WO2017026408A1 - 無線端末 - Google Patents

無線端末 Download PDF

Info

Publication number
WO2017026408A1
WO2017026408A1 PCT/JP2016/073172 JP2016073172W WO2017026408A1 WO 2017026408 A1 WO2017026408 A1 WO 2017026408A1 JP 2016073172 W JP2016073172 W JP 2016073172W WO 2017026408 A1 WO2017026408 A1 WO 2017026408A1
Authority
WO
WIPO (PCT)
Prior art keywords
mbms
wireless terminal
relay
service
mbms service
Prior art date
Application number
PCT/JP2016/073172
Other languages
English (en)
French (fr)
Inventor
裕之 安達
真人 藤代
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to US15/751,222 priority Critical patent/US10735912B2/en
Priority to JP2017534420A priority patent/JP6749914B2/ja
Publication of WO2017026408A1 publication Critical patent/WO2017026408A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • H04B7/15528Control of operation parameters of a relay station to exploit the physical medium
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/04Terminal devices adapted for relaying to or from another terminal or user

Definitions

  • This application relates to a wireless terminal used in a communication system.
  • ProSe includes a UE / network relay in which a relay UE (ProSe UE-to-Network Relay) relays data (traffic) of a remote UE between a remote UE (Remote UE) outside the network area and the network ( Non-patent document 1).
  • a relay UE ProSe UE-to-Network Relay
  • Non-Patent Document 2 it is considered to relay MBMS traffic to a remote UE by UE / network relay.
  • the wireless terminal is a relay terminal that performs UE / network relay in a proximity service.
  • the wireless terminal includes a controller that transmits MBMS reception information related to whether the wireless terminal can receive an MBMS (Multimedia Broadcast Multicast Service) service to the remote terminal that communicates with the relay terminal by the UE / network relay.
  • MBMS Multimedia Broadcast Multicast Service
  • FIG. 1 is a diagram illustrating a configuration of an LTE system.
  • FIG. 2 is a diagram showing a network configuration related to MBMS / eMBMS.
  • FIG. 3 is a protocol stack diagram of a radio interface in the LTE system.
  • FIG. 4 is a diagram illustrating a downlink channel configuration in the LTE system.
  • FIG. 5 is a configuration diagram of a radio frame used in the LTE system.
  • FIG. 6 is a diagram for explaining UE / network relay.
  • FIG. 7 is a block diagram of the UE 100.
  • FIG. 8 is a block diagram of the eNB 200.
  • FIG. 9 is a diagram for explaining the operating environment according to the embodiment.
  • FIG. 10 is a sequence diagram for explaining the operation according to the embodiment.
  • FIG. 10 is a sequence diagram for explaining the operation according to the embodiment.
  • FIG. 11 is a sequence diagram for explaining the operation according to the embodiment.
  • FIG. 12 is a sequence diagram for explaining the operation according to the embodiment.
  • FIG. 13 is a sequence diagram for explaining an operation according to the second modification of the embodiment.
  • FIG. 14 is a sequence diagram for explaining an operation according to the third modification of the embodiment.
  • one of the objects is to reduce unnecessary signaling when MBMS traffic is relayed to a remote UE by UE / network relay.
  • the radio terminal is a relay terminal that performs UE / network relay in a proximity service.
  • the wireless terminal includes a controller that transmits MBMS reception information related to whether the wireless terminal can receive an MBMS (Multimedia Broadcast Multicast Service) service to the remote terminal that communicates with the relay terminal by the UE / network relay.
  • MBMS Multimedia Broadcast Multicast Service
  • the controller transmits the MBMS reception information indicating that the MBMS service cannot be received when the serving cell of the wireless terminal does not provide the MBMS service.
  • the controller transmits the MBMS reception information indicating that the MBMS service cannot be received when another cell different from the serving cell does not provide the MBMS service.
  • the controller transmits the number of predetermined identifiers received by the wireless terminal as the MBMS reception information.
  • the predetermined identifier is at least one of an identifier for identifying the MBMS service and an identifier for identifying an area where the MBMS service is distributed.
  • the controller transmits, as the MBMS reception information, information on a frequency band that provides an MBMS service that can be monitored by the wireless terminal.
  • the controller transmits capability information regarding whether or not the MBMS service provided in a frequency band different from that of the serving cell can be received to a base station that manages the serving cell.
  • the controller receives a reception request for a specific MBMS service from the remote UE. Instead of responding to the reception request, the controller broadcasts a message including a first identifier for identifying the specific MBMS service and a second identifier used for transmitting the specific MBMS service. Send with.
  • the controller includes a timer that triggers a reception request for the specific MBMS service in the message.
  • the second identifier is an identifier having an information amount smaller than a destination identifier used for data transmission in the proximity service.
  • the controller when transmitting an identifier for identifying each of a plurality of specific MBMS services, uses a common identifier as a transmission source identifier.
  • the controller when the remote terminal is requested to relay the MBMS service, the controller requests a base station for radio resources for relaying the MBMS service.
  • the controller receives, from the base station, allocation information of radio resources that can be used for a longer period than radio resources for relaying data by the UE / network relay.
  • the controller receives a transmission resource pool for transmitting MBMS traffic from a base station.
  • the controller receives a transmission resource pool associated with each MBMS traffic as the transmission resource pool from the base station.
  • FIG. 1 is a diagram illustrating a configuration of an LTE system according to the embodiment.
  • FIG. 2 is a diagram illustrating a network configuration related to MBMS / eMBMS according to the embodiment.
  • the LTE system includes a UE (User Equipment) 100, an E-UTRAN (Evolved-UMTS Terrestrial Radio Access Network) 10, and an EPC (Evolved Packet Core) 20.
  • a server 400 is provided in an external network that is not managed by an operator of the cellular network.
  • the UE 100 corresponds to a user terminal.
  • the UE 100 is a mobile communication device, and performs radio communication with a cell (serving cell).
  • the configuration of the UE 100 will be described later.
  • the E-UTRAN 10 corresponds to a radio access network.
  • the E-UTRAN 10 includes an eNB 200 (evolved Node-B).
  • the eNB 200 corresponds to a base station.
  • the eNB 200 is connected to each other via the X2 interface. The configuration of the eNB 200 will be described later.
  • the eNB 200 manages one or a plurality of cells and performs radio communication with the UE 100 that has established a connection with the own cell.
  • the eNB 200 has a radio resource management (RRM) function, a routing function of user data (hereinafter simply referred to as “data”), a measurement control function for mobility control / scheduling, and the like.
  • RRM radio resource management
  • Cell is used as a term indicating a minimum unit of a radio communication area, and is also used as a term indicating a function of performing radio communication with the UE 100.
  • the EPC 20 corresponds to a core network.
  • the EPC 20 includes an MME (Mobility Management Entity) / S-GW (Serving-Gateway) 300.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • MME performs various mobility control etc. with respect to UE100.
  • the S-GW performs data transfer control.
  • the MME / S-GW 300 is connected to the eNB 200 via the S1 interface.
  • the E-UTRAN 10 and the EPC 20 constitute an LTE system network.
  • the E-UTRAN 10 includes an MCE (Multi-Cell / Multicast Coordinating Entity) 11.
  • the MCE 11 is connected to the eNB 200 via the M2 interface and is connected to the MME 300 via the M3 interface (see FIG. 2).
  • the MCE 11 performs MBSFN radio resource management / allocation and the like.
  • the EPC 20 includes an MBMS GW (Multimedia Broadcast Multicast Service Gateway) 21.
  • the MBMS GW 21 is connected to the eNB 200 via the M1 interface, is connected to the MME 300 via the Sm interface, and is connected to the BMSC 22 via the SG-mb and SGi-mb interfaces (see FIG. 2).
  • the MBMS GW 21 performs IP multicast data transmission and session control for the eNB 200.
  • the EPC 20 includes a BMSC (Broadcast Multicast Service Center) 22.
  • the BMSC 22 is connected to the MBMS GW 21 via the SG-mb and SGi-mb interfaces, and is connected to the P-GW 23 via the SGi interface (see FIG. 2).
  • the BMSC 22 mainly manages and allocates TMGI (Temporary Mobile Group Identity).
  • the EPC 20 includes a P-GW 23.
  • the P-GW 23 performs control for relaying user data from the external network (and to the external network).
  • the P-GW 23 is connected to the server 400.
  • Server 400 is a ProSe application server (ProSe Application Server).
  • the Server 400 manages an identifier used in ProSe.
  • the server 400 stores “EPC ProSe user ID” and “ProSe function ID”. Further, the server 400 maps “application layer user ID” and “EPC ProSe user ID”.
  • FIG. 3 is a protocol stack diagram of a radio interface in the LTE system.
  • the radio interface protocol is divided into the first to third layers of the OSI reference model, and the first layer is a physical (PHY) layer.
  • the second layer includes a MAC (Medium Access Control) layer, an RLC (Radio Link Control) layer, and a PDCP (Packet Data Convergence Protocol) layer.
  • the third layer includes an RRC (Radio Resource Control) layer.
  • the physical layer performs encoding / decoding, modulation / demodulation, antenna mapping / demapping, and resource mapping / demapping.
  • Data and control signals are transmitted between the physical layer of the UE 100 and the physical layer of the eNB 200 via a physical channel.
  • the MAC layer performs data priority control, HARQ (Hybrid ARQ) retransmission processing, random access procedures, and the like. Data and control signals are transmitted between the MAC layer of the UE 100 and the MAC layer of the eNB 200 via a transport channel.
  • the MAC layer of the eNB 200 includes a scheduler that determines an uplink / downlink transport format (transport block size, modulation / coding scheme (MCS)) and an allocation resource block to the UE 100.
  • MCS modulation / coding scheme
  • the RLC layer transmits data to the RLC layer on the receiving side using the functions of the MAC layer and the physical layer. Data and control signals are transmitted between the RLC layer of the UE 100 and the RLC layer of the eNB 200 via a logical channel.
  • the PDCP layer performs header compression / decompression and encryption / decryption.
  • the RRC layer is defined only in the control plane that handles control signals. Messages for various settings (RRC messages) are transmitted between the RRC layer of the UE 100 and the RRC layer of the eNB 200.
  • the RRC layer controls the logical channel, the transport channel, and the physical channel according to establishment, re-establishment, and release of the radio bearer. If there is a connection (RRC connection) between the RRC of the UE 100 and the RRC of the eNB 200, the UE 100 is in an RRC connection state (RRC connected mode), and otherwise, the UE 100 is in an RRC idle state (RRC idle mode). .
  • the NAS (Non-Access Stratum) layer located above the RRC layer performs session management and mobility management.
  • FIG. 4 is a diagram illustrating a downlink channel configuration in the LTE system.
  • FIG. 4A shows the mapping between the logical channel (Downlink Logical Channel) and the transport channel (Downlink Transport Channel).
  • PCCH Paging Control Channel
  • PCH PCH
  • BCCH Broadcast Control Channel
  • the BCCH is a logical channel for broadcast system information.
  • the BCCH is mapped to the transport channel BCH (Broadcast Control Channel) or DL-SCH (Downlink Shared Channel).
  • CCCH Common Control Channel
  • CCCH is a logical channel for transmission control information between the UE 100 and the eNB 200.
  • the CCCH is used when the UE 100 does not have an RRC connection with the network.
  • CCCH is mapped to DL-SCH.
  • DCCH (Dedicated Control Channel) is a logical channel for transmitting individual control information between the UE 100 and the network.
  • the DCCH is used when the UE 100 has an RRC connection.
  • DCCH is mapped to DL-SCH.
  • DTCH (Dedicated Traffic Channel) is an individual logical channel for data transmission. DTCH is mapped to DL-SCH.
  • MCCH Multicast Control Channel
  • MCH Multicast Channel
  • MTCH Multicast Traffic Channel
  • MTCH is a logical channel for one-to-many (multicast / broadcast) data transmission from the network to the UE 100.
  • MTCH is used only for UE 100 that receives MBMS.
  • MTCH is mapped to MCH.
  • FIG. 4B shows mapping between a transport channel (Downlink Transport Channel) and a physical channel (Downlink Physical Channel).
  • the BCH is mapped to PBCH (Physical Broadcast channel).
  • PBCH Physical Broadcast channel
  • MCH is mapped to PMCH (Physical Multicast Channel).
  • PMCH Physical Multicast Channel
  • the MCH is broadcast over the entire coverage area of the cell.
  • MCH supports MBSFN transmission by multiple cells.
  • PCH and DL-SCH are mapped to PDSCH (Physical Downlink Shared Channel).
  • PDSCH Physical Downlink Shared Channel
  • DL-SCH supports HARQ, link adaptation, and dynamic resource allocation.
  • PDCCH carries PDSCH (DL-SCH, PCH) resource allocation information, HARQ information related to DL-SCH, and the like.
  • the PDCCH carries an uplink scheduling grant.
  • FIG. 5 is a configuration diagram of a radio frame used in the LTE system.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Multiple Access
  • the radio frame is composed of 10 subframes arranged in the time direction.
  • Each subframe is composed of two slots arranged in the time direction.
  • the length of each subframe is 1 ms, and the length of each slot is 0.5 ms.
  • Each subframe includes a plurality of resource blocks (RB) in the frequency direction and includes a plurality of symbols in the time direction.
  • Each resource block includes a plurality of subcarriers in the frequency direction.
  • One symbol and one subcarrier constitute one resource element (RE).
  • a frequency resource can be specified by a resource block, and a time resource can be specified by a subframe (or slot).
  • the section of the first few symbols of each subframe is an area mainly used as a PDCCH for transmitting a downlink control signal.
  • the remaining part of each subframe is an area that can be used mainly as a PDSCH for transmitting downlink data.
  • an MBSFN subframe that is a subframe for MBSFN transmission can be set.
  • both ends in the frequency direction in each subframe are regions used mainly as PUCCH for transmitting an uplink control signal.
  • the remaining part in each subframe is an area that can be used mainly as a PUSCH for transmitting uplink data.
