Hybrid中EDFA在开泵后的时刻2到时刻3内的输出光不稳定,第二台Hybrid中Raman会在时刻2到时刻3内判断输入光是否稳定,然后在时刻3到时刻4内做增益校准功能,由于第二台Hybrid中的Raman在做自动增益校准B(时刻3到时刻4)的时间段内对应前一台Hybrid中EDFA的输出光发生了变化,所以
第二台的Hybrid中Raman自动增益校准并不能校准正确,导致Raman的控制精度会有明显的偏差,并且从图2中也可以看出由于多台级联的原因,还会出现后一台Hybrid开泵的时间会比前一台晚的问题。
发明内容
本发明的目的在于克服现有技术的不足,在Hybrid放大器中将Raman和EDFA在Raman进行增益校准的时候进行时序上的配合控制,使得多台Hybrid放大器在进行级联应用的时候同样能够达到很高的控制精度。
本发明技术方案提供一种级联Hybrid放大器的控制方法,所述级联Hybrid放大器中包括依次级联的多台Hybrid放大器,所述Hybrid放大器表示混合放大器,每个Hybrid放大器包括拉曼光纤放大器Raman和掺铒光纤放大器EDFA,级联Hybrid放大器中的各Hybrid放大器同时开始执行以下开泵流程,
步骤1,当Hybrid放大器收到开泵请求时,进入步骤2;
步骤2,判断输入信号光功率是否大于Hybrid放大器设置的LOS门限和是否存在Raman反射告警,直到满足输入信号光功率大于LOS门限且不存在Raman反射告警时进入步骤3;所述LOS门限为输入信号丢失门限;
步骤3,进行Raman的输入光功率稳定判断,包括通过输入光功率的斜率变化来判断输入光功率是否稳定,如果输入光功率的变化值小于预先设定的比较值,则认为输入光功率稳定,进入步骤4,否则将Raman关泵并返回步骤2继续判断;同时,将EDFA开泵,EDFA进入APC工作模式;所述APC工作模式为自动功率控制工作模式;
步骤4,将Raman开泵前的输入光功率记录为值PINU1并保存;
步骤5,将Raman开泵;
步骤6,在Raman开泵后,判断是否存在Raman反射告警,如果没有则进入步骤7,如果有反射告警产生,则Raman关泵,如果Raman关泵后检测到Raman反射告警消除,则返回步骤2重新进行判断;
步骤7,计算Raman开泵之后的输入光功率并记录为值PINU2,根据PINU1和PINU2计算增益偏差Goffset=PINU1-PINU2;
步骤8,根据步骤7所得Goffset调整Raman增益,Raman增益校准完成后,切换到AGC工作模式,所述AGC工作模式为自动增益控制工作模式;
步骤9,将EDFA的工作模式切换到AGC工作模式,开泵流程结束。
本发明还相应提供一种级联Hybrid放大器的控制系统,所述级联Hybrid放大器中包括
依次级联的多台Hybrid放大器,所述Hybrid放大器表示混合放大器,每个Hybrid放大器包括拉曼光纤放大器Raman和掺铒光纤放大器EDFA,包括如下模块,
请求响应模块,用于当Hybrid放大器收到开泵请求时,命令工作;
初始判断模块,用于判断输入信号光功率是否大于Hybrid放大器设置的LOS门限和是否存在Raman反射告警,直到满足输入信号光功率大于LOS门限且不存在Raman反射告警时命令输入光判断模块工作;所述LOS门限为输入信号丢失门限;
输入光判断模块,用于进行Raman的输入光功率稳定判断,包括通过输入光功率的斜率变化来判断输入光功率是否稳定,如果输入光功率的变化值小于预先设定的比较值,则认为输入光功率稳定,命令初始输入光功率记录模块工作,否则将Raman关泵并命令初始判断模块继续判断;同时,将EDFA开泵,EDFA进入APC工作模式;所述APC工作模式为自动功率控制工作模式;
初始输入光功率记录模块,用于将Raman开泵前的输入光功率记录为值PINU1并保存;
Raman开泵模块,用于将Raman开泵;
反射告警判断模块,用于在Raman开泵后,判断是否存在Raman反射告警,如果没有则命令增益偏差提取模块工作,如果有反射告警产生,则Raman关泵,如果Raman关泵后检测到Raman反射告警消除,则命令初始判断模块重新进行判断;
增益偏差提取模块,用于计算Raman开泵之后的输入光功率并记录为值PINU2,根据PINU1和PINU2计算增益偏差Goffset=PINU1-PINU2;
增益校准模块,用于根据增益偏差提取模块所得Goffset调整Raman增益,Raman增益校准完成后,切换到AGC工作模式,所述AGC工作模式为自动增益控制工作模式;
EDFA切换模块,用于将EDFA的工作模式切换到AGC工作模式,开泵过程结束。
本发明在级联Hybrid放大器使用的时候可以很精准地控制RAMAN的增益,提高了控制精度,改善了级联Hybrid放大器的性能。
图1是现有技术中的Hybrid放大器级联示意图。
图2是现有技术中的级联Hybrid放大器时序控制图。
图3是本发明级联Hybrid放大器时序控制图。
图4是本发明实施例的流程图。
为了使本发明实施例的目的、技术方案、优点更加清晰,下面将结合本发明实施例和附
图来介绍本发明的技术方案。
本发明主要针对Hybrid放大器在级联使用时,通过对Hybrid放大器在开泵过程中的Raman和EDFA联合控制,在Hybrid开泵流程中实现对Raman的自动增益校准功能。现有Hybrid中,设有负责对Raman和EDFA进行控制的单元,一般是由MCU(微处理器)和FPGA(可编程逻辑阵列)配合实现控制。控制目标为,将Raman放大器最终工作在AGC模式,EDFA放大器同样需要工作在AGC模式,AGC模式表示自动增益控制模式。具体实施时,本领域技术人员可基于控制单元采用软件方式实现本发明所提供方法,实现相应流程自动运行。
