WO2017028579A1 - 用于视频监控的摄像机及监控系统 - Google Patents

用于视频监控的摄像机及监控系统 Download PDF

Info

Publication number
WO2017028579A1
WO2017028579A1 PCT/CN2016/083108 CN2016083108W WO2017028579A1 WO 2017028579 A1 WO2017028579 A1 WO 2017028579A1 CN 2016083108 W CN2016083108 W CN 2016083108W WO 2017028579 A1 WO2017028579 A1 WO 2017028579A1
Authority
WO
WIPO (PCT)
Prior art keywords
camera
monitoring
axis
electronic compass
information
Prior art date
Application number
PCT/CN2016/083108
Other languages
English (en)
French (fr)
Inventor
王艳侠
练斌
陈树毅
Original Assignee
杭州海康威视数字技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州海康威视数字技术股份有限公司 filed Critical 杭州海康威视数字技术股份有限公司
Priority to US15/748,232 priority Critical patent/US20180220103A1/en
Priority to EP16836443.8A priority patent/EP3337167A4/en
Publication of WO2017028579A1 publication Critical patent/WO2017028579A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/695Control of camera direction for changing a field of view, e.g. pan, tilt or based on tracking of objects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/80Camera processing pipelines; Components thereof

Definitions

  • the present application relates to the field of video surveillance, and in particular to a camera and a monitoring system for video surveillance.
  • the embodiment of the present application provides a camera and a monitoring system for video surveillance to solve at least the technical problem that the monitoring range of the camera cannot be accurately determined.
  • a camera for video surveillance includes: a sensor device for collecting monitoring direction information of the camera; a positioning device for positioning a geographic location of the camera; and a processor, It is used to acquire the monitoring azimuth of the camera based on the monitoring direction information, and determine the monitoring area of the camera according to the monitoring azimuth and the geographical position.
  • the sensor device, the positioning device and the processor are disposed on the main board, and the X-axis of the sensor device is arranged in a direction consistent with the monitoring direction of the lens in the camera.
  • the sensor device comprises: a horizontal electronic compass for detecting a magnetic field intensity component in each axial direction of the camera position; a gravity sensor for measuring an acceleration component in each axial direction of the camera position, wherein the monitoring direction information
  • the method includes: a magnetic field strength component and an acceleration component; the processor determines a tilt angle and a roll angle of the camera based on the acceleration component, and calculates a monitoring azimuth of the camera according to the magnetic field strength component, the tilt angle, and the roll angle.
  • the gravity sensor includes: a three-axis angular velocity sensor and a three-axis acceleration sensor.
  • the horizontal electronic compass communicates with the processor through an I2C interface
  • the gravity sensor communicates with the processor through the SPI interface.
  • the sensor device comprises: a three-dimensional electronic compass comprising: a three-axis accelerometer for acquiring acceleration components in three axial directions; a three-axis magnetometer comprising: three mutually perpendicular magnetics a resistance sensor, wherein each of the axial magnetoresistive sensors is used to collect a magnetic field strength component in an axial direction thereof,
  • the monitoring direction information includes: a magnetic field strength component and an acceleration component; the processor determines a tilt angle and a rolling angle of the camera based on the acceleration component, and calculates a monitoring azimuth of the camera according to the magnetic field strength component, the tilt angle, and the rolling angle.
  • the three-dimensional electronic compass communicates with the processor through an I2C interface.
  • the positioning device comprises: an antenna; a GPS receiver, the GPS receiver receives the navigation information of the navigation satellite through the antenna, and determines the geographical location based on the navigation information.
  • GPS receiver communicates with the processor via a UART interface and/or an I2C interface.
  • the processor is further configured to receive an image captured by the camera, and superimpose the information of the monitoring area on the image to obtain the superimposed image.
  • a monitoring system comprising the camera of any of the above.
  • the camera sends the information of the monitoring area and/or the superimposed image to the upper computer;
  • the monitoring system further includes a host computer, and after receiving the information of the monitoring area and/or the superimposed image, the upper computer records the monitoring area and/or The correspondence between the superimposed image and the camera.
  • the processor obtains the monitoring azimuth angle from the monitoring direction information, and then combines the geographical location information to further determine the monitoring area of the camera.
  • FIG. 1 is a schematic diagram of a video camera for video surveillance according to an embodiment of the present application
  • FIG. 2 is a schematic view showing the arrangement of an optional sensor device according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of an arrangement of an optional horizontal electronic compass according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram showing the arrangement of an optional three-dimensional electronic compass according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of an optional camera for video surveillance according to an embodiment of the present application.
  • FIG. 6 is a structural diagram of an optional three-dimensional electronic compass according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of another alternative camera for video surveillance in accordance with an embodiment of the present application.
  • FIG. 8 is a schematic diagram of an optional monitoring azimuth angle ⁇ according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a second optional monitoring azimuth angle ⁇ according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of an optional monitoring area in accordance with an embodiment of the present application.
  • FIG. 11 is a schematic diagram of an alternative monitoring system in accordance with an embodiment of the present application.
  • the GPS receiver receives data from multiple satellites, including the ephemeris clock, satellite number and other information. Since the position of the satellite relative to the earth is determined at a specific time, the distance between the receiver and the satellite can pass. The ephemeris time difference when the signal arrives is calculated, and then the data of different satellites can be combined to know the specific position of the receiver, the speed of motion and the like.
  • GPS Global Positioning System
  • a magnetometer refers to a variety of instruments used to measure magnetic fields, also known as magnetometers or Gauss meters.
  • the physical quantity describing the magnetic field in the International System of Units is the magnetic induction intensity, the unit is Tesla (T). Since 1T means a very strong magnetic field, the unit of magnetic induction is Gauss in the CGS system commonly used in engineering.
  • the magnetic induction is a vector with size and direction characteristics.
  • the magnetometer can test the magnitude and direction of the magnetic field of the camera in the earth's magnetic field, and then confirm the angle between the current camera and the north, south, and north directions.
  • the magnetometer is widely used in real life and can be embedded in a hand-held camera that requires a compass function as a high-performance camera and navigation camera for magnetic field induction.
  • CGS system (Centimeter-Gram-Second system of units), in centimeter, gram, and second units, usually used in the discipline of gravity and related mechanics.
  • Electronic compass also known as digital compass, has been widely used as a navigation instrument or attitude sensor. Compared with the traditional pointer and balance frame structure compass, the electronic compass has low energy consumption, small size, light weight, high precision and miniaturization, and its output signal can realize digital display through processing.
  • Electronic compasses can be divided into horizontal electronic compasses and three-dimensional electronic compasses.
  • the horizontal electronic compass requires the user to maintain the level of the compass when using it. Otherwise, when the compass is tilted, the heading change will be given and the heading does not change.
  • the three-dimensional electronic compass incorporates a tilt correction sensor inside, which overcomes the strict limitation of the horizontal electronic compass. When the electronic compass is tilted, the tilt sensor can compensate the compass for the tilt angle, so that the heading data is accurate even though the compass is tilted. None wrong.
  • G-sensor Gravity sensor (or acceleration sensor). It can sense the change of acceleration force.
  • the acceleration force is the force that acts on the object during the acceleration process.
  • Various movement changes such as shaking, falling, rising, falling, etc. can be converted into electrical signals by G-sensor, and then After calculation and analysis by the microprocessor, output to the central processing unit (ie CPU, processor), detecting the addition of the camera The speed is used to determine the tilt angle of the camera or to detect free fall.
  • CPU central processing unit
  • Visual field refers to the area that can be seen.
  • the visual field refers to the area that the camera can monitor.
  • a camera with this function, together with an application with map data, can display the monitoring area on the map.
  • an embodiment of a video camera for video surveillance is provided.
  • the device includes a sensor device 10, a positioning device 30, and a processor 50.
  • the sensor device 10 is configured to collect monitoring direction information of the camera.
  • the positioning device 30 is configured to locate the geographic location of the camera.
  • the processor 50 is configured to acquire a monitoring azimuth angle ⁇ of the camera based on the monitoring direction information, and determine a monitoring area of the camera according to the monitoring azimuth angle ⁇ and the geographic location.
  • the processor acquires the monitoring azimuth angle ⁇ from the monitoring direction information, and then combines the geographical location information to determine the monitoring area of the camera.
  • the monitoring area after determining the accurate monitoring area of the camera, the monitoring area can be monitored in all directions without dead angle, and the repeated placement of the surveillance cameras in the same monitoring area can be avoided; or the monitoring can be performed according to the required situation.
  • the video data of the area is directly looking for cameras that monitor the area.
  • the camera in the above embodiment may be referred to as a camera supporting a visible field, and the monitoring area is a limited spatial range captured by the camera in a geographical position.
  • the senor device, the positioning device, and the processor may be disposed on the main board, and the X-axis of the sensor device is disposed in a direction consistent with the monitoring direction of the lens in the camera.
  • the direction of the X-axis of the sensor device (the arrow shown in Figure 2)
  • the head (+Ax, +Mx) is set to the direction that is consistent with the direction in which the camera lens is monitored.
