WO2017029818A1 - 引張試験用試験片及び引張試験方法 - Google Patents

引張試験用試験片及び引張試験方法 Download PDF

Info

Publication number
WO2017029818A1
WO2017029818A1 PCT/JP2016/054881 JP2016054881W WO2017029818A1 WO 2017029818 A1 WO2017029818 A1 WO 2017029818A1 JP 2016054881 W JP2016054881 W JP 2016054881W WO 2017029818 A1 WO2017029818 A1 WO 2017029818A1
Authority
WO
WIPO (PCT)
Prior art keywords
tensile test
load application
tensile
piece
load
Prior art date
Application number
PCT/JP2016/054881
Other languages
English (en)
French (fr)
Inventor
飛怜 井上
正祐 高梨
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Publication of WO2017029818A1 publication Critical patent/WO2017029818A1/ja
Priority to US15/810,219 priority Critical patent/US10473571B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0016Tensile or compressive
    • G01N2203/0017Tensile
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/006Crack, flaws, fracture or rupture
    • G01N2203/0067Fracture or rupture
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/025Geometry of the test
    • G01N2203/0252Monoaxial, i.e. the forces being applied along a single axis of the specimen
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/026Specifications of the specimen
    • G01N2203/0262Shape of the specimen
    • G01N2203/0272Cruciform specimens
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/04Chucks, fixtures, jaws, holders or anvils
    • G01N2203/0435Chucks, fixtures, jaws, holders or anvils modifying the type of the force applied, e.g. the chuck transforms a compressive machine for applying a bending test