实施例的实现过程包括由级联的各Hybrid放大器同时开始执行以下流程:
1.当Hybrid放大器收到开泵请求时,进入第2步。实际工程应用中,多台Hybrid会同时收到开泵请求。
2.首先同时判断输入信号光功率是否大于Hybrid设置LOS(输入信号丢失)门限和是否存在Raman反射告警,如果大于LOS门限且不存在Raman反射告警则进入第3步,否则继续判断。
3.Raman输入光功率稳定判断:通过输入光功率的斜率变化来判断输入光功率是否稳定,如果输入光功率的变化值小于某一个设定的比较值(具体实施时可由本领域技术人员预先设定),则认为输入光功率稳定进入第4步,否则将Raman关泵继续判断第2步是否满足条件;与这一步同时进行的还有第3’步,将EDFA开泵,然后进入第4’步,进入APC(自动功率控制)工作模式,EDFA输出一合适固定功率,并保持到第8步完成。
4.将Raman开泵前的输入光功率记录为值PINU1(输入光功率1)并锁存。具体实施时,在Raman未开泵的时候可以直接通过探测得知输入光功率,获取值PINU1。
5.将Raman开泵。
6.在Raman开泵后,判断是否存在Raman反射告警,如果没有反射告警,则进入第7步,如果有反射告警产生,则Raman关泵,如果Raman关泵后检测到Raman反射告警消除,则进入到第2步重新进行判断;
7.计算Raman开泵之后的输入光功率并记录为值PINU2(输入光功率2),使用PINU1和PINU2计算增益偏差Goffset=PINU1-PINU2。具体实施时,由于Raman放大器在开泵以后输入光功率会被放大,可以通过计算来得到Raman放大器的原始输入光功率作为PINU2。计算Raman开泵之后的输入光功率为现有技术,可由MCU(微处理器)实现
计算,本发明不予赘述。
8.根据Goffset调整Raman增益,Raman增益校准完成,Raman切换到工作在目标模式,即AGC模式。
9.第8步完成以后,将EDFA的控制从第4’步进入到第5’步,即在RAMAN增益校准完成后,将EDFA的工作模式切换到目标(AGC)模式。Raman的增益校准过程完成,开泵流程结束。具体实施时,为了在工程应用中在Raman做增益校准的时候,EDFA输出APC的时间能够完全覆盖Raman做增益校准的时间段,可以预设时间余量,在预定时刻将EDFA的工作模式切换到目标AGC模式。
图3是本发明级联Hybrid放大器时序控制图,如图所示,在给多台级联(图中以2台为例)Hybrid同时上电的时刻1,EDFA即进入开泵状态,并让EDFA工作在APC(自动功率控制)工作模式,输出一大小合适的光功率,同时在时刻1,Raman则开始对输入光稳定进行判断;在时刻2,Raman判断到输入光功率稳定,然后开泵进入自动增益校准过程,在第一、二台Hybrid中Raman进行自动增益校准的过程分别记为自动增益校准A、B;在时刻3,Raman自动增益校准完成,由于这时EDFA工作在APC(自动功率控制)模式,所以EDFA的输出并不会受到Raman自动增益校准过程的影响,在时刻4,EDFA从APC切换到AGC模式。由于是级联使用,所以对于第二台Hybrid来说,它的控制过程和第一台是完全一样的,只不过第二台Hybrid的输入光即是第一台Hybrid的输出光(也就是EDFA的输出光),从图中可以看出,在第二台Hybrid中Raman进行自动增益校准的过程B中(时刻2到时刻3),前一台Hybrid中EDFA一直保持APC模式输出,这也就保证了第二台Hybrid中Raman在做增益校准时候的输入光稳定,因此Raman能够正确的完成自动增益校准过程,最终切换到目标(AGC)模式,并能保证增益控制的精度。由于前一台EDFA在上电时刻就开泵并进入APC模式,这样就能保证后一台Hybrid中Raman在自动增益校准过程中的输入光稳定,所以在多台Hybrid级联的时候,每一台都能正确的进行Raman自动增益校准,并保证每一台的控制精度。
具体实施时,还可以采用模块化方式实现相应系统。本发明还相应提供一种级联Hybrid放大器的控制系统,包括如下模块:
请求响应模块,用于当Hybrid放大器收到开泵请求时,命令工作;
初始判断模块,用于判断输入信号光功率是否大于Hybrid放大器设置的LOS门限和是否存在Raman反射告警,直到满足输入信号光功率大于LOS门限且不存在Raman反射告警时命令输入光判断模块工作;所述LOS门限为输入信号丢失门限;
输入光判断模块,用于进行Raman的输入光功率稳定判断,包括通过输入光功率的斜率变化
来判断输入光功率是否稳定,如果输入光功率的变化值小于预先设定的比较值,则认为输入光功率稳定,命令初始输入光功率记录模块工作,否则将Raman关泵并命令初始判断模块继续判断;同时,将EDFA开泵,EDFA进入APC工作模式,输出一固定功率;所述APC工作模式为自动功率控制工作模式;
初始输入光功率记录模块,用于将Raman开泵前的输入光功率记录为值PINU1并保存;
Raman开泵模块,用于将Raman开泵;
