WO2017030407A1 - 모터 구동장치 및 이를 구비하는 홈 어플라이언스 - Google Patents

모터 구동장치 및 이를 구비하는 홈 어플라이언스 Download PDF

Info

Publication number
WO2017030407A1
WO2017030407A1 PCT/KR2016/009148 KR2016009148W WO2017030407A1 WO 2017030407 A1 WO2017030407 A1 WO 2017030407A1 KR 2016009148 W KR2016009148 W KR 2016009148W WO 2017030407 A1 WO2017030407 A1 WO 2017030407A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
output current
inverter
arm switching
terminal voltage
Prior art date
Application number
PCT/KR2016/009148
Other languages
English (en)
French (fr)
Inventor
정한수
장호용
조석희
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of WO2017030407A1 publication Critical patent/WO2017030407A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/18Estimation of position or speed
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F37/00Details specific to washing machines covered by groups D06F21/00 - D06F25/00
    • D06F37/30Driving arrangements 
    • D06F37/304Arrangements or adaptations of electric motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/06Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter
    • H02P3/18Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing an ac motor
    • H02P3/22Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing an ac motor by short-circuit or resistive braking
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/20Arrangements for starting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/24Arrangements for stopping
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2103/00Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers
    • D06F2103/02Characteristics of laundry or load
    • D06F2103/04Quantity, e.g. weight or variation of weight
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2103/00Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers
    • D06F2103/24Spin speed; Drum movements
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2103/00Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers
    • D06F2103/26Imbalance; Noise level
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2103/00Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers
    • D06F2103/44Current or voltage
    • D06F2103/46Current or voltage of the motor driving the drum
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2105/00Systems or parameters controlled or affected by the control systems of washing machines, washer-dryers or laundry dryers
    • D06F2105/46Drum speed; Actuation of motors, e.g. starting or interrupting
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2105/00Systems or parameters controlled or affected by the control systems of washing machines, washer-dryers or laundry dryers
    • D06F2105/46Drum speed; Actuation of motors, e.g. starting or interrupting
    • D06F2105/48Drum speed
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2105/00Systems or parameters controlled or affected by the control systems of washing machines, washer-dryers or laundry dryers
    • D06F2105/58Indications or alarms to the control system or to the user
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F34/00Details of control systems for washing machines, washer-dryers or laundry dryers
    • D06F34/14Arrangements for detecting or measuring specific parameters
    • D06F34/16Imbalance
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F34/00Details of control systems for washing machines, washer-dryers or laundry dryers
    • D06F34/14Arrangements for detecting or measuring specific parameters
    • D06F34/18Condition of the laundry, e.g. nature or weight
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers

Definitions

  • the present invention relates to a motor drive device and a home appliance having the same. More particularly, the present invention relates to a motor drive device and a home appliance including the same in which a motor is stopped in a sensorless motor drive device. will be.
  • the motor drive device is a device for driving a motor having a rotor for rotating motion and a stator wound with a coil.
  • the motor driving apparatus may be classified into a sensor type motor driving apparatus using a sensor and a sensorless type motor driving apparatus without a sensor.
  • An object of the present invention is to provide a motor drive device and a home appliance having the same that can easily determine whether the motor is stopped in the sensorless motor drive device.
  • the inverter converts the stored power into AC power and outputs the converted AC power to the motor
  • the DC stage voltage detector for detecting the voltage of the DC stage capacitor, and detects the output current flowing between the DC stage capacitor and the inverter.
  • the bootstrap operation is performed for the gate terminal of the phase arm switching element of the inverter, and during the first period, the dc terminal voltage detection unit On the basis of an output current detected from the detected dc terminal voltage, or the output current detecting unit which determines whether the stop of the motor.
  • the motor drive device for achieving the above object is provided with a dc terminal capacitor for storing a DC power source, a plurality of phase arm switching element and the lower arm switching element, by the switching operation,
  • the inverter converts the power stored in the capacitor into an AC power and outputs the converted AC power to the motor
  • the dc stage voltage detector for detecting the voltage of the dc stage capacitor, and the output flowing between the dc stage capacitor and the inverter and flowing to the motor.
  • a home appliance for achieving the above object, and has a motor, a display, a dc stage capacitor for storing a direct current power source, a plurality of phase arm switching element and the lower arm switching element, switching operation Is arranged between an inverter for converting the power stored in the dc terminal capacitor to an AC power and outputting the converted AC power to the motor, a dc terminal voltage detector for detecting the voltage of the dc terminal capacitor, and a dc terminal capacitor and the inverter.
  • An output current detection unit for detecting an output current flowing through the motor, and a control unit for controlling the inverter based on the output current, wherein the control unit controls the power generation braking to be performed to stop the motor, and then performs the power generation braking.
  • a bootstrap operation for the gate terminal of the upper arm switching element of the inverter is performed, and the first During the period, it is determined whether the motor is stopped based on the dc terminal voltage detected by the dc terminal voltage detector or the output current detected by the output current detector.
  • a motor drive device and a home appliance having the same include a dc stage capacitor storing a DC power source, a plurality of upper arm switching elements and a lower arm switching element.
  • An inverter that converts the power stored in the capacitor into an AC power source and outputs the converted AC power to the motor, a dc end voltage detector that detects the voltage of the dc end capacitor, and an output current flowing between the dc end capacitor and the inverter And an output current detecting unit for detecting the power supply unit, and a control unit for controlling the inverter based on the output current.
  • the control unit controls the power generation braking to be performed to stop the motor, and after the power generation braking is performed, During the first period, the bootstrap operation for the gate terminal of the phase arm switching element of the inverter is performed, and during the first period, By determining whether the motor is stopped or not based on the dc terminal voltage detected by the pressure detector or the output current detected by the output current detector, it is possible to easily determine whether the motor is stopped in the sensorless motor driving apparatus.
  • a motor drive device and a home appliance having the same having the same according to another embodiment of the present invention
  • the dc stage capacitor for storing the DC power, a plurality of phase arm switching element and the lower arm switching element, and the switching operation
  • the inverter converts the power stored in the capacitor into an AC power and outputs the converted AC power to the motor
  • the dc stage voltage detector for detecting the voltage of the dc stage capacitor, and the output flowing between the dc stage capacitor and the inverter and flowing to the motor.
  • An output current detection unit for detecting current and a control unit for controlling the inverter based on the output current, wherein the control unit has a change amount of the dc terminal voltage detected by the dc terminal voltage detection unit when the motor is stopped and restarted.
  • the motor is rotating when the value is equal to or greater than a predetermined value or the peak value of the dc terminal voltage detected by the dc terminal voltage detector is equal to or greater than the first level. And determining, by controlling so as to stop the motor, so that the motor driving apparatus of a sensor-less manner may simply determine whether the stop of the motor.
  • FIG. 1 illustrates an example of an internal block diagram of a motor driving apparatus according to an embodiment of the present invention.
  • FIG. 2 is an example of an internal circuit diagram of the motor driving device of FIG. 1.
  • FIG. 3 is an internal block diagram of the inverter controller of FIG. 2.
  • FIG. 4 is an enlarged circuit diagram of the inverter of FIG. 2.
  • 5A to 5E are views for motor restart after motor stop.
  • FIG. 6 is a flowchart illustrating a method of operating a motor driving apparatus according to an exemplary embodiment of the present invention.
  • FIG. 7A to 11B are views referred to for describing the operating method of FIG. 6.
  • FIG. 12 is a perspective view illustrating a laundry treatment device as an example of a home appliance according to an exemplary embodiment of the present invention.
  • FIG. 13 is an internal block diagram of the laundry treatment machine of FIG.
  • FIG. 14 is a diagram illustrating a configuration of an air conditioner which is another example of a home appliance according to an embodiment of the present invention.
  • FIG. 15 is a schematic diagram of the outdoor unit and the indoor unit of FIG. 14.
  • FIG. 16 is a perspective view illustrating a refrigerator that is another example of a home appliance according to an exemplary embodiment of the present invention.
  • FIG. 17 is a view schematically illustrating the configuration of the refrigerator of FIG. 16.
  • module and “unit” for components used in the following description are merely given in consideration of ease of preparation of the present specification, and do not impart any particular meaning or role by themselves. Therefore, the “module” and “unit” may be used interchangeably.
  • the motor driving apparatus described herein estimates the rotor position of the motor by a sensorless method, which is not provided with a position sensing unit such as a hall sensor that senses the rotor position of the motor. It can be a motor drive.
  • a sensorless motor drive device will be described.
  • the motor drive device 220 may be referred to as a motor drive unit.
  • FIG. 1 illustrates an example of an internal block diagram of a motor driving apparatus according to an exemplary embodiment of the present invention
  • FIG. 2 illustrates an example of an internal circuit diagram of the motor driving apparatus of FIG. 1.
  • the motor driving apparatus 220 is for driving a motor in a sensorless manner, and may include an inverter 420 and an inverter controller 430. have.
  • the motor driving apparatus 220 may include a converter 410, a dc terminal voltage detector B, a smoothing capacitor C, and an output current detector E.
  • the driver 220 may further include an input current detector A, a reactor L, and the like.
  • the inverter controller 430 in the motor driving apparatus 220 controls the power generation braking to be performed to stop the motor 230, and after the power generation braking is performed, the motor 230 is started.
  • a bootstrap operation for the gate terminal of the phase arm switching element of the inverter 420 is performed, and during the first period, the dc terminal voltage or the output current detector detected by the dc terminal voltage detector B.
  • the output current detected in (E) it may be determined whether the motor 230 is stopped. This makes it possible to easily grasp whether the motor is stopped in the sensorless motor drive device.
  • the inverter controller 430 determines whether the motor 230 is stopped during the first period during which the bootstrap is performed, so that a separate time for determining whether the motor is stopped is not required.
  • the inverter control unit 430 the amount of change in the dc terminal voltage detected by the dc terminal voltage detection unit B is equal to or greater than the first predetermined value, or the peak value of the dc terminal voltage detected by the dc terminal voltage detection unit B is first.
  • the level is higher than or equal to that, it may be determined that the motor 230 is rotating, and control may be performed to perform power generation braking for stopping the motor 230 again.
  • the inverter control unit 430 the amount of change in the dc terminal voltage detected by the dc terminal voltage detector B is less than the first predetermined value, the peak value of the dc terminal voltage detected by the dc terminal voltage detector B is the first value. If it is less than the level, it is determined that the motor 230 is stopped, and after the first period, the motor 230 may be controlled to be aligned.
  • the inverter controller 430 when the amount of change in the output current detected by the output current detector E is equal to or greater than the second predetermined value, or when the peak value of the output current detected by the output current detector E is equal to or greater than the second level, It is determined that the motor 230 is rotating, and control to perform power generation braking for stopping the motor 230 again.
  • the motor 230 may be stopped, and after the first period, the motor 230 may be controlled to be aligned.
  • Inverter control unit 430 in motor drive device 220 after restarting the motor 230, the amount of change in the dc terminal voltage detected by the dc terminal voltage detector (B) upon restart.
  • the motor 230 is determined to be rotating and the motor 230 is controlled to be stopped. Can be. This makes it possible to easily grasp whether the motor is stopped in the sensorless motor drive device.
  • the reactor L is disposed between the commercial AC power supplies 405 and v s and the converter 410 to perform power factor correction or boost operation.
  • the reactor L may perform a function of limiting harmonic currents due to the fast switching of the converter 410.
  • the input current detector A can detect the input current i s input from the commercial AC power supply 405. To this end, a CT (current trnasformer), a shunt resistor, or the like may be used as the input current detector A.
  • FIG. The detected input current i s may be input to the inverter controller 430 as a discrete signal in the form of a pulse.
  • the converter 410 converts the commercial AC power supply 405 which passed through the reactor L into DC power, and outputs it.
  • the commercial AC power supply 405 is shown as a single phase AC power supply in the figure, it may be a three phase AC power supply.
  • the internal structure of the converter 410 also varies according to the type of the commercial AC power source 405.
  • the converter 410 may be formed of a diode or the like without a switching element, and may perform rectification without a separate switching operation.
  • diodes in the case of single phase AC power, four diodes may be used in the form of a bridge, and in the case of three phase AC power, six diodes may be used in the form of a bridge.
  • the converter 410 for example, a half-bridge type converter that is connected to two switching elements and four diodes may be used, and in the case of a three-phase AC power supply, six switching elements and six diodes may be used. .
  • the converter 410 includes a switching element
  • the boosting operation, the power factor improvement, and the DC power conversion may be performed by the switching operation of the switching element.
  • Smoothing capacitor C smoothes and stores the input power.
  • one element is illustrated as the smoothing capacitor C, but a plurality of elements may be provided to ensure device stability.
  • a direct current power may be input directly, for example, a direct current power from a solar cell is supplied to the smoothing capacitor (C). It may be input directly or DC / DC converted.
  • C smoothing capacitor
  • the dc end voltage detector B may detect a dc end voltage Vdc that is both ends of the smoothing capacitor C.
  • the dc terminal voltage detector B may include a resistor, an amplifier, and the like.
  • the detected dc terminal voltage Vdc may be input to the inverter controller 430 as a discrete signal in the form of a pulse.
  • the inverter 420 includes a plurality of inverter switching elements, converts the smoothed DC power supply Vdc into three-phase AC power supplies va, vb and vc of a predetermined frequency by turning on / off an operation of the switching device, It may output to the synchronous motor 230.
  • Inverter 420 is a pair of upper arm switching elements Sa, Sb, Sc and lower arm switching elements S'a, S'b, S'c, which are connected in series with each other, and a total of three pairs of upper and lower arms
  • the switching elements are connected in parallel with each other (Sa & S'a, Sb & S'b, Sc & S'c).
  • Diodes are connected in anti-parallel to each of the switching elements Sa, S'a, Sb, S'b, Sc, and S'c.
  • the switching elements in the inverter 420 perform on / off operations of the respective switching elements based on the inverter switching control signal Sic from the inverter controller 430. As a result, the three-phase AC power supply having the predetermined frequency is output to the three-phase synchronous motor 230.
  • the inverter controller 430 may control a switching operation of the inverter 420 based on a sensorless method. To this end, the inverter controller 430 may receive an output current idc detected by the output current detector E. FIG.
  • the inverter controller 430 outputs an inverter switching control signal Sic to the inverter 420 to control the switching operation of the inverter 420.
  • the inverter switching control signal Sic is a switching control signal of the pulse width modulation method PWM, and is generated and output based on the output current idc detected by the output current detector E.
  • FIG. A detailed operation of the output of the inverter switching control signal Sic in the inverter controller 430 will be described later with reference to FIG. 3.
  • the output current detector E may detect the output current idc flowing between the three-phase motors 230.
  • the output current detector E may be disposed between the dc terminal capacitor C and the inverter 420 to detect a current flowing through the motor.
  • the output current detector E may include one shunt resistor element Rs.
  • the output current detection unit E uses the one shunt resistor element Rs, and is a phase which is the output current idc flowing to the motor 230 at time division when the lower arm switching element of the inverter 420 is turned on. Phase current can be detected.
  • the detected output current idc may be applied to the inverter controller 430 as a discrete signal in the form of a pulse, and the inverter switching control signal Sic is generated based on the detected output current idc. do.
  • the detected output current (idc) is the three-phase output current (ia, ib, ic).
  • the three-phase motor 230 is provided with a stator and a rotor, each phase AC power of a predetermined frequency is applied to the coil of the stator of each phase (a, b, c phase), the rotor rotates Will be
  • Such a motor 230 is, for example, a Surface-Mounted Permanent-Magnet Synchronous Motor (SMPMSM), an Interidcr Permanent Magnet Synchronous Motor (IPMSM), and a synchronous clock. Synchronous Reluctance Motor (Synrm) and the like.
  • SMPMSM and IPMSM are permanent magnet synchronous motors (PMSMs) with permanent magnets, and synrms have no permanent magnets.
  • FIG. 3 is an internal block diagram of the inverter controller of FIG. 2.
  • the inverter controller 430 may include an axis converter 310, a speed calculator 320, a current command generator 330, a voltage command generator 340, an axis converter 350, and The switching control signal output unit 360 may be included.
  • the axis converter 310 extracts each phase current ia, ib, ic from the output current idc detected by the output current detector E, and extracts the extracted phase currents ia, ib, ic. Can be converted into two-phase currents i ⁇ and i ⁇ of the stationary coordinate system.
  • the axis conversion unit 310 can convert the two-phase current (i ⁇ , i ⁇ ) of the stationary coordinate system into a two-phase current (id, iq) of the rotary coordinate system.
  • the speed calculating part 320 is based on the position value (based on the output current idc detected by the output current detecting part E). ), The derivative of the estimated position, ) Can be calculated.
  • the current command generation unit 330 has a calculation speed ( ) And the current command value i * q based on the speed command value ⁇ * r .
  • the current command generation unit 330 has a calculation speed ( ) Based on the difference between the speed command value ⁇ * r and the PI controller 335, the PI control may be performed, and the current command value i * q may be generated.
  • the q-axis current command value i * q is illustrated as a current command value, it is also possible to generate
  • the value of the d-axis current command value i * d may be set to zero.
  • the current command generation unit 330 may further include a limiter (not shown) for restricting the level so that the current command value i * q does not exceed the allowable range.
  • the voltage command generation unit 340 includes the d-axis and q-axis currents i d and i q which are axis-converted in the two-phase rotational coordinate system by the axis conversion unit, and the current command value (such as the current command generation unit 330). Based on i * d , i * q ), the d-axis and q-axis voltage command values v * d and v * q are generated.
  • the voltage command generation unit 340 performs the PI control in the PI controller 344 based on the difference between the q-axis current i q and the q-axis current command value i * q , and q
  • the axial voltage setpoint v * q can be generated.
  • the voltage command generation unit 340 performs the PI control in the PI controller 348 based on the difference between the d-axis current i d and the d-axis current command value i * d , and the d-axis voltage.
  • the setpoint (v * d ) can be generated.
  • the voltage command generation unit 340 may further include a limiter (not shown) for restricting the level so that the d-axis and q-axis voltage command values (v * d , v * q ) do not exceed the allowable range. .
  • the generated d-axis and q-axis voltage command values v * d and v * q are input to the axis conversion unit 350.
  • the axis conversion unit 350 may be a position calculated by the speed calculating unit 320 ( ), And the d-axis and q-axis voltage command values (v * d , v * q ) are input, and axis conversion is performed.
  • the axis conversion unit 350 converts from a two-phase rotation coordinate system to a two-phase stop coordinate system. At this time, the position calculated by the speed calculating unit 320 ( ) Can be used.
  • the axis conversion unit 350 performs a transformation from the two-phase stop coordinate system to the three-phase stop coordinate system. Through this conversion, the axis conversion unit 1050 outputs the three-phase output voltage command values v * a, v * b, v * c.
  • the switching control signal output unit 360 generates the switching control signal Sic for the inverter based on the pulse width modulation (PWM) method based on the three-phase output voltage command values (v * a, v * b, v * c). To print.
  • PWM pulse width modulation
  • the output inverter switching control signal Sic may be converted into a gate driving signal by a gate driver (not shown) and input to the gate of each switching element in the inverter 420.
  • a gate driver not shown
  • each of the switching elements Sa, S'a, Sb, S'b, Sc, and S'c in the inverter 420 performs a switching operation.
  • the switching control signal output unit 360 turns on the upper arm switching elements Sa, Sb, and Sc of the inverter 420 or the inverter 420 so that power generation braking is performed when the motor 230 is stopped.
  • the switching control signal which turns off all of the lower arm switching elements S'a, S'b, and S'c can be output.
  • the switching control signal output unit 360 the so that the bootstrap operation for the gate terminal of the upper arm switching element of the inverter 420 is performed. After turning off the upper and lower switching elements Sa, Sb and Sc and the lower arm switching elements S'a, S'b and S'c, after a predetermined time, the upper and lower switching elements Sa and Sb of the inverter 420 are turned off. It is possible to output a switching control signal which turns off Sc and turns on the lower arm switching elements S'a, S'b and S'c.
  • the current command generator 330 may generate a current command value for motor rotor alignment during the motor rotor alignment section after the bootstrap operation.
  • any one of the upper arm switching elements Sa, Sb, and Sc of the inverter 420 is turned on, and the lower arm switching elements S'a, S'b, It is possible to output a switching control signal, in which the two-phase switching element of S'c) is turned on.
  • the current command generation unit 330 may output a switching control signal, such that the motor speed continuously increases or the motor speed is changed in the motor acceleration section or the motor normal operation section after the alignment section.
  • the rotational speed of the motor 230 increases in the motor acceleration section, or the rotational speed of the motor 230 varies in the motor normal operation section.
  • FIG. 4 is an enlarged circuit diagram of the inverter of FIG. 2.
  • the inverter 420 is a phase arm switching element connected in series with each other between both ends (ab stage) of the dc stage to output three-phase currents (ia, ib, ic) to the motor 230. (Sa, Sb, Sc) and lower arm switching elements S'a, S'b, S'c.
  • the upper and lower arm switching elements Sa, Sb and Sc and the lower arm switching elements S'a, S'b and S'c are paired, and a total of three pairs of upper and lower arm switching elements are parallel to each other (Sa & S'a). , Sb & S'b, Sc & S'c).
  • an output current detector E may be disposed between the dc terminal capacitor C and the inverter 420 in order to detect the output current idc flowing in the motor 230.
  • the output current detector E may include one shunt resistor element Rs.
  • each switching element in the inverter 420 may include, for example, an insulated gate bipolar transistor (IGBT).
  • IGBT insulated gate bipolar transistor
  • the gate driving signal may be supplied by the gate driver.
  • a gate capacitor for supplying the operating power of the gate driver is used.
  • the gate driver is operated, whereby the switching operation of the switching elements Sa, Sb, Sc, S'a, S'b, and S'c is performed. Can be performed.
  • 5A to 5E are views for motor restart after motor stop.
  • FIG. 5A (a) illustrates that the motor 230 rotates at a predetermined speed ⁇ r1 in the clockwise direction
  • FIG. 5A (b) illustrates that the motor 230 stops
  • FIG. 5A (c) illustrates that the motor 230 restarts and rotates at a predetermined speed? r2 in the clockwise direction.
  • 5B to 5C are diagrams illustrating a method of stopping the motor 230.
  • FIG. 5B illustrates that the upper arm switching elements Sa, Sb, and Sc of the inverter 420 are turned off, and the lower arm switching elements S'a, S'b, and S'c are turned off to stop the motor 230. Illustrates that everything is on. That is, according to the switching control signal Sic of the zero vector, the inverter 420 operates, and as the current flows, the power Pa is consumed, and the motor 230 stops after a predetermined time. This method may be called power generation braking.
  • FIG. 5C shows that the upper arm switching elements Sa, Sb, and Sc of the inverter 420 are all turned on, and the lower arm switching elements S'a, S'b, and S'c are turned on to stop the motor 230. Illustrates that all are off. That is, according to the switching control signal Sic of the zero vector, the inverter 420 operates, and as the current flows, the power Pa is consumed, and the motor 230 stops after a predetermined time.
  • the phase arm switching elements Sa, Sb, and Sc of the inverter 420 and the motor 230 form a current path 2, and thus, between the dc terminal capacitor C and the inverter 420.
  • the output current detector E which is disposed, cannot detect the output current.
  • FIG. 5D illustrates the actual motor 230 stopped by generating braking
  • FIG. 5E illustrates the actual motor 230 rotating despite generating braking.
  • the motor 230 can be restarted immediately after the motor stops, and at the time of restarting, in particular, during the period during which the bootstrap charging is performed, using the rising rate of the dc terminal voltage or the peak value of the dc terminal voltage, Determine if it is stopped.
  • this scheme when the motor is stopped and restarted, no additional time is consumed, and it is possible to simply determine whether the motor 230 is stopped. This will be described with reference to FIG. 6 and below.
  • FIG. 6 is a flowchart illustrating a method of operating a motor driving apparatus according to an exemplary embodiment of the present invention
  • FIGS. 7A to 11B are views referred to for describing the operating method of FIG. 6.
  • the inverter controller 430 controls the motor 230 to rotate (S610).
  • the inverter controller 430 controls to turn on the lower arm switching elements S'a, S'b, and S'c to stop the motor 230 (S615).
  • the inverter controller 430 performs a bootstrap operation for the gate terminal of the upper arm switching element of the inverter 420 during the first period for starting the motor 230. To control (S625).
  • the output current detection unit E detects the output current using the shunt resistor element Rs during the first period (S630).
  • the dc terminal voltage detection unit B detects the dc terminal voltage during the first period (S635).
  • the inverter controller 430 determines whether the motor 230 is stopped based on the dc terminal voltage detected by the dc terminal voltage detector B or the output current detected by the output current detector E ( S640).
  • the inverter controller 430 controls the motor 230 to be started (S650).
  • the inverter controller 430 controls to turn on the lower arm switching elements S'a, S'b, and S'c to stop the motor 230. (S655).
  • FIG. 7A to 7C are views referred to for describing the operation of a pair of switching elements inside the inverter of FIG. 4.
  • FIG. 7A is a circuit diagram showing the gate drivers 820a and 820b, the gate capacitors Cga and Cgb, the pair of switching elements Sa and S'a, and the shunt resistor element Rs.
  • a pair of switching elements Sa and S'a can be connected in series. That is, the upper arm switching element Sa can be connected between the a stage and the c stage, and the lower arm switching element S'a can be connected between the c stage and the e stage.
  • the resistance element Rs can be connected between the e stage and the b stage.
  • the e stage may be a ground terminal GND.
  • the resistive element Rs is used for output current detection, as described above, and is disposed between the dc terminal capacitor C and the inverter 420.
  • output terminals of the gate drivers 820a and 820b may be connected to the gate terminals of the pair of switching elements Sa and S'a, respectively.
  • gate capacitors Cga and Cgb for supplying driving voltages of the gate drivers 820a and 820b may be connected between input terminals and both ends of the gate drivers 820a and 820b, respectively.
  • the gate driving voltages 821a and 821b may be supplied to the gate capacitors Cga and Cgb, respectively.
  • the gate driving voltages 821a and 821b may be approximately 15V.
  • FIG. 7B illustrates a method of charging the gate capacitor 821b of the gate driver 820b corresponding to the lower arm switching element S'a.
  • the charging method of the gate capacitor 821b of the gate driver 820b corresponding to the lower arm switching element S'a may be controlled by the inverter controller 430.
  • the inverter controller 430 before driving the motor 230, within the first period of time, the upper arm switching elements Sa, Sb, and Sc and the lower arm switching elements S'a and S'b in the inverter 420.
  • the gate capacitor connected to both ends of the gate driver corresponding to the lower arm switching elements S'a, S'b, and S'c can be controlled to charge the gate driving voltage. Can be.
  • the gate driving voltage 821a is charged to the gate capacitor Cga by using a bootstrap method.
  • FIG. 7C is a diagram illustrating a method of charging the gate capacitor 821a of the gate driver 820a corresponding to the phase arm switching element Sa.
  • the charging method of the gate capacitor 821a of the gate driver 820a corresponding to the phase-arm switching element Sa may be controlled by the inverter controller 430.
  • the inverter controller 430 before driving the motor 230, within the first period of time, the upper arm switching elements Sa, Sb, and Sc and the lower arm switching elements S'a and S'b in the inverter 420.
  • the lower arm switching elements S'a, S'b, and S'c of S'c are turned on to be connected to both ends of the gate driver corresponding to the upper arm switching elements Sa, Sb, and Sc.
  • the gate capacitor may be controlled to charge the gate driving voltage.
  • the gate capacitor of the gate driver corresponding to the lower arm switching element of FIG. 7B is preferably charged, the gate capacitor of the gate driver corresponding to the lower arm switching element of FIG. 7C is preferably performed, and vice versa.
  • the period P1 in which the gate capacitor charging is performed is performed before driving the motor, as shown in FIG. 9. Thereafter, the motor alignment section P2, the motor speed increasing section P3, the normal driving section P4, and the like may be performed.
  • the voltage Vcga charged in the gate capacitor Cga is maintained at a predetermined level or more.
  • the lower arm switching elements S'a, S'b, and S'c of the inverter 430 are turned on, and the lower arm switching elements S 'of the inverter 430 as shown in FIG. 7B are turned on.
  • a, S'b, and S'c are turned off, a current path is formed in the motor 230 by FIG. 7C, and power consumption occurs in the motor 230 as in power generation braking.
  • the current component due to the counter electromotive force generated in the motor 230 can flow to the dc terminal capacitor C as shown in FIG. 8A.
  • the inverter controller 430 detects that the change amount ⁇ V of the dc terminal voltage detected by the dc terminal voltage detector B is equal to or greater than the first predetermined value ⁇ Vref or is detected by the dc terminal voltage detector B.
  • the peak value Vdcpk of the dc terminal voltage is equal to or greater than the first level Vdcref, it may be determined that the motor 230 is rotating, and control may be performed to perform power generation braking for stopping the motor 230 again.
  • the inverter controller 430 may determine that the change amount ⁇ i of the output current detected by the output current detector E is equal to or greater than a second predetermined value, or the output current detected by the output current detector E. When the peak value is greater than or equal to the second level iLe1, it may be determined that the motor 230 is rotating, and control may be performed to perform power generation braking for stopping the motor 230 again.
  • the inverter controller 430 detects that the change amount ⁇ V of the dc end voltage detected by the dc end voltage detector B is less than the first predetermined value ⁇ Vref and is detected by the dc end voltage detector B.
  • the peak value Vdcpk of the dc terminal voltage is less than the first level Vdcref, it is determined that the motor 230 is stopped, and after the first period Pa1, the motor 230 is aligned in the alignment period Pb1.
  • the controller may be controlled to perform the motor speed increase section Pc, the normal operation section Pd1, and the like.
  • the inverter controller 430 has a change amount of the output current detected by the output current detector E less than the second predetermined value, and the peak value of the output current detected by the output current detector E is zero. If it is less than two levels iLe1, it is determined that the motor 230 is stopped, and after the first period, the motor 230 is controlled to be aligned, and after that, the motor speed increase section Pc, and the normal operation section ( Pd1) and the like can be controlled.
  • 11A to 11B are views illustrating various information displayed on the display unit depending on whether the motor is stopped.
  • the inverter control unit 430 displays the restart acceleration performance message 1310 as shown in FIG. 11A.
  • the control unit 130 may control the output to 130.
  • the inverter controller 430 may generate a restart message 1320 after the motor stops, as shown in FIG. 11B.
  • the display 130 may be controlled to be output.
  • the user can easily recognize the restart execution mode or the restart execution mode according to whether the motor is stopped.
  • FIG. 12 is a perspective view showing a laundry treatment machine according to an embodiment of the present invention.
  • the laundry treatment machine 100a is a laundry machine of a front load type in which a cloth is inserted into a washing tank in a front direction.
  • the laundry treatment apparatus of the front type is a concept including a washing machine in which a cloth is inserted to perform washing, rinsing and dehydration, or a dryer in which a wet cloth is inserted to perform drying.
  • a washing machine will be described.
  • the laundry treatment apparatus 100a of FIG. 12 is a laundry tub laundry treatment apparatus, and includes a cabinet 110 forming an exterior of the laundry treatment apparatus 100a and a cabinet 110 that are supported by the cabinet 110.
  • the tub 120, the tub 120 is disposed inside the tub 120 is washed with cloth, the motor 130 for driving the washing tank 122, and the cabinet 110 is disposed outside the cabinet 110 It includes a washing water supply device (not shown) for supplying the wash water therein, and a drainage device (not shown) formed under the tub 120 to discharge the wash water to the outside.
  • a plurality of through holes 122A are formed in the washing tub 122 to allow the washing water to pass therethrough, and when the laundry is rotated, the laundry is lifted to a certain height and then lifted on the inner side of the washing tub 112 so as to fall by gravity. 124 may be deployed.
  • the cabinet 110 includes a cabinet main body 111, a cabinet cover 112 disposed at the front of the cabinet main body 111 and coupled thereto, and a control disposed at the upper side of the cabinet cover 112 and coupled with the cabinet main body 111.
  • the panel 115 and a top plate 116 disposed above the control panel 115 and coupled to the cabinet body 111 are included.
  • the cabinet cover 112 includes a fabric access hole 114 formed to allow the fabric to enter and exit, and a door 113 disposed to be rotatable from side to side to allow the fabric access hole 114 to be opened and closed.
  • the control panel 115 is provided with operation keys 117 for operating the operation state of the laundry processing apparatus 100a and a display device disposed on one side of the operation keys 117 and displaying an operation state of the laundry processing apparatus 100a ( 118).
  • the operation keys 117 and the display device 118 in the control panel 115 are electrically connected to a controller (not shown), and the controller (not shown) electrically controls each component of the laundry processing apparatus 100a. do. The operation of the controller (not shown) will be described later.
  • the washing tank 122 may be provided with an auto balance (not shown).
  • Auto balance (not shown) is to reduce the vibration caused by the eccentric amount of the laundry contained in the washing tank 122, it may be implemented as a liquid balance, ball balance and the like.
  • the laundry treatment apparatus 100a may further include a vibration sensor for measuring the vibration amount of the washing tank 122 or the vibration amount of the cabinet 110.
  • FIG. 13 is an internal block diagram of the laundry treatment machine of FIG.
  • the driving unit 220 is controlled by the control operation of the control unit 210, and the driving unit 220 drives the motor 230. Accordingly, the washing tank 122 is rotated by the motor 230.
  • the control unit 210 receives an operation signal from the operation key 1017 and operates. Accordingly, washing, rinsing, and dehydration strokes can be performed.
  • controller 210 may control the display 18 to display a washing course, a washing time, a dehydration time, a rinsing time, or a current operation state.
  • control unit 210 controls the drive unit 220, and the drive unit 220 controls the motor 230 to operate.
  • the drive unit 220 controls the motor 230 to operate.
  • a position sensing unit for sensing the rotor position of the motor is not provided. That is, the driving unit 220 controls the motor 230 by a sensorless method.
  • the driver 220 drives the motor 230, and an output current detector (E in FIG. 2) that detects an output current flowing through the inverter (not shown), the inverter controller (not shown), and the motor 230. And an output voltage detector (F in FIG. 2) for detecting the output voltage vo applied to the motor 230.
  • the driving unit 220 may be a concept that further includes a converter, which supplies a DC power input to an inverter (not shown).
  • the inverter control part 430 of FIG. 2 in the drive part 220 estimates the rotor position of the motor 230 based on the output current idc and the output voltage vo. Then, based on the estimated rotor position, the motor 230 is controlled to rotate.
  • the inverter control unit 430 of FIG. 2 generates a switching control signal (Sic of FIG. 2) of the pulse width modulation (PWM) method based on the output current idc and the output voltage vo, thereby inverting the inverter.
  • a switching control signal Sic of FIG. 2 of the pulse width modulation (PWM) method based on the output current idc and the output voltage vo, thereby inverting the inverter.
  • PWM pulse width modulation
  • the driving unit 220 may correspond to the motor driving device 220 of FIG. 1.
  • control unit 210 based on the output current (idc) flowing in the motor 230, it can detect the amount of quantity. For example, while the washing tub 122 rotates, the amount of quantity can be sensed based on the current value idc of the motor 230.
  • control unit 210 when detecting the amount of capacity, by using the stator resistance and inductance value of the motor measured in the motor alignment section, it is possible to accurately detect the amount of quantity.
  • control unit 210 may detect the unbalance (UB) of the washing tank 122, that is, the unbalance (UB) of the washing tank 122.
  • This eccentricity detection may be performed based on the ripple component of the output current (idc) flowing in the motor 230 or the rotational speed change amount of the washing tank 122.
  • control unit 210 by detecting the amount of capacity, by using the stator resistance and inductance value of the motor measured in the motor alignment section, it is possible to accurately detect the eccentric amount.
  • FIG. 14 is a diagram illustrating a configuration of an air conditioner which is another example of a home appliance according to an embodiment of the present invention.
  • the air conditioner 100b may include an indoor unit 31b and an outdoor unit 21b connected to the indoor unit 31b.
  • the indoor unit 31b of the air conditioner may be any of a stand type air conditioner, a wall-mounted air conditioner, and a ceiling type air conditioner, but the drawing illustrates the stand type indoor unit 31b.
  • the air conditioner 100b may further include at least one of a ventilation device, an air cleaning device, a humidifier, and a heater, and may operate in conjunction with the operation of the indoor unit and the outdoor unit.
  • the outdoor unit 21b includes a compressor (not shown) for receiving and compressing a refrigerant, an outdoor heat exchanger (not shown) for exchanging refrigerant and outdoor air, and an accumulator for extracting a gas refrigerant from the supplied refrigerant and supplying it to the compressor (not shown). And a four-way valve (not shown) for selecting a flow path of the refrigerant according to the heating operation.
  • a compressor for receiving and compressing a refrigerant
  • an outdoor heat exchanger for exchanging refrigerant and outdoor air
  • an accumulator for extracting a gas refrigerant from the supplied refrigerant and supplying it to the compressor (not shown).
  • a four-way valve (not shown) for selecting a flow path of the refrigerant according to the heating operation.
  • the outdoor unit 21b operates the compressor and the outdoor heat exchanger, and compresses or heat exchanges the refrigerant according to a setting to supply the refrigerant to the indoor unit 31b.
  • the outdoor unit 21b may be driven by the demand of the remote controller (not shown) or the indoor unit 31b. In this case, as the cooling / heating capacity is changed corresponding to the indoor unit being driven, the number of operation of the outdoor unit and the number of operation of the compressor installed in the outdoor unit may be changed.
  • the outdoor unit 21b supplies the compressed refrigerant to the connected indoor unit 310b.
  • the indoor unit 31b receives a coolant from the outdoor unit 21b and discharges cold air into the room.
  • the indoor unit 31b includes an indoor heat exchanger (not shown), an indoor fan (not shown), an expansion valve (not shown) in which the refrigerant supplied is expanded, and a plurality of sensors (not shown).
  • the outdoor unit 21b and the indoor unit 31b are connected by a communication line to transmit and receive data, and the outdoor unit and the indoor unit are connected to a remote controller (not shown) by wire or wirelessly and operate under the control of a remote controller (not shown). can do.
  • the remote controller (not shown) may be connected to the indoor unit 31b to input a user's control command to the indoor unit, and receive and display state information of the indoor unit. At this time, the remote control may communicate by wire or wirelessly according to the connection form with the indoor unit.
  • FIG. 15 is a schematic diagram of the outdoor unit and the indoor unit of FIG. 14.
  • the air conditioner 100b is largely divided into an indoor unit 31b and an outdoor unit 21b.
  • the outdoor unit 21b includes a compressor 102b that serves to compress the refrigerant, a compressor electric motor 102bb that drives the compressor, an outdoor side heat exchanger 104b that serves to radiate the compressed refrigerant, and an outdoor unit.
  • An outdoor blower 105b disposed at one side of the heat exchanger 104b and including an outdoor fan 105ab for promoting heat dissipation of the refrigerant and an electric motor 105bb for rotating the outdoor fan 105ab, and an expansion for expanding the condensed refrigerant;
  • the indoor unit 31b is an indoor side heat exchanger 109b disposed indoors to perform a cooling / heating function, and an indoor fan 109ab and an indoor side disposed on one side of the indoor side heat exchanger 109b to promote heat dissipation of the refrigerant.
  • the indoor blower 109b etc. which consist of the electric motor 109bb which rotates the fan 109ab are included.
  • At least one indoor side heat exchanger 109b may be installed.
  • the compressor 102b may be at least one of an inverter compressor and a constant speed compressor.
  • the air conditioner 100b may be configured as a cooler for cooling the room, or may be configured as a heat pump for cooling or heating the room.
  • the compressor 102b in the outdoor unit 21b of FIG. 14 may be driven by a motor driving device, such as FIG. 1, which drives the compressor motor 250b.
  • the indoor fan 109ab or the outdoor fan 105ab may be driven by a motor driving device, as shown in FIG. 1, which drives the indoor fan motor 109bb and the outdoor fan motor 150bb, respectively.
  • FIG. 16 is a perspective view illustrating a refrigerator that is another example of a home appliance according to an exemplary embodiment of the present invention.
  • the refrigerator 100c has a case 110c having an inner space partitioned into a freezer compartment and a refrigerator compartment, a freezer compartment door 120c that shields the freezer compartment, and a refrigerator compartment.
  • a rough appearance is formed by the refrigerating compartment door 140c.
  • the front surface of the freezing compartment door 120c and the refrigerating compartment door 140c is further provided with a door handle 121c protruding forward, so that the user easily grips and rotates the freezing compartment door 120c and the refrigerating compartment door 140c. Make it work.
  • the front of the refrigerator compartment door 140c may be further provided with a home bar 180c, which is a convenient means for allowing a user to take out a storage such as a beverage contained therein without opening the refrigerator compartment door 140c.
  • the front of the freezer compartment door 120c may be provided with a dispenser 160c, which is a convenience means for allowing the user to easily take out ice or drinking water without opening the freezer compartment door 120c, such a dispenser 160c.
  • An upper side of the control panel 210c may be further provided to control the driving operation of the refrigerator 100c and to show a state of the refrigerator 100c being operated on the screen.
  • dispenser 160c is illustrated as being disposed on the front surface of the freezer compartment door 120c, the present invention is not limited thereto, and the dispenser 160c may be disposed on the front side of the refrigerator compartment door 140c.
  • the inner upper portion of the freezer compartment (not shown) is an ice maker 190c for making water supplied using cold air in the freezer compartment, and an ice bank mounted inside the freezer compartment (not shown) so that the ice iced from the ice maker is iced and contained therein.
  • 195c may be further provided.
  • an ice chute (not shown) may be further provided to guide the ice contained in the ice bank 195c to fall into the dispenser 160c.
  • the control panel 210c may include an input unit 220c including a plurality of buttons, and a display unit 230c for displaying a control screen and an operation state.
  • the display unit 230c displays information such as a control screen, an operation state, and a temperature inside the refrigerator.
  • the display unit 230c may display a service type (eg, ice, water, or flake ice) of the dispenser, a set temperature of the freezer compartment, and a set temperature of the refrigerator compartment.
  • a service type eg, ice, water, or flake ice
  • the display unit 230c may be implemented in various ways, such as a liquid crystal display (LCD), a light emitting diode (LED), and an organic light emitting diode (OLED).
  • the display unit 230c may be implemented as a touch screen capable of performing the function of the input unit 220c.
  • the input unit 220c may include a plurality of operation buttons.
  • the input unit 220c may include a dispenser setting button (not shown) for setting a service type of the dispenser (ice cube, water, ice cubes, etc.) and a freezer compartment temperature setting button (not shown) for setting a freezer temperature. And, it may include a refrigerator compartment temperature setting button (not shown) for setting the freezer compartment temperature.
  • the input unit 220c may be implemented as a touch screen that can also perform the function of the display unit 230c.
  • the refrigerator according to the embodiment of the present invention is not limited to the double door type shown in the drawings, but is a one door type, a sliding door type, a curtain door type. (Curtain Door Type) and other forms.
  • FIG. 17 is a view schematically illustrating the configuration of the refrigerator of FIG. 16.
  • the refrigerator 100c is provided with a compressor 112c, a condenser 116c for condensing the refrigerant compressed by the compressor 112c, and a refrigerant condensed by the condenser 116c, and evaporated.
  • a freezer compartment evaporator 124c disposed in a freezer compartment (not shown) and a freezer compartment expansion valve 134c for expanding the refrigerant supplied to the freezer compartment evaporator 124c may be included.
  • each evaporator in the drawing, but illustrated as using one evaporator, it is also possible to use each evaporator in the refrigerating chamber and freezing chamber.
  • the refrigerator 100c is a three-way valve for supplying a refrigerator evaporator (not shown) arranged in the refrigerator compartment (not shown) and a refrigerant condensed in the condenser 116c to the refrigerator compartment evaporator (not shown) or the freezer compartment evaporator 124c. (Not shown) and a refrigerator compartment expansion valve (not shown) for expanding the refrigerant supplied to the refrigerator compartment evaporator (not shown).
  • the refrigerator 100c may further include a gas-liquid separator (not shown) in which the refrigerant passing through the evaporator 124c is separated into a liquid and a gas.
  • a gas-liquid separator (not shown) in which the refrigerant passing through the evaporator 124c is separated into a liquid and a gas.
  • the refrigerator 100c further includes a refrigerator compartment fan (not shown) and a freezer compartment 144c that suck cold air that has passed through the freezer compartment evaporator 124c and blow it into a refrigerator compartment (not shown) and a freezer compartment (not shown), respectively. can do.
  • compressor driving unit 113c for driving the compressor 112c a refrigerator compartment fan (not shown) and a refrigerator compartment fan driver (not shown) and a freezer compartment driver 145c for driving the freezer compartment 144c may be further included. have.
  • a damper (not shown) may be installed between the refrigerating compartment and the freezing compartment, and the fan (not shown) is one evaporator.
  • the cold air generated in the air may be forced to be supplied to the freezing compartment and the refrigerating compartment.
  • the compressor 112c of FIG. 17 may be driven by a motor drive, such as FIG. 1, which drives the compressor motor.
  • the refrigerating compartment fan (not shown) or the freezer compartment fan 144c may be driven by a motor driving device, such as FIG. 1, respectively driving a refrigerating compartment fan motor (not shown) and a freezer compartment fan motor (not shown). .
  • the motor driving apparatus and the home appliance having the same according to the embodiment of the present invention are not limited to the configuration and method of the embodiments described as described above, but the embodiments may be modified in various ways. All or some of the embodiments may be optionally combined.
  • the processor may be implemented as code that can be read by the processor on a recording medium that can be read by the processor provided in the motor drive device or home appliance.
  • the processor-readable recording medium includes all kinds of recording devices that store data that can be read by the processor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Textile Engineering (AREA)
  • Inverter Devices (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