  • the direction in which the X-axis of the sensor device is set can be clearly determined by the data sheet of each sensor. The following describes the correct placement direction information of the electronic compass and the acceleration sensor in the printed circuit board (PCB).
  • the direction of +Ax, +Mx indicates that the component of the acceleration and the magnetic field strength in the direction is a positive value; "1" in FIG. 2 refers to the 1-foot indicator of the chip.
  • the sensor device can establish a spatial rectangular coordinate system with its central position as the origin, that is, establish an X-axis, a Y-axis and a Z-axis, as shown in FIG. 2, the Y-axis of the sensor device is an arrow in the figure (+Ay, + As shown in My), the Z axis of the sensor device is shown by the arrow (+Az, +Mz) in the figure, and the model of the sensor device can be FXOS8700CQ model.
  • the sensor device in the above embodiment may include an electronic compass, wherein the electronic compass may be divided into a horizontal electronic compass and a three-dimensional electronic compass.
  • the setting direction of the X-axis of the horizontal electronic compass coincides with the direction of the lens of the camera.
  • the model of the horizontal electronic compass may be AK09911
  • the setting direction of the Y axis of the horizontal electronic compass is the Y axis direction as shown in FIG. 3
  • the setting direction of the Z axis of the horizontal electronic compass is the Z axis direction in FIG. 3, the above level
  • the X-axis, Y-axis and Z-axis of the electronic compass are perpendicular to each other and form a spatial rectangular coordinate system.
  • the setting direction of the X-axis of the three-dimensional electronic compass (the +X-axis direction in FIG. 4) is consistent with the direction of the camera lens.
  • the model of the three-dimensional electronic compass may be MPU-6500
  • the setting direction of the Y-axis of the three-dimensional electronic compass is the +Y-axis direction as shown in FIG. 4
  • the setting direction of the Z-axis of the three-dimensional electronic compass is as shown in FIG.
  • the X-axis, the Y-axis and the Z-axis of the above-mentioned three-dimensional electronic compass are perpendicular to each other and constitute a spatial rectangular coordinate system.
  • the sensor device comprises: a horizontal electronic compass for detecting magnetic field strength components in respective axial directions of the camera; and a gravity sensor for measuring acceleration components in respective axial directions of the camera, wherein the monitoring direction
  • the information includes: a magnetic field strength component and an acceleration component; the processor determines the tilt angle ⁇ and the roll angle ⁇ of the camera based on the acceleration component, and calculates the monitored azimuth angle ⁇ of the camera according to the magnetic field strength component, the tilt angle ⁇ , and the roll angle ⁇ .
  • the surveillance camera can use the horizontal electronic compass to determine its location.
  • the intensity component of the magnetic field in each axial direction is determined by G-sensor (ie, gravity sensor) to monitor the tilt angle ⁇ and the roll angle ⁇ .
  • G-sensor ie, gravity sensor
  • These three physical quantities are combined and processed by the processor to obtain the monitored azimuth ⁇ , which can be fast and accurate. Describe the range of the visual field monitored by the camera (ie the monitoring area).
  • the gravity sensor may include: a three-axis angular velocity sensor and a three-axis acceleration sensor.
  • the three-axis angular velocity sensor and the three-axis acceleration sensor in the gravity sensor respectively acquire the monitoring tilt angle ⁇ and the rolling angle ⁇ information
  • the processor acquires and monitors the monitoring direction information.
  • the azimuth angle ⁇ , in combination with the monitoring tilt angle ⁇ and the roll angle ⁇ information ie, geographic location information
  • the geographical location information can be obtained more accurately, so that the obtained monitoring area information is more accurate.
  • the horizontal electronic compass can communicate with the process via an I2C interface, and the gravity sensor communicates with the processor via the SPI interface.
  • the power supply 70 supplies power to the horizontal electronic compass 11, the gravity sensor 13, the central processing unit 51, and the GPS receiver 33, wherein the horizontal electronic compass 11 communicates with the 12C in FIG. 5 through the 12C interface.
  • the line is in communication with the central processing unit 51, the central processing unit 51 is connected to the GPS receiver 33 via a UART communication line and/or a 12C communication line, the GPS receiver 33 is connected to the antenna 31, and the gravity sensor 13 is connected to the central processing unit 51 via the SPI communication line. connection.
  • a horizontal electronic compass a GPS receiver, and a G-sensor (ie, a gravity sensor) can be employed to determine the surveillance area of the camera.
  • a G-sensor ie, a gravity sensor
  • the GPS module ie GPS receiver
  • the positioning chip supports GPS navigation function
  • the central processor controls the GPS receiver to realize the GPS navigation function, and can pass the UART communication line.
  • I2C communication line, SPI communication line, USB communication line, etc. can also be used according to different needs) to communicate with the GPS receiver and configure the working mode of the GPS receiver.
  • the data from the navigation satellite is received through the antenna, mainly including the satellite number and the ephemeris clock, and the distance between the GPS receiver and the satellite can be calculated by the ephemeris time difference when the signal arrives, and the integrated multiple
  • the data of the satellite (generally more than four) can know the specific location of the GPS receiver, including latitude and longitude, altitude and so on.
  • the GPS receiver then transmits the data to the central processing unit (ie, the CPU, that is, the processor) through a data interface such as the UART (such as the UART communication line in FIG. 5), and the central processing unit (ie, the CPU, that is, the processor).
  • the central processing unit ie, the CPU, that is, the processor
  • Get the camera Specific position information the positioning error generated by using this method can reach within 10m.
  • the camera is also compatible with other navigation systems, including China's Beidou system, Russia's GNSS navigation system and Europe's Galileo navigation system.
  • the model of the horizontal electronic compass can be selected from AKM AK09911 horizontal electronic compass.
  • the horizontal electronic compass integrates a 3-axis magnetometer with 14-bit AD conversion (including X-axis, Y-axis and Z-axis).
  • the maximum magnetic induction can be detected. With a strength of ⁇ 4900 ⁇ T, the minimum magnetic induction change that can be detected is 9800 ⁇ T/214 (ie 0.60 ⁇ T), which supports I2C communication.
  • the magnetometer can control the angle of error between the camera and the north-south direction of the camera to within ⁇ 5°.
  • the data output from the horizontal electronic compass to the processor is the component of the magnetic field strength of each axis, and then AD converted to the processor.
  • the model of the G-sensor (ie, the gravity sensor in the sensor device, also known as the acceleration sensor) can be the MPU-6500 model of the Invensense manufacturer.
  • the chip integrates a three-axis angular velocity sensor and a three-axis acceleration sensor.
  • the main use of the internal three-axis acceleration sensor, the output of the three-axis acceleration sensor to the processor is the component of the acceleration on the three axes, which is digitally transmitted to the processor after AD conversion.
  • the range of the accelerometer is ⁇ 2g, ⁇ 4g, ⁇ 8g and ⁇ 16g. If the range is ⁇ 2g in actual use, after the internal 16bit AD conversion, the digital output is output to the central processor, and the camera can be calculated by software algorithm.
  • the tilt angle ⁇ is small, and the judgment error range of the tilt angle ⁇ is controlled within ⁇ 1°; the chip supports two communication modes of SPI and I2C, and the default is SPI communication mode.
  • the sensor device comprises: a three-dimensional electronic compass comprising: a three-axis accelerometer and a three-axis magnetometer.
  • a three-axis accelerometer is used to collect acceleration components in three axial directions.
  • the three-axis magnetometer includes three mutually perpendicular magnetoresistive sensors, wherein each of the axial magnetoresistive sensors is configured to collect a magnetic field strength component in an axial direction thereof, wherein the monitoring direction information includes : Magnetic field strength component and acceleration component.
  • the processor determines the tilt angle ⁇ and the roll angle ⁇ of the camera based on the acceleration component, and is strong according to the magnetic field
  • the degree of component, the tilt angle ⁇ , and the roll angle ⁇ are used to calculate the monitored azimuth angle ⁇ of the camera.
  • the three-dimensional electronic compass communicates with the processor through an I2C interface.
  • a three-dimensional electronic compass and a GPS module ie, a positioning device
  • a GPS module ie, a positioning device
  • the GPS module ie GPS receiver
  • U-blox NEO-6M positioning chip can use U-blox NEO-6M positioning chip, and its working principle will not be described here.
  • the three-dimensional electronic compass can be modeled on Freescale's FXOS8700CQ model.
  • the three-axis accelerometer includes the X-axis.
  • the acceleration sensor, the Y-axis acceleration sensor, and the Z-axis acceleration sensor are respectively used to acquire acceleration components in three axial directions of the X-axis, the Y-axis, and the Z-axis.
  • the three-axis magnetometer includes an X-axis magnetoresistive sensor, a Y-axis magnetoresistive sensor, and a Z-axis magnetoresistive sensor for acquiring magnetic field strength components on the X-axis, the Y-axis, and the Z-axis, respectively.
  • the three-axis accelerometer is digitally output to the central processing unit 51 after internal 16-bit AD conversion (ie, 16-bit analog-to-digital conversion), and the three-axis magnetometer undergoes internal 14-bit AD conversion (ie, 14-bit analog-to-digital conversion) and digital output.
  • the three-dimensional electronic compass supports two communication modes of SPI and I2C, and the SPI communication mode is used by default.
  • the working principle of the three-dimensional electronic compass is as shown in FIG. 7.
  • the power supply 70 supplies power to the three-dimensional electronic compass 15, the central processing unit 51, and the GPS receiver 33, wherein the three-dimensional electronic compass 15 is processed through the 12C communication line and the central processing as shown in FIG.
  • the unit 51 communicates, and the central processing unit 51 communicates with the GPS receiver 33 via a UART communication line and/or a 12C communication line as shown in FIG. 7, and the GPS receiver 33 is connected to the antenna 31.
  • the FXOS8700CQ model's 3D electronic compass is packaged in a small 3x3x1.2mm Quad Flat No-lead Package (QFN) with low power consumption and communication between front-end processes (Internet-Process Communication, IPC)
  • the resources occupied in the camera are small.
  • the three-dimensional electronic compass chip integrates a 16-bit AD conversion (ie, analog-to-digital conversion) three-axis accelerometer and a 14-bit AD conversion (ie, analog-to-digital conversion) three-axis magnetometer.
