WO2017028439A1 - 3d显示装置及其驱动方法 - Google Patents

3d显示装置及其驱动方法 Download PDF

Info

Publication number
WO2017028439A1
WO2017028439A1 PCT/CN2015/098485 CN2015098485W WO2017028439A1 WO 2017028439 A1 WO2017028439 A1 WO 2017028439A1 CN 2015098485 W CN2015098485 W CN 2015098485W WO 2017028439 A1 WO2017028439 A1 WO 2017028439A1
Authority
WO
WIPO (PCT)
Prior art keywords
grating
numbered
signal line
odd
control
Prior art date
Application number
PCT/CN2015/098485
Other languages
English (en)
French (fr)
Inventor
杨明
董学
陈小川
杨盛际
卢鹏程
王倩
高健
牛小辰
王磊
许睿
刘英明
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/327,647 priority Critical patent/US10523927B2/en
Priority to EP15892063.7A priority patent/EP3351998B1/en
Publication of WO2017028439A1 publication Critical patent/WO2017028439A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/32Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using arrays of controllable light sources; using moving apertures or moving light sources
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/22Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type
    • G02B30/24Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type involving temporal multiplexing, e.g. using sequentially activated left and right shutters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/30Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving parallax barriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/31Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using parallax barriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/31Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using parallax barriers
    • H04N13/312Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using parallax barriers the parallax barriers being placed behind the display panel, e.g. between backlight and spatial light modulator [SLM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/398Synchronisation thereof; Control thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2213/00Details of stereoscopic systems
    • H04N2213/001Constructional or mechanical details