본 발명은 모터 구동장치 및 이를 구비하는 홈 어플라이언스에 관한 것이다. 본 발명의 실시예에 따른 모터 구동장치는, 직류 전원을 저장하는 dc단 커패시터와, 복수의 상암 스위칭 소자와 하암 스위칭 소자를 구비하며, 스위칭 동작에 의해, dc단 커패시터에 저장된 전원을 교류 전원으로 변환하고, 변환된 교류 전원을 모터에 출력하는 인버터와, dc단 커패시터이 전압을 검출하는 dc단 전압 검출부와, dc단 커패시터와 인버터 사이에 배치되어 모터에 흐르는 출력 전류를 검출하는 출력 전류 검출부와, 출력 전류에 기초하여, 인버터를 제어하는 제어부를 구비하고, 제어부는, 모터의 정지를 위해, 발전 제동이 수행되도록 제어하고, 발전 제동 수행 후, 모터의 기동을 위한 제1 기간 동안, 인버터의 상암 스위칭 소자의 게이트 단자를 위한 부트 스트랩 동작을 수행하며, 제1 기간 동안, dc단 전압 검출부에서 검출되는 dc단 전압, 또는 출력 전류 검출부에서 검출되는 출력 전류에 기초하여, 모터의 정지 여부를 판단한다. 이에 따라, 센서리스 방식의 모터 구동장치에서 모터의 정지 여부를 간단하게 파악할 수 있게 된다.

