WO2017029747A1 - 電源システム、出力制御装置、出力制御方法、及び、記録媒体 - Google Patents

電源システム、出力制御装置、出力制御方法、及び、記録媒体 Download PDF

Info

Publication number
WO2017029747A1
WO2017029747A1 PCT/JP2015/073322 JP2015073322W WO2017029747A1 WO 2017029747 A1 WO2017029747 A1 WO 2017029747A1 JP 2015073322 W JP2015073322 W JP 2015073322W WO 2017029747 A1 WO2017029747 A1 WO 2017029747A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power generation
generation system
output
load
Prior art date
Application number
PCT/JP2015/073322
Other languages
English (en)
French (fr)
Inventor
公人 萩野
沖田 真大
宣行 森岡
佐藤 克彦
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to PCT/JP2015/073322 priority Critical patent/WO2017029747A1/ja
Priority to PCT/JP2016/056334 priority patent/WO2017029821A1/ja
Publication of WO2017029747A1 publication Critical patent/WO2017029747A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers

Definitions

  • the present invention relates to a power supply system, an output control device, an output control method, and a recording medium.
  • the present invention relates to a technique suitable for a power supply system in which a solar power generation system is installed as an additional power supply source of a diesel power generation system.
  • a power supply system including a power generation device using fuel, a solar power generation device, and a commercial power source or a power storage device is known (see, for example, Patent Documents 1 and 2).
  • a commercial power supply and a power storage device are provided in a power supply system for the purpose of stable power supply.
  • the power generation device that uses fuel include a diesel power generation device.
  • the power generated by the solar power generation system can supply 100% or close to the load side.
  • the introduction cost and maintenance cost of the photovoltaic power generation system can be amortized. That is, in consideration of the cost, it is preferable that the photovoltaic power generation system is operated in a substantially full operation state.
  • an object of the present invention is to provide a power supply system that supplies power to a load by linking the first power generation system and the second power generation system and that can stably supply power at a low cost. Is to provide.
  • a power supply system of the present invention is a power supply system that supplies power to a load by linking a first power generation system and a second power generation system that assists the first power generation system.
  • a control unit that controls the outputs of the first and second power generation systems, the control unit compares the power of the load with the T value obtained by the following conditional expression (1), Based on the result of the comparison, control is performed such that the total output of the first and second power generation systems is equal to the power of the load.
  • T P1 (MIN) + P2 (MAX) (1)
  • P2 (MAX) Maximum rated output of the second power generation system
  • an output control device of the present invention is an output control device that controls the output of a first power generation system and a second power generation system that assists the first power generation system.
  • a comparison unit that compares the power of the load with the T value obtained by the following conditional expression (1), and based on the comparison result in the comparison unit, the output of the first and second power generation systems
  • an adjustment unit that adjusts the output of each power generation system so that the total is equivalent to the electric power of the load.
  • an output control method of the present invention is an output control method for controlling outputs of a first power generation system and a second power generation system that assists the first power generation system.
  • the step of comparing the power of the load with the T value obtained by the following conditional expression (1), and based on the result of the comparison, the sum of the outputs of the first and second power generation systems is Adjusting the output of each power generation system so as to be equivalent to the power of the load.
  • T P1 (MIN) + P2 (MAX) (1)
  • P1 (MIN) Minimum rated output of the first power generation system
  • P2 (MAX) Maximum rated output of the second power generation system
  • a recording medium of the present invention is a computer-readable recording medium in which a computer-executable program is recorded non-temporarily, and causes the computer to execute the output control method. It is characterized by the fact that a program is recorded.
  • the present invention it is possible to provide a technology that can supply power at low cost and stably in a power supply system that links the first power generation system and the second power generation system to supply power to the load.
  • the block diagram which shows the structure of the power supply system which concerns on 1st Embodiment of this invention The block diagram which shows the structure of the solar energy power generation system with which the power supply system which concerns on 1st Embodiment of this invention is provided.
  • the block diagram which shows the function structure of the controller with which the power supply system which concerns on 1st Embodiment of this invention is provided.
  • the block diagram which shows the structure of the solar energy power generation system with which the power supply system which concerns on 2nd Embodiment of this invention is provided.
  • the block diagram which shows the function structure of the controller with which the power supply system which concerns on 2nd Embodiment of this invention is provided.
  • the block diagram which shows the function structure of the controller with which the power supply system which concerns on 3rd Embodiment of this invention is provided.
  • FIG. 1 is a block diagram showing a configuration of a power supply system 1 according to the first embodiment of the present invention.
  • the diesel power generation system 2 and the solar power generation system 3 are connected by a bus bar in the distribution board 4.
  • the sum of outputs of the diesel power generation system 2 and the solar power generation system 3 is supplied to the load 5 via the distribution board 4.
  • the output system of the power supply system 1 may be a three-phase system or a single-phase system.
  • Diesel generator system 2 includes a diesel generator.
  • the number of diesel generators may be one or more.
  • the diesel power generation system 2 functions as the backbone of the power supply system 1.
  • the power supply system 1 according to the first embodiment does not include a storage battery.
  • the power supply system 1 of 1st Embodiment is not connected with a commercial power grid. Even in such a case, by using the diesel power generation system 2 as a main power generation system, it is possible to appropriately maintain and adjust power quality such as frequency and voltage.
  • the diesel power generation system 2 is an example of the first power generation system of the present invention.
  • the solar power generation system 3 assists the diesel power generation system 2.
  • the solar power generation system 3 is an example of a second power generation system of the present invention.
  • FIG. 2 is a block diagram showing a configuration of the photovoltaic power generation system 3 included in the power supply system 1 according to the first embodiment of the present invention.