  • the information collected by the three-axis accelerometer is acceleration information on three axes, and the collected information is sent to the processor (such as the central processing unit 51) through AD conversion (ie, analog-to-digital conversion).
  • a magnetometer ie, a three-axis magnetometer
  • the central processing unit can control the 3D electronic compass of the FXOS8700CQ model through I2C and SPI communication modes. By default, I2C communication mode is used.
  • the accelerometer's maximum measurable acceleration is ⁇ 2g/ ⁇ 4g/ ⁇ 8g
  • the magnetometer ie, the three-axis magnetometer
  • the maximum test acceleration value of the accelerometer should be ⁇ 2g to meet the requirements.
  • the minimum detectable acceleration change on each axis is 4000mg/216 (ie 0.06mg), the data error range that can detect the tilt angle ⁇ in camera installation is controlled within ⁇ 1°.
  • the magnetometer inside the FXOS8700CQ 3D electronic compass 15 can sense a magnetic field range of ⁇ 1200 ⁇ T, and the magnetic field strength of the geomagnetic field is very small, about 0.5-0.6 Gauss, which is 5-6*E-5 Tesla (50 -60 ⁇ T) to meet the application requirements of the camera.
  • the minimum detectable magnetic induction of each magnet on the axis is 2400 ⁇ T/214 (0.15 ⁇ T).
  • the magnetometer can provide the angle between the north and south of the camera when the camera is installed.
  • the error range is controlled within ⁇ 5°.
  • the azimuth angle ⁇ i.e., the angle ⁇ between the magnetic north and the X-axis direction or the deflection angle of the electronic compass
  • the local magnetic field line direction (the direction of Hearth in FIG. 8 , that is, the direction of the ground) and the Z-axis direction in the three-axis direction of the electronic compass (ie, the setting direction of the Z-axis of the electronic compass)
  • the plane formed by the X-axis of the electronic compass in the three-axis direction ie, the setting direction of the X-axis of the electronic compass
  • the Y-axis that is, the setting direction of the Y-axis of the electronic compass
  • the local magnetic field strength components Hx, Hy, and Hz are respectively the local magnetic field strength at the X-axis of the electronic compass (as shown in
  • the electronic compass has an angle with the local horizontal plane (i.e., the inclination angle ⁇ , as shown by ⁇ in Fig. 9)
  • the Y-axis of the electronic compass that is, the setting direction of the Y-axis of the electronic compass
  • the local area s level
  • the angle of the face is the roll angle ⁇ as shown in FIG. 9, and the tilt angle ⁇ and the roll angle ⁇ can be detected by an accelerometer, and the calculation formula is as follows:
  • H x X M cos( ⁇ )+Y M sin( ⁇ )sin( ⁇ )-Z M sin( ⁇ )cos( ⁇ )
  • H y Y M cos( ⁇ )+Z M sin( ⁇ )
  • X M is the magnetic induction component of the X-axis of the electronic compass
  • Y M is the magnetic induction component of the Y-axis of the electronic compass
  • Z M is the magnetic induction component of the Z-axis of the electronic compass.
  • the size of the components Hx and Hy on the X-axis and Y-axis of the electronic compass ie, the X and Y axes of the electronic compass, as shown in the X and Y axes in Fig. 9 can be calculated.
  • the tilt angle ⁇ is the tilt angle of the camera calculated by the magnetometer, that is, the angle formed by the plane formed by the X-axis and the Y-axis of the electronic compass and the local horizontal plane, and can also be represented by Pitch.
  • the roll angle - ⁇ is the angle between the setting direction of the Y-axis of the electronic compass (the -Y axis direction in Fig. 9) and the local horizontal plane (the projection of the Y-axis of the electronic compass shown in Fig. 9 in the horizontal plane), Can be represented by Roll.
  • the setting direction of the X-axis of the electronic compass, the setting direction of the Y-axis of the electronic compass, and the setting direction of the Z-axis of the electronic compass are perpendicular to each other.
  • the direction of the gravity vector is 90° to the local horizontal plane
  • the direction of the X-axis component of the magnetic field is in the direction of Xh in Fig. 9
  • the direction of the Y-axis component of the magnetic field is in the direction of Yh in Fig. 9.
  • the sensor device can accurately detect the monitoring position information of the camera (such as the tilt angle ⁇ , the roll angle ⁇ , and the monitoring azimuth ⁇ ), and the IPC camera combines the angle of the camera installation (ie, the tilt angle ⁇ described above) and the field of view of the lens. It is possible to know the size of the area monitored by the camera, thereby realizing the visual field function of the camera.
  • the electronic compass and the G-sensor can detect the east-to-south angle ⁇ of the camera (ie, the above-mentioned monitoring azimuth ⁇ ), wherein the east-south can pass through, for example, Figure 10 shows the direction of the east, south and north.
  • G-sensor ie gravity sensing
  • the camera can detect that the orientation of the lens is a downward tilt angle ⁇ . It is easy to calculate the range of the visible field as shown in FIG. 10 by knowing the lens field angle ⁇ of the camera, wherein the angle of view ⁇ is on the camera.
  • the range of field of view of the mounted lens is a parameter of the camera, and the larger the field of view of the lens, the larger the field of view (ie, the range of view).
  • the processor comprises: a reading device and an image processing unit.
  • the reading device is configured to read the angle of view of the lens of the camera from the memory;
  • the image processing unit is configured to monitor the azimuth angle ⁇ , the field of view angle ⁇ , and the height of the camera lens from the ground based on the tilt angle ⁇ , such as h) shown in Fig. 10 determines the monitoring area of the camera (i.e., the range of the visible field as shown in Fig. 10).
  • the positioning device comprises: an antenna and a GPS receiver, wherein the GPS receiver receives the navigation information of the navigation satellite through the antenna, and determines the geographic location based on the navigation information.
  • the data from the navigation satellite is received through the antenna, mainly including information such as the satellite number and the ephemeris clock, and the distance between the GPS receiver and the satellite can be obtained by the ephemeris when the signal arrives.
  • the time difference is calculated.
  • the data of multiple satellites (generally more than four) can be combined to know the specific location of the receiver, including latitude and longitude, altitude and so on.
  • the GPS receiver communicates with the processor via a UART interface and/or an I2C interface.
  • the visual domain camera can calculate the number of cameras to be used according to the area that needs to be controlled, thereby preventing overlapping deployment and avoiding waste of resources.
  • the relevant departments need to call the video data of a specific area, it is easy to find the camera that monitors the area, which improves the efficiency of handling the relevant departments.
  • the monitoring area information collected by the visual domain camera can be called to realize the global blind control.
  • the processor is further configured to receive an image captured by the camera, and superimpose the information of the monitoring area on the image to obtain the superimposed image.
  • the information of the monitoring area in the foregoing embodiment may include monitoring direction information and geographic location information of the camera, and specifically may include magnetic field strength components in respective axial directions of the camera position, acceleration components in respective axial directions of the camera position, and tilting. Angle ⁇ , monitoring azimuth ⁇ , field of view angle ⁇ , and the height of the camera lens from the ground.
  • the camera lens acquisition image is sent to the processor, and after receiving the image, the processor superimposes the information of the monitoring area on the image to obtain a new superimposed image.
  • the processor can perform further information comparison and analysis work on the collected image, and achieve the effect of calculating the number of cameras to be controlled within the range to be monitored according to the information superimposed on the image.
  • an embodiment of a monitoring system comprising the camera of any of the above embodiments.
  • the processor acquires the monitoring azimuth angle ⁇ from the monitoring direction information, and then combines the geographical location information to determine the camera.
  • the processor in the monitoring system superimposes the information of the monitoring area on the image to obtain a new image with superimposed information.
  • the camera in the monitoring system can calculate the number of cameras to be used in the monitoring system according to the area to be controlled and the image superimposed with the monitoring area information, thereby preventing overlapping monitoring of the cameras of the monitoring system and avoiding resources. waste.
  • the relevant departments need to call the video data of a specific area, it is easy to find the corresponding camera to monitor the area, thereby improving the efficiency of the relevant departments.
  • the monitoring system can realize the global blind-free control effect of the camera in the monitoring system by calling the monitoring area information collected by the camera and superimposing the image and other analysis by the processor.
  • the camera may send the information of the monitoring area and/or the superimposed image to the upper computer;
  • the monitoring system further includes: the upper computer, after the upper computer receives the information of the monitoring area and/or the superimposed image, records the monitoring area. And/or the correspondence between the superimposed image and the camera.
  • the monitoring system may include one or more cameras 100 and one or more upper computers 200. Only the embodiment in which the monitoring system includes one camera 100 and one upper computer 200 is shown in FIG. After the camera captures the image and superimposes the monitoring information on the image to obtain a new superimposed image, the camera may send the information of the monitoring area to the host computer, or the camera may send the superimposed image to the host computer, or the camera may send the image. Information of the above monitoring area and superimposed The image is sent to the host computer, and after the host computer receives the information sent by the camera, the corresponding relationship between the information sent by the camera and the camera is recorded.
  • the monitoring system can call the monitoring system to record the information of the monitoring area and the corresponding relationship between the superimposed image and the camera, and analyze and process the same, so that the global non-dead-angle control of the camera in the monitoring system can be realized. effect.
  • the disclosed technical contents may be implemented in other manners.
  • the device embodiments described above are only schematic.
  • the division of the unit may be a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or may be Integrate into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, unit or module, and may be electrical or otherwise.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • a computer readable storage medium A number of instructions are included to cause a computer device (which may be a personal computer, server or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a Read-Only Memory (ROM), a Random Access Memory (RAM), a removable hard disk, a magnetic disk, or an optical disk, and the like, which can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Studio Devices (AREA)