  • MBMS Multimedia Broadcast Multicast Service
  • UE 100 MBMS-compatible UE
  • receives multimedia content MBMS service
  • the UE 100 can receive MBMS data not only in the RRC connection state but also in the RRC idle state.
  • Multiple MBSFN (Multicast-Broadcast Single-Frequency Network) area is composed of multiple cells, and MBMS service area is composed of multiple MBSFN areas.
  • One cell can belong to a plurality of MBSFN areas.
  • the BMSC22 provides a function of distributing MBMS data.
  • the MBMS GW 21 broadcasts MBMS data to each eNB 200.
  • the MCE 11 controls radio resources used by each eNB 200 in the same MBSFN area, and sets an MBSFN subframe.
  • ProSe Proximity-based Services
  • a direct radio link that does not go through the eNB 200.
  • a direct radio link in ProSe is referred to as a “side link”.
  • “Sidelink” is a UE-UE interface for direct discovery and direct communication. “Sidelink” corresponds to the PC5 interface.
  • the PC 5 is a reference point between UEs that can use the proximity service used for direct discovery, direct communication and UE / network relay by proximity service, and for the user plane.
  • the PC5 interface is a UE-UE interface in ProSe.
  • Direct discovery is a mode in which a partner is searched by directly transmitting a discovery signal that does not designate a specific destination between UEs.
  • Direct discovery is a procedure for discovering another UE in the vicinity of the UE using a direct radio signal in E-UTRA (Evolved Universal Terrestrial Radio Access) via the PC 5.
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • the direct discovery is a procedure adopted by the UE 100 capable of executing the proximity service in order to discover other UEs 100 capable of executing the proximity service using only the capability of the two UEs 100 with the E-UTRA technology.
  • Direct discovery is supported only when UE 100 is served by E-UTRAN (eNB 200 (cell)). When the UE 100 is connected to the cell (eNB 200) or located in the cell, the UE 100 can be provided with service by the E-UTRAN.
  • the “Sidelink Direct Discovery” protocol stack includes a physical (PHY) layer, a MAC layer, and a ProSe protocol.
  • a discovery signal is transmitted between a physical layer of UE (A) and a physical layer of UE (B) via a physical channel called a physical side link discovery channel (PSDCH).
  • a discovery signal is transmitted between the MAC layer of UE (A) and the MAC layer of UE (B) via a transport channel called a side link discovery channel (SL-DCH).
  • Direct communication is a mode in which data is directly transmitted between UEs by specifying a specific destination (destination group).
  • the direct communication is communication between two or more UEs that can execute a proximity service by user plane transmission using E-UTRA technology via a route that does not pass through any network node.
  • the direct communication resource allocation type includes “mode 1” in which the eNB 200 designates radio resources for direct communication and “mode 2” in which the UE 100 selects radio resources for direct communication.
  • the direct communication protocol stack includes a physical (PHY) layer, a MAC layer, an RLC layer, and a PDCP layer.
  • a control signal is transmitted via the physical side link control channel (PSCCH), and data is transmitted via the physical side link shared channel (PSSCH). Is transmitted.
  • a synchronization signal or the like may be transmitted via a physical side link broadcast channel (PSBCH).
  • PSBCH physical side link broadcast channel
  • Data is transmitted between the MAC layer of UE (A) and the MAC layer of UE (B) via a transport channel called a side link shared channel (SL-SCH).
  • SL-SCH side link shared channel
  • STCH side link traffic channel
  • FIG. 6 is a diagram for explaining UE / network relay according to the embodiment.
  • a remote UE is a UE located outside the network range (Out-of-Network). That is, the remote UE is located outside the cell coverage. Note that the remote UE may be located within the coverage of the cell. Therefore, the remote UE is a UE 100 that is not directly served by the E-UTRAN 10 (a UE 100 that is not served by the E-UTRAN 10). Further, the remote UE 100 can communicate with a packet data network (PDN: Packet Data Network) via a relay UE described later.
  • the remote UE may be a public safety (UE) for public safety (ProSe-enabled Public Safe UE).
  • the “ProSe-enabled Public Safety UE” is configured so that the HPLMN permits use for public safety.
  • “ProSe-enabled Public Safety UE” can use the neighborhood service and supports the procedure in the neighborhood service and specific capabilities for public safety.
  • “ProSe-enabled Public Safe UE” transmits information for public safety through a neighborhood service.
  • the information for public safety is, for example, information on disasters (earthquakes, fires, etc.), information used for fire fighting personnel or police personnel, and the like.
  • the remote UE is provided with a ProSe relay service from the relay UE, as will be described later.
  • the UE / network relay is executed between the remote UE provided with the ProSe relay service and the relay UE provided with the ProSe relay service.
  • Relay UE Provides ProSe relay service for remote UEs.
  • the relay UE provides service continuity of communication with the packet data network for the remote UE. Therefore, the relay UE relays data (unicast traffic) between the remote UE and the network.
  • the relay UE relays data (traffic) of the remote UE by a proximity service (direct communication).
  • the relay UE relays data (uplink traffic) received from the remote UE via the PC5 interface to the eNB 200 via the Uu interface (LTE-Uu) or the Un interface (LTE-Un).
  • the relay UE relays data (downlink traffic) received from the eNB 200 via the Uu interface or Un interface to the remote UE via the PC5 interface.
  • the relay UE is located only in the network (within the coverage of the cell).
  • the relay UE can provide a comprehensive function that can relay any type of traffic related to communication for public safety.
  • Relay UE and remote UE can transmit data and control signals between physical layers.
  • the relay UE and the remote UE can transmit data and control signals between the MAC layer, the RLC layer, and the PDCP layer.
  • the relay UE may have an IP relay (IP-Relay) layer as an upper layer of the PDCP layer.
  • the remote UE may have an IP layer as an upper layer of the PDCP layer.
  • the relay UE and the remote UE can transmit data and control signals between the IP relay layer and the IP layer. Further, the relay UE can transmit data between the IP relay layer and the IP layer of the P-GW 350.
  • the relay UE can transmit data (traffic) to the remote UE using broadcast in the AS layer (Access Stratum).
  • the relay UE may transmit data to the remote UE using unicast in the AS layer.
  • the UE / network relay is performed using broadcast, feedback in the AS layer is not performed between the relay UE and the remote UE, but feedback in the NAS layer may be performed.
  • feedback in the AS layer may be performed.
  • FIG. 7 is a block diagram of the UE 100. As illustrated in FIG. 7, the UE 100 includes a receiver (receiver) 110, a transmitter (transmitter) 120, and a controller (controller) 130. The receiver 110 and the transmitter 120 may be an integrated transceiver (transmission / reception unit).
  • the receiver 110 performs various types of reception under the control of the controller 130.
  • the receiver 110 includes an antenna.
  • the receiver 110 converts a radio signal received by the antenna into a baseband signal (received signal) and outputs it to the controller 130.
  • the receiver 110 can simultaneously receive radio signals at two different frequencies.
  • the UE 100 includes two receivers 110 (2 RX Chain).
  • the UE 100 can receive a radio signal for cellular by one receiver 110 and can receive a radio signal for ProSe by the other receiver 110.
  • the transmitter 120 performs various transmissions under the control of the controller 130.
  • the transmitter 120 includes an antenna.
  • the transmitter 120 converts the baseband signal (transmission signal) output from the controller 130 into a radio signal and transmits it from the antenna.
  • the controller 130 performs various controls in the UE 100.
  • the controller 130 includes a processor and a memory.
  • the memory stores a program executed by the processor and information used for processing by the processor.
  • the processor includes a baseband processor that performs modulation / demodulation and encoding / decoding of the baseband signal, and a CPU (Central Processing Unit) that executes various processes by executing programs stored in the memory.
  • the processor may include a codec that performs encoding / decoding of an audio / video signal.
  • the processor executes various processes described later and various communication protocols described above.
  • the UE 100 may include a GNSS receiver.
  • the GNSS receiver receives a GNSS signal and outputs the received signal to the controller 130 in order to obtain position information indicating the geographical position of the UE 100.
  • UE100 may have a GPS function for acquiring position information on UE100.
  • FIG. 8 is a block diagram of the eNB 200.
  • the eNB 200 includes a receiver (reception unit) 210, a transmitter (transmission unit) 220, a controller (control unit) 230, and a network interface 240.
  • the receiver 210 and the transmitter 220 may be an integrated transceiver (transmission / reception unit).
  • the receiver 210 performs various types of reception under the control of the controller 230.
  • the receiver 210 includes an antenna.
  • the receiver 210 converts a radio signal received by the antenna into a baseband signal (received signal) and outputs it to the controller 230.
  • the transmitter 220 performs various transmissions under the control of the controller 230.
  • the transmitter 220 includes an antenna.
  • the transmitter 220 converts the baseband signal (transmission signal) output from the controller 230 into a radio signal and transmits it from the antenna.
  • the controller 230 performs various controls in the eNB 200.
  • the controller 230 includes a processor and a memory.
  • the memory stores a program executed by the processor and information used for processing by the processor.
  • the processor includes a baseband processor that performs modulation / demodulation and encoding / decoding of the baseband signal, and a CPU (Central Processing Unit) that executes various processes by executing programs stored in the memory.
  • the processor executes various processes described later and various communication protocols described above.
  • the network interface 240 is connected to the neighboring eNB 200 via the X2 interface, and is connected to the MME / S-GW 300 via the S1 interface.
  • the network interface 240 is used for communication performed on the X2 interface and communication performed on the S1 interface.
  • FIG. 9 is a diagram for explaining the operating environment according to the embodiment.
  • the UE 100-1 is located in a cell managed by the eNB 200 (DeNB), and can perform cellular communication (LTE-Uu) with the eNB 200.
  • UE 100-1 is in the RRC connected state.
  • the UE 100-1 may be in the RRC idle state, and may transition from the RRC idle state to the RRC connected state when communicating with the eNB 200.
  • the UE 100-1 may be in the RRC idle state when receiving the MBMS traffic.
  • the UE 100-2 is located outside the cell managed by the eNB 200.
  • UE 100-2 is in the RRC idle state.
  • UE 100-1 is a relay UE (ProSe UE-to-NW Relay), and UE 100-2 is a remote UE.
  • the UE 100-1 and the UE 100-2 execute UE / network relay on the PC 5.
  • ENB 200 is a donor eNB that relays data of a remote UE.
  • the eNB 200 receives MBMS traffic (MBMS service) from the Server 400.
  • Server 400 is a group communication application server that provides group communication related data for public safety use as, for example, MBMS traffic.
  • a connection for relaying the UE / network is established between the eNB 200 and the UE 100-1. Further, a connection for UE / network relay is established between the UE 100-1 and the UE 100-2.
  • UE 100 (UE 100-1 / UE 100-2) described below is executed by at least one of receiver 110, transmitter 120, and controller 130 included in UE 100. This process will be described.
  • a process (operation) executed by the eNB 200 described below is executed by at least one of the receiver 210, the transmitter 220, the controller 230, and the network interface 240 included in the eNB 200. To do.
  • FIGS. 10 to 12 are sequence diagrams for explaining the operation according to the embodiment.
  • FIG. 10 is a diagram for explaining a procedure of monitoring a specific available TMGI to the relay UE and requesting that the relay UE broadcast this TMGI to the relay UE.
  • step S0 the UE 100-1 transmits MBMS reception information regarding whether or not the UE 100-1 can receive MBMS traffic (MBMS service) to the remote UE.
  • MBMS traffic MBMS service
  • the UE 100-1 can transmit MBMS reception information by unicast or broadcast. Specifically, the UE 100-1 can transmit the MBMS reception information in unicast by at least one of NAS level signaling, RRC signaling, and MAC control element (MAC CE). The UE 100-1 may transmit the MBMS reception information by unicast when setting (connecting) the relay UE and the UE / network relay. For example, as shown in FIG. 11, the UE 100-1 includes information (1-bit indicator) indicating whether or not the MBMS service is available in the MAC CE. When the information indicates that the MBMS service is available (“1”), the remote UE determines that the UE 100-1 (relay UE) can receive the MBMS traffic. On the other hand, when the information indicates that the MBMS service is unavailable (“0”), the remote UE determines that the UE 100-1 (relay UE) cannot receive the MBMS traffic.
  • the MBMS service is available
  • the remote UE determines that the UE 100-1 (relay
  • the UE 100-1 can transmit MBMS reception information by broadcast by at least one of direct discovery (relay discovery) and side link MIB (Master Information Block-SL).
  • the UE 100-1 includes information (BIT STRING # 19) indicating whether or not the MBMS service is available in the MasterInformationBlock-SL.
  • the remote UE determines whether or not the UE 100-1 (relay UE) can receive MBMS traffic.
  • MasterInformationBlock-SL includes information transmitted via SL-BCH by a UE that transmits SLSS that functions as a synchronization reference.
  • SLSS Sidelink Synchronization Signal
  • SLSS Sidelink Synchronization Signal
  • the MBMS reception information is information indicating the reception status of the MB100 service of the UE 100-1 or the reception capability of the MB100 service of the UE 100-1. For example, when the serving cell (eNB 200) of the UE 100-1 does not provide the MBMS service, the UE 100-1 can transmit MBMS reception information indicating that the MBMS service cannot be received. The UE 100-1 may transmit MBMS reception information indicating that the MBMS service cannot be received when not only the serving cell but also other cells different from the serving cell do not provide the MBMS service.