  • the photovoltaic power generation system 3 includes a solar cell array 31 and a power conditioner (hereinafter referred to as PCS) 32.
  • the kind of solar cell which comprises the solar cell array 31 is not specifically limited.
  • the solar cell may be of any type such as a crystal system, a thin film system, a silicon system, and a compound system.
  • the solar power generation system 3 may include one or a plurality of sets of the solar cell array 31 and the PCS 32.
  • PCS 32 converts the DC power generated by the solar cell array 31 into AC power.
  • the PCS 32 adjusts the output of the PCS by adjusting the DC input voltage from the solar cell array 31.
  • the PCS 32 sets a value obtained by AC-converting the DC input from the solar cell array 31 to the maximum by MPPT (Maximum Power Point Tracking) control.
  • MPPT Maximum Power Point Tracking
  • the power supply system 1 includes a controller 6.
  • the controller 6 is an example of a control unit of the present invention.
  • the controller 6 includes a computer and functions as an output control device that controls the outputs of the diesel power generation system 2 and the solar power generation system 3.
  • the controller 6 performs output control of the diesel power generation system 2 and the solar power generation system 3 according to an output control program executed by the computer.
  • the output control program may be stored in a storage unit provided in the controller 6.
  • the output control program may be recorded on the recording medium 7 that non-temporarily records a computer-executable program.
  • the recording medium 7 may be an optical disk, a magnetic disk, a flash memory, or the like, for example.
  • the power supply system 1 includes power measuring instruments 8a to 8c.
  • the first power meter 8a is provided so that the output power of the diesel power generation system 2 can be measured.
  • the 2nd electric power measuring device 8b is provided so that measurement of the output electric power of the solar power generation system 3 is possible.
  • the third power meter 8c is provided so as to be able to measure the power of the load 5.
  • Each power meter 8a-8c may be, for example, a power transducer.
  • the power information measured by each of the power measuring devices 8a to 8c is transmitted to the controller 6 using, for example, a 4-20 mA signal, serial communication, or the like.
  • positioning and the number of the electric power measuring devices 8 shown by this embodiment are examples, and these structures may be changed suitably.
  • the first power meter 8a that measures the output of the diesel power generation system 2 may not be provided.
  • FIG. In this case, the output of the solar power generation system 3 may be obtained using a signal from the PCS 32 included in the solar power generation system 3.
  • the power supply system 1 needs to supply power to the load 5 even when the output of the solar power generation system 3 becomes zero. For this reason, the maximum rated output P1 (MAX) of the diesel power generation system 2 satisfies the following formula (A).
  • P3 (MAX) is the maximum power consumption of the load 5.
  • a minimum rated output P1 is set in order to prevent the diesel generator from operating at a light load.
  • the diesel power generation system 2 is operated such that it does not fall below the minimum rated output P1 (MIN).
  • the minimum rated output is obtained by multiplying the maximum rated output P1 (MAX) by a predetermined ratio (R).
  • the predetermined ratio (R) is not particularly limited, but is, for example, about 30 to 40%.
  • the minimum rated output P1 (MIN) is preferably equal to or lower than the minimum power of the load 5.
  • the electric power generated by the solar power generation system 3 can be used efficiently. That is, it is preferable to make the ratio of the electric power generated by the solar power generation system 3 that is discarded without being used as small as possible.
  • the maximum rated output P2 (MAX) of the photovoltaic power generation system 3 (PCS32) satisfies the following formula (C). P1 (MIN) ⁇ P2 (MAX) (C)
  • the power supply system 1 can utilize the electric power generated by the solar power generation system 3 to the maximum extent. Thereby, reduction of diesel fuel can be aimed at and the cost performance of the power supply system 1 can be raised.
  • the power supply system 1 is designed so that the state satisfying the following expression (D) becomes long.
  • the parameters of the power supply system 1 can be selected as follows.
  • the maximum power capacity of the solar cell array 31 is not particularly limited. For example, from the viewpoint of cost, a value within the range of 40 to 50 kW-dc can be selected as the maximum power capacity of the solar cell array 31.
  • FIG. 3 is a block diagram showing a functional configuration of the controller 6 provided in the power supply system 1 according to the first embodiment of the present invention.
  • the controller 6 includes a power management unit 61.
  • the power management unit 61 obtains the output power P1 of the diesel power generation system 2 from the first power meter 8a. Further, the power management unit 61 obtains the output power P2 of the solar power generation system 3 from the second power meter 8b. Further, the power management unit 61 obtains the power P3 of the load 5 from the third power meter 8c.
  • the controller 6 includes a comparison unit 62, an adjustment unit 63, and a transmission unit 64.
  • the comparison unit 62 compares the above-described formula (D).
  • the adjustment unit 63 adjusts the output of each power generation system so that the sum of the outputs of the diesel power generation system 2 and the solar power generation system 3 is equal to the power of the load 5 according to the comparison result in the comparison unit 63.
  • the transmission unit 64 transmits each instruction value determined by the adjustment unit 63 to each power generation system. For example, a 4-20 mA signal or serial communication may be used for transmitting each instruction value.
  • FIG. 4 is a flowchart showing an example of an output control flow in the power supply system 1 according to the first embodiment of the present invention.
  • MIN minimum rated output P1
  • the controller 6 acquires the output power P2 of the solar power generation system 3 and the power P3 of the load 5 from the power measuring instruments 8b and 8c (step S1).
  • the controller 6 confirms whether or not the power P3 of the load 5 satisfies the above-described formula (D) (step S2).
  • filling Formula (D) it is Yes at step S2
  • the controller 6 determines the output setting P2 (SETTING) in the solar power generation system 3 to P2 (MAX) (step S3).
  • the controller 6 controls the output setting P1 (CONTROL) of the diesel power generation system 2 based on the output P2 of the solar power generation system 3 and the power P3 of the load 4 acquired in step S1 (step S4).
  • P1 (CONTROL) is obtained by the following equation (E).
  • P1 (CONTROL) P3-P2 (E)
  • the controller 6 transmits the determined output settings (instruction values) of the power generation systems 2 and 3 to the power generation systems 2 and 3 (step S5).