Abstract

一种用于视频监控的摄像机及监控系统。其中,该摄像机包括:传感器装置,用于采集摄像机的监控方向信息;定位装置,用于定位摄像机的地理位置;处理器,用于基于监控方向信息获取摄像机的监控方位角,并根据监控方位角和地理位置确定摄像机的监控区域。解决了无法准确确定摄像机的监控范围的技术问题,实现了摄像机可以准确确定监控范围的效果。

Description

用于视频监控的摄像机及监控系统
本申请要求于2015年8月14日提交中国专利局、申请号201510501653.2发明名称为“用于视频监控的摄像机及监控系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及视频监控领域,具体而言,涉及一种用于视频监控的摄像机及监控系统。
背景技术
现有技术中,获取摄像机位置时,需要人工手动地通过OSD(on-screen display,即为屏幕菜单式调节方式)或者添加字符功能把摄像机的位置信息添加给摄像机,不但要耗费大量的人力去测算位置信息,而且测算获得的位置信息不准确,通过不准确的位置信息无法准确确定监控范围。
针对上述的无法准确确定摄像机的监控范围的问题,目前尚未提出有效的解决方案。
发明内容
本申请实施例提供了一种用于视频监控的摄像机及监控系统,以至少解决无法准确确定摄像机的监控范围的技术问题。
根据本申请实施例的一个方面,提供了一种用于视频监控的摄像机,该摄像机包括:传感器装置,用于采集摄像机的监控方向信息;定位装置,用于定位摄像机的地理位置;处理器,用于基于监控方向信息获取摄像机的监控方位角,并根据监控方位角和地理位置确定摄像机的监控区域。
进一步地,传感器装置、定位装置以及处理器设置在主板上,传感器装置的X轴的设置方向与摄像机中镜头的监控方向一致。
进一步地,传感器装置包括:水平电子罗盘,用于检测摄像机所在位置的各个轴向上的磁场强度分量;重力传感器,用于测量摄像机所在位置的各个轴向上的加速度分量,其中,监控方向信息包括:磁场强度分量和加速度分量;处理器基于加速度分量确定摄像机的倾斜角和滚动角,并根据磁场强度分量、倾斜角和滚动角计算摄像机的监控方位角。
进一步地,重力传感器包括:三轴角速度传感器和三轴加速度传感器。
进一步地,水平电子罗盘通过I2C接口与处理器通信,重力传感器通过SPI接口与处理器通信。
进一步地,传感器装置包括:三维电子罗盘,三维电子罗盘包括:三轴加速度计,用于采集三个轴向上的加速度分量;三轴磁力计,三轴磁力计包括:三个相互垂直的磁阻传感器,其中,每个轴向上的磁阻传感器用于采集其所在轴向上的磁场强度分量,
其中,监控方向信息包括:磁场强度分量和加速度分量;处理器基于加速度分量确定摄像机的倾斜角和滚动角,并根据磁场强度分量、倾斜角和滚动角计算摄像机的监控方位角。
进一步地,三维电子罗盘通过I2C接口与处理器通信。
进一步地,处理器包括:读取装置,用于从存储器中读取摄像机的镜头的视场角度;图像处理单元,用于基于倾斜角、监控方位角以及视场角度确定摄像机的监控区域。
进一步地,定位装置包括:天线;GPS接收机,GPS接收机通过天线接收导航卫星的导航信息,并基于导航信息确定地理位置。
进一步地,GPS接收机通过UART接口和/或I2C接口与处理器通信。
进一步地,处理器还用于接收摄像头采集的图像,并将监控区域的信息叠加在图像上,得到叠加后的图像。
根据本申请实施例的另一个方面,提供了一种监控系统,该监控系统包括上述任意一种的摄像机。
进一步地,摄像机发送监控区域的信息和/或叠加后的图像至上位机;监控系统还包括上位机,上位机接收到监控区域的信息和/或叠加后的图像之后,记录监控区域和/或叠加后的图像与摄像机的对应关系。
在本申请实施例中,在传感器装置和定位装置分别获取摄像机的监控方向信息和地理位置信息之后,处理器由监控方向信息获取监控方位角,再结合地理位置信息,从而进一步确定摄像机的监控区域。通过采用上述实施例,从而实现了摄像机可以明确定位出自身位置和监控范围的效果,进而解决了无法准确确定摄像机的监控范围的技术问题。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1是根据本申请实施例的一种用于视频监控的摄像机的示意图;
图2是根据本申请实施例的一种可选的传感器装置的设置示意图;
图3是根据本申请实施例的一种可选的水平电子罗盘的设置示意图;
图4是根据本申请实施例的一种可选的三维电子罗盘的设置示意图;
图5是根据本申请实施例的一种可选的用于视频监控的摄像机的原理图;
图6是根据本申请实施例的一种可选的三维电子罗盘的结构图;
图7是根据本申请实施例的另一种可选的用于视频监控的摄像机的原理图;
图8是根据本申请实施例的一种可选的监控方位角α的示意图;
图9是根据本申请实施例的第二种可选的监控方位角α的示意图;
图10是根据本申请实施例的一种可选的监控区域的示意图;
图11是根据本申请实施例的一种可选的监控系统的示意图。
具体实施方式
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分的实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本申请保护的范围。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品 或设备固有的其它步骤或单元。
术语解释:
GPS定位:GPS接收机接收来自多颗卫星发出的数据,该数据中包括星历时钟、卫星号等信息,由于在特定时刻卫星相对地球的位置是确定的,因此接收机与卫星的距离可以通过信号到达时的星历时间差计算出来,再综合不同卫星的数据就可知道接收机的具体位置,运动速度等信息。
GPS(Global Positioning System,即为全球定位系统),为一个由覆盖全球的24颗卫星组成的卫星系统。
磁力计:磁力计指的是各种用于测量磁场的仪器,也称磁力仪或高斯计。在国际单位制中描述磁场的物理量是磁感应强度,单位是特斯拉(T),由于1T意味着非常强的磁场,在工程上常用的CGS制中,磁感应强度的单位是高斯。磁感应强度是矢量,具有大小和方向特征,磁力计可以测试摄像机在地磁场中的磁场大小和方向,进而确认当前摄像机与东西南北四个方向上的夹角。磁力计在现实生活中应用十分广泛,可以嵌入需要指南针功能的手持摄像机,用来作为磁场感应的高性能摄像机及导航摄像机。
CGS制:(Centimeter-Gram-Second system of units),为厘米、克、秒单位制,通常在重力学科以及相关力学科目中使用。
电子罗盘:又称数字罗盘,作为导航仪器或姿态传感器已被广泛应用。电子罗盘与传统指针式和平衡架结构罗盘相比能耗低、体积小、重量轻、精度高、可微型化,其输出信号通过处理可以实现数码显示。电子罗盘可以分为水平电子罗盘和三维电子罗盘。水平电子罗盘要求用户在使用时必须保持罗盘的水平,否则当罗盘发生倾斜时,也会给出航向的变化而实际上航向并没有变化。三维电子罗盘在其内部加入了倾角校正传感器,进而克服了水平电子罗盘在使用中的严格限制,在电子罗盘发生倾斜时倾角传感器可以对罗盘进行倾角补偿,这样尽管罗盘发生倾斜,航向数据依然准确无误。
G-sensor:即重力传感器(或加速度传感器)。它能够感知到加速力的变化,加速力就是当物体在加速过程中作用在物体上的力,比如晃动、跌落、上升、下降等各种移动变化都能被G-sensor转化为电信号,然后通过微处理器的计算分析后,输出给中央处理器(即CPU,处理器),检测到摄像机的加 速度大小,进而用于判断摄像机的倾斜角或者是用于自由落体的检测。
可视域:指的是能够看到的区域,对于监控摄像机,可视域就是指该摄像机能够监控的区域。带有该功能的摄像机,配合带有地图方面数据的应用软件,就能够将监控区域显示在地图上。
根据本申请实施例,提供了一种用于视频监控的摄像机的实施例。
图1是根据本申请实施例的一种用于视频监控的摄像机的示意图,如图1所示,该装置包括:传感器装置10、定位装置30以及处理器50。
其中,传感器装置10,用于采集摄像机的监控方向信息。
定位装置30,用于定位摄像机的地理位置。
处理器50,用于基于监控方向信息获取摄像机的监控方位角α,并根据监控方位角α和地理位置确定摄像机的监控区域。
采用本申请,在传感器装置和定位装置分别获取摄像机的监控方向信息和地理位置信息之后,处理器由监控方向信息获取监控方位角α,再结合地理位置信息来确定摄像机的监控区域。通过采用上述实施例,基于由传感器装置和定位装置获取到的准确的摄像机的位置和方向信息,可以准确地确定摄像机的监控区域,避免了人工手动测算所带来的误差,从而解决了无法准确确定摄像机的监控范围的问题,从而达到可以准确确定摄像机监控范围的效果。
通过上述实施例,在确定准确的摄像机的监控区域之后,可以基于该监控区域实现全方位无死角的监控,并避免在同一监控区域的监控摄像机的重复放置;也可以按图索骥,即按照所需要监控的区域的视频数据,直接寻找监控该区域的摄像机。
上述实施例中的摄像机可以称为一种支持可视域的摄像机,监控区域为摄像机在地理位置所摄取到的有限的空间范围。
可选地,传感器装置、定位装置以及处理器可以设置在主板上,传感器装置的X轴的设置方向与摄像机中镜头的监控方向一致。