Definitions

  • This disclosure relates to material tensile testing.
  • both ends in the tensile direction of the test piece are bonded to a pair of tensile jigs on the testing machine, and the two jigs are separated in the tensile direction to pull on the test piece.
  • a method of applying a tensile force in the direction is known.
  • a tensile test of a general material is performed by holding both ends of a test piece having sufficient dimensions in the pulling direction with a pair of chucks of the testing machine and separating both chucks in the pulling direction.
  • the method is often performed by applying a tensile force in the pulling direction to the test piece without using an adhesive (see Patent Document 1).
  • FRP fiber reinforced plastic
  • Such a problem also occurs when performing a tensile test in which a tensile force is applied between two members in order to evaluate the adhesive strength of the two members bonded with an adhesive.
  • the present disclosure has been made in view of the above circumstances, and an object of the present disclosure is to provide a tensile test method capable of widely performing a tensile test under various conditions and a tensile test method that is not easily restricted by a material to be tested and a test environment.
  • An object of the present invention is to provide a tensile test specimen suitable for use in carrying out a test method.
  • a first aspect of the present disclosure is a tensile test specimen, A tensile test section having a three-dimensional shape having n-fold symmetry (where n is an even number of 4 or more) around a central axis extending in the tensile direction; N pieces of load application pieces that are integrally formed with the tensile test part and are connected radially from the tensile test part in a direction perpendicular to the tensile direction with respect to the central axis,
  • the tensile test portion includes a first end portion in the pulling direction and a second end portion located on the opposite side of the first end portion in the pulling direction,
  • the n load application pieces are composed of a first load application piece and a second load application piece, The first load application piece is connected to a portion between the first end portion and the expected fracture location of the tensile test portion,
  • the gist of the second load application piece is that it is connected to a portion between the second end portion of the tensile test portion
  • the first load application piece is connected to an application surface that receives a load from the expected portion toward the first end, and a connection portion between the tensile test unit of the first load application piece, You may have the ditch
  • the second load application piece is connected to an application surface that receives a load from the expected breakage point toward the second end, and a connection portion between the tensile test part of the second load application piece, You may have the ditch
  • the first load application pieces and the second load application pieces may be alternately arranged along a circumferential direction around the central axis.
  • the tensile test specimen may be formed of a fiber-reinforced composite material having a fiber as a base material.
  • the pulling direction may be a direction in which fibers of the fiber-reinforced composite material do not extend.
  • the second aspect of the present disclosure is a tensile test method, and is summarized in that a tensile force in a tensile direction is applied to the tensile test specimen according to the first aspect.
  • the tensile test can be widely performed under various conditions that are not easily restricted by the material to be tested and the test environment.
  • FIG. 1 is a perspective view illustrating a tensile test specimen according to an embodiment of the present disclosure.
  • 2 (a) is a plan view of the test piece of FIG. 1
  • FIG. 2 (b) is the front view
  • FIG. 2 (c) is the side view
  • FIG. 2 (d) is II of FIG. 2 (a).
  • FIG. 2E is a sectional view taken along line II-II in FIG.
  • FIG. 3 is an explanatory diagram illustrating a tensile test method according to an embodiment of the present disclosure that is performed using the test piece of FIG. 1.
  • 4A is a front view of a jig used in the tensile test of FIG. 3, and
  • FIG. 4B is a plan view thereof.
  • FIG. 5 is a perspective view showing the test piece of FIG. 1 which is broken from the broken portion by the tensile test of FIG. 3 and separated into two in the pulling direction.
  • FIG. 6 is a plan view illustrating a tensile test specimen according to another embodiment of the present disclosure.
  • FIG. 7 is a plan view showing a tensile test specimen according to still another embodiment of the present disclosure.
  • FIG. 8A is a plan view showing a tensile test specimen according to still another embodiment of the present disclosure, and FIG. 8B is a bottom view thereof.
  • test pieces on the drawings referred to in the following embodiments merely show a conceptual configuration, and the dimensional ratios and the like of each part do not necessarily match the actual dimensional ratios. It should be noted.
  • FIG. 1 is a perspective view showing a test piece for a tensile test according to an embodiment of the present disclosure.
  • a tensile test specimen (hereinafter abbreviated as “test specimen”) 1 of the present embodiment includes a central tensile test section 3 and a tensile test section 3 surrounded by a one-dot chain line frame.
  • Four load application pieces 5a, 5b, 7a, 7b extending in all directions.
  • FIG. 2 (a) is a plan view of the test piece of FIG. 1
  • FIG. 2 (b) is the front view
  • FIG. 2 (c) is the side view
  • FIG. 2 (d) is II of FIG. 2 (a).
  • FIG. 2E is a sectional view taken along line II-II in FIG.
  • the tensile test section 3 is located on the first end (one end or upper surface) 3c in the pulling direction and on the opposite side of the first end 3c in the pulling direction. It has a square shape in plan view having a second end (the other end or lower surface) 3d.
  • Load application pieces 5a, 5b, 7a, 7b are connected to the four sides of the tensile test section 3, respectively.
  • the tensile test section 3 and the load application pieces 5a, 5b, 7a, 7b are partitioned by concave grooves 5c, 5d, 7c, 7d formed in the load application pieces 5a, 5b, 7a, 7b, respectively.
  • the load application pieces (first load application pieces) 5a and 5b are formed to be connected to two sides of the tensile test portion 3 facing in the left-right direction.
  • the load application pieces 5a and 5b are partitioned from the tensile test part 3 by concave grooves 5c and 5d formed in the load application pieces 5a and 5b, respectively.
  • the load application pieces 5a and 5b have bottom surfaces (application surfaces) 5e and 5f that receive an upward load during a tensile test, respectively. In other words, the load application pieces 5a and 5b receive a load from the second end 3d side toward the first end 3c side.
  • the concave grooves 5c and 5d are formed on the bottom surfaces 5e and 5f of the load application pieces 5a and 5b.
  • Each of the concave grooves 5c and 5d is formed at a depth from the bottom surface side of the tensile test portion 3 to the center in the vertical direction in accordance with the expected fracture location L indicated by the one-dot chain line in FIG. Note that the expected breakage point L is a portion where the tensile test part 3 is expected to break during the tensile test.
  • the tensile test section 3 and the left and right load application pieces 5a and 5b are connected on the upper surface side of the test piece 1 with respect to the expected breakage point L.
  • the load application pieces (second load application pieces) 7a and 7b are formed to be connected to two sides facing in the front-rear direction of the tensile test section 3.
  • the load application pieces 7a and 7b are partitioned from the tensile test section 3 by concave grooves 7c and 7d formed in the load application pieces 7a and 7b, respectively.
  • the load application pieces 7a and 7b have upper surfaces (application surfaces) 7e and 7f, respectively, that receive a downward load during a tensile test. In other words, the load application pieces 7a and 7b receive a load from the first end 3c side toward the second end 3d side.
  • the concave grooves 7c and 7d are formed on the upper surfaces 7e and 7f of the load application pieces 7a and 7b.
  • Each of the concave grooves 7c and 7d is formed at a depth from the upper surface side of the tensile test section 3 to the center in the vertical direction in accordance with the expected fracture location L indicated by the one-dot chain line in FIG.
  • the tensile test section 3 and the load application pieces 7 a and 7 b before and after the tensile test section 3 are connected to the lower surface side of the test piece 1 with respect to the expected breakage point L.
  • the test piece 1 is formed of a fiber reinforced composite material using a fiber as a base material, such as a carbon fiber reinforced composite material. And the direction where the fiber of a base material does not extend is set to the up-down direction which is the pulling direction of the test piece 1. As shown in FIG.
  • test piece 1 of this embodiment when an upward load is applied to the bottom surfaces 5e and 5f of the left and right load application pieces 5a and 5b of the tensile test section 3, a tensile test is performed. In the portion 3, an upward force is applied to a portion on the upper surface side from the expected fracture location L.
  • test piece 1 is set in a test apparatus and a tensile test method according to an embodiment of the present disclosure is performed will be described with reference to FIG. 3.
  • the test apparatus shown in FIG. 3 is originally used for a compression test in which a compression load is applied to a test piece disposed between both rams 21 and 23 with the upper ram 21 approaching the lower ram 23.
  • the jigs 31 and 33 and the steel ball 35 are used together, and the upper ram 21 is brought close to the lower ram 23 to apply a tensile force to the test piece 1.
  • the jigs 31 and 33 will be described.
  • the upper jig 31 is placed on the test piece 1.
  • the jig 31 has a concave portion 31a straddling the tensile test portion 3 of the test piece 1 on the lower surface, and is mounted on the upper surfaces 7e and 7f of the upper and lower load application pieces 7a and 7b of the test piece 1 on both sides of the concave portion 31a. It has leg pieces 31b and 31c to be placed.
  • a conical recess 31 e is formed on the upper surface 31 d of the jig 31.
  • a cylindrical concave groove 31f is formed at the center of the concave portion 31e.
  • the recess 31e is formed so as to accommodate the steel ball 35 shown in FIG.
  • the recessed groove 31f is configured such that a part of the surface of the steel ball 35 is fitted in a state in which the steel ball 35 is accommodated in the recess 31e, and the steel ball 35 is stationary in the recess 31e.
  • the lower jig 33 is placed under the test piece 1.
  • the jig 33 has a shape in which the concave portion 31e and the concave groove 31f are omitted from the upper jig 31, and the top and bottom are inverted. That is, the jig 33 has a concave portion 33a straddling the tensile test portion 3 of the test piece 1 on the upper surface, and the left and right load application pieces 5a and 5b of the test piece 1 are placed on both sides of the concave portion 33a.
  • Leg pieces 33b and 33c are provided.
  • the jig 33 When performing the tensile test of the test piece 1 with the test apparatus shown in FIG. 3, the jig 33 is placed on the lower ram 23 with the recess 33a facing upward. Furthermore, the load application pieces 5a and 5b of the test piece 1 are placed on the leg pieces 33b and 33c. Thereby, the load application pieces 5 a and 5 b are supported from below by the leg pieces 33 b and 33 c of the jig 33. The load application pieces 5a and 5b may be supported by the leg pieces 33b and 33c so as not to move.