Description

모터 구동장치 및 이를 구비하는 홈 어플라이언스
본 발명은 모터 구동장치 및 이를 구비하는 홈 어플라이언스에 관한 것으로, 더욱 상세하게는, 센서리스 방식의 모터 구동장치에서 모터의 정지 여부를 간단하게 파악할 수 있는 모터 구동장치 및 이를 구비하는 홈 어플라이언스에 관한 것이다.
모터 구동장치는, 회전 운동을 하는 회전자와 코일이 감긴 고정자를 구비하는 모터를 구동하기 위한 장치이다.
한편, 모터 구동장치는, 센서를 이용한 센서 방식의 모터 구동장치와 센서가 없는 센서리스(sensorless) 방식의 모터 구동장치로 구분될 수 있다.
최근, 제조 비용 저감 등을 이유로, 센서리스 방식의 모터 구동장치가 많이 사용되고 있으며, 이에 따라, 효율적인 모터 구동을 위해, 센서리스 방식의 모터 구동장치에 대한 연구가 수행되고 있다.
본 발명의 목적은, 센서리스 방식의 모터 구동장치에서 모터의 정지 여부를 간단하게 파악할 수 있는 모터 구동장치 및 이를 구비하는 홈 어플라이언스를 제공함에 있다.
상기 목적을 달성하기 위한 본 발명의 실시예에 따른 모터 구동장치는, 직류 전원을 저장하는 dc단 커패시터와, 복수의 상암 스위칭 소자와 하암 스위칭 소자를 구비하며, 스위칭 동작에 의해, dc단 커패시터에 저장된 전원을 교류 전원으로 변환하고, 변환된 교류 전원을 모터에 출력하는 인버터와, dc단 커패시터이 전압을 검출하는 dc단 전압 검출부와, dc단 커패시터와 인버터 사이에 배치되어 모터에 흐르는 출력 전류를 검출하는 출력 전류 검출부와, 출력 전류에 기초하여, 인버터를 제어하는 제어부를 구비하고, 제어부는, 모터의 정지를 위해, 발전 제동이 수행되도록 제어하고, 발전 제동 수행 후, 모터의 기동을 위한 제1 기간 동안, 인버터의 상암 스위칭 소자의 게이트 단자를 위한 부트 스트랩 동작을 수행하며, 제1 기간 동안, dc단 전압 검출부에서 검출되는 dc단 전압, 또는 출력 전류 검출부에서 검출되는 출력 전류에 기초하여, 모터의 정지 여부를 판단한다.
한편, 상기 목적을 달성하기 위한 본 발명의 다른 실시예에 따른 모터 구동장치는, 직류 전원을 저장하는 dc단 커패시터와, 복수의 상암 스위칭 소자와 하암 스위칭 소자를 구비하며, 스위칭 동작에 의해, dc단 커패시터에 저장된 전원을 교류 전원으로 변환하고, 변환된 교류 전원을 모터에 출력하는 인버터와, dc단 커패시터이 전압을 검출하는 dc단 전압 검출부와, dc단 커패시터와 인버터 사이에 배치되어 모터에 흐르는 출력 전류를 검출하는 출력 전류 검출부와, 출력 전류에 기초하여, 인버터를 제어하는 제어부를 구비하고, 제어부는, 모터를 정지 시킨 후, 재기동시, dc단 전압 검출부에서 검출되는 dc단 전압의 변화량이 제1 소정치 이상이거나, dc단 전압 검출부에서 검출되는 dc단 전압의 피크치가 제1 레벨 이상인 경우, 모터가 회전 중인 것으로 판단하고, 모터를 정지시키도록 제어한다.
한편, 상기 목적을 달성하기 위한 본 발명의 실시예에 따른 홈 어플라이언스는, 모터와, 디스플레이와, 직류 전원을 저장하는 dc단 커패시터와, 복수의 상암 스위칭 소자와 하암 스위칭 소자를 구비하며, 스위칭 동작에 의해, dc단 커패시터에 저장된 전원을 교류 전원으로 변환하고, 변환된 교류 전원을 모터에 출력하는 인버터와, dc단 커패시터이 전압을 검출하는 dc단 전압 검출부와, dc단 커패시터와 인버터 사이에 배치되어 모터에 흐르는 출력 전류를 검출하는 출력 전류 검출부와, 출력 전류에 기초하여, 인버터를 제어하는 제어부를 구비하고, 제어부는, 모터의 정지를 위해, 발전 제동이 수행되도록 제어하고, 발전 제동 수행 후, 모터의 기동을 위한 제1 기간 동안, 인버터의 상암 스위칭 소자의 게이트 단자를 위한 부트 스트랩 동작을 수행하며, 제1 기간 동안, dc단 전압 검출부에서 검출되는 dc단 전압, 또는 출력 전류 검출부에서 검출되는 출력 전류에 기초하여, 모터의 정지 여부를 판단한다.
본 발명의 일 실시예에 따르면, 모터 구동장치 및 이를 구비하는 홈 어플라이언스는, 직류 전원을 저장하는 dc단 커패시터와, 복수의 상암 스위칭 소자와 하암 스위칭 소자를 구비하며, 스위칭 동작에 의해, dc단 커패시터에 저장된 전원을 교류 전원으로 변환하고, 변환된 교류 전원을 모터에 출력하는 인버터와, dc단 커패시터이 전압을 검출하는 dc단 전압 검출부와, dc단 커패시터와 인버터 사이에 배치되어 모터에 흐르는 출력 전류를 검출하는 출력 전류 검출부와, 출력 전류에 기초하여, 인버터를 제어하는 제어부를 구비하고, 제어부는, 모터의 정지를 위해, 발전 제동이 수행되도록 제어하고, 발전 제동 수행 후, 모터의 기동을 위한 제1 기간 동안, 인버터의 상암 스위칭 소자의 게이트 단자를 위한 부트 스트랩 동작을 수행하며, 제1 기간 동안, dc단 전압 검출부에서 검출되는 dc단 전압, 또는 출력 전류 검출부에서 검출되는 출력 전류에 기초하여, 모터의 정지 여부를 판단함으로써, 센서리스 방식의 모터 구동장치에서 모터의 정지 여부를 간단하게 파악할 수 있게 된다.
특히, 부트 스트랩이 수행되는 제1 기간 동안, 모터의 정지 여부를 판단함으로써, 모터 정지 여부 판단을 위한 별도의 시간이 소요되지 않게 된다.
한편, 본 발명의 다른 실시예에 따른 모터 구동장치 및 이를 구비하는 홈 어플라이언스는, 직류 전원을 저장하는 dc단 커패시터와, 복수의 상암 스위칭 소자와 하암 스위칭 소자를 구비하며, 스위칭 동작에 의해, dc단 커패시터에 저장된 전원을 교류 전원으로 변환하고, 변환된 교류 전원을 모터에 출력하는 인버터와, dc단 커패시터이 전압을 검출하는 dc단 전압 검출부와, dc단 커패시터와 인버터 사이에 배치되어 모터에 흐르는 출력 전류를 검출하는 출력 전류 검출부와, 출력 전류에 기초하여, 인버터를 제어하는 제어부를 구비하고, 제어부는, 모터를 정지시킨 후, 재기동시, dc단 전압 검출부에서 검출되는 dc단 전압의 변화량이 제1 소정치 이상이거나, dc단 전압 검출부에서 검출되는 dc단 전압의 피크치가 제1 레벨 이상인 경우, 모터가 회전 중인 것으로 판단하고, 모터를 정지시키도록 제어함으로써, 센서리스 방식의 모터 구동장치에서 모터의 정지 여부를 간단하게 파악할 수 있게 된다.
도 1은 본 발명의 실시예에 따른 모터 구동장치의 내부 블록도의 일예를 예시한다.
도 2는 도 1의 모터 구동장치의 내부 회로도의 일예이다.
도 3은 도 2의 인버터 제어부의 내부 블록도이다.
도 4는 도 2의 인버터를 확대한 회로도이다.
도 5a 내지 도 5e는 모터 정지 후 모터 재기동에 대해 참조되는 도면이다.
도 6은 본 발명의 실시예에 따른 모터 구동장치의 동작방법을 나타내는 순서도이다.
도 7a 내지 도 11b는 도 6의 동작방법 설명에 참조되는 도면이다.
도 12는 본 발명의 실시예에 따른 홈 어플라인스의 일예인 세탁물 처리기기를 도시한 사시도이다.
도 13은 도 12의 세탁물 처리기기의 내부 블록도이다.
도 14는 본 발명의 실시예에 따른 홈 어플라인스의 다른 예인 공기조화기의 구성을 예시하는 도면이다.
도 15는 도 14의 실외기와 실내기의 개략도이다.
도 16은 본 발명의 실시예에 따른 홈 어플라인스의 또 다른 예인 냉장고를 도시한 사시도이다.
도 17은 도 16의 냉장고의 구성을 간략히 도시한 도면이다.
이하에서는 도면을 참조하여 본 발명을 보다 상세하게 설명한다.
이하의 설명에서 사용되는 구성요소에 대한 접미사 "모듈" 및 "부"는 단순히 본 명세서 작성의 용이함만이 고려되어 부여되는 것으로서, 그 자체로 특별히 중요한 의미 또는 역할을 부여하는 것은 아니다. 따라서, 상기 "모듈" 및 "부"는 서로 혼용되어 사용될 수도 있다.
본 명세서에서 기술되는 모터 구동장치는, 모터의 회전자 위치를 감지하는 홀 센서(hall sensor)와 같은 위치 감지부가 구비되지 않는, 센서리스(sensorless) 방식에 의해, 모터의 회전자 위치를 추정할 수 있는 모터 구동장치이다. 이하에서는, 센서리스 방식의 모터 구동장치에 대해 설명한다.
한편, 본 발명의 실시예에 따른 모터 구동장치(220)는, 모터 구동부로 명명할 수도 있다.
도 1은 본 발명의 실시예에 따른 모터 구동장치의 내부 블록도의 일예를 예시하고, 도 2는 도 1의 모터 구동장치의 내부 회로도의 일예이다.
도면을 참조하여 설명하면, 본 발명의 실시예에 따른 모터 구동장치(220)는, 센서리스(sensorless) 방식으로 모터를 구동하기 위한 것으로서, 인버터(420), 인버터 제어부(430)를 포함할 수 있다.
또한, 본 발명의 실시예에 따른 모터 구동장치(220)는, 컨버터(410), dc 단 전압 검출부(B), 평활 커패시터(C), 출력전류 검출부(E)를 포함할 수 있다. 또한, 구동부(220)는, 입력 전류 검출부(A), 리액터(L) 등을 더 포함할 수도 있다.
본 발명의 일 실시예에 따른 모터 구동장치(220) 내의 인버터 제어부(430)는, 모터(230)의 정지를 위해, 발전 제동이 수행되도록 제어하고, 발전 제동 수행 후, 모터(230)의 기동을 위한 제1 기간 동안, 인버터(420)의 상암 스위칭 소자의 게이트 단자를 위한 부트 스트랩 동작을 수행하며, 제1 기간 동안, dc단 전압 검출부(B)에서 검출되는 dc단 전압, 또는 출력 전류 검출부(E)에서 검출되는 출력 전류에 기초하여, 모터(230)의 정지 여부를 판단할 수 있다. 이에 의해, 센서리스 방식의 모터 구동장치에서 모터의 정지 여부를 간단하게 파악할 수 있게 된다.
특히, 인버터 제어부(430)는, 부트 스트랩이 수행되는 제1 기간 동안, 모터(230)의 정지 여부를 판단함으로써, 모터 정지 여부 판단을 위한 별도의 시간이 소요되지 않게 된다.
한편, 인버터 제어부(430)는, dc단 전압 검출부(B)에서 검출되는 dc단 전압의 변화량이 제1 소정치 이상이거나, dc단 전압 검출부(B)에서 검출되는 dc단 전압의 피크치가 제1 레벨 이상인 경우, 모터(230)가 회전 중인 것으로 판단하고, 모터(230)의 정지를 위한 발전 제동을 다시 수행하도록 제어할 수 있다.
한편, 인버터 제어부(430)는, dc단 전압 검출부(B)에서 검출되는 dc단 전압의 변화량이 제1 소정치 미만이며, dc단 전압 검출부(B)에서 검출되는 dc단 전압의 피크치가 제1 레벨 미만인 경우, 모터(230)가 정지 중인 것으로 판단하고, 제1 기간 이후, 모터(230)가 정렬되도록 제어할 수 있다.
한편, 인버터 제어부(430)는, 출력 전류 검출부(E)에서 검출되는 출력 전류의 변화량이 제2 소정치 이상이거나, 출력 전류 검출부(E)에서 검출되는 출력 전류의 피크치가 제2 레벨 이상인 경우, 모터(230)가 회전 중인 것으로 판단하고, 모터(230)의 정지를 위한 발전 제동을 다시 수행하도록 제어
한편, 인버터 제어부(430)는, 출력 전류 검출부(E)에서 검출되는 출력 전류의 변화량이 제2 소정치 미만이며, 출력 전류 검출부(E)에서 검출되는 출력 전류의 피크치가 제2 레벨 미만인 경우, 모터(230)가 정지 중인 것으로 판단하고, 제1 기간 이후, 모터(230)가 정렬되도록 제어할 수 있다.
본 발명의 다른 실시예에 따른 모터 구동장치(220) 내의 인버터 제어부(430)는, 모터(230)를 정지 시킨 후, 재기동시, dc단 전압 검출부(B)에서 검출되는 dc단 전압의 변화량이 제1 소정치 이상이거나, dc단 전압 검출부(B)에서 검출되는 dc단 전압의 피크치가 제1 레벨 이상인 경우, 모터(230)가 회전 중인 것으로 판단하고, 모터(230)를 정지시키도록 제어할 수 있다. 이에 의해, 센서리스 방식의 모터 구동장치에서 모터의 정지 여부를 간단하게 파악할 수 있게 된다.
이하에서는, 도 1, 및 도 2의 모터 구동장치(220) 내의 각 구성 유닛들의 동작에 대해 설명한다.
리액터(L)는, 상용 교류 전원(405, vs)과 컨버터(410) 사이에 배치되어, 역률 보정 또는 승압동작을 수행한다. 또한, 리액터(L)는 컨버터(410)의 고속 스위칭에 의한 고조파 전류를 제한하는 기능을 수행할 수도 있다.
입력 전류 검출부(A)는, 상용 교류 전원(405)으로부터 입력되는 입력 전류(is)를 검출할 수 있다. 이를 위하여, 입력 전류 검출부(A)로, CT(current trnasformer), 션트 저항 등이 사용될 수 있다. 검출되는 입력 전류(is)는, 펄스 형태의 이산 신호(discrete signal)로서, 인버터 제어부(430)에 입력될 수 있다.
컨버터(410)는, 리액터(L)를 거친 상용 교류 전원(405)을 직류 전원으로 변환하여 출력한다. 도면에서는 상용 교류 전원(405)을 단상 교류 전원으로 도시하고 있으나, 삼상 교류 전원일 수도 있다. 상용 교류 전원(405)의 종류에 따라 컨버터(410)의 내부 구조도 달라진다.
한편, 컨버터(410)는, 스위칭 소자 없이 다이오드 등으로 이루어져, 별도의 스위칭 동작 없이 정류 동작을 수행할 수도 있다.
예를 들어, 단상 교류 전원인 경우, 4개의 다이오드가 브릿지 형태로 사용될 수 있으며, 삼상 교류 전원인 경우, 6개의 다이오드가 브릿지 형태로 사용될 수 있다.
한편, 컨버터(410)는, 예를 들어, 2개의 스위칭 소자 및 4개의 다이오드가 연결된 하프 브릿지형의 컨버터가 사용될 수 있으며, 삼상 교류 전원의 경우, 6개의 스위칭 소자 및 6개의 다이오드가 사용될 수도 있다.
컨버터(410)가, 스위칭 소자를 구비하는 경우, 해당 스위칭 소자의 스위칭 동작에 의해, 승압 동작, 역률 개선 및 직류전원 변환을 수행할 수 있다.
*평활 커패시터(C)는, 입력되는 전원을 평활하고 이를 저장한다. 도면에서는, 평활 커패시터(C)로 하나의 소자를 예시하나, 복수개가 구비되어, 소자 안정성을 확보할 수도 있다.
한편, 도면에서는, 컨버터(410)의 출력단에 접속되는 것으로 예시하나, 이에 한정되지 않고, 직류 전원이 바로 입력될 수도 있다., 예를 들어, 태양 전지로부터의 직류 전원이 평활 커패시터(C)에 바로 입력되거나 직류/직류 변환되어 입력될 수도 있다. 이하에서는, 도면에 예시된 부분을 위주로 기술한다.
한편, 평활 커패시터(C) 양단은, 직류 전원이 저장되므로, 이를 dc 단 또는 dc 링크단이라 명명할 수도 있다.
dc 단 전압 검출부(B)는 평활 커패시터(C)의 양단인 dc 단 전압(Vdc)을 검출할 수 있다. 이를 위하여, dc 단 전압 검출부(B)는 저항 소자, 증폭기 등을 포함할 수 있다. 검출되는 dc 단 전압(Vdc)은, 펄스 형태의 이산 신호(discrete signal)로서, 인버터 제어부(430)에 입력될 수 있다.
인버터(420)는, 복수개의 인버터 스위칭 소자를 구비하고, 스위칭 소자의 온/오프 동작에 의해 평활된 직류 전원(Vdc)을 소정 주파수의 삼상 교류 전원(va,vb,vc)으로 변환하여, 삼상 동기 모터(230)에 출력할 수 있다.
인버터(420)는, 각각 서로 직렬 연결되는 상암 스위칭 소자(Sa,Sb,Sc) 및 하암 스위칭 소자(S'a,S'b,S'c)가 한 쌍이 되며, 총 세 쌍의 상,하암 스위칭 소자가 서로 병렬(Sa&S'a,Sb&S'b,Sc&S'c)로 연결된다. 각 스위칭 소자(Sa,S'a,Sb,S'b,Sc,S'c)에는 다이오드가 역병렬로 연결된다.
인버터(420) 내의 스위칭 소자들은 인버터 제어부(430)로부터의 인버터 스위칭 제어신호(Sic)에 기초하여 각 스위칭 소자들의 온/오프 동작을 하게 된다. 이에 의해, 소정 주파수를 갖는 삼상 교류 전원이 삼상 동기 모터(230)에 출력되게 된다.
인버터 제어부(430)는, 센서리스 방식을 기반으로, 인버터(420)의 스위칭 동작을 제어할 수 있다. 이를 위해, 인버터 제어부(430)는, 출력전류 검출부(E)에서 검출되는 출력전류(idc)를 입력받을 수 있다.
인버터 제어부(430)는, 인버터(420)의 스위칭 동작을 제어하기 위해, 인버터 스위칭 제어신호(Sic)를 인버터(420)에 출력한다. 인버터 스위칭 제어신호(Sic)는 펄스폭 변조 방식(PWM)의 스위칭 제어신호로서, 출력전류 검출부(E)에서 검출되는 출력전류(idc)을 기초로 생성되어 출력된다. 인버터 제어부(430) 내의 인버터 스위칭 제어신호(Sic)의 출력에 대한 상세 동작은 도 3를 참조하여 후술한다.
출력전류 검출부(E)는, 삼상 모터(230) 사이에 흐르는 출력전류(idc)를 검출할 수 있다.
출력전류 검출부(E)는, dc단 커패시터(C)와 인버터(420) 사이에 배치되어 모터에 흐르는 전류를 검출할 수 있다.
특히, 출력전류 검출부(E)는, 1개의 션트 저항 소자(Rs)를 구비할 수 있다.
한편, 출력전류 검출부(E)는, 1개의 션트 저항 소자(Rs)를 사용하여, 인버터(420)의 하암 스위칭 소자의 턴 온시, 시분할로, 모터(230)에 흐르는 출력 전류(idc)인 상 전류(phase current)를 검출할 수 있다.
검출된 출력전류(idc)는, 펄스 형태의 이산 신호(discrete signal)로서, 인버터 제어부(430)에 인가될 수 있으며, 검출된 출력전류(idc)에 기초하여 인버터 스위칭 제어신호(Sic)가 생성된다. 이하에서는 검출된 출력전류(idc)가 삼상의 출력 전류(ia,ib,ic)인 것으로하여 기술한다.
한편, 삼상 모터(230)는, 고정자(stator)와 회전자(rotar)를 구비하며, 각상(a,b,c 상)의 고정자의 코일에 소정 주파수의 각상 교류 전원이 인가되어, 회전자가 회전을 하게 된다.
이러한 모터(230)는, 예를 들어, 표면 부착형 영구자석 동기전동기(Surface-Mounted Permanent-Magnet Synchronous Motor; SMPMSM), 매입형 영구자석 동기전동기(Interidcr Permanent Magnet Synchronous Motor; IPMSM), 및 동기 릴럭턴스 전동기(Synchronous Reluctance Motor; Synrm) 등을 포함할 수 있다. 이 중 SMPMSM과 IPMSM은 영구자석을 적용한 동기 전동기(Permanent Magnet Synchronous Motor; PMSM)이며, Synrm은 영구자석이 없는 것이 특징이다.
도 3은 도 2의 인버터 제어부의 내부 블록도이다.
도 3을 참조하면, 인버터 제어부(430)는, 축변환부(310), 속도 연산부(320), 전류 지령 생성부(330), 전압 지령 생성부(340), 축변환부(350), 및 스위칭 제어신호 출력부(360)를 포함할 수 있다.
축변환부(310)는, 출력 전류 검출부(E)에서 검출된 출력 전류(idc)에서, 각각의 상 전류(ia,ib,ic)를 추출하고, 추출된 상 전류(ia,ib,ic)를, 정지좌표계의 2상 전류(iα,iβ)로 변환할 수 있다.
한편, 축변환부(310)는, 정지좌표계의 2상 전류(iα,iβ)를 회전좌표계의 2상 전류(id,iq)로 변환할 수 있다.
속도 연산부(320)는, 출력전류 검출부(E)에서 검출된 출력전류(idc)에 기초하여, 위치치(
Figure PCTKR2016009148-appb-I000001