具体地,如图2所示,在传感器装置的俯视图(即图2中所示的Top View)中,由于考虑到软件的兼容性,并保证传感器装置输出的角度信息不需要进行±180°或者±90°的补偿,将传感器装置的X轴的设置方向(如图2所示的箭 头(+Ax,+Mx)的指向)设置为与摄像机镜头的监控方向保持一致的方向。其中传感器装置的X轴的设置方向可以通过各传感器的数据手册得到明确信息。下面分别介绍电子罗盘以及加速度传感器在印刷电路板(Printed circuit board,PCB)中的正确放置方向信息。
其中,+Ax,+Mx的方向表示在该方向上的加速度和磁场强度的分量是正值;图2中的“1”指的是该芯片的1脚指示标识。
其中,传感器装置可以以其中心位置为原点,建立空间直角坐标系,即建立X轴、Y轴和Z轴,如图2所示,传感器装置的Y轴如图中的箭头(+Ay,+My)所示,传感器装置的Z轴如图中的箭头(+Az,+Mz)所示,传感器装置的型号可以为FXOS8700CQ型号。
上述实施例中的传感器装置可以包括电子罗盘,其中,电子罗盘可以分为水平电子罗盘和三维电子罗盘。
如图3所示,当电子罗盘为水平电子罗盘时,水平电子罗盘的X轴的设置方向(如图3中的X轴方向)和摄像机的镜头的方向保持一致。其中,水平电子罗盘的型号可以为AK09911,水平电子罗盘的Y轴的设置方向为如图3中的Y轴方向,水平电子罗盘的Z轴的设置方向如图3中的Z轴方向,上述水平电子罗盘的X轴、Y轴和Z轴两两垂直,并构成一个空间直角坐标系。
如图4所示,当电子罗盘为三维电子罗盘时,三维电子罗盘的X轴的设置方向(如图4中的+X轴方向)和摄像机镜头的方向保持一致。其中,三维电子罗盘的型号可以为MPU-6500,该三维电子罗盘的Y轴的设置方向为如图4中的+Y轴方向,三维电子罗盘的Z轴的设置方向如图4中的+Z轴方向,上述三维电子罗盘的X轴、Y轴和Z轴两两垂直,并构成一个空间直角坐标系。
可选地,传感器装置包括:水平电子罗盘,用于检测摄像机所在位置的各个轴向上的磁场强度分量;重力传感器,用于测量摄像机所在位置的各个轴向上的加速度分量,其中,监控方向信息包括:磁场强度分量和加速度分量;处理器基于加速度分量确定摄像机的倾斜角Φ和滚动角θ,并根据磁场强度分量、倾斜角Φ和滚动角θ计算摄像机的监控方位角α。
在上述实施例中,监控摄像机可以利用水平电子罗盘确定其所在位置的 各个轴向上的磁场强度分量,用G-sensor(即重力传感器)确定监控倾斜角Φ和滚动角θ,这三个物理量相结合并由处理器处理后得到监控方位角α,可以快速准确的描绘摄像机监控的可视域的范围(即监控区域)。
可选地,重力传感器可以包括:三轴角速度传感器和三轴加速度传感器。
在上述实施例中,在传感器装置获取摄像机的监控方向信息之后,重力传感器中的三轴角速度传感器和三轴加速度传感器分别获取监控倾斜角Φ和滚动角θ信息,处理器由监控方向信息获取监控方位角α,再结合监控倾斜角Φ和滚动角θ信息(即地理位置信息),从而进一步确定摄像机的监控区域。通过采用上述实施例,可以更加准确的获取地理位置信息,从而使获得的监控区域信息更加准确。
可选地,水平电子罗盘可以通过I2C接口与处理通信,重力传感器通过SPI接口与处理器通信。
上述实施例的原理如图5所示,电源70为水平电子罗盘11、重力传感器13、中央处理器51以及GPS接收机33供电,其中,水平电子罗盘11通过12C接口和图5中的12C通讯线与中央处理器51通讯,中央处理器51通过UART通讯线和/或12C通讯线与GPS接收机33连接,GPS接收机33与天线31连接,重力传感器13通过SPI通讯线与中央处理器51连接。
具体地,可以采用水平电子罗盘、GPS接收机和G-sensor(即重力传感器)来确定摄像机的监控区域。
其中,GPS模块(即GPS接收机)可以选用U-blox的NEO-6M定位芯片,该定位芯片支持GPS导航功能,由中央处理器控制GPS接收机来实现GPS导航的功能,可以通过UART通讯线(按照需求不同也可以I2C通讯线、SPI通讯线、USB通讯线等)与GPS接收机进行通信,配置GPS接收机的工作模式。GPS接收机正常工作时,通过天线接收来自导航卫星的数据,主要包括卫星号和星历时钟等信息,而GPS接收机与卫星的距离可以通过信号到达时的星历时间差计算出来,综合多颗卫星(一般四颗以上)的数据就可知道GPS接收机的具体位置,包括经纬度、海拔等。GPS接收机再将数据通过上述UART等数据接口(如图5中的UART通讯线)传到中央处理器(即CPU,也即处理器)中,中央处理器(即CPU,也即处理器)就得到摄像机的 具体位置信息,使用该方法所产生的定位误差能达到10m以内。另外,根据不同的应用背景,摄像机同样兼容其他导航系统,包括中国的北斗系统、俄罗斯的GNSS导航系统以及欧洲的Galileo导航系统等导航系统。
水平电子罗盘的型号可以选用AKM厂家的AK09911型号水平电子罗盘,该水平电子罗盘内部集成了一个3轴带14bit AD转换的磁力计(包括X轴、Y轴和Z轴),可以检测的最大磁感应强度±4900μT,可以检测到的最小磁感应变化是9800μT/214(即0.60μT),其支持I2C通信。磁力计可以使摄像机安装时与东西南北方向的夹角误差范围控制在±5°以内。实际应用中,水平电子罗盘输出给处理器的数据为每个轴磁场强度的分量,再经过AD转换,把数字信号给处理器。如果单纯的使用水平电子罗盘,只能判断摄像机和地平面水平的时候,摄像机和东西南北的夹角,当摄像机倾斜的时候,仅仅依靠罗盘则会出现角度判断的错误。所以就需要额外增加一个加速度计,计算倾斜角Φ进行补偿。
G-sensor(即传感器装置中的重力传感器,又称加速度传感器)的型号可以为Invensense厂家的MPU-6500型号。该芯片内部集成了三轴角速度传感器和三轴加速度传感器。在此主要使用的是内部三轴加速度传感器,三轴加速度传感器输出给处理器的是在三个轴上的加速度大小的分量,经过AD转换后以数字形式传输给处理器。加速度传感器的量程有±2g,±4g,±8g和±16g可选,若实际使用中选用±2g的范围,经过内部16bit的AD转换后数字输出给中央处理器,可以通过软件算法计算出摄像机的倾斜角Φ的大小,并将倾斜角Φ的判断误差范围控制在±1°以内;该款芯片支持SPI和I2C两种通信方式,默认使用的是SPI通信方式。
可选地,传感器装置包括:三维电子罗盘,该三维电子罗盘包括:三轴加速度计和三轴磁力计。
其中,三轴加速度计,用于采集三个轴向上的加速度分量。
三轴磁力计,三轴磁力计包括:三个相互垂直的磁阻传感器,其中,每个轴向上的磁阻传感器用于采集其所在轴向上的磁场强度分量,其中,监控方向信息包括:磁场强度分量和加速度分量。
处理器基于加速度分量确定摄像机的倾斜角Φ和滚动角θ,并根据磁场强 度分量、倾斜角Φ和滚动角θ计算摄像机的监控方位角α。
可选地,三维电子罗盘通过I2C接口与处理器通信。
具体地,可以采用三维电子罗盘和GPS模块(即定位装置)来确定摄像机的监控区域。
其中,GPS模块(即GPS接收机)可以选用U-blox的NEO-6M定位芯片,其工作原理在此不再赘述。
如图6所示,三维电子罗盘的型号可以为飞思卡尔的FXOS8700CQ型号,在FXOS8700CQ型号的三维电子罗盘15内部,包括三轴加速度计和三轴磁力计,其中,三轴加速度计包括X轴加速度传感器、Y轴加速度传感器以及Z轴加速度传感器,分别用于采集X轴、Y轴和Z轴这三个轴向上的加速度分量。三轴磁力计包括X轴磁阻传感器、Y轴磁阻传感器以及Z轴磁阻传感器,分别用于采集X轴、Y轴和Z轴上的磁场强度分量。三轴加速度计经过内部16bit的AD转换(即16位的模数转换)后数字输出给中央处理器51,三轴磁力计经过内部14bit的AD转换(即14位的模数转换)后数字输出给中央处理器51,该三维电子罗盘支持SPI和I2C两种通信方式,默认使用的是SPI通信方式。
三维电子罗盘的工作原理如图7所示,电源70为三维电子罗盘15、中央处理器51以及GPS接收机33供电,其中,三维电子罗盘15通过如图7所示的12C通讯线与中央处理器51通信,中央处理器51通过如图7所示的UART通讯线和/或12C通讯线与GPS接收机33通信,GPS接收机33与天线31连接。
具体地,FXOS8700CQ型号的三维电子罗盘采用3x3x1.2mm方形扁平无引脚封装(Quad Flat No-lead Package,QFN)的小封装,且功耗极低,在前端进程间通信(Internet-Process Communication,IPC)摄像机中占用的资源很小。三维电子罗盘的芯片内部集成一个16位AD转换(即模数转换)的三轴加速度计和一个14位AD转换(即模数转换)的三轴磁力计。其中,三轴加速度计采集的信息为三个轴上的加速度信息,并将所采集到的信息通过AD转换(即模数转换)后发送给处理器(如中央处理器51)。
磁力计(即三轴磁力计)可以采用三个互相垂直的磁阻传感器,每个轴向上的传感器检测在该方向上的地磁场强度,传感器装置产生的模拟输出信号经过其内部的AD转换后输出给摄像机的中央处理器,确认摄像机的摆放方 位角。中央处理器(即CPU)可以通过I2C和SPI两种通信方式控制FXOS8700CQ型号的三维电子罗盘,默认使用I2C通信方式。加速度计最大可以测得的加速度大小是±2g/±4g/±8g,磁力计(即三轴磁力计)最大可以检测到±1200μT的磁感应强度。若仅针对静止安装与地球表面的环境,暂不考虑超重或失重等特殊应用环境,加速度计的最大测试加速度值选择±2g即可满足要求,每个轴上最小可以检测到的加速度大小变化是4000mg/216(即0.06mg),可以检测摄像机安装中的倾斜角Φ的数据误差范围控制在±1°以内。FXOS8700CQ型的三维电子罗盘15内部的磁力计可以感知到的磁场范围是±1200μT,地磁场的磁场强度很小,大约是0.5-0.6高斯,也就是5-6*E-5特斯拉(50-60μT),来满足摄像机的应用需求,每个轴上磁力计最小可以检测到的磁感应强度的变化是2400μT/214(即0.15μT),磁力计可以提供摄像机安装时与东西南北方向的夹角误差范围控制在±5°以内。