反射告警判断模块,用于在Raman开泵后,判断是否存在Raman反射告警,如果没有则命令增益偏差提取模块工作,如果有反射告警产生,则Raman关泵,如果Raman关泵后检测到Raman反射告警消除,则命令初始判断模块重新进行判断;
增益偏差提取模块,用于计算Raman开泵之后的输入光功率并记录为值PINU2,根据PINU1和PINU2计算增益偏差Goffset=PINU1-PINU2;
增益校准模块,用于根据增益偏差提取模块所得Goffset调整Raman增益,Raman增益校准完成后,切换到AGC工作模式,所述AGC工作模式为自动增益控制工作模式;
EDFA切换模块,用于将EDFA的工作模式切换到AGC工作模式,开泵过程结束。
需要强调的是,本发明所述的实施例是说明性的,而不是限定性的,因此本发明并不限于具体实施方式中所述的实施例,凡是由本领域技术人员根据本发明的技术方案得出的其他实施方式,同样属于本发明保护的范围。
Claims (2)
- 一种级联Hybrid放大器的控制方法,所述级联Hybrid放大器中包括依次级联的多台Hybrid放大器,所述Hybrid放大器表示混合放大器,每个Hybrid放大器包括拉曼光纤放大器Raman和掺铒光纤放大器EDFA,其特征在于:级联Hybrid放大器中的各Hybrid放大器同时开始执行以下开泵流程,步骤1,当Hybrid放大器收到开泵请求时,进入步骤2;步骤2,判断输入信号光功率是否大于Hybrid放大器设置的LOS门限和是否存在Raman反射告警,直到满足输入信号光功率大于LOS门限且不存在Raman反射告警时进入步骤3;所述LOS门限为输入信号丢失门限;步骤3,进行Raman的输入光功率稳定判断,包括通过输入光功率的斜率变化来判断输入光功率是否稳定,如果输入光功率的变化值小于预先设定的比较值,则认为输入光功率稳定,进入步骤4,否则将Raman关泵并返回步骤2继续判断;同时,将EDFA开泵,EDFA进入APC工作模式;所述APC工作模式为自动功率控制工作模式;步骤4,将Raman开泵前的输入光功率记录为值PINU1并保存;步骤5,将Raman开泵;步骤6,在Raman开泵后,判断是否存在Raman反射告警,如果没有则进入步骤7,如果有反射告警产生,则Raman关泵,如果Raman关泵后检测到Raman反射告警消除,则返回步骤2重新进行判断;步骤7,计算Raman开泵之后的输入光功率并记录为值PINU2,根据PINU1和PINU2计算增益偏差Goffset=PINU1-PINU2;步骤8,根据步骤7所得Goffset调整Raman增益,Raman增益校准完成后,切换到AGC工作模式,所述AGC工作模式为自动增益控制工作模式;步骤9,将EDFA的工作模式切换到AGC工作模式,开泵流程结束。
- 一种级联Hybrid放大器的控制系统,所述级联Hybrid放大器中包括依次级联的多台Hybrid放大器,所述Hybrid放大器表示混合放大器,每个Hybrid放大器包括拉曼光纤放大器Raman和掺铒光纤放大器EDFA,其特征在于:包括如下模块,请求响应模块,用于当Hybrid放大器收到开泵请求时,命令工作;初始判断模块,用于判断输入信号光功率是否大于Hybrid放大器设置的LOS门限和是否存在Raman反射告警,直到满足输入信号光功率大于LOS门限且不存在Raman反射告警时命 令输入光判断模块工作;所述LOS门限为输入信号丢失门限;输入光判断模块,用于进行Raman的输入光功率稳定判断,包括通过输入光功率的斜率变化来判断输入光功率是否稳定,如果输入光功率的变化值小于预先设定的比较值,则认为输入光功率稳定,命令初始输入光功率记录模块工作,否则将Raman关泵并命令初始判断模块继续判断;同时,将EDFA开泵,EDFA进入APC工作模式;所述APC工作模式为自动功率控制工作模式;初始输入光功率记录模块,用于将Raman开泵前的输入光功率记录为值PINU1并保存;Raman开泵模块,用于将Raman开泵;反射告警判断模块,用于在Raman开泵后,判断是否存在Raman反射告警,如果没有则命令增益偏差提取模块工作,如果有反射告警产生,则Raman关泵,如果Raman关泵后检测到Raman反射告警消除,则命令初始判断模块重新进行判断;增益偏差提取模块,用于计算Raman开泵之后的输入光功率并记录为值PINU2,根据PINU1和PINU2计算增益偏差Goffset=PINU1-PINU2;增益校准模块,用于根据增益偏差提取模块所得Goffset调整Raman增益,Raman增益校准完成后,切换到AGC工作模式,所述AGC工作模式为自动增益控制工作模式;EDFA切换模块,用于将EDFA的工作模式切换到AGC工作模式,开泵过程结束。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/754,912 US10686525B2 (en) | 2015-08-25 | 2015-12-18 | Control method and system for cascade hybrid amplifier |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510528840.XA CN105207719B (zh) | 2015-08-25 | 2015-08-25 | 级联Hybrid放大器的控制方法及系统 |