  • the UE 100-1 performs the MBMS service in the case where the cellular communication and the direct communication (UE / network relay) are simultaneously performed in different frequency bands even when another cell provides the MBMS service. May not be received, MBMS reception information indicating that the MBMS service cannot be received may be transmitted.
  • the UE 100-1 can transmit MBMS reception information indicating that the MBMS service can be received. Even when the serving cell does not provide the MBMS service, the UE 100-1 indicates that the MBMS service can be received when another cell different from the serving cell provides the MBMS service. May be sent.
  • the MBMS reception information may be the number of predetermined identifiers received by the UE 100-1.
  • the predetermined identifier is at least one of an identifier (TMGI: Temporary Mobile Group Identity) for identifying an MBMS service and an identifier (SAI: MBMS service area identities) for identifying an area for delivering the MBMS service.
  • TMGI Temporary Mobile Group Identity
  • SAI MBMS service area identities
  • SAI indicates an area (MBMS service area) for delivering content of the MBMS service.
  • the relay UE can determine that the reception status of the MBMS service is better (or the reception capability of the relay UE is higher) as the number of predetermined identifiers is larger.
  • the MBMS reception information may be information on a frequency band that provides an MBMS service that can be monitored by the UE 100-1.
  • the frequency band information may be information indicating the number of frequency bands (carriers) that provide the MBMS service, or may be information indicating the frequency bands (carriers).
  • the relay UE can determine that the reception status of the MBMS service is better as the number of the predetermined identifiers is larger.
  • the relay UE can determine that the reception status of the MBMS service is better (or the reception capability of the relay UE is higher) as the number of frequency bands (carriers) is larger.
  • the MBMS reception information may be information indicating the reception quality of the MBMS service.
  • the information is information indicating at least one of received signal strength (RSRP) and received signal quality (RSRQ) of a cell that provides an MBMS service.
  • RSRP received signal strength
  • RSS received signal quality
  • the UE 100-2 that is the remote UE can determine whether to select the UE 100-1 as the relay UE based on the MBMS reception information from the UE 100-1 that is the relay UE. For example, the UE 100-2 interested in MBMS reception does not select the UE 100-1 as a relay UE when the UE 100-1 cannot receive the MBMS service. Also, the UE 100-2 does not select the UE 100-1 as a relay UE when the reception status of the MBMS service of the UE 100-1 is bad or the MBMS reception capability of the UE 100-1 is low. Thereby, the UE 100-2 can reduce unnecessary signaling for executing the UE / network relay with the UE 100-1 which may not be able to provide the desired MBMS service. Further, since the UE 100-2 does not need to transmit the signaling of Step 2 described later to the UE 100-1 that may not be able to provide the desired MBMS service, unnecessary signaling can be reduced.
  • the UE 100-1 can transmit capability information related to whether or not an MBMS service provided in a frequency band (band / carrier) different from that of the serving cell can be received to the eNB 200 that manages the serving cell.
  • the capability information may be information indicating that cellular communication, direct communication (UE / network relay) and MBMS service reception can be performed simultaneously, or cellular communication and direct communication (UE / network relay). And information indicating a combination of frequency bands in which reception of the MBMS service can be performed simultaneously.
  • the eNB 200 may determine (set) a UE to be a relay UE based on the capability information. For example, the eNB 200 may set a UE having a high MBMS service reception capability as a relay UE with priority over a UE having a low MBMS service reception capability. Moreover, eNB200 does not need to select UE which cannot receive an MBMS service as a relay UE.
  • the relay UE Since there is an increased chance that a UE having MBMS service reception capability functions as a relay UE, there is a high possibility that the relay UE can receive MBMS traffic. Even if the MBMS service is not provided in the serving cell, if the MBMS service is provided in another cell, there is a high possibility that the relay UE can receive the MBMS traffic. Furthermore, there is a high possibility that the relay UE can receive more MBMS traffic (group communication traffic). As a result, the technology of relaying MBMS traffic to the remote UE by UE / network relay can be effectively utilized.
  • the UE 100-2 discovers the UE 100-1.
  • the UE 100-2 may discover the UE 100-1 based on the reception of the MBMS reception information.
  • the UE 100-2 obtains the user service description information USD (User Service Description) from the Server 400 via the UE 100-1 and the eNB 200.
  • the USD includes TMGI, frequency and SAI to be used to receive the relevant MBMS service.
  • the UE 100-2 may acquire the USD from the eNB 200.
  • step S2 the UE 100-2 transmits a TMGI monitoring request including the TMGI (value) and SAI interested in receiving the MBMS service to the UE 100-1.
  • the TMGI monitoring request requests reception (monitoring) of a specific MBMS service indicated by TMGI.
  • step S3 the UE 100-1 receives the SAI list from the eNB 200 (cell), and checks whether the SAI received from the UE 100-2 is included in the SAI list.
  • step S4 the UE 100-1 transmits a response to the TMGI monitoring request to the UE 100-2.
  • the UE 100-1 detects at least one SAI from the UE 100-2, the UE 100-1 transmits an acknowledgment to the TMGI monitoring request to the UE 100-2.
  • the acknowledgment includes a group identifier (Prose Layer 2 Group ID_traffic) and a refresh timer (TMGI_Monitoring_Refresh Timer).
  • the group identifier is used to transmit (transfer) the MBMS service (MBMS content) related to TMGI included in the TMGI monitoring request to the remote UE (UE 100-2).
  • the group identifier is an identifier used for transmitting a specific MBMS service.
  • the group identifier is an identifier (destination identifier) indicating a transmission destination of a specific MBMS service indicated by the TMGI by the UE 100-1.
  • the group identifier is an identifier having a smaller amount of information (for example, 8 bits) than the group identifier (for example, 24 bits) used for data transmission in the proximity service (direct discovery / direct communication / UE / network relay). Also good. Therefore, the group identifier for MBMS traffic transmission may be a shortened identifier.
  • the group identifier may be an LSB (8 bits) group identifier used in control information (PSCCH).
  • the refresh timer is a timer that triggers a TMGI monitoring request.
  • the UE 100-2 executes the TMGI monitoring request when the refresh timer expires (that is, when the time indicated by the refresh timer elapses). If the UE 100-2 (and other UEs) are not executing the TMGI monitoring request procedure when the refresh timer expires, the UE 100-1 terminates the TMGI monitoring.
  • step S5 the UE 100-1 detects the TMGI requested for monitoring.
  • the UE 100-1 starts monitoring (receiving) the MBMS service indicated by the detected TMGI.
  • step S6 in response to detection of TMGI, UE 100-1 sends a TMGI announcement message including valid TMGI and a corresponding group identifier to UE 100-2 by broadcasting.
  • the UE 100-1 can send a TMGI announcement message by direct discovery.
  • the UE 100-1 may repeatedly transmit the TMGI announcement message at a cycle shorter than the refresh timer.
  • the UE 100-1 broadcasts MBMS traffic (MBMS service) related to the group identifier on the side link related to the group identifier.
  • the UE 100-1 may transmit the MBMS traffic by unicast.
  • step S7 the UE 100-2 detects the announcement in step S6 and starts receiving the broadcast content on the side link related to the group identifier.
  • the UE 100-2 may transmit a request to release distribution by unicast to the UE 100-1.
  • step S8 when the UE 100-1 cannot detect the TMGI from the network, the UE 100-1 ends the effective TMGI broadcast. Further, the UE 100-1 ends the transmission (relay) of the MBMS traffic.
  • step S9 the UE 100-2 finishes receiving the MBMS traffic by broadcast on the side link related to the group identifier.
  • the UE 100-1 when receiving a TMGI monitoring request, the UE 100-1 transmits a response to the request to the UE 100-1 (see step S4).
  • the UE 100-1 may transmit a message (TMGI announcement message) including the TMGI included in the TMGI monitoring request and the group identifier corresponding to the TMGI. That is, UE 100-1 may omit the transmission of a response in step S4. Further, the UE 100-1 may include a refresh timer in the TMGI announcement message.
  • TMGI announcement message including the TMGI included in the TMGI monitoring request and the group identifier corresponding to the TMGI. That is, UE 100-1 may omit the transmission of a response in step S4. Further, the UE 100-1 may include a refresh timer in the TMGI announcement message.
  • the UE 100-2 can regard the TMGI announcement message as a response to the request. Since the UE 100-1 does not need to transmit a response to the TMGI monitoring request, unnecessary signaling can be reduced.
  • TMGI announcement message including the TMGI desired by itself
  • transmission of a TMGI monitoring request may be omitted.
  • the UE 100-1 may use a common identifier as a transmission source identifier.
  • the UE 100-1 may use an identifier having a smaller information amount than the group identifier used for data transmission in the proximity service, as the group identifier included in the TMGI announcement message. .
  • the UE 100-1 may use an identifier having a smaller information amount than the group identifier used for data transmission in the proximity service, as the group identifier included in the TMGI announcement message. .
  • FIG. 13 is a sequence diagram for explaining an operation according to the second modification of the embodiment.
  • Modification Example 2 describes radio resources used for transmission (relay) of the MBMS service. Note that the description of the same parts as those of the above-described embodiment and modification example 1 is omitted as appropriate.
  • step S101 the UE 100-2 transmits a TMGI monitoring request to the UE 100-1.
  • the UE 100-1 determines that the relay of the MBMS service is requested from the remote UE by the TMGI monitoring request.
  • the UE 100-1 requests the eNB 200 for radio resources for relaying the MBMS service.
  • the UE 100-1 requests the radio resource from the eNB 200 using an SLUE information message (SL UE information).
  • the SLUE information message is a message used when, for example, the UE is interested in proximity services (eg, direct discovery, direct communication, UE / network relay, etc.).
  • the eNB 200 allocates radio resources for relaying the MBMS service to the UE 100-1 in response to a request for radio resources from the UE 100-1.
  • the eNB 200 can allocate a second radio resource different from the first radio resource used for normal UE / network relay.
  • the eNB 200 can allocate the second radio resource for multicast or broadcast instead of the first radio resource for unicast.
  • the second radio resource is, for example, a radio resource that can be used for a longer period than the first radio resource.
  • the eNB 200 may transmit information for specifying the period of the second radio resource together with the allocation information of the second radio resource to the UE 100-1.
  • the information for specifying is, for example, information indicating an absolute time (for example, a timer), information indicating how many cycles of the transmission resource pool the second radio resource is, and the like.
  • step S103 the eNB 200 transmits allocation information of radio resources (second radio resources) used for relaying the MBMS service to the UE 100-2.
  • step S104 the UE 100-1 relays (transmits) the MBMS service (MBMS traffic) to the remote UE using the radio resource based on the radio resource allocation information.
  • FIG. 14 is a sequence diagram for explaining an operation according to the third modification of the embodiment.
  • the UE 100-1 requests the eNB 200 for radio resources used for transmission (relay) of the MBMS service.
  • the UE 100-1 does not request the eNB 200 for radio resources used for transmission (relay) of the MBMS service. Note that the description of the same portions as those in the above-described embodiment and each modified example is omitted as appropriate.
  • the eNB 200 transmits information on the transmission resource pool to the UE 100-1.
  • the eNB 200 may transmit the transmission resource pool information to the relay UE by unicast (for example, RRC signaling) or by broadcast (for example, SIB (System Information Block)).
  • the transmission resource pool here is a resource pool in which radio resources used for relaying the MBMS service by UE / network relay are arranged.
  • the eNB 200 may transmit information on the transmission resource pool corresponding to each MBMS traffic to the UE 100-1. Specifically, the eNB 200 transmits information in which each MBMS traffic being distributed and the corresponding transmission resource pool are associated with each other by broadcast (for example, SIB13) to the UE 100-1.
  • the information may be information in which TMGI and a transmission resource pool are associated with each other.
  • Step S202 corresponds to step S101.
  • the UE 100-1 checks the transmission resource pool (radio resource) corresponding to the requested TMGI. Specifically, UE 100-1 identifies TMGI (corresponding MBMS traffic) received from UE 100-2. The UE 100-1 selects a transmission resource pool corresponding to the specified TMGI (MBMS traffic) based on the transmission resource pool information.
  • TMGI corresponding MBMS traffic
  • Step S204 corresponds to step S104.
  • the UE 100-1 relays MBMS traffic using a predetermined radio resource from the selected transmission resource pool.
  • a program for causing a computer to execute each process performed by any of the above-described nodes may be provided.
  • the program may be recorded on a computer readable medium. If a computer-readable medium is used, a program can be installed in the computer.
  • the computer-readable medium on which the program is recorded may be a non-transitory recording medium.
  • the non-transitory recording medium is not particularly limited, but may be a recording medium such as a CD-ROM or a DVD-ROM.
  • a chip configured by a memory that stores a program for executing each process performed by either the UE 100 or the eNB 200 and a processor that executes the program stored in the memory may be provided.
  • the LTE system has been described as an example of the mobile communication system.
  • the present invention is not limited to the LTE system, and the present invention may be applied to systems other than the LTE system.
  • the present invention is useful in the field of wireless communication.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