下面结合图8、图9对监控方位角α的确定作简单的介绍。
如图8所示,当保持电子罗盘和当地的水平面平行时,其中当地的水平面为摄像机所在的当地的水平面,监控方位角α(即磁北和X轴方向的夹角α或电子罗盘的偏向角)为:
Figure PCTCN2016083108-appb-000001
其中,如图8所示,当地的磁场线方向(如图8中Hearth的方向,即地面的方向)与电子罗盘的三轴指向中的Z轴方向(即电子罗盘的Z轴的设置方向)一致,电子罗盘的三轴指向中的X轴(即电子罗盘的X轴的设置方向)和Y轴(即电子罗盘的Y轴的设置方向)组成的平面和摄像机所在地区的地平面保持平行,与电子罗盘的三轴指向中的Z轴方向(即电子罗盘的Z轴的设置方向)垂直,当地磁场强度分量Hx、Hy和Hz分别是当地磁场应强度在电子罗盘X轴(如图8所示forward方向,即向前的方向)、Y轴(如图8所示right方向,即向右的方向)和Z轴(如图8所示的down方向,即向下的方向)三个轴向上的分量。
如图9所示,当电子罗盘和当地的水平面有一个夹角(即倾斜角Φ,如图9中的Φ)时,电子罗盘的Y轴(即电子罗盘的Y轴的设置方向)和当地的水平 面的夹角为如图9示出的滚动角θ,倾斜角Φ和滚动角θ可以通过加速度计检测得到,其计算公式如下:
Hx=XMcos(φ)+YMsin(φ)sin(θ)-ZMsin(φ)cos(θ)
Hy=YMcos(θ)+ZMsin(θ)
其中,XM为电子罗盘X轴的磁感应强度分量,YM为电子罗盘Y轴的磁感应强度分量,ZM为电子罗盘Z轴的磁感应强度分量。
依据当地磁场应强度在电子罗盘X轴、Y轴(即电子罗盘的X和Y轴的设置方向,如图9中的X轴和Y轴)上的分量Hx和Hy的大小,可以计算摄像机的监控方位角α:
Figure PCTCN2016083108-appb-000002
其中,倾斜角Φ就是通过磁力计计算的摄像机倾斜角度,即电子罗盘的X轴和Y轴的设置方向所形成的平面和当地水平面的夹角,也可以用Pitch表示。
滚动角-θ为电子罗盘的Y轴的设置方向(如图9中的-Y轴方向)和当地的水平面(如图9所示的电子罗盘的Y轴在水平面的投影)的夹角,也可以用Roll表示。
具体地,如图9所示,电子罗盘的X轴的设置方向、电子罗盘的Y轴的设置方向和电子罗盘的Z轴的设置方向两两相互垂直。重力矢量方向与当地的水平面呈90°,磁场的X轴分量的方向如图9中的Xh的方向,磁场的Y轴分量的方向如图9中的Yh的方向。
通过上面的概述我们可以通过定位装置的定位功能明确知道摄像机所在的地理位置(如所在的经纬度),明确摄像机在地球中的位置信息。通过传感器装置可以准确的检测摄像机的监控方位信息(如倾斜角Φ、滚动角θ以及监控方位角α),IPC摄像机结合摄像机安装的角度(即上述的倾斜角Φ)以及镜头的视场范围,就可以知道摄像机监控的区域大小,从而实现摄像机的可视域功能。
如图10所示,为实际能够达到的监控效果,电子罗盘和G-sensor(即重力传感器)可以检测摄像机东偏南角度α(即上述监控方位角α),其中,东偏南可以通过如图10所示东、南和北的方向来判断。通过G-sensor(即重力传感 器)可以检测出镜头的朝向是向下倾斜角Φ,已知摄像机的镜头视场角度β,就很容易计算出如图10所示的可视域范围,其中,视场角度β就是摄像机上安装镜头的视场角范围,属于摄像机的参数,并且镜头的视场角越大,视野范围(即可视域范围)越大。
可选地,处理器包括:读取装置和图像处理单元。
其中,读取装置,用于从存储器中读取摄像机的镜头的视场角度;图像处理单元,用于基于倾斜角Φ、监控方位角α、视场角度β以及摄像机镜头距地面的高度(如图10所示的h)确定摄像机的监控区域(即如图10所示的可视域范围)。
可选地,定位装置包括:天线和GPS接收机,其中,GPS接收机通过天线接收导航卫星的导航信息,并基于导航信息确定地理位置。
在上述实施例中,当GPS接收机正常工作时,通过天线接收来自导航卫星的数据,主要包括卫星号和星历时钟等信息,而GPS接收机与卫星的距离可以通过信号到达时的星历时间差计算出来,综合多颗卫星(一般四颗以上)的数据就可知道接收机的具体位置,包括经纬度、海拔等。
可选地,GPS接收机通过UART接口和/或I2C接口与处理器通信。
具体地,可视域摄像机可以根据需要布控的区域,计算出需要使用的摄像机数量,从而防止了重叠布控,避免资源浪费。当相关部门需要调用特定区域的视频资料的时候,可以很容易找到监控该区域的摄像机,提升了相关部门办案的效率。对于全球而言,可以调用可视域摄像机收集到的监控区域信息,实现全球无死角的布控。
可选地,处理器还用于接收摄像头采集的图像,并将监控区域的信息叠加在图像上,得到叠加后的图像。
上述实施例中的监控区域的信息可以包括摄像机的监控方向信息和地理位置信息,具体可以包括摄像机所在位置的各个轴向上的磁场强度分量,摄像机所在位置的各个轴向上的加速度分量,倾斜角Φ、监控方位角α、视场角度β以及摄像机镜头距地面的高度等信息。
在上述实施例中,摄像机镜头采集图像发送至处理器,处理器在接收到该图像后,将监控区域的信息叠加在该图像上,得到新的叠加处理后的图像, 通过上述实施例,处理器可以对采集到的图像作进一步的信息比对和分析工作,达到根据图像上叠加的信息计算所要监控范围内需要布控的摄像机数量的效果。
根据本申请实施例,还提供了一种监控系统的实施例,该监控系统包括上述任一实施例中的摄像机。
采用本申请,在监控系统中的摄像机的传感器装置和定位装置分别获取摄像机的监控方向信息和地理位置信息之后,处理器由监控方向信息获取监控方位角α,再结合地理位置信息来确定摄像机的监控区域,监控系统中的处理器在接收到摄像机镜头的图像后,将监控区域的信息叠加在该图像上得到新的带有叠加信息的图像。通过上述实施例,可以准确地确定摄像机的监控区域,避免了人工手动测算所带来的误差,并且可以实现基于该监控区域实现全方位无死角的监控,并避免在同一监控区域的监控摄像机的重复放置;也可以按图索骥,即按照所需要监控的区域的视频数据,直接寻找监控该区域的摄像机。
具体地,监控系统中的摄像机可以根据需要布控的区域,和叠加有监控区域信息的图像,计算出该监控系统中需要使用的摄像机数量,从而防止了监控系统的摄像机的重叠布控,避免了资源浪费。当相关部门需要调用特定区域的视频资料的时候,可以很容易找到相应的监控该区域的摄像机,从而提升了相关部门办案的效率。对于全球而言,监控系统可以通过调用摄像机收集到的监控区域信息,并通过处理器对其进行的叠加图像以及其他分析,从而实现监控系统中摄像机的全球无死角的布控效果。
可选地,摄像机可以发送监控区域的信息和/或叠加后的图像至上位机;监控系统还包括:上位机,上位机接收到监控区域的信息和/或叠加后的图像之后,记录监控区域和/或叠加后的图像与摄像机的对应关系。
在上述实施例中,监控系统可以包括一台或多台摄像机100和一台或多台上位机200,图11中仅示出监控系统包括一台摄像机100和一台上位机200的实施例。在摄像机采集图像并将监控信息叠加在该图像上获得新的叠加后的图像之后,摄像机可以发送上述监控区域的信息到上位机,或摄像机发送上述叠加后的图像到上位机,或摄像机可以发送上述监控区域的信息和叠加后的 图像到上位机,在上位机接收到上述摄像机发送的信息后,记录上述摄像机所发送的信息与摄像机的对应关系。
通过上述实施例,可以有效的判断监控系统中各个摄像机所在的具体位置和监控区域信息,并判断监控系统所监控的区域的范围和是否存在监控死角。并且可以根据该对应关系和实际需要布控的区域,分析并计算出该监控系统中需要使用的摄像机数量,防止监控系统的摄像机的重叠布控。当相关部门需要调用特定区域的视频资料的时候,可以很容易通过记录的监控区域和叠加后的图像与摄像机的对应关系,找到相应的监控该区域的摄像机,从而提升了相关部门办案的效率。对于全球而言,监控系统可以通过调用监控系统所记录监控区域和叠加后的图像与摄像机的对应关系的信息,并对其进行分析等处理,从而可实现监控系统中摄像机的全球无死角的布控效果。
上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。
在本申请的上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
在本申请所提供的几个实施例中,应该理解到,所揭露的技术内容,可通过其它的方式实现。其中,以上所描述的装置实施例仅仅是示意性的,例如所述单元的划分,可以为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,单元或模块的间接耦合或通信连接,可以是电性或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可为个人计算机、服务器或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、只读存储器(ROM,Read-OnlyMemory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述仅是本申请的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本申请的保护范围。