CN201510528840.X | 2015-08-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017031876A1 true WO2017031876A1 (zh) | 2017-03-02 |
Family
ID=54955190
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2015/097825 WO2017031876A1 (zh) | 2015-08-25 | 2015-12-18 | 级联hybrid放大器的控制方法及系统 |
Country Status (3)
Country | Link |
---|---|
US (1) | US10686525B2 (zh) |
CN (1) | CN105207719B (zh) |
WO (1) | WO2017031876A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107994449B (zh) * | 2017-12-20 | 2019-10-11 | 武汉电信器件有限公司 | 基于fpga的可配置掺铒光纤放大器ip核 |
US11824581B2 (en) * | 2021-08-11 | 2023-11-21 | Ciena Corporation | Turn-up procedure for local and remote amplifiers in an optical system |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1490941A (zh) * | 2002-10-14 | 2004-04-21 | 华为技术有限公司 | 增益谱可控的喇曼光纤放大器及其控制方法 |
US6888670B2 (en) * | 2002-02-23 | 2005-05-03 | Electronics And Telecommunications Research Institute | Hybrid-type low-noise dispersion compensating optical fiber amplifier |
CN102843192A (zh) * | 2012-09-05 | 2012-12-26 | 武汉光迅科技股份有限公司 | 混合光纤放大器及其增益、增益斜率的调整方法及装置 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3904835B2 (ja) * | 2001-01-29 | 2007-04-11 | 株式会社日立製作所 | 光増幅器、光ファイバラマン光増幅器、及び光システム |
JP4007812B2 (ja) * | 2002-01-18 | 2007-11-14 | 富士通株式会社 | ラマン増幅器および波長多重光通信システム、並びに、ラマン増幅の制御方法 |
CN2631132Y (zh) * | 2003-07-03 | 2004-08-04 | 复旦大学 | 一种混合型宽带光纤放大器 |
US8767285B2 (en) * | 2008-10-23 | 2014-07-01 | Telefonaktiebolaget L M Ericsson (Publ) | Method and apparatus for channel power depletion compensation for hybrid distributed Raman amplifier-Erbium doped fiber amplifier |
CN102307068B (zh) * | 2011-06-24 | 2015-04-01 | 武汉光迅科技股份有限公司 | 一种实现目标拉曼增益锁定的方法及其拉曼光纤放大器 |
JP6075035B2 (ja) * | 2012-11-29 | 2017-02-08 | 富士通株式会社 | ラマン増幅器 |
CN103904550B (zh) * | 2012-12-25 | 2017-04-26 | 昂纳信息技术(深圳)有限公司 | 一种带有增益自动控制装置的rfa和edfa混合光放大器及其控制方法 |
KR101489279B1 (ko) * | 2013-06-27 | 2015-02-04 | 주식회사 라이콤 | 자기 자동이득제어 분산형 라만증폭기의 자동이득제어방법 |
-
2015
- 2015-08-25 CN CN201510528840.XA patent/CN105207719B/zh active Active
- 2015-12-18 US US15/754,912 patent/US10686525B2/en active Active
- 2015-12-18 WO PCT/CN2015/097825 patent/WO2017031876A1/zh active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6888670B2 (en) * | 2002-02-23 | 2005-05-03 | Electronics And Telecommunications Research Institute | Hybrid-type low-noise dispersion compensating optical fiber amplifier |