実施形態に係る無線端末は、近傍サービスにおけるUE・ネットワーク中継を行うリレー端末である。前記無線端末は、前記無線端末がMBMS(Multimedia Broadcast Multicast Service)サービスを受信可能か否かに関するMBMS受信情報を、前記リレー端末と前記UE・ネットワーク中継により通信を行うリモート端末に送信するコントローラを備える。

Description

無線端末
 本出願は、通信システムにおいて用いられる無線端末に関する。
 移動通信システムの標準化プロジェクトである3GPP(3rd Generation Partnership Project)において、近傍サービス(ProSe:Proximity-based Services)の仕様策定が進められている。ProSeには、リレーUE(ProSe UE-to-Network Relay)が、ネットワーク圏外のリモートUE(Remote UE)とネットワークとの間でリモートUEのデータ(トラフィック)を中継するUE・ネットワーク中継が含まれる(非特許文献1)。
 ここで、UE・ネットワーク中継によりMBMSトラフィックをリモートUEへ中継することが検討されている(非特許文献2)。
3GPP技術報告書 「TS 23.303 V13.0.0」 2015年6月21日 3GPP技術報告書 「TS 23.713 V1.5.0」 2015年3月19日
 一の実施形態に係る無線端末は、近傍サービスにおけるUE・ネットワーク中継を行うリレー端末である。前記無線端末は、前記無線端末がMBMS(Multimedia Broadcast Multicast Service)サービスを受信可能か否かに関するMBMS受信情報を、前記リレー端末と前記UE・ネットワーク中継により通信を行うリモート端末に送信するコントローラを備える。
図1は、LTEシステムの構成を示す図である。 図2は、MBMS/eMBMSに係るネットワーク構成を示す図である。 図3は、LTEシステムにおける無線インターフェイスのプロトコルスタック図である。 図4は、LTEシステムにおける下りリンクのチャネル構成を示す図である。 図5は、LTEシステムで使用される無線フレームの構成図である。 図6は、UE・ネットワーク中継を説明するための図である。 図7は、UE100のブロック図である。 図8は、eNB200のブロック図である。 図9は、実施形態に係る動作環境を説明するための図である。 図10は、実施形態に係る動作を説明するためのシーケンス図である。 図11は、実施形態に係る動作を説明するためのシーケンス図である。 図12は、実施形態に係る動作を説明するためのシーケンス図である。 図13は、実施形態の変更例2に係る動作を説明するためのシーケンス図である。 図14は、実施形態の変更例3に係る動作を説明するためのシーケンス図である。
 [実施形態の概要]
 以下の実施形態では、UE・ネットワーク中継によりMBMSトラフィックをリモートUEへ中継する場合において、不要なシグナリングを削減することを目的の一つとする。
 実施形態に係る無線端末は、近傍サービスにおけるUE・ネットワーク中継を行うリレー端末である。前記無線端末は、前記無線端末がMBMS(Multimedia Broadcast Multicast Service)サービスを受信可能か否かに関するMBMS受信情報を、前記リレー端末と前記UE・ネットワーク中継により通信を行うリモート端末に送信するコントローラを備える。
 実施形態において、前記コントローラは、前記無線端末のサービングセルが前記MBMSサービスを提供していない場合に、前記MBMSサービスを受信不能であることを示す前記MBMS受信情報を送信す。
 実施形態において、前記コントローラは、前記サービングセルと異なる他のセルが前記MBMSサービスを提供していない場合に、前記MBMSサービスを受信不能であることを示す前記MBMS受信情報を送信する。
 実施形態において、前記コントローラは、前記MBMS受信情報として、前記無線端末が受信している所定の識別子の数を送信する。前記所定の識別子は、前記MBMSサービスを識別するための識別子、及び、前記MBMSサービスを配信するエリアを識別するための識別子、の少なくとも一方である。
 実施形態において、前記コントローラは、前記MBMS受信情報として、前記無線端末がモニタ可能なMBMSサービスを提供する周波数帯の情報を送信する。
 実施形態において、前記コントローラは、サービングセルと異なる周波数帯で提供されている前記MBMSサービスを受信可能か否かに関する能力情報を前記サービングセルを管理する基地局に送信する。
 実施形態において、前記コントローラは、特定のMBMSサービスの受信要求を前記リモートUEから受信する。前記コントローラは、前記受信要求への応答に代えて、前記特定のMBMSサービスを識別するための第1の識別子及び前記特定のMBMSサービスを送信するために用いられる第2の識別子を含むメッセージをブロードキャストで送信する。
 実施形態において、前記コントローラは、前記メッセージに、前記特定のMBMSサービスの受信要求のトリガとなるタイマを含める。
 実施形態において、前記第2の識別子は、前記近傍サービスにおけるデータ送信のために用いられる宛先識別子よりも少ない情報量の識別子である。
 実施形態において、前記コントローラは、複数の特定のMBMSサービスそれぞれを識別するための識別子を送信する場合、送信元の識別子として、共通の識別子を用いる。
 実施形態において、前記コントローラは、前記リモート端末から前記MBMSサービスの中継を要求された場合に、前記MBMSサービスを中継するための無線リソースを基地局に要求する。
 実施形態において、前記コントローラは、前記UE・ネットワーク中継によりデータを中継するための無線リソースよりも長い期間利用可能な無線リソースの割当情報を前記基地局から受信する。
 実施形態において、前記コントローラは、MBMSトラフィックを送信するための送信リソースプールを基地局から受信する。
 実施形態において、前記コントローラは、各MBMSトラフィックに関連付けられた送信リソースプールを前記送信リソースプールとして前記基地局から受信する。
 [実施形態]
 (通信システム)
 以下において、実施形態に係る移動通信システムであるLTEシステムについて説明する。図1は、実施形態に係るLTEシステムの構成を示す図である。図2は、実施形態に係るMBMS/eMBMSに係るネットワーク構成を示す図である。
 図1に示すように、LTEシステムは、UE(User Equipment)100、E-UTRAN(Evolved-UMTS Terrestrial Radio Access Network)10、及びEPC(Evolved Packet Core)20を備える。また、セルラネットワークのオペレータにより管理されない外部ネットワークには、Server400が設けられる。
 UE100は、ユーザ端末に相当する。UE100は、移動型の通信装置であり、セル(サービングセル)との無線通信を行う。UE100の構成については後述する。
 E-UTRAN10は、無線アクセスネットワークに相当する。E-UTRAN10は、eNB200(evolved Node-B)を含む。eNB200は、基地局に相当する。eNB200は、X2インターフェイスを介して相互に接続される。eNB200の構成については後述する。
 eNB200は、1又は複数のセルを管理しており、自セルとの接続を確立したUE100との無線通信を行う。eNB200は、無線リソース管理(RRM)機能、ユーザデータ(以下、単に「データ」という)のルーティング機能、モビリティ制御・スケジューリングのための測定制御機能等を有する。「セル」は、無線通信エリアの最小単位を示す用語として使用される他に、UE100との無線通信を行う機能を示す用語としても使用される。
 EPC20は、コアネットワークに相当する。EPC20は、MME(Mobility Management Entity)/S-GW(Serving-Gateway)300を含む。MMEは、UE100に対する各種モビリティ制御等を行う。S-GWは、データの転送制御を行う。MME/S-GW300は、S1インターフェイスを介してeNB200と接続される。E-UTRAN10及びEPC20は、LTEシステムのネットワークを構成する。
 また、E-UTRAN10は、MCE(Multi-Cell/Multicast Coordinating Entity)11を含む。MCE11は、M2インターフェイスを介してeNB200と接続され、M3インターフェイスを介してMME300と接続される(図2参照)。MCE11は、MBSFN無線リソース管理・割当等を行う。
 EPC20は、MBMS GW(Multimedia Broadcast Multicast Service Gateway)21を含む。MBMS GW21は、M1インターフェイスを介してeNB200と接続され、Smインターフェイスを介してMME300と接続され、SG-mb及びSGi-mbインターフェイスを介してBMSC22と接続される(図2参照)。MBMS GW21は、eNB200に対してIPマルチキャストのデータ伝送やセッション制御を行う。
 また、EPC20は、BMSC(Broadcast Multicast Service Center)22を含む。BMSC22は、SG-mb及びSGi-mbインターフェイスを介してMBMS GW21と接続され、SGiインターフェイスを介してP-GW23と接続される(図2参照)。BMSC22は、主にTMGI(Temporary Mobile Group Identity)の管理・割当等を行う。
 また、EPC20は、P-GW23を含む。P-GW23は、外部ネットワークから(及び外部ネットワークに)ユーザデータを中継する制御を行う。P-GW23は、Server400と接続される。
 Server400は、ProSeアプリケーションサーバ(ProSe Application Server)である。この場合、Server400は、ProSeにおいて用いられる識別子を管理する。例えば、Server400は、「EPC ProSe ユーザID」及び「ProSeファンクションID」を記憶する。また、Server400は、「アプリケーションレイヤユーザID」と「EPC ProSe ユーザID」とをマッピングする。
 (無線プロトコルの構成)
 図3は、LTEシステムにおける無線インターフェイスのプロトコルスタック図である。
 図3に示すように、無線インターフェイスプロトコルは、OSI参照モデルの第1層乃至第3層に区分されており、第1層は物理(PHY)層である。第2層は、MAC(Medium Access Control)層、RLC(Radio Link Control)層、及びPDCP(Packet Data Convergence Protocol)層を含む。第3層は、RRC(Radio Resource Control)層を含む。
 物理層は、符号化・復号、変調・復調、アンテナマッピング・デマッピング、及びリソースマッピング・デマッピングを行う。UE100の物理層とeNB200の物理層との間では、物理チャネルを介してデータ及び制御信号が伝送される。
 MAC層は、データの優先制御、HARQ(Hybrid ARQ)による再送処理、及びランダムアクセス手順等を行う。UE100のMAC層とeNB200のMAC層との間では、トランスポートチャネルを介してデータ及び制御信号が伝送される。eNB200のMAC層は、上下リンクのトランスポートフォーマット(トランスポートブロックサイズ、変調・符号化方式(MCS))及びUE100への割当リソースブロックを決定するスケジューラを含む。
 RLC層は、MAC層及び物理層の機能を利用してデータを受信側のRLC層に伝送する。UE100のRLC層とeNB200のRLC層との間では、論理チャネルを介してデータ及び制御信号が伝送される。
 PDCP層は、ヘッダ圧縮・伸張、及び暗号化・復号化を行う。
 RRC層は、制御信号を取り扱う制御プレーンでのみ定義される。UE100のRRC層とeNB200のRRC層との間では、各種設定のためのメッセージ(RRCメッセージ)が伝送される。RRC層は、無線ベアラの確立、再確立及び解放に応じて、論理チャネル、トランスポートチャネル、及び物理チャネルを制御する。UE100のRRCとeNB200のRRCとの間に接続(RRC接続)がある場合、UE100はRRC接続状態(RRCコネクティッドモード)であり、そうでない場合、UE100はRRCアイドル状態(RRCアイドルモード)である。
 RRC層の上位に位置するNAS(Non-Access Stratum)層は、セッション管理及びモビリティ管理等を行う。
 (下りリンクのチャネル構成)
 図4は、LTEシステムにおける下りリンクのチャネル構成を示す図である。
 図4(A)は、論理チャネル(Downlink Logical Channel)とトランポートチャネル(Downlink Transport Channel)との間のマッピングを示す。
 図4(A)に示すように、PCCH(Paging Control Channel)は、ページング情報、及びシステム情報変更を通知するための論理チャネルである。PCCHは、トランスポートチャネルであるPCH(Paging Channel)にマッピングされる。
 BCCH(Broadcast Control Channel)は、ブロードキャスト・システム情報のための論理チャネルである。BCCHは、トランスポートチャネルであるBCH(Broadcast Control Channel)又はDL-SCH(Downlink Shared Channel)にマッピングされる。