  • the leg pieces 31b and 31c of the jig 31 are placed on the upper surfaces 7e and 7f of the load application pieces 7a and 7b with the concave portion 31a facing downward.
  • the steel ball 35 is placed in the recess 31e of the jig 31, a part of the steel ball 35 is fitted in the recess 31f, and the steel ball 35 is stationary in the recess 31e. Is brought into contact with the steel ball 35 from above.
  • the upper ram 21 of the test apparatus is gradually lowered so as to approach the lower ram 23 side, and the upper surfaces 7e, 7b of the load application pieces 7a, 7b via the leg pieces 31b, 31c of the jig 31.
  • a downward load is applied to 7f.
  • the load application pieces 5 a and 5 b are supported from below by leg pieces 33 b and 33 c of the jig 33. Therefore, an upward load is equally applied to the load application pieces 5a and 5b via the leg pieces 33b and 33c of the jig 33.
  • load application pieces 5a, 5b, 7a, 7b formed integrally with the tensile test unit 3 are connected to four sides of the tensile test unit 3 having a square shape in plan view.
  • concave grooves 5c and 5d are formed on the bottom surfaces 5e and 5f of the load application pieces 5a and 5b
  • concave grooves 7c and 7d are formed on the upper surfaces 7e and 7f of the load application pieces 7a and 7b.
  • the load application pieces 5a and 5b are applied. , 7a, 7b, the tensile force in the vertical direction can be applied to the tensile test part 3 across the expected breakage point L by the force transmitted to the tensile test part 3.
  • the test piece 1 is formed of a fiber reinforced composite material using a fiber such as a carbon fiber reinforced composite material as a base material, so that the base material fiber does not extend. Even if it is structurally difficult to form portions that can be held by chucks at both ends in the vertical direction, a tensile test can be performed.
  • the load application pieces 5a, 5b, 7a, and 7b are formed in the tensile test portion 3 by being connected along the drawing direction of the base material fibers.
  • the base material fibers constituting the test piece 1 are continuously stretched from the tensile test section 3 to the load application pieces 5a, 5b, 7a, and 7b. Therefore, the strength of the concave grooves 5c, 5d, 7c, and 7d where the load application pieces 5a, 5b, 7a, and 7b are connected to the tensile test portion 3 is increased by reinforcing the fibers with the reinforcing material.
  • the tensile test part 3 is actively 2 from the expected breakage point L in the vertical direction in which the fiber does not extend. It breaks into two and becomes easy to separate.
  • the tensile test can be easily performed by causing the tensile test portion 3 to be easily separated due to the break in the tensile direction by the load applied to each of the load application pieces 5a, 5b, 7a, 7b.
  • the tensile test section 3 has a square shape in plan view, and the case where the test piece 1 is configured by connecting four load application pieces 5a, 5b, 7a, 7b to the four sides thereof has been described. .
  • the tensile test part 11 is made into a regular hexagonal shape in plan view, and six load application pieces 13a, 13b, 13c, 15a, 15b, 15c are connected to the six sides thereof. It is good.
  • every other load application piece 13a, 13b, 13c is formed with concave grooves 13d, 13e, 13f from the upper surface side to partition from the upper surface of the tensile test section 11, and every other load application.
  • Grooves 15d, 15e, and 15f are formed on the pieces 15a, 15b, and 15c from the lower surface side, and are partitioned from the lower surface of the tensile test section 11.
  • groove 13d, 13e, 13f, 15d, 15e, 15f in each load application piece 13a, 13b, 13c, 15a, 15b, 15c Apply a load.
  • the tensile force of an up-down direction can be provided to the tensile test part 11, and the tensile test similar to the test piece 1 demonstrated in previous embodiment can be performed.
  • the plan view shape of the tensile test portion of the test piece is not limited to the square or regular hexagon described above, but is a regular n-gon such as a regular octagon or a regular decagon (where n is an even number of 4 or more). May be. That is, the tensile test part may have a connection surface with each load application piece, and each connection surface may be formed as a plane having n-fold symmetry. In that case, each load application piece is connected to each of the load application pieces radially from each side of the tensile test unit with reference to the central axis (rotationally symmetric axis) of the tensile test unit extending in the tensile direction.
  • the first load application piece and the second load application piece of the present embodiment are alternately arranged along the circumferential direction around the central axis of the tensile test section. Accordingly, the test piece has a three-dimensional shape having n-fold symmetry (where n is an even number of 4 or more) around the central axis extending in the pulling direction.
  • n may be increased to infinity, and the outer shape of the tensile test part may be brought close to a perfect circle.
  • the connection surface may be formed as a curved surface as long as the uniformity of the force applied from the load application piece to the tensile test portion is within an allowable range.
  • the outer shape of the tensile test portion 3 ′ may be wider than the outer shape of the tensile test portion 3 shown in FIG.
  • the concave grooves 5c, 5d, 7c, and 7d of the load application pieces 5a, 5b, 7a, and 7b are bulged inward.
  • the outer shape of the tensile test section 3 ′′ may be narrower than that of the tensile test section 3 shown in FIG.
  • each load application piece load is alternately reversed along the circumferential direction around the tensile test part (the central axis of the tensile test part).
  • every other load application piece 5a, 5b, 7a, 7b (13a, 13b, 13c, 15a, 15b, 15c) is applied with a load in the same direction.
  • the tensile force applied to the tensile test sections 3, 3 ', 3 ", 11 through the load application pieces 5a, 5b, 7a, 7b, 13a, 13b, 13c, 15a, 15b, 15c As far as possible, it is arbitrary which of the load application pieces 5a, 5b, 7a, 7b, 13a, 13b, 13c, 15a, 15b, and 15c is applied with an upward load and a downward load is applied to which. .
  • the present disclosure can be applied not only to a fiber reinforced composite material but also to a test piece when testing the tensile strength of other materials.
  • the present invention can also be applied to a test piece for testing the adhesive strength of a material in which two members are bonded with an adhesive.
  • the tensile test part When testing the adhesive strength between two members bonded with an adhesive, the tensile test part is composed of two members bonded with an adhesive, and one of the two members is connected to the tensile test part. One load application piece is constituted, and the other of the two members constitutes a second load application piece connected to the tensile test section. Then, a load in the opposite direction may be applied to both the load application pieces, and a tensile force in a direction in which the adhesion by the adhesive peels off may be applied to the two members constituting the tensile test section.
  • the operations and effects of this embodiment are as follows.
  • the load applied to the first load application piece connected to the first end portion (one end portion) and the expected breakage location (breakage portion) in the tensile direction of the tensile test portion acts as a force from the second end portion (the other end portion, the expected breakage portion, the breakage portion) toward the first end portion (one end portion).
  • a portion between the second end portion (the other end portion) and the expected fracture location (rupture portion) in the tensile direction of the tensile test portion is applied to the second load application piece connected to that portion.
  • the applied load acts as a force from the first end (predicted breakage point, breakage) toward the second end (the other end).
  • the first of the tensile test section A tensile force in the pulling direction is applied to the end portion side portion and the second end portion side portion. That is, depending on how the load is applied to each load application piece, a tensile test can be performed by the same operation as the compression test.
  • the first load application piece has an application surface to which a load is applied from the second end side (predicted fracture location, fracture portion) of the tensile test portion toward the first end side. This application surface is disposed adjacent to the second end of the tensile test section partitioned by the concave groove.
  • the second load application piece has an application surface to which a load is applied from the first end portion side (predicted breakage point, breakage portion) of the tensile test portion toward the second end portion side. This application surface is disposed adjacent to the first end of the tensile test section partitioned by the concave groove.
  • the end portion of the tensile test portion and the application surface of the load application piece adjacent to the end portion are located on the same surface. Moreover, by forming a concave groove having a depth corresponding to the fracture portion between the end portion and the application surface later, the test piece can be formed while the load application piece is connected to the tensile test portion. . In addition, since the end of the tensile test part does not exist in front of the application surface in the pulling direction, it is possible to apply a load to the application surface of the load application piece while easily avoiding interference with the end of the tensile test part.
  • N loads from the expected fracture location (rupture portion) toward the first end of the tensile test portion and loads from the expected fracture location (breakage portion) toward the second end of the tensile test portion It is possible to apply a tensile force in the tensile direction to the tensile test portion with high accuracy by applying the load to the load application piece with a uniform balance.
  • the tensile test specimen is formed of a fiber reinforced composite material, it is structurally difficult to form the tensile test specimen with a large dimension in a direction in which the base fiber does not extend. .
  • the tensile force in the tensile direction can be applied to the tensile test part by dispersing and applying the load directed to the side to n load application pieces.
  • each load application piece is connected to the tensile test portion along the drawing direction of the fiber.
  • the tensile test portion and the load test piece are integrally formed along the fiber drawing direction. Therefore, the strength of the connection portion between each load application piece and the tensile test part is increased by reinforcing the fiber with the reinforcing material, and the tensile test part and each load application piece are caused by the shear force generated by the load applied to each load application piece. There is a low possibility that the connection part of will be cut off.
  • the tensile test part actively breaks in the tensile direction where the fiber does not extend (breakage Part) is easily separated into two.
  • the tensile test can be easily performed by causing the tensile test portion to be easily separated due to the break in the tensile direction by the load applied to each load application piece.
  • the tensile test method of the present disclosure can be carried out by a test apparatus other than the test apparatus of FIG. 3 shown in the above-described embodiment.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