CN1490941A (zh) * | 2002-10-14 | 2004-04-21 | 华为技术有限公司 | 增益谱可控的喇曼光纤放大器及其控制方法 |
CN102843192A (zh) * | 2012-09-05 | 2012-12-26 | 武汉光迅科技股份有限公司 | 混合光纤放大器及其增益、增益斜率的调整方法及装置 |
Also Published As
Publication number | Publication date |
---|---|
CN105207719B (zh) | 2017-06-27 |
US10686525B2 (en) | 2020-06-16 |
US20180241473A1 (en) | 2018-08-23 |
CN105207719A (zh) | 2015-12-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9797642B2 (en) | System and method for controlling an air conditioning system and an outdoor apparatus of the system | |
MX2020008318A (es) | Sistema, metodo y dispositivo de almacenamiento legible por computadora para controlar la fuente de luz laser del dispositivo de litotricia. | |
WO2017031876A1 (zh) | 级联hybrid放大器的控制方法及系统 | |
JP2003078371A (ja) | 光ファイバ増幅器の自動利得制御装置 | |
WO2018113323A1 (zh) | 一种机组断电自动快速启动方法、系统及空调 | |
US11239628B2 (en) | Method for realizing precise target gain control for hybrid fibre amplifier, and hybrid fibre amplifier | |
RU2013107962A (ru) | Система управления подавлением вибрации для электроприводного транспортного средства и способ подавления вибрации для него | |
CN103473526A (zh) | 模具与夹具配对状态的二维码识别方法 | |
CN101377666B (zh) | 大功率激光器的控制方法 | |
CN105068355B (zh) | 一种单级多泵光纤放大器的控制系统和控制方法 | |
SE0602059L (sv) | Automatisk uppskattning av glapp | |
CN101764345B (zh) | 一种激光器 | |
RU2012117116A (ru) | Устройство ввода и способ масштабирования объекта с помощью устройства ввода | |
CN114279153A (zh) | 冰箱防凝露加热控制方法、设备、装置及加热器组 | |
CN103825651B (zh) | 光模块的光功率调测算法 | |
CN203981191U (zh) | 一种纠偏系统的光电传感器 | |
CN103607243B (zh) | 一种不区分模式的前馈控制方法和装置 | |
RU2014152793A (ru) | Способы и система для перехода в резервный режим обратной связи вспомогательного контура | |
JP2018099692A (ja) | レーザ加工装置及びレーザ加工方法 | |
GB2602423A (en) | Battery water pump control method, battery controller and battery | |
CN104505701A (zh) | 一种高功率激光器设置功率标定方法 | |
WO2020037860A1 (zh) | 调节脉冲激光器输出功率的方法、装置以及脉冲激光器 | |
JPS62104089A (ja) | レ−ザ出力制御装置 | |
CN105630042A (zh) | 一种自适应海拔的蒸柜控制方法和系统 | |
CN106647619B (zh) | 伺服驱动器主轴位置的快速设定方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15902144 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15754912 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15902144 Country of ref document: EP Kind code of ref document: A1 |