)를 추정하고, 추정된 위치를 미분하여, 속도(
Figure PCTKR2016009148-appb-I000002
)를 연산할 수 있다.
한편, 전류 지령 생성부(330)는, 연산 속도(
Figure PCTKR2016009148-appb-I000003
)와 속도 지령치(ω* r)에 기초하여, 전류 지령치(i* q)를 생성한다. 예를 들어, 전류 지령 생성부(330)는, 연산 속도(
Figure PCTKR2016009148-appb-I000004
)와 속도 지령치(ω* r)의 차이에 기초하여, PI 제어기(335)에서 PI 제어를 수행하며, 전류 지령치(i* q)를 생성할 수 있다. 도면에서는, 전류 지령치로, q축 전류 지령치(i* q)를 예시하나, 도면과 달리, d축 전류 지령치(i* d)를 함께 생성하는 것도 가능하다. 한편, d축 전류 지령치(i* d)의 값은 0으로 설정될 수도 있다.
한편, 전류 지령 생성부(330)는, 전류 지령치(i* q)가 허용 범위를 초과하지 않도록 그 레벨을 제한하는 리미터(미도시)를 더 구비할 수도 있다.
다음, 전압 지령 생성부(340)는, 축변환부에서 2상 회전 좌표계로 축변환된 d축, q축 전류(id,iq)와, 전류 지령 생성부(330) 등에서의 전류 지령치(i* d,i* q)에 기초하여, d축, q축 전압 지령치(v* d,v* q)를 생성한다. 예를 들어, 전압 지령 생성부(340)는, q축 전류(iq)와, q축 전류 지령치(i* q)의 차이에 기초하여, PI 제어기(344)에서 PI 제어를 수행하며, q축 전압 지령치(v* q)를 생성할 수 있다. 또한, 전압 지령 생성부(340)는, d축 전류(id)와, d축 전류 지령치(i* d)의 차이에 기초하여, PI 제어기(348)에서 PI 제어를 수행하며, d축 전압 지령치(v* d)를 생성할 수 있다. 한편, 전압 지령 생성부(340)는, d 축, q축 전압 지령치(v* d,v* q)가 허용 범위를 초과하지 않도록 그 레벨을 제한하는 리미터(미도시)를 더 구비할 수도 있다.
한편, 생성된 d축, q축 전압 지령치(v* d,v* q)는, 축변환부(350)에 입력된다.
축변환부(350)는, 속도 연산부(320)에서 연산된 위치(
Figure PCTKR2016009148-appb-I000005
)와, d축, q축 전압 지령치(v* d,v* q)를 입력받아, 축변환을 수행한다.
먼저, 축변환부(350)는, 2상 회전 좌표계에서 2상 정지 좌표계로 변환을 수행한다. 이때, 속도 연산부(320)에서 연산된 위치(
Figure PCTKR2016009148-appb-I000006
)가 사용될 수 있다.
그리고, 축변환부(350)는, 2상 정지 좌표계에서 3상 정지 좌표계로 변환을 수행한다. 이러한 변환을 통해, 축변환부(1050)는, 3상 출력 전압 지령치(v*a,v*b,v*c)를 출력하게 된다.
스위칭 제어 신호 출력부(360)는, 3상 출력 전압 지령치(v*a,v*b,v*c)에 기초하여 펄스폭 변조(PWM) 방식에 따른 인버터용 스위칭 제어 신호(Sic)를 생성하여 출력한다.
출력되는 인버터 스위칭 제어 신호(Sic)는, 게이트 구동부(미도시)에서 게이트 구동 신호로 변환되어, 인버터(420) 내의 각 스위칭 소자의 게이트에 입력될 수 있다. 이에 의해, 인버터(420) 내의 각 스위칭 소자들(Sa,S'a,Sb,S'b,Sc,S'c)이 스위칭 동작을 하게 된다.
한편, 스위칭 제어 신호 출력부(360)는, 모터(230) 정지시, 발전 제동이 수행되도록, 인버터(420)의 상암 스위칭 소자(Sa,Sb,Sc)를 모두 온 시키거나, 인버터(420)의 하암 스위칭 소자(S'a,S'b,S'c)를 모두 오프시키는, 스위칭 제어 신호를 출력할 수 있다.
한편, 모터(230)의 기동을 위한 제1 기간 동안, 인버터(420)의 상암 스위칭 소자의 게이트 단자를 위한 부트 스트랩 동작이 수행되도록, 스위칭 제어 신호 출력부(360)는, 인버터(420)의 상암 스위칭 소자(Sa,Sb,Sc)와 하암 스위칭 소자(S'a,S'b,S'c)를 모두 오프시킨 후, 소정 시간 이후에, 인버터(420)의 상암 스위칭 소자(Sa,Sb,Sc)를 오프시키고, 하암 스위칭 소자(S'a,S'b,S'c)를 온 시키는, 스위칭 제어 신호를 출력할 수 있다.
한편, 전류 지령 생성부(330)는, 부트 스트랩 동작 이후, 모터 회전자 얼라인 구간시, 모터 회전자 얼라인을 위한, 전류 지령치를 생성할 수 있다.
이에 따라, 스위칭 제어 신호 출력부(360)는, 인버터(420)의 상암 스위칭 소자(Sa,Sb,Sc) 중 어느 한 스위칭 소자가 턴 온되고, 하암 스위칭 소자(S'a,S'b,S'c) 중 2상 스위칭 소자가 턴 온되는, 스위칭 제어 신호를 출력할 수 있다.
한편, 전류 지령 생성부(330)는, 얼라인 구간 이후, 모터 가속 구간 또는 모터 통상 운전 구간에서, 모터 속도가 지속적으로 상승하거나, 모터 속도가 가변되도록 하는, 스위칭 제어 신호를 출력할 수 있다.
이에 의해, 모터 가속 구간에서, 모터(230)의 회전 속도가 상승하거나, 모터 통상 운전 구간에서, 모터(230)의 회전 속도가 가변하게 된다.
도 4는 도 2의 인버터를 확대한 회로도이다.
도면을 참조하면, 인버터(420)는, 모터(230)로 삼상의 상 전류(ia,ib,ic)를 출력하기 위해, dc단 양단(a-b 단) 사이에, 각각 서로 직렬 연결되는 상암 스위칭 소자(Sa,Sb,Sc) 및 하암 스위칭 소자(S'a,S'b,S'c)를 구비할 수 있다.
즉, 상암 스위칭 소자(Sa,Sb,Sc) 및 하암 스위칭 소자(S'a,S'b,S'c)가 한 쌍이 되며, 총 세 쌍의 상,하암 스위칭 소자가 서로 병렬(Sa&S'a,Sb&S'b,Sc&S'c)로 연결될 수 있다.
한편, 모터(230)에 흐르는 출력 전류(idc) 검출을 위해, dc단 커패시터(C)와 인버터(420) 사이에, 출력전류 검출부(E)가 배치될 수 있다.
특히, 출력전류 검출부(E)는, 1개의 션트 저항 소자(Rs)를 구비할 수 있다.
한편, 인버터(420) 내의 각 스위칭 소자들은, 예를 들어, 절연 게이트 양극성 트랜지스터(Insulated gate bipolar transistor, IGBT)를 구비할 수 있다. 이러한 스위칭 소자들(Sa,Sb,Sc,S'a,S'b,S'c)을 구동하기 위해, 게이트 단자에, 게이트 구동 신호가 입력된다.
한편, 이러한 게이트 구동 신호는, 게이트 구동부에 의해 공급될 수 있다. 한편, 게이트 구동부의 동작 전원 공급을 위한, 게이트 커패시터가 사용된다.
그리고, 게이트 커패시터에, 게이트 구동 전압이 충전된 이후에, 게이트 구동부가 동작하며, 이에 따라, 스위칭 소자들(Sa,Sb,Sc,S'a,S'b,S'c)의 스위칭 동작이 수행될 수 있게 된다.
게이트 커패시터에, 게이트 구동 전압의 충전에 대해서는, 도 7a 내지 도 7c를 참조하여 후술한다.
도 5a 내지 도 5e는 모터 정지 후 모터 재기동에 대해 참조되는 도면이다.
도 5a의 (a)는, 모터(230)가 시계 방향으로 소정 속도(ωr1)로 회전하는 것을 예시하며, 도 5a의 (b)는, 모터(230)가 정지하는 것을 예시하며, 도 5a의 (c)는, 모터(230)가 재기동하여 시계 방향으로 소정 속도(ωr2)로 회전하는 것을 예시한다.
도 5b 내지 도 5c는, 모터(230)를 정지하는 방법을 예시하는 도면이다.
먼저, 도 5b는 모터(230) 정지를 위해, 인버터(420)의 상암 스위칭 소자(Sa,Sb,Sc)가 모두 오프되고, 하암 스위칭 소자(S'a,S'b,S'c)가 모두 온 되는 것을 예시한다. 즉, 제로 벡터의 스위칭 제어 신호(Sic)에 따라, 인버터(420)가 동작하며, 전류의 흐름에 따라, 전력(Pa)이 소비되게 되며, 소정 시간 이후 모터(230)가 정지하게 된다. 이러한 방식은, 발전 제동이라 명명할 수 있다.
한편, 이때, 인버터(420)의 하암 스위칭 소자(S'a,S'b,S'c)와 모터(230)가 전류 패쓰(path1)을 형성하며, 이에 따라, dc단 커패시터(C)와 인버터(420) 사이에 배치되는, 출력 전류 검출부(E)는, 출력 전류를 검출할 수 없게 된다. 또한, dc 단 전압 검출부(B)에서 검출되는 dc 단 전압의 변화가 없게 된다.
다음, 도 5c는 모터(230) 정지를 위해, 인버터(420)의 상암 스위칭 소자(Sa,Sb,Sc)가 모두 온되고, 하암 스위칭 소자(S'a,S'b,S'c)가 모두 오프되는 것을 예시한다. 즉, 제로 벡터의 스위칭 제어 신호(Sic)에 따라, 인버터(420)가 동작하며, 전류의 흐름에 따라, 전력(Pa)이 소비되게 되며, 소정 시간 이후 모터(230)가 정지하게 된다.
한편, 이때, 인버터(420)의 상암 스위칭 소자(Sa,Sb,Sc)가와 모터(230)가 전류 패쓰(path2)을 형성하며, 이에 따라, dc단 커패시터(C)와 인버터(420) 사이에 배치되는, 출력 전류 검출부(E)는, 출력 전류를 검출할 수 없게 된다. 또한, dc 단 전압 검출부(B)에서 검출되는 dc 단 전압의 변화가 없게 된다.
도 5d는, 발전 제동에 의해 실제 모터(230)가 정지한 것을 예시하며, 도 5e는 발전 제동에도 불구하고, 실제 모터(230)가 회전하는 것을 예시한다.
결국, 도 5b 내지 도 5c와 같이, 발전 제동시, 모터(230)가 완전히 정지하였는 지 여부를 판단하기 곤란하게 된다.
이와 같이, 출력 전류 검출부(E)가 dc단 커패시터(C)와 인버터(420) 사이에 배치되는 경우, 발전 제동시, 모터(230)가 완전히 정지하였는 지 여부를 판단하기 곤란하게 되므로, 이를 해결하기 위한 방안으로, 발전 제동 이후, 재기동시, 발전 제동과 재기동 사이에 충분한 시간을 두고, 재기동을 수행하는 방안이 있다.
그러나, 이러한 방안은, 상당한 시간이 소요되며, 재기동 필요시, 바로 대응하지 못한다는 단점이 있다.
본 발명에서는, 모터 정지 후 재기동시, 바로 재기동이 가능하며, 재기동시에, 특히, 부트 스트랩 충전이 수행되는 기간에, dc단 전압의 상승률 또는 dc단 전압의 피크치를 이용하여, 모터(230)의 정지 여부를 판단하도록 한다. 이 방안에 따르면, 모터 정지 후, 재기동시, 별도의 시간 소비가 되지 않으며, 간단하게, 모터(230)의 정지 여부를 판단할 수 있게 된다. 이에 대해서는, 도 6 이하를 참조하여 기술한다.
도 6은 본 발명의 실시예에 따른 모터 구동장치의 동작방법을 나타내는 순서도이고, 도 7a 내지 도 11b는 도 6의 동작방법 설명에 참조되는 도면이다.
먼저, 도 6을 참조하면, 인버터 제어부(430)는, 모터(230)가 회전하도록 제어한다(S610).
다음, 인버터 제어부(430)는, 모터(230) 정지를 위해, 하암 스위칭 소자(S'a,S'b,S'c)를 턴 온하도록 제어한다(S615).
다음, 인버터 제어부(430)는, 모터 재기동 입력이 있는 경우(S620), 모터(230)의 기동을 위한 제1 기간 동안, 인버터(420)의 상암 스위칭 소자의 게이트 단자를 위한 부트 스트랩 동작을 수행하도록 제어한다(S625).
다음, 출력 전류 검출부(E)는, 제1 기간 동안, 션트 저항 소자(Rs)를 이용하여, 출력 전류를 검출한다(S630).
다음, dc단 전압 검출부(B)는, 제1 기간 동안, dc단 전압을 검출한다(S635).
다음, 인버터 제어부(430)는, dc단 전압 검출부(B)에서 검출되는 dc단 전압, 또는 출력 전류 검출부(E)에서 검출되는 출력 전류에 기초하여, 모터(230)의 정지 여부를 판단한다(S640).
한편, 인버터 제어부(430)는, 모터(230)가 정지한 경우(S645), 계속 모터(230)를 기동시키도록 제어한다(S650).
한편, 인버터 제어부(430)는, 모터(230)가 정지하지 않고 회전하는 경우, 모터(230) 정지를 위해, 하암 스위칭 소자(S'a,S'b,S'c)를 턴 온하도록 제어한다(S655).
도 7a 내지 도 7c는 도 4의 인버터 내부의 한 쌍의 스위칭 소자의 동작을 설명하기 위해 참조되는 도면이다.
도 7a는, 게이트 구동부(820a,820b), 게이트 커패시터(Cga,Cgb), 및 한 쌍의 스위칭 소자(Sa,S'a), 및 션트 저항 소자(Rs)를 도시한 회로도이다.
dc 단(a-b단) 사이에, 한 쌍의 스위칭 소자(Sa,S'a)가 직렬로 접속될 수 있다. 즉, a단과 c단 사이에, 상암 스위칭 소자(Sa)가 접속되며, c단과 e단 사이에, 하암 스위칭 소자(S'a)가 접속될 수 있다.
한편, e단과 b단 사이에, 저항 소자(Rs)가 접속될 수 있다. 한편, e단은, 접지단(GND)일 수 있다.
저항 소자(Rs)는, 상술한 바와 같이, 출력 전류 검출을 위해 사용되며, dc단 커패시터(C)와 인버터(420) 사이에 배치된다.
한편, 한 쌍의 스위칭 소자(Sa,S'a)들의 게이트 단자에는, 각각 게이트 구동부(820a,820b)의 출력단이 접속될 수 있다.
한편, 각 게이트 구동부(820a,820b)의 입력단, 양단 사이에는, 각 게이트 구동부(820a,820b)의 구동 전압 공급을 위한, 게이트 커패시터(Cga,Cgb)가 각각 접속될 수 있다.
그리고, 게이트 구동 전압(821a,821b)가 각각 게이트 커패시터(Cga,Cgb)에 공급될 수 있다. 게이트 구동 전압(821a,821b)은 대략 15V일 수 있다.
한편, 게이트 커패시터(Cga,Cgb)에, 게이트 구동 전압(821a,821b)을 각각 충전하는 방법은, 도 7b, 도 7c를 참조하여 기술한다.
도 7b는, 하암 스위칭 소자(S'a)에 대응하는 게이트 구동부(820b)의 게이트 커패시터(821b) 충전 방법을 도시한 도면이다.
도면을 참조하면, 한 쌍의 스위칭 소자(Sa,S'a)들이 모두 오프(of)된 경우라도, 게이트 구동 전압(821b)에 의해, 게이트 커패시터(Cgb), 및 접지단(GND)을 흐르는 전류(Ifa)가 형성되며, 이에 의해, 게이트 커패시터(Cgb)에 게이트 구동 전압(821b)이 충전된다.
한편, 하암 스위칭 소자(S'a)에 대응하는 게이트 구동부(820b)의 게이트 커패시터(821b) 충전 방법은, 인버터 제어부(430)에 의해 제어될 수 있다.
즉, 인버터 제어부(430)는, 모터(230) 구동 전에, 제1 기간 내에, 인버터(420) 내의 상암 스위칭 소자들(Sa,Sb,Sc) 및 하암 스위칭 소자들(S'a,S'b,S'c)을 모두 턴 오프시켜, 하암 스위칭 소자들(S'a,S'b,S'c)에 대응하는 게이트 구동부의 양단에 접속되는 게이트 커패시터에, 게이트 구동 전압이 충전되도록 제어할 수 있다.
한편, 상암 스위칭 소자(Sa)는, 접지단에 접속이 안되며, 플로팅(floating)되어 있으므로, 부트 스트랩(bootstrap)의 방식을 이용하여, 게이트 커패시터(Cga)에 게이트 구동 전압(821a)을 충전한다.
도 7c는, 상암 스위칭 소자(Sa)에 대응하는 게이트 구동부(820a)의 게이트 커패시터(821a) 충전 방법을 도시한 도면이다.
도면을 참조하면, 한 쌍의 스위칭 소자(Sa,S'a)들 중 상암 스위칭 소자(Sa)는 오프되고, 하암 스위칭 소자(S'a) 온된 경우, 게이트 구동 전압(821a)에 의해, 게이트 커패시터(Cga), 하암 스위칭 소자(S'a), 및 접지단(GND)을 흐르는 전류(Ifb)가 형성되며, 이에 의해, 게이트 커패시터(Cga)에 게이트 구동 전압(821b)이 충전된다. 즉, 부트 스트랩(bootstrap) 방식에 의해, 게이트 커패시터(Cga)에 게이트 구동 전압(821a)이 충전되게 된다.
한편, 상암 스위칭 소자(Sa)에 대응하는 게이트 구동부(820a)의 게이트 커패시터(821a) 충전 방법은, 인버터 제어부(430)에 의해 제어될 수 있다.
즉, 인버터 제어부(430)는, 모터(230) 구동 전에, 제1 기간 내에, 인버터(420) 내의 상암 스위칭 소자들(Sa,Sb,Sc) 및 하암 스위칭 소자들(S'a,S'b,S'c) 중 하암 스위칭 소자들(S'a,S'b,S'c)을 모두 턴 온시켜, 상암 스위칭 소자들(Sa,Sb,Sc)에 대응하는 게이트 구동부의 양단에 접속되는 게이트 커패시터에, 게이트 구동 전압이 충전되도록 제어할 수 있다.
한편, 도 7b의 하암 스위칭 소자에 대응하는 게이트 구동부의 게이트 커패시터 충전 이후에, 도 7c의 하암 스위칭 소자에 대응하는 게이트 구동부의 게이트 커패시터 충전이 수행되는 것이 바람직하다, 그 역의 경우도 가능하다.
한편, 이러한 게이트 커패시터 충전이 수행되는 구간(P1)은, 도 9에 도시된 바오 같이, 모터 구동 전에, 수행되는 것이 바람직하다. 그 이후, 모터 정렬 구간(P2), 모터 속도 상승 구간(P3), 및 통상 운전 구간(P4) 등이 수행될 수 있다.
한편, 도 9의 (b)에서는, 게이트 커패시터 충전이 수행되는 구간(P1) 이후, 게이트 커패시터(Cga)에 충전되는 전압(Vcga)가 소정 레벨 이상 유지하는 것을 예시한다.
한편, 도 7b, 및 도 7c의 게이트 커패시터 충전이 수행되는 도중에, 모터(230)가 회전하는 경우, 도 8a와 같이, 모터(230)에서 유발되는 역기전력에 의한 전류 성분이 dc 단 커패시터로 흐르게 된다.
특히, 도 7c와 같이, 인버터(430) 하암 스위칭 소자들(S'a,S'b,S'c)이 턴 온되었다가, 도 7b와 같이, 인버터(430) 하암 스위칭 소자들(S'a,S'b,S'c)이 턴 오프되는 경우, 도 7c에 의해, 모터(230)에 전류 패쓰가 형성되어, 발전 제동과 같이, 모터(230)에서 전력 소비가 발생하다가, 도 7b에 의해, 전류 패쓰 형성이 중단되므로, 모터(230)에서 유발되는 역기전력에 의한 전류 성분이 , 도 8a와 같이, dc 단 커패시터(C)로 흐를 수 있게 된다.
인버터 제어부(430)는, 도 10b와 같이, dc단 전압 검출부(B)에서 검출되는 dc단 전압의 변화량(ΔV)이 제1 소정치(ΔVref) 이상이거나, dc단 전압 검출부(B)에서 검출되는 dc단 전압의 피크치(Vdcpk)가 제1 레벨(Vdcref) 이상인 경우, 모터(230)가 회전 중인 것으로 판단하고, 모터(230)의 정지를 위한 발전 제동을 다시 수행하도록 제어할 수 있다.
또는, 인버터 제어부(430)는, 도 10a와 같이, 출력 전류 검출부(E)에서 검출되는 출력 전류의 변화량(Δi)이 제2 소정치 이상이거나, 출력 전류 검출부(E)에서 검출되는 출력 전류의 피크치가 제2 레벨(iLe1) 이상인 경우, 모터(230)가 회전 중인 것으로 판단하고, 모터(230)의 정지를 위한 발전 제동을 다시 수행하도록 제어할 수 있다.
한편, 도 7b, 및 도 7c의 게이트 커패시터 충전이 수행되는 도중에, 모터(230)가 정지된 경우, 도 8b와 같이, 모터(230)에서 유발되는 역기전력 성분 없이, 그대로, 모터(230)에서 발전 제동이 수행되어, 모터(230)에서 전력 소비가 발생하게 된다.