 試験片(1)は、引張試験部(3)と、引張試験部(3)の各辺に接続する荷重印加片(5a,5b,7a,7b)とを備える。荷重印加片(5a,5b)の底面(5e,5f)には、凹溝(5c,5d)が形成される。荷重印加片(7a,7b)の上面(7e,7f)には、凹溝(7c,7d)が形成される。これらの凹溝は、引張試験部(3)の上下各面と各荷重印加片(5a,5b,7a,7b)とを仕切っている。

Description

引張試験用試験片及び引張試験方法
 本開示は、材料の引張試験に関するものである。
 材料の引張強度を試験する方法として、従来から、試験片の引っ張り方向における両端を試験機の一対の引っ張り治具にそれぞれ接着し、両治具を引っ張り方向に離間させることで、試験片に引っ張り方向への引張力を加える方法が知られている。しかし、この方法では、接着剤が接着力を失うような高温環境で材料を使用する場合を想定した試験を行うことが難しい。
 このため、一般的な材料の引張試験は、引っ張り方向に十分な寸法を持たせた試験片の両端部を試験機の一対のチャックでそれぞれ把持し、両チャックを引っ張り方向に離間させることで、接着剤を利用せずに試験片に引っ張り方向への引張力を加える方法で行われることが多い(特許文献1参照)。
特開2014-74655号公報
 ところが、例えば繊維強化プラスチック(FRP)等の繊維強化複合材では、繊維方向と異なる方向の寸法を大きくすることが難しく、その方向を引っ張り方向とする引張試験を行う場合には、上述したチャックにより把持して引張力を加える方法に適した形状の試験片を作製することが難しい。
 このような問題は、接着剤で接着した2つの部材の接着強度を評価するために2つの部材間に引張力を加える引張試験を行う際等にも生じるものである。
 本開示は前記事情に鑑みなされたもので、本開示の目的は、試験する材料や試験環境等の制約を受けにくく種々の条件下で広く引張試験を実施することができる引張試験方法及びこの引張試験方法を実施する際に用いて好適な引張試験用試験片を提供することにある。
 本開示の第1の態様は引張試験用試験片であって、
 引っ張り方向に延伸する中心軸の周りにn回対称性(但し、nは4以上の偶数)をもつ3次元形状を有する引張試験部と、
 前記引張試験部と一体に形成され、該引張試験部から前記引っ張り方向と直交する方向に前記中心軸を基準として放射状にそれぞれ接続されたn個の荷重印加片とを備え、
 前記引張試験部は、前記引っ張り方向における第1の端部と、前記引っ張り方向において前記第1の端部と反対側に位置する第2の端部とを含み、
 前記n個の荷重印加片は、第1の荷重印加片と第2の荷重印加片とから構成され、
 前記第1の荷重印加片は、前記第1の端部と前記引張試験部の破断予想箇所との間の部分に接続し、
 前記第2の荷重印加片は、前記引張試験部の前記第2の端部と前記破断予想箇所との間の部分に接続していることを要旨とする。
 前記第1の荷重印加片は、前記予想箇所部から前記第1の端部側に向けた荷重を受ける印加面と、前記第1の荷重印加片の前記引張試験部との接続部に、前記破断予想箇所に対応する深さで形成され、前記第1の荷重印加片と前記引張試験部の前記第2の端部とを仕切る凹溝とを有してもよい。前記第2の荷重印加片は、前記破断予想箇所から前記第2の端部側に向けた荷重を受ける印加面と、前記第2の荷重印加片の前記引張試験部との接続部に、前記破断予想箇所に対応する深さで形成され、前記第2の荷重印加片と前記引張試験部の前記第1の端部とを仕切る凹溝とを有してもよい。
 前記第1の荷重印加片及び前記第2の荷重印加片は、前記中心軸の周りの周方向に沿って交互に配置されていてもよい。
 前記引張試験用試験片は繊維を母材とする繊維強化複合材料で形成されてもよい。前記引っ張り方向は前記繊維強化複合材料の繊維が延在していない方向でもよい。
 本開示の第2の態様は引張試験方法であって、第1の態様に係る引張試験用試験片に引っ張り方向への引張力を付与することを要旨とする。
 本開示によれば、試験する材料や試験環境等の制約を受けにくく種々の条件下で広く引張試験を実施することができる。
図1は、本開示の一実施形態に係る引張試験用試験片を示す斜視図である。 図2(a)は図1の試験片の平面図、図2(b)は同正面図、図2(c)は同側面図、図2(d)は図2(a)のI-I線断面図、図2(e)は図2(a)のII-II線断面図である。 図3は、図1の試験片を用いて実施する本開示の一実施形態に係る引張試験方法を示す説明図である。 図4(a)は図3の引張試験に用いる治具の正面図、図4(b)は同平面図である。 図5は、図3の引張試験により破断部から破断し引っ張り方向に2つに分離した図1の試験片を示す斜視図である。 図6は、本開示の他の実施形態に係る引張試験用試験片を示す平面図である。 図7は、本開示のさらに他の実施形態に係る引張試験用試験片を示す平面図である。 図8(a)は本開示のさらにまた他の実施形態に係る引張試験用試験片を示す平面図、図8(b)は同底面図である。
 以下、本開示の実施形態について図面を参照しながら説明する。なお、以下の実施形態において参照する図面上の試験片は、あくまで概念的な構成を示すものに過ぎず、各部の寸法比等は必ずしも実際の寸法比と一致しているとは限らないことに留意すべきである。
 図1は、本開示の一実施形態に係る引張試験用試験片を示す斜視図である。図1に示すように、本実施形態の引張試験用試験片(以下、「試験片」と略記する。)1は、一点鎖線の枠で囲んだ中央の引張試験部3と、引張試験部3から四方に延出する4つの荷重印加片5a,5b,7a,7bとを有している。
 図2(a)は図1の試験片の平面図、図2(b)は同正面図、図2(c)は同側面図、図2(d)は図2(a)のI-I線断面図、図2(e)は図2(a)のII-II線断面図である。
 図2(a)に示すように、引張試験部3は、引っ張り方向における第1の端部(一方の端部又は上面)3cと、引っ張り方向において第1の端部3cと反対側に位置する第2の端部(他方の端部又は下面)3dを有する平面視正方形状を呈している。引張試験部3の四辺には荷重印加片5a,5b,7a,7bがそれぞれ接続されている。引張試験部3と各荷重印加片5a,5b,7a,7bは、各荷重印加片5a,5b,7a,7bにそれぞれ形成された凹溝5c,5d,7c,7dによって仕切られている。
 荷重印加片(第1の荷重印加片)5a,5bは、引張試験部3の左右方向に対向する二辺に連なって形成されている。荷重印加片5a,5bは、各荷重印加片5a,5bにそれぞれ形成した凹溝5c,5dによって引張試験部3と仕切られている。荷重印加片5a,5bは、引張試験時に上方に向かう荷重を受ける底面(印加面)5e,5fをそれぞれ有する。換言すれば、荷重印加片5a,5bは、第2の端部3d側から第1の端部3c側に向かう荷重を受ける。
 図2(b)に示すように、各凹溝5c,5dは、各荷重印加片5a,5bの底面5e,5fに形成されている。各凹溝5c,5dは、図2(b)中の一点鎖線で示す破断予想箇所Lに合わせて、引張試験部3の底面側から上下方向の中央までの深さで形成されている。なお、破断予想箇所Lは、引張試験の際に引張試験部3が破断すると予想される部分である。
 図2(d)に示すように、引張試験部3とその左右の荷重印加片5a,5bとは、破断予想箇所Lよりも試験片1の上面側において接続されている。
 図2(a)に示すように、荷重印加片(第2の荷重印加片)7a,7bは、引張試験部3の前後方向に対向する二辺に連なって形成されている。荷重印加片7a,7bは、各荷重印加片7a,7bにそれぞれ形成した凹溝7c,7dによって引張試験部3と仕切られている。荷重印加片7a,7bは、引張試験時に下方に向かう荷重を受ける上面(印加面)7e,7fをそれぞれ有する。換言すれば、荷重印加片7a,7bは、第1の端部3c側から第2の端部3d側に向かう荷重を受ける。
 図2(c)に示すように、各凹溝7c,7dは、各荷重印加片7a,7bの上面7e,7fに形成されている。各凹溝7c,7dは、図2(c)中の一点鎖線で示す破断予想箇所Lに合わせて、引張試験部3の上面側から上下方向の中央までの深さで形成されている。
 図2(e)に示すように、引張試験部3とその前後の荷重印加片7a,7bとは、破断予想箇所Lよりも試験片1の下面側において接続されている。
 なお、本実施形態では、試験片1を、例えば炭素繊維強化複合材料等の、繊維を母材とする繊維強化複合材料で形成している。そして、母材の繊維が延在していない方向を試験片1の引っ張り方向である上下方向に設定している。
 図1の矢印で示すように、本実施形態の試験片1では、引張試験部3の左右の荷重印加片5a,5bの底面5e,5fに、上方への荷重が印加されると、引張試験部3において破断予想箇所Lよりも上面側の部分に上方への力が加わる。
 また、荷重印加片7a,7bの上面7e,7fに、下方への荷重が印加されると、引張試験部3において破断予想箇所Lよりも下面側の部分に下方への力が加わる。
 このように、破断予想箇所Lを挟んで引張試験部3の上面側に上方への力が加わり、下面側には下方への力が加わる。従って、引張試験部3には上下方向を引っ張り方向とする引張力が付与される。よって、引張試験部3において、試験片1の引張強度に関する試験を行うことができる。
 以下、試験片1を試験装置にセットして本開示の一実施形態に係る引張試験方法を実施する場合について、図3を参照して説明する。図3に示す試験装置は、本来は、上側ラム21を下側ラム23に接近させて両ラム21,23間に配置した試験片に圧縮荷重を付与する圧縮試験に用いられる。しかし、図3に示す例では、治具31,33と鋼球35とを併用し、上側ラム21を下側ラム23に接近させて試験片1に引張力が付与される。
 ここで、治具31,33について説明する。図4(a)に示すように、試験片1の上に上側の治具31が載置される。治具31は、試験片1の引張試験部3を跨ぐ凹部31aを下面に有しており、凹部31aの両側に、試験片1の上下の荷重印加片7a,7bの上面7e,7fに載置される脚片31b,31cを有している。
 図4(b)に示すように、治具31の上面31dには、円錐形の凹部31eが形成されている。また、凹部31eの中心部には、円柱状の凹溝31fが形成されている。凹部31eは、図3に示す鋼球35を収容できるように形成されている。凹溝31fは、鋼球35を凹部31eに収容した状態で鋼球35の表面の一部が嵌まり、凹部31e内で鋼球35が静止するように構成されている。
 一方、試験片1の下に下側の治具33が載置される。治具33は、上側の治具31から凹部31e及び凹溝31fを省略し、且つ、上下を反転させた形状を有している。即ち、治具33は、試験片1の引張試験部3を跨ぐ凹部33aを上面に有しており、凹部33aの両側に、試験片1の左右の荷重印加片5a,5bが載置される脚片33b,33cを有している。
 図3に示す試験装置で試験片1の引張試験を行う際には、凹部33aを上に向けたまま、治具33を下側ラム23上に載置する。更に、各脚片33b,33cに試験片1の荷重印加片5a,5bを載置する。これにより、荷重印加片5a,5bが治具33の脚片33b,33cにより下方から支持される。なお、荷重印加片5a,5bは脚片33b,33cにより移動不能に支持されてもよい。
 続いて、凹部31aを下に向けまま、治具31の脚片31b,31cを荷重印加片7a,7bの上面7e,7fに載置する。そして、治具31の凹部31eに鋼球35を載置し、凹溝31fに鋼球35の一部が嵌め込まれ、凹部31e内で鋼球35が静止した状態で、試験装置の上側ラム21を鋼球35に上から当接させる。
 そして、この状態で、試験装置の上側ラム21を徐々に下側ラム23側に近づくように下げて行き、治具31の脚片31b,31cを介して荷重印加片7a,7bの上面7e,7fに下向きの荷重を印加する。
 すると、凹部31eに収容された鋼球35を通じて治具31の全体に均等な下向きの荷重がかかり、各脚片31b,31cを介して荷重印加片7a,7bの上面7e,7fに下向きの荷重が均等に印加される。
 荷重印加片5a,5bは、治具33の脚片33b,33cによって下から支持されている。したがって、荷重印加片5a,5bには、治具33の脚片33b,33cを介して上向きの荷重が均等に印加される。
 その結果、引張試験部3のうち破断予想箇所Lよりも上面3c側の部分に、荷重印加片5a,5bから上向きの力が伝わる。また、引張試験部3のうち破断予想箇所Lよりも下面3d側の部分に、荷重印加片7a,7bから下向きの力が伝わる。即ち、試験装置によって、引張試験部3に上下方向の引張力が付与される。この引張力が引張試験部3の強度を上回ると、破断予想箇所Lにおいて引張試験部3が上下に2つに破断し、図5に示すように上側部分3aと下側部分3bとに分離する。
 本実施形態の試験片1では、平面視正方形状の引張試験部3の四辺に、引張試験部3と一体的に形成された荷重印加片5a,5b,7a,7bが接続されている。そして、荷重印加片5a,5bの底面5e,5fには凹溝5c,5dが形成され、荷重印加片7a,7bの上面7e,7fには凹溝7c,7dが形成されている。これらの凹溝によって、引張試験部3の上下各面と各荷重印加片5a,5b,7a,7bとが仕切られている。
 このため、荷重印加片5a,5bの底面5e,5fから上向きの荷重が印加され、荷重印加片7a,7bの上面7e,7fから下向きの荷重が印加されると、各荷重印加片5a,5b,7a,7bから引張試験部3に伝わる力により、破断予想箇所Lを挟んで上下方向の引張力を引張試験部3に付与することができる。
 よって、試験片1の上下両端3c,3dを接着剤で試験装置側に接着しなくても、引張試験部3に上下方向の引張力を付与することができる。したがって、接着剤の接着力が失われるような高温環境でも引張試験を行うことができる。
 また、試験片1の上下両端3c,3dを試験装置のチャックで把持しなくても、引張試験部3に上下方向の引張力を付与することができる。したがって、本実施形態のように、例えば炭素繊維強化複合材料等の繊維を母材とする繊維強化複合材料で試験片1を形成したことによって、母材の繊維が延在していない試験片1の上下方向の両端にチャックで把持できる部分を形成することが構造上難しい場合であっても、引張試験を行うことができる。
 さらに、本実施形態の試験片1によれば、引張試験部3に各荷重印加片5a,5b,7a,7bが母材の繊維の延伸方向に沿って接続して形成される。換言すれば、試験片1を構成する母材の繊維は、引張試験部3から各荷重印加片5a,5b,7a,7bまで連続的に延伸している。そのため、各荷重印加片5a,5b,7a,7bと引張試験部3とが接続される凹溝5c,5d,7c,7dの部分の強度が、強化材料による繊維の補強で高くなる。よって、各荷重印加片5a,5b,7a,7bに印加される荷重によって生じるせん断力で引張試験部3と各荷重印加片5a,5b,7a,7bとの接続部分が切断される可能性は低い。
 したがって、破断予想箇所Lよりも引張試験部3の上側部分に荷重印加片5a,5bから伝わる上向きの荷重と、破断予想箇所Lよりも引張試験部3の下側部分に荷重印加片7a,7bから伝わる下向きの荷重とで、引張試験部3に上下方向の引張力が付与された場合に、繊維が延在していない上下方向において破断予想箇所Lから、引張試験部3が積極的に2つに破断し分離しやすくなる。
 このため、各荷重印加片5a,5b,7a,7bに印加される荷重により引張試験部3に引っ張り方向の破断による分離が起こりやすいようにして、引張試験を行い易いようにすることができる。
 なお、以上に説明した実施形態では、引張試験部3を平面視正方形状とし、その四辺に4つの荷重印加片5a,5b,7a,7bを接続して試験片1を構成した場合について説明した。
 しかし、例えば図6に示す試験片10のように、引張試験部11を平面視正六角形状とし、その六辺に6つの荷重印加片13a,13b,13c,15a,15b,15cを接続する構成としてもよい。この場合、1つおきの各荷重印加片13a,13b,13cには上面側から凹溝13d,13e,13fを形成して引張試験部11の上面と仕切り、他の1つおきの各荷重印加片15a,15b,15cには下面側から凹溝15d,15e,15fを形成して引張試験部11の下面と仕切る。
 そして、試験片10を用いた引張試験を行う際には、各荷重印加片13a,13b,13c,15a,15b,15cに凹溝13d,13e,13f,15d,15e,15fを形成した面側から荷重を印加する。これにより、引張試験部11に上下方向の引張力を付与し、先の実施形態で説明した試験片1と同様の引張試験を行うことができる。
 この場合、試験片の引張試験部の平面視形状は、以上に説明した正方形や正六角形に限らず、正八角形や正十角形等の正n角形(但し、nは4以上の偶数)であってもよい。即ち、引張試験部は各荷重印加片との接続面を有し、各接続面はn回対称性をもつ平面として形成されてもよい。その場合、各荷重印加片は、引っ張り方向に延伸する引張試験部の中心軸(回転対称の対称軸)を基準として、引張試験部の各辺から放射状に荷重印加片をそれぞれ接続される。即ち、本実施形態の第1の荷重印加片及び第2の荷重印加片は、引張試験部の中心軸の周りの周方向に沿って交互に配置される。これにより、試験片は、引っ張り方向に延伸する中心軸の周りにn回対称性(但し、nは4以上の偶数)をもつ3次元形状を有する。
 そのように試験片を構成しても、上述した実施形態の試験片1,10と同様の効果を得ることができる。ちなみに、nを無限大に大きくして引張試験部の外形を限りなく正円に近付けてもよい。その場合、上記の接続面は、荷重印加片から引張試験部に付与される力の均一性が許容範囲にある限り、曲面として形成されていてもよい。
 また、図7に示す試験片1′のように、引張試験部3′の外形を、図2(a)に示す引張試験部3の外形よりも拡げてもよい。あるいは、図8(a)及び図8(b)に示す試験片1″のように、各荷重印加片5a,5b,7a,7bの凹溝5c,5d,7c,7dを内側に膨出させて、引張試験部3″の外形を図2(a)に示す引張試験部3よりも狭めてもよい。
 本実施形態では、各荷重印加片荷重の向きが、引張試験部の(引張試験部の中心軸)の周りの周方向に沿って交互に反転している。換言すれば、荷重印加片5a,5b,7a,7b(13a,13b,13c,15a,15b,15c)は、1つおきに同じ向きの荷重が印加される。しかし、各荷重印加片5a,5b,7a,7b,13a,13b,13c,15a,15b,15cを介して引張試験部3,3′,3″,11に付与される引張力が上下方向となる限り、各荷重印加片5a,5b,7a,7b,13a,13b,13c,15a,15b,15cのうちどれに上向きの荷重を印加し、どれに下向きの荷重を印加するかは任意である。
 また、本開示は、繊維強化複合材料に限らず他の材料の引張強度を試験する際の試験片にも適用可能である。2つの部材を接着剤で接着した材料の接着強度を試験する際の試験片にも適用可能である。
 接着剤で接着した2つの部材間の接着強度を試験する場合は、接着剤で接着した2つの部材で引張試験部を構成すると共に、2つの部材のうち一方の部材で引張試験部に連なる第1の荷重印加片を構成し、2つの部材のうち他方の部材で引張試験部に連なる第2の荷重印加片を構成する。そして、双方の荷重印加片にそれぞれ反対向きの荷重を印加して、引張試験部を構成する2つの部材に接着剤による接着が剥離する方向への引張力を付与すればよい。
 本実施形態による作用、効果は次の通りである。
 引張試験部の引っ張り方向における第1の端部(一方の端部)と破断予想箇所(破断部)との間の部分には、その部分に接続した第1の荷重印加片に印加された荷重が、第2の端部(他方の端部、破断予想箇所、破断部)から第1の端部(一方の端部)に向かう力として作用する。一方、引張試験部の引っ張り方向における第2の端部(他方の端部)と破断予想箇所(破断部)との間の部分には、その部分に接続した第2の荷重印加片に印加された荷重が、第1の端部(破断予想箇所、破断部)から第2の端部(他方の端部)に向かう力として作用する。
 したがって、例えば、第1の荷重印加片を固定した状態で、残る第2の荷重印加片に第1の端部側から第2の端部側に向かう荷重を印加すると、引張試験部の第1の端部側の部分と第2の端部側の部分とに引っ張り方向の引張力が付与される。即ち、各荷重印加片に対する荷重の印加の仕方次第で、圧縮試験と同じ動作で引張試験が行えることになる。
 このような圧縮試験と同じ動作の引張試験では、引張試験部に引張力を付与するために引張試験部を引っ張り方向の両側から引っ張る必要がない。従って、試験機の引っ張り治具を試験片に接着剤で接着したり、引っ張り方向における試験片の両端をチャックで把持する必要がない。また、チャックで把持する場所を確保するために、試験片の寸法を引っ張り方向についてある程度大きくする必要もない。
 このため、材料の特性上引っ張り方向の寸法を大きくすることが難しい材料や使用環境が高温であることから高温での試験が必要となる材料であっても、そのような材料や試験環境等の制約を受けずに引張試験を実施することができる。
 第1の荷重印加片は、引張試験部の第2の端部側(破断予想箇所、破断部)から第1の端部側に向かう荷重が印加される印加面を有する。この印加面は、凹溝によって仕切られる引張試験部の第2の端部に隣接して配置される。同様に、第2の荷重印加片は、引張試験部の第1の端部側(破断予想箇所、破断部)から第2の端部側に向けた荷重が印加される印加面を有する。この印加面は、凹溝によって仕切られる引張試験部の第1の端部に隣接して配置される。
 このため、引張試験部の端部と当該端部に隣接する荷重印加片の印加面は同一面上に位置する。しかも、端部と印加面との間に破断部に対応する深さの凹溝を後から形成することで、引張試験部に荷重印加片が接続されたまま、試験片を形成することができる。また、引っ張り方向において印加面の手前に引張試験部の端部が存在しないので、引張試験部の端部との干渉を容易に避けながら荷重印加片の印加面に荷重を印加することができる。
 破断予想箇所(破断部)から引張試験部の第1の端部側に向けた荷重と破断予想箇所(破断部)から引張試験部の第2の端部側に向けた荷重とを、n個の荷重印加片に均等なバランスで印加し、引張試験部に精度良く引っ張り方向の引張力を付与することができる。
 ここで、一般に、引張試験用試験片が繊維強化複合材料で形成されている場合、母材の繊維が延在していない方向に大きな寸法で引張試験用試験片を形成することは構造上難しい。
 したがって、母材の繊維が延在していない方向を引張試験用試験片の引っ張り方向とする場合は、引張力を付与するための把持部等を引張試験用試験片の引っ張り方向の両端に十分な寸法で形成することが困難となる。
 しかし、本実施形態によれば、破断予想箇所(破断部)から引張試験部の第1の端部側に向けた荷重と、破断予想箇所(破断部)から引張試験部の第2の端部側に向けた荷重とを、n個の荷重印加片に分散して印加することで、引っ張り方向の引張力を引張試験部に付与することができる。
 このため、引っ張り方向に母材の繊維が延在していなくても引張試験部に引っ張り方向の引張力を付与し、引張試験を適切に行えるようにすることができる。
 また、引張試験部に各荷重印加片が繊維の延伸方向に沿って接続して形成されることになる。換言すれば、引張試験部と荷重試験片は繊維の延伸方向に沿って一体的に形成される。そのため、各荷重印加片と引張試験部との接続部分の強度が強化材料による繊維の補強で高くなり、各荷重印加片に印加される荷重によって生じるせん断力で引張試験部と各荷重印加片との接続部分が切断される可能性は低い。
 したがって、破断部よりも第1の端部側の引張試験部の部分に第1の荷重印加片から伝わる荷重と、破断部よりも第2の端部側の引張試験部の部分に第2の荷重印加片から伝わる反対向きの荷重とで、引張試験部に引っ張り方向の引張力が付与された場合、繊維が延在していない引っ張り方向において、引張試験部が積極的に破断予想箇所(破断部)から2つに分離しやすくなる。
 このため、各荷重印加片に印加される荷重により引張試験部に引っ張り方向の破断による分離が起こりやすいようにして、引張試験を行い易いようにすることができる。
 また、本開示の引張試験方法は、上述した実施形態で示した図3の試験装置以外の試験装置でも実施可能であることは言うまでもない。