  • Each of the power generation systems 2 and 3 to which the instruction value is transmitted performs output setting according to the instruction value and outputs the generated power to the load 5.
  • the state where the output setting of the PCS 32 is set to P2 (MAX) corresponds to the state where the output of the PCS 32 is not suppressed.
  • the PCS 32 outputs a value obtained by performing maximum AC conversion on the DC input from the solar cell array 31 by MPPT control. Even when the output of the solar power generation system 3 is set to P2 (MAX), the actual output of the solar power generation system 3 may not reach P2 (MAX) depending on the solar radiation state or the like.
  • the controller 6 transmits the determined output settings (instruction values) of the diesel power generation system 2 and the solar power generation system 3 to the power generation systems 2 and 3 (step S5).
  • Each of the power generation systems 2 and 3 to which the instruction value is transmitted performs output setting according to the instruction value and outputs the generated power to the load 5.
  • step S2 corresponds to the state where the output of the PCS 32 is suppressed.
  • the PCS 32 does not output the maximum AC output value by MPPT control, but adjusts the output of the AC output value.
  • step S5 After the process of step S5, the controller 6 returns to step S1 and repeats the above process.
  • the system design is performed so that the state satisfying P3 ⁇ T (the above formula (D)) becomes long. Thereby, it is possible to make maximum use of the power generated by the solar power generation system 3. According to the power supply system 1, the amount of diesel fuel used can be reduced and power can be supplied at low cost.
  • the power supply system 1 of the first embodiment it is preferable to design the system so that P1 (MIN) ⁇ P3 (MAX) (the above formula (C)). Thereby, generation
  • P1 (MAX) P3 (MAX) (the above-described formula (B)). Thereby, even when the power generation amount of the solar power generation system 3 is reduced, power can be stably supplied to the load 5.
  • the power supply system 1 of the first embodiment does not include a storage battery. For this reason, the apparatus cost can be suppressed and the installation space can be reduced.
  • a commercial power system is not linked to the power supply system 1 of the first embodiment.
  • the power supply system 1 of 1st Embodiment is suitable for the utilization in the area which does not have a commercial power grid
  • the configuration of the power supply system of the second embodiment is substantially the same as the configuration of the power supply system of the first embodiment. For this reason, the description will focus on the parts different from the first embodiment.
  • FIG. 5 is a block diagram showing a configuration of the solar power generation system 3 provided in the power supply system according to the second embodiment of the present invention.
  • the solar power generation system 3 includes a pyranometer 33. This is different from the configuration of the first embodiment.
  • the pyranometer 33 may be attached near the solar cell array 31.
  • the pyranometer 33 may be arranged, for example, in the west of the power generation site. Placing the pyranometer 33 to the west of the power generation site makes it easier to predict changes in weather.
  • the pyranometer 33 is an example of a measurement unit according to the present invention.
  • the measurement part should just be able to predict the output state of the photovoltaic power generation system 3.
  • a camera or the like that can check the weather condition may be arranged instead of the pyranometer 33.
  • FIG. 6 is a block diagram showing a functional configuration of the controller 6 included in the power supply system according to the second embodiment of the present invention.
  • the adjustment unit 63 of the controller 6 is provided so as to be able to acquire the solar radiation amount H measured by the solar radiation meter 33.
  • the adjustment unit 63 calculates the maximum output predicted value P2 (EST) of the solar power generation system 3 (PCS32), for example, by the following equation (G).
  • P2 (EST) H ⁇ P2 (MAX) ⁇ K (G) K: Efficiency (constant value)
  • step S4 of FIG. 4 P2 (EST) can be used instead of the actually measured output P2 of the photovoltaic power generation system 3. Note that the step in which the controller 6 calculates the maximum predicted output value P2 (EST) needs to be performed at any timing before step S4.
  • the power supply system of the second embodiment can obtain the same effects as those of the first embodiment. Moreover, in the power supply system of 2nd Embodiment, the output prediction of the solar power generation system 3 is possible using the pyranometer 33. FIG. For this reason, the output of the diesel power generation system 2 and the solar power generation system 3 can be set to an appropriate value at an appropriate timing. ⁇ Third Embodiment>
  • the configuration of the power supply system of the third embodiment is substantially the same as the configuration of the power supply system of the first embodiment. For this reason, the description will focus on the parts different from the first embodiment.
  • FIG. 7 is a block diagram showing a functional configuration of the controller 6 included in the power supply system according to the third embodiment of the present invention.
  • the controller 6 includes a load power learning unit 65 and a prediction information storage unit 66. This is different from the configuration of the first embodiment.
  • the load power learning unit 65 creates a prediction pattern (predicted value) for the time change of the power of the load 5, for example, from the past power usage history of the load 5.
  • the prediction pattern regarding the time change of the power of the load 5 is stored in the prediction information storage unit 66 in a table format, for example.
  • the prediction pattern stored in the prediction information storage unit 66 is updated as appropriate.
  • a predicted value related to the time change of the power of the load 5 is obtained. For this reason, a predicted value stored in the predicted information storage unit 66 can be used instead of the actual measurement value P1 in the output control flow shown in FIG. 4 of the first embodiment. For example, when the power of the load 5 is predicted to change greatly, output control using such a predicted value is effective.
  • the outputs of the diesel power generation system 2 and the solar power generation system 3 can be set to appropriate values at appropriate timing.
  • the power supply system of the third embodiment can obtain the same effects as those of the first embodiment. ⁇ Others>
  • each embodiment described above is merely an example of the present invention.
  • the configuration of each embodiment may be changed as appropriate without departing from the technical idea of the present invention.
  • Each embodiment and the fine modification in embodiment can also be implemented combining in the possible range.
  • the configuration in which the power generation system that assists the diesel power generation system 2 is the solar power generation system 3 has been shown.
  • the power generation system that assists the diesel power generation system 2 may be a power generation system using other natural energy such as a wind power generation system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