인버터 제어부(430)는, 도 10a와 같이, dc단 전압 검출부(B)에서 검출되는 dc단 전압의 변화량(ΔV)이 제1 소정치(ΔVref) 미만이며, dc단 전압 검출부(B)에서 검출되는 dc단 전압의 피크치(Vdcpk)가 제1 레벨(Vdcref) 미만인 경우, 모터(230)가 정지 중인 것으로 판단하고, 제1 기간(Pa1) 이후, 정렬 구간(Pb1)에서 모터(230)가 정렬되도록 제어하며, 그 이후, 모터 속도 상승 구간(Pc), 및 통상 운전 구간(Pd1) 등이 수행되도록 제어할 수 있다.
또는, 인버터 제어부(430)는, 도 10a와 같이, 출력 전류 검출부(E)에서 검출되는 출력 전류의 변화량이 제2 소정치 미만이며, 출력 전류 검출부(E)에서 검출되는 출력 전류의 피크치가 제2 레벨(iLe1) 미만인 경우, 모터(230)가 정지 중인 것으로 판단하고, 제1 기간 이후, 모터(230)가 정렬되도록 제어하며, 그 이후, 모터 속도 상승 구간(Pc), 및 통상 운전 구간(Pd1) 등이 수행되도록 제어할 수 있다.
도 11a 내지 도 11b는, 모터의 정지 여부에 따라 표시부에 표시되는 다양한 정보를 예시한 도면이다.
먼저, 도 7b, 및 도 7c의 게이트 커패시터 충전이 수행되는 도중에, 모터(230)가 정지인 것으로 판단되는 경우, 인버터 제어부(430)는, 도 11a와 같이, 재기동 게속 수행 메시지(1310)가 디스플레이(130)에 출력되도록 제어할 수 있다.
다음, 도 7b, 및 도 7c의 게이트 커패시터 충전이 수행되는 도중에, 모터(230)가 회전인 것으로 판단되는 경우, 인버터 제어부(430)는, 도 11b와 같이, 모터 정지후 재기동 메시지(1320)가 디스플레이(130)에 출력되도록 제어할 수 있다.
이러한 다양한 메시지들에 의해, 사용자는, 모터의 정지 여부에 따른 재기동 수행 또는 정지후 재기동 수행 모드를 간편하게 인식할 수 있게 된다.
도 12는 본 발명의 일 실시예에 따른 세탁물 처리기기를 도시한 사시도이다.
도면을 참조하면, 본 발명의 일 실시예에 따른 세탁물 처리기기(100a)는, 포가 전면 방향으로 세탁조 내로 삽입되는 프론트 로드(front load) 방식의 세탁물 처리기기이다. 이러한 프론트 방식의 세탁물 처리기기는, 포가 삽입되어 세탁, 헹굼 탈수 등을 수행하는 세탁기 또는 습포가 삽입되어 건조를 수행하는 건조기 등을 포함하는 개념으로서, 이하에서는 세탁기를 중심으로 기술한다.
도 12의 세탁물 처리기기(100a)는, 세탁조식 세탁물 처리기기로서, 세탁물 처리기기(100a)의 외관을 형성하는 캐비닛(110)과, 캐비닛(110) 내부에 배치되며 캐비닛(110)에 의해 지지되는 터브(120)와, 터브(120) 내부에 배치되며 포가 세탁되는 세탁조(122)과, 세탁조(122)을 구동시키는 모터(130)와, 캐비닛 본체(111) 외측에 배치되며 캐비닛(110) 내부로 세탁수를 공급하는 세탁수 공급장치(미도시)와, 터브(120) 하측에 형성되어 세탁수를 외부로 배출하는 배수장치(미도시)를 포함한다.
세탁조(122)에는 세탁수가 통과되도록 복수개의 통공(122A)이 형성되며, 세탁조(122)의 회전시 세탁물이 일정 높이로 들어 올려진 후, 중력에 의해 낙하되도록 세탁조(112)의 내 측면에 리프터(124)가 배치될 수 있다.
캐비닛(110)은, 캐비닛 본체(111)와, 캐비닛 본체(111)의 전면에 배치되어 결합하는 캐비닛 커버(112)와, 캐비닛 커버(112) 상측에 배치되며 캐비닛 본체(111)와 결합하는 컨트롤패널(115)과, 컨트롤패널(115) 상측에 배치되며 캐비닛 본체(111)와 결합하는 탑플레이트(116)를 포함한다.
캐비닛 커버(112)는 포의 출입이 가능하도록 형성되는 포 출입홀(114)과, 포 출입홀(114)의 개폐가 가능하도록 좌우로 회동 가능하게 배치되는 도어(113)를 포함한다.
컨트롤패널(115)은 세탁물 처리기기(100a)의 운전상태를 조작하는 조작키들(117)과, 조작키들(117)의 일측에 배치되며 세탁물 처리기기(100a)의 운전상태를 표시하는 디스플레이장치(118)를 포함한다.
컨트롤패널(115) 내의 조작키들(117) 및 디스플레이 장치(118)는 제어부(미도시)에 전기적으로 연결되며, 제어부(미도시)는 세탁물 처리기기(100a)의 각 구성요소등을 전기적으로 제어한다. 제어부(미도시)의 동작에 대해서는 후술하기로 한다.
한편, 세탁조(122)에는 오토 밸런스(미도시)가 구비될 수 있다. 오토 밸런스(미도시)는 세탁조(122) 내에 수용된 세탁물의 편심량에 따라 발생하는 진동을 저감하기 위한 것으로, 액체밸런스, 볼밸런스 등으로 구현될 수 있다.
한편, 도면에는 도시하지 않았지만, 세탁물 처리기기(100a)는, 세탁조(122)의 진동량 또는 캐비닛(110)의 진동량을 측정하는 진동 센서를 더 구비할 수 있다.
도 13은 도 12의 세탁물 처리기기의 내부 블록도이다.
도면을 참조하여 설명하면, 세탁물 처리기기(100a)는, 제어부(210)의 제어 동작에 의해, 구동부(220)가 제어되며, 구동부(220)는 모터(230)를 구동하게 된다. 이에 따라, 세탁조(122)에 모터(230)에 의해 회전하게 된다.
제어부(210)는, 조작키(1017)로부터 동작 신호를 입력받아 동작을 한다. 이에 따라, 세탁, 헹굼, 탈수 행정이 수행될 수 있다.
또한, 제어부(210)는, 디스플레이(18)를 제어하여, 세탁 코스, 세탁 시간, 탈수 시간, 헹굼 시간 등, 또는 현재 동작 상태 등을 표시하도록 제어할 수 있다.
한편, 제어부(210)는, 구동부(220)를 제어하여, 구동부(220)는, 모터(230)를 동작시키도록 제어한다. 이때, 모터(230) 내부 또는 외부에는, 모터의 회전자 위치를 감지하기 위한, 위치 감지부가 구비되지 않는다. 즉, 구동부(220)는, 센서리스(sensorless) 방식에 의해 모터(230)를 제어한다.
구동부(220)는, 모터(230)를 구동시키기 위한 것으로, 인버터(미도시), 및 인버터 제어부(미도시), 모터(230)에 흐르는 출력 전류를 검출하는 출력전류 검출부(도 2의 E)와, 모터(230)에 인가되는 출력 전압(vo)을 검출하는 출력전압 검출부(도 2의 F)를 구비할 수 있다. 또한, 구동부(220)는, 인버터(미도시)에 입력되는 직류 전원을 공급하는, 컨버터 등을 더 포함하는 개념일 수 있다.
예를 들어, 구동부(220) 내의 인버터 제어부(도 2의 430)는, 출력 전류(idc) 및 출력 전압(vo)에 기초하여, 모터(230)의 회전자 위치를 추정한다. 그리고, 추정된 회전자 위치에 기초하여, 모터(230)가 회전하도록 제어한다.
구체적으로, 인버터 제어부(도 2의 430)가, 출력 전류(idc) 및 출력 전압(vo)에 기초하여, 펄스폭 변조(PWM) 방식의 스위칭 제어 신호(도 2의 Sic)를 생성하여, 인버터(미도시)로 출력하면, 인버터(미도시)는 고속 스위칭 동작을 하여, 소정 주파수의 교류 전원을 모터(230)에 공급한다. 그리고, 모터(230)는, 소정 주파수의 교류 전원에 의해, 회전하게 된다.
한편, 구동부(220)는, 도 1의 모터 구동장치(220)에 대응할 수 있다.
한편, 제어부(210)는, 모터(230)에 흐르는 출력 전류(idc) 등에 기초하여, 포량을 감지할 수 있다. 예를 들어, 세탁조(122)가 회전하는 동안에, 모터(230)의 전류값(idc)에 기초하여 포량을 감지할 수 있다.
특히, 제어부(210)는, 포량 감지시, 모터 정렬 구간에서 측정된 모터의 고정자 저항과 인덕턴스 값을 이용하여, 포량을 정확히 감지할 수 있게 된다.
한편, 제어부(210)는, 세탁조(122)의 편심량, 즉 세탁조(122)의 언밸런스(unbalance; UB)를 감지할 수도 있다. 이러한 편심량 감지는, 모터(230)에 흐르는 출력 전류(idc)의 리플 성분 또는 세탁조(122)의 회전 속도 변화량에 기초하여, 수행될 수 있다.
특히, 제어부(210)는, 포량 감지시, 모터 정렬 구간에서 측정된 모터의 고정자 저항과 인덕턴스 값을 이용하여, 편심량을 정확히 감지할 수 있게 된다.
도 14는 본 발명의 실시예에 따른 홈 어플라인스의 다른 예인 공기조화기의 구성을 예시하는 도면이다.
본 발명에 따른 공기조화기(100b)는, 도 14에 도시된 바와 같이, 실내기(31b), 실내기(31b)에 연결되는 실외기(21b)를 포함할 수 있다.
공기조화기의 실내기(31b)는 스탠드형 공기조화기, 벽걸이형 공기조화기 및 천장형 공기조화기 중 어느 것이라도 적용 가능하나, 도면에서는, 스탠드형 실내기(31b)를 예시한다.
한편, 공기조화기(100b)는 환기장치, 공기청정장치, 가습장치 및 히터 중 적어도 하나를 더 포함할 수 있으며, 실내기 및 실외기의 동작에 연동하여 동작할 수 있다.
실외기(21b)는 냉매를 공급받아 압축하는 압축기(미도시)와, 냉매와 실외공기를 열교환하는 실외 열교환기(미도시)와, 공급되는 냉매로부터 기체 냉매를 추출하여 압축기로 공급하는 어큐뮬레이터(미도시)와, 난방운전에 따른 냉매의 유로를 선택하는 사방밸브(미도시)를 포함한다. 또한, 다수의 센서, 밸브 및 오일회수기 등을 더 포함하나, 그 구성에 대한 설명은 하기에서 생략하기로 한다.
실외기(21b)는 구비되는 압축기 및 실외 열교환기를 동작시켜 설정에 따라 냉매를 압축하거나 열교환하여 실내기(31b)로 냉매를 공급한다. 실외기(21b)는 원격제어기(미도시) 또는 실내기(31b)의 요구(demand)에 의해 구동될 수 있다. 이때, 구동되는 실내기에 대응하여 냉/난방 용량이 가변 됨에 따라 실외기의 작동 개수 및 실외기에 설치된 압축기의 작동 개수가 가변되는 것도 가능하다.
이때, 실외기(21b)는, 연결된 실내기(310b)로 압축된 냉매를 공급한다.
실내기(31b)는, 실외기(21b)로부터 냉매를 공급받아 실내로 냉온의 공기를 토출한다. 실내기(31b)는 실내 열교환기(미도시)와, 실내기팬(미도시), 공급되는 냉매가 팽창되는 팽창밸브(미도시), 다수의 센서(미도시)를 포함한다.
이때, 실외기(21b) 및 실내기(31b)는 통신선으로 연결되어 상호 데이터를 송수신하며, 실외기 및 실내기는 원격제어기(미도시)와 유선 또는 무선으로 연결되어 원격제어기(미도시)의 제어에 따라 동작할 수 있다.
리모컨(미도시)은 실내기(31b)에 연결되어, 실내기로 사용자의 제어명령을 입력하고, 실내기의 상태정보를 수신하여 표시할 수 있다. 이때 리모컨은 실내기와의 연결 형태에 따라 유선 또는 무선으로 통신할 수 있다.
도 15는 도 14의 실외기와 실내기의 개략도이다.
도면을 참조하여 설명하면, 공기조화기(100b)는, 크게 실내기(31b)와 실외기(21b)로 구분된다.
실외기(21b)는, 냉매를 압축시키는 역할을 하는 압축기(102b)와, 압축기를 구동하는 압축기용 전동기(102bb)와, 압축된 냉매를 방열시키는 역할을 하는 실외측 열교환기(104b)와, 실외 열교환기(104b)의 일측에 배치되어 냉매의 방열을 촉진시키는 실외팬(105ab)과 실외팬(105ab)을 회전시키는 전동기(105bb)로 이루어진 실외 송풍기(105b)와, 응축된 냉매를 팽창하는 팽창기구(106b)와, 압축된 냉매의 유로를 바꾸는 냉/난방 절환밸브(110b)와, 기체화된 냉매를 잠시 저장하여 수분과 이물질을 제거한 뒤 일정한 압력의 냉매를 압축기로 공급하는 어큐뮬레이터(103b) 등을 포함한다.
실내기(31b)는 실내에 배치되어 냉/난방 기능을 수행하는 실내측 열교환기(109b)와, 실내측 열교환기(109b)의 일측에 배치되어 냉매의 방열을 촉진시키는 실내팬(109ab)과 실내팬(109ab)을 회전시키는 전동기(109bb)로 이루어진 실내 송풍기(109b) 등을 포함한다.
실내측 열교환기(109b)는 적어도 하나가 설치될 수 있다. 압축기(102b)는 인버터 압축기, 정속 압축기 중 적어도 하나가 사용될 수 있다.
또한, 공기조화기(100b)는 실내를 냉방시키는 냉방기로 구성되는 것도 가능하고, 실내를 냉방시키거나 난방시키는 히트 펌프로 구성되는 것도 가능하다.
도 14의 실외기(21b) 내의 압축기(102b)는, 압축기 모터(250b)를 구동하는, 도 1과 같은, 모터 구동장치에 의해 구동될 수 있다.
또는, 실내팬(109ab) 또는 실외팬(105ab)은, 각각 실내팬 모터(109bb), 실외 팬 모터(150bb)를 구동하는, 도 1과 같은, 모터 구동장치에 의해 구동될 수 있다.
도 16은 본 발명의 실시예에 따른 홈 어플라인스의 또 다른 예인 냉장고를 도시한 사시도이다.
도면을 참조하여 설명하면, 본 발명과 관련한 냉장고(100c)는, 도시되지는 않았지만 냉동실 및 냉장실로 구획된 내부공간을 가지는 케이스(110c)와, 냉동실을 차폐하는 냉동실 도어(120c)와 냉장실을 차폐하는 냉장실 도어(140c)에 의해 개략적인 외관이 형성된다.
그리고, 냉동실 도어(120c)와 냉장실 도어(140c)의 전면에는 전방으로 돌출형성되는 도어핸들(121c)이 더 구비되어, 사용자가 용이하게 파지하고 냉동실 도어(120c)와 냉장실 도어(140c)를 회동시킬 수 있도록 한다.
한편, 냉장실 도어(140c)의 전면에는 사용자가 냉장실 도어(140c)를 개방하지 않고서도 내부에 수용된 음료와 같은 저장물을 취출할 수 있도록 하는 편의수단인 홈바(180c)가 더 구비될 수 있다.
그리고, 냉동실 도어(120c)의 전면에는 사용자가 냉동실 도어(120c)를 개방하지 않고 얼음 또는 식수를 용이하게 취출할 수 있도록 하는 편의수단인 디스펜서(160c)가 구비될 수 있고, 이러한 디스펜서(160c)의 상측에는, 냉장고(100c)의 구동운전을 제어하고 운전중인 냉장고(100c)의 상태를 화면에 도시하는 컨트롤패널(210c)이 더 구비될 수 있다.
한편, 도면에서는, 디스펜서(160c)가 냉동실 도어(120c)의 전면에 배치되는 것으로 도시하나, 이에 한정되지 않으며, 냉장실 도어(140c)의 전면에 배치되는 것도 가능하다.
한편, 냉동실(미도시)의 내측 상부에는 냉동실 내의 냉기를 이용하여 급수된 물을 제빙하는 제빙기(190c)와, 제빙기에서 제빙된 얼음이 이빙되어 담겨지도록 냉동실(미도시) 내측에 장착된 아이스 뱅크(195c)가 더 구비될 수 있다. 또한, 도면에서는 도시하지 않았지만, 아이스 뱅크(195c)에 담겨진 얼음이 디스펜서(160c)로 낙하되도록 안내하는 아이스 슈트(미도시)가 더 구비될 수 있다.
컨트롤패널(210c)은, 다수개의 버튼으로 구성되는 입력부(220c), 및 제어 화면 및 작동 상태 등을 디스플레이하는 표시부(230c)를 포함할 수 있다.
표시부(230c)는, 제어 화면, 작동 상태 및 고내 온도 등의 정보를 표시한다. 예를 들어, 표시부(230c)는 디스펜서의 서비스 형태(각얼음, 물, 조각얼음), 냉동실의 설정 온도, 냉장실의 설정 온도를 표시할 수 있다.
이러한 표시부(230c)는, 액정 디스플레이(LCD), 발광다이오드(LED), 유기발광다이오드(OLED) 등 다양하게 구현될 수 있다. 또한, 표시부(230c)는 입력부(220c)의 기능도 수행 가능한 터치스크린(touch screen)으로 구현될 수도 있다.
입력부(220c)는, 다수개의 조작 버튼을 구비할 수 있다. 예를 들어, 입력부(220c)는, 디스펜서의 서비스 형태(각얼음, 물, 조각 얼음 등)를 설정하기 위한 디스펜서 설정버튼(미도시)과, 냉동실 온도설정을 위한 냉동실 온도설정 버튼(미도시)과, 냉동실 온도설정을 위한 냉장실 온도 설정 버튼(미도시) 등을 포함할 수 있다. 한편, 입력부(220c)는 표시부(230c)의 기능도 수행 가능한 터치스크린(touch screen)으로 구현될 수도 있다.
한편, 본 발명의 실시예에 따른 냉장고는, 도면에 도시된 더블도어형(Double Door Type)에 한정되지 않으며, 원 도어형(One Door Type), 슬라이딩 도어형(Sliding Door Type), 커튼 도어형(Curtain Door Type) 등 그 형태를 불문한다.
도 17은 도 16의 냉장고의 구성을 간략히 도시한 도면이다.
도면을 참조하여 설명하면, 냉장고(100c)는, 압축기(112c)와, 압축기(112c)에서 압축된 냉매를 응축시키는 응축기(116c)와, 응축기(116c)에서 응축된 냉매를 공급받아 증발시키되, 냉동실(미도시)에 배치되는 냉동실 증발기(124c)와, 냉동실 증발기(124c)에 공급되는 냉매를 팽창시키는 냉동실 팽창밸브(134c)를 포함할 수 있다.
한편, 도면에서는, 하나의 증발기를 사용하는 것으로 예시하나, 냉장실과 냉동실에 각각의 증발기를 사용하는 것도 가능하다.
즉, 냉장고(100c)는, 냉장실(미도시)에 배치되는 냉장실 증발기(미도시), 응축기(116c)에서 응축된 냉매를 냉장실 증발기(미도시) 또는 냉동실 증발기(124c)에 공급하는 3방향 밸브(미도시)와, 냉장실 증발기(미도시)에 공급되는 냉매를 팽창시키는 냉장실 팽창밸브(미도시)를 더 포함할 수 있다.
또한, 냉장고(100c)는 증발기(124c)를 통과한 냉매가 액체와 기체로 분리되는 기액 분리기(미도시)를 더 포함할 수 있다.
또한, 냉장고(100c)는, 냉동실 증발기(124c)를 통과한 냉기를 흡입하여 각각 냉장실(미도시) 및 냉동실(미도시)로 불어주는 냉장실 팬(미도시) 및 냉동실 팬(144c)을 더 포함할 수 있다.
또한, 압축기(112c)를 구동하는 압축기 구동부(113c)와, 냉장실 팬(미도시) 및 냉동실 팬(144c)을 구동하는 냉장실 팬 구동부(미도시) 및 냉동실 팬 구동부(145c)를 더 포함할 수 있다.
한편, 도면에 따르면, 냉장실 및 냉동실에 공통의 증발기(124c)가 사용되므로, 이러한 경우에, 냉장실 및 냉동실 사이에 댐퍼(미도시)가 설치되될 수 있으며, 팬(미도시)은 하나의 증발기에서 생성된 냉기를 냉동실과 냉장실로 공급되도록 강제 송풍시킬 수 있다.
도 17의 압축기(112c)는, 압축기 모터를 구동하는, 도 1과 같은, 모터 구동장치에 의해 구동될 수 있다.
또는, 냉장실 팬(미도시) 또는 냉동실 팬(144c)은, 각각 냉장실 팬 모터(미도시), 냉동실 팬 모터(미도시)를 구동하는, 도 1과 같은, 모터 구동장치에 의해 구동될 수 있다.
본 발명의 실시예에 따른 모터 구동장치 및 이를 구비하는 홈 어플라이언스는, 상기한 바와 같이 설명된 실시예들의 구성과 방법이 한정되게 적용될 수 있는 것이 아니라, 상기 실시예들은 다양한 변형이 이루어질 수 있도록 각 실시예들의 전부 또는 일부가 선택적으로 조합되어 구성될 수도 있다.
한편, 본 발명의 모터 구동방법 또는 홈 어플라이언스의 동작방법은, 모터 구동장치 또는 홈 어플라이언스에 구비된 프로세서가 읽을 수 있는 기록매체에 프로세서가 읽을 수 있는 코드로서 구현하는 것이 가능하다. 프로세서가 읽을 수 있는 기록매체는 프로세서에 의해 읽혀질 수 있는 데이터가 저장되는 모든 종류의 기록장치를 포함한다.
또한, 이상에서는 본 발명의 바람직한 실시예에 대하여 도시하고 설명하였지만, 본 발명은 상술한 특정의 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형실시들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해되어져서는 안될 것이다.