Claims (13)

  1. 一种用于视频监控的摄像机,其特征在于,包括:
    传感器装置,用于采集摄像机的监控方向信息;
    定位装置,用于定位所述摄像机的地理位置;
    处理器,用于基于所述监控方向信息获取所述摄像机的监控方位角,并根据
    所述监控方位角和所述地理位置确定所述摄像机的监控区域。
  2. 根据权利要求1所述的摄像机,其特征在于,所述传感器装置、所述定位装置以及所述处理器设置在主板上,所述传感器装置的X轴的设置方向与所述摄像机中镜头的监控方向一致。
  3. 根据权利要求1所述的摄像机,其特征在于,所述传感器装置包括:
    水平电子罗盘,用于检测所述摄像机所在位置的各个轴向上的磁场强度分量;
    重力传感器,用于测量所述摄像机所在位置的所述各个轴向上的加速度分量,
    其中,所述监控方向信息包括:所述磁场强度分量和所述加速度分量;
    所述处理器基于所述加速度分量确定所述摄像机的倾斜角和滚动角,并根据
    所述磁场强度分量、所述倾斜角和所述滚动角计算所述摄像机的监控方位角。
  4. 根据权利要求3所述的摄像机,其特征在于,所述重力传感器包括:三轴角速度传感器和三轴加速度传感器。
  5. 根据权利要求3所述的摄像机,其特征在于,所述水平电子罗盘通过I2C接口与所述处理器通信,所述重力传感器通过SPI接口与所述处理器通信。
  6. 根据权利要求1所述的摄像机,其特征在于,所述传感器装置包括:三维电子罗盘,所述三维电子罗盘包括:
    三轴加速度计,用于采集三个轴向上的加速度分量;
    三轴磁力计,所述三轴磁力计包括:三个相互垂直的磁阻传感器,其中, 每个轴向上的所述磁阻传感器用于采集其所在轴向上的磁场强度分量,其中,所述监控方向信息包括:所述磁场强度分量和所述加速度分量;
    所述处理器基于所述加速度分量确定所述摄像机的倾斜角和滚动角,并根据所述磁场强度分量、所述倾斜角和所述滚动角计算所述摄像机的监控方位角。
  7. 根据权利要求6所述的摄像机,其特征在于,所述三维电子罗盘通过I2C接口与所述处理器通信。
  8. 根据权利要求3或6所述的摄像机,其特征在于,所述处理器包括:
    读取装置,用于从存储器中读取所述摄像机的镜头的视场角度;
    图像处理单元,用于基于所述倾斜角、所述监控方位角以及所述视场角度确定所述摄像机的监控区域。
  9. 根据权利要求1所述的摄像机,其特征在于,所述定位装置包括:
    天线;
    GPS接收机,所述GPS接收机通过所述天线接收导航卫星的导航信息,并基于所述导航信息确定所述地理位置。
  10. 根据权利要求9所述的摄像机,其特征在于,所述GPS接收机通过UART接口和/或I2C接口与所述处理器通信。
  11. 根据权利要求1所述的摄像机,其特征在于,所述处理器还用于接收摄像头采集的图像,并将所述监控区域的信息叠加在所述图像上,得到叠加后的图像。
  12. 一种监控系统,其特征在于,包括:权利要求1至11中任一项所述的用于视频监控的摄像机。
  13. 根据权利要求12所述的监控系统,其特征在于,
    所述摄像机发送所述监控区域的信息和/或叠加后的图像至上位机;
    所述监控系统还包括:所述上位机,所述上位机接收到所述监控区域的信息和/或所述叠加后的图像之后,记录所述监控区域和/或所述叠加后的图像与所述摄像机的对应关系。
PCT/CN2016/083108 2015-08-14 2016-05-24 用于视频监控的摄像机及监控系统 WO2017028579A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/748,232 US20180220103A1 (en) 2015-08-14 2016-05-24 Camera and surveillance system for video surveillance
EP16836443.8A EP3337167A4 (en) 2015-08-14 2016-05-24 CAMERA AND MONITORING SYSTEMS FOR VIDEO MONITORING