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a 3D display device and a driving method thereof.
  • 3D (3D) display technology has developed rapidly. 3D display technology can make the picture stereoscopic and realistic, and the image is no longer limited to the plane of the display screen, so that the audience has an immersive feeling.
  • the 3D display technology includes two types of glasses type and naked eye type, wherein the naked eye type 3D display technology has attracted more attention than the glasses type 3D display technology because it does not need to wear glasses.
  • the naked-eye 3D display device includes a stacked grating and a display screen, wherein the grating includes alternately arranged dark grating units and bright grating units. Under the action of the grating, the observer's left and right eyes can see different pictures, thereby forming a 3D display effect in the observer's brain.
  • a grating of a naked-eye type 3D display device often employs a liquid crystal grating.
  • the liquid crystal grating includes upper and lower substrates and liquid crystal molecules encapsulated therebetween, wherein the upper substrate is provided with strip electrodes arranged at intervals, and the surface electrodes are disposed on the lower substrate.
  • the liquid crystal molecules under the strip electrodes are deflected to prevent light from transmitting, forming a dark grating unit; between the strip electrodes
  • the liquid crystal molecules corresponding to the gaps remain in an initial state, allowing all of the light to pass through to form a bright grating unit.
  • the dark grating unit in the liquid crystal grating tends to have a certain brightness, resulting in a low contrast between the bright grating unit and the dark grating unit, thereby causing a large crosstalk of the displayed 3D image.
  • the present invention provides a 3D display device and a driver thereof The method solves the problem that the 3D picture crosstalk is large due to the low contrast between the bright grating unit and the dark grating unit in the grating.
  • a first aspect of the present invention provides a 3D display device including a grating and a display panel, the grating being divided into a bright grating unit and a dark grating unit, the grating including a base substrate and a substrate disposed on the substrate A plurality of OLED light emitting devices, at least a portion of the plurality of OLED light emitting devices emitting light when applying an operating voltage to form the bright grating unit, and the non-emitting OLED light emitting device forming the dark grating unit.
  • an OLED light-emitting device is disposed on a substrate of the grating.
  • the bright grating unit is formed by the OLED light emitting device, so that the bright grating unit is a self-luminous structure and can achieve high brightness.
  • the 3D display device of the present invention forms a dark grating unit from a region where no light is emitted from the grating, so that the brightness of the dark grating unit is lowered, The brightness is almost zero, thereby improving the contrast between the bright grating unit and the dark grating unit, and reducing the crosstalk of the 3D display device picture.
  • a second aspect of the present invention provides a driving method of a 3D display device for driving a 3D display device provided by the first aspect of the present invention, the driving method including a plurality of gratings included in the 3D display device At least a portion of the OLED light emitting devices apply an operating voltage to cause the OLED light emitting device to which the operating voltage is applied to illuminate to form a bright grating unit.
  • the driving method Since the 3D display device driven by the driving method of the above 3D display device is the 3D display device provided by the first aspect of the invention, the driving method has the same advantageous effects as the 3D display device provided by the first aspect of the invention , will not repeat them here.
  • FIG. 1 is a first plan view of a grating in a 3D display device according to an embodiment of the present invention
  • FIG. 2 is a diagram of a grating in a driving method in a 3D display device according to an embodiment of the present invention. Two kinds of plane structure diagrams;
  • FIG. 3 is a second plan structural diagram of a grating in another driving method in a 3D display device according to an embodiment of the present invention.
  • FIG. 4 is a third planar structural diagram of a grating in a 3D display device according to an embodiment of the present invention.
  • FIG. 5 is a fourth planar structural diagram of a grating in a 3D display device according to an embodiment of the present invention.
  • FIG. 6 is a first cross-sectional structural view of a grating in a 3D display device according to an embodiment of the present invention
  • FIG. 7 is a second cross-sectional structural view of a grating in a 3D display device according to an embodiment of the present invention.
  • FIG. 8 is a third cross-sectional structural view of a grating in a 3D display device according to an embodiment of the present invention.
  • Figure 9 is a plan exploded view of the grating shown in Figure 8.
  • FIG. 10 is a schematic diagram of a grating according to an embodiment of the present invention.
  • FIG. 11 is a schematic view of another grating according to an embodiment of the present invention.
  • FIG. 12 is a first cross-sectional structural view of a 3D display device according to an embodiment of the present invention.
  • FIG. 13 is a second cross-sectional structural diagram of a 3D display device according to an embodiment of the present invention.
  • FIG. 14 is a light path diagram of a 3D display device according to an embodiment of the present invention.
  • Tc-control switch tube C-capacitor
  • D-OLED light emitting device Vdd-power supply voltage
  • V1-first voltage signal V2-second voltage signal
  • V3-third voltage signal 7-light grating unit
  • R - Displays the pixels of the right eye image.
  • Embodiments of the present disclosure provide a 3D display device including a grating and a display panel, wherein the grating includes a bright grating unit and a dark grating unit, the grating including a substrate substrate and a plurality of substrates disposed on the substrate substrate An OLED light emitting device, at least a portion of the plurality of OLED light emitting devices emit light when an operating voltage is applied to form a bright grating unit, and the non-emitting OLED light emitting device forms the dark grating unit.
  • the embodiment further provides a driving method of the 3D display device for driving the above-mentioned 3D display device, the driving method comprising: to a plurality of OLED light emitting devices included in the grating of the 3D display device A portion of the OLED light emitting device applies an operating voltage to cause the OLED light emitting device to which the operating voltage is applied to emit light to form a bright grating unit. The areas of the grating that do not illuminate form a dark grating unit.
  • the OLED light-emitting device is caused to emit light to form a bright grating unit by providing an OLED light-emitting device on the base substrate of the grating of the 3D display device. Therefore, the bright grating unit is a self-illuminating structure capable of achieving high brightness. Compared with the manner of the dark grating unit formed by the deflection of the liquid crystal molecules in the conventional liquid crystal grating, the 3D display device in this embodiment is not included in the grating.
  • the illuminating region forms a dark grating unit, so that the brightness of the dark grating unit is reduced, and the luminance thereof is almost zero, thereby improving the contrast between the bright grating unit and the dark grating unit, and reducing the crosstalk of the 3D display device picture.
  • the OLED light emitting device included in the grating may be a white light OLED light emitting device
  • the display panel includes a color resist layer
  • the color resist layer may perform at least a red color resist, a green color resist, and a blue color resist to realize color display.
  • the OLED light emitting device described in this embodiment may specifically be a laminated structure including an anode, a light emitting layer and a cathode.
  • an operating voltage By applying an operating voltage to the anode and the cathode, it is possible to recombine the holes in the anode and the electrons in the cathode in the light-emitting layer, thereby exciting the luminescent material in the light-emitting layer to emit light.
  • the 3D display device provided in this embodiment can be applied to any product or component having a display function, such as a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like.
  • a display function such as a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like.
  • the grating in the 3D display device specifically includes a plurality of repeating units, at least one control signal line, and a plurality of data signal lines disposed on the base substrate.
  • Each of the repeating units is provided with a control switch tube and an OLED light emitting device, the output end of the control switch tube is connected to the anode of the OLED light emitting device, the cathode of the OLED light emitting device is grounded; the control signal line extends in the lateral direction, the control signal line and the control switch tube
  • the control terminal is connected to control the switch tube to be turned on or off; the data signal line extends in the longitudinal direction, and the data signal line is connected to the input end of the control switch tube for outputting the voltage signal to the OLED light emitting device.
  • controlling the output end of the switch tube is connected to the anode of the OLED light-emitting device includes both the case of direct connection and the case of indirect connection.
  • control signal line is used to turn on or off the control switch tube, thereby controlling when to apply voltage to the OLED light-emitting device, and simultaneously inputting a voltage signal to the control switch tube by using the data signal line, thereby realizing application of voltage to the OLED light-emitting device. the goal of.
  • the foregoing structure and method can realize flexible control of each OLED light-emitting device and increase the applicable range of the grating.
  • Ctrol1, Ctrol3, and Ctrol5 represent odd-numbered line control signal lines
  • Ctrol2 and Ctrol4 represent even-numbered line control signal lines
  • Ctrol1', Ctrol3', and Ctrol5' represent odd-numbered lines of first control signals.
  • Line, Ctrol2', Ctrol4' represents the even control line of the first line
  • Ctrol1", Ctrol3", Ctrol5" denotes an odd-numbered second control signal line
  • Ctrol2", Ctrol4" denotes an even-numbered second control signal line
  • Ctrol1', Ctrol2' denotes a first control signal line
  • Ctrol1", Ctrol2" denotes The second control signal line.
  • Data1, Data3, and Data5 represent odd-numbered column data signal lines
  • Data2 and Data4 represent even-numbered column data signal lines
  • D represents an OLED light-emitting device.
  • the repeating units 1 are arranged in a row, and the number of control signal lines Ctro1 is one, the control signal line Ctro1 is connected to the control terminals of the respective control switch tubes Tc, and the odd-numbered column data signal lines and odd numbers are connected.
  • the input of the position control switch tube Tc is connected, and the even column data signal line is connected to the input end of the control switch tube Tc of the even position.
  • the number of control signal lines Ctro1 and repeating unit 1 in the grating is small, and more specifically, the number of driving circuits for driving the repeating unit 1 is small, and thus the structure of the grating is simple.
  • the so-called “odd position” refers to a control switch tube whose serial number is an odd number in a row of control switch tubes Tc.
  • the "even position” refers to an even number in a row of control switch tubes Tc. Control the switch tube.
  • each repeating unit 1 may be a strip extending in the longitudinal direction, the length of which is the same as the length of the bright grating unit and the dark grating unit to be formed; correspondingly, repeating
  • the OLED light-emitting device included in the unit 1 is also a strip extending in the longitudinal direction, the length being the same as the length of the bright grating unit and the dark grating unit to be formed.
  • the repeating units 1 are arranged in an array, and the number of control signal lines is plural, and the odd-numbered control signal lines are connected to the control ends of the odd-numbered control switch tubes Tc, and even-line control signals are connected.
  • the line is connected to the control end of the even row control switch tube Tc
  • the odd column data signal line is connected to the input end of the odd column control switch tube Tc
  • the even column data signal line is connected to the input end of the even column control switch tube Tc.
  • the repeating units 1 are arranged in a matrix, and a plurality of control signal lines control the respective repeating units 1, so that the area of the repeating unit 1 is small.
  • the area of the OLED light-emitting device controlled by each control switch tube Tc is small, so that the data signal outputted by the control switch tube Tc can be transmitted to the entire OLED light-emitting device in time, and the signal delay is small.
  • each repeating unit 1 may be a square; correspondingly, the OLED light-emitting device included in the repeating unit 1 is also square, to a large extent Small area of each OLED light-emitting device controlled by the control switch Tc, reducing the letter The delay of the number.
  • each repeating unit 1 may also be a rectangle having a length smaller than the length of the bright grating unit and the dark grating unit to be formed.
  • the OLED light-emitting device included in the repeating unit 1 is also rectangular, and its length is smaller than the length of the bright grating unit and the dark grating unit to be formed.
  • This design can reduce the delay of the signal to some extent.
  • the shape of the repeating unit 1 is square, this design enables the number of control signal lines and the repeating unit 1 to be reduced, so that the number of driving circuits for driving the repeating unit 1 is reduced, so that the grating
  • the structure is simplified to some extent.
  • the control signals may be input to all control signal lines by means of active driving (for the grating shown in FIG. 1, the control signals are input to one control signal line,
  • the control signal is input to the odd-numbered row and the even-numbered row control signal line)