Claims (17)

  1. 직류 전원을 저장하는 dc단 커패시터;
    복수의 상암 스위칭 소자와 하암 스위칭 소자를 구비하며, 스위칭 동작에 의해, 상기 dc단 커패시터에 저장된 전원을 교류 전원으로 변환하고, 상기 변환된 교류 전원을 모터에 출력하는 인버터;
    상기 dc단 커패시터이 전압을 검출하는 dc단 전압 검출부;
    상기 dc단 커패시터와 상기 인버터 사이에 배치되어 모터에 흐르는 출력 전류를 검출하는 출력 전류 검출부;
    상기 출력 전류에 기초하여, 인버터를 제어하는 제어부;를 구비하고,
    상기 제어부는,
    상기 모터의 정지를 위해, 발전 제동이 수행되도록 제어하고, 상기 발전 제동 수행 후, 상기 모터의 기동을 위한 제1 기간 동안, 상기 인버터의 상기 상암 스위칭 소자의 게이트 단자를 위한 부트 스트랩 동작을 수행하며, 상기 제1 기간 동안, 상기 dc단 전압 검출부에서 검출되는 dc단 전압, 또는 상기 출력 전류 검출부에서 검출되는 출력 전류에 기초하여, 상기 모터의 정지 여부를 판단하는 것을 특징으로 하는 모터 구동장치.
  2. 제1항에 있어서,
    상기 제어부는,
    상기 dc단 전압 검출부에서 검출되는 dc단 전압의 변화량이 제1 소정치 이상이거나, 상기 dc단 전압 검출부에서 검출되는 dc단 전압의 피크치가 제1 레벨 이상인 경우, 상기 모터가 회전 중인 것으로 판단하고, 상기 모터의 정지를 위한 상기 발전 제동을 다시 수행하도록 제어하는 것을 특징으로 하는 모터 구동장치.
  3. 제2항에 있어서,
    상기 제어부는,
    상기 dc단 전압 검출부에서 검출되는 dc단 전압의 변화량이 제1 소정치 미만이며, 상기 dc단 전압 검출부에서 검출되는 dc단 전압의 피크치가 제1 레벨 미만인 경우, 상기 모터가 정지 중인 것으로 판단하고, 상기 제1 기간 이후, 상기 모터가 정렬되도록 제어하는 것을 특징으로 하는 모터 구동장치.
  4. 제1항에 있어서,
    상기 제어부는,
    상기 출력 전류 검출부에서 검출되는 출력 전류의 변화량이 제2 소정치 이상이거나, 상기 출력 전류 검출부에서 검출되는 출력 전류의 피크치가 제2 레벨 이상인 경우, 상기 모터가 회전 중인 것으로 판단하고, 상기 모터의 정지를 위한 상기 발전 제동을 다시 수행하도록 제어하는 것을 특징으로 하는 모터 구동장치.
  5. 제4항에 있어서,
    상기 제어부는,
    상기 출력 전류 검출부에서 검출되는 출력 전류의 변화량이 제2 소정치 미만이며, 상기 출력 전류 검출부에서 검출되는 출력 전류의 피크치가 제2 레벨 미만인 경우, 상기 모터가 정지 중인 것으로 판단하고, 상기 제1 기간 이후, 상기 모터가 정렬되도록 제어하는 것을 특징으로 하는 모터 구동장치.
  6. 제1항에 있어서,
    상기 인버터의 각 스위칭 소자의 게이트 단자에 접속하는 게이트 드라이버; 및
    상기 게이트 드라이버에 접속하며, 게이트 구동 전압을 저장하는 게이트 커패시터;를 더 포함하고,
    상기 제어부는,
    상기 제1 기간 동안,
    상기 인버터의 상암 스위칭 소자와 하암 스위칭 소자를 모두 오프시켜, 상기 인버터의 하암 스위칭 소자에 대응하는 게이트 커패시터에 게이트 구동 전압을 저장하고,
    상기 인버터의 상암 스위칭 소자를 오프시키고, 하암 스위칭 소자를 온 시켜, 상기 인버터의 상암 스위칭 소자에 대응하는 게이트 커패시터에 게이트 구동 전압을 저장하는 것을 특징으로 하는 모터 구동장치.
  7. 제6항에 있어서,
    상기 제어부는,
    상기 인버터의 상암 스위칭 소자가 오프되고, 상기 하암 스위칭 소자가 온 되는 동안, 상기 dc단 전압 검출부에서 검출되는 dc단 전압, 또는 상기 출력 전류 검출부에서 검출되는 출력 전류에 기초하여, 상기 모터의 정지 여부를 판단하는 것을 특징으로 하는 모터 구동장치.
  8. 직류 전원을 저장하는 dc단 커패시터;
    복수의 상암 스위칭 소자와 하암 스위칭 소자를 구비하며, 스위칭 동작에 의해, 상기 dc단 커패시터에 저장된 전원을 교류 전원으로 변환하고, 상기 변환된 교류 전원을 모터에 출력하는 인버터;
    상기 dc단 커패시터이 전압을 검출하는 dc단 전압 검출부;
    상기 dc단 커패시터와 상기 인버터 사이에 배치되어 모터에 흐르는 출력 전류를 검출하는 출력 전류 검출부;
    상기 출력 전류에 기초하여, 인버터를 제어하는 제어부;를 구비하고,
    상기 제어부는,
    상기 모터를 정지 시킨 후, 재기동시, 상기 dc단 전압 검출부에서 검출되는 dc단 전압의 변화량이 제1 소정치 이상이거나, 상기 dc단 전압 검출부에서 검출되는 dc단 전압의 피크치가 제1 레벨 이상인 경우, 상기 모터가 회전 중인 것으로 판단하고, 상기 모터를 정지시키도록 제어하는 것을 특징으로 하는 모터 구동장치.
  9. 모터;
    디스플레이;
    직류 전원을 저장하는 dc단 커패시터;
    복수의 상암 스위칭 소자와 하암 스위칭 소자를 구비하며, 스위칭 동작에 의해, 상기 dc단 커패시터에 저장된 전원을 교류 전원으로 변환하고, 상기 변환된 교류 전원을 상기 모터에 출력하는 인버터;
    상기 dc단 커패시터이 전압을 검출하는 dc단 전압 검출부;
    상기 dc단 커패시터와 상기 인버터 사이에 배치되어 모터에 흐르는 출력 전류를 검출하는 출력 전류 검출부;
    상기 출력 전류에 기초하여, 인버터를 제어하는 제어부;를 구비하고,
    상기 제어부는,
    상기 모터의 정지를 위해, 발전 제동이 수행되도록 제어하고, 상기 발전 제동 수행 후, 상기 모터의 기동을 위한 제1 기간 동안, 상기 인버터의 상기 상암 스위칭 소자의 게이트 단자를 위한 부트 스트랩 동작을 수행하며, 상기 제1 기간 동안, 상기 dc단 전압 검출부에서 검출되는 dc단 전압, 또는 상기 출력 전류 검출부에서 검출되는 출력 전류에 기초하여, 상기 모터의 정지 여부를 판단하는 것을 특징으로 하는 홈 어플라이언스.
  10. 제9항에 있어서,
    상기 제어부는,
    상기 dc단 전압 검출부에서 검출되는 dc단 전압의 변화량이 제1 소정치 이상이거나, 상기 dc단 전압 검출부에서 검출되는 dc단 전압의 피크치가 제1 레벨 이상인 경우, 상기 모터가 회전 중인 것으로 판단하고, 상기 모터의 정지를 위한 상기 발전 제동을 다시 수행하도록 제어하는 것을 특징으로 하는 홈 어플라이언스.
  11. 제10항에 있어서,
    상기 제어부는,
    상기 dc단 전압 검출부에서 검출되는 dc단 전압의 변화량이 제1 소정치 미만이며, 상기 dc단 전압 검출부에서 검출되는 dc단 전압의 피크치가 제1 레벨 미만인 경우, 상기 모터가 정지 중인 것으로 판단하고, 상기 제1 기간 이후, 상기 모터가 정렬되도록 제어하는 것을 특징으로 하는 홈 어플라이언스.
  12. 제9항에 있어서,
    상기 제어부는,
    상기 출력 전류 검출부에서 검출되는 출력 전류의 변화량이 제2 소정치 이상이거나, 상기 출력 전류 검출부에서 검출되는 출력 전류의 피크치가 제2 레벨 이상인 경우, 상기 모터가 회전 중인 것으로 판단하고, 상기 모터의 정지를 위한 상기 발전 제동을 다시 수행하도록 제어하는 것을 특징으로 하는 홈 어플라이언스.
  13. 제12항에 있어서,
    상기 제어부는,
    상기 출력 전류 검출부에서 검출되는 출력 전류의 변화량이 제2 소정치 미만이며, 상기 출력 전류 검출부에서 검출되는 출력 전류의 피크치가 제2 레벨 미만인 경우, 상기 모터가 정지 중인 것으로 판단하고, 상기 제1 기간 이후, 상기 모터가 정렬되도록 제어하는 것을 특징으로 하는 홈 어플라이언스.
  14. 제9항에 있어서,
    상기 인버터의 각 스위칭 소자의 게이트 단자에 접속하는 게이트 드라이버; 및
    상기 게이트 드라이버에 접속하며, 게이트 구동 전압을 저장하는 게이트 커패시터;를 더 포함하고,
    상기 제어부는,
    상기 제1 기간 동안,
    상기 인버터의 상암 스위칭 소자와 하암 스위칭 소자를 모두 오프시켜, 상기 인버터의 하암 스위칭 소자에 대응하는 게이트 커패시터에 게이트 구동 전압을 저장하고,
    상기 인버터의 상암 스위칭 소자를 오프시키고, 하암 스위칭 소자를 온 시켜, 상기 인버터의 상암 스위칭 소자에 대응하는 게이트 커패시터에 게이트 구동 전압을 저장하는 것을 특징으로 하는 홈 어플라이언스.
  15. 제14항에 있어서,
    상기 제어부는,
    상기 인버터의 상암 스위칭 소자가 오프되고, 상기 하암 스위칭 소자가 온 되는 동안, 상기 dc단 전압 검출부에서 검출되는 dc단 전압, 또는 상기 출력 전류 검출부에서 검출되는 출력 전류에 기초하여, 상기 모터의 정지 여부를 판단하는 것을 특징으로 하는 홈 어플라이언스.
  16. 제10항에 있어서,
    상기 제어부는,
    상기 모터가 회전 중인 것으로 판단되는 경우, 모터 정지후 재기동 메시지가, 상기 디스플레이에 표시되도록 제어하는 것을 특징으로 하는 홈 어플라이언스.
  17. 제10항에 있어서,
    상기 제어부는,
    상기 모터가 정지 중인 것으로 판단되는 경우, 모터 정지후 재기동 메시지가, 상기 디스플레이에 표시되도록 제어하는 것을 특징으로 하는 홈 어플라이언스.
PCT/KR2016/009148 2015-08-19 2016-08-19 모터 구동장치 및 이를 구비하는 홈 어플라이언스 WO2017030407A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0116914 2015-08-19
KR1020150116914A KR101716141B1 (ko) 2015-08-19 2015-08-19 모터 구동장치 및 이를 구비하는 홈 어플라이언스