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510501653.2 2015-08-14
CN201510501653.2A CN106713822A (zh) 2015-08-14 2015-08-14 用于视频监控的摄像机及监控系统

Publications (1)

Publication Number Publication Date
WO2017028579A1 true WO2017028579A1 (zh) 2017-02-23

Family

ID=58051118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/083108 WO2017028579A1 (zh) 2015-08-14 2016-05-24 用于视频监控的摄像机及监控系统

Country Status (4)

Country Link
US (1) US20180220103A1 (zh)
EP (1) EP3337167A4 (zh)
CN (1) CN106713822A (zh)
WO (1) WO2017028579A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107314812A (zh) * 2017-08-08 2017-11-03 湖北省计量测试技术研究院 场地照明测试仪

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107370734A (zh) * 2017-07-18 2017-11-21 安徽和信科技发展有限责任公司 基于集中化云平台的云视频监控系统
CN108195345A (zh) * 2017-12-20 2018-06-22 合肥英睿系统技术有限公司 一种基于电子成像器的测距方法及系统
CN110708498A (zh) * 2018-06-22 2020-01-17 浙江宇视科技有限公司 一种在实景监控画面中标示poi信息的方法及装置
CN109120833A (zh) * 2018-10-31 2019-01-01 中国矿业大学(北京) 一种具有方向确定功能的监控摄像机
CN110166653B (zh) * 2019-06-21 2021-04-06 深圳迪乐普数码科技有限公司 摄像机位置和姿态的跟踪系统及方法
CN110430358B (zh) * 2019-07-29 2020-10-27 四川省视频电子有限责任公司 一种用于卫星接收器的使用监控方法
CN110490089B (zh) * 2019-07-29 2023-04-07 四川省视频电子有限责任公司 一种卫星接收设备的图像识别方法
US20220110691A1 (en) * 2020-10-12 2022-04-14 Johnson & Johnson Surgical Vision, Inc. Virtual reality 3d eye-inspection by combining images from position-tracked optical visualization modalities
CN112866641B (zh) * 2021-01-08 2022-07-22 南京岩磊智能化科技有限公司 一组基于轨迹分析移动的视频监控设备及其监控系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120317825A1 (en) * 2011-06-14 2012-12-20 Pentax Ricoh Imaging Company, Ltd. Direction determining method and apparatus using a triaxial electronic compass
CN103017740A (zh) * 2012-11-28 2013-04-03 天津市亚安科技股份有限公司 一种利用视频监控装置对监控目标的定位方法及定位系统
CN103220469A (zh) * 2013-04-27 2013-07-24 林宁 相机智能盒、数据处理系统和方法
CN104238582A (zh) * 2014-08-26 2014-12-24 浙江大学 一种利用手机进行辅助云台远程控制的方法
CN104320569A (zh) * 2014-11-21 2015-01-28 国网黑龙江省电力有限公司信息通信公司 具有罗盘和gps功能的摄像头及采用该摄像头实现的定位方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2976869B2 (ja) * 1995-12-28 1999-11-10 日産自動車株式会社 表面欠陥検査装置
US8212874B2 (en) * 2009-10-23 2012-07-03 GM Global Technology Operations LLC Automatic camera calibration using GPS and solar tracking
KR101685418B1 (ko) * 2011-04-27 2016-12-12 한화테크윈 주식회사 3차원 영상을 생성하는 감시 시스템
US9729788B2 (en) * 2011-11-07 2017-08-08 Sony Corporation Image generation apparatus and image generation method
CN103873822A (zh) * 2012-12-18 2014-06-18 华为技术有限公司 一种监控系统选择摄像机实时浏览的方法、设备及系统
JP6128389B2 (ja) * 2013-01-24 2017-05-17 パナソニックIpマネジメント株式会社 撮像装置
US8934023B2 (en) * 2013-03-15 2015-01-13 Freefly Systems, Inc. Method and system for introducing controlled disturbance into an actively stabilized system
CN104049726A (zh) * 2013-03-17 2014-09-17 北京银万特科技有限公司 智能信息终端的图像拍摄方法及装置
CN103400371B (zh) * 2013-07-09 2016-11-02 河海大学 一种多摄像头协同监控设备及方法
WO2015031072A1 (en) * 2013-08-27 2015-03-05 Andrew Llc Alignment determination for antennas and such
CN104717462A (zh) * 2014-01-03 2015-06-17 杭州海康威视系统技术有限公司 监控录像视频的提取方法及其装置
CN203722704U (zh) * 2014-02-17 2014-07-16 北京尚易德科技有限公司 可判别地理位置及监控方向的智能化监控摄像机
JPWO2015145544A1 (ja) * 2014-03-24 2017-04-13 パイオニア株式会社 表示制御装置、制御方法、プログラム及び記憶媒体
JP6381265B2 (ja) * 2014-04-14 2018-08-29 キヤノン株式会社 情報処理装置、表示方法、及びプログラム
US9491336B2 (en) * 2014-06-16 2016-11-08 Htc Corporation Camera device and method for controlling a camera device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120317825A1 (en) * 2011-06-14 2012-12-20 Pentax Ricoh Imaging Company, Ltd. Direction determining method and apparatus using a triaxial electronic compass
CN103017740A (zh) * 2012-11-28 2013-04-03 天津市亚安科技股份有限公司 一种利用视频监控装置对监控目标的定位方法及定位系统
CN103220469A (zh) * 2013-04-27 2013-07-24 林宁 相机智能盒、数据处理系统和方法
CN104238582A (zh) * 2014-08-26 2014-12-24 浙江大学 一种利用手机进行辅助云台远程控制的方法
CN104320569A (zh) * 2014-11-21 2015-01-28 国网黑龙江省电力有限公司信息通信公司 具有罗盘和gps功能的摄像头及采用该摄像头实现的定位方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3337167A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107314812A (zh) * 2017-08-08 2017-11-03 湖北省计量测试技术研究院 场地照明测试仪

Also Published As

Publication number Publication date
EP3337167A4 (en) 2019-03-06
US20180220103A1 (en) 2018-08-02
CN106713822A (zh) 2017-05-24
EP3337167A1 (en) 2018-06-20

Similar Documents

Publication Publication Date Title
WO2017028579A1 (zh) 用于视频监控的摄像机及监控系统
US8577595B2 (en) Location and path-map generation data acquisition and analysis systems
US9080881B2 (en) Methods and apparatus for providing navigational information associated with locations of objects
US10641625B2 (en) Method and apparatus for calibrating a magnetic sensor
CN102575933B (zh) 地图图像综合数据库生成系统以及地图图像综合数据库生成程序
CN106643792B (zh) 惯性测量单元和地磁传感器整体标定装置及标定方法
US20090326816A1 (en) Attitude correction apparatus and method for inertial navigation system using camera-type solar sensor
US11796682B2 (en) Methods for geospatial positioning and portable positioning devices thereof
CN103162677B (zh) 一种数字地质罗盘仪及地质体产状的测量方法
CA2531803A1 (en) System for using a 2-axis magnetic sensor for a 3-axis compass solution
CN110737007A (zh) 用于获得地理空间位置的便携式定位设备和方法
CN106705959A (zh) 检测移动终端航向的方法和装置
KR101210394B1 (ko) 지자기 검지장치
JP2011047950A (ja) デッドレコニング装置
WO2011016302A1 (ja) モーションキャプチャ用のマーカ
CN105204053A (zh) 基于gnss的红外定位装置
CN104199074A (zh) Gnss手持终端及远距离定位方法
CN115096269A (zh) 摄影测量方法、系统及gnss接收机
JP2001091257A (ja) 方位計及び真北計測方法
CN211601925U (zh) 角度偏差测量系统
Eling et al. A precise direct georeferencing system for UAVs
EP3534185A1 (en) Locator equipment
CN109716064A (zh) 电子罗盘
CN203298771U (zh) 一种具有激光指向的数字地质罗盘仪
TWI401415B (zh) 具有位置偵測功能之三腳架

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16836443

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15748232

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE