WO2017029808A1 - 空間光送信装置および空間光通信方法 - Google Patents

空間光送信装置および空間光通信方法 Download PDF

Info

Publication number
WO2017029808A1
WO2017029808A1 PCT/JP2016/003749 JP2016003749W WO2017029808A1 WO 2017029808 A1 WO2017029808 A1 WO 2017029808A1 JP 2016003749 W JP2016003749 W JP 2016003749W WO 2017029808 A1 WO2017029808 A1 WO 2017029808A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
laser
optical
spatial
frequency
Prior art date
Application number
PCT/JP2016/003749
Other languages
English (en)
French (fr)
Inventor
成五 高橋
俊治 伊東
晃平 細川
学 有川
善将 小野
孝史 石川
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US15/751,369 priority Critical patent/US10454577B2/en
Priority to JP2017535238A priority patent/JPWO2017029808A1/ja
Publication of WO2017029808A1 publication Critical patent/WO2017029808A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/118Arrangements specific to free-space transmission, i.e. transmission through air or vacuum specially adapted for satellite communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/114Indoor or close-range type systems
    • H04B10/116Visible light communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/112Line-of-sight transmission over an extended range
    • H04B10/1121One-way transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers

Definitions

  • the present invention relates to a spatial light transmission device and a spatial light communication method, and more particularly to a spatial light transmission device and a spatial light communication method that perform optical communication using laser light propagating in free space.
  • FSO space optical communication
  • communication time is limited in an FSO system that performs communication between the ground and a low earth orbit (LEO) satellite. Therefore, it is important to keep tracking stable at the same time as increasing the bit rate. The reason is that if tracking cannot be maintained, the communication time is reduced by the time required for re-acquisition, and the communication capacity of the FSO system is reduced.
  • the first problem is to suppress highly sensitive beacon light by suppressing background light.
  • the second problem is to mitigate the effects of atmospheric fluctuations on beacon light.
  • the first problem is that it is necessary to remove the reflected light from the sun, the moon and the earth called background light from the light collected by the receiving telescope. This is because when the background light is received simultaneously with the beacon light, the reception S / N (signal / noise) ratio of the beacon light deteriorates. Specifically, saturation of the light receiver or an increase in beat noise caused by background light makes it difficult to detect highly sensitive beacon light, resulting in unstable tracking. .
  • the beacon light uses a narrow line width laser device as the light source, while the background light has a broadband continuous spectrum component originating from sunlight. Therefore, the reception S / N ratio of beacon light is improved by blocking the spectral components of the background light by using a narrow band optical bandpass filter (BPF) that passes only the beacon light band. Can do.
  • BPF optical bandpass filter
  • the passband width of the optical bandpass filter (BPF) used here is ideally as narrow as possible.
  • the normalized Doppler shift amount between the ground and the low-orbit satellite is about ⁇ 3 ⁇ 10 ⁇ 5 .
  • the generated shift amount is about ⁇ 6 GHz.
  • an optical bandpass filter that variably controls the pass center frequency following the Doppler shift, because this leads to an increase in power consumption and equipment weight. Therefore, in order to cope with such a Doppler shift, an optical bandpass filter having a pass bandwidth of about 18 GHz (wavelength width of about 0.14 nm) with a margin of about 1.5 times the shift amount, for example. (BPF) must be used.
  • Such an optical bandpass filter (BPF) can be realized, for example, by combining a spatial Bragg grating filter (Bragg Grating Filter) and an etalon.
  • narrow band optical bandpass filter By using such a narrow band optical bandpass filter (BPF), it becomes possible to sufficiently remove background light and receive beacon light with high sensitivity.
  • BPF narrow band optical bandpass filter
  • the second problem is that it is necessary to stabilize the fluctuation of the received light intensity of the beacon light generated on the receiving side when the wave front of the beacon light is disturbed by propagation in the atmosphere. If the intensity of the received beacon light is greatly attenuated (faded) due to strong atmospheric fluctuations, the S / N ratio of the error signal detected by the tracking control system deteriorates, making accurate tracking control difficult. This is particularly noticeable when beacon light is transmitted from the ground to an artificial satellite in the sky. This is because the beacon light propagating from the ground toward the artificial satellite is strongly affected by atmospheric fluctuations.
  • beacon light transmitted from the ground is affected by atmospheric fluctuations immediately after being transmitted, and then propagates in a long distance in a vacuum free of atmospheric fluctuations while maintaining the spatial intensity distribution, and the orbit of the satellite. This is because it is enlarged and projected onto the surface.
  • the aperture average effect of the receiving telescope cannot be obtained, and it is strongly affected by atmospheric fluctuations.
  • the satellite tracking control system loses track of the position of the ground station. Therefore, it becomes impossible to accurately irradiate signal light from the artificial satellite toward the ground, and stable space optical communication (FSO) becomes difficult.
  • the size of the spatial intensity distribution of beacon light will be described below using a specific example.
  • the coherence radius of the intensity distribution is expressed by the following equation (1).
  • the spatial size of the beacon light intensity distribution is increased with the extension of the propagation distance.
  • HV Huffnage-Valley
  • ⁇ 0, sph 6.4 m.
  • the aperture average effect cannot be obtained unless the diameter of the telescope is 13 m or more on the satellite side.
  • mounting such a huge telescope on the satellite side has a problem that the cost increases due to an increase in weight and volume.
  • the multi-beam laser communication apparatus described in Patent Document 1 includes first to fourth telescopes for laser beam transmission, a laser directing apparatus, a light receiving telescope, a gimbal mechanism for adjusting the azimuth and elevation angle of transmission and reception, and a control unit. .
  • the control unit selects the laser light source to be used from the telescope according to the beam condition and irradiates the laser beam, and adjusts the beam divergence angle so that the fluctuation of the received light intensity on the other side can be suppressed. This makes it easy to hold the laser line in an environment in which atmospheric fluctuations and pointing errors exist.
  • Patent Document 2 discloses a plurality of signal light sources that emit signal light having different wavelengths, a drive circuit that modulates each signal light source by an input electric signal, and a mirror that multiplexes each signal light on the same optical axis. And a spatial light transmission device having a transmitting station with a beam splitter is described. By adopting such a configuration, the same signal can be transmitted simultaneously by a plurality of signal lights having different wavelengths, so that fluctuations in received light power on the receiving side are reduced as compared with transmission using one light source. It can be made to.
  • JP 2005-354335 A Japanese Patent Laid-Open No. 9-326761 Japanese Patent Laid-Open No. 11-266252
  • the diameter of the telescope or the arrangement interval of the plurality of telescopes needs to be about 1 meter (m).
  • the cost increases when such a large optical system is used.
  • the spatial light transmission device has a problem that it is difficult to realize stable transmission of beacon light at low cost, and stable tracking cannot be maintained.
  • the object of the present invention is the above-described problem, that is, in the spatial light transmission device, it is difficult to realize stable transmission of beacon light at low cost, and stable tracking cannot be maintained. It is an object of the present invention to provide a spatial light transmitter and a spatial light communication method to be solved.
  • the spatial light transmission device of the present invention has a laser beam transmitting means for transmitting a plurality of laser beams capable of interfering with each other whose optical frequency and phase change are different, and a plurality of laser beams having different wavefronts.
  • Wavefront control light sending means for sending a plurality of wavefront control lights to free space.
  • the spatial light communication method generates a plurality of laser beams capable of interfering with each other in any one of the optical frequency and the time change of the phase difference in the first communication station,
  • the second communication station that transmits the plurality of wavefront control lights to the free space and communicates with the first communication station, the received light including the received laser light that is the wavefront control light after propagating through the free space Condensing, taking out the received laser light from the received light, and photoelectrically converting the received laser light.
  • the spatial light transmission device and the spatial light communication method of the present invention stable transmission of beacon light can be realized at low cost, and stable tracking can be maintained.
  • FIG. 1 It is a block diagram which shows the structure of the spatial light transmitter which concerns on the 1st Embodiment of this invention. It is a block diagram which shows the structure of the space optical communication system which concerns on the 2nd Embodiment of this invention. It is the figure which showed typically the beacon light which propagates between the space light transmitter which comprises the space optical communication system which concerns on the 2nd Embodiment of this invention, and a space light receiver. It is a figure which shows the time change of the light reception intensity
  • FIG. 1 It is a figure which shows the time change of the light reception intensity
  • FIG. 1 It is a figure which shows the time change of the light reception intensity
  • FIG. It is a figure which shows the calculation result of the electric field strength of the beacon light which injects into the receiving side telescope in case the difference frequency is set to 0 in the space optical communication system which concerns on the 2nd Embodiment of this invention.
  • FIG. 1 It is a figure which shows the calculation result of the electric field strength of the beacon light which injects into the receiving side telescope in the case where the difference frequency is not zero in the spatial light communication system according to the second embodiment of the present invention.
  • FIG. 1 It is a block diagram which shows the structure of the space optical communication system which concerns on the 3rd Embodiment of this invention.
  • FIG. 1 It is a schematic diagram for demonstrating operation
  • FIG. 1 is a block diagram showing a configuration of a spatial light transmitting apparatus 100 according to the first embodiment of the present invention.
  • the spatial light transmission device 100 includes a laser light transmission unit 110 and a wavefront control light transmission unit 120.
  • the laser beam sending means 110 sends out a plurality of laser beams 11 that can interfere with each other in which either the optical frequency or the time change of the phase difference is different.
  • the wavefront control light sending means 120 sends a plurality of wavefront control lights 12 having different wavefronts from the plurality of laser lights 11 to free space.
  • the plurality of wavefront control lights 12 have different wavefronts, they are subjected to different disturbances in the process of passing through atmospheric fluctuations in free space. Therefore, the light intensity of each wavefront control light 12 is attenuated (fade) at different timings on the receiving side.
  • the plurality of wavefront control lights are composed of a plurality of laser beams having different optical frequencies that can interfere with each other, they interfere with each other on the receiving side. Therefore, the intensity of the received light changes with the period of the difference frequency that is the difference between the optical frequencies of the plurality of laser beams. At this time, by removing the component of the difference frequency from the signal of the received light, a received signal whose attenuation (fade) is reduced by the statistical multiplexing effect due to the superposition of the plurality of wavefront control lights is obtained. This makes it possible to receive stable laser light.
  • laser light composed of a plurality of wavefront control lights can be used as beacon light in spatial light communication.
  • difference frequency which is the difference between the optical frequencies of the plurality of laser beams
  • phase difference change frequency can be set to a frequency that is greater than the frequency of atmospheric fluctuations in free space.
  • the spatial light transmission device 100 of the present embodiment stable transmission of beacon light can be realized at low cost, and stable tracking can be maintained.
  • FIG. 2 is a block diagram showing a configuration of a spatial optical communication system 1000 according to the second embodiment of the present invention.
  • the spatial light communication system 1000 includes a spatial light transmitter 1100 and a spatial light receiver 1200, and transmits laser light through the free space 20.
  • the spatial light communication system 1000 typically has a configuration in which a spatial light transmitter 1100 is installed on the ground and a spatial light receiver 1200 is mounted on an artificial satellite.
  • the free space 20 includes the atmosphere, and includes the outside of the atmosphere and a vacuum region. Atmospheric fluctuations 21 exist in the atmospheric region.
  • the spatial light transmitter 1100 includes a laser light source 1110, a multiplexer 1120, an optical waveguide medium 1130, and a transmission-side telescope 1140.
  • the laser light source 1110 constitutes a laser beam sending means
  • the multiplexer 1120, the optical waveguide medium 1130, and the transmission side telescope 1140 constitute a wavefront control light sending means.
  • the laser light source 1110 includes a plurality (m) of laser light sources that output laser beams having different optical frequencies.
  • the laser light output from the laser light source 1110 is input to the multiplexer 1120 through a single mode fiber (SMF).
  • SMF single mode fiber
  • the multiplexer 1120 multiplexes the input m laser beams and sends them to the optical waveguide medium 1130.
  • the multiplexed laser light that has propagated through the optical waveguide medium 1130 is transmitted from the transmission-side telescope 1140 to the free space 20 as the beacon light 22.
  • Laser light (wavefront control light) having different wavefronts constituting the beacon light 22 is subjected to different wavefront disturbances in the process of passing through the atmospheric fluctuation 21.
  • the spatial light transmitter 1100 may include an optical amplifier 1150 in a section connected by a single mode fiber (SMF) between the laser light source 1110 and the multiplexer 1120 as shown in FIG.
  • SMF single mode fiber
  • the spatial light receiving device 1200 includes a receiving telescope 1210 as a condensing unit, a narrow band-pass filter (BPF) 1220 as an optical band passing unit, and a light receiver 1230 as a light receiving unit.
  • BPF narrow band-pass filter
  • the receiving-side telescope 1210 condenses received light including received laser light that is wavefront control light after propagating through the free space 20.
  • the narrowband bandpass filter (BPF) 1220 passes the received laser light out of the received light.
  • the light receiver 1230 photoelectrically converts the received laser light.
  • an array-type photodetector represented by a charge coupled device (CCD), a quadrant detector (QD) sensor, or the like can be used.
  • the spatial light transmission device 1100 transmits the beacon light 22 composed of a plurality of laser lights (wavefront control lights) having different wavefronts to the free space 20.
  • the beacon light 22 (received laser light) that has reached the spatial light receiving device 1200 is collected by the receiving telescope 1210. Then, after the optical spectrum component of the background light is removed by the narrow band pass filter (BPF) 1220, photoelectric conversion is performed in the light receiver 1230.
  • BPF narrow band pass filter
  • the optical receiver 1230 may be configured to detect the tracking error of the receiving telescope 1210 and generate an error signal.
  • FIG. 3 is a diagram schematically showing the beacon light 22 propagating between the spatial light transmitting device and the spatial light receiving device constituting the spatial light communication system 1000 according to the present embodiment.
  • the beacon light 22 propagates through a free space between a transmission-side telescope 1140 included in the spatial light transmission device 1100 and a reception-side telescope 1210 included in the spatial light reception device 1200.
  • the beacon light 22 transmitted from the transmission-side telescope 1140 includes the first laser light 22-1 and the second laser light 22-2 having different optical frequencies
  • the first laser beam 22-1 and the second laser beam 22-2 are spatially multiplexed in an orthogonal mode and propagate through the optical waveguide medium 1130. And it is sent to the free space from the transmission side telescope 1140 with mutually different wavefronts.
  • FIGS. A and B examples of schematic contour diagrams of the light intensity distribution on the aperture surface of the receiving telescope 1210 are shown in FIGS. A and B in FIG. .
  • the laser beams 22-1 and 22-2 having two different wave fronts are subjected to different atmospheric fluctuations and have different intensity distributions.
  • the first laser beam 22-1 has a maximum value of intensity distribution in the vicinity of the center of the receiving telescope 1210, as shown in FIG.
  • the second laser beam 22-2 has a trough in the intensity distribution in the vicinity of the center of the receiving telescope 1210 as shown in FIG. ing.
  • the spatial light receiving apparatus 1200 includes a narrow band-pass filter (BPF) 1220 and is configured to remove the optical spectrum component of the background light. Therefore, it is necessary to make the optical frequencies of the two types of laser light passing through the narrow band-pass filter (BPF) 1220 closer to the pass band width of the narrow band band-pass filter (BPF) 1220. Therefore, it is necessary to consider the influence of interference between the two types of laser beams.
  • BPF narrow band-pass filter
  • the first setting is when the optical frequency difference between the two types of laser light is zero.
  • the second setting is a case where the optical frequency difference is included in the band of the light receiver 1230 and the frequency is sufficiently higher than the frequency component of atmospheric fluctuation.
  • the intensity distribution is not an intensity distribution obtained by adding the intensity distributions shown in the A and B diagrams in FIG. That is, when a large phase distribution is applied due to strong atmospheric fluctuations, a new fluctuation occurs in the light reception intensity of the beacon light 22 due to interference between the two types of laser beams.
  • the difference frequency ⁇ which is the difference between the optical frequencies of the plurality of laser beams, can be configured to be greater than the frequency of atmospheric fluctuations in free space.
  • the frequency of atmospheric fluctuation is specifically, for example, 1 to 2 kilohertz (kHz).
  • FIGS. 4A, 4B, and 4C show temporal changes in received light intensity of two types of laser beams having different optical frequencies.
  • 4A shows the case where the light intensities are simply added
  • FIG. 4B shows the case where the difference frequency is zero
  • FIG. 4C shows the case where the difference frequency is not zero.
  • the wavefront of the first laser beam 22-1 is defined as the first wavefront (WF # 1), and the time change of the electric field is defined as E 1 (t).
  • the wavefront of the second laser beam 22-2 is the second wavefront (WF # 2), and the time variation of the electric field is E 2 (t).
  • E 1 (t) and E 2 (t) are expressed as follows:
  • S (t) represents the intensity of the laser beam and is assumed to be constant with respect to time.
  • ⁇ 0 is the optical frequency of the first laser light, and is, for example, ⁇ 0 / 2 ⁇ 200 terahertz (THz).
  • is a difference (difference frequency) between optical frequencies of the first laser beam and the second laser beam.
  • E1 ′ (t) and E2 ′ (t) represent the time variation of the electric field strength at one point on the aperture surface of the receiving telescope 1210. However, at the same time, it can be regarded approximately as the electric field strength of the entire laser beam irradiated on the aperture surface of the receiving telescope 1210. The reason is that the receiving telescope 1210 is sufficiently far from the atmospheric fluctuation 21, and therefore the diameter of the aperture can be considered to be sufficiently smaller than the spatial coherence radius of the laser light.
  • a (t) is the ratio at which the laser beam of the first wavefront (WF # 1) reaches the receiving telescope 1210, and B (t) is similarly This is the rate at which the laser beam of the second wavefront (WF # 2) reaches the receiving telescope 1210.
  • FIG. 4A schematically shows temporal changes in the intensity of E1 ′ (t) and E2 ′ (t) at this time.
  • the two laser beams are attenuated (fade) at independent timings. If the two wavelengths are sufficiently far apart and incoherent addition is possible, the fade is relaxed as indicated by the dotted line in the figure due to the statistical multiplexing effect, and stable laser light reception is expected. it can.
  • the electric field E S (t) of the laser light incident on the receiving telescope 1210 can be expressed as follows.
  • ⁇ 0 is the optical frequency of the laser beam.
  • the amplitude of the interference signal S on the photoelectric conversion surface of the light receiver 1230 is expressed as follows.
  • Equation (8) Since A, B, ⁇ A , and ⁇ B included in Equation (8) change randomly in the time axis direction, the intensity of the interference signal S is randomly in the range of ⁇ 2 ⁇ ( ⁇ A ⁇ B). Change.
  • FIG. 4B schematically shows time changes of E1 ′ (t) and E2 ′ (t) at this time.
  • E1 ′ (t) and E2 ′ (t) are independently subjected to random phase modulation simultaneously with random intensity modulations A (t) and B (t) by the atmospheric fluctuation 21.
  • the intensity of the electric field sum E1 ′ (t) + E2 ′ (t) of the two types of laser light depends on the phase states of E1 ′ (t) and E2 ′ (t), as indicated by the solid line in FIG. 4B. To vary randomly. Therefore, it is difficult to stably receive the laser beam.
  • FIG. 4C schematically shows changes with time of E1 ′ (t) and E2 ′ (t) in this case.
  • E S (t) of the electric fields of the two types of laser beams can be expressed as follows.
  • the amplitude of the interference signal S on the photoelectric conversion surface of the light receiver 1230 is expressed as follows.
  • the difference frequency ⁇ is sufficiently higher than the frequency component of atmospheric fluctuation.
  • A, B, ⁇ A , and ⁇ B can be regarded as constants in a time range sufficiently short with respect to atmospheric fluctuations. Accordingly, the interference signal S changes as shown below with a period of ⁇ .
  • the intensity fluctuation due to interference fluctuates at a frequency ⁇ that is sufficiently faster than the atmospheric fluctuation, so that the electric filter circuit 1240 can remove the ⁇ component from the interference signal S and extract only the frequency component of the atmospheric fluctuation. . Thereby, it is possible to stably acquire the signal intensity corresponding to the sum of E1 ′ (t) and E2 ′ (t).
  • broken lines indicate electric field strengths E1 ′ (t) and E2 ′ (t) of two types of laser beams transmitted in different modes, respectively.
  • E1 ′ (t) and E2 ′ (t) fade with each other at random timing.
  • the received light intensity S is not a simple addition, and a new fade occurs at a timing different from E1 ′ (t) and E2 ′ (t).
  • the time width of this fade can be regarded as equivalent to the fade occurring at E1 ′ (t) and E2 ′ (t).
  • the reason is that the fade generation mechanism in the light reception intensity S is in principle the same as the fade generation mechanism generated in the original beacon light.
  • FIG. 6 shows the electric field intensity of the laser light incident on the receiving telescope 1210 when the difference frequency is not zero ( ⁇ ⁇ 0).
  • the received light signal S repeats fading at a high frequency ⁇ , but no deep fading occurs in the envelope shown by the solid line. This indicates that stable transmission of beacon light can be realized by using the beacon light transmission method according to the present embodiment.
  • FIG. 7 shows a configuration of a spatial optical communication system 2000 according to the third embodiment of the present invention.
  • the spatial light communication system 2000 includes a spatial light transmitter 2100 and a spatial light receiver 1200, and transmits beacon light via the free space 20.
  • the spatial light receiver 1200 is the same as that according to the second embodiment.
  • the spatial light transmitter 2100 includes a single laser light source 2110, an optical branching device 2120 as an optical branching unit, and an optical frequency shifter 2130 as an optical frequency shifting unit, and these constitute a laser beam sending unit.
  • the spatial light transmitter 2100 further includes a mode multiplexer 2140 as a mode combining unit, a number mode fiber (FMF) 2150, and a transmission-side telescope 2160 as an emitting unit, which serve as a wavefront control light transmitting unit.
  • the optical frequency shifter 2130 and the mode multiplexer 2140 can be connected by a single mode fiber (SMF).
  • SMF single mode fiber
  • the single laser light source 2110 transmits a single laser beam having a single wavelength.
  • the optical branching device 2120 branches a single laser beam and generates a plurality (m) of branched laser beams.
  • the optical frequency shifter 2130 shifts the optical frequencies of the plurality of branched laser beams by different frequencies. For example, the optical frequency of the input branched laser light is shifted by a predetermined optical frequency ⁇ / 2 ⁇ .
  • the optical frequency shifter 2130 for example, an AO frequency shifter based on an acousto-optic (AO) effect can be used.
  • the mode multiplexer 2140 and the multimode waveguide (FMF) 2150 as the multimode waveguide means, it is possible to generate a combined laser beam obtained by converting a plurality of laser beams into different orthogonal modes. That is, the mode multiplexer 2140 multiplexes laser light input from m single mode fibers into orthogonal spatial modes and outputs the multiplexed light to one number mode fiber (FMF) 2150.
  • the number mode fiber (FMF) 2150 can transmit m laser beams multiplexed in orthogonal modes with low loss.
  • a spatial mode multiplexing element based on polyhedral light conversion can be used as the mode multiplexer 2140.
  • the transmission-side telescope 2160 emits the combined laser light as the beacon light 22 to the free space 20.
  • the laser light output from the single laser light source 2110 oscillates at a single optical angular frequency ⁇ 0 as shown in FIG. 8A.
  • the optical splitter 2120 splits this single laser beam into m pieces.
  • the frequency shifter 2130 does not shift the frequency of one of the branched branched laser beams, and the angular frequency difference ⁇ , 2 ⁇ , 3 ⁇ ,... With respect to the remaining (m ⁇ 1) branched laser beams. , (M ⁇ 1) ⁇ is frequency-shifted (FIG. 8B).
  • the optical amplifier 2170 amplifies the frequency-shifted m number of branched laser beams to the light intensity necessary for propagating in the free space 20, respectively.
  • the mode multiplexer 2140 converts and amplifies the amplified m laser beams into orthogonal eigenmodes of the several mode fiber (FMF) 2150, respectively.
  • the transmission-side telescope 2160 sends the multiplexed laser light to the free space 20. Laser light transmitted from the transmission-side telescope 2160 propagates through the free space 20 as light beams 22-1 to 22-m having mutually different wavefronts corresponding to the eigenmodes of the several mode fiber (FMF) 2150.
  • 8A and 8B show the configuration in which the laser beams are arranged at equal intervals of the angular frequency difference ⁇ .
  • the present invention is not limited to this, and the configuration may be such that the laser beams are arranged at angular frequency differences at unequal intervals. Good.
  • FIG. 9 schematically shows the correspondence between the angular frequency of the laser light multiplexed by the mode multiplexer 2140 constituting the mode combining means and the eigenmode of the several mode fiber (FMF) 2150.
  • the horizontal axis of the figure is the angular frequency difference from the angular frequency of the reference laser beam, and the vertical axis is the mode number that conceptually represents the natural mode of the number mode fiber (FMF) 2150.
  • the mode number can correspond to the LP mode (Linearly Polarized Mode).
  • the mode multiplexer 2140 converts the laser light having one optical frequency into only one mode different from the mode of the laser light having another optical frequency. That is, the laser light is multiplexed on the number mode fiber (FMF) 2150 in a combination indicated by a black circle in FIG. 9 and arranged so that the optical frequency and the eigenmode do not overlap.
  • FMF number mode fiber
  • the spatial light transmission device 2100 includes the frequency shifter 2130.
  • a phase modulator phase modulation means
  • the spatial light transmitting apparatus 2100 includes a laser light source that transmits a single laser beam, an optical branching unit (optical branching unit), and a phase modulator (phase modulating unit) as laser light transmitting units.
  • the optical branching device splits a single laser beam and generates a plurality of branched laser beams.
  • the phase modulator performs phase modulation on the plurality of branched laser beams at different frequencies.
  • the phase modulator (phase modulation means) can be configured to perform phase modulation at a frequency greater than the frequency of atmospheric fluctuations in free space and in a range equal to or greater than the phase amount corresponding to one wavelength of the branched laser light.
  • phase modulation can be configured to perform phase modulation at a frequency greater than the frequency of atmospheric fluctuations in free space and in a range equal to or greater than the phase amount corresponding to one wavelength of the branched laser light.
  • the phase modulation only needs to have a sufficient resolution in the range of 2 ⁇ , and may be stepped (discontinuous) phase modulation or continuous phase modulation.
  • the mode multiplexer 2140 (mode synthesizing unit) can convert the laser beam having one optical frequency into only one mode different from the mode of the laser beam having a different phase difference change frequency. .
  • the m laser beams transmitted from the spatial light transmitter 2100 reach the opening surface of the receiving telescope 1210 after being affected by the atmospheric fluctuation 21 in the free space 20.
  • the m laser beams are collected by the receiving telescope 1210, the background light is removed by a narrow band-pass filter (BPF) 1220, and then photoelectrically converted by a light receiver 1230.
  • BPF narrow band-pass filter
  • FIG. 8C schematically shows the transmission characteristics of the narrowband bandpass filter (BPF) 1220.
  • BPF narrowband bandpass filter
  • a plurality of vertical lines indicate the optical spectrum distribution
  • a trapezoidal solid line indicates the transmission band of the narrowband bandpass filter (BPF) 1220.
  • broadband background light is superimposed on the optical spectrum as noise. The light intensity of the laser light varies due to the influence of atmospheric fluctuations 21.
  • the transmission band of the narrowband bandpass filter (BPF) 1220 is set so as to transmit the spectrum of m laser beams and to remove noise caused by background light other than the laser beam bands.
  • BPF optical bandpass filter
  • the m laser beams transmitted from the spatial light transmitter 2100 are photoelectrically converted in a lump in the light receiver 1230 in a state having different light intensity and phase time variation characteristics due to the influence of atmospheric fluctuations 21. At this time, interference occurs between m laser beams. In this case, m (m ⁇ 1) / 2 / combinations are possible.
  • the difference frequency ⁇ may be set sufficiently higher than the frequency component of atmospheric fluctuation, as in the case of using the two types of laser beams described with reference to FIG.
  • the electrical filter circuit 1240 can remove the ⁇ component from the interference signal and extract only the frequency component of atmospheric fluctuation.
  • FIG. 10 schematically shows the relationship between the frequency difference component given by the frequency shifter 2130 and the frequency component of atmospheric fluctuation.
  • the horizontal axis is frequency
  • the vertical axis is the intensity of each signal.
  • the frequency offset width of each laser beam is arranged in the range of ⁇ / 2 ⁇ to (m ⁇ 1) ⁇ / 2 ⁇ .
  • ⁇ / 2 ⁇ which is the minimum value of the difference frequency
  • ⁇ a / 2 ⁇ which is the upper limit value of the frequency component of atmospheric fluctuation in free space. It is necessary to have a high frequency. The reason is that amplitude fluctuations due to interference of at least one period must occur in a time range in which atmospheric fluctuations can be regarded as sufficiently stationary.
  • kHz kilohertz
  • ⁇ / 2 ⁇ 10 megahertz
  • a plurality of laser beams that can interfere with each other in which either the optical frequency or the phase change of the phase difference is different are generated in the first communication station.
  • a plurality of wavefront control lights, each of which has a different wavefront from the plurality of laser beams, are sent to free space.
  • received light including received laser light that is wavefront control light after propagating in free space is condensed. Then, the received laser light is extracted from the received light, and the received laser light is photoelectrically converted.
  • laser light composed of a plurality of wavefront control lights can be used as beacon light in spatial light communication.
  • beacon light can be realized at low cost, and stable tracking can be maintained. Can do. That is, the influence of atmospheric fluctuation can be avoided, and beacon light can be stably transmitted from the ground to the artificial satellite.
  • the spatial optical communication system 2000 can be applied to the transmission of uplink beacon light in the spatial optical communication between the ground and the satellite.
  • the problem that the beacon light fades due to atmospheric fluctuations and the accuracy with which the artificial satellite tracks the ground station is degraded.
  • FIG. 11 shows a configuration of a spatial optical communication system 3000 according to the fourth embodiment of the present invention.
  • the spatial light communication system 3000 includes a spatial light transmitter 3100 and a spatial light receiver 1200, and transmits beacon light through the free space 20.
  • the spatial light receiver 1200 is the same as that according to the second embodiment.
  • the spatial light transmission device 3100 is different from the configuration of the spatial light transmission device 2100 according to the third embodiment in the configuration of the wavefront control light transmission means. That is, the spatial light transmission device 3100 according to the present embodiment has a plurality of optical waveguide units that guide a plurality of laser beams in a single optical mode, and a plurality of laser beams propagated through the plurality of optical waveguide units in free space. And a wavefront control light sending means including an emitting means for emitting light.
  • the spatial light transmission device 3100 may include a bundle fiber 3150 and a fan-out unit 3140 instead of the mode multiplexer 2140 and the number mode fiber (FMF) 2150.
  • the bundle fiber 3150 is composed of m single mode fibers (SMF).
  • the fan-out unit 3140 branches the bundle fiber into individual single mode fibers (SMF).
  • the m laser beams are transmitted from the transmitting telescope 2160 to the free space 20 through m single mode fibers (SMF) included in the bundle fiber 3150.
  • SMF single mode fibers
  • m laser beams are transmitted to the free space 20 with different wavefronts.
  • the beacon light 22 composed of a plurality of laser beams having different wavefronts transmitted from the spatial light transmission device 3100 is propagated through the free space 20 after being propagated through the free space 20 as in the spatial light communication system 2000 according to the third embodiment. Received by 1200.
  • the spatial optical communication system 3000 of this embodiment stable transmission of beacon light can be realized at low cost, and stable tracking can be maintained.
  • the spatial optical communication system 3000 according to the present embodiment can be applied to the transmission of uplink beacon light in the spatial optical communication between the ground and the satellite.
  • the problem that the beacon light fades due to atmospheric fluctuations and the accuracy with which the artificial satellite tracks the ground station is degraded.
  • FIG. 12 is a block diagram showing a configuration of a spatial optical communication system 4000 according to the fifth embodiment of the present invention.
  • the spatial light communication system 4000 includes a spatial light transmitter 4100 and a spatial light receiver 4200, and transmits the beacon light 22 through the free space 20.
  • the spatial optical communication system 4000 according to the present embodiment is obtained by adding a configuration having a new function to the spatial optical communication system 2000 according to the third embodiment described above.
  • the spatial light transmitter 4100 includes a single laser light source 2110, an optical splitter 2120, an optical frequency shifter 2130, a mode multiplexer 2140, an optical waveguide medium 1130, and a transmission-side telescope 2160.
  • the configuration up to this point is the same as that of the spatial light transmission apparatus 2100 according to the third embodiment.
  • the spatial light transmitter 4100 further includes a transmission side optical branching unit 4110, a mode separator 4120 as a mode separation unit, a monitor light receiver 4130 as a monitor light reception unit, a control unit 4140 as a control unit, and a light intensity adjustment unit.
  • a variable optical amplifier 4150 is provided.
  • the spatial light receiving device 4200 includes a receiving telescope 1210, a narrow band-pass filter (BPF) 1220, a light receiver 1230, and an electric filter circuit 1240.
  • BPF narrow band-pass filter
  • the configuration up to this point is the same as that of the spatial light receiving device 1200 according to the second embodiment.
  • the spatial light receiving device 4200 further includes a reception-side laser light source 4210 that transmits a monitoring laser beam and a reception-side optical branching device 4220.
  • the reception-side optical branching device 4220 and the reception-side telescope 1210 constitute reception-side emission means, and the monitor laser beam 31 is emitted to the free space 20.
  • the receiving-side optical branching device 4220 has a function of branching and combining the laser light traveling from the receiving-side telescope 1210 toward the narrow band-pass filter (BPF) 1220 and the monitoring laser light traveling from the receiving-side laser light source 4210 toward the receiving-side telescope 1210. Have.
  • the reception-side optical branching device 4220 may be a device similar to the transmission-side optical branching device 4110 included in the spatial light transmission device 4100.
  • the transmission side optical branching unit 4110 corresponds to the beacon light 22 propagating in the free space 20, the laser beam directed from the mode multiplexer 2140 to the transmission side telescope 2160, and the monitoring laser condensed by the transmission side telescope 2160. It has the function of branching and joining light.
  • the transmission-side optical splitter 4110 and the transmission-side telescope 2160 constitute a transmission-side condensing unit, and condenses reception monitor laser light that is monitor laser light after propagating through the free space 20.
  • the transmission side optical branching unit 4110 a wavelength separation filter, a circulator, a polarization separation element, or the like can be used.
  • the transmission-side optical branching device 4110 is inserted in the middle of the optical waveguide medium 1130. Specifically, the transmission-side optical branching device 4110 is inserted in the optical system between the number-mode fiber (FMF) constituting the optical waveguide medium 1130 or between the number-mode fiber (FMF) and the transmission-side telescope 2160. Can be configured. It is desirable that the optical waveguide medium 1130 generate less crosstalk between a plurality of propagating laser beams in the orthogonal mode.
  • the mode separator 4120 separates the reception monitor laser light into different orthogonal modes to generate a plurality of monitor mode lights. That is, the mode separator 4120 separates the reception monitor laser light that has been collected by the transmission-side telescope 2160 and entered via the optical waveguide medium 1130 into m propagation modes that are orthogonal to each other, and m single-mode fibers ( SMF).
  • SMF single-mode fibers
  • the monitor light receiver 4130 generates a monitor signal by photoelectrically converting a plurality of (m) mode light beams for mode separation.
  • the control unit 4140 controls the variable optical amplifier 4150 based on this monitor signal. Specifically, control unit 4140 monitors the intensity of m laser beams received by monitor light receiver 4130 and generates control signal 32 according to a predetermined procedure. Then, the variable optical amplifier 4150 changes the intensity of the plurality of laser beams transmitted by the optical frequency shifter 2130 based on the control signal 32.
  • the propagation characteristics of the beacon light 22 that is laser light propagated in the uplink direction are stabilized. be able to.
  • the monitor laser beam 31 and the beacon beam 22 share the free space 20 and simultaneously propagate in both directions.
  • the propagation of the laser light in the atmospheric fluctuation 21 can be regarded as approximately reversible.
  • the time for which the laser light propagates in the atmosphere is sufficiently shorter than the time constant of the atmospheric fluctuation 21, it can be considered that the atmosphere is stationary with respect to the propagation of the laser light.
  • the thickness of the atmosphere is 50 kilometers (km)
  • the zenith angle is 0 degree
  • the time for the laser light to propagate through the atmosphere is about 0.17 milliseconds (msec) Degree. Therefore, when the frequency component of atmospheric fluctuation is 1 kilohertz (kHz), that is, the time constant is 1 millisecond (msec), it can be seen that the propagation time of the laser light is sufficiently shorter than the time constant of atmospheric fluctuation 21.
  • the wavefront of the downlink monitoring laser beam 31 is disturbed by the influence of atmospheric fluctuations.
  • the reception monitor laser light which is the monitor laser light after propagating in the free space 20, is collected by the transmission-side telescope 2160 and introduced into the mode separator 4120 via the optical waveguide medium 1130 and the transmission-side optical splitter 4110. To do. Then, the mode separator 4120 separates the orthogonal modes, and the monitor light receiver 4130 measures each intensity. Thereby, the propagation characteristic of the free space 20 including the atmospheric fluctuation 21 can be detected.
  • the intensity distribution coefficient for the mth mode of the monitor laser beam 31 is obtained by photoelectrically converting the mode-separated monitor mode lights with the monitor light receiver 4130 to obtain the respective intensities. be able to.
  • the intensity distribution coefficient detected here is the propagation coefficient of the m-mode laser beams 22-1 to 22-m constituting the uplink beacon light 22. Can be considered equal. That is, the coefficients corresponding to A ′ and B ′ in the equation (12) can be estimated from the light intensity monitor value of the monitor light receiver 4130.
  • the control unit 4140 generates m control signals 32 for controlling the intensity of the laser beam to be transmitted based on the light intensity monitor value of the monitor light receiver 4130 according to a predetermined procedure.
  • the output light intensity of the m laser beams transmitted from the optical frequency shifter 2130 is adjusted by the variable optical amplifier 4150. Thereafter, the signals are multiplexed by the mode multiplexer 2140 and transmitted as beacon light 22 from the transmission side telescope 2160 to the free space 20.
  • a method of selecting laser light in a mode corresponding to the top two light intensity monitor values acquired from the monitor light receiver 4130 can be used. Specifically, the control unit 4140 selects the upper two modes in descending order of the light intensity from the input m light intensity monitor values of the downlink, and the control signal 32 for designating these two modes. Is sent to the variable optical amplifier 4150. The variable optical amplifier 4150 sufficiently reduces the output intensity of the laser light corresponding to the (m ⁇ 2) modes other than the designated two.
  • the monitor light receiver 4130 cannot detect the phase of light. Therefore, it is impossible to control the phase difference of the laser light that reaches the receiving telescope 1210. Therefore, the phase of the laser light constituting the beacon light 22 changes randomly due to the atmospheric fluctuation 20.
  • uplink laser light beam light 22
  • a condition in which interference is weakened occurs probabilistically due to the presence of a plurality of combinations.
  • the number of laser beams to be transmitted it is possible to stabilize interference generated by the light receiver 1230 included in the spatial light receiving device 4200.
  • a monitor laser beam is generated in a second communication station that communicates with the first communication station, and the monitor laser beam is emitted into free space.
  • the reception monitor laser light which is the monitor laser light after propagating in free space, is condensed, and the reception monitor laser light is separated into different orthogonal modes to obtain a plurality of modes.
  • Monitor mode light is generated.
  • the monitor mode light is photoelectrically converted to generate a monitor signal, and the intensity of the plurality of laser beams is changed based on the monitor signal.
  • the first communication station may be configured to select two types of monitor mode lights having a high monitor signal intensity from a plurality of monitor mode lights. Then, the intensity of laser light other than the two kinds of laser lights corresponding to the two kinds of monitor mode lights is attenuated among the plurality of laser lights. At the same time, the intensity of the two types of laser light can be controlled so that the temporal change in the intensity of the received laser light at the second communication station is reduced.
  • the spatial optical communication system 4000 and the spatial optical communication method of the present embodiment stable transmission of beacon light can be realized at low cost, and stable tracking can be maintained. Can do. Further, since it is possible to adjust the intensity ratio of each mode of the uplink laser light with reference to the propagation characteristics of the downlink laser light, the stability of the intensity of the beacon light reaching the spatial light receiving device 4200 can be stabilized. Can be achieved.
  • FIG. 13 shows the configuration of a spatial optical communication system 5000 according to the sixth embodiment of the present invention.
  • the spatial light communication system 5000 includes a spatial light transmitter 5100 and a spatial light receiver 5200, and transmits the signal laser light 30 through the free space 20.
  • the spatial optical communication system 5000 according to the present embodiment is obtained by adding a configuration having an uplink signal communication function to the spatial optical communication system 4000 according to the fifth embodiment described above.
  • Spatial light transmission apparatus 5100 further includes a signal source 5110, a signal multiplexing unit 5120, a transmission-side high-pass filter (High Pass Filter: HPF) 5130 as a transmission-side high-pass means, and an optical modulator 5140 as an optical modulation means.
  • the signal source 5110 and the signal multiplexing unit 5120 constitute an information signal generating unit, and generate an information signal to be transmitted.
  • the other configuration is the same as that of the spatial light transmission device 4100 according to the fifth embodiment, and a description thereof will be omitted.
  • the spatial light receiving device 5200 further includes a signal light receiver 5210 as a receiving unit, a receiving high-pass filter (HPF) 5220 as a receiving high-pass unit, and a signal reproducing unit 5230 as an information signal reproducing unit.
  • the other configuration is the same as that of the spatial light receiving device 4200 according to the fifth embodiment, and a description thereof will be omitted.
  • the signal source 5110 included in the spatial light transmission device 5100 generates a signal sequence to be transmitted on the uplink.
  • the signal multiplexing unit 5120 sets the signal sequence generated by the signal source 5110 to be a signal sequence multiplexed twice, with a predetermined block length as a unit.
  • a transmission-side high-pass filter (HPF) 5130 blocks low-frequency components included in the spectrum components of the multiplexed signal and allows only high-frequency components to pass.
  • the optical modulator 5140 modulates the laser light output from the single laser light source 2110 according to the signal sequence.
  • the signal light receiver 5210 included in the spatial light receiving device 5200 receives and photoelectrically converts the laser light modulated by the spatial light transmitting device 5100.
  • the reception side high pass filter (HPF) 5220 cuts off the low frequency component from the spectrum of the photoelectrically converted signal and allows only the high frequency side component to pass.
  • the signal regeneration unit 5230 regenerates the received signal from the signal that has passed through the reception-side high pass filter (HPF) 5220.
  • FIG. 14 is a diagram schematically showing a signal sequence and a signal spectrum in the spatial light communication system 5000 of the present embodiment.
  • the signal source 5110 generates a signal sequence having a predetermined block size.
  • This figure shows a case where the offset frequency given by the optical frequency shifter 2130 is ⁇ / 2 ⁇ and the block length time is 2 ⁇ / ⁇ .
  • the signal multiplexing unit 5120 multiplexes this signal sequence twice as shown in the column B of FIG. As shown in the figure, the spectrum at this time is a spectrum including a low frequency component reflecting the long period component of the signal.
  • the transmission side high pass filter (HPF) 5130 removes a low frequency component from the spectrum of the signal as shown in the column C of FIG.
  • a rectangular broken line in the figure shows the transmission characteristics of the transmission high-pass filter (HPF) 5130.
  • the cutoff frequency fc at this time satisfies the relationship of (m ⁇ 1) ⁇ / 2 ⁇ ⁇ fc. It is necessary to satisfy this relationship so that the spectral component of the signal from the signal source 5110 does not affect the beat of the frequency ⁇ generated on the receiving side by the uplink signal laser beam to which the frequency offset is given. It is to do.
  • the signal laser light modulated by the optical modulator 5140 is branched into m pieces, subjected to optical frequency offset processing, and then transmitted from the transmission side telescope 2160 to the free space 20.
  • the signal laser beam 30 transmitted from the spatial light transmitter 5100 reaches the spatial light receiver 5200 after being affected by the atmospheric fluctuation 21.
  • the signal laser beam 30 interferes with the aperture surface of the receiving telescope 1210, and an intensity fluctuation occurs at a period of ⁇ .
  • the period of this intensity fluctuation becomes equal to the period of the signal multiplexed twice as shown in the column D of FIG.
  • the signal photoelectrically converted by the signal receiver 5210 may be faded at a period ⁇ / 2 ⁇ as a result of interference.
  • the transmission signal is repeatedly transmitted twice in the same cycle, signal redundancy can be ensured.
  • the signal photoelectrically converted by the signal receiver 5210 includes a component of frequency offset ( ⁇ / 2 ⁇ ) as in the spectrum shown in the E column of FIG. This frequency offset component is removed by the reception high-pass filter (HPF) 5220 as in the spectrum shown in the column F of FIG. As shown in the G column of FIG. 14, the signal reproduction unit 5230 selects a block that does not include a fade portion and reproduces the received signal.
  • ⁇ A and ⁇ B are unknown variables, but the coefficients A and B are determined by the signal receiver 5210.
  • control unit 4140 included in the spatial light transmission device 5100 can adjust the output light intensity by controlling the variable optical amplifier 4150 using the control signal 32. Therefore, the control unit 4140 controls the output light intensity so that the coefficients A and B in the equation (11) satisfy A ⁇ B on the reception side, whereby a fade occurring in the signal photoelectrically converted on the reception side. Can be relaxed.
  • the signal laser light that transmits the information signal can be used as the beacon light.
  • stable transmission of this beacon light can be realized at low cost, and stable tracking can be maintained.
  • the influence of atmospheric fluctuations on the uplink signal laser light can be mitigated, and the influence of interference can be avoided. As a result, signal communication can be stabilized.
  • a spatial light transmission apparatus comprising: wavefront control light transmission means for transmitting light to free space.
  • the laser beam sending means includes a laser light source that sends a single laser beam, an optical branching unit that branches the single laser beam to generate a plurality of branch laser beams, and a plurality of the branch laser beams. And a plurality of optical frequency shifting means for shifting the optical frequency by different frequencies, respectively.
  • the laser beam sending means includes a laser light source that sends a single laser beam, an optical branching device that branches the single laser beam to generate a plurality of branched laser beams, and a plurality of the branched laser beams.
  • phase modulation means performs phase modulation in a range greater than a phase amount corresponding to one wavelength of the branched laser light at a frequency larger than the frequency of atmospheric fluctuation in the free space.
  • the wavefront control light transmitting means generates a combined laser light by combining the plurality of laser lights into different orthogonal modes, and emits the combined laser light to free space.
  • the spatial light transmitter according to any one of appendices 1 to 5, further comprising:
  • the mode combining means may be configured to change the laser light having one optical frequency different from any one mode of the laser light having another optical frequency and the laser light having a different frequency of the phase difference.
  • the spatial light transmission device according to any one of supplementary notes 1 to 7 and a spatial light reception device, wherein the spatial light reception device uses the wavefront control light after propagating in the free space.
  • the spatial light receiving device includes a reception-side laser light source that transmits a monitoring laser beam, and reception-side emission means that emits the monitoring laser beam to free space
  • the spatial light transmission device includes: A light intensity adjusting means for changing the intensity of each of the plurality of laser lights, a transmission-side condensing means for condensing the receiving monitor laser light that is the monitor laser light after propagating through the free space, Mode separation means for separating the received monitor laser light into different orthogonal modes to generate a plurality of monitor mode lights, and monitor light reception for generating a monitor signal by photoelectrically converting the plurality of monitor mode lights, respectively.
  • the spatial light communication system according to claim 8, further comprising: means; and control means for controlling the light intensity adjusting means based on the monitor signal.
  • a plurality of laser beams capable of interfering with each other whose optical frequency and phase difference change with time are generated, and the plurality of laser beams are set to have different wavefronts.
  • the second communication station that transmits wavefront control light to free space and communicates with the first communication station collects received light including received laser light that is the wavefront control light after propagating through the free space.
  • the wavefront control light transmitting means includes a mode combining means for generating a combined laser light obtained by converting the plurality of laser lights into different orthogonal modes, and a multipath for guiding the combined laser light.
  • the spatial light transmitter according to any one of appendices 1 to 5, further comprising: a mode waveguide unit; and an emitting unit that emits the combined laser beam to free space.
  • the wavefront control light transmission means includes a plurality of optical waveguide means for guiding the plurality of laser lights in a single optical mode, and the plurality of laser lights propagated through the plurality of optical waveguide means.
  • the spatial light transmission device according to any one of appendices 1 to 5, further comprising: an emission unit that emits light to free space.
  • the said spatial light transmitter is an information signal production
  • Optical modulation means for transmitting modulated laser light as the single laser light to the optical branching means, and the spatial light receiving device is the received laser light that is the wavefront control light after propagating through the free space.
  • Condensing means for condensing received light including: optical band-pass means for passing the received laser light among the received light; receiving means for photoelectrically converting the received laser light to generate a received signal; and Received signal Of, space optical communication system comprising a reception information signal only recipient highpass means for passing, city having frequency components higher than the cut-off frequency.
  • the information signal generating means generates the information signal by duplicating information data at a cycle of the minimum frequency among the frequency of intensity change of interference light by the plurality of laser beams, and the spatial light receiving device 15.
  • the second communication station generates monitor laser light, emits the monitor laser light into free space, and the first communication station transmits the monitor after passing through the free space.
  • the reception monitor laser light which is a laser light for use, is condensed, and the reception monitor laser light is separated into different orthogonal modes to generate a plurality of monitor mode lights.
  • the spatial light communication method according to appendix 10 wherein a monitor signal is generated by photoelectric conversion, and the intensity of each of the plurality of laser beams is changed based on the monitor signal.
  • two kinds of monitor mode lights having a high intensity of the monitor signal are selected from the plurality of monitor mode lights, and the two kinds of laser lights among the plurality of laser lights are selected. Attenuating the intensities of the laser beams other than the two types of laser beams corresponding to the monitor mode light, and changing the intensities of the two types of laser beams over time with the intensity of the received laser beams in the second communication station.
  • Spatial light transmission device 110 Laser light transmission means 120 Wavefront control light transmission means 1000, 2000, 3000, 4000, 5000 Spatial optical communication system 1110 Laser light source 1120 Multiplexer 1130 Optical waveguide medium 1140 2160 Transmission-side telescope 1150, 2170 Optical amplifier 1200, 4200, 5200 Spatial optical receiver 1210 Reception-side telescope 1220 Narrow band-pass filter (BPF) 1230 Light receiver 1240 Electric filter circuit 2110 Single laser light source 2120 Optical splitter 2130 Optical frequency shifter 2140 Mode multiplexer 2150 Number mode fiber (FMF) 3140 Fan-out unit 3150 Bundle fiber 4110 Transmission-side optical splitter 4120 Mode separator 4130 Monitor receiver 4140 Control unit 4150 Variable optical amplifier 4210 Reception-side laser light source 4220 Reception-side optical splitter 5110 Signal source 5120 Signal multiplexing unit 5130 Transmission-side high pass Filter (HPF) 5140 Optical modulator 5210 Signal receiver 5220

Abstract

空間光送信装置においては、ビーコン光の安定な伝送を低コストで実現することが困難であり、安定な追尾を維持することができないため、本発明の空間光送信装置は、光周波数および位相差の時間変化のいずれかが異なる互いに干渉可能な複数のレーザ光を送出するレーザ光送出手段と、複数のレーザ光を、それぞれ異なる波面とした複数の波面制御光を自由空間に送出する波面制御光送出手段、とを有する。

Description

空間光送信装置および空間光通信方法
 本発明は、空間光送信装置および空間光通信方法に関し、特に、自由空間を伝搬するレーザ光により光通信を行う空間光送信装置および空間光通信方法に関する。
 近年、地上と航空機や人工衛星との間で伝送されるデータ量が増大している。さらに大容量のデータ通信を実現するため、マイクロ波よりも格段に広帯域化が可能である光周波数帯を用いた空間光通信(Free Space Optics:FSO)システムが検討されている。
 このような空間光通信(FSO)システムの中でも、地上と低軌道(Low Earth Orbit:LEO)衛星との間で通信を行うFSOシステムにおいては、通信時間に制約がある。そのため、ビットレートの高速化と同時に、追尾を安定に維持することが重要となる。その理由は、追尾が維持できない場合、再捕捉するために必要となる時間だけ通信時間が減少するので、FSOシステムの通信容量が減少するからである。
 空間光通信(FSO)システムにおいて安定な追尾を維持するためには、ビーコン光の安定な伝送が必要となる。ビーコン光の安定な伝送を実現するためには、以下の二つの技術的な課題を解決する必要がある。第一の課題は、背景光を抑制して高感度なビーコン光の受光を可能とすることである。第二の課題は、ビーコン光に対する大気揺らぎの影響を緩和することである。以下に、それぞれの課題について説明する。
 第一の課題は、受信望遠鏡が集光した光から、背景光と呼ばれる太陽および月や地球からの反射光を除去する必要があることである。これは、ビーコン光と同時に背景光を受光すると、ビーコン光の受信S/N(signal/noise)比が劣化するためである。具体的には、受光器の飽和、あるいは、背景光に起因したビートノイズの増大により、高感度なビーコン光の検出が困難になり、その結果、追尾が不安定化することになるからである。
 ビーコン光は狭線幅のレーザ装置を光源とするのに対して、背景光は太陽光を起源とする広帯域の連続スペクトル成分を有する。そのため、ビーコン光の帯域だけを通過させる狭帯域の光バンドパスフィルタ(Band Pass Filter:BPF)を用いて、背景光のスペクトル成分を遮断することによりビーコン光の受信S/N比を改善することができる。
 ここで用いる光バンドパスフィルタ(BPF)の通過帯域幅は、理想的には可能な限り狭帯域とすることが望ましい。しかしながら、地上と人工衛星間の空間光通信(FSO)システムにおいては、ドップラー効果によるレーザ光の周波数シフトを考慮する必要がある。具体的には例えば、地上と低軌道衛星の間の規格化ドップラーシフト量は約±3×10-5程度である。これより、波長が1.55マイクロメートル(μm)、すなわち周波数が約200テラヘルツ(THz)であるレーザ光を用いた場合、発生するシフト量は約±6GHzとなる。
 しかしながら、ドップラーシフトに追従して通過中心周波数を可変制御する光バンドパスフィルタ(BPF)を人工衛星に搭載することは、消費電力および機器重量の増加を招くことから好ましくない。そのため、このようなドップラーシフトに対応するためには、シフト量の例えば1.5倍程度のマージンを持たせた18GHz(波長幅が約0.14nm)程度の通過帯域幅を有する光バンドパスフィルタ(BPF)を用いる必要がある。このような光バンドパスフィルタ(BPF)は、例えば、空間型のブラッグ・グレーティング・フィルタ(Bragg Grating Filter)とエタロンを組み合わせることにより実現することができる。
 このような狭帯域な光バンドパスフィルタ(BPF)を用いることによって、背景光を十分に除去し、ビーコン光を高感度で受光することが可能になる。一方、狭帯域な光バンドパスフィルタ(BPF)を適用することは、ビーコン光に用いるレーザ光のスペクトルに対する制約条件となる。
 次に、第二の課題について説明する。第二の課題は、大気中の伝搬によりビーコン光の波面が乱されることによって受信側で発生するビーコン光の受光強度の変動を、安定化させる必要があることである。強い大気揺らぎにより、受光するビーコン光の強度が大きく減衰(フェード)すると、追尾制御系が検出する誤差信号のS/N比が劣化するので、正確な追尾制御が困難になる。このことは特に、地上から上空の人工衛星に対してビーコン光を送信する場合に顕著になる。なぜならば、地上から人工衛星へ向けて伝搬するビーコン光は、大気揺らぎの影響を強く受けるためである。すなわち、地上から送出されたビーコン光は送出された直後に大気揺らぎの影響を受けた後、空間的な強度分布を保持したまま大気揺らぎの無い真空中を長距離伝搬して、人工衛星の軌道面に拡大投影されるからである。
 ビーコン光の強度分布が面状に拡大されると、受信側の望遠鏡の開口平均効果が得られず、大気揺らぎの影響を強く受けることになる。大気揺らぎにより強いフェードが発生してビーコンを消失すると、人工衛星の追尾制御系が地上局の位置を見失うことになる。そのため、人工衛星から地上に向けて信号光を正確に照射することができなくなり、安定な空間光通信(FSO)が困難になる。
 ビーコン光の空間的な強度分布のサイズについて、具体例を用いて以下に説明する。
 地上から衛星に向かって伝搬するビーコン光を球面波とみなすと、その強度分布のコヒーレンス半径は以下の式(1)により表わされる。

Figure JPOXMLDOC01-appb-I000001

 ここで、式(1)には、分子に伝搬距離Lが含まれているため、伝搬距離の伸張とともにビーコン光強度分布の空間的なサイズは拡大される。代表的な大気の構造パラメータとしてHufnagle-Valley(HV)モデルの一種を用いて、式(1)からコヒーレンス半径ρ0,sphを概算すると、低軌道衛星として代表的な伝搬距離L=600kmとした場合、ρ0,sph=6.4mとなる。強度分布の空間的なサイズを空間コヒーレント半径と同等と仮定すると、衛星側では望遠鏡の直径を13m以上としないと開口平均効果が得られないことになる。しかし、そのような巨大な望遠鏡を衛星側に搭載することは、重量や体積の増加に起因してコストが増大するという問題があった。
 このような大気揺らぎによる問題を解決する技術の例が特許文献1および2に記載されている。
 特許文献1に記載されたマルチビームレーザ通信装置は、レーザビーム送信用の第1~第4望遠鏡、レーザ指向装置、受光用望遠鏡、送受信の方位および仰角を調整するジンバル機構、および制御部を有する。制御部は、ビーム条件に応じて望遠鏡から使用するレーザ光源を選択してレーザビームを照射すると共に、相手側での受光強度変動を抑制できるように、それらのビーム拡がり角を調整する。これにより、大気揺らぎや指向誤差の存在する環境でのレーザ回線の保持が容易となる、としている。
 また、特許文献2には、波長の異なる信号光を放射する複数個の信号光源、入力された電気信号により各信号光源を変調する駆動回路、各信号光を同一光軸上に合波するミラーおよびビームスプリッターを備えた送信側局を有する空間光伝送装置が記載されている。このような構成としたことにより、同一の信号を波長の異なる複数の信号光により同時に伝送することができるので、1つの光源により伝送を行なった場合に比べ受信側での受光パワーの変動を減少させることができる、としている。
 また、関連技術としては、特許文献3に記載された技術がある。
特開2005-354335号公報 特開平9-326761号公報 特開平11-266252号公報
 上述した特許文献1に記載された空間光送信装置においては、送信ビーム間隔をコヒーレント半径程度以上に拡大する必要がある。具体的には、望遠鏡の直径あるいは複数の望遠鏡の配置間隔を1メートル(m)程度とする必要がある。しかし、このような大型の光学系を用いるとコストが増大するという問題がある。
 また、上述した特許文献2に記載された空間光送信装置は、広い光波長帯域を用いる必要があるため、狭帯域の光バンドパスフィルタ(BPF)を適用することは困難である。そのため、背景光の影響により、ビーコン光を高感度に受光することが困難であるという問題がある。
 このように、空間光送信装置においては、ビーコン光の安定な伝送を低コストで実現することが困難であり、安定な追尾を維持することができない、という問題があった。
 本発明の目的は、上述した課題である、空間光送信装置においては、ビーコン光の安定な伝送を低コストで実現することが困難であり、安定な追尾を維持することができない、という課題を解決する空間光送信装置および空間光通信方法を提供することにある。
 本発明の空間光送信装置は、光周波数および位相差の時間変化のいずれかが異なる互いに干渉可能な複数のレーザ光を送出するレーザ光送出手段と、複数のレーザ光を、それぞれ異なる波面とした複数の波面制御光を自由空間に送出する波面制御光送出手段、とを有する。
 本発明の空間光通信方法は、第1の通信局において、光周波数および位相差の時間変化のいずれかが異なる互いに干渉可能な複数のレーザ光を生成し、複数のレーザ光を、それぞれ異なる波面とした複数の波面制御光を自由空間に送出し、第1の通信局と通信を行う第2の通信局において、自由空間を伝搬した後の波面制御光である受信レーザ光を含む受信光を集光し、受信光から受信レーザ光を取り出し、受信レーザ光を光電変換する。
 本発明の空間光送信装置および空間光通信方法によれば、ビーコン光の安定な伝送を低コストで実現することが可能であり、安定な追尾を維持することができる。
本発明の第1の実施形態に係る空間光送信装置の構成を示すブロック図である。 本発明の第2の実施形態に係る空間光通信システムの構成を示すブロック図である。 本発明の第2の実施形態に係る空間光通信システムを構成する空間光送信装置と空間光受信装置との間を伝搬するビーコン光を模式的に示した図である。 本発明の第2の実施形態に係る空間光通信システムの効果を説明するための、光周波数が異なる二種のレーザ光の受光強度の時間変化を示す図であり、各光強度を加算した場合を示す図である。 本発明の第2の実施形態に係る空間光通信システムの効果を説明するための、光周波数が異なる二種のレーザ光の受光強度の時間変化を示す図であり、差分周波数がゼロである場合を示す図である。 本発明の第2の実施形態に係る空間光通信システムの効果を説明するための、光周波数が異なる二種のレーザ光の受光強度の時間変化を示す図であり、差分周波数がゼロでない場合を示す図である。 本発明の第2の実施形態に係る空間光通信システムにおいて、差分周波数をゼロとした場合における、受信側望遠鏡に入射するビーコン光の電界強度の計算結果を示す図である。 本発明の第2の実施形態に係る空間光通信システムにおいて、差分周波数がゼロでないとした場合における、受信側望遠鏡に入射するビーコン光の電界強度の計算結果を示す図である。 本発明の第3の実施形態に係る空間光通信システムの構成を示すブロック図である。 本発明の第3の実施形態に係る空間光送信装置が備える周波数シフタの動作を説明するための模式図である。 本発明の第3の実施形態に係る空間光送信装置が備える周波数シフタの動作を説明するための模式図である。 本発明の第3の実施形態に係る空間光受信装置が備える狭帯域バンドパスフィルタ(BPF)の動作を説明するための模式図である。 本発明の第3の実施形態に係る空間光送信装置における、レーザ光の角周波数と数モードファイバ(FMF)の固有モードとの対応関係を説明するための模式図である。 本発明の第3の実施形態に係る空間光送信装置が備える周波数シフタによって付与される周波数差の成分と、大気揺らぎの周波数成分との関係を模式的に示す図である。 本発明の第4の実施形態に係る空間光通信システムの構成を示すブロック図である。 本発明の第5の実施形態に係る空間光通信システムの構成を示すブロック図である。 本発明の第6の実施形態に係る空間光通信システムの構成を示すブロック図である。 本発明の第6の実施形態に係る空間光通信システムの動作を説明するための図である。
 以下に、図面を参照しながら、本発明の実施形態について説明する。
 〔第1の実施形態〕
 図1は、本発明の第1の実施形態に係る空間光送信装置100の構成を示すブロック図である。空間光送信装置100は、レーザ光送出手段110と波面制御光送出手段120を有する。
 レーザ光送出手段110は、光周波数および位相差の時間変化のいずれかが異なる互いに干渉可能な複数のレーザ光11を送出する。波面制御光送出手段120は、この複数のレーザ光11を、それぞれ異なる波面とした複数の波面制御光12を自由空間に送出する。
 ここで、これらの複数の波面制御光12は、それぞれ異なる波面を有しているので、自由空間における大気揺らぎを通過する過程で異なる乱れを受ける。したがって、個々の波面制御光12の光強度は受信側において異なるタイミングで減衰(フェード)することになる。
 これらの複数の波面制御光は干渉可能な光周波数の異なる複数のレーザ光からなるので、受信側において互いに干渉する。そのため、受信光の強度は複数のレーザ光の光周波数の差である差分周波数の周期で変化する。このとき、受信光の信号から差分周波数の成分を除去することにより、複数の波面制御光が重ね合わされることによる統計多重効果によって減衰(フェード)が緩和された受信信号が得られる。これにより、安定なレーザ光の受信が可能になる。
 ここで、複数の波面制御光からなるレーザ光を空間光通信におけるビーコン光として用いることができる。なお、上述した複数のレーザ光の光周波数の差である差分周波数および位相差の変化の周波数のいずれかを、自由空間における大気揺らぎの周波数よりも大きい周波数に設定することができる。
 以上、説明したように、本実施形態の空間光送信装置100によれば、ビーコン光の安定な伝送を低コストで実現することが可能であり、安定な追尾を維持することができる。
 〔第2の実施形態〕
 次に、本発明の第2の実施形態について説明する。図2は、本発明の第2の実施形態に係る空間光通信システム1000の構成を示すブロック図である。空間光通信システム1000は空間光送信装置1100と空間光受信装置1200とを有し、自由空間20を介してレーザ光の伝送を行う。空間光通信システム1000は、典型的には、空間光送信装置1100が地上に設置され、空間光受信装置1200が人工衛星に搭載された構成である。ここで自由空間20には大気が含まれ、大気圏外および真空領域も含まれる。大気の領域には大気ゆらぎ21が存在している。
 空間光送信装置1100は、レーザ光源1110、多重器1120、光導波媒体1130、および送信側望遠鏡1140を備える。ここで、レーザ光源1110がレーザ光送出手段を構成し、多重器1120、光導波媒体1130、および送信側望遠鏡1140が波面制御光送出手段を構成する。
 レーザ光源1110は、それぞれ異なる光周波数のレーザ光を出力する複数(m個)のレーザ光源を含む。レーザ光源1110が出力するレーザ光は、それぞれシングルモードファイバ(Single Mode Fiber:SMF)を通って多重器1120に入力される。多重器1120は入力されたm個のレーザ光を多重し、光導波媒体1130に送出する。光導波媒体1130を伝搬した多重されたレーザ光は、送信側望遠鏡1140から自由空間20にビーコン光22として送出される。ビーコン光22を構成する異なる波面を有するレーザ光(波面制御光)は、大気揺らぎ21を通過する過程において、それぞれ異なる波面の乱れを受ける。
 なお、空間光送信装置1100は図2に示すように、レーザ光源1110と多重器1120との間のシングルモードファイバ(SMF)で接続される区間に、光増幅器1150を含む構成としてもよい。
 空間光受信装置1200は、集光手段としての受信側望遠鏡1210、光帯域通過手段としての狭帯域バンドパスフィルタ(BPF)1220、受光手段としての受光器1230を備える。
 受信側望遠鏡1210は、自由空間20を伝搬した後の波面制御光である受信レーザ光を含む受信光を集光する。狭帯域バンドパスフィルタ(BPF)1220は、受信光のうち受信レーザ光を通過させる。そして受光器1230は、受信レーザ光を光電変換する。受光器1230として、電荷結合素子(Charge Coupled Device:CCD)に代表されるアレイ型光検出器、あるいは4分割(Quadrant Detector:QD)センサ等を用いることができる。
 次に、本実施形態による空間光通信システム1000の動作について説明する。
 上述したように、空間光送信装置1100は、異なる波面を有する複数のレーザ光(波面制御光)からなるビーコン光22を自由空間20に送出する。空間光受信装置1200に到達したビーコン光22(受信レーザ光)は、受信側望遠鏡1210によって集光される。そして、狭帯域バンドパスフィルタ(BPF)1220により背景光の光スペクトル成分を除去された後に、受光器1230において光電変換される。
 なお、電気フィルタ回路1240を用いることにより、光電変換によって得られた受信電気信号のあらかじめ決められた周波数成分を抽出することができる。また、受光器1230において、受信側望遠鏡1210の追尾誤差を検出し、誤差信号を生成する構成としてもよい。
 次に、本実施形態による空間光通信システム1000の作用効果について図3を用いて説明する。図3は、本実施形態による空間光通信システム1000を構成する空間光送信装置と空間光受信装置との間を伝搬するビーコン光22を模式的に示した図である。ビーコン光22は、同図に示すように、空間光送信装置1100が備える送信側望遠鏡1140と空間光受信装置1200が備える受信側望遠鏡1210との間を、自由空間を介して伝搬する。
 送信側望遠鏡1140から送信されるビーコン光22が、光周波数が異なる第一のレーザ光22-1と第二のレーザ光22-2を含む場合について説明する。第一のレーザ光22-1と第二のレーザ光22-2は直交するモードで空間多重されて光導波媒体1130を伝搬する。そして、互いに異なる波面で送信側望遠鏡1140から自由空間に送出される。
 この二種類のレーザ光がそれぞれ単独で自由空間を伝搬するとした場合、受信側望遠鏡1210の開口面における光強度分布の模式的な等高線図の例を、同図中のA図およびB図に示す。二種の異なる波面を有するレーザ光22-1、22-2は、異なる大気揺らぎを受け、異なる強度分布となる。図中に示した例では、第一のレーザ光22-1は図中のA図に示すように、受信側望遠鏡1210の中心近傍に強度分布の極大値が存在している。それに対して、第二のレーザ光22-2は図中のB図に示すように、受信側望遠鏡1210の中心近傍は強度分布の谷になっており、中心近傍ではレーザ光の強度が弱くなっている。
 この二種のレーザ光の強度分布に関して、仮にそれぞれの光強度を単純に加算することが可能であるとすると、統計多重効果により受信側望遠鏡の開口面に入射する光強度の変動は緩和される。その結果、受光強度の安定化をもたらすと考えられる。しかし、本実施形態による空間光受信装置1200は狭帯域バンドパスフィルタ(BPF)1220を備え、背景光の光スペクトル成分を除去する構成としている。そのため、狭帯域バンドパスフィルタ(BPF)1220を通過する二種のレーザ光の光周波数を、狭帯域バンドパスフィルタ(BPF)1220の通過帯域幅より近接させる必要がある。したがって、この二種のレーザ光の干渉による影響を考慮する必要がある。
 ここで、第一のレーザ光22-1と第二のレーザ光22-2の光周波数の差を、以下の二通りの設定とした場合について検討する。第一の設定は、二種のレーザ光の光周波数差がゼロの場合である。第二の設定は、光周波数差が受光器1230の帯域内に含まれ、かつ、大気揺らぎの周波数成分よりも十分に高い周波数とする場合である。
 第一の設定とした場合、二種のレーザ光の間でランダムな干渉が発生するため、強度分布は図3中のA図およびB図で示した強度分布を加算した強度分布とはならない。すなわち、強い大気揺らぎにより大きな位相分布が付与されると、二種のレーザ光の干渉によりビーコン光22の受光強度に新たな変動が発生する。
 また第二の設定とした場合にも、光周波数の異なる二種のレーザ光の間で干渉によるビートが発生する。第一のレーザ光22-1の光周波数をω、第二のレーザ光22-2の光周波数をω+Δωとすると、発生するビートの周波数はΔωとなる。このとき、複数のレーザ光の光周波数の差である差分周波数Δωが、自由空間における大気揺らぎの周波数よりも大きい構成とすることができる。ここで大気揺らぎの周波数は、具体的には例えば1~2キロヘルツ(kHz)である。このような構成とすることにより、差分周波数Δωを追尾制御系の周波数帯域外とすることができ、二種の光周波数のレーザ光の干渉による強度分布を緩和することができる。その結果、空間光受信装置1200における受光強度の安定化を図ることが可能となる。
 次に、上述した本実施形態による空間光通信システム1000の効果について、さらに詳細に説明する。
 図4A、4B、および4Cに、光周波数が異なる二種のレーザ光の受光強度の時間変化を示す。図4Aは各光強度を単純に加算した場合、図4Bは差分周波数がゼロである場合、そして図4Cは差分周波数がゼロでない場合をそれぞれ示す。
 第一のレーザ光22-1の波面を第一の波面(WF#1)とし、その電界の時間変化をE(t)とする。また、第二のレーザ光22-2の波面を第二の波面(WF#2)とし、その電界の時間変化をE(t)とする。E(t)およびE(t)は下記のように表わされる。
Figure JPOXMLDOC01-appb-I000002

Figure JPOXMLDOC01-appb-I000003

 ここで、S(t)はレーザ光の強度を表わし、ここでは時間に対して一定であると仮定する。ωは第一のレーザ光の光周波数であり、例えばω/2π≒200テラヘルツ(THz)である。Δωは、第一のレーザ光と第二のレーザ光の光周波数の差(差分周波数)である。
 これらの二種のレーザ光は送信側望遠鏡1140から自由空間に送出され、大気揺らぎ21を通過して受信側望遠鏡1210の開口面に到達する。このとき、受信側望遠鏡1210の開口面に到達する二種のレーザ光は大気揺らぎにより異なる乱れを受け、電界の時間変化はそれぞれ下記のE1'(t)およびE2'(t)となる。
Figure JPOXMLDOC01-appb-I000004

Figure JPOXMLDOC01-appb-I000005

 ここで、式(4)および(5)によるE1'(t)およびE2'(t)は、受信側望遠鏡1210の開口面の1点における電界強度の時間変動を表わしている。しかし同時に、近似的には受信側望遠鏡1210の開口面に照射されるレーザ光全体の電界強度と見なすことができる。その理由は、受信側望遠鏡1210は大気揺らぎ21から十分遠方にあるので、開口面の直径はレーザ光の空間コヒーレンス半径と比べて十分に小さいと見なせるからである。また、式(4)および(5)中、A(t)は第一の波面(WF#1)のレーザ光が受信側望遠鏡1210に到達する割合であり、B(t)は、同様に、第二の波面(WF#2)のレーザ光が受信側望遠鏡1210に到達する割合である。
 図4Aに、このときのE1'(t)およびE2'(t)の強度の時間変化を模式的に示す。2波のレーザ光には、それぞれ独立のタイミングで減衰(フェード)が発生している。この2波の波長が十分に離れていてインコヒーレントな加算が可能な場合は、統計多重効果により同図中の点線で示すようにフェードが緩和され、安定なレーザ光の受信が可能になると期待できる。
 次に、差分周波数がゼロの場合(Δω=0)について検討する。この場合、受信側望遠鏡1210に入射するレーザ光の電界E(t)は、以下のように表わすことができる。
Figure JPOXMLDOC01-appb-I000006
 ここで、S(t)を一定と見なし、時間tの表記を省略して書き直すと下式のようになる。なお、ここではS(t)=1とした。
Figure JPOXMLDOC01-appb-I000007
ここでωはレーザ光の光周波数である。
 受光器1230の光電変換面における干渉信号Sの振幅は、次のように表わされる。
Figure JPOXMLDOC01-appb-I000008
 式(8)に含まれるA、B、φ、φは、それぞれ時間軸方向でランダムに変化するため、干渉信号Sの強度は、√2・(±A±B)の範囲でランダムに変化する。
 図4Bに、このときのE1'(t)およびE2'(t)の時間変化を模式的に示す。E1'(t)およびE2'(t)は大気揺らぎ21により、それぞれ独立にランダムな強度変調A(t)、B(t)と同時にランダムな位相変調を受ける。その結果、二種のレーザ光の電界の和E1'(t)+E2'(t)の強度は、E1'(t)およびE2'(t)の位相状態に依存して図4B中の実線のようにランダムに変動する。そのため、レーザ光を安定に受光することは困難である。
 次に、差分周波数がゼロでない場合(Δω≠0)について説明する。図4Cに、この場合におけるE1'(t)およびE2'(t)の時間変化を模式的に示す。このとき、二種のレーザ光の電界の和E(t)は以下のように表わすことができる。
Figure JPOXMLDOC01-appb-I000009
 式(7)と同様に、S(t)を一定と見なして、その記載を省略すると下式のようになる。

Figure JPOXMLDOC01-appb-I000010
 受光器1230の光電変換面における干渉信号Sの振幅は、次のように表わされる。
Figure JPOXMLDOC01-appb-I000011
 ここで、差分周波数Δωを大気揺らぎの周波数成分よりも十分に高周波とする。そうすると、大気揺らぎに対して十分に短い時間の範囲においては、A、B、φ、およびφは定数と見なすことができる。したがって、干渉信号SはΔωの周期で以下に示すように変化する。
Figure JPOXMLDOC01-appb-I000012
 このとき、干渉による強度変動は大気揺らぎよりも十分に高速な周波数Δωで変動するので、電気フィルタ回路1240によって干渉信号SからΔω成分を除去し、大気揺らぎの周波数成分だけを抽出することができる。これにより、E1'(t)とE2'(t)の和に相当する信号強度を安定して取得することが可能となる。
 次に、本実施形態による空間光通信システム1000において、受信側望遠鏡1210に入射するビーコン光22の電界強度を計算により求めた結果について説明する。ここでは、大気伝搬に関する数値シミュレーションにより求めた上述のA、B、φA、およびφBのデータ値を用いた。
 図5に、差分周波数をゼロとした場合(Δω=0)における、受信側望遠鏡1210に入射するビーコン光22の電界強度の計算結果を示す。同図中、破線は、異なるモードで送信された二種のレーザ光の電界強度E1'(t)およびE2'(t)をそれぞれ示す。実線は、それらの重ね合わせであるS=E1'(t)+E2'(t)の受光強度の変化を示す。
 同図から、E1'(t)およびE2'(t)は、相互にランダムなタイミングでフェードしていることがわかる。一方、受光強度Sは単純な加算とはならず、E1'(t)およびE2'(t)とは異なるタイミングで新たなフェードが発生している。このフェードの時間幅は、E1'(t)およびE2'(t)において発生するフェードと同等と見なすことができる。その理由は、受光強度Sにおけるフェードの発生メカニズムが、もとになっているビーコン光において発生しているフェードの発生メカニズムと原理的に同一なためである。
 以上のことから、二種のレーザ光を差分周波数がゼロ(Δω=0)の条件で用いる場合には、安定なビーコン光の伝送は不可能であることがわかる。
 図6に、差分周波数がゼロでないとした場合(Δω≠0)における、受信側望遠鏡1210に入射するレーザ光の電界強度を示す。実線は、電界強度がE1'(t)およびE2'(t)である二種のレーザ光を重ね合わせた受光信号S=E1'(t)+E2'(t)の強度の時間変化を示す。受光信号Sは高周波数Δωでフェードを繰り返しているが、実線で示す包絡線には深いフェードは発生していない。このことは、本実施形態によるビーコン光の伝送方式を用いることによって、安定なビーコン光の伝送が実現可能となることを示している。
 以上、説明したように、本実施形態の空間光通信システム1000によれば、ビーコン光の安定な伝送を低コストで実現することが可能であり、安定な追尾を維持することができる。
 〔第3の実施形態〕
 次に、本発明の第3の実施形態について説明する。図7に、本発明の第3の実施形態に係る空間光通信システム2000の構成を示す。空間光通信システム2000は空間光送信装置2100と空間光受信装置1200とを有し、自由空間20を介してビーコン光の伝送を行う。空間光受信装置1200は、第2の実施形態によるものと同様である。
 空間光送信装置2100は、単一レーザ光源2110、光分岐手段としての光分岐器2120、および光周波数偏移手段としての光周波数シフタ2130を備え、これらがレーザ光送出手段を構成する。空間光送信装置2100はさらに、モード合成手段としてのモード多重器2140と数モードファイバ(Few Mode Fiber:FMF)2150、および出射手段としての送信側望遠鏡2160を備え、これらが波面制御光送出手段を構成する。
 光周波数シフタ2130とモード多重器2140はシングルモードファイバ(SMF)によって接続することができる。なお、この区間に、入力されたレーザ光を増幅する光増幅器2170を含む構成としてもよい。
 単一レーザ光源2110は、単一波長の単一レーザ光を送出する。光分岐器2120は単一レーザ光を分岐し、複数(m本)の分岐レーザ光を生成する。
 光周波数シフタ2130は、複数の分岐レーザ光の光周波数をそれぞれ異なる周波数だけ偏移(シフト)させる。例えば、入力された分岐レーザ光の光周波数を、あらかじめ定められた光周波数Δω/2πだけシフトさせる。光周波数シフタ2130として、例えば、音響光学(Acousto-Optic:AO)効果に基づくAO周波数シフタを用いることができる。
 モード多重器2140と多モード導波手段としての数モードファイバ(FMF)2150によって、複数のレーザ光をそれぞれ直交する異なるモードに変換して合成した合成レーザ光を生成することができる。すなわち、モード多重器2140は、m本のシングルモードファイバから入力されたレーザ光を、直交する空間モードに多重して1本の数モードファイバ(FMF)2150に出力する。数モードファイバ(FMF)2150は、直交したモードで多重されたm本のレーザ光を低損失で伝送することが可能である。モード多重器2140としては例えば、多面光変換に基づく空間モード多重素子を用いることができる。
 送信側望遠鏡2160は、合成レーザ光をビーコン光22として自由空間20に出射する。
 次に、図8Aおよび図8Bを用いて、周波数シフタ2130の動作について説明する。
 単一レーザ光源2110から出力されるレーザ光は、図8Aに示すように、単一の光角周波数ωで発振している。光分岐器2120は、この単一レーザ光をm本に分岐する。周波数シフタ2130は、分岐された分岐レーザ光のうち1本には周波数シフトを施さず、残りの(m-1)本の分岐レーザ光に対して角周波数差Δω、2Δω、3Δω、・・・、(m-1)Δωの周波数シフトを施す(図8B)。
 光増幅器2170は、周波数シフトされたm本の分岐レーザ光をそれぞれ、自由空間20を伝搬するのに必要な光強度に増幅する。モード多重器2140は、増幅されたm本のレーザ光を、数モードファイバ(FMF)2150の直交する固有モードにそれぞれ変換して多重化する。送信側望遠鏡2160は、多重化されたレーザ光を自由空間20に送出する。送信側望遠鏡2160から送出されたレーザ光は、数モードファイバ(FMF)2150の固有モードに対応した相互に異なる波面を持つ光ビーム22-1~22-mとしてそれぞれ自由空間20を伝搬する。
 なお、図8A、8Bでは、各レーザ光を角周波数差Δωの等間隔で配置した構成を示したが、これに限らず、各レーザ光を不等間隔の角周波数差で配置した構成としてもよい。
 図9に、モード合成手段を構成するモード多重器2140で多重されるレーザ光の角周波数と、数モードファイバ(FMF)2150の固有モードとの対応関係を模式的に示す。同図の横軸は、基準とするレーザ光の角周波数との角周波数差であり、縦軸は数モードファイバ(FMF)2150の固有モードを概念的に表記したモード番号である。モード番号は、具体的にはLPモード(Linearly Polarized Mode)に対応させることができる。
 モード多重器2140は、一の光周波数のレーザ光を、他の光周波数のレーザ光のモードと異なる一のモードにだけ変換する。すなわち、レーザ光は図9中の黒丸で示す組合せで数モードファイバ(FMF)2150に多重され、光周波数と固有モードが重なることが無いように配置される。
 上述した説明では、空間光送信装置2100は周波数シフタ2130を備えることとしたが、周波数シフタ2130に替えて位相変調器(位相変調手段)を用いることとしてもよい。すなわち、空間光送信装置2100はレーザ光送出手段として、単一レーザ光を送出するレーザ光源、光分岐器(光分岐手段)、および位相変調器(位相変調手段)を備えた構成とすることができる。ここで光分岐器は、単一レーザ光を分岐し複数の分岐レーザ光を生成する。位相変調器は、複数の分岐レーザ光にそれぞれ異なる周波数で位相変調を施す。
 位相変調器(位相変調手段)は、自由空間における大気揺らぎの周波数よりも大きい周波数で、分岐レーザ光の一波長に相当する位相量以上の範囲で位相変調を施す構成とすることができる。このような構成とすることにより、レーザ光の干渉状態を可変させることが可能である。具体的には例えば、第1のレーザ光に対して、第2のレーザ光の位相を1メガヘルツ(MHz)で±π(=0~2π)の範囲で位相変調し、第3のレーザ光の位相を2メガヘルツ(MHz)で±π(=0~2π)の範囲で位相変調する。なお、位相変調は2πの範囲で十分な分解能が得られればよく、階段状(不連続)の位相変調であっても連続的な位相変調であってもよい。
 これにより、上述した周波数シフタ2130を用いた場合と同様の効果を得ることができる。この場合、モード多重器2140(モード合成手段)は、一の光周波数のレーザ光を、位相差の変化の周波数が異なるレーザ光のモードと異なる一のモードにだけ変換する構成とすることができる。
 次に、本実施形態による空間光通信システム2000が備える空間光受信装置1200の動作について説明する。
 空間光送信装置2100から送出されたm本のレーザ光は、自由空間20において大気揺らぎ21の影響を受けた後に、受信側望遠鏡1210の開口面に到達する。このm本のレーザ光は受信側望遠鏡1210で集光され、狭帯域バンドパスフィルタ(BPF)1220によって背景光を除去された後に、受光器1230において光電変換される。
 図8Cに、狭帯域バンドパスフィルタ(BPF)1220の透過特性を模式的に示す。同図中、複数の縦線は光スペクトルの分布を示し、台形状の実線は狭帯域バンドパスフィルタ(BPF)1220の透過帯域を示す。光スペクトルには、m本のレーザ光の他に広帯域の背景光が雑音として重畳されている。レーザ光の光強度にはそれぞれ、大気揺らぎ21の影響により、ばらつきが発生している。
 狭帯域バンドパスフィルタ(BPF)1220の透過帯域は、m本のレーザ光のスペクトルを透過させ、かつ、レーザ光の帯域以外の背景光による雑音を除去するように設定されている。例えば、複数のレーザ光の周波数差を10メガヘルツ(Δω/2π=10MHz)とし、複数のレーザ光の本数mを6本(m=6)とする。この場合、狭帯域バンドパスフィルタ(BPF)1220の透過帯域の半値幅は、2×m×Δω/2π=120メガヘルツ(MHz)以上とすることが望ましい。
 上述の背景技術において説明したように、ドップラーシフトに対応するためには、18GHz程度の通過帯域幅を有する光バンドパスフィルタ(BPF)を用いる必要がある。この通過帯域幅に対して、ここで求めたレーザ光の帯域幅(120MHz)は十分に小さいので、ドップラーシフトにも対応可能である。
 空間光送信装置2100から送出されたm本のレーザ光は、大気揺らぎ21の影響により、それぞれ異なる光強度と位相の時間変動特性を有する状態で、受光器1230において一括して光電変換される。このとき、m本のレーザ光の間で干渉が発生するが、この場合、m(m-1)/2 通りの組み合わせが可能である。干渉信号の周波数成分は、式(11)の第2項からsin(kΔωt)、(k=1,2,・・・m-1)となる。
 したがって、m本のレーザ光を用いる場合でも、図6を用いて説明した二種のレーザ光による場合と同様に、差分周波数Δωを大気揺らぎの周波数成分より十分に高く設定すればよい。これにより、電気フィルタ回路1240によって干渉信号からΔω成分を除去し、大気揺らぎの周波数成分だけを抽出することができる。
 図10に、周波数シフタ2130によって付与される周波数差の成分と、大気揺らぎの周波数成分との関係を模式的に示す。横軸は周波数であり、縦軸は各信号の強度である。
 各レーザ光の周波数オフセット幅は、Δω/2π~(m-1)Δω/2πの範囲に配置される。大気揺らぎの影響を回避して安定な追尾を実現するためには、差分周波数の最小値であるΔω/2πが、自由空間における大気揺らぎが有する周波数成分の上限値であるωa/2πよりも十分に高い周波数であることが必要となる。その理由は、大気揺らぎが十分に静止しているとみなせる時間範囲において、少なくとも1周期以上の干渉による振幅の変動が発生する必要があるからである。
 具体的には、大気揺らぎの周波数成分は1~2キロヘルツ(kHz)程度であるので、例えば、Δω/2π=10メガヘルツ(MHz)とすることができる。これにより、大気揺らぎの状態が一定と見なせる期間に、二種のレーザ光の間で約5000回程度の干渉による強度の強弱が生じることになる。
 次に、本実施形態による空間光通信方法について説明する。
 本実施形態の空間光通信方法においては、まず、第1の通信局において、光周波数および位相差の時間変化のいずれかが異なる互いに干渉可能な複数のレーザ光を生成する。そして、この複数のレーザ光を、それぞれ異なる波面とした複数の波面制御光を自由空間に送出する。
 続いて、第1の通信局と通信を行う第2の通信局において、自由空間を伝搬した後の波面制御光である受信レーザ光を含む受信光を集光する。そして、この受信光から受信レーザ光を取り出し、受信レーザ光を光電変換する。
 ここで、複数の波面制御光からなるレーザ光を空間光通信におけるビーコン光として用いることができる。
 以上、説明したように、本実施形態の空間光通信システム2000および空間光通信方法によれば、ビーコン光の安定な伝送を低コストで実現することが可能であり、安定な追尾を維持することができる。すなわち、大気揺らぎの影響を回避することができ、地上から人工衛星へビーコン光を安定して伝送することが可能になる。
 本実施形態による空間光通信システム2000を、地上-人工衛星間の空間光通信におけるアップリンク・ビーコン光の伝送に適用することができる。これにより、大気揺らぎによってビーコン光がフェードし、人工衛星が地上局を追尾する精度が劣化する、という問題を解決することができる。その結果、安定な追尾制御による、安定な空間光通信システムを実現することが可能になる。
 〔第4の実施形態〕
 次に、本発明の第4の実施形態について説明する。図11に、本発明の第4の実施形態に係る空間光通信システム3000の構成を示す。空間光通信システム3000は空間光送信装置3100と空間光受信装置1200とを有し、自由空間20を介してビーコン光の伝送を行う。空間光受信装置1200は、第2の実施形態によるものと同様である。
 空間光送信装置3100は、波面制御光送出手段の構成が第3の実施形態による空間光送信装置2100の構成と異なる。すなわち、本実施形態による空間光送信装置3100は、複数のレーザ光を、単一光モードでそれぞれ導波する複数の光導波手段と、複数の光導波手段を伝搬した複数のレーザ光を自由空間に出射する出射手段とを含む波面制御光送出手段を備える。
 具体的には、本実施形態による空間光送信装置3100は、モード多重器2140と数モードファイバ(FMF)2150に替えて、バンドルファイバ3150とファンアウト部3140を備えた構成とすることができる。ここで、バンドルファイバ3150はm本のシングルモードファイバ(SMF)からなる。また、ファンアウト部3140はバンドルファイバを個々のシングルモードファイバ(SMF)に分岐する。
 m本のレーザ光は、バンドルファイバ3150に含まれるm本のシングルモードファイバ(SMF)を介して、送信側望遠鏡2160から自由空間20に送出される。ここで、送信側望遠鏡2160の内部においてシングルモードファイバ(SMF)の空間的な相対位置が異なるので、m本のレーザ光はそれぞれ異なる波面を有する状態で自由空間20に送出される。
 空間光送信装置3100から送出された異なる波面を有する複数のレーザ光からなるビーコン光22は、第3の実施形態による空間光通信システム2000と同様に、自由空間20を伝搬した後に空間光受信装置1200によって受信される。
 本実施形態の空間光通信システム3000によれば、ビーコン光の安定な伝送を低コストで実現することが可能であり、安定な追尾を維持することができる。
 本実施形態による空間光通信システム3000を、地上-人工衛星間の空間光通信におけるアップリンク・ビーコン光の伝送に適用することができる。これにより、大気揺らぎによってビーコン光がフェードし、人工衛星が地上局を追尾する精度が劣化する、という問題を解決することができる。その結果、安定な追尾制御による、安定な空間光通信システムを実現することが可能になる。
 〔第5の実施形態〕
 次に、本発明の第5の実施形態について説明する。図12は、本発明の第5の実施形態に係る空間光通信システム4000の構成を示すブロック図である。空間光通信システム4000は空間光送信装置4100と空間光受信装置4200とを有し、自由空間20を介してビーコン光22の伝送を行う。
 本実施形態による空間光通信システム4000は、上述した第3の実施形態による空間光通信システム2000に、新たな機能を有する構成を加えたものである。
 空間光送信装置4100は、単一レーザ光源2110、光分岐器2120、光周波数シフタ2130、モード多重器2140、光導波媒体1130、および送信側望遠鏡2160を備える。ここまでの構成は、第3の実施形態による空間光送信装置2100と同様である。
 空間光送信装置4100はさらに、送信側光分岐器4110、モード分離手段としてのモード分離器4120、モニタ受光手段としてのモニタ受光器4130、制御手段としての制御部4140、および光強度調節手段としての可変光増幅器4150を備える。
 空間光受信装置4200は、受信側望遠鏡1210、狭帯域バンドパスフィルタ(BPF)1220、受光器1230、および電気フィルタ回路1240を備える。ここまでの構成は、第2の実施形態による空間光受信装置1200と同様である。
 空間光受信装置4200はさらに、モニタ用レーザ光を送出する受信側レーザ光源4210と受信側光分岐器4220を備える。ここで、受信側光分岐器4220と受信側望遠鏡1210が受信側出射手段を構成し、モニタ用レーザ光31を自由空間20に出射する。受信側光分岐器4220は、受信側望遠鏡1210から狭帯域バンドパスフィルタ(BPF)1220に向かうレーザ光と、受信側レーザ光源4210から受信側望遠鏡1210へ向かうモニタ用レーザ光を分岐合流させる機能を有する。なお、受信側光分岐器4220には、空間光送信装置4100が備える送信側光分岐器4110と同様のデバイスを用いることができる。
 一方、送信側光分岐器4110は、自由空間20を伝搬するビーコン光22に対応する、モード多重器2140から送信側望遠鏡2160に向かうレーザ光と、送信側望遠鏡2160で集光されたモニタ用レーザ光とを分岐合流させる機能を有する。そして、送信側光分岐器4110と送信側望遠鏡2160が送信側集光手段を構成し、自由空間20を伝搬した後のモニタ用レーザ光である受信モニタ用レーザ光を集光する。
 送信側光分岐器4110として、波長分離フィルタ、サーキュレータ、および偏波分離素子などを用いることができる。送信側光分岐器4110は、光導波媒体1130の途中に挿入される。具体的には、光導波媒体1130を構成する数モードファイバ(FMF)の途中、または数モードファイバ(FMF)と送信側望遠鏡2160との間の光学系に、送信側光分岐器4110が挿入された構成とすることができる。なお、光導波媒体1130は、伝搬する複数の直交するモードのレーザ光の間においてクロストークの発生が少ないことが望ましい。
 モード分離器4120は、受信モニタ用レーザ光を、それぞれ直交する異なるモードに分離して複数のモニタ用モード光を生成する。すなわち、モード分離器4120は送信側望遠鏡2160で集光されて光導波媒体1130を介して入射した受信モニタ用レーザ光を、直交するm個の伝搬モードに分離し、m本のシングルモードファイバ(SMF)にそれぞれ結合させる。
 モニタ受光器4130は、モード分離された複数(m本)のモニタ用モード光をそれぞれ光電変換してモニタ信号を生成する。制御部4140は、このモニタ信号に基づいて可変光増幅器4150を制御する。具体的には、制御部4140はモニタ受光器4130で受光されたm本のレーザ光の強度をモニタし、あらかじめ定められた手順に従って制御信号32を生成する。そして、可変光増幅器4150は、光周波数シフタ2130が送出する複数のレーザ光の強度を、制御信号32に基づいてそれぞれ変化させる。
 次に、本実施形態による空間光通信システム4000の動作について説明する。
 本実施形態による空間光通信システム4000においては、ダウンリンク方向に伝搬されるモニタ用レーザ光31を用いることにより、アップリンク方向に伝搬されるレーザ光であるビーコン光22の伝搬特性を安定化させることができる。
 モニタ用レーザ光31とビーコン光22は自由空間20を共有し、同時に、双方向に伝搬する。このとき、大気揺らぎ21中のレーザ光の伝搬は近似的に可逆であると見なすことができる。さらに、大気揺らぎ21の時定数に比べて、レーザ光が大気中を伝搬する時間は十分に短いので、レーザ光の伝搬に対して大気は静止していると見なすことができる。具体的には、大気(対流圏と成層圏)の厚さを50キロメートル(km)とすると、天頂角が0度の場合、大気中をレーザ光が伝搬する時間は約0.17ミリ秒(msec)程度である。したがって、大気揺らぎの周波数成分を1キロヘルツ(kHz)、すなわち時定数を1ミリ秒(msec)とすると、レーザ光の伝搬時間は大気揺らぎ21の時定数に比べて十分に短いことがわかる。
 大気揺らぎの影響を受けることにより、ダウンリンクのモニタ用レーザ光31の波面は乱される。自由空間20を伝搬した後のモニタ用レーザ光である受信モニタ用レーザ光を、送信側望遠鏡2160で集光し、光導波媒体1130と送信側光分岐器4110を介してモード分離器4120に導入する。そしてモード分離器4120において直交するモードに分離し、モニタ受光器4130でそれぞれの強度を測定する。これにより、大気揺らぎ21を含む自由空間20の伝搬特性を検出することができる。具体的には、モード分離された複数のモニタ用モード光をモニタ受光器4130で光電変換してそれぞれの強度を求めることにより、モニタ用レーザ光31のm番目のモードへの強度分配係数を得ることができる。
 ここで、自由空間20の伝搬特性は可逆的であるとすると、ここで検出した強度分配係数は、アップリンクのビーコン光22を構成するmモードのレーザ光22-1~22-mの伝搬係数と等しいと見なすことができる。すなわち、式(12)中のA′、B′に相当する係数を、モニタ受光器4130の光強度モニタ値から推定することが可能になる。
 制御部4140はモニタ受光器4130の光強度モニタ値に基づいて、送信するレーザ光の強度を制御するためのm本の制御信号32をあらかじめ決められた手順に従って生成する。
 このように、光周波数シフタ2130が送出するm本のレーザ光は可変光増幅器4150によって出力光強度を調整される。その後、モード多重器2140で多重され、送信側望遠鏡2160からビーコン光22として自由空間20に送出される。
 制御部4140における制御方法の一例として、モニタ受光器4130から取得した光強度モニタ値の上位2個に対応するモードのレーザ光を選択する手法を用いることができる。具体的には、制御部4140は入力されるダウンリンクのm本の光強度モニタ値から、光強度の強い順に上位の2本のモードを選択し、この2本のモードを指定する制御信号32を可変光増幅器4150に送出する。可変光増幅器4150は、指定された2本以外の(m-2)本のモードに対応するレーザ光の出力強度を十分に低下させる。
 ここで、モニタ受光器4130は光の位相は検出できないものとする。したがって、受信側望遠鏡1210に到達するレーザ光の位相差を制御することはできない。そのため、ビーコン光22を構成するレーザ光の位相は、大気揺らぎ20によりランダムに変化する。この場合、3本以上のモード数でアップリンクのレーザ光(ビーコン光22)を送信すると、複数の組合せが存在することにより干渉が弱め合う条件が確率的に発生する。それに対して、送信するレーザ光を上述したように2本に制限することにより、空間光受信装置4200が備える受光器1230で発生する干渉を安定化させることができる。
 次に、本実施形態による空間光通信方法について説明する。
 本実施形態による空間光通信方法では、まず、第1の通信局と通信を行う第2の通信局において、モニタ用レーザ光を生成し、モニタ用レーザ光を自由空間に出射する。そして、第1の通信局において、自由空間を伝搬した後のモニタ用レーザ光である受信モニタ用レーザ光を集光し、受信モニタ用レーザ光を、それぞれ直交する異なるモードに分離して複数のモニタ用モード光を生成する。この複数のモニタ用モード光をそれぞれ光電変換してモニタ信号を生成し、このモニタ信号に基づいて、複数のレーザ光の強度をそれぞれ変化させる。
 このとき、第1の通信局において、複数のモニタ用モード光からモニタ信号の強度が大きい二種のモニタ用モード光を選択する構成としてもよい。そして、複数のレーザ光のうち、この二種のモニタ用モード光に対応する二種のレーザ光以外のレーザ光の強度を減衰させる。それとともに、この二種のレーザ光の強度を、第2の通信局における受信レーザ光の強度の時間変化が小さくなるように、それぞれ制御する構成とすることができる。
 以上、説明したように、本実施形態の空間光通信システム4000および空間光通信方法によれば、ビーコン光の安定な伝送を低コストで実現することが可能であり、安定な追尾を維持することができる。さらに、ダウンリンクのレーザ光の伝搬特性を参照して、アップリンクのレーザ光のモード毎の強度比を調整することが可能になるので、空間光受信装置4200に到達するビーコン光の強度の安定化を図ることができる。
 〔第6の実施形態〕
 次に、本発明の第6の実施形態について説明する。図13に、本発明の第6の実施形態に係る空間光通信システム5000の構成を示す。空間光通信システム5000は空間光送信装置5100と空間光受信装置5200とを有し、自由空間20を介して信号レーザ光30の伝送を行う。
 本実施形態による空間光通信システム5000は、上述した第5の実施形態による空間光通信システム4000に、さらにアップリンクの信号通信機能を有する構成を加えたものである。
 空間光送信装置5100は、信号源5110、信号多重部5120、送信側高域通過手段としての送信側ハイパスフィルタ(High Pass Filter:HPF)5130、および光変調手段としての光変調器5140をさらに備える。ここで、信号源5110と信号多重部5120が情報信号生成手段を構成し、送信する情報信号を生成する。その他の構成は第5の実施形態による空間光送信装置4100と同様であるので、それらの説明は省略する。
 空間光受信装置5200は、受信手段としての信号受光器5210、受信側高域通過手段としての受信側ハイパスフィルタ(HPF)5220、および情報信号再生手段としての信号再生部5230をさらに備える。その他の構成は第5の実施形態による空間光受信装置4200と同様であるので、それらの説明は省略する。
 空間光送信装置5100が備える信号源5110は、アップリンクで送信する信号列を生成する。信号多重部5120は、あらかじめ決められたブロック長を単位として、信号源5110で生成された信号列を2倍に多重した信号列とする。送信側ハイパスフィルタ(HPF)5130は多重した信号のスペクトル成分に含まれる低域成分を遮断し、高周波側成分だけを通過させる。光変調器5140は、単一レーザ光源2110から出力されたレーザ光を信号列に従って変調する。
 空間光受信装置5200が備える信号受光器5210は、空間光送信装置5100で変調されたレーザ光を受光し光電変換する。受信側ハイパスフィルタ(HPF)5220は光電変換された信号のスペクトルから低域成分を遮断し、高周波側成分のみを通過させる。信号再生部5230は受信側ハイパスフィルタ(HPF)5220を通過した信号から受信信号を再生する。
 次に、本実施形態による空間光通信システム5000の動作について、図14を用いて説明する。図14は、本実施形態の空間光通信システム5000における信号列および信号スペクトルを模式的に示した図である。
 図14のA欄に示すように、信号源5110は、あらかじめ定められたブロックサイズの信号列を生成する。同図では、光周波数シフタ2130が与えるオフセット周波数をΔω/2πとし、ブロック長の時間を2π/Δωとした場合を示す。
 信号多重部5120は、図14のB欄に示すように、この信号列を2回繰り返して多重する。このときのスペクトルは同図に示すように、信号の長周期成分を反映して低域成分を含んだスペクトルとなる。
 送信側ハイパスフィルタ(HPF)5130は、図14のC欄に示すように、信号のスペクトルから低域成分を除去する。同図中の矩形状の破線は、送信側ハイパスフィルタ(HPF)5130の透過特性を示す。このときのカットオフ周波数fcは、(m-1)Δω/2π<fcの関係を満たしている。この関係を満たす必要があるのは、周波数オフセットを与えたアップリンクの信号レーザ光によって受信側で発生する周波数Δωのビートに対して、信号源5110による信号のスペクトル成分が影響を与えないようにするためである。
 光変調器5140で変調された信号レーザ光は、m本に分岐され光周波数オフセット処理を施された後に、送信側望遠鏡2160から自由空間20に送出される。
 空間光送信装置5100から送出された信号レーザ光30は、大気揺らぎ21の影響を受けた後に空間光受信装置5200に到達する。信号レーザ光30は受信側望遠鏡1210の開口面で干渉し、Δωの周期で強度変動が発生する。この強度変動の周期は、図14のD欄に示すように、2倍に多重された信号の周期と等しくなる。
 信号受光器5210で光電変換された信号は、干渉の結果、周期Δω/2πでフェードが発生する可能性がある。しかしながら本実施形態では、送信信号を同じ周期で2回繰り返し送信する構成としているので、信号のリダンダンシを確保することができる。
 信号受光器5210によって光電変換された信号には、図14のE欄に示したスペクトルのように、周波数オフセット(Δω/2π)の成分が含まれている。この周波数オフセット成分を、図14のF欄に示したスペクトルのように、受信側ハイパスフィルタ(HPF)5220で除去する。信号再生部5230は、図14のG欄に示すように、フェード部分を含まないブロックを選択し受信信号を再生する。
 上述した、信号受光器5210によって光電変換された信号に生じるフェードは、式(11)において、A=B、かつ、φA=φBとなる場合に周期Δω/2πで発生する。ここで、φA、φBは未知の変数であるが、係数A、Bは信号受光器5210によって定まる。
 一方、空間光送信装置5100が備える制御部4140は、制御信号32を用いて可変光増幅器4150を制御することにより、出力光強度を調整することができる。したがって、制御部4140が、受信側において式(11)における係数A、BがA≠Bとなる条件を満たすように出力光強度を制御することにより、受信側で光電変換された信号に生じるフェードを緩和することが可能となる。
 上述したように、本実施形態の空間光通信システム5000によれば、情報信号を伝送する信号レーザ光をビーコン光として用いることができる。そして、このビーコン光の安定な伝送を低コストで実現することが可能であり、安定な追尾を維持することができる。さらに、アップリンクの信号レーザ光に対する大気揺らぎの影響を緩和し、干渉の影響を回避することが可能になる。その結果、信号通信の安定化を図ることができる。
 上記の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。
 (付記1)光周波数および位相差の時間変化のいずれかが異なる互いに干渉可能な複数のレーザ光を送出するレーザ光送出手段と、前記複数のレーザ光を、それぞれ異なる波面とした複数の波面制御光を自由空間に送出する波面制御光送出手段、とを有する空間光送信装置。
 (付記2)前記複数のレーザ光の前記光周波数の差である差分周波数および前記位相差の変化の周波数のいずれかが、前記自由空間における大気揺らぎの周波数よりも大きい付記1に記載した空間光送信装置。
 (付記3)前記レーザ光送出手段は、単一レーザ光を送出するレーザ光源と、前記単一レーザ光を分岐し複数の分岐レーザ光を生成する光分岐手段と、前記複数の分岐レーザ光の光周波数をそれぞれ異なる周波数だけ偏移させる複数の光周波数偏移手段、とを備える 付記1または2に記載した空間光送信装置。
 (付記4)前記レーザ光送出手段は、単一レーザ光を送出するレーザ光源と、前記単一レーザ光を分岐し複数の分岐レーザ光を生成する光分岐手段と、前記複数の分岐レーザ光にそれぞれ異なる周波数で位相変調を施す複数の位相変調手段、とを備える付記1または2に記載した空間光送信装置。
 (付記5)前記位相変調手段は、前記自由空間における大気揺らぎの周波数よりも大きい周波数で、前記分岐レーザ光の一波長に相当する位相量以上の範囲で位相変調を施す付記4に記載した空間光送信装置。
 (付記6)前記波面制御光送出手段は、前記複数のレーザ光を、それぞれ直交する異なるモードに変換して合成した合成レーザ光を生成するモード合成手段と、前記合成レーザ光を自由空間に出射する出射手段、とを備える付記1から5のいずれか一項に記載した空間光送信装置。
 (付記7)前記モード合成手段は、一の光周波数の前記レーザ光を、他の光周波数の前記レーザ光および前記位相差の変化の周波数が異なる前記レーザ光のいずれかのモードと異なる一のモードにだけ変換する付記6に記載した空間光送信装置。
 (付記8)付記1から7のいずれか一項に記載した空間光送信装置と、空間光受信装置を有し、前記空間光受信装置は、前記自由空間を伝搬した後の前記波面制御光である受信レーザ光を含む受信光を集光する集光手段と、前記受信光のうち前記受信レーザ光を通過させる光帯域通過手段と、前記受信レーザ光を光電変換する受光手段、とを備える空間光通信システム。
 (付記9)前記空間光受信装置は、モニタ用レーザ光を送出する受信側レーザ光源と、前記モニタ用レーザ光を自由空間に出射する受信側出射手段、とを備え、前記空間光送信装置は、前記複数のレーザ光の強度をそれぞれ変化させる光強度調節手段と、前記自由空間を伝搬した後の前記モニタ用レーザ光である受信モニタ用レーザ光を集光する送信側集光手段と、前記受信モニタ用レーザ光を、それぞれ直交する異なるモードに分離して複数のモニタ用モード光を生成するモード分離手段と、前記複数のモニタ用モード光をそれぞれ光電変換してモニタ信号を生成するモニタ受光手段と、前記モニタ信号に基づいて前記光強度調節手段を制御する制御手段、とを備える付記8に記載した空間光通信システム。
 (付記10)第1の通信局において、光周波数および位相差の時間変化のいずれかが異なる互いに干渉可能な複数のレーザ光を生成し、前記複数のレーザ光を、それぞれ異なる波面とした複数の波面制御光を自由空間に送出し、前記第1の通信局と通信を行う第2の通信局において、前記自由空間を伝搬した後の前記波面制御光である受信レーザ光を含む受信光を集光し、前記受信光から前記受信レーザ光を取り出し、前記受信レーザ光を光電変換する空間光通信方法。
 (付記11)前記波面制御光送出手段は、前記複数のレーザ光を、それぞれ直交する異なるモードに変換して合成した合成レーザ光を生成するモード合成手段と、前記合成レーザ光を導波する多モード導波手段と、前記合成レーザ光を自由空間に出射する出射手段、とを備える付記1から5のいずれか一項に記載した空間光送信装置。
 (付記12)前記波面制御光送出手段は、前記複数のレーザ光を、単一光モードでそれぞれ導波する複数の光導波手段と、前記複数の光導波手段を伝搬した前記複数のレーザ光を自由空間に出射する出射手段、とを備える付記1から5のいずれか一項に記載した空間光送信装置。
 (付記13)前記複数のレーザ光による干渉光の強度変化の周波数の最小値が、1メガヘルツよりも大きい付記1から12のいずれか一項に記載した空間光送信装置。
 (付記14)付記3または4に記載した空間光送信装置と、空間光受信装置を有し、前記空間光送信装置は、送信する情報信号を生成する情報信号生成手段と、前記情報信号のうち、カットオフ周波数よりも高い周波数成分を有する送信情報信号のみを通過させる送信側高域通過手段と、前記単一レーザ光を前記送信情報信号に基づいて変調して変調レーザ光を生成し、前記変調レーザ光を前記単一レーザ光として前記光分岐手段に送出する光変調手段、とを有し、前記空間光受信装置は、前記自由空間を伝搬した後の前記波面制御光である受信レーザ光を含む受信光を集光する集光手段と、前記受信光のうち前記受信レーザ光を通過させる光帯域通過手段と、前記受信レーザ光を光電変換して受信信号を生成する受信手段と、前記受信信号のうち、カットオフ周波数よりも高い周波数成分を有する受信情報信号のみを通過させる受信側高域通過手段、とを備える空間光通信システム。
 (付記15)前記情報信号生成手段は、前記複数のレーザ光による干渉光の強度変化の周波数のうち最小周波数の周期で、情報データを二重化して前記情報信号を生成し、前記空間光受信装置は、前記受信情報信号に含まれる二重化された成分のいずれかを選択して前記情報データを再生する情報信号再生手段を備える付記14に記載した空間光通信システム。
 (付記16)前記複数のレーザ光による干渉光の強度変化の周波数の最小値が、前記自由空間における大気揺らぎが有する周波数成分の上限値よりも大きく、前記カットオフ周波数が、前記差分周波数の最大値よりも大きい付記14または15に記載した空間光通信システム。
 (付記17)前記複数のレーザ光による干渉光の強度変化の周波数の最小値が、1メガヘルツよりも大きく、かつ、100メガヘルツよりも小さい付記14から16のいずれか一項に記載した空間光通信システム。
 (付記18)前記第2の通信局において、モニタ用レーザ光を生成し、前記モニタ用レーザ光を自由空間に出射し、前記第1の通信局において、前記自由空間を伝搬した後の前記モニタ用レーザ光である受信モニタ用レーザ光を集光し、前記受信モニタ用レーザ光を、それぞれ直交する異なるモードに分離して複数のモニタ用モード光を生成し、前記複数のモニタ用モード光をそれぞれ光電変換してモニタ信号を生成し、前記モニタ信号に基づいて、前記複数のレーザ光の強度をそれぞれ変化させる付記10に記載した空間光通信方法。
 (付記19)前記第1の通信局において、前記複数のモニタ用モード光から前記モニタ信号の強度が大きい二種のモニタ用モード光を選択し、前記複数のレーザ光のうち、前記二種のモニタ用モード光に対応する二種の前記レーザ光以外の前記レーザ光の強度を減衰させ、前記二種のレーザ光の強度を、前記第2の通信局における前記受信レーザ光の強度の時間変化が小さくなるように、それぞれ制御する付記18に記載した空間光通信方法。
 以上、上述した実施形態を模範的な例として本発明を説明した。しかしながら、本発明は、上述した実施形態には限定されない。即ち、本発明は、本発明のスコープ内において、当業者が理解し得る様々な態様を適用することができる。
 この出願は、2015年8月20日に出願された日本出願特願2015-162493を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 100、1100、2100、3100、4100、5100  空間光送信装置
 110  レーザ光送出手段
 120  波面制御光送出手段
 1000、2000、3000、4000、5000  空間光通信システム
 1110  レーザ光源
 1120  多重器
 1130  光導波媒体
 1140、2160  送信側望遠鏡
 1150、2170  光増幅器
 1200、4200、5200  空間光受信装置
 1210  受信側望遠鏡
 1220  狭帯域バンドパスフィルタ(BPF)
 1230  受光器
 1240  電気フィルタ回路
 2110  単一レーザ光源
 2120  光分岐器
 2130  光周波数シフタ
 2140  モード多重器
 2150  数モードファイバ(FMF)
 3140  ファンアウト部
 3150  バンドルファイバ
 4110  送信側光分岐器
 4120  モード分離器
 4130  モニタ受光器
 4140  制御部
 4150  可変光増幅器
 4210  受信側レーザ光源
 4220  受信側光分岐器
 5110  信号源
 5120  信号多重部
 5130  送信側ハイパスフィルタ(HPF)
 5140  光変調器
 5210  信号受光器
 5220  受信側ハイパスフィルタ(HPF)
 5230  信号再生部
 11  レーザ光
 12  波面制御光
 20  自由空間
 21  大気ゆらぎ
 22  ビーコン光
 30  信号レーザ光
 31  モニタ用レーザ光
 32  制御信号

Claims (10)

  1.  光周波数および位相差の時間変化のいずれかが異なる互いに干渉可能な複数のレーザ光を送出するレーザ光送出手段と、
     前記複数のレーザ光を、それぞれ異なる波面とした複数の波面制御光を自由空間に送出する波面制御光送出手段、とを有する
     空間光送信装置。
  2.  請求項1に記載した空間光送信装置において、
     前記複数のレーザ光の前記光周波数の差である差分周波数および前記位相差の変化の周波数のいずれかが、前記自由空間における大気揺らぎの周波数よりも大きい
     空間光送信装置。
  3.  請求項1または2に記載した空間光送信装置において、
     前記レーザ光送出手段は、
      単一レーザ光を送出するレーザ光源と、
      前記単一レーザ光を分岐し複数の分岐レーザ光を生成する光分岐手段と、
      前記複数の分岐レーザ光の光周波数をそれぞれ異なる周波数だけ偏移させる複数の光周波数偏移手段、とを備える
     空間光送信装置。
  4.  請求項1または2に記載した空間光送信装置において、
     前記レーザ光送出手段は、
      単一レーザ光を送出するレーザ光源と、
      前記単一レーザ光を分岐し複数の分岐レーザ光を生成する光分岐手段と、
      前記複数の分岐レーザ光にそれぞれ異なる周波数で位相変調を施す複数の位相変調手段、とを備える
     空間光送信装置。
  5.  請求項4に記載した空間光送信装置において、
     前記位相変調手段は、前記自由空間における大気揺らぎの周波数よりも大きい周波数で、前記分岐レーザ光の一波長に相当する位相量以上の範囲で位相変調を施す
     空間光送信装置。
  6.  請求項1から5のいずれか一項に記載した空間光送信装置において、
     前記波面制御光送出手段は、
      前記複数のレーザ光を、それぞれ直交する異なるモードに変換して合成した合成レーザ光を生成するモード合成手段と、
      前記合成レーザ光を自由空間に出射する出射手段、とを備える
     空間光送信装置。
  7.  請求項6に記載した空間光送信装置において、
     前記モード合成手段は、一の光周波数の前記レーザ光を、他の光周波数の前記レーザ光および前記位相差の変化の周波数が異なる前記レーザ光のいずれかのモードと異なる一のモードにだけ変換する
     空間光送信装置。
  8.  請求項1から7のいずれか一項に記載した空間光送信装置と、空間光受信装置を有し、
     前記空間光受信装置は、
      前記自由空間を伝搬した後の前記波面制御光である受信レーザ光を含む受信光を集光する集光手段と、
      前記受信光のうち前記受信レーザ光を通過させる光帯域通過手段と、
      前記受信レーザ光を光電変換する受光手段、とを備える
     空間光通信システム。
  9.  請求項8に記載した空間光通信システムにおいて、
     前記空間光受信装置は、
      モニタ用レーザ光を送出する受信側レーザ光源と、
      前記モニタ用レーザ光を自由空間に出射する受信側出射手段、とを備え、
     前記空間光送信装置は、
      前記複数のレーザ光の強度をそれぞれ変化させる光強度調節手段と、
      前記自由空間を伝搬した後の前記モニタ用レーザ光である受信モニタ用レーザ光を集光する送信側集光手段と、
      前記受信モニタ用レーザ光を、それぞれ直交する異なるモードに分離して複数のモニタ用モード光を生成するモード分離手段と、
      前記複数のモニタ用モード光をそれぞれ光電変換してモニタ信号を生成するモニタ受光手段と、
      前記モニタ信号に基づいて前記光強度調節手段を制御する制御手段、とを備える
     空間光通信システム。
  10.  第1の通信局において、
      光周波数および位相差の時間変化のいずれかが異なる互いに干渉可能な複数のレーザ光を生成し、
      前記複数のレーザ光を、それぞれ異なる波面とした複数の波面制御光を自由空間に送出し、
     前記第1の通信局と通信を行う第2の通信局において、
      前記自由空間を伝搬した後の前記波面制御光である受信レーザ光を含む受信光を集光し、
      前記受信光から前記受信レーザ光を取り出し、
      前記受信レーザ光を光電変換する
     空間光通信方法。
PCT/JP2016/003749 2015-08-20 2016-08-17 空間光送信装置および空間光通信方法 WO2017029808A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/751,369 US10454577B2 (en) 2015-08-20 2016-08-17 Free space optical transmitter and free space optical communication method
JP2017535238A JPWO2017029808A1 (ja) 2015-08-20 2016-08-17 空間光送信装置および空間光通信方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-162493 2015-08-20
JP2015162493 2015-08-20

Publications (1)

Publication Number Publication Date
WO2017029808A1 true WO2017029808A1 (ja) 2017-02-23

Family

ID=58052132

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/003749 WO2017029808A1 (ja) 2015-08-20 2016-08-17 空間光送信装置および空間光通信方法

Country Status (3)

Country Link
US (1) US10454577B2 (ja)
JP (1) JPWO2017029808A1 (ja)
WO (1) WO2017029808A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180270010A1 (en) * 2017-03-14 2018-09-20 Ball Aerospace & Technologies Corp. Systems and methods for multiplexing and demodulation at high frequencies and increased communication bandwidth
JP2021027437A (ja) * 2019-08-01 2021-02-22 国立研究開発法人宇宙航空研究開発機構 空間光通信装置及び空間光通信方法
JP2021027438A (ja) * 2019-08-01 2021-02-22 国立研究開発法人宇宙航空研究開発機構 空間光通信装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106506093B (zh) * 2016-11-28 2019-09-06 中车株洲电力机车研究所有限公司 一种fso通信系统
US10931374B1 (en) * 2018-12-13 2021-02-23 Waymo Llc Vehicle with free-space optical link for log data uploading
US10686521B1 (en) 2019-01-23 2020-06-16 X Development Llc Beam divergence adjustment of a communication beam based on state disturbance estimations

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011052405A1 (ja) * 2009-10-30 2011-05-05 国立大学法人北海道大学 光通信システム
JP2013535871A (ja) * 2010-07-07 2013-09-12 アルカテル−ルーセント 自由空間光通信についての多重入力の方法および装置
WO2013136652A1 (ja) * 2012-03-12 2013-09-19 日本電気株式会社 光通信システム、光送信装置、光受信装置、光通信方法、光送信方法、及び光受信方法
JP2014506433A (ja) * 2011-01-09 2014-03-13 アルカテル−ルーセント 空間多重を使用した安全なデータ伝送
WO2015136572A1 (ja) * 2014-03-13 2015-09-17 日本電気株式会社 空間光受信装置および空間光受信方法
WO2016047100A1 (ja) * 2014-09-25 2016-03-31 日本電気株式会社 空間光受信装置、空間光通信システムおよび空間光通信方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09326761A (ja) 1996-06-05 1997-12-16 Hamamatsu Photonics Kk 空間光伝送装置及び方法
JPH11266252A (ja) 1998-03-16 1999-09-28 Toshiba Corp 光空間伝送装置および光空間伝送方法
JP4549714B2 (ja) * 2004-03-31 2010-09-22 株式会社トプコン 光画像伝送システム、光画像送信装置、光画像受信装置及び光画像伝送方法
JP4590610B2 (ja) 2004-06-10 2010-12-01 独立行政法人情報通信研究機構 マルチビームレーザ通信装置
US8244137B1 (en) * 2009-06-30 2012-08-14 Verizon Patent And Licensing Inc. Multichannel on a single wave laser over wave division multiplexing in free space optics using phase masks

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011052405A1 (ja) * 2009-10-30 2011-05-05 国立大学法人北海道大学 光通信システム
JP2013535871A (ja) * 2010-07-07 2013-09-12 アルカテル−ルーセント 自由空間光通信についての多重入力の方法および装置
JP2014506433A (ja) * 2011-01-09 2014-03-13 アルカテル−ルーセント 空間多重を使用した安全なデータ伝送
WO2013136652A1 (ja) * 2012-03-12 2013-09-19 日本電気株式会社 光通信システム、光送信装置、光受信装置、光通信方法、光送信方法、及び光受信方法
WO2015136572A1 (ja) * 2014-03-13 2015-09-17 日本電気株式会社 空間光受信装置および空間光受信方法
WO2016047100A1 (ja) * 2014-09-25 2016-03-31 日本電気株式会社 空間光受信装置、空間光通信システムおよび空間光通信方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180270010A1 (en) * 2017-03-14 2018-09-20 Ball Aerospace & Technologies Corp. Systems and methods for multiplexing and demodulation at high frequencies and increased communication bandwidth
US10404403B2 (en) * 2017-03-14 2019-09-03 Ball Aerospace & Technologies Corp. Systems and methods for multiplexing and demodulation at high frequencies and increased communication bandwidth
JP2021027437A (ja) * 2019-08-01 2021-02-22 国立研究開発法人宇宙航空研究開発機構 空間光通信装置及び空間光通信方法
JP2021027438A (ja) * 2019-08-01 2021-02-22 国立研究開発法人宇宙航空研究開発機構 空間光通信装置
JP7026300B2 (ja) 2019-08-01 2022-02-28 国立研究開発法人宇宙航空研究開発機構 空間光通信装置
JP7123340B2 (ja) 2019-08-01 2022-08-23 国立研究開発法人宇宙航空研究開発機構 空間光通信装置及び空間光通信方法

Also Published As

Publication number Publication date
US10454577B2 (en) 2019-10-22
US20180234180A1 (en) 2018-08-16
JPWO2017029808A1 (ja) 2018-06-21

Similar Documents

Publication Publication Date Title
WO2017029808A1 (ja) 空間光送信装置および空間光通信方法
US8244138B2 (en) Polarization-multiplexing optical transmitter polarization-multiplexing optical receiver, polarization-multiplexing optical transceiving system, and controlling method thereof
JP5771438B2 (ja) インタリーブ光信号の増幅
US9537570B2 (en) Optical transceiving apparatus, optical transmitting method, and optical transmitting device
JP5802425B2 (ja) 広い光ビーコン信号および狭い光ビーコン信号を同時に送信するための技術
JP2007248126A (ja) 差分吸収ライダ装置
JP5900065B2 (ja) 偏波多重信号の干渉低減システムおよび方法
WO2014136421A1 (ja) 送受信装置、光空間伝送システムおよび送受信方法
JP5793854B2 (ja) 通信システム、測定装置、測定方法および制御方法
CN110896328B (zh) 基于单个参考光脉冲单零差探测的连续变量量子密钥分发系统
WO2016047100A1 (ja) 空間光受信装置、空間光通信システムおよび空間光通信方法
EP3820076B1 (en) Quantum key transmission device and system
US20070274728A1 (en) Optical communication system and method using optical channels with pair-wise orthogonal relationship
US20020018213A1 (en) Wavelength dispersion measuring device and a method thereof
US11750296B2 (en) Optical communication link ranging
US20030165286A1 (en) Wavelength division multiplex transmission system
JP2012004691A (ja) 偏波多重光伝送システム
JP5334619B2 (ja) 光路長制御装置
Sharma et al. Analysis and mitigation of receiver pointing error angle on inter-satellite communication
US20140255039A1 (en) Establishing optical coherence using free-space optical links
JP4048368B2 (ja) ノイズ抑圧方法及び装置
US8498536B2 (en) Dispersion measurement of optical fibres during operation
JP2021500613A (ja) 光学信号の歪みを低減するための装置及び方法
WO2016203747A1 (ja) 空間光送信装置および空間光通信方法
Hu et al. Investigation of a coherent optical wireless system for high speed indoor interconnection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16836801

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017535238

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15751369

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16836801

Country of ref document: EP

Kind code of ref document: A1