Publications (1)

Publication Number Publication Date
WO2017030407A1 true WO2017030407A1 (ko) 2017-02-23

Family

ID=56694061

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/009148 WO2017030407A1 (ko) 2015-08-19 2016-08-19 모터 구동장치 및 이를 구비하는 홈 어플라이언스

Country Status (4)

Country Link
US (1) US9806654B2 (ko)
EP (2) EP3139486B1 (ko)
KR (1) KR101716141B1 (ko)
WO (1) WO2017030407A1 (ko)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102411852B1 (ko) * 2017-09-07 2022-06-23 한온시스템 주식회사 모터 구동 제어 장치 및 방법
KR20190063252A (ko) * 2017-11-29 2019-06-07 엘지전자 주식회사 모터 구동장치 및 그의 제어방법
JP6698729B2 (ja) * 2018-03-15 2020-05-27 ファナック株式会社 モータ制御装置およびモータ制御方法
KR102539459B1 (ko) * 2018-07-06 2023-06-01 엘지전자 주식회사 세탁물 처리기기 및 그 제어방법
US11234360B2 (en) 2019-02-01 2022-02-01 Cnh Industrial Canada, Ltd. Drive and sensing system for agricultural agitator
KR102396561B1 (ko) 2019-07-15 2022-05-10 엘지전자 주식회사 모터 구동 장치 및 그 제어 방법
WO2021226978A1 (zh) * 2020-05-15 2021-11-18 深圳市汇顶科技股份有限公司 电源管理电路、芯片和设备
KR102450221B1 (ko) * 2020-12-14 2022-10-05 엘지전자 주식회사 가전 및 그의 제어 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020046715A (ko) * 2000-12-15 2002-06-21 장흥순 센서리스 브러시리스 직류모터의 구동방법 및 그 장치
JP2004040912A (ja) * 2002-07-03 2004-02-05 Denso Corp 電動アクチュエータシステム
JP2009264288A (ja) * 2008-04-25 2009-11-12 Toyota Motor Corp 電動式ウォーターポンプの制御装置
JP2013085419A (ja) * 2011-10-12 2013-05-09 Toyota Motor Corp 電力変換装置
JP2013190111A (ja) * 2012-03-12 2013-09-26 Hitachi Ltd 換気システム、換気方法、及び制御装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60336516D1 (de) 2002-05-15 2011-05-05 Lg Electronics Inc Verfahren und Kontrollsystem zur Steuerung einer motorgetriebenen Waschmaschine
GB0213098D0 (en) * 2002-06-07 2002-07-17 Trw Ltd Motor control device
JP3957619B2 (ja) * 2002-11-22 2007-08-15 シャープ株式会社 イオン溶出ユニット及びこれを搭載した機器
US7514887B2 (en) 2003-10-24 2009-04-07 A. O. Smith Corporation Electrical machine and method of controlling the same
US7414425B2 (en) * 2004-05-10 2008-08-19 Temic Automotive Of North America, Inc. Damping control in a three-phase motor with a single current sensor
US7145316B1 (en) * 2005-06-06 2006-12-05 Micrel, Inc. Control circuit for monitoring and maintaining a bootstrap voltage in an N-channel buck regulator
GB0526274D0 (en) * 2005-12-23 2006-02-01 Trw Ltd Electric motor control
US20070216758A1 (en) * 2006-03-14 2007-09-20 Kyocera Mita Corporation Driving control device, image forming apparatus and recording medium for recording driving control program
KR100988625B1 (ko) * 2008-05-26 2010-10-18 엘지전자 주식회사 세탁물 처리기기 및 세탁물 처리기기의 제어방법
US8966944B2 (en) * 2008-08-01 2015-03-03 Lg Electronics Inc. Control method of a laundry machine
DE102009001195A1 (de) 2009-02-26 2010-09-02 BSH Bosch und Siemens Hausgeräte GmbH Verfahren zum Abbremsen einer Wäschetrommel und Hausgerät zur Pflege von Wäschestücken
US20120005840A1 (en) * 2010-07-06 2012-01-12 Jang Hoyong Washing machine and method for controlling the same
KR20140122349A (ko) 2013-04-09 2014-10-20 삼성전자주식회사 세탁기의 센서리스 제어 장치 및 그 방법
KR101615979B1 (ko) * 2013-08-14 2016-04-28 엘지전자 주식회사 세탁물 처리기기 및 그 제어방법
KR101608659B1 (ko) * 2013-08-14 2016-04-04 엘지전자 주식회사 세탁물 처리기기 및 그 제어방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020046715A (ko) * 2000-12-15 2002-06-21 장흥순 센서리스 브러시리스 직류모터의 구동방법 및 그 장치
JP2004040912A (ja) * 2002-07-03 2004-02-05 Denso Corp 電動アクチュエータシステム
JP2009264288A (ja) * 2008-04-25 2009-11-12 Toyota Motor Corp 電動式ウォーターポンプの制御装置
JP2013085419A (ja) * 2011-10-12 2013-05-09 Toyota Motor Corp 電力変換装置
JP2013190111A (ja) * 2012-03-12 2013-09-26 Hitachi Ltd 換気システム、換気方法、及び制御装置

Also Published As

Publication number Publication date
EP3139486A1 (en) 2017-03-08
EP3525337A1 (en) 2019-08-14
EP3525337B1 (en) 2021-06-16
KR20170022202A (ko) 2017-03-02
KR101716141B1 (ko) 2017-03-14
EP3139486B1 (en) 2019-05-15
US9806654B2 (en) 2017-10-31
US20170054394A1 (en) 2017-02-23

Similar Documents

Publication Publication Date Title
WO2017030407A1 (ko) 모터 구동장치 및 이를 구비하는 홈 어플라이언스
KR101691793B1 (ko) 모터 구동장치 및 이를 구비하는 홈 어플라이언스
KR101858696B1 (ko) 모터 구동장치 및 이를 구비하는 홈 어플라이언스
KR101776240B1 (ko) 모터 구동장치 및 이를 구비하는 홈 어플라이언스
KR101709496B1 (ko) 모터 구동장치 및 이를 구비하는 홈 어플라이언스
KR101754687B1 (ko) 모터 구동장치 및 이를 구비하는 홈 어플라이언스
WO2018155949A1 (ko) 모터 구동장치 및 이를 구비하는 홈 어플라이언스
KR101738085B1 (ko) 모터 구동장치 및 이를 구비하는 홈 어플라이언스
KR101756411B1 (ko) 모터 구동장치 및 이를 구비하는 홈 어플라이언스
KR101822897B1 (ko) 모터 구동장치 및 이를 구비하는 홈 어플라이언스
WO2014168267A1 (ko) 전동기 구동장치, 및 이를 구비하는 냉장고
KR20180093341A (ko) 모터 구동장치 및 이를 구비하는 홈 어플라이언스
KR101749530B1 (ko) 모터 구동장치 및 이를 구비하는 홈 어플라이언스
KR20180135323A (ko) 전력변환장치 및 이를 구비하는 홈 어플라이언스
KR102209306B1 (ko) 모터 구동장치 및 이를 구비하는 홈 어플라이언스
KR102198184B1 (ko) 모터 구동 장치 및 이를 구비하는 홈 어플라이언스
KR102035139B1 (ko) 모터 구동장치 및 이를 구비하는 홈 어플라이언스
WO2020009526A1 (ko) 세탁물 처리기기
WO2020009521A1 (ko) 순환펌프 구동장치 및 세탁물 처리기기
KR102014147B1 (ko) 모터 구동 장치 및 이를 구비하는 홈 어플라이언스
KR102074778B1 (ko) 전력변환장치 및 이를 구비하는 홈 어플라이언스
KR102011829B1 (ko) 모터 구동장치 및 이를 구비하는 홈 어플라이언스
KR102145894B1 (ko) 모터 구동장치 및 이를 구비하는 홈 어플라이언스
KR102104449B1 (ko) 모터 구동 장치 및 이를 구비하는 홈 어플라이언스
KR101936641B1 (ko) 전력변환장치 및 이를 구비하는 홈 어플라이언스

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16837349

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16837349

Country of ref document: EP

Kind code of ref document: A1