電源システム1は、第1の発電システム2と、第1の発電システム2を補助する第2の発電システム3とを連係して負荷5に電力を供給する。電源システム1は、第1及び第2の発電システム2、3の出力を制御する制御部6を備える。制御部6は、負荷5の電力と、所定の条件式で求められる値との比較を行い、当該比較の結果に基づいて、第1及び第2の発電システム2、3の出力の合計が負荷5の電力と同等になるように制御する。

Description

電源システム、出力制御装置、出力制御方法、及び、記録媒体
 本発明は、電源システム、出力制御装置、出力制御方法、及び、記録媒体に関する。本発明は、太陽光発電システムがディーゼル発電システムの付加的な電力供給源として設置される電源システムに好適な技術に関する。
 従来、燃料を使用する発電装置と、太陽光発電装置と、商用電源又は蓄電装置とを備える電源システムが知られている(例えば特許文献1及び2参照)。商用電源や蓄電装置は、安定した電力供給を目的として電源システムに備えられる。燃料を使用する発電装置としては、例えばディーゼル発電装置が挙げられる。
 通常、ディーゼル発電の電力コストは、商用電源の電力コストよりも高い。このために、特許文献1のように電源システムに商用電源とディーゼル発電装置とが含まれる構成は、採算性の観点から、マーケットが殆どない。また、例えば離島等、商用電力系統が存在しない地域もある。このような地域では、特許文献1の技術は適用できない。
 また、現状においては、蓄電池は高価で寿命が短い。このために、特許文献2のように電源システムに蓄電装置を含む構成を採用すると、採算性が悪くなり、コスト面で問題が発生する。なお、近年においては、太陽光発電装置における電力コストが燃料発電装置よりも安価になってきている。このために、燃料発電装置と太陽光発電装置とを組み合わせた電源システムは導入し易くなっている。
特開平8-186934号公報 特開2013-179740号公報
 単純にディーゼル発電システムに太陽光発電システムを接続した場合、例えば、太陽光発電によって得られた電力がディーゼル発電システム側に逆流することが考えられる。このような逆流が生じると、ディーゼル発電システムの電気系統を破損してしまう場合があり、電力供給が不安定になることが懸念される。
 また、太陽光発電システムで発電した電力は、100%又はそれに近い電力を負荷側に供給できるのが好ましい。これにより、太陽光発電システムの導入コスト及びメンテナンスコストの償却が可能になる。すなわち、コスト面を考慮すると、太陽光発電システムはほぼフル稼働状態で運転されるのが好ましい。
 以上の点に鑑みて、本発明の目的は、第1の発電システムと第2の発電システムとを連係して負荷に電力を供給する電源システムにおいて、電力を安価に且つ安定して供給できる技術を提供することである。
 上記目的を達成するために本発明の電源システムは、第1の発電システムと、前記第1の発電システムを補助する第2の発電システムとを連係して負荷に電力を供給する電源システムであって、前記第1及び第2の発電システムの出力を制御する制御部を備え、前記制御部は、前記負荷の電力と、以下の条件式(1)で求められるT値との比較を行い、当該比較の結果に基づいて、前記第1及び第2の発電システムの出力の合計が前記負荷の電力と同等になるように制御することを特徴としている。
 T=P1(MIN)+P2(MAX)  (1)
   P1(MIN):前記第1の発電システムの最低定格出力
   P2(MAX):前記第2の発電システムの最大定格出力
 また、上記目的を達成するために本発明の出力制御装置は、第1の発電システムと、前記第1の発電システムを補助する第2の発電システムとの出力を制御する出力制御装置であって、前記負荷の電力と、以下の条件式(1)で求められるT値との比較を行う比較部と、前記比較部における比較結果に基づいて、前記第1及び第2の発電システムの出力の合計が前記負荷の電力と同等になるように、各発電システムの出力を調整する調整部と、を備えることを特徴としている。
 T=P1(MIN)+P2(MAX)  (1)
   P1(MIN):前記第1の発電システムの最低定格出力
   P2(MAX):前記第2の発電システムの最大定格出力
 また、上記目的を達成するために本発明の出力制御方法は、第1の発電システムと、前記第1の発電システムを補助する第2の発電システムとの出力を制御する出力制御方法であって、前記負荷の電力と、以下の条件式(1)で求められるT値との比較を行うステップと、前記比較の結果に基づいて、前記第1及び第2の発電システムの出力の合計が前記負荷の電力と同等になるように、各発電システムの出力を調整するステップと、を備えることを特徴としている。
 T=P1(MIN)+P2(MAX)  (1)
   P1(MIN):前記第1の発電システムの最低定格出力
   P2(MAX):前記第2の発電システムの最大定格出力
 また、上記目的を達成するために本発明の記録媒体は、コンピュータが実行可能なプログラムを非一時的に記録したコンピュータ読取可能な記録媒体であって、上記出力制御方法をコンピュータに実行させる出力制御用プログラムが記録されることを特徴としている。
 本発明によると、第1の発電システムと第2の発電システムとを連係して負荷に電力を供給する電源システムにおいて、電力を安価に且つ安定して供給できる技術を提供できる。
本発明の第1実施形態に係る電源システムの構成を示すブロック図 本発明の第1実施形態に係る電源システムが備える太陽光発電システムの構成を示すブロック図 本発明の第1実施形態に係る電源システムが備えるコントローラの機能構成を示すブロック図 本発明の第1実施形態に係る電源システムにおける出力制御フローの一例を示すフローチャート 本発明の第2実施形態に係る電源システムが備える太陽光発電システムの構成を示すブロック図 本発明の第2実施形態に係る電源システムが備えるコントローラの機能構成を示すブロック図 本発明の第3実施形態に係る電源システムが備えるコントローラの機能構成を示すブロック図
 以下、本発明の実施形態に係る電源システム、出力制御装置、出力制御方法、及び、記録媒体について、図面を参照しながら詳細に説明する。なお、ブロック図を示す図面において、実線は電力線を示し、破線は信号線を示す。
<第1実施形態>
 図1は、本発明の第1実施形態に係る電源システム1の構成を示すブロック図である。ディーゼル発電システム2と、太陽光発電システム3とは、分電盤4内においてバスバーで接続されている。負荷5には、分電盤4を介して、ディーゼル発電システム2と、太陽光発電システム3との出力の和が供給される。なお、電源システム1の出力方式は、3相式であっても、単相式であってもよい。
 ディーゼル発電システム2は、ディーゼル発電機を含む。ディーゼル発電機の数は、1つでも複数でもよい。ディーゼル発電システム2は、電源システム1の基幹として機能する。第1実施形態の電源システム1は、蓄電池を含まない。また、第1実施形態の電源システム1は、商用電力系統とは連系しない。このような場合でも、ディーゼル発電システム2を基幹の発電システムにすることよって、周波数や電圧等の電力品質の維持及び調整を適切に行える。なお、ディーゼル発電システム2は、本発明の第1の発電システムの一例である。
 太陽光発電システム3は、ディーゼル発電システム2を補助する。なお、太陽光発電システム3は、本発明の第2の発電システムの一例である。図2は、本発明の第1実施形態に係る電源システム1が備える太陽光発電システム3の構成を示すブロック図である。図2に示すように、太陽光発電システム3は、太陽電池アレイ31と、パワーコンディショナ(以下、PCSと記載)32とを備えている。太陽電池アレイ31を構成する太陽電池の種類は、特に限定されない。太陽電池は、結晶系、薄膜系、シリコン系、化合物系などのいずれの種類であってもよい。また、太陽光発電システム3は、太陽電池アレイ31とPCS32との組を1つ又は複数備えてよい。