Claims (5)

  1.  引っ張り方向に延伸する中心軸の周りにn回対称性(但し、nは4以上の偶数)をもつ3次元形状を有する引張試験部と、
     前記引張試験部と一体に形成され、該引張試験部から前記引っ張り方向と直交する方向に前記中心軸を基準として放射状にそれぞれ接続されたn個の荷重印加片とを備え、
     前記引張試験部は、前記引っ張り方向における第1の端部と、前記引っ張り方向において前記第1の端部と反対側に位置する第2の端部とを含み、
     前記n個の荷重印加片は、第1の荷重印加片と第2の荷重印加片とから構成され、
     前記第1の荷重印加片は、前記引張試験部の前記第1の端部と前記引張試験部の破断予想箇所との間の部分に接続し、
     前記第2の荷重印加片は、前記引張試験部の前記第2の端部と前記破断予想箇所との間の部分に接続している、
     引張試験用試験片。
  2.  前記第1の荷重印加片は、
     前記第2の端部側から前記第1の端部側に向けた荷重を受ける印加面と、
     前記第1の荷重印加片の前記引張試験部との接続部に、前記破断予想箇所に対応する深さで形成され、前記第1の荷重印加片と前記引張試験部の前記第2の端部とを仕切る凹溝とを有し、
     前記第2の荷重印加片は、
     前記第1の端部側から前記第2の端部側に向けた荷重を受ける印加面と、
     前記第2の荷重印加片の前記引張試験部との接続部に、前記破断予想箇所に対応する深さで形成され、前記第2の荷重印加片と前記引張試験部の前記第1の端部とを仕切る凹溝とを有する請求項1記載の引張試験用試験片。
  3.  前記第1の荷重印加片及び前記第2の荷重印加片は、前記中心軸の周りの周方向に沿って交互に配置されている請求項1又は2記載の引張試験用試験片。
  4.  前記引張試験用試験片は繊維を母材とする繊維強化複合材料で形成したものであり、前記引っ張り方向は前記繊維強化複合材料の繊維が延在していない方向である請求項1、2又は3記載の引張試験用試験片。
  5.  請求項1、2、3又は4記載の引張試験用試験片に対して、引っ張り方向への引張力を付与する引張試験方法。
PCT/JP2016/054881 2015-08-19 2016-02-19 引張試験用試験片及び引張試験方法 WO2017029818A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/810,219 US10473571B2 (en) 2015-08-19 2017-11-13 Test piece for tensile testing and tensile testing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015161979A JP6657657B2 (ja) 2015-08-19 2015-08-19 引張試験用試験片及び引張試験方法
JP2015-161979 2015-08-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/810,219 Continuation US10473571B2 (en) 2015-08-19 2017-11-13 Test piece for tensile testing and tensile testing method