 CCCH(Common Control Channel)は、UE100とeNB200との間の送信制御情報のための論理チャネルである。CCCHは、UE100がネットワークとの間でRRC接続を有していない場合に用いられる。CCCHは、DL-SCHにマッピングされる。
 DCCH(Dedicated Control Channel)は、UE100とネットワークとの間の個別制御情報を送信するための論理チャネルである。DCCHは、UE100がRRC接続を有する場合に用いられる。DCCHは、DL-SCHにマッピングされる。
 DTCH(Dedicated Traffic Channel)は、データの送信のための個別論理チャネルである。DTCHは、DL-SCHにマッピングされる。
 MCCH(Multicast Control Channel)は、1対多(マルチキャスト/ブロードキャスト)伝送のための論理チャネルである。MCCHは、ネットワークからUE100へのMTCH用のMBMS制御情報の送信のために用いられる。MCCHは、MBMSを受信する又は受信に興味があるUE100のみに用いられる。MCCHは、トランスポートチャネルであるMCH(Multicast Channel)にマッピングされる。
 MTCH(Multicast Traffic Channel)は、ネットワークからUE100への1対多(マルチキャスト/ブロードキャスト)のデータ伝送のための論理チャネルである。MTCHは、MBMSを受信するUE100のみに用いられる。MTCHは、MCHにマッピングされる。
 図4(B)は、トランポートチャネル(Downlink Transport Channel)と物理チャネル(Downlink Physical Channel)との間のマッピングを示す。
 図4(B)に示すように、BCHは、PBCH(Physical Broadcast channel)にマッピングされる。
 MCHは、PMCH(Physical Multicast Channel)にマッピングされる。MCHは、セルのカバレッジエリア全体にブロードキャストされる。MCHは、複数のセルによるMBSFN伝送をサポートする。
 PCH及びDL-SCHは、PDSCH(Physical Downlink Shared Channel)にマッピングされる。DL-SCHは、HARQ、リンクアダプテーション、及び動的リソース割当をサポートする。
 PDCCHは、PDSCH(DL-SCH、PCH)のリソース割り当て情報及びDL-SCHに関するHARQ情報等を運搬する。また、PDCCHは、上りリンクのスケジューリンググラントを運ぶ。
 (無線フレームの構成)
 図5は、LTEシステムで使用される無線フレームの構成図である。LTEシステムにおいて、下りリンクにはOFDMA(Orthogonal Frequency Division Multiple Access)、上りリンクにはSC-FDMA(Single Carrier Frequency Division Multiple Access)がそれぞれ適用される。
 図5に示すように、無線フレームは、時間方向に並ぶ10個のサブフレームで構成される。各サブフレームは、時間方向に並ぶ2個のスロットで構成される。各サブフレームの長さは1msであり、各スロットの長さは0.5msである。各サブフレームは、周波数方向に複数個のリソースブロック(RB)を含み、時間方向に複数個のシンボルを含む。各リソースブロックは、周波数方向に複数個のサブキャリアを含む。1つのシンボル及び1つのサブキャリアにより1つのリソースエレメント(RE)が構成される。また、UE100に割り当てられる無線リソース(時間・周波数リソース)のうち、周波数リソースはリソースブロックにより特定でき、時間リソースはサブフレーム(又はスロット)により特定できる。
 下りリンクにおいて、各サブフレームの先頭数シンボルの区間は、主に下りリンク制御信号を伝送するためのPDCCHとして使用される領域である。また、各サブフレームの残りの部分は、主に下りリンクデータを伝送するためのPDSCHとして使用できる領域である。また、下りリンクにおいて、MBSFN伝送用のサブフレームであるMBSFNサブフレームが設定され得る。
 上りリンクにおいて、各サブフレームにおける周波数方向の両端部は、主に上りリンク制御信号を伝送するためのPUCCHとして使用される領域である。各サブフレームにおける残りの部分は、主に上りリンクデータを伝送するためのPUSCHとして使用できる領域である。
 (MBMSの概要)
 以下において、MBMSの概要について説明する。LTEシステムは、MBMS(Multimedia Broadcast Multicast Service)をサポートする。MBMSでは、UE100(MBMS対応UE)は、ネットワークからマルチキャスト又はブロードキャストで配信されるマルチメディアコンテンツ(MBMSサービス)を受信する。UE100は、RRC接続状態だけでなく、RRCアイドル状態においてもMBMSデータを受信可能である。
 複数のセルにより1つのMBSFN(Multicast-Broadcast Single-Frequency Network)エリアが構成され、複数のMBSFNエリアによりMBMSサービスエリアが構成される。1つのセルは、複数のMBSFNエリアに属することができる。
 BMSC22は、MBMSデータを配信する機能を提供する。MBMS GW21は、MBMSデータを各eNB200にブロードキャストする。MCE11は、同一MBSFNエリア内の各eNB200により使用される無線リソースを制御したり、MBSFNサブフレームを設定したりする。
 (近傍サービス)
 以下において、近傍サービス(ProSe:Proximity-based Services)について説明する。ProSeにおいて、複数のUE100は、eNB200を介さない直接的な無線リンクを介して各種の信号を送受信する。ProSeにおける直接的な無線リンクは、「サイドリンク(Sidelink)」と称される。
 「Sidelink」は、直接ディスカバリ及び直接通信のためのUE-UE間インターフェイスである。「Sidelink」は、PC5インターフェイスに対応する。PC5は、直接ディスカバリ、直接通信及び近傍サービスによるUE・ネットワーク中継のための制御及びユーザプレーンのために用いられる近傍サービスを利用可能なUE間の参照点である。PC5インターフェイスは、ProSeにおけるUE-UE間インターフェイスである。
 ProSeのモードとしては、「直接ディスカバリ(Direct Discovery)」及び「直接通信(Direct Communication)」の2つのモードが規定されている。
 直接ディスカバリは、特定の宛先を指定しないディスカバリ信号をUE間で直接的に伝送することにより、相手先を探索するモードである。また、直接ディスカバリは、PC5を介してE-UTRA(Evolved Universal Terrestrial Radio Access)における直接無線信号を用いて、UEの近傍における他のUEを発見するための手順である。或いは、直接ディスカバリは、E-UTRA技術で2つのUE100の能力のみを用いて、近傍サービスを実行可能な他のUE100を発見するために近傍サービスを実行可能なUE100によって採用される手順である。直接ディスカバリは、UE100がE-UTRAN(eNB200(セル))によってサービスが提供される場合にのみ、サポートされる。UE100は、セル(eNB200)に接続又はセルに在圏している場合、E-UTRANによってサービスが提供され得る。
 ディスカバリ信号(ディスカバリメッセージ)の送信(アナウンスメント)のためのリソース割り当てタイプには、UE100が無線リソースを選択する「タイプ1」と、eNB200が無線リソースを選択する「タイプ2(タイプ2B)」と、がある。
 「Sidelink Direct Discovery」プロトコルスタックは、物理(PHY)層、MAC層、及びProSeプロトコルを含む。UE(A)の物理層とUE(B)の物理層との間では、物理サイドリンクディスカバリチャネル(PSDCH)と称される物理チャネルを介してディスカバリ信号が伝送される。UE(A)のMAC層とUE(B)のMAC層との間では、サイドリンクディスカバリチャネル(SL-DCH)と称されるトランスポートチャネルを介してディスカバリ信号が伝送される。
 直接通信は、特定の宛先(宛先グループ)を指定してデータをUE間で直接的に伝送するモードである。また、直接通信は、いずれのネットワークノードを通過しない経路を介してE-UTRA技術を用いたユーザプレーン伝送による、近傍サービスを実行可能である2以上のUE間の通信である。
 直接通信のリソース割り当てタイプには、直接通信の無線リソースをeNB200が指定する「モード1」と、直接通信の無線リソースをUE100が選択する「モード2」と、がある。
 直接通信プロトコルスタックは、物理(PHY)層、MAC層、RLC層、及びPDCP層を含む。UE(A)の物理層とUE(B)の物理層との間では、物理サイドリンク制御チャネル(PSCCH)を介して制御信号が伝送され、物理サイドリンク共有チャネル(PSSCH)を介してデータが伝送される。また、物理サイドリンクブロードキャストチャネル(PSBCH)を介して同期信号等が伝送されてもよい。UE(A)のMAC層とUE(B)のMAC層との間では、サイドリンク共有チャネル(SL-SCH)と称されるトランスポートチャネルを介してデータが伝送される。UE(A)のRLC層とUE(B)のRLC層との間では、サイドリンクトラフィックチャネル(STCH)と称される論理チャネルを介してデータが伝送される。
 (UE・ネットワーク中継)
 以下において、UE・ネットワーク中継について、図6を用いて説明する。図6は、実施形態に係るUE・ネットワーク中継を説明するための図である。
 図6において、リモートUE(Remote UE)は、ネットワーク圏外(Out-of-Network)に位置するUEである。すなわち、リモートUEは、セルのカバレッジ外に位置する。尚、リモートUEは、セルのカバレッジ内に位置する場合も有り得る。従って、リモートUEは、E-UTRAN10によって直接サービスが提供されないUE100(E-UTRAN10によってサーブ(serve)されないUE100)である。また、リモートUE100は、後述するリレーUEを介してパケットデータネットワーク(PDN:Packet Data Network)と通信できる。リモートUEは、公衆安全(Public Safety)のためのUE(ProSe-enabled Public Safety UE)であってもよい。
 なお、「ProSe-enabled Public Safety UE」は、HPLMNが公衆安全のための使用を許可するように構成されている。「ProSe-enabled Public Safety UE」は、近傍サービスを利用可能であり、近傍サービスにおける手順及び公衆安全のための特定の能力をサポートしている。例えば、「ProSe-enabled Public Safety UE」は、公衆安全のための情報を近傍サービスにより送信する。公衆安全のための情報とは、例えば、災害(地震・火災など)に関する情報、消防関係者又は警察関係者に用いられる情報などである。
 リモートUEは、後述するように、リレーUEからProSe中継サービスを提供される。ProSe中継サービスが提供されるリモートUEとProSe中継サービスを提供するリレーUEとの間で、UE・ネットワーク中継が実行される。
 リレーUE(ProSe UE-to Network Relay)は、ProSe中継サービスをリモートUEのために提供する。具体的には、リレーUEは、リモートUEのためにパケットデータネットワークとの通信のサービス継続性を提供する。従って、リレーUEは、リモートUEとネットワークとの間でデータ(ユニキャストトラフィック)を中継する。リレーUEは、近傍サービス(直接通信)によりリモートUEのデータ(トラフィック)を中継する。具体的には、リレーUEは、PC5インターフェイスを介してリモートUEから受信したデータ(上りトラフィック)を、Uuインターフェイス(LTE-Uu)又はUnインターフェイス(LTE-Un)を介してeNB200に中継する。また、リレーUEは、Uuインターフェイス又はUnインターフェイスを介してeNB200から受信したデータ(下りトラフィック)をPC5インターフェイスを介してリモートUEへ中継する。リレーUEは、ネットワーク内(セルのカバレッジ内)にのみ位置する。
 また、リレーUEは、公衆安全のための通信に関係する任意のタイプのトラフィックを中継できる包括的な機能を提供することができる。
 リレーUEとリモートUEは、物理層間でデータ及び制御信号を伝送できる。同様に、リレーUEとリモートUEは、MAC層間、RLC層間及びPDCP層間でデータ及び制御信号を伝送できる。さらに、リレーUEは、PDCP層の上位層としてIPリレー(IP-Relay)層を有してもよい。リモートUEは、PDCP層の上位層としてIP層を有してもよい。リレーUEとリモートUEとは、IPリレー層とIP層との間でデータ及び制御信号を伝送できる。また、リレーUEは、IPリレー層とP-GW350のIP層との間でデータを伝送できる。
 なお、リレーUEは、AS層(Access Stratum)において、ブロードキャストを用いてリモートUEにデータ(トラフィック)を送信できる。リレーUEは、AS層において、ユニキャストを用いてリモートUEにデータを送信してもよい。なお、UE・ネットワーク中継がブロードキャストを用いて実行されている場合、リレーUEとリモートUEとの間において、AS層におけるフィードバックは行われないが、NAS層におけるフィードバックは行われてもよい。また、UE・ネットワーク中継がユニキャストを用いて実行されている場合、AS層におけるフィードバックが行われてもよい。
 (無線端末)
 以下において、実施形態に係るUE100(無線端末)について説明する。図7は、UE100のブロック図である。図7に示すように、UE100は、レシーバ(Receiver:受信部)110、トランスミッタ(Transmitter:送信部)120、及びコントローラ(Controller:制御部)130を備える。レシーバ110とトランスミッタ120とは、一体化されたトランシーバ(送受信部)であってもよい。
 レシーバ110は、コントローラ130の制御下で各種の受信を行う。レシーバ110は、アンテナを含む。レシーバ110は、アンテナが受信する無線信号をベースバンド信号(受信信号)に変換してコントローラ130に出力する。
 なお、UE100は、「ProSe-enabled Public Safety UE」である場合、レシーバ110は、異なる2つの周波数における無線信号を同時に受信可能である。例えば、UE100は、2つのレシーバ110(2 RX Chain)を有する。UE100は、一方のレシーバ110によりセルラ用の無線信号を受信でき、他方のレシーバ110によりProSe用の無線信号を受信できる。
 トランスミッタ120は、コントローラ130の制御下で各種の送信を行う。トランスミッタ120は、アンテナを含む。トランスミッタ120は、コントローラ130が出力するベースバンド信号(送信信号)を無線信号に変換してアンテナから送信する。
 コントローラ130は、UE100における各種の制御を行う。コントローラ130は、プロセッサ及びメモリを含む。メモリは、プロセッサにより実行されるプログラム、及びプロセッサによる処理に使用される情報を記憶する。プロセッサは、ベースバンド信号の変調・復調及び符号化・復号等を行うベースバンドプロセッサと、メモリに記憶されるプログラムを実行して各種の処理を行うCPU(Central Processing Unit)と、を含む。プロセッサは、音声・映像信号の符号化・復号を行うコーデックを含んでもよい。プロセッサは、後述する各種の処理及び上述した各種の通信プロトコルを実行する。
 UE100は、GNSS受信機を備えていてもよい。GNSS受信機は、UE100の地理的な位置を示す位置情報を得るために、GNSS信号を受信して、受信した信号をコントローラ130に出力する。或いは、UE100は、UE100の位置情報を取得するためのGPS機能を有していてもよい。
 (基地局)
 以下において、実施形態に係るeNB200(基地局)について説明する。図8は、eNB200のブロック図である。図8に示すように、eNB200は、レシーバ(受信部)210、トランスミッタ(送信部)220、コントローラ(制御部)230、及びネットワークインターフェイス240を備える。レシーバ210とトランスミッタ220とは、一体化されたトランシーバ(送受信部)であってもよい。
 レシーバ210は、コントローラ230の制御下で各種の受信を行う。レシーバ210は、アンテナを含む。レシーバ210は、アンテナが受信する無線信号をベースバンド信号(受信信号)に変換してコントローラ230に出力する。
 トランスミッタ220は、コントローラ230の制御下で各種の送信を行う。トランスミッタ220は、アンテナを含む。トランスミッタ220は、コントローラ230が出力するベースバンド信号(送信信号)を無線信号に変換してアンテナから送信する。
 コントローラ230は、eNB200における各種の制御を行う。コントローラ230は、プロセッサ及びメモリを含む。メモリは、プロセッサにより実行されるプログラム、及びプロセッサによる処理に使用される情報を記憶する。プロセッサは、ベースバンド信号の変調・復調及び符号化・復号等を行うベースバンドプロセッサと、メモリに記憶されるプログラムを実行して各種の処理を行うCPU(Central Processing Unit)と、を含む。プロセッサは、後述する各種の処理及び上述した各種の通信プロトコルを実行する。
 ネットワークインターフェイス240は、X2インターフェイスを介して隣接eNB200と接続され、S1インターフェイスを介してMME/S-GW300と接続される。ネットワークインターフェイス240は、X2インターフェイス上で行う通信及びS1インターフェイス上で行う通信等に使用される。
 (実施形態に係る動作環境)
 次に、実施形態に係る動作環境について、図9を用いて説明する。図9は、実施形態に係る動作環境を説明するための図である。
 図9に示すように、UE100-1は、eNB200(DeNB)が管理するセル内に位置し、eNB200とセルラ通信(LTE-Uu)を実行可能である。UE100-1は、RRCコネクティッド状態である。或いは、UE100-1は、RRCアイドル状態であり、eNB200と通信を行う場合に、RRCアイドル状態からRRCコネクティッド状態に移行してもよい。或いは、UE100-1は、MBMSトラフィックを受信する場合、RRCアイドル状態であってもよい。一方、UE100-2は、eNB200が管理するセル外に位置する。UE100-2は、RRCアイドル状態である。
 UE100-1は、リレーUE(ProSe UE-to-NW Relay)であり、UE100-2は、リモートUEである。UE100-1とUE100-2とは、PC5上でUE・ネットワーク中継を実行する。
 eNB200は、リモートUEのデータを中継するドナーeNBである。eNB200は、Server400からMBMSトラフィック(MBMSサービス)を受け取る。Server400は、例えば、MBMSトラフィックとして、公衆安全用途のグループ通信関連データを提供するグループ通信アプリケーションサーバである。
 eNB200とUE100-1との間でUE・ネットワーク中継用の接続が確立されている。また、UE100-1とUE100-2との間でUE・ネットワーク中継用の接続が確立されている。
 このような動作環境において、UE・ネットワーク中継によりMBMSトラフィックをリモートUEへ中継する場合において、不要なシグナリングを低減するために、以下の動作が実行される。
 なお、以下で説明するUE100(UE100-1/UE100-2)が実行する処理(動作)について、UE100が備えるレシーバ110、トランスミッタ120、コントローラ130の少なくともいずれかが実行するが、便宜上、UE100が実行する処理として説明する。同様に、以下で説明するeNB200が実行する処理(動作)について、eNB200が備えるレシーバ210、トランスミッタ220、コントローラ230、ネットワークインターフェイス240の少なくともいずれかが実行するが、便宜上、eNB200が実行する処理として説明する。
 (実施形態に係る動作)
 次に、実施形態に係る動作について、図10から図12を用いて説明する。図10-図12は、実施形態に係る動作を説明するためのシーケンス図である。図10は、リモートUEがリレーUEに特定の利用可能なTMGIのモニタリング及びリレーUEがこのTMGIをブロードキャストすることを要求する手順を説明するための図である。
 図10に示すように、ステップS0において、UE100-1は、UE100-1がMBMSトラフィック(MBMSサービス)を受信可能か否かに関するMBMS受信情報を、リモートUEに送信する。
 UE100-1は、MBMS受信情報をユニキャスト又はブロードキャストにより送信できる。具体的には、UE100-1は、NASレベルシグナリング、RRCシグナリング、及びMACコントロールエレメント(MAC CE)の少なくともいずれかにより、MBMS受信情報をユニキャストで送信できる。UE100-1は、リレーUEとUE・ネットワーク中継の設定(接続)を行う際に、MBMS受信情報をユニキャストで送信してもよい。例えば、図11に示すように、UE100-1は、MAC CEにMBMSサービスが利用可能か否かを示す情報(1ビットインジケータ)を含める。当該情報がMBMSサービスが利用可能(「1」)を示す場合、UE100-1(リレーUE)がMBMSトラフィックを受信可能であるとリモートUEは判断する。一方、当該情報がMBMSサービスが利用不能(「0」)を示す場合、UE100-1(リレーUE)がMBMSトラフィックを受信不能であるとリモートUEは判断する。
 また、UE100-1は、直接ディスカバリ(リレーディスカバリ)及びサイドリンク用のMIB(MasterInformationBlock-SL)の少なくともいずれかにより、MBMS受信情報をブロードキャストで送信できる。例えば、図12に示すように、UE100-1は、MasterInformationBlock-SLにMBMSサービスが利用可能か否かを示す情報(BIT STRING♯19)を含める。リモートUEは、当該情報に基づいて、UE100-1(リレーUE)がMBMSトラフィックを受信可能か否かを判断する。なお、MasterInformationBlock-SLは、同期基準として機能するSLSSを送信するUEによって、SL-BCHを介して送信される情報を含む。SLSS(Sidelink Synchronisation Signal)は、サイドリンク用の同期信号である。
 MBMS受信情報は、UE100-1のMBMSサービスの受信状況、又は、UE100-1のMBMSサービスの受信能力を示す情報である。例えば、UE100-1は、UE100-1のサービングセル(eNB200)がMBMSサービスを提供していない場合に、MBMSサービスを受信不能であることを示すMBMS受信情報を送信できる。UE100-1は、サービングセルだけでなく、サービングセルと異なる他のセルもMBMSサービスを提供していない場合に、MBMSサービスを受信不能であることを示すMBMS受信情報を送信してもよい。
 なお、UE100-1は、他のセルがMBMSサービスを提供している場合であっても、セルラ通信と直接通信(UE・ネットワーク中継)とを異なる周波数帯で同時に実行している場合においてMBMSサービスを受信不能である場合は、MBMSサービスを受信不能であることを示すMBMS受信情報を送信してもよい。
 一方、UE100-1は、サービングセルがMBMSサービスを提供している場合に、MBMSサービスを受信可能であることを示すMBMS受信情報を送信できる。UE100-1は、サービングセルがMBMSサービスを提供していない場合であっても、サービングセルと異なる他のセルがMBMSサービスを提供している場合に、MBMSサービスを受信可能であることを示すMBMS受信情報を送信してもよい。
 また、MBMS受信情報は、UE100-1が受信している所定の識別子の数であってもよい。所定の識別子は、MBMSサービスを識別するための識別子(TMGI:Temporary Mobile Group Identity)及びMBMSサービスを配信するエリアを識別するための識別子(SAI:MBMS service area identities)の少なくとも一方である。TMGIは、特定のコンテンツに関連する識別子である。SAIは、MBMSサービスのコンテンツを配信するエリア(MBMS service area)を示す。リレーUEは、所定の識別子の数が多いほど、MBMSサービスの受信状況が良好である(又は、リレーUEの受信能力が高い)と判断できる。
 また、MBMS受信情報は、UE100-1がモニタ可能なMBMSサービスを提供する周波数帯の情報であってもよい。周波数帯の情報は、MBMSサービスを提供する周波数帯(キャリア)の数を示す情報であってもよいし、当該周波数帯(キャリア)を示す情報であってもよい。リレーUEは、所定の識別子の数が多いほど、MBMSサービスの受信状況が良好であると判断できる。リレーUEは、周波数帯(キャリア)の数が多いほど、MBMSサービスの受信状況が良好である(又は、リレーUEの受信能力が高い)と判断できる。
 また、MBMS受信情報は、MBMSサービスの受信品質を示す情報であってもよい。例えば、当該情報は、MBMSサービスを提供するセルの受信信号強度(RSRP)及び受信信号品質(RSRQ)の少なくとも一方を示す情報である。
 リモートUEであるUE100-2は、リレーUEであるUE100-1からのMBMS受信情報に基づいて、UE100-1をリレーUEとして選択するか判断できる。例えば、MBMS受信に興味があるUE100-2は、UE100-1がMBMSサービスを受信できない場合、UE100-1をリレーUEとして選択しない。また、UE100-2は、UE100-1のMBMSサービスの受信状況が悪い又はUE100-1のMBMS受信能力が低い場合に、UE100-1をリレーUEとして選択しない。これにより、UE100-2は、希望するMBMSサービスを提供できない可能性があるUE100-1とUE・ネットワーク中継を実行するための不要なシグナリングを削減することができる。また、UE100-2は、希望するMBMSサービスを提供できない可能性があるUE100-1に対して後述するステップ2のシグナリングを送信せずにすむため、不要なシグナリングを削減することができる。
 なお、UE100-1は、サービングセルと異なる周波数帯(バンド/キャリア)で提供されているMBMSサービスを受信可能か否かに関する能力情報をサービングセルを管理するeNB200に送信できる。当該能力情報は、セルラ通信と直接通信(UE・ネットワーク中継)とMBMSサービスの受信とを同時に実行可能であることを示す情報であってもよいし、セルラ通信と直接通信(UE・ネットワーク中継)とMBMSサービスの受信とを同時に実行可能な周波数帯の組み合わせを示す情報であってもよい。
 eNB200は、当該能力情報に基づいて、リレーUEとなるUEを決定(設定)してもよい。例えば、eNB200は、MBMSサービスの受信能力が高いUEを、MBMSサービスの受信能力が低いUEよりも優先的にリレーUEに設定してもよい。また、eNB200は、MBMSサービスを受信不能なUEをリレーUEとして選択しなくてもよい。
 MBMSサービスの受信能力を有するUEがリレーUEとして機能する機会が増えるため、リレーUEが、MBMSトラフィックを受信できる可能性が高くなる。また、サービングセルでMBMSサービスが提供されていない場合であっても、他のセルでMBMSサービスが提供されていれば、リレーUEが、MBMSトラフィックを受信できる可能性が高くなる。さらに、リレーUEは、より多くのMBMSトラフィック(グループ通信トラフィック)を受信できる可能性が高くなる。その結果、UE・ネットワーク中継によりMBMSトラフィックをリモートUEへ中継する技術を有効に活用することができる。
 ステップS1において、UE100-2は、UE100-1を発見する。UE100-2は、MBMS受信情報の受信に基づいて、UE100-1を発見してもよい。その後、UE100-2は、UE100-1及びeNB200を介して、ユーザサービス説明情報であるUSD(User Service Description)をServer400から取得する。USDは、関連するMBMSサービスを受信するために使用すべきTMGI、周波数及びSAIを含む。UE100-2は、eNB200のセルカバレッジ内に位置する場合に、eNB200からUSDを取得していてもよい。
 ステップS2において、UE100-2は、MBMSサービスの受信に興味があるTMGI(値)とSAIとを含むTMGIモニタリング要求をUE100-1に送信する。TMGIモニタリング要求は、TMGIによって示される特定のMBMSサービスの受信(モニタリング)を要求するものである。
 ステップS3において、UE100-1は、eNB200(セル)からSAIのリストを受信し、UE100-2から受信したSAIがSAIリストに含まれるか否かをチェックする。
 ステップS4において、UE100-1は、TMGIモニタリング要求に対する応答をUE100-2に送信する。UE100-1は、UE100-2からの少なくとも1つのSAIを検出した場合に、TMGIモニタリング要求に対する肯定応答をUE100-2に送信する。肯定応答は、グループ識別子(Prose Layer 2 Group ID_traffic)及びリフレッシュタイマ(TMGI_Monitoring_Refresh Timer)を含む。
 グループ識別子は、TMGIモニタリング要求に含まれるTMGIに関連するMBMSサービス(MBMSコンテンツ)をリモートUE(UE100-2)へ送信(転送)するために用いられる。グループ識別子は、特定のMBMSサービスを送信するために用いられる識別子である。具体的には、グループ識別子は、UE100-1がTMGIによって示される特定のMBMSサービスの送信先を示す識別子(宛先識別子)である。グループ識別子は、近傍サービス(直接ディスカバリ/直接通信/UE・ネットワーク中継)におけるデータ送信のために用いられるグループ識別子(例えば、24ビット)よりも少ない情報量(例えば、8ビット)の識別子であってもよい。従って、MBMSトラフィック送信用のグループ識別子は、短縮された識別子であってもよい。例えば、当該グループ識別子は、制御情報(PSCCH)で利用されるLSB(8ビット)のグループ識別子であってもよい。
 リフレッシュタイマは、TMGIモニタリング要求のトリガとなるタイマである。UE100-2がTMGIをモニタすることがまだ必要である場合に、リフレッシュタイマが満了した場合に(すなわち、リフレッシュタイマで示される時間が経過した場合に)UE100-2がTMGIモニタリング要求を実行する。リフレッシュタイマが満了した時に、UE100-2(及び他のUE)がTMGIモニタリング要求手順を実行していない場合、UE100-1は、TMGIのモニタを終了する。
 ステップS5において、UE100-1は、モニタが要求されたTMGIを検出する。UE100-1は、検出したTMGIによって示されるMBMSサービスのモニタ(受信)を開始する。
 ステップS6において、TMGIの検出に応じて、UE100-1は、有効なTMGI及び対応するグループ識別子を含むTMGIアナウンスメントメッセージをブロードキャストによりUE100-2に送る。UE100-1は、直接ディスカバリによりTMGIアナウンスメントメッセージを送ることができる。UE100-1は、リフレッシュタイマよりも短い周期でTMGIアナウンスメントメッセージを繰り返し送信してもよい。また、UE100-1は、グループ識別子に関連するサイドリンク上でグループ識別子に関連するMBMSトラフィック(MBMSサービス)をブロードキャストで送信する。UE100-1は、当該MBMSトラフィックをユニキャストで送信してもよい。
 ステップS7において、UE100-2は、ステップS6のアナウンスメントを検出し、グループ識別子に関連するサイドリンク上でブロードキャスト内容の受信を開始する。UE100-2は、ユニキャストでの配布を解放する要求をUE100-1に送信してもよい。
 ステップS8において、UE100-1は、ネットワークからTMGIを検出できない場合、有効なTMGIのブロードキャストを終了する。また、UE100-1は、MBMSトラフィックの送信(中継)を終了する。
 ステップS9において、UE100-2は、グループ識別子に関連するサイドリンク上でのブロードキャストでのMBMSトラフィックの受信を終了する。
 (変更例1)
 次に、実施形態の変更例1について説明する。
 上述した実施形態では、UE100-1は、TMGIモニタリング要求を受信した場合、当該要求に対する応答をUE100-1へ送信していた(ステップS4参照)。
 しかしながら、UE100-1は、当該応答に代えて、TMGIモニタリング要求に含まれるTMGI及び当該TMGIに対応するグループ識別子を含むメッセージ(TMGIアナウンスメントメッセージ)をブロードキャストで送信してもよい。すなわち、UE100-1は、ステップS4における応答の送信を省略してもよい。また、UE100-1は、TMGIアナウンスメントメッセージに、リフレッシュタイマを含めてもよい。
 UE100-2は、TMGIアナウンスメントメッセージを要求に対する応答と見なすことができる。UE100-1は、TMGIモニタリング要求に対する応答を送信しなくてもよいため、不要なシグナリングを削減できる。
 なお、他のリモートUEは、自身が希望するTMGIを含むTMGIアナウンスメントメッセージを受信した場合、TMGIモニタリング要求の送信を省略してもよい。
 また、UE100-1は、複数の特定のMBMSサービスそれぞれを識別するためのTMGIを送信する場合、送信元の識別子として共通の識別子を用いてもよい。
 また、UE100-1は、第1実施形態と同様に、TMGIアナウンスメントメッセージに含まれるグループ識別子として、近傍サービスにおけるデータ送信のために用いられるグループ識別子よりも少ない情報量の識別子を用いてもよい。これにより、TMGIアナウンスメントメッセージのサイズを小さくできるため、TMGIアナウンスメントメッセージの送信使用する無線リソース量を低減できる。
 (変更例2)
 次に、実施形態の変更例2について、図13を用いて説明する。図13は、実施形態の変更例2に係る動作を説明するためのシーケンス図である。
 変更例2では、MBMSサービスの送信(中継)に用いられる無線リソースについて説明する。なお、上述した実施形態及び変更例1と同様の部分は、説明を適宜省略する。
 図13に示すように、ステップS101において、UE100-2は、TMGIモニタリング要求をUE100-1に送信する。
 ステップS102において、UE100-1は、TMGIモニタリング要求により、リモートUEからMBMSサービスの中継が要求されたと判断する。UE100-1は、MBMSサービスを中継するための無線リソースをeNB200に要求する。UE100-1は、例えば、SLUE情報メッセージ(SL UE information)を用いて、当該無線リソースをeNB200に要求する。SLUE情報メッセージは、例えば、UEが近傍サービス(例えば、直接ディスカバリ、直接通信、UE・ネットワーク中継など)に興味がある場合に用いられるメッセージである。
 eNB200は、UE100-1からの無線リソースの要求に応じて、MBMSサービスを中継するための無線リソースをUE100-1に割り当てる。ここで、eNB200は、通常のUE・ネットワーク中継に用いられる第1の無線リソースとは異なる第2の無線リソースを割り当てることができる。eNB200は、ユニキャスト用の第1の無線リソースではなく、マルチキャスト又はブロードキャスト用の第2の無線リソースを割り当てることができる。
 第2の無線リソースは、例えば、第1の無線リソースよりも長い期間利用可能な無線リソースである。eNB200は、第2の無線リソースの期間を特定するための情報を第2の無線リソースの割当情報と共に、UE100-1へ送信してもよい。当該特定するための情報は、例えば、絶対時間を示す情報(例えば、タイマ)、第2の無線リソースが送信リソースプールの何周期分かを示す情報などである。
 ステップS103において、eNB200は、MBMSサービスを中継するために用いられる無線リソース(第2の無線リソース)の割当情報をUE100-2に送信する。
 ステップS104において、UE100-1は、無線リソースの割当情報に基づいて、無線リソースを用いて、MBMSサービス(MBMSトラフィック)をリモートUEへ中継(送信)する。
 (変更例3)
 次に、実施形態の変更例3について、図14を用いて説明する。図14は、実施形態の変更例3に係る動作を説明するためのシーケンス図である。
 変更例2では、UE100-1がMBMSサービスの送信(中継)に用いられる無線リソースをeNB200に要求していた。本変更例3では、UE100-1は、MBMSサービスの送信(中継)に用いられる無線リソースをeNB200に要求しないケースである。なお、上述した実施形態及び各変更例と同様の部分は、説明を適宜省略する。
 図14に示すように、ステップS201において、eNB200は、送信リソースプールの情報をUE100-1に送信する。eNB200は、送信リソースプールの情報を、リレーUEに対してユニキャスト(例えば、RRCシグナリング)で送信してもよいし、ブロードキャスト(例えば、SIB(System Information Block))で送信してもよい。ここでの送信リソースプールは、UE・ネットワーク中継によりMBMSサービスを中継するために用いられる無線リソースが配置されたリソースプールである。
 eNB200は、各MBMSトラフィックに対応する送信リソースプールの情報をUE100-1に送信してもよい。具体的には、eNB200は、配信中の各MBMSトラフィックと対応する送信リソースプールとが関連付けられた情報を所定の周波数でブロードキャスト(例えば、SIB13)によりUE100-1に送信する。当該情報は、TMGIと送信リソースプールとを関連付けた情報であってもよい。
 ステップS202は、ステップS101に対応する。
 ステップS203において、UE100-1は、要求されたTMGIに対応する送信リソースプール(無線リソース)をチェックする。具体的には、UE100-1は、UE100-2から受信したTMGI(に対応するMBMSトラフィック)を特定する。UE100-1は、送信リソースプールの情報に基づいて、特定したTMGI(MBMSトラフィック)に対応する送信リソースプールを選択する。
 ステップS204は、ステップS104に対応する。UE100-1は、選択した送信リソースプールの中から、所定の無線リソースを用いて、MBMSトラフィックを中継する。
 [その他の実施形態]
 上述した各実施形態によって、本出願の内容を説明したが、この開示の一部をなす論述及び図面は、本出願の内容を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなろう。
 上述した各実施形態では特に触れていないが、上述した各ノード(UE100、eNB200など)のいずれかが行う各処理をコンピュータに実行させるプログラムが提供されてもよい。また、プログラムは、コンピュータ読取り可能媒体に記録されていてもよい。コンピュータ読取り可能媒体を用いれば、コンピュータにプログラムをインストールすることが可能である。ここで、プログラムが記録されたコンピュータ読取り可能媒体は、非一過性の記録媒体であってもよい。非一過性の記録媒体は、特に限定されるものではないが、例えば、CD-ROMやDVD-ROM等の記録媒体であってもよい。
 或いは、UE100及びeNB200のいずれかが行う各処理を実行するためのプログラムを記憶するメモリ及びメモリに記憶されたプログラムを実行するプロセッサ)によって構成されるチップが提供されてもよい。
 上述した実施形態では、移動通信システムの一例としてLTEシステムを説明したが、LTEシステムに限定されるものではなく、LTEシステム以外のシステムに本発明を適用してもよい。
 日本国特許出願第2015-159480号(2015年8月12日出願)の全内容が、参照により本願明細書に組み込まれている。
 本発明は、無線通信分野において有用である。

Claims (14)

  1.  近傍サービスにおけるUE・ネットワーク中継を行うリレー端末である無線端末であって、
     前記無線端末がMBMS(Multimedia Broadcast Multicast Service)サービスを受信可能か否かに関するMBMS受信情報を、前記リレー端末と前記UE・ネットワーク中継により通信を行うリモート端末に送信するコントローラを備える無線端末。
  2.  前記コントローラは、前記無線端末のサービングセルが前記MBMSサービスを提供していない場合に、前記MBMSサービスを受信不能であることを示す前記MBMS受信情報を送信する請求項1に記載の無線端末。
  3.  前記コントローラは、前記サービングセルと異なる他のセルが前記MBMSサービスを提供していない場合に、前記MBMSサービスを受信不能であることを示す前記MBMS受信情報を送信する請求項2に記載の無線端末。
  4.  前記コントローラは、前記MBMS受信情報として、前記無線端末が受信している所定の識別子の数を送信し、
     前記所定の識別子は、前記MBMSサービスを識別するための識別子、及び、前記MBMSサービスを配信するエリアを識別するための識別子、の少なくとも一方である請求項1に記載の無線端末。
  5.  前記コントローラは、前記MBMS受信情報として、前記無線端末がモニタ可能なMBMSサービスを提供する周波数帯の情報を送信する請求項1に記載の無線端末。
  6.  前記コントローラは、サービングセルと異なる周波数帯で提供されている前記MBMSサービスを受信可能か否かに関する能力情報を前記サービングセルを管理する基地局に送信する請求項1に記載の無線端末。
  7.  前記コントローラは、特定のMBMSサービスの受信要求を前記リモートUEから受信し、
     前記コントローラは、前記受信要求への応答に代えて、前記特定のMBMSサービスを識別するための第1の識別子及び前記特定のMBMSサービスを送信するために用いられる第2の識別子を含むメッセージをブロードキャストで送信する請求項1に記載の無線端末。
  8.  前記コントローラは、前記メッセージに、前記特定のMBMSサービスの受信要求のトリガとなるタイマを含める請求項7に記載の無線端末。
  9.  前記第2の識別子は、前記近傍サービスにおけるデータ送信のために用いられる宛先識別子よりも少ない情報量の識別子である請求項7に記載の無線端末。
  10.  前記コントローラは、複数の特定のMBMSサービスそれぞれを識別するための識別子を送信する場合、送信元の識別子として、共通の識別子を用いることを特徴とする請求項1に記載の無線端末。
  11.  前記コントローラは、前記リモート端末から前記MBMSサービスの中継を要求された場合に、前記MBMSサービスを中継するための無線リソースを基地局に要求する請求項1に記載の無線端末。
  12.  前記コントローラは、前記UE・ネットワーク中継によりデータを中継するための無線リソースよりも長い期間利用可能な無線リソースの割当情報を前記基地局から受信する請求項11に記載の無線端末。
  13.  前記コントローラは、MBMSトラフィックを送信するための送信リソースプールを基地局から受信する請求項1に記載の無線端末。
  14.  前記コントローラは、各MBMSトラフィックに関連付けられた送信リソースプールを前記送信リソースプールとして前記基地局から受信する請求項13に記載の無線端末。
PCT/JP2016/073172 2015-08-12 2016-08-05 無線端末 WO2017026408A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/751,222 US10735912B2 (en) 2015-08-12 2016-08-05 Radio terminal
JP2017534420A JP6749914B2 (ja) 2015-08-12 2016-08-05 無線端末

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-159480 2015-08-12
JP2015159480 2015-08-12

Publications (1)

Publication Number Publication Date
WO2017026408A1 true WO2017026408A1 (ja) 2017-02-16

Family

ID=57983503

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/073172 WO2017026408A1 (ja) 2015-08-12 2016-08-05 無線端末

Country Status (3)

Country Link
US (1) US10735912B2 (ja)
JP (1) JP6749914B2 (ja)
WO (1) WO2017026408A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020519156A (ja) * 2017-05-05 2020-06-25 京セラ株式会社 中継ueから遠隔ueへのブロードキャスト/マルチキャスト配信の中継
WO2023140283A1 (ja) * 2022-01-21 2023-07-27 京セラ株式会社 通信方法
WO2023140282A1 (ja) * 2022-01-21 2023-07-27 京セラ株式会社 通信方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016115670A1 (zh) * 2015-01-19 2016-07-28 华为技术有限公司 一种数据流传输方法、设备及系统
CN111884768B (zh) * 2018-06-11 2024-04-09 荣耀终端有限公司 一种用于无线通信的通信节点中的方法和装置
CN111225344B (zh) * 2018-11-27 2021-09-14 华为技术有限公司 一种通信方法、装置及系统
WO2022021251A1 (zh) * 2020-07-30 2022-02-03 华为技术有限公司 一种通信方法、装置及系统
CN115696215A (zh) * 2021-07-23 2023-02-03 维沃移动通信有限公司 多播广播业务的接收方法、发送方法、装置及设备
CN115696218A (zh) * 2021-07-23 2023-02-03 维沃移动通信有限公司 多播广播业务的接收方法、发送方法、装置及设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014051126A1 (ja) * 2012-09-27 2014-04-03 京セラ株式会社 移動通信システム、ユーザ端末、プロセッサ及び基地局
JP2014528192A (ja) * 2011-08-16 2014-10-23 テレフオンアクチーボラゲット エル エム エリクソン(パブル) マルチメディア・ブロードキャスト・マルチキャスト・サービスの能力拡張
WO2015017188A1 (en) * 2013-07-30 2015-02-05 Qualcomm Incorporated Managing a multimedia broadcast multicast service using an mbms relay device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2730141B1 (en) * 2011-07-08 2017-10-04 Intel Corporation Wireless device and method for wireless channel access
US9036635B2 (en) * 2013-03-12 2015-05-19 Motorola Solutions, Inc. Method and apparatus for propagating public safety multicast and broadcast services among public safety personnel
WO2014163335A1 (ko) * 2013-04-01 2014-10-09 엘지전자 주식회사 무선 통신 시스템에서 d2d(device-to-device) 통신을 위한 멀티미디어 방송/멀티캐스트 서비스 방법 및 이를 위한 장치
WO2015005626A1 (ko) * 2013-07-09 2015-01-15 엘지전자 주식회사 근접 서비스 기반의 릴레이를 제어하는 방법 및 이를 위한 장치
US10285020B2 (en) * 2013-07-30 2019-05-07 Qualcomm Incorporated Continuing multimedia broadcast multicast services for out-of-coverage devices
GB201319196D0 (en) * 2013-10-30 2013-12-11 Nec Corp Communication system
WO2016024773A1 (ko) * 2014-08-10 2016-02-18 엘지전자 주식회사 무선 통신 시스템에서 릴레이 선택 방법 및 이를 위한 장치
JP6526829B2 (ja) * 2015-03-30 2019-06-05 華為技術有限公司Huawei Technologies Co.,Ltd. 中継サービスを要求するための通信方法、デバイス、およびシステム
US10064212B2 (en) * 2015-05-14 2018-08-28 Blackberry Limited Transmitting a scheduling request for a device-to-device transmission

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014528192A (ja) * 2011-08-16 2014-10-23 テレフオンアクチーボラゲット エル エム エリクソン(パブル) マルチメディア・ブロードキャスト・マルチキャスト・サービスの能力拡張
WO2014051126A1 (ja) * 2012-09-27 2014-04-03 京セラ株式会社 移動通信システム、ユーザ端末、プロセッサ及び基地局
WO2015017188A1 (en) * 2013-07-30 2015-02-05 Qualcomm Incorporated Managing a multimedia broadcast multicast service using an mbms relay device

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"InterDigital Communications, Involvement of the eNB/MME in UE-to-Network Relays", 3GPP TSG-RAN WG2#89BIS R2-151451, 24 April 2015 (2015-04-24), XP050936378, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG2_RL2/TSGR2_ 89bis/Docs/R2-151451.zip> *
BROADCOM CORPORATION: "Update to Multicast support", 3GPP TSG-SA WG2#101BIS S 2- 140618, 21 February 2014 (2014-02-21), pages 1 - 4, XP050765711, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/ tsg_sa/WG2_Arch/TSGS2_101bis_Los_Cabos/Docs/S2- 140618.zip> *
ZTE CORPORATION: "SAI broadcast", 3GPP TSG-SA WG2#110 S 2-152357, pages 1 - 8, XP050987374, Retrieved from the Internet <URL:http: //www.3gpp.org/ftp/tsg_sa/WG2_Arch/TSGS2_110_ Dubrovnik/Docs/S2-152357.zip> *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020519156A (ja) * 2017-05-05 2020-06-25 京セラ株式会社 中継ueから遠隔ueへのブロードキャスト/マルチキャスト配信の中継
US11212873B2 (en) 2017-05-05 2021-12-28 Kyocera Corporation Relaying of broadcast/multicast delivery from a relay UE to a remote UE
JP7118092B2 (ja) 2017-05-05 2022-08-15 京セラ株式会社 中継ueから遠隔ueへのブロードキャスト/マルチキャスト配信の中継
WO2023140283A1 (ja) * 2022-01-21 2023-07-27 京セラ株式会社 通信方法
WO2023140282A1 (ja) * 2022-01-21 2023-07-27 京セラ株式会社 通信方法

Also Published As

Publication number Publication date
JPWO2017026408A1 (ja) 2018-05-31
JP6749914B2 (ja) 2020-09-02
US10735912B2 (en) 2020-08-04
US20180234808A1 (en) 2018-08-16

Similar Documents

Publication Publication Date Title
JP6749914B2 (ja) 無線端末
JP6773650B2 (ja) 基地局及び無線端末
JP6461908B2 (ja) Mbms制御方法、ユーザ端末及び基地局
JP6533345B2 (ja) 無線端末及び基地局
WO2014129452A1 (ja) 移動通信システム、ユーザ端末及び基地局
JP6773657B2 (ja) 無線端末及び基地局
US9706464B2 (en) Communication control method, user terminal, and processor
WO2018030385A1 (ja) 通信装置、