  • the data signal is input to the odd-numbered or even-numbered data signal lines, so that the odd-numbered or even-numbered-row OLED light-emitting devices emit light, forming Bright raster unit.
  • the remaining columns of OLED devices do not illuminate, forming a dark grating unit.
  • the bright grating unit 7 and the dark grating unit 8 are both strip-shaped structures extending in the longitudinal direction, and the bright grating unit 7 and the dark grating unit 8 are alternately arranged in the lateral direction.
  • a required width of a bright grating unit and a dark grating unit is large.
  • all the data signal lines can be equally divided into multiple groups, and data signals are input to the odd-array or even-array data signal lines, and control signals are input to the control signal lines, so that the odd-array or even-array OLED light-emitting devices emit light, forming Bright raster unit.
  • the remaining sets of OLED devices do not illuminate, forming a dark grating unit.
  • the formed bright grating unit 7 and the dark grating unit 8 are both strip-shaped structures extending in the longitudinal direction, and the bright grating unit 7 and the dark grating unit 8 are alternately arranged in the lateral direction.
  • the widths of the bright grating unit 7 and the dark grating unit 8 can be determined according to the resolution of the 3D display device, thereby determining the repeating unit of each of the bright grating unit 7 and the dark grating unit 8 that needs to be simultaneously illuminated.
  • the number of data signal lines included in each set of data signal lines is determined.
  • the driving method can make the grating suitable for 3D display devices with different resolutions, and the application range of the grating is increased.
  • the driving method of the display panel in the 3D display device is: applying a left eye image signal to one half of the sub-pixels in the display panel, and applying a right eye image signal to the other half of the sub-pixels. And the sub-pixel to which the left-eye image signal is applied and the image signal to which the right-eye image is applied The sub-pixels are alternately arranged in the lateral direction such that the display panel cooperates with the grating shown in FIG. 10 to produce a 3D display effect.
  • the grating structure is the same as the grating structure shown in FIG. 2, and the grating structure shown in FIG. 3 is also driven by an active driving method, thereby enabling implementation of each repeating unit 1.
  • Individual control that is, the opening and closing of a single repeating unit 1 can be controlled in one driving cycle.
  • the control signal is input to the control signal line row by row; in the scanning time of each control signal line, the data signal is input to the odd-numbered data signal line, so that the OLED light-emitting device in the odd-numbered position in the row Illuminating, or inputting a data signal to the even-numbered data signal lines, causes the OLED light-emitting devices in even-numbered positions in the row to emit light.
  • a control signal is input to Ctrol1
  • a data signal is input to the odd-numbered column data signal lines, so that the OLED light-emitting devices located in the first row and the odd-numbered columns emit light to form a bright grating unit, and the OLEDs in the first row and the even-numbered columns emit light.
  • the device does not emit light to form a dark grating unit; when a control signal is input to Ctrol2, a data signal is input to the even-numbered column data signal line, so that the OLED light-emitting device located in the second row and the even-numbered column emits light to form a bright grating unit, which is located at the second
  • the rows and odd columns of OLED light emitting devices do not emit light, forming a dark grating unit.
  • each repeating unit 1 is a square.
  • the OLED light-emitting device included in the repeating unit 1 is also square.
  • the bright grating unit 7 and the dark grating unit 8 in the resulting grating are both square structures, bright grating units 7 and The dark grating units 8 are alternately arranged in the lateral direction and alternately arranged in the longitudinal direction.
  • Such a grating has the same structure in the lateral direction and the longitudinal direction, so that the 3D display device can achieve a 3D display effect in both the horizontal and vertical screen situations.
  • each of the repeating units 1 includes the storage capacitor C, the OLED light-emitting device of each repeating unit 1 can be kept in an on or off state, that is, a state of being kept in a light-emitting state or a non-light-emitting state, thereby making the grating
  • the raster picture shown in Fig. 11 is maintained as a whole.
  • the repeating units 1 are arranged in an array, and the number of control signal lines is plural, and the control signal lines include a first control signal line and a second control signal line, and one row of repeating units 1 corresponds to a first control signal line and a second control signal line;
  • the odd-numbered first control signal line is connected to the control end of the odd-numbered row and the odd-numbered control switch tube Tc, and the even-numbered first control signal line is located in the even-numbered line
  • the control terminals of the even-numbered columns of the control switch tubes Tc are connected;
  • the odd-numbered rows of the second control signal lines are connected to the control terminals of the control switch tubes Tc located in the odd-numbered rows and the even-numbered columns, and the even-numbered rows of the second control signals are connected
  • the line is connected to the control end of the control switch tube Tc located in the even-numbered row and the odd-numbered column;
  • the odd-numbered column data signal line is connected to the input end of the odd-numbered column control switch tube Tc, and the
  • the control signal may be input to the odd-numbered first control signal lines, and the data signals may be input to the odd-numbered data signal lines, so that the OLED light-emitting devices located in the odd-numbered rows and the odd-numbered columns emit light to form a bright And a raster unit; and inputting a control signal to the even-numbered first control signal line, and inputting the data signal to the even-numbered data signal line, so that the OLED light-emitting device located in the even-numbered row and the even-numbered column emits light to form a bright grating unit.
  • An OLED light-emitting device located in an odd-numbered row and an even-numbered column and an OLED light-emitting device located in an even-numbered row and an odd-numbered column do not emit light, forming a dark grating unit.
  • the repeating units 1 are arranged in an array, and the number of control signal lines is plural, and the control signal lines include a first control signal line and a second control signal line, and one row of repeating units 1 corresponds to a first control signal line and a second control signal line; each of the first control signal lines is connected to a control end of the control switch tube Tc located in the odd-numbered rows and the odd-numbered columns, and each of the first control signal lines and the even-numbered lines And the control terminals of the even-numbered columns of the control switch tubes Tc are connected; the second control signal lines are connected to the control ends of the control switch tubes Tc located in the odd-numbered rows and the even-numbered columns, and the second control signal lines are located in the even-numbered rows and The control terminals of the odd-numbered column control switch Tc are connected; the odd-numbered column data signal lines are connected to the input terminals of the odd-numbered column control switch tubes Tc, and the even-numbered column data signal lines are connected to the input terminals
  • a control signal can be input to all of the first control signal lines, and a data signal can be input to all of the data signal lines, so that the OLED light-emitting devices located in the odd-numbered rows and the odd-numbered columns and the even-numbered rows are even-numbered
  • the columns of OLED light emitting devices emit light to form a bright grating unit.
  • An OLED light-emitting device located in an odd-numbered row and an even-numbered column and an OLED light-emitting device located in an even-numbered row and an odd-numbered column do not emit light, forming a dark grating unit.
  • the bright grating unit 7 and the dark grating unit 8 of the resulting grating are both square structures, bright grating units 7 and The dark grating units 8 are alternately arranged in the lateral direction and alternately arranged in the longitudinal direction.
  • Such a grating has the same structure in the lateral direction and the longitudinal direction, so that the 3D display device can achieve a 3D display effect in both the horizontal and vertical screen situations.
  • the grating structure shown in FIG. 4 the grating structure shown in FIG.
  • the element 1 shares the same first control signal line, the repeating unit 1 in the odd-numbered row and the even-numbered column and the repeating unit 1 in the even-numbered row and the odd-numbered column share the same second control signal line, so that the number of the first control signal lines is The number of second control signal lines is reduced by half, which reduces the complexity of the grating structure.
  • each repeating unit 1 may be a square; correspondingly, the shape of the OLED light emitting device included in the repeating unit 1 is also square, so that the grating is
  • the structures in the lateral direction and the longitudinal direction are identical.
  • the driving method of the display panel in the 3D display device is: applying a left eye image signal to one half of the sub-pixels in the display panel, and applying a right eye to the other half of the sub-pixels The image signal; and the sub-pixel to which the left-eye image signal is applied and the sub-pixel to which the right-eye image signal is applied are alternately arranged in the lateral direction and alternately arranged in the longitudinal direction, so that the display panel cooperates with the grating shown in FIG. 11 to generate 3D. display effect.
  • each of the above gratings there may be two ways of forming the dark grating unit: one is not applying a data signal to the data signal line corresponding to the dark grating unit 8, and the OLED light emitting device used to form the dark grating unit 8 has no voltage, thereby The other is to apply a low-voltage data signal to the data signal line corresponding to the dark grating unit 8, and the voltage on the OLED light-emitting device used to form the dark grating unit 8 cannot reach its operating voltage, thereby insufficiently driving the OLED light-emitting device to emit light.
  • each of the repeating units 1 includes a driving circuit for driving the repeating unit 1, and the control switch tube Tc and the OLED light-emitting device described above are elements in the driving circuit.
  • the driving circuit in each of the repeating units 1 may include other components in addition to the control switch tube Tc and the OLED light emitting device, which is not limited in this embodiment.
  • the structure of the driving circuit shown in FIG. 1 to FIG. 5 is a 2T1C structure, that is, each driving circuit includes two switching tubes and one capacitor, and the two switching tubes are respectively a control switching tube Tc and a driving switching tube.
  • control end of the driving switch tube Td is connected to the output end of the control switch tube Tc, the input end of the driving switch tube Td is connected to the power supply voltage Vdd, and the output end of the driving switch tube Td is connected to the anode of the OLED light emitting device, That is, the output end of the control switch tube Tc is indirectly connected to the anode of the OLED light-emitting device through the drive switch tube Td, and the two ends of the capacitor C are respectively connected to the control end and the output end of the drive switch tube Td.
  • each repeating unit of the grating in this embodiment is insulated from each other to control each OLED light-emitting device relatively independently.
  • a grating in a 3D display device provided by the following embodiments of the present disclosure based on an embodiment of the present disclosure For the use of passive drive gratings.
  • the specific structure of the grating in this embodiment is that the grating includes an electrode layer, an illuminating layer and an electrode layer which are stacked on the substrate, and the two electrode layers are respectively connected to two voltage signal ends for providing a voltage signal. .
  • the two electrode layers of the OLED light-emitting device are respectively connected to two voltage signal terminals, and the voltage is directly supplied to the two electrode layers by using two voltage signal terminals, and there is no need to provide control for controlling the OLED light-emitting device to emit light or not.
  • Structure, so the structure and driving method of the grating are very simple.
  • the grating includes a first electrode layer 10, a light emitting layer 50, and a second electrode layer 20 stacked on a base substrate.
  • the first electrode layer 10 includes a plurality of strip electrodes extending in the longitudinal direction and spaced apart, the strip electrodes being connected to a first voltage signal end for providing the first voltage signal V1; the second electrode layer 20 A planar electrode is included, the planar electrode being coupled to a second voltage signal terminal for providing a second voltage signal V2.
  • the structure of the light-emitting layer 50 is the same as that of the first electrode layer 10, and includes a plurality of strip-shaped light-emitting material layers.
  • the strip of luminescent material has the same shape and size as the strip electrode included in the first electrode layer 10, and the strip of luminescent material overlaps the strip electrode to form a bright grating unit in the region where the strip electrode is located.
  • the luminescent layer 50 can also be a planar structure. This structure is formed without a patterning process, and the planar structure process is simpler than the structure of the strip luminescent material layer.
  • each strip electrode in the first electrode layer 10 is the same as the length of the bright grating unit and the dark grating unit to be formed, and the width of each strip electrode and the width of the interval between two adjacent strip electrodes may be It is determined according to the pixel structure of the 3D display device to which the grating is applied.
  • the first voltage signal V1 may be applied to each strip electrode of the first electrode layer 10
  • the second voltage signal V2 may be applied to the planar electrode of the second electrode layer 20, each strip shape
  • the luminescent layer corresponding to the electrode emits light to form a bright grating unit.
  • the regions spaced between the strip electrodes form a dark grating unit.
  • the bright grating unit 7 and the dark grating unit 8 are both strip-shaped structures extending in the longitudinal direction, and the bright grating unit 7 and the dark grating unit 8 are alternately arranged in the lateral direction.
  • the grating includes a layer of a light grating unit stacked on a substrate. 2. Insulating layer 6 and dark grating unit layer 3.
  • the bright grating unit layer 2 includes a first electrode layer 10, a light emitting layer 50, and a second electrode layer 20 which are disposed in a stacked manner.
  • the dark grating unit layer 3 includes a third electrode layer 30, a light emitting layer 60, and a fourth electrode layer 40 which are stacked.
  • the first electrode layer 10 includes a plurality of first strip electrodes extending in the longitudinal direction and spaced apart, the first strip electrodes are connected to the first voltage signal end for providing the first voltage signal V1;
  • the third electrode The layer 30 includes a plurality of second strip electrodes extending in a longitudinal direction and spaced apart, the second strip electrodes being connected to a second voltage signal end for providing a second voltage signal V2, the second strip electrode being on the substrate
  • the vertical projection on the substrate and the vertical projection of the first strip electrode on the substrate are alternately arranged in the lateral direction;
  • the second electrode layer 20 and the fourth electrode layer 40 each include a one-sided electrode, and the planar electrodes are used together.
  • the third voltage signal terminal that supplies the third voltage signal V3 is connected.
  • the structure of the light-emitting layer 50 is the same as that of the first electrode layer 10, and includes a plurality of strip-shaped light-emitting material layers.
  • the strip of luminescent material has the same shape and size as the first strip electrode included in the first electrode layer 10, and the strip luminescent material layer overlaps with the first strip electrode to be in the region where the first strip electrode is located A bright grating unit is formed.
  • the structure of the light-emitting layer 60 is the same as that of the third electrode layer 30, and includes a plurality of strip-shaped light-emitting material layers.
  • the strip-shaped luminescent material layer has the same shape and size as the second strip-shaped electrode included in the third electrode layer 10, and the strip-shaped luminescent material layer overlaps with the second strip-shaped electrode to be in the region where the second strip-shaped electrode is located A dark grating unit is formed.
  • the light-emitting layers 50 and 60 may also be planar structures which are formed without a patterning process and are simpler to manufacture.
  • the length of each of the first strip electrodes in the first electrode layer 10 is the same as the length of the bright stripe unit to be formed, and the length of each of the second strip electrodes in the third electrode layer 30 and the dark grating unit to be formed The lengths are the same, and the width of each of the first strip electrodes and the width of each of the second strip electrodes may be determined according to the pixel structure of the 3D display device to which the grating is applied.
  • the first voltage signal V1 may be applied to the first strip electrode in the first electrode layer 10, and the third voltage signal may be applied to the planar electrode included in the second electrode layer 20. V3, causing the corresponding strip electrode to emit light to form a bright grating unit; applying a second voltage signal V2 to the second strip electrode in the third electrode layer 30, and including the surface included in the fourth electrode layer 40
  • the third voltage signal V3 is applied to the electrode so that the corresponding light-emitting layer of the second strip electrode does not emit light, forming a dark grating unit. As shown in Fig.
  • the bright grating unit 7 and the dark grating unit 8 are both strip-shaped structures extending in the longitudinal direction, and the bright grating unit 7 and the dark grating unit 8 are alternately arranged in the lateral direction.
  • the manner of the signal V3 forms the dark grating unit 8, which can further reduce the brightness of the dark grating unit 8, thereby improving the contrast of the bright grating unit 7 and the dark grating unit 8.
  • the driving method of the display panel in the 3D display device is: applying a left eye image signal to one half of the sub-pixels in the display panel, and applying a right eye image signal to the other half of the sub-pixels.
  • the sub-pixel to which the left-eye image signal is applied and the sub-pixel to which the right-eye image signal is applied are alternately arranged in the lateral direction, so that the display panel cooperates with the grating shown in FIG. 10 to generate a 3D display effect.
  • the grating includes a first grating forming layer 4, an insulating layer 6, and a second grating forming layer 5 laminated on the base substrate.
  • the first grating forming layer 4 includes a first electrode layer 10, a light emitting layer 50, and a second electrode layer 20 which are stacked.
  • the second grating forming layer 5 includes a third electrode layer 30, a light emitting layer 60, and a fourth electrode layer 40 which are stacked.
  • the first electrode layer 10 includes a plurality of first strip electrodes extending in the longitudinal direction and spaced apart, and the first strip electrodes are connected to the first voltage signal end for providing the first voltage signal V1.
  • the second electrode layer 20 includes a plurality of second strip electrodes extending in a lateral direction and spaced apart, the second strip electrodes being connected to a second voltage signal end for providing the second voltage signal V2;
  • the third electrode layer 30 a plurality of third strip electrodes extending in a longitudinal direction and spaced apart, the third strip electrode being connected to a first voltage signal end for providing a first voltage signal V1;
  • the fourth electrode layer 40 comprising a plurality of extending in a lateral direction And a fourth strip electrode arranged at intervals, the fourth strip electrode being connected to a second voltage signal end for providing the second voltage signal V2.
  • the overlapping portion of the first strip electrode of the first electrode layer 10 and the second strip electrode of the second electrode layer 20 is the first overlapping portion 7'; (b), the overlapping portion of the third strip electrode of the third electrode layer 30 and the fourth strip electrode of the fourth electrode layer 40 is the second overlapping portion 7".
  • the first grating forming layer 4 And the relative positional relationship of the second grating forming layer 5 in the direction parallel to the substrate substrate is such that the first overlapping portion 7' and the second overlapping portion 7" are staggered from each other, and the two are not in the same row and are not in the same
  • the column that is, the vertical projection of the first overlapping portion 7' on the base substrate and the vertical projection of the second overlapping portion 7" on the substrate are alternately arranged in the lateral direction and alternately arranged in the longitudinal direction.
  • the light emitting layer 50 may exist only in a region corresponding to the first overlapping portion 7', and the light emitting layer 50 includes a plurality of square light emitting material layers. A portion of the bright grating unit is formed in a region corresponding to an overlapping portion 7'.
  • the luminescent layer 60 can be stored only In the region corresponding to the second overlapping portion 7", the luminescent layer 60 includes a plurality of square luminescent material layers to form another partial bright grating unit in the region corresponding to the second overlapping portion 7".
  • the light-emitting layers 50 and 60 may also be planar structures which are formed without a patterning process and are simpler to manufacture.
  • the side length of the first overlapping portion 7' is equal to the side length of the second overlapping portion 7", that is, the width of the first strip electrode, the width of the second strip electrode, the width of the third strip electrode, and
  • the width of the fourth strip electrode is equal.
  • the width value is equal to the side length of the bright grating unit to be formed, and can be determined according to the pixel structure of the 3D display device to which the grating is applied.
  • the first voltage signal V1 may be applied to the first strip electrode in the first electrode layer 10, and the second voltage signal may be applied to the second strip electrode in the second electrode layer 20.
  • V2 causing the light-emitting layer corresponding to the first overlapping portion 7' to emit light to form a part of the bright grating unit; applying a first voltage signal V1 to the third strip-shaped electrode of the third electrode layer 30, and to the fourth electrode layer 40
  • the fourth strip electrode applies a second voltage signal V2 to cause the corresponding light emitting layer of the second overlapping portion 7" to emit light to form another partial bright grating unit.
  • the bright grating unit 7 and the dark grating unit 8 in the resulting grating are all square structures, and the bright grating unit 7 and the dark grating unit 8 are alternately arranged in the lateral direction and alternately arranged in the longitudinal direction.
  • the structure in the longitudinal direction is the same, from Enable 3D display device in the case of portrait and landscape are 3D display can be realized.
  • the driving method of the display panel in the 3D display device is: applying a left eye image signal to one half of the sub-pixels in the display panel, and applying a right eye image signal to the other half of the sub-pixels.
  • the sub-pixel to which the left-eye image signal is applied and the sub-pixel to which the right-eye image signal is applied are alternately arranged in the lateral direction and alternately arranged in the longitudinal direction, so that the display panel cooperates with the grating shown in FIG. 11 to produce a 3D display effect.
  • one of the first electrode layer 10 and the second electrode layer 20 is the anode of the OLED light emitting device, and the other is the cathode of the OLED light emitting device, and The location of the two is interchangeable.
  • One of the third electrode layer 30 and the fourth electrode layer 40 is the anode of the OLED light-emitting device, and the other is the cathode of the OLED light-emitting device, and the positions of the two are interchangeable.
  • An embodiment of the present disclosure provides a 3D display device in which a grating is disposed on a back surface of a display panel, and the display panel is a liquid crystal display panel.
  • the grating Since the grating is disposed on the back surface of the liquid crystal display panel and can emit light, the grating can provide the liquid crystal display panel with the light necessary for the screen display, thereby replacing the function of the backlight module in the liquid crystal display device, thereby greatly reducing the 3D display.
  • the overall thickness of the device Since the grating is disposed on the back surface of the liquid crystal display panel and can emit light, the grating can provide the liquid crystal display panel with the light necessary for the screen display, thereby replacing the function of the backlight module in the liquid crystal display device, thereby greatly reducing the 3D display.
  • the overall thickness of the device Since the grating is disposed on the back surface of the liquid crystal display panel and can emit light, the grating can provide the liquid crystal display panel with the light necessary for the screen display, thereby replacing the function of the backlight module in the liquid crystal display device, thereby greatly reducing the 3D display.
  • the overall thickness of the device Since the grating is disposed on the back surface of the liquid crystal
  • the grating 100 may include a package disposed around the film layer 102 where the OLED light emitting device is located, in addition to the base substrate 101 and the OLED light emitting device.
  • the sealant 103 and the grating package substrate 104 covering the film layer 102 where the OLED light emitting device is located.
  • the liquid crystal display panel 200 includes a TFT (Thin Film Transistor) substrate 201 and a CF (Color Film) substrate 204, and a liquid crystal layer 203 interposed between the TFT array substrate 201 and the CF substrate 204.
  • the optical glue 300 is bonded.
  • the grating 100 and the liquid crystal display panel 200 may share a single substrate.
  • the first polarizer 205 of the liquid crystal display panel 200 in the 3D display device may specifically be a wire grid polarizer.
  • the main structure of the wire grid polarizer includes a plurality of strip patterns disposed on the TFT array substrate 201 .
  • the outer side i.e., the side of the TFT array substrate 201 facing away from the liquid crystal layer 203
  • the TFT array substrate 201 serves as the grating package substrate 104 of the grating 100 at the same time.
  • the basic principle of displaying a 3D picture by the 3D display device is as follows: as shown in FIG. 14 , half of the pixels in the liquid crystal display panel 200 display a left eye image, and the other half of the pixels display a right eye image, wherein the left eye image and the right eye There is a certain spatial difference between the images, and the pixels L displaying the left eye image and the pixels R displaying the right eye image are alternately arranged.
  • the liquid crystal display panel 200 is superimposed with the grating 100, since the grating 100 includes alternating bright grating units and dark grating units, and there is a certain distance between the left eye and the right eye of the observer, that is, there is a parallax between the left eye and the right eye.
  • the left eye can only receive the light passing through the L pixel, and the left eye image can be seen, and the right eye can only receive the light passing through the R pixel and see the right eye image. Since there is a spatial difference between the left eye image and the right eye image, 3D images are formed in the brain through the calculation and synthesis of the brain.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Control Of El Displays (AREA)
  • Electroluminescent Light Sources (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

一种3D显示装置及其驱动方法,涉及显示技术领域,用于解决由于光栅中亮光栅单元与暗光栅单元之间的对比度低所引起的3D画面串扰较大的问题。其中所述3D显示装置包括光栅和显示面板,所述光栅分为亮光栅单元和暗光栅单元,所述光栅包括衬底基板及设置于所述衬底基板上的多个OLED发光器件,所述多个OLED发光器件中的至少一部分OLED发光器件在施加工作电压时发光以形成所述亮光栅单元,不发光的OLED发光器件形成所述暗光栅单元。

Description

3D显示装置及其驱动方法
本申请要求了2015年8月20日提交的、申请号为201510515045.7、发明名称为“3D显示装置及其驱动方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及显示技术领域,尤其涉及一种3D显示装置及其驱动方法。
背景技术
近年来,3D(三维)显示技术快速发展,3D显示技术能够使画面变得立体逼真,图像不再局限于显示屏的平面上,让观众有身临其境的感觉。3D显示技术包括眼镜式和裸眼式两大类,其中裸眼式3D显示技术由于无需佩戴眼镜,相比于眼镜式3D显示技术得到了人们的更多关注。
裸眼式3D显示装置包括叠加在一起的光栅与显示屏,其中光栅包括交替排列的暗光栅单元与亮光栅单元。在光栅的作用下,观察者的左右眼能够看到不同的画面,从而在观察者的大脑中形成3D显示效果。
目前,裸眼式3D显示装置的光栅常采用液晶光栅。液晶光栅包括上下基板及封装在二者之间的液晶分子,其中上基板上设置有间隔排布的条形电极,下基板上设置有面电极。对于初始状态为白态的液晶光栅,通过给条形电极和面电极上分别施加不同的电压,促使条形电极下方的液晶分子偏转,阻止光线透过,形成暗光栅单元;条形电极之间的间隙所对应的液晶分子仍然保持初始状态,允许光线全部通过,形成亮光栅单元。
但是由于液晶分子偏转不到位等原因,液晶光栅中的暗光栅单元往往具有一定的亮度,造成亮光栅单元与暗光栅单元之间的对比度较低,进而造成所显示的3D画面串扰较大。
发明内容
为克服上述现有技术中的缺陷,本发明提供一种3D显示装置及其驱动方 法,以解决由于光栅中亮光栅单元与暗光栅单元之间的对比度低所引起的3D画面串扰较大的问题。
为达到上述目的,本发明采用如下技术方案:
本发明的第一方面提供了一种3D显示装置,包括光栅和显示面板,所述光栅分为亮光栅单元和暗光栅单元,所述光栅包括衬底基板及设置于所述衬底基板上的多个OLED发光器件,所述多个OLED发光器件中的至少一部分OLED发光器件在施加工作电压时发光以形成所述亮光栅单元,不发光的OLED发光器件形成所述暗光栅单元。
上述3D显示装置中,光栅的衬底基板上设置有OLED发光器件。通过OLED发光器件发光形成亮光栅单元,因此亮光栅单元为自发光结构,能够达到较高的亮度。与现有的液晶光栅中由液晶分子偏转形成的暗光栅单元的方式相比,本发明中的3D显示装置由光栅中不发光的区域形成暗光栅单元,因此暗光栅单元的亮度得以降低,其亮度几乎为零,从而提高了亮光栅单元与暗光栅单元之间的对比度,降低了3D显示装置画面的串扰。
本发明的第二方面提供了一种3D显示装置的驱动方法,用于驱动本发明的第一方面所提供的3D显示装置,所述驱动方法包括向所述3D显示装置的光栅所包括的多个OLED发光器件中的至少一部分OLED发光器件施加工作电压,使被施加工作电压的OLED发光器件发光以形成亮光栅单元。
由于上述3D显示装置的驱动方法所驱动的3D显示装置为本发明的第一方面所提供的3D显示装置,因此该驱动方法具有与本发明的第一方面所提供的3D显示装置相同的有益效果,在此不再赘述。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为本发明实施例所提供的3D显示装置中光栅的第一种平面结构图;
图2为本发明实施例所提供的3D显示装置中光栅在一种驱动方法下的第 二种平面结构图;
图3为本发明实施例所提供的3D显示装置中光栅在另一种驱动方法下的第二种平面结构图;
图4为本发明实施例所提供的3D显示装置中光栅的第三种平面结构图;
图5为本发明实施例所提供的3D显示装置中光栅的第四种平面结构图;
图6为本发明实施例所提供的3D显示装置中光栅的第一种截面结构图;
图7为本发明实施例所提供的3D显示装置中光栅的第二种截面结构图;
图8为本发明实施例所提供的3D显示装置中光栅的第三种截面结构图;
图9为图8所示出的光栅的平面分解结构图;
图10为本发明实施例的一种光栅的示意图;
图11为本发明实施例的另一种光栅的示意图;
图12为本发明实施例提供的3D显示装置的第一种截面结构图;
图13为本发明实施例提供的3D显示装置的第二种截面结构图;
图14为本发明实施例提供的3D显示装置的光路图。
附图标记说明:
1-重复单元;                          Td-驱动开关管;
Tc-控制开关管;                       C-电容;
D-OLED发光器件;                      Vdd-电源电压;
Ctrol、Ctrol1~Ctrol5-控制信号线;    Ctrol1′~Ctrol5′-第一控制信号线;
Ctrol1″~Ctrol5″-第二控制信号线;    Data1~Data5-数据信号线;
2-亮光栅单元层;                      3-暗光栅单元层;
4-第一光栅形成层;                    5-第二光栅形成层;
6-绝缘层;                            10-第一电极层;
20-第二电极层;                       30-第三电极层;
40-第四电极层;                       50、60-发光层;
V1-第一电压信号;                     V2-第二电压信号;
V3-第三电压信号;                     7-亮光栅单元;
7′-第一交叠部分;                    7″-第二交叠部分;
8-暗光栅单元;                        100-光栅;
200-液晶显示面板;                    300-光学胶;
101-衬底基板;                        102-OLED发光器件所在膜层;
103、202-封框胶;                     104-光栅封装基板;
201-TFT阵列基板;                     203-液晶层;
204-CF基板;                          205-第一偏光片;
206-第二偏光片;                      L-显示左眼图像的像素;
R-显示右眼图像的像素。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其它实施例,均属于本发明保护的范围。
本公开的实施例提供了一种3D显示装置,该3D显示装置包括光栅和显示面板,其中光栅包括亮光栅单元和暗光栅单元,该光栅包括衬底基板及设置于衬底基板上的多个OLED发光器件,所述多个OLED发光器件中的至少一部分OLED发光器件在施加工作电压时发光以形成亮光栅单元,不发光的OLED发光器件形成所述暗光栅单元。
相对应的,本实施例还提供了一种3D显示装置的驱动方法,用于驱动上述3D显示装置,该驱动方法包括:向3D显示装置的光栅所包括的多个OLED发光器件中至的少一部分OLED发光器件施加工作电压,使被施加工作电压的OLED发光器件发光以形成亮光栅单元。光栅中不发光的区域形成暗光栅单元。
上述3D显示装置及其驱动方法中,通过在3D显示装置的光栅的衬底基板上设置OLED发光器件,使OLED发光器件发光形成亮光栅单元。因此亮光栅单元为自发光结构,能够达到较高的亮度。与现有的液晶光栅中由液晶分子偏转形成的暗光栅单元的方式相比,本实施例中的3D显示装置由光栅中不 发光的区域形成暗光栅单元,因此暗光栅单元的亮度得以降低,其亮度几乎为零,从而提高了亮光栅单元与暗光栅单元之间的对比度,降低了3D显示装置画面的串扰。
本实施例中,光栅所包括的OLED发光器件可为白光OLED发光器件,且显示面板包括色阻层,该色阻层至少可以进行红色色阻、绿色色阻和蓝色色阻,以实现彩色显示。
需要说明的是,本实施例中所述的OLED发光器件具体可为层叠结构,包括阳极、发光层和阴极。通过在阳极和阴极上施加工作电压,能够使阳极中的空穴和阴极中的电子在发光层中复合,从而激发发光层中的发光材料辐射发光。
此外,本实施例所提供的3D显示装置可应用于手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
基于上述实施例,本公开实施例所提供的3D显示装置中的光栅具体包括设置于衬底基板上的多个重复单元、至少一条控制信号线和多条数据信号线。每个重复单元内设置有控制开关管和OLED发光器件,控制开关管的输出端与OLED发光器件的阳极相连,OLED发光器件的阴极接地;控制信号线沿横向延伸,控制信号线与控制开关管的控制端相连,用于控制控制开关管导通或关断;数据信号线沿纵向延伸,数据信号线与控制开关管的输入端相连,用于使控制开关管向OLED发光器件输出电压信号。
需要时说明的是,所述“控制开关管的输出端与OLED发光器件的阳极相连”既包括直接相连的情况,也包括间接相连的情况。
上述光栅中,利用控制信号线使控制开关管导通或关断,进而控制何时向OLED发光器件施加电压,同时利用数据信号线向控制开关管输入电压信号,进而实现向OLED发光器件施加电压的目的。采用前述结构和方法能够实现对各OLED发光器件较灵活的控制,增大光栅的适用范围。
下面结合附图,对上述光栅的结构和驱动方法进行示例性的介绍。需要说明的是,在图2中Ctrol1、Ctrol3、Ctrol5表示奇数行控制信号线,Ctrol2、Ctrol4表示偶数行控制信号线;在图4中Ctrol1′、Ctrol3′、Ctrol5′表示奇数行第一控制信号线,Ctrol2′、Ctrol4′表示偶数行第一控制信号线,Ctrol1″、 Ctrol3″、Ctrol5″表示奇数行第二控制信号线,Ctrol2″、Ctrol4″表示偶数行第二控制信号线;在图5中Ctrol1′、Ctrol2′表示第一控制信号线,Ctrol1″、Ctrol2″表示第二控制信号线。在图1~图5中,Data1、Data3、Data5表示奇数列数据信号线,Data2、Data4表示偶数列数据信号线;D表示OLED发光器件。
示例性地,如图1所示,重复单元1排成一行,且控制信号线Ctrol的数量为一条,该控制信号线Ctrol与各控制开关管Tc的控制端相连,奇数列数据信号线与奇数位置的控制开关管Tc的输入端相连,偶数列数据信号线与偶数位置的控制开关管Tc的输入端相连。该光栅中控制信号线Ctrol和重复单元1的数目很少,更具体来说为用于驱动重复单元1的驱动电路的数量很少,因此光栅的结构简单。
需要说明的是,所谓“奇数位置”是指在一行控制开关管Tc中,序号为奇数的控制开关管;同理,所谓“偶数位置”是指在一行控制开关管Tc中,序号为偶数的控制开关管。
另外,在图1所示出的光栅结构中,各重复单元1的具体形状可为沿纵向延伸的条形,其长度与需要形成的亮光栅单元和暗光栅单元的长度相同;相应的,重复单元1所包括的OLED发光器件也为沿纵向延伸的条形,长度与需要形成的亮光栅单元和暗光栅单元的长度相同。
示例性地,如图2所示,重复单元1呈阵列式排布,且控制信号线的数量为多条,奇数行控制信号线与奇数行控制开关管Tc的控制端相连,偶数行控制信号线与偶数行控制开关管Tc的控制端相连,奇数列数据信号线与奇数列控制开关管Tc的输入端相连,偶数列数据信号线与偶数列控制开关管Tc的输入端相连。该光栅中重复单元1呈矩阵式排布,多条控制信号线对各重复单元1进行控制,因此重复单元1的面积较小。也就是说,每个控制开关管Tc所控制的OLED发光器件的面积较小,从而控制开关管Tc所输出的数据信号能够及时地传输至整个OLED发光器件上,信号延迟较小。
需要说明的是,在图2所示出的光栅结构中,各重复单元1的具体形状可为正方形;相应的,重复单元1所包括的OLED发光器件也为正方形,以在较大程度上减小每个控制开关管Tc所控制的OLED发光器件的面积,减小信 号的延迟。
并且,各重复单元1的具体形状也可为长方形,其长度小于需要形成的亮光栅单元和暗光栅单元的长度。相应的,重复单元1所包括的OLED发光器件也为长方形,其长度小于需要形成的亮光栅单元和暗光栅单元的长度。这种设计能够在一定程度上减小信号的延迟。相对于重复单元1的形状为正方形的技术方案,这种设计能够使控制信号线和重复单元1的数量均有所减少,从而用于驱动重复单元1的驱动电路的数量有所减少,使得光栅的结构在一定程度上被简化。
在驱动图1和图2所示出的光栅时,可采用有源驱动的方式,向全部控制信号线输入控制信号(对于图1所示出光栅,即为向一条控制信号线输入控制信号,对于图2所示出光栅,即为向奇数行和偶数行控制信号线输入控制信号),并向奇数条或偶数条数据信号线输入数据信号,使奇数列或偶数列OLED发光器件发光,形成亮光栅单元。其余列的OLED器件不发光,形成暗光栅单元。如图10所示,最终所得到的光栅中亮光栅单元7和暗光栅单元8均为沿纵向延伸的条形结构,且亮光栅单元7和暗光栅单元8沿横向交替排布。
基于上述驱动方法,对于分辨率较小的3D显示装置,所需要的亮光栅单元和暗光栅单元的宽度较大。此时可以将全部数据信号线平均分为多组,向奇数组或偶数组的数据信号线输入数据信号,并向控制信号线输入控制信号,使奇数组或偶数组的OLED发光器件发光,形成亮光栅单元。其余组的OLED器件不发光,形成暗光栅单元。再次参见图10,所形成的亮光栅单元7和暗光栅单元8均为沿纵向延伸的条形结构,且亮光栅单元7和暗光栅单元8沿横向交替排布。在实际应用过程中,可以根据3D显示装置分辨率的大小,确定亮光栅单元7和暗光栅单元8的宽度,进而确定每个亮光栅单元7和暗光栅单元8各自需要同时点亮的重复单元的数目,即确定每组数据信号线中所包含的数据信号线的数量。通过这种驱动方式能够使光栅适用于不同分辨率的3D显示装置,增大了光栅的适用范围。
需要说明的是,对应于图10所示的光栅,3D显示装置中显示面板的驱动方法为:向显示面板中的一半子像素施加左眼图像信号,并向另一半子像素施加右眼图像信号;并且被施加左眼图像信号的子像素与被施加右眼图像信号的 子像素沿横向交替排布,从而显示面板与图10所示的光栅相配合,产生3D显示效果。
特别地,如图3所示,光栅结构与图2所示出的光栅结构相同,同样采用有源驱动的方式对图3所示的光栅结构进行驱动,因此能够实现对每个重复单元1的单独控制,即在一个驱动周期内能够控制单个重复单元1的开启与关闭。具体的,在一个驱动周期内,逐行向控制信号线输入控制信号;在每一条控制信号线的扫描时间内,向奇数列数据信号线输入数据信号,使该行中奇数位置的OLED发光器件发光,或者向偶数列数据信号线输入数据信号,使该行中偶数位置的OLED发光器件发光。例如:当向Ctrol1输入控制信号时,向奇数列数据信号线输入数据信号,从而使位于第一行且奇数列的OLED发光器件发光,形成亮光栅单元,位于第一行且偶数列的OLED发光器件不发光,形成暗光栅单元;当向Ctrol2输入控制信号时,向偶数列数据信号线输入数据信号,从而使位于第二行且偶数列的OLED发光器件发光,形成亮光栅单元,位于第二行且奇数列的OLED发光器件不发光,形成暗光栅单元。
在图3所示出的光栅结构中,各重复单元1的具体形状为正方形。相应的,重复单元1所包括的OLED发光器件也为正方形。在此基础上,如图11所示,采用图3所示出的光栅结构及上述驱动方法,最终所得到的光栅中亮光栅单元7和暗光栅单元8均为正方形结构,亮光栅单元7和暗光栅单元8沿横向交替排布且沿纵向交替排布。这种光栅在横向上和纵向上的结构相同,从而可使3D显示装置在横屏和竖屏的情形下均能够实现3D显示效果。
需要说明的是,由于各重复单元1包括存储电容C,因此在一个驱动周期内,可保证各重复单元1的OLED发光器件保持开启或关闭状态,即保持发光或不发光的状态,从而使光栅整体保持图11所示出的光栅画面。
示例性地,如图4所示,重复单元1呈阵列式排布,控制信号线的数量为多条,控制信号线包括第一控制信号线和第二控制信号线,且一行重复单元1对应一条第一控制信号线和一条第二控制信号线;奇数行第一控制信号线与位于奇数行且奇数列的控制开关管Tc的控制端相连,偶数行第一控制信号线与位于偶数行且偶数列的控制开关管Tc的控制端相连;奇数行第二控制信号线与位于奇数行且偶数列的控制开关管Tc的控制端相连,偶数行第二控制信号 线与位于偶数行且奇数列的控制开关管Tc的控制端相连;奇数列数据信号线与奇数列控制开关管Tc的输入端相连,偶数列数据信号线与偶数列控制开关管Tc的输入端相连。
在驱动图4所示出的光栅时,可向奇数行第一控制信号线输入控制信号,并向奇数列数据信号线输入数据信号,使位于奇数行且奇数列的OLED发光器件发光,形成亮光栅单元;并且向偶数行第一控制信号线输入控制信号,并向偶数列数据信号线输入数据信号,使位于偶数行且偶数列的OLED发光器件发光,形成亮光栅单元。位于奇数行且偶数列的OLED发光器件和位于偶数行且奇数列的OLED发光器件不发光,形成暗光栅单元。
示例性地,如图5所示,重复单元1呈阵列式排布,控制信号线的数量为多条,控制信号线包括第一控制信号线和第二控制信号线,且一行重复单元1对应一条第一控制信号线和一条第二控制信号线;各条第一控制信号线与位于奇数行且奇数列的控制开关管Tc的控制端相连,且各条第一控制信号线与位于偶数行且偶数列的控制开关管Tc的控制端相连;各条第二控制信号线与位于奇数行且偶数列的控制开关管Tc的控制端相连,且各条第二控制信号线与位于偶数行且奇数列的控制开关管Tc的控制端相连;奇数列数据信号线与奇数列控制开关管Tc的输入端相连,偶数列数据信号线与偶数列控制开关管的输入端相连。
在驱动图5所示出的光栅时,可向全部第一控制信号线输入控制信号,并向全部数据信号线输入数据信号,使位于奇数行且奇数列的OLED发光器件和位于偶数行且偶数列的OLED发光器件发光,形成亮光栅单元。位于奇数行且偶数列的OLED发光器件和位于偶数行且奇数列的OLED发光器件不发光,形成暗光栅单元。
如图11所示,采用图4和图5所示出的光栅结构及上述各自的驱动方法,最终所得到的光栅中亮光栅单元7和暗光栅单元8均为正方形结构,亮光栅单元7和暗光栅单元8沿横向交替排布且沿纵向交替排布。这种光栅在横向上和纵向上的结构相同,从而可使3D显示装置在横屏和竖屏的情形下均能够实现3D显示效果。并且,相对于图4所示出的光栅结构,图5所示出的光栅结构相当于使位于奇数行且奇数列的重复单元1和位于偶数行且偶数列的重复单 元1共用同一条第一控制信号线,位于奇数行且偶数列的重复单元1和位于偶数行且奇数列的重复单元1共用同一条第二控制信号线,从而第一控制信号线的数量和第二控制信号线的数量均减少了一半,降低了光栅结构的复杂程度。
需要说明的是,图4和图5所示出的光栅中,各重复单元1的具体形状可为正方形;相应的,重复单元1所包括的OLED发光器件的形状也为正方形,以使光栅在横向上和纵向上的结构完全相同。
另外,需要说明的是,对应于图11所示的光栅,3D显示装置中显示面板的驱动方法为:向显示面板中的一半子像素施加左眼图像信号,并向另一半子像素施加右眼图像信号;并且被施加左眼图像信号的子像素与被施加右眼图像信号的子像素沿横向交替排布且沿纵向交替排布,从而显示面板与图11所示的光栅相配合,产生3D显示效果。
上述各光栅中,形成暗光栅单元的方式可以有两种:一种是不向暗光栅单元8对应的数据信号线施加数据信号,使用于形成暗光栅单元8的OLED发光器件上没有电压,从而不发光;另一种是向暗光栅单元8对应的数据信号线施加低压数据信号,使用于形成暗光栅单元8的OLED发光器件上电压不能达到其工作电压,从而不足以驱动OLED发光器件发光。
并且,在上述各光栅中,每个重复单元1中均包括用于驱动该重复单元1的驱动电路,前面所述的控制开关管Tc和OLED发光器件即为该驱动电路中的元件。每个重复单元1中的驱动电路除包括控制开关管Tc和OLED发光器件,还可包括其它元件,本实施例对此并不限定。举例来说,图1~图5所示出的驱动电路的结构为2T1C结构,即每个驱动电路包括两个开关管和1个电容,两个开关管分别为控制开关管Tc和驱动开关管Td;其中,驱动开关管Td的控制端与控制开关管Tc的输出端相连,驱动开关管Td的输入端与电源电压Vdd相连,驱动开关管Td的输出端与OLED发光器件的阳极相连,也就是说,控制开关管Tc的输出端与OLED发光器件的阳极通过驱动开关管Td间接相连,电容C的两端分别并接在驱动开关管Td的控制端和输出端上。
此外,需要说明一点,本实施例中的光栅各重复单元所包括的OLED发光器件之间相互绝缘,以相对独立地对每个OLED发光器件进行控制。
基于本公开的实施例,本公开的下述实施例所提供的3D显示装置中光栅 为采用无源驱动方式的光栅。
本实施例中的光栅的具体结构为:光栅包括层叠设置于衬底基板上的电极层、发光层和电极层,且这两个电极层分别与两个用于提供电压信号的电压信号端相连。
上述光栅中,OLED发光器件的两个电极层分别与两个电压信号端相连,利用两个电压信号端直接向两个电极层提供电压,无需设置用于控制OLED发光器件发光或不发光的控制结构,因此光栅的结构和驱动方法都非常简单。
下面结合附图,对采用无源驱动方式的光栅的结构和驱动方法进行示例性的介绍。
示例性地,如图6所示,光栅包括层叠设置于衬底基板上的第一电极层10、发光层50和第二电极层20。其中,第一电极层10包括多个沿纵向延伸且间隔排布的条形电极,所述条形电极均与用于提供第一电压信号V1的第一电压信号端相连;第二电极层20包括面状电极,所述面状电极与用于提供第二电压信号V2的第二电压信号端相连。
需要说明的是,在图6所示出的光栅结构中,发光层50的结构与第一电极层10的结构相同,包括多个条形发光材料层。该条形发光材料层与第一电极层10所包括的条形电极的形状和尺寸相同,且条形发光材料层与条形电极重叠,以在条形电极所在的区域形成亮光栅单元。发光层50也可为面状结构,这种结构无需构图工艺形成,相比于条形发光材料层的结构,这种面状结构工艺更加简单。
并且,第一电极层10中的各条形电极的长度与需要形成的亮光栅单元和暗光栅单元的长度相同,各条形电极的宽度和相邻两个条形电极之间间隔的宽度可根据光栅所应用的3D显示装置的像素结构确定。
在驱动图6所示出的光栅时,可向第一电极层10的各条形电极施加第一电压信号V1,并向第二电极层20面状电极施加第二电压信号V2,各条形电极对应的发光层发光,形成亮光栅单元。各条形电极之间间隔的区域形成暗光栅单元。如图10所示,最终所得到的光栅中亮光栅单元7和暗光栅单元8均为沿纵向延伸的条形结构,且亮光栅单元7和暗光栅单元8沿横向交替排布。
示例性地,如图7所示,光栅包括层叠设置于衬底基板上的亮光栅单元层 2、绝缘层6和暗光栅单元层3。亮光栅单元层2包括层叠设置的第一电极层10、发光层50和第二电极层20。暗光栅单元层3包括层叠设置的第三电极层30、发光层60和第四电极层40。其中,第一电极层10包括多个沿纵向延伸且间隔排布的第一条形电极,第一条形电极均与用于提供第一电压信号V1的第一电压信号端相连;第三电极层30包括多个沿纵向延伸且间隔排布的第二条形电极,第二条形电极均与用于提供第二电压信号V2的第二电压信号端相连,第二条形电极在衬底基板上的垂直投影与第一条形电极在所述衬底基板上的垂直投影沿横向交替排布;第二电极层20和第四电极层40均包括一面状电极,面状电极均与用于提供第三电压信号V3的第三电压信号端相连。
需要说明的是,在图7所示出的光栅结构中,发光层50的结构与第一电极层10的结构相同,包括多个条形发光材料层。该条形发光材料层与第一电极层10所包括的第一条形电极的形状和尺寸相同,且条形发光材料层与第一条形电极重叠,以在第一条形电极所在的区域形成亮光栅单元。发光层60的结构与第三电极层30的结构相同,包括多个条形发光材料层。该条形发光材料层与第三电极层10所包括的第二条形电极的形状和尺寸相同,且条形发光材料层与第二条形电极重叠,以在第二条形电极所在的区域形成暗光栅单元。发光层50和60也可为面状结构,这种结构无需构图工艺形成,制造更加简单。
并且,第一电极层10中的各第一条形电极的长度与需要形成的亮光栅单元的长度相同,第三电极层30中的各第二条形电极的长度与需要形成的暗光栅单元的长度相同,各第一条形电极的宽度和各第二条形电极的宽度可根据光栅所应用的3D显示装置的像素结构确定。
在驱动图7所示出的光栅时,可向第一电极层10中的第一条形电极施加第一电压信号V1,并向第二电极层20所包括的面状电极施加第三电压信号V3,使第一条形电极对应的发光层发光,形成亮光栅单元;向第三电极层30中的第二条形电极施加第二电压信号V2,并向第四电极层40所包括的面状电极施加第三电压信号V3,使第二条形电极对应的发光层不发光,形成暗光栅单元。如图10所示,最终所得到的光栅中亮光栅单元7和暗光栅单元8均为沿纵向延伸的条形结构,且亮光栅单元7和暗光栅单元8沿横向交替排布。采用向第三电极层30施加第二电压信号V2,并向第四电极层40施加第三电压 信号V3的方式形成暗光栅单元8,能够进一步降低暗光栅单元8的亮度,从而提高亮光栅单元7与暗光栅单元8的对比度。
需要说明的是,对应于图10所示的光栅,3D显示装置中显示面板的驱动方法为:向显示面板中的一半子像素施加左眼图像信号,并向另一半子像素施加右眼图像信号,被施加左眼图像信号的子像素与被施加右眼图像信号的子像素沿横向交替排布,从而显示面板与图10所示的光栅相配合,产生3D显示效果。
示例性地,如图8所示,光栅包括层叠设置于衬底基板上的第一光栅形成层4、绝缘层6和第二光栅形成层5。第一光栅形成层4包括层叠设置的第一电极层10、发光层50和第二电极层20。第二光栅形成层5包括层叠设置的第三电极层30、发光层60和第四电极层40。其中,第一电极层10包括多个沿纵向延伸且间隔排布的第一条形电极,第一条形电极均与用于提供第一电压信号V1的第一电压信号端相连。第二电极层20包括多个沿横向延伸且间隔排布的第二条形电极,第二条形电极均与用于提供第二电压信号V2的第二电压信号端相连;第三电极层30包括多个沿纵向延伸且间隔排布的第三条形电极,第三条形电极与用于提供第一电压信号V1的第一电压信号端相连;第四电极层40包括多个沿横向延伸且间隔排布的第四条形电极,第四条形电极与用于提供第二电压信号V2的第二电压信号端相连。
如图9中的(a)所示,第一电极层10的第一条形电极与第二电极层20的第二条形电极的交叠部分为第一交叠部分7′;如图9中的(b)所示,第三电极层30的第三条形电极与第四电极层40的第四条形电极的交叠部分为第二交叠部分7″。第一光栅形成层4和第二光栅形成层5在平行于衬底基板的方向上的相对位置关系为:第一交叠部分7′和第二交叠部分7″相互错开,二者不处于同一行也不处于同一列,即第一交叠部分7′在衬底基板上的垂直投影与第二交叠部分7″在衬底基板上的垂直投影沿横向交替排布且沿纵向交替排布。
需要说明的是,在图8所示出的光栅结构中,发光层50可仅存在于第一交叠部分7′所对应的区域,发光层50包括多个正方形的发光材料层,以在第一交叠部分7′所对应的区域内形成一部分亮光栅单元。发光层60可仅存 在于第二交叠部分7″所对应的区域,发光层60包括多个正方形的发光材料层,以在第二交叠部分7″所对应的区域内形成另一部分亮光栅单元。发光层50和60也可为面状结构,这种结构无需构图工艺形成,制造更加简单。
并且,第一交叠部分7′的边长与第二交叠部分7″的边长相等,即第一条形电极的宽度、第二条形电极的宽度、第三条形电极的宽度和第四条形电极的宽度相等。该宽度值与需要形成的亮光栅单元的边长相等,可根据光栅所应用的3D显示装置的像素结构确定。
在驱动图8所示出的光栅时,可向第一电极层10中的第一条形电极施加第一电压信号V1,并向第二电极层20中的第二条电极施加第二电压信号V2,使第一交叠部分7′对应的发光层发光,形成一部分亮光栅单元;向第三电极层30中的第三条形电极施加第一电压信号V1,并向第四电极层40中的第四条形电极施加第二电压信号V2,使第二交叠部分7″对应的发光层发光,形成另一部分亮光栅单元。第一交叠部分7′处的一部分亮光栅单元和第二交叠部分7″处的另一部分亮光栅单元形成全部的亮光栅单元,第一交叠部分7′和第二交叠部分7″以外的区域不能发光,形成暗光栅单元。如图11所示,最终所得到的光栅中亮光栅单元7和暗光栅单元8均为正方形结构,且亮光栅单元7和暗光栅单元8沿横向交替排布且沿纵向交替排布。这种光栅在横向上和纵向上的结构相同,从而可使3D显示装置在横屏和竖屏的情形下均能够实现3D显示效果。
需要说明的是,对应于图11所示的光栅,3D显示装置中显示面板的驱动方法为:向显示面板中的一半子像素施加左眼图像信号,并向另一半子像素施加右眼图像信号,被施加左眼图像信号的子像素与被施加右眼图像信号的子像素沿横向交替排布且沿纵向交替排布,从而显示面板与图11所示的光栅相配合,产生3D显示效果。
另外,需要说明的是,在上述三种采用无源驱动方式的光栅中,第一电极层10和第二电极层20中一个为OLED发光器件的阳极,另一个为OLED发光器件的阴极,且二者的位置可互换。第三电极层30和第四电极层40中一个为OLED发光器件的阳极,另一个为OLED发光器件的阴极,且二者的位置可互换。
本公开的实施例提供了一种3D显示装置,该3D显示装置中光栅设置于显示面板的背面,且显示面板为液晶显示面板。
由于光栅设置于液晶显示面板的背面,并且能够发出光线,因此光栅能够为液晶显示面板提供进行画面显示所必需的光线,从而替代液晶显示装置中背光模组的作用,极大地减薄了3D显示装置整体厚度。
具体的,如图12所示,本实施例所提供的3D显示装置中,光栅100除包括衬底基板101和OLED发光器件外,还可包括设置于OLED发光器件所在的膜层102周围的封框胶103和覆盖OLED发光器件所在的膜层102的光栅封装基板104。液晶显示面板200包括:相对设置的TFT(Thin Film Transistor,薄膜晶体管)阵列基板201和CF(Color Film,彩膜)基板204,夹设于TFT阵列基板201和CF基板204之间的液晶层203,包围液晶层203的封框胶202,贴附于TFT阵列基板201外侧的第一偏光片205,及贴附于CF基板外侧的第二偏光片206;光栅100与液晶显示面板200之间通过光学胶300粘接。
为了进一步减薄3D显示装置的整体厚度,可使光栅100与液晶显示面板200共用一块基板。如图13所示,该3D显示装置中液晶显示面板200的第一偏光片205具体可为一线栅偏振器,该线栅偏振器的主要结构包括多个条状图形,设置于TFT阵列基板201的外侧(即TFT阵列基板201背向液晶层203的一侧),TFT阵列基板201同时用作光栅100的光栅封装基板104。
本实施例所提供的3D显示装置显示3D画面的基本原理为:如图14所示,液晶显示面板200中一半像素显示左眼图像,另一半像素显示右眼图像,其中左眼图像与右眼图像之间存在一定的空间差别,并且显示左眼图像的像素L与显示右眼图像的像素R交替排列。液晶显示面板200与光栅100叠加,由于光栅100包括交替排列的亮光栅单元和暗光栅单元,并且观察者的左眼与右眼之间具有一定的距离,即左眼与右眼之间存在视差,因此左眼只能接收到经过L像素的光,看到左眼图像,右眼只能接收到经过R像素的光,看到右眼图像。由于左眼图像与右眼图像之间存在空间差别,因此经过大脑的计算与合成,会在大脑中形成3D图像。
以上所述仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到 的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (16)

  1. 一种3D显示装置,包括光栅和显示面板,所述光栅分为亮光栅单元和暗光栅单元,其特征在于,所述光栅包括衬底基板及设置于所述衬底基板上的多个OLED发光器件,所述多个OLED发光器件中的至少一部分OLED发光器件在施加工作电压时发光以形成所述亮光栅单元,不发光的OLED发光器件形成所述暗光栅单元。
  2. 根据权利要求1所述的3D显示装置,其特征在于,所述光栅包括设置于所述衬底基板上的多个重复单元、至少一条控制信号线和多条数据信号线;其中,
    每个所述重复单元内设置有控制开关管和OLED发光器件,所述控制开关管的输出端与所述OLED发光器件的阳极相连,所述OLED发光器件的阴极接地;
    所述控制信号线沿横向延伸,所述控制信号线与所述控制开关管的控制端相连,用于控制所述控制开关管导通或关断;
    所述数据信号线沿纵向延伸,所述数据信号线与所述控制开关管的输入端相连,用于使所述控制开关管向所述OLED发光器件输出电压信号。
  3. 根据权利要求2所述的3D显示装置,其特征在于,所述重复单元排成一行,且所述控制信号线的数量为一条;
    所述控制信号线与各控制开关管的控制端相连;
    奇数列数据信号线与奇数位置的控制开关管的输入端相连,偶数列数据信号线与偶数位置的控制开关管的输入端相连。
  4. 根据权利要求2所述的3D显示装置,其特征在于,所述重复单元呈阵列式排布,且所述控制信号线的数量为多条;
    奇数行控制信号线与奇数行控制开关管的控制端相连,偶数行控制信号线与偶数行控制开关管的控制端相连;
    奇数列数据信号线与奇数列控制开关管的输入端相连,偶数列数据信号线与偶数列控制开关管的输入端相连。
  5. 根据权利要求2所述的3D显示装置,其特征在于,所述重复单元呈 阵列式排布,所述控制信号线的数量为多条,所述控制信号线包括第一控制信号线和第二控制信号线,且一行重复单元对应一条第一控制信号线和一条第二控制信号线;
    奇数行第一控制信号线与位于奇数行且奇数列的控制开关管的控制端相连,偶数行第一控制信号线与位于偶数行且偶数列的控制开关管的控制端相连;
    奇数行第二控制信号线与位于奇数行且偶数列的控制开关管的控制端相连,偶数行第二控制信号线与位于偶数行且奇数列的控制开关管的控制端相连;
    奇数列数据信号线与奇数列控制开关管的输入端相连,偶数列数据信号线与偶数列控制开关管的输入端相连。
  6. 根据权利要求2所述的3D显示装置,其特征在于,所述重复单元呈阵列式排布,所述控制信号线的数量为多条,所述控制信号线包括第一控制信号线和第二控制信号线,且一行重复单元对应一条第一控制信号线和一条第二控制信号线;
    各条第一控制信号线与位于奇数行且奇数列的控制开关管的控制端相连,且各条第一控制信号线与位于偶数行且偶数列的控制开关管的控制端相连;
    各条第二控制信号线与位于奇数行且偶数列的控制开关管的控制端相连,且各条第二控制信号线与位于偶数行且奇数列的控制开关管的控制端相连;
    奇数列数据信号线与奇数列控制开关管的输入端相连,偶数列数据信号线与偶数列控制开关管的输入端相连。
  7. 根据权利要求1所述的3D显示装置,其特征在于,所述光栅包括层叠设置于所述衬底基板上的电极层、发光层和电极层,两个所述电极层分别与两个用于提供电压信号的电压信号端相连。
  8. 根据权利要求1所述的3D显示装置,其特征在于,所述光栅包括层叠设置于所述衬底基板上的第一电极层、发光层和第二电极层;其中,
    所述第一电极层包括多个沿纵向延伸且间隔排布的条形电极,所述条形电极均与用于提供第一电压信号的第一电压信号端相连;
    所述第二电极层包括面状电极,所述面状电极与用于提供第二电压信号的 第二电压信号端相连。
  9. 根据权利要求1所述的3D显示装置,其特征在于,所述光栅包括层叠设置于所述衬底基板上的亮光栅单元层、绝缘层和暗光栅单元层,所述亮光栅单元层包括层叠设置的第一电极层、发光层和第二电极层,所述暗光栅单元层包括层叠设置的第三电极层、发光层和第四电极层;其中,
    所述第一电极层包括多个沿纵向延伸且间隔排布的第一条形电极,所述第一条形电极均与用于提供第一电压信号的第一电压信号端相连;
    所述第三电极层包括多个沿纵向延伸且间隔排布的第二条形电极,所述第二条形电极均与用于提供第二电压信号的第二电压信号端相连,所述第二条形电极在所述衬底基板上的垂直投影与所述第一条形电极在所述衬底基板上的垂直投影沿横向交替排布;
    所述第二电极层和所述第四电极层均包括面状电极,所述面状电极均与用于提供第三电压信号的第三电压信号端相连。
  10. 根据权利要求1所述的3D显示装置,其特征在于,所述光栅包括层叠设置于所述衬底基板上的第一光栅形成层、绝缘层和第二光栅形成层,所述第一光栅形成层包括层叠设置的第一电极层、发光层和第二电极层,所述第二光栅形成层包括层叠设置的第三电极层、发光层和第四电极层;其中,
    所述第一电极层包括多个沿纵向延伸且间隔排布的第一条形电极,所述第一条形电极均与用于提供第一电压信号的第一电压信号端相连;
    所述第二电极层包括多个沿横向延伸且间隔排布的第二条形电极,所述第二条形电极均与用于提供第二电压信号的第二电压信号端相连,所述第二条形电极与所述第一条形电极的交叠部分为第一交叠部分;
    所述第三电极层包括多个沿纵向延伸且间隔排布的第三条形电极,所述第三条形电极与所述第一电压信号端相连;
    所述第四电极层包括多个沿横向延伸且间隔排布的第四条形电极,所述第四条形电极与所述第二电压信号端相连,所述第四条形电极与所述第三条形电极的交叠部分为第二交叠部分,所述第二交叠部分在所述衬底基板上的垂直投影与所述第一交叠部分在所述衬底基板上的垂直投影沿横向交替排布且沿纵向交替排布。
  11. 根据权利要求1~10任一项所述的3D显示装置,其特征在于,所述光栅中的OLED发光器件为白光OLED发光器件,且所述显示面板包括色阻层,所述色阻层至少进行红色色阻、绿色色阻和蓝色色阻。
  12. 根据权利要求1~10任一项所述的3D显示装置,其特征在于,所述光栅设置于所述显示面板的背面,且所述显示面板为液晶显示面板。
  13. 根据权利要求12所述的3D显示装置,其特征在于,所述显示面板包括相对设置的TFT阵列基板和彩膜基板,以及夹设于所述TFT阵列基板和所述彩膜基板之间的液晶层,所述TFT阵列基板背向所述液晶层的一侧设置有线栅偏振器。
  14. 一种3D显示装置的驱动方法,其特征在于,用于驱动权利要求1~13任一项所述的3D显示装置,所述驱动方法包括向所述3D显示装置的光栅所包括的多个OLED发光器件中至少一部分OLED发光器件施加工作电压,使被施加工作电压的OLED发光器件发光以形成亮光栅单元。
  15. 根据权利要求14所述的3D显示装置的驱动方法,其特征在于,所述驱动方法还包括向所述3D显示装置的显示面板中的一半子像素施加左眼图像信号,并向另一半子像素施加右眼图像信号,被施加左眼图像信号的子像素与被施加右眼图像信号的子像素沿横向交替排布;
    所述光栅的亮光栅单元和暗光栅单元均为沿纵向延伸的条形结构,且所述亮光栅单元和所述暗光栅单元沿横向交替排布。
  16. 根据权利要求14所述的3D显示装置的驱动方法,其特征在于,所述驱动方法还包括向所述3D显示装置的显示面板中的一半子像素施加左眼图像信号,并向另一半子像素施加右眼图像信号,被施加左眼图像信号的子像素与被施加右眼图像信号的子像素沿横向交替排布且沿纵向交替排布;
    所述光栅的亮光栅单元和暗光栅单元均为正方形结构,所述亮光栅单元和所述暗光栅单元沿横向交替排布且沿纵向交替排布。
PCT/CN2015/098485 2015-08-20 2015-12-23 3d显示装置及其驱动方法 WO2017028439A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/327,647 US10523927B2 (en) 2015-08-20 2015-12-23 3D display device and driving method thereof
EP15892063.7A EP3351998B1 (en) 2015-08-20 2015-12-23 3d display apparatus and driving method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510515045.7A CN105093547B (zh) 2015-08-20 2015-08-20 3d显示装置及其驱动方法
CN201510515045.7 2015-08-20

Publications (1)

Publication Number Publication Date
WO2017028439A1 true WO2017028439A1 (zh) 2017-02-23

Family

ID=54574334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/098485 WO2017028439A1 (zh) 2015-08-20 2015-12-23 3d显示装置及其驱动方法

Country Status (4)

Country Link
US (1) US10523927B2 (zh)
EP (1) EP3351998B1 (zh)
CN (1) CN105093547B (zh)
WO (1) WO2017028439A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3608704A4 (en) * 2017-04-01 2021-01-06 BOE Technology Group Co., Ltd. THREE-DIMENSIONAL DISPLAY BOARD AND CONTROL PROCESS FOR IT, AS WELL AS DISPLAY DEVICE
US11676991B2 (en) * 2019-07-23 2023-06-13 Lumileds Llc Semiconductor light emitting device

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105093547B (zh) 2015-08-20 2019-06-07 京东方科技集团股份有限公司 3d显示装置及其驱动方法
CN105353559B (zh) 2015-12-03 2019-04-26 京东方科技集团股份有限公司 一种三维显示装置及其驱动方法
CN105334632B (zh) 2015-12-03 2018-05-01 京东方科技集团股份有限公司 一种三维显示装置及其驱动方法
CN105681778B (zh) 2016-01-05 2018-07-10 京东方科技集团股份有限公司 一种三维显示装置及其驱动方法
US9966033B2 (en) * 2016-04-13 2018-05-08 Shenzhen China Star Optoelectronics Technology Co., Ltd. Detection device for display panel
CN106200204B (zh) * 2016-09-12 2023-09-22 合肥京东方光电科技有限公司 裸眼三维显示面板及其制造方法、裸眼三维显示装置
CN106842601B (zh) * 2017-03-06 2019-12-24 京东方科技集团股份有限公司 三维显示系统及方法
CN106950636A (zh) * 2017-04-20 2017-07-14 京东方科技集团股份有限公司 一种金属线栅偏振片基板及其制备方法
CN107436500B (zh) * 2017-08-25 2020-04-24 京东方科技集团股份有限公司 光栅及制备方法、驱动方法、裸眼三维显示系统
CN107664837A (zh) * 2017-10-20 2018-02-06 京东方科技集团股份有限公司 一种反射式显示装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1664658A (zh) * 2005-03-03 2005-09-07 友达光电股份有限公司 二维/三维显示器及三维影像的形成方法
US20120120476A1 (en) * 2010-11-12 2012-05-17 J Touch Corporation Three-dimensional image display device and electrochromic module thereof
CN102692722A (zh) * 2012-05-07 2012-09-26 上海交通大学 基于视差屏障的 2d/3d可切换自动立体显示设备和方法
CN104167177A (zh) * 2014-08-15 2014-11-26 合肥鑫晟光电科技有限公司 像素电路、有机电致发光显示面板及显示装置
CN104360520A (zh) * 2014-11-18 2015-02-18 深圳市华星光电技术有限公司 一种触控式显示模组和显示装置
CN105100783A (zh) * 2015-08-19 2015-11-25 京东方科技集团股份有限公司 3d显示装置及3d显示方法
CN105093547A (zh) * 2015-08-20 2015-11-25 京东方科技集团股份有限公司 3d显示装置及其驱动方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1666242A (zh) * 2002-04-26 2005-09-07 东芝松下显示技术有限公司 用于场致发光显示屏的驱动电路
US6670772B1 (en) * 2002-06-27 2003-12-30 Eastman Kodak Company Organic light emitting diode display with surface plasmon outcoupling
WO2004100118A1 (ja) * 2003-05-07 2004-11-18 Toshiba Matsushita Display Technology Co., Ltd. El表示装置およびその駆動方法
JP2008197132A (ja) * 2007-02-08 2008-08-28 Seiko Epson Corp 指向性表示ディスプレイ
FR2954590B1 (fr) * 2009-12-23 2012-07-13 Commissariat Energie Atomique Procede de fabrication d'une electrode a nanostructures metallique et dielectrique pour le filtrage colore dans une oled et procede de fabrication d'une oled.
KR20130030406A (ko) 2011-09-19 2013-03-27 엘지전자 주식회사 이동 단말기
CN103024407B (zh) * 2011-09-22 2014-12-31 乐金显示有限公司 立体图像显示设备及其驱动方法
US8705177B1 (en) * 2011-12-05 2014-04-22 Google Inc. Integrated near-to-eye display module
CN102749717B (zh) * 2012-07-27 2017-12-08 深圳超多维光电子有限公司 一种裸眼式立体显示装置
CN102830555B (zh) * 2012-08-31 2015-01-07 北京京东方光电科技有限公司 一种触控液晶光栅及3d触控显示装置
CN202795299U (zh) * 2012-09-12 2013-03-13 北京京东方光电科技有限公司 一种触控显示装置
CN103855183A (zh) * 2012-11-30 2014-06-11 友达光电股份有限公司 二维三维切换的有机发光显示器
CN103700686B (zh) * 2013-12-16 2016-02-24 深圳市华星光电技术有限公司 具有景深效果的3d显示面板及其显示方法
CN104345466B (zh) * 2014-11-11 2017-01-18 深圳市华星光电技术有限公司 集成成像显示装置及其背光模块
CN104536145B (zh) * 2015-01-21 2017-06-27 深圳市华星光电技术有限公司 2d/3d可切换显示装置
US20160232825A1 (en) * 2015-02-11 2016-08-11 Boe Technology Group Co., Ltd. 3d display device and driving method thereof
CN104795425A (zh) * 2015-03-30 2015-07-22 京东方科技集团股份有限公司 有机发光二极管触控显示屏及其制作方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1664658A (zh) * 2005-03-03 2005-09-07 友达光电股份有限公司 二维/三维显示器及三维影像的形成方法
US20120120476A1 (en) * 2010-11-12 2012-05-17 J Touch Corporation Three-dimensional image display device and electrochromic module thereof
CN102692722A (zh) * 2012-05-07 2012-09-26 上海交通大学 基于视差屏障的 2d/3d可切换自动立体显示设备和方法
CN104167177A (zh) * 2014-08-15 2014-11-26 合肥鑫晟光电科技有限公司 像素电路、有机电致发光显示面板及显示装置
CN104360520A (zh) * 2014-11-18 2015-02-18 深圳市华星光电技术有限公司 一种触控式显示模组和显示装置
CN105100783A (zh) * 2015-08-19 2015-11-25 京东方科技集团股份有限公司 3d显示装置及3d显示方法
CN105093547A (zh) * 2015-08-20 2015-11-25 京东方科技集团股份有限公司 3d显示装置及其驱动方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3351998A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3608704A4 (en) * 2017-04-01 2021-01-06 BOE Technology Group Co., Ltd. THREE-DIMENSIONAL DISPLAY BOARD AND CONTROL PROCESS FOR IT, AS WELL AS DISPLAY DEVICE
US11340473B2 (en) 2017-04-01 2022-05-24 Boe Technology Group Co., Ltd. 3D display panel, ME1HOD for driving same, and display apparatus
US11676991B2 (en) * 2019-07-23 2023-06-13 Lumileds Llc Semiconductor light emitting device

Also Published As

Publication number Publication date
EP3351998A4 (en) 2019-07-17
US10523927B2 (en) 2019-12-31
CN105093547A (zh) 2015-11-25
EP3351998B1 (en) 2021-02-03
EP3351998A1 (en) 2018-07-25
CN105093547B (zh) 2019-06-07
US20170214906A1 (en) 2017-07-27

Similar Documents

Publication Publication Date Title
WO2017028439A1 (zh) 3d显示装置及其驱动方法
US11004407B2 (en) Multiview backlight, display, and method employing active emitters
CN106097979B (zh) 透明显示装置和透明显示面板
JP5063296B2 (ja) 電子映像機器
KR102454108B1 (ko) Led 디스플레이 패널 및 이를 이용한 디스플레이 장치
JP5910529B2 (ja) 表示装置および電子機器
US9389428B2 (en) Three dimensional image display device
US20140211128A1 (en) Liquid crystal display
CN106094334B (zh) 显示面板及显示装置
JP6462479B2 (ja) 多分割駆動ディスプレイ及び表示装置
JP5195150B2 (ja) 表示パネル、および表示装置、並びに電子機器
JP2013200571A (ja) 液晶表示装置、および半透過液晶表示装置
US10564440B2 (en) Display substrate and manufacturing method thereof, display driving method, and display device
JP5279795B2 (ja) 裸眼立体表示装置
US8995047B2 (en) Three-dimensional image display and converter therefor
KR102523881B1 (ko) 평판 표시 패널 및 이의 제조 방법
CN110890061B (zh) 显示设备及其控制方法
US10770521B2 (en) Display panel, display and displaying method
KR101931331B1 (ko) 입체 영상 표시 장치
WO2012141078A1 (ja) 立体表示装置
US20130286005A1 (en) Three-Dimensional Display Device and Drive Method Thereof
US20230276042A1 (en) Horizontal parallax multiview backlight, display, and method
TW201306560A (zh) 自動立體顯示裝置

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2015892063

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15327647

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15892063

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2015892063

Country of ref document: EP