 PCS32は、太陽電池アレイ31で発電された直流電力を交流電力に変換する。PCS32は、太陽電池アレイ31からのDC入力電圧を調整することにより、当該PCSの出力を調整する。出力を抑制する指令が出ていない場合には、PCS32は、MPPT(Maximum Power Point Tracking)制御によって太陽電池アレイ31からのDC入力を最大限AC変換した値を出力値とする。出力を抑制する指令が出ている場合には、PCS32は、AC出力値の出力調整を行う。
 図1に示すように、電源システム1はコントローラ6を備える。なお、コントローラ6は、本発明の制御部の一例である。コントローラ6は、コンピュータを備え、ディーゼル発電システム2及び太陽光発電システム3の出力を制御する出力制御装置として機能する。コントローラ6は、コンピュータに実行させる出力制御用プログラムにしたがって、ディーゼル発電システム2及び太陽光発電システム3の出力制御を行う。
 なお、出力制御用プログラムは、コントローラ6に備えられる記憶部に記憶される構成であってよい。また、別の構成として、例えば、出力制御用プログラムは、コンピュータが実行可能なプログラムを非一時的に記録する記録媒体7に記録されてもよい。記録媒体7は、例えば光ディスク、磁気ディスク、フラッシュメモリ等であってよい。
 図1に示すように、電源システム1は電力計測器8a~8cを備える。第1の電力計測器8aは、ディーゼル発電システム2の出力電力を計測可能に設けられる。第2の電力計測器8bは、太陽光発電システム3の出力電力を計測可能に設けられる。第3の電力計測器8cは、負荷5の電力を計測可能に設けられる。各電力計測器8a~8cは、例えば電力トランスデューサ等であってよい。各電力計測器8a~8cで計測された電力情報は、例えば4-20mA信号やシリアル通信等を利用してコントローラ6に送信される。
 なお、本実施形態で示す電力計測器8の配置や数は一例であり、これらの構成は適宜変更されてよい。例えば、ディーゼル発電システム2の出力を計測する第1の電力計測器8aは設けられなくてもよい。また、太陽光発電システム3の出力を計測する第2の電力計測器8bは配置しない構成としてもよい。この場合には、太陽光発電システム3に含まれるPCS32からの信号を利用して、太陽光発電システム3の出力を得てもよい。
 ここで、電源システム1における各種のパラメータについて説明する。電源システム1は、太陽光発電システム3の出力がゼロになった場合でも、負荷5に電力を供給する必要がある。このために、ディーゼル発電システム2の最大定格出力P1(MAX)は、以下の式(A)を満たす。以下の式(A)で、P3(MAX)は、負荷5の最大電力使用量である。
 P1(MAX)≧ P3(MAX)  (A)
 ディーゼル発電機は、軽負荷で運転すると、未燃焼ガスが発生し易くなる。未燃焼ガスが発生すると、排気管から燃焼しなかったオイルが滴ることや、黒煙が多量に発生することがある。このような事態が生じないように、ディーゼル発電システム2の最大定格出力P1(MAX)は、負荷5の最大電力使用量P3(MAX)に対して大きくし過ぎないのが好ましい。このために、より好ましい形態としては、以下の式(B)を満たすのが好ましい。
 P1(MAX)= P3(MAX)  (B)
 ディーゼル発電システム2には、ディーゼル発電機が軽負荷運転となることを避けるために、最低定格出力P1(MIN)が設定されている。電源システム1においては、ディーゼル発電システム2は最低定格出力P1(MIN)を下回らないように運転される。最低定格出力は、最大定格出力P1(MAX)に所定の比率(R)を乗じて得られる。所定の比率(R)は、特に限定される趣旨ではないが、例えば30~40%程度とされる。最低定格出力P1(MIN)は、負荷5の最低電力以下であるのが好ましい。
 電源システム1においては、太陽光発電システム3で発電された電力を効率良く使えるのが好ましい。すなわち、太陽光発電システム3で発電した電力のうち、使われることなく捨てられる電力の割合は、できるだけ小さくするのが好ましい。この点を考慮して、太陽光発電システム3(PCS32)の最大定格出力P2(MAX)は、以下の式(C)を満たすのが好ましい。
 P1(MIN)≧ P2(MAX)  (C)
 また、電源システム1は、太陽光発電システム3で発電した電力を最大限利用できるのが好ましい。これにより、ディーゼル燃料の削減を図れ、電源システム1のコストパフォーマンスを上げられる。この点を考慮して、電源システム1は、以下の式(D)を満たす状態が長くなるように設計されている。例えば、動作時間の90%以上の時間で、式(D)を満たすように、電源システム1は設計される。当該設計は、シミュレーションや実験等を利用して行われる。
 P3 ≧ T  (D)
 T=P1(MIN)+P2(MAX)
 P3:負荷5の電力
 一例として、電源システム1のパラメータは次のように選定できる。ディーゼル発電システム2においては、最大定格出力P1(MAX)=100kW‐ac、最低定格出力P1(MIN)=40kW‐acが選定できる。太陽光発電システム3においては、最大定格出力P2(MAX)=40kW‐acが選定できる。なお、太陽光発電システム3においては、P2(MAX)がPCS32の最大定格出力によって決まるために、太陽電池アレイ31の最大電力容量は特に限定されない。例えば、コストの観点から、太陽電池アレイ31の最大電力容量としては、40~50kW‐dcの範囲内の値が選択できる。
 次に、第1実施形態に係る電源システム1における出力制御動作について説明する。
 図3は、本発明の第1実施形態に係る電源システム1が備えるコントローラ6の機能構成を示すブロック図である。コントローラ6は電力管理部61を備えている。電力管理部61は、第1の電力計測器8aからディーゼル発電システム2の出力電力P1を得る。また、電力管理部61は、第2の電力計測器8bから太陽光発電システム3の出力電力P2を得る。また、電力管理部61は、第3の電力計測器8cから負荷5の電力P3を得る。
 コントローラ6は、比較部62、調整部63、送信部64を備えている。比較部62は、上述の式(D)の比較を行う。調整部63は、比較部63における比較結果に応じて、ディーゼル発電システム2及び太陽光発電システム3の出力の合計が負荷5の電力と同等になるように、各発電システムの出力を調整する。送信部64は、調整部63で決定された各指示値を各発電システムに送信する。なお、各指示値の送信には、例えば4-20mA信号やシリアル通信等が利用されてよい。
 図4は、本発明の第1実施形態に係る電源システム1における出力制御フローの一例を示すフローチャートである。なお、図4では、一例として、負荷5の電力が、ディーゼル発電システム2の最低定格出力P1(MIN)を下回ることがない場合を想定している。コントローラ6は、電力計測器8b、8cから太陽光発電システム3の出力電力P2、及び、負荷5の電力P3を取得する(ステップS1)。
 次に、コントローラ6は、負荷5の電力P3が上述した式(D)を満たすか否かを確認する(ステップS2)。式(D)を満たす場合には(ステップS2でYes)、コントローラ6は、太陽光発電システム3における出力設定P2(SETTING)をP2(MAX)に決定する(ステップS3)。
 コントローラ6は、ステップS1で取得した太陽光発電システム3の出力P2及び負荷4の電力P3に基づいて、ディーゼル発電システム2の出力設定P1(CONTROL)を制御する(ステップS4)。具体的には、P1(CONTROL)は以下の式(E)で得られる。
 P1(CONTROL)=P3-P2  (E)
 コントローラ6は、決定された各発電システム2、3の出力設定(指示値)を、各発電システム2、3に送信する(ステップS5)。指示値を送信された各発電システム2、3は、指示値にしたがって出力設定を行い、発電した電力を負荷5に出力する。
 なお、PCS32の出力設定がP2(MAX)に設定される状態は、PCS32の出力が抑制されていない状態に該当する。PCS32は、MPPT制御によって、太陽電池アレイ31からのDC入力を最大限AC変換した値を出力値とする。また、太陽光発電システム3の出力がP2(MAX)に設定された場合でも、日射状態等によって、太陽光発電システム3の実際の出力は、P2(MAX)に到達しない場合がある。
 また、式(D)を満たさない場合には(ステップS2でNo)、コントローラ6は、ディーゼル発電システム2における出力設定P1(SETTING)をP1(MIN)に決定する(ステップS6)。その後、コントローラ6は、当該P1(MIN)と、ステップS1で取得した負荷5の電力P3とに基づいて、太陽光発電システム3の出力設定P2(CONTROL)を制御する(ステップS7)。具体的には、P2(CONTROL)は以下の式(F)で得られる。
 P2(CONTROL)=P3-P1(MIN)  (F)
 コントローラ6は、決定されたディーゼル発電システム2及び太陽光発電システム3の出力設定(指示値)を各発電システム2、3に送信する(ステップS5)。指示値を送信された各発電システム2、3は、指示値にしたがって出力設定を行い、発電した電力を負荷5に出力する。
 なお、ステップS2でNoと判断される状態は、PCS32の出力が抑制される状態に該当する。この場合、PCS32は、MPPT制御によって最大のAC出力値を出力するのではなく、AC出力値の出力調整を行う。
 コントローラ6は、ステップS5の処理を行った後は、ステップS1に戻って、以上の処理を繰り返す。
 第1実施形態の電源システム1では、負荷5の電力P3と、T値(=P1(MIN)+P2(MAX))との比較を行う。そして、当該比較の結果に基づいて、ディーゼル発電システム2と太陽光発電システム3との出力合計が、負荷5の電力と同等となるように制御を行う。このために、ディーゼル発電システム2及び太陽光発電システム3に電力が逆流することを抑制できる。また、当該電源システム1は、負荷5に過不足のない電力を安定して供給することができる。
 第1実施形態の電源システム1では、P3≧T(上述の式(D))を満たす状態が長くなるように、システム設計が行われるのが好ましい。これにより、太陽光発電システム3で発電される電力を最大限利用することが可能になる。当該電源システム1によれば、ディーゼル燃料の使用量を減らして、安価に電力供給を行える。
 また、第1実施形態の電源システム1では、P1(MIN)≧P3(MAX)(上述の式(C))となるように、システム設計するのが好ましい。これにより、太陽光発電システム3で発電した電力を使用することなく捨てるという事態の発生を抑制できる。また、第1実施形態の電源システム1では、P1(MAX)=P3(MAX)(上述の式(B))となるように、システム設計するのが好ましい。これにより、太陽光発電システム3の発電量が低下した場合でも、負荷5に安定して電力を供給できる。
 第1実施形態の電源システム1には、蓄電池が含まれない。このために、装置コストを抑制できるとともに、設置スペースも小さくできる。第1実施形態の電源システム1には、商用電力系統が連系されない。このために、第1実施形態の電源システム1は、離島等、商用電力系統がなく自家発電で電力を得ている地域での活用に適している。
 <第2実施形態>
 次に、第2実施形態の電源システムについて説明する。第2実施形態の電源システムの構成は、第1実施形態の電源システムの構成と概ね同様である。このために、第1実施形態と異なる部分に絞って説明する。
 図5は、本発明の第2実施形態に係る電源システムが備える太陽光発電システム3の構成を示すブロック図である。図5に示すように、太陽光発電システム3は日射計33を備える。この点、第1実施形態の構成とは異なる。日射計33は、太陽電池アレイ31の近くに付設されてよい。日射計33は、例えば発電サイトの西方に配置されてよい。日射計33を発電サイトの西方に配置することによって、天候の変化を予測し易くなる。
 なお、日射計33は、本発明の測定部の一例である。測定部は、太陽光発電システム3の出力状態を予測可能であればよい。例えば、日射計33に代えて気象状況を確認可能なカメラ等が配置されても構わない。
 図6は、本発明の第2実施形態に係る電源システムが備えるコントローラ6の機能構成を示すブロック図である。図6に示すように、コントローラ6の調整部63は、日射計33によって計測された日射量Hを取得可能に設けられている。調整部63は、例えば以下の式(G)によって、太陽光発電システム3(PCS32)の最大出力予測値P2(EST)を算出する。
 P2(EST)=H ×P2(MAX)× K  (G)
  K:効率(一定の値)
 最大出力予測値P2(EST)が得られる第2実施形態の構成では、例えば、第1実施形態の図4に示す出力制御フローにおいて次のような変更を行える。図4のステップS4において、太陽光発電システム3の実測された出力P2に代えて、P2(EST)を使用することが可能になる。なお、コントローラ6が最大出力予測値P2(EST)を算出するステップが、ステップS4より前のいずれかのタイミングで行われる必要がある。
 第2実施形態の電源システムは、第1実施形態と同様の効果を得られる。また、第2実施形態の電源システムでは、日射計33を用いて太陽光発電システム3の出力予測が可能になっている。このために、ディーゼル発電システム2及び太陽光発電システム3の出力を適切なタイミングで適切な値に設定することができる。
 <第3実施形態>
 次に、第3実施形態の電源システムについて説明する。第3実施形態の電源システムの構成は、第1実施形態の電源システムの構成と概ね同様である。このために、第1実施形態と異なる部分に絞って説明する。
 図7は、本発明の第3実施形態に係る電源システムが備えるコントローラ6の機能構成を示すブロック図である。図7に示すように、コントローラ6は、負荷電力学習部65と、予測情報記憶部66とを備える。この点、第1実施形態の構成と異なる。負荷電力学習部65は、過去の負荷5の電力利用履歴から、例えば負荷5の電力の時間変化について予測パターン(予測値)を作成する。負荷5の電力の時間変化に関する予測パターンは、例えばテーブル形式等とされて予測情報記憶部66に記憶される。予測情報記憶部66に記憶される予測パターンは、適宜更新される。
 第3実施形態においては、負荷5の電力の時間変化に関する予測値が得られる。このために、第1実施形態の図4に示す出力制御フローにおける実測値P1の代わりに、予測情報記憶部66に記憶される予測値を用いることができる。例えば、負荷5の電力が大きく変化することが予測される場合、このような予測値を用いた出力制御は有効である。ディーゼル発電システム2及び太陽光発電システム3の出力を適切なタイミングで適切な値に設定することができる。その他、第3実施形態の電源システムは、第1実施形態と同様の効果を得られる。
<その他>
 以上に示した各実施形態の構成は、本発明の例示にすぎない。各実施形態の構成は、本発明の技術的思想を超えない範囲で適宜変更されて構わない。各実施形態及び実施形態における細かな変形例は可能な範囲で組み合わせて実施することもできる。
 以上においては、ディーゼル発電システム2を補助する発電システムが太陽光発電システム3である構成を示した。しかし、これは一例にすぎない。ディーゼル発電システム2を補助する発電システムは、例えば風力発電システム等の他の自然エネルギーを利用した発電システムであって構わない。
   1  電源システム
   2  ディーゼル発電システム(第1の発電システム)
   3  太陽光発電システム(第2の発電システム)
   5  負荷
   6  コントローラ(制御部、出力制御装置)
   7  記録媒体 
   33 日射計(測定部)
   62 比較部
   63 調整部
   66 予測情報記憶部(記憶部)

Claims (13)

  1.  第1の発電システムと、前記第1の発電システムを補助する第2の発電システムとを連係して負荷に電力を供給する電源システムであって、
     前記第1及び第2の発電システムの出力を制御する制御部を備え、
     前記制御部は、前記負荷の電力と、以下の条件式(1)で求められるT値との比較を行い、当該比較の結果に基づいて、前記第1及び第2の発電システムの出力の合計が前記負荷の電力と同等になるように制御する、電源システム。
     T=P1(MIN)+P2(MAX)  (1)
       P1(MIN):前記第1の発電システムの最低定格出力
       P2(MAX):前記第2の発電システムの最大定格出力
  2.  前記制御部は、
     前記負荷の電力が前記T値以上である場合に、前記第2の発電システムの出力設定を前記P2(MAX)に決定して前記第1の発電システムの出力調整を行い、
     前記負荷の電力が前記T値より小さい場合に、前記第1の発電システムの出力設定を前記P1(MIN)に決定して前記第2の発電システムの出力調整を行う、請求項1に記載の電源システム。
  3.  当該電源システムは蓄電池を含まない、請求項1又は2に記載の電源システム。
  4.  当該電源システムは商用電力系統とは連系しない、請求項1から3のいずれか1項に記載の電源システム。
  5.  前記第1の発電システムの最大定格出力が、前記負荷の最大電力使用量と同等に設定されている、請求項1から4のいずれか1項に記載の電源システム。
  6.  前記P1(MIN)と、前記P2(MAX)とが以下の条件式(2)を満たす、請求項1から5のいずれか1項に記載の電源システム。
     P1(MIN)≧P2(MAX)  (2)
  7.  前記第2の発電システムの出力状態を予測可能とする測定部を更に備え、
     前記制御部は、前記測定部による測定結果に基づいて、前記第1及び第2の発電システムの出力制御を行う、請求項1から6のいずれか1項に記載の電源システム。
  8.  前記負荷の電力を予測可能とする情報を記憶する記憶部を更に備え、
     前記制御部は、前記記憶部に記憶される情報に基づいて、前記第1及び第2の発電システムの出力制御を行う、請求項1から7のいずれか1項に記載の電源システム。
  9.  前記第1の発電システムは、ディーゼル発電機によって発電する、請求項1から8のいずれか1項に記載の電源システム。
  10.  前記第2の発電システムは、自然エネルギーを利用して発電する、請求項1から9のいずれか1項に記載の電源システム。
  11.  第1の発電システムと、前記第1の発電システムを補助する第2の発電システムとの出力を制御する出力制御装置であって、
     負荷の電力と、以下の条件式(1)で求められるT値との比較を行う比較部と、
     前記比較部における比較結果に基づいて、前記第1及び第2の発電システムの出力の合計が前記負荷の電力と同等になるように、各発電システムの出力を調整する調整部と、
     を備える、出力制御装置。
     T=P1(MIN)+P2(MAX)  (1)
       P1(MIN):前記第1の発電システムの最低定格出力
       P2(MAX):前記第2の発電システムの最大定格出力
  12.  第1の発電システムと、前記第1の発電システムを補助する第2の発電システムとの出力を制御する出力制御方法であって、
     負荷の電力と、以下の条件式(1)で求められるT値との比較を行うステップと、
     前記比較の結果に基づいて、前記第1及び第2の発電システムの出力の合計が前記負荷の電力と同等になるように、各発電システムの出力を調整するステップと、
     を備える、出力制御方法。
     T=P1(MIN)+P2(MAX)  (1)
       P1(MIN):前記第1の発電システムの最低定格出力
       P2(MAX):前記第2の発電システムの最大定格出力
  13.  コンピュータが実行可能なプログラムを非一時的に記録したコンピュータ読取可能な記録媒体であって、
     請求項12に記載の出力制御方法をコンピュータに実行させる出力制御用プログラムが記録される、記録媒体。
PCT/JP2015/073322 2015-08-20 2015-08-20 電源システム、出力制御装置、出力制御方法、及び、記録媒体 WO2017029747A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2015/073322 WO2017029747A1 (ja) 2015-08-20 2015-08-20 電源システム、出力制御装置、出力制御方法、及び、記録媒体
PCT/JP2016/056334 WO2017029821A1 (ja) 2015-08-20 2016-03-02 電源システム、出力制御装置、出力制御方法、及び、記録媒体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/073322 WO2017029747A1 (ja) 2015-08-20 2015-08-20 電源システム、出力制御装置、出力制御方法、及び、記録媒体

Publications (1)

Publication Number Publication Date
WO2017029747A1 true WO2017029747A1 (ja) 2017-02-23

Family

ID=58051523

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2015/073322 WO2017029747A1 (ja) 2015-08-20 2015-08-20 電源システム、出力制御装置、出力制御方法、及び、記録媒体
PCT/JP2016/056334 WO2017029821A1 (ja) 2015-08-20 2016-03-02 電源システム、出力制御装置、出力制御方法、及び、記録媒体

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/056334 WO2017029821A1 (ja) 2015-08-20 2016-03-02 電源システム、出力制御装置、出力制御方法、及び、記録媒体

Country Status (1)

Country Link
WO (2) WO2017029747A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109492824B (zh) * 2018-11-28 2022-04-26 国网山东省电力公司电力科学研究院 考虑源-网-荷多方利益的分散式风储系统优化方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009174329A (ja) * 2008-01-21 2009-08-06 Univ Of Ryukyus 自然エネルギー発電設備を用いた電力系統周波数制御装置
JP2011130584A (ja) * 2009-12-17 2011-06-30 Fuji Electric Systems Co Ltd 発電計画作成方法および発電計画作成システム
JP2013013176A (ja) * 2011-06-28 2013-01-17 Mitsubishi Electric Corp 自立電源装置
WO2013024709A1 (ja) * 2011-08-12 2013-02-21 シャープ株式会社 発電制御装置および複合型自立発電システム
JP2013135561A (ja) * 2011-12-27 2013-07-08 Tokyo Gas Co Ltd 発電出力変動補完システム、その制御装置、プログラム
WO2013146773A1 (ja) * 2012-03-27 2013-10-03 シャープ株式会社 電源システム
WO2015001800A1 (ja) * 2013-07-03 2015-01-08 川崎重工業株式会社 マイクログリッドの制御装置及びその制御方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009174329A (ja) * 2008-01-21 2009-08-06 Univ Of Ryukyus 自然エネルギー発電設備を用いた電力系統周波数制御装置
JP2011130584A (ja) * 2009-12-17 2011-06-30 Fuji Electric Systems Co Ltd 発電計画作成方法および発電計画作成システム
JP2013013176A (ja) * 2011-06-28 2013-01-17 Mitsubishi Electric Corp 自立電源装置
WO2013024709A1 (ja) * 2011-08-12 2013-02-21 シャープ株式会社 発電制御装置および複合型自立発電システム
JP2013135561A (ja) * 2011-12-27 2013-07-08 Tokyo Gas Co Ltd 発電出力変動補完システム、その制御装置、プログラム
WO2013146773A1 (ja) * 2012-03-27 2013-10-03 シャープ株式会社 電源システム
WO2015001800A1 (ja) * 2013-07-03 2015-01-08 川崎重工業株式会社 マイクログリッドの制御装置及びその制御方法

Also Published As

Publication number Publication date
WO2017029821A1 (ja) 2017-02-23

Similar Documents

Publication Publication Date Title
EP2892123A1 (en) Power flow control system, management device, and program
JP5073258B2 (ja) ナトリウム−硫黄電池の制御方法
JP5519692B2 (ja) 二次電池の制御方法および電力貯蔵装置
JP6190185B2 (ja) マイクログリッドの制御装置及びその制御方法
JP5885711B2 (ja) 分散電源設備システム
JP2013183622A (ja) 分散電源システム及び電圧調整方法
JP2008210586A (ja) ナトリウム−硫黄電池の運用ガイダンス装置
JP2015192566A (ja) 電力システム及び直流送電方法
JP2017051083A (ja) 発電システム、発電方法およびプログラム
JP5104991B1 (ja) 電力安定化制御装置、電力安定化プログラム
WO2010038663A1 (ja) ナトリウム-硫黄電池の制御方法
TW201824683A (zh) 自然能源發電系統、無效電力控制器或是自然能源發電系統的控制方法
WO2016098200A1 (ja) 太陽光発電所の制御システム
JP2012241576A (ja) 風力発電装置群の制御システム及び制御方法
JP2020043757A (ja) 電力供給システム
JP6189092B2 (ja) 系統用蓄電池の複数目的制御装置
WO2014167830A1 (ja) 電力制御システム
WO2017029821A1 (ja) 電源システム、出力制御装置、出力制御方法、及び、記録媒体
JP2012182868A (ja) 太陽光発電装置
JP5543355B2 (ja) 連系システムの制御方法
JP6507666B2 (ja) 停電時間帯予測装置、停電時間帯予測方法、プログラム
JP2018014775A (ja) 統括制御装置、統括制御システム、統括制御方法および統括制御プログラム
WO2019193837A1 (ja) 発電システムおよびその制御方法
WO2016027378A1 (ja) 需給制御装置、需給制御方法
KR101707013B1 (ko) 복합발전 무효전력 제어장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15901729

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15901729

Country of ref document: EP

Kind code of ref document: A1