Publications (1)

Publication Number Publication Date
WO2017029818A1 true WO2017029818A1 (ja) 2017-02-23

Family

ID=58051550

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/054881 WO2017029818A1 (ja) 2015-08-19 2016-02-19 引張試験用試験片及び引張試験方法

Country Status (3)

Country Link
US (1) US10473571B2 (ja)
JP (1) JP6657657B2 (ja)
WO (1) WO2017029818A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112051149B (zh) * 2020-09-25 2022-12-02 新疆生产建设兵团建筑工程科学技术研究院有限责任公司 混凝土强度的顶拔式检测方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004163276A (ja) * 2002-11-13 2004-06-10 Sumitomo Forestry Co Ltd 接着力試験器
JP4150383B2 (ja) * 2004-04-13 2008-09-17 新日本製鐵株式会社 スポット溶接部の破断予測装置、方法、コンピュータプログラム、及びコンピュータ読み取り可能な記録媒体
JP2014228290A (ja) * 2013-05-20 2014-12-08 Jfeスチール株式会社 二軸引張試験方法
JP2015090355A (ja) * 2013-11-07 2015-05-11 株式会社Ihi 剪断試験装置及び剪断試験方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62108852U (ja) 1985-12-26 1987-07-11
DE3914966C2 (de) * 1989-05-03 1996-01-11 Inpro Innovations Gmbh Kreuzförmige, ebene Probe, insbesondere aus Blech für eine zweiachsige Materialprüfung im Bereich großer Dehnung
JP3254978B2 (ja) 1995-09-11 2002-02-12 日産自動車株式会社 最大応力測定用ゲージ及び応力測定方法
US7204160B1 (en) * 2004-05-24 2007-04-17 The United States Of America As Represented By The Secretary Of The Navy Biaxial and shear testing apparatus with force controls
JP2006258454A (ja) 2005-03-15 2006-09-28 Toray Ind Inc 軽量サンドイッチパネルの曲げ疲労試験方法
TW201241415A (en) * 2011-04-01 2012-10-16 Askey Computer Corp Tension testing device
GB201203104D0 (en) * 2012-02-23 2012-04-04 Airbus Operations Ltd A test apparatus for providing axial stresses in a structure
JP5893542B2 (ja) 2012-10-04 2016-03-23 公益財団法人鉄道総合技術研究所 長繊維強化金属基複合材料の引張強度試験方法及び引張試験片
JP6647936B2 (ja) * 2016-03-28 2020-02-14 三菱重工業株式会社 二軸負荷試験体、二軸負荷試験装置および二軸負荷試験方法
US20180095019A1 (en) * 2016-09-30 2018-04-05 University Of New Hampshire Apparatus, system and method for performing bi-axial force testing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004163276A (ja) * 2002-11-13 2004-06-10 Sumitomo Forestry Co Ltd 接着力試験器
JP4150383B2 (ja) * 2004-04-13 2008-09-17 新日本製鐵株式会社 スポット溶接部の破断予測装置、方法、コンピュータプログラム、及びコンピュータ読み取り可能な記録媒体
JP2014228290A (ja) * 2013-05-20 2014-12-08 Jfeスチール株式会社 二軸引張試験方法
JP2015090355A (ja) * 2013-11-07 2015-05-11 株式会社Ihi 剪断試験装置及び剪断試験方法

Also Published As

Publication number Publication date
US10473571B2 (en) 2019-11-12
US20180067026A1 (en) 2018-03-08
JP2017040541A (ja) 2017-02-23
JP6657657B2 (ja) 2020-03-04

Similar Documents

Publication Publication Date Title
KR101866408B1 (ko) 금속 소재 시험체의 전단시험장치
CN103471843B (zh) 一种拉弯多轴疲劳试验机构
JP5405889B2 (ja) 緊張材の張設方法
US9274035B2 (en) Clamping device
JP4677588B2 (ja) 予亀裂導入方法および装置
KR101210694B1 (ko) 콘크리트 보강섬유의 부착강도 실험장치 및 실험체
WO2017029818A1 (ja) 引張試験用試験片及び引張試験方法
US8650975B2 (en) Test specimen for testing through-thickness properties
CN108387443B (zh) 一种多方向加载焊点薄板试件拉伸疲劳专用试验夹具
CN102944470A (zh) 弯曲实验夹具组件、弯曲实验夹具和压缩实验夹具
CN106240840B (zh) 一种弯扭受载形式的机翼盒段试验装置
EP3746761B1 (en) Tensile text fixture for quick testing of materials with low transverse strength
CN104655486B (zh) 管状试样恒变形应力腐蚀试验夹具
JP2006242587A (ja) 構造体の強度試験装置
JP2015021859A (ja) 曲げと軸力を負荷するための試験用治具
RU2565358C1 (ru) Способ определения прочности сцепления волокон в одноосноориентированных волокнистых композитных материалах
KR20170055829A (ko) 인장 시험용 홀더
CN104596836B (zh) 管材微动疲劳试验横向微动加载装置
KR101723442B1 (ko) 소재의 피로 수명 시험 장치
KR102497566B1 (ko) 시편 고정 장치 및 시험기
JP2022026831A (ja) 引張試験方法及び試験片
CN109311632B (zh) 电梯的绳索把持装置
KR101465388B1 (ko) 파괴저항 시험용 지그 및 이를 이용한 파괴저항 시험장치
CN220550455U (zh) 一种钢绞丝穿管用头套结构
TWI490488B (zh) 拋棄式線材輔助夾具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16836810

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16836810

Country of ref document: EP

Kind code of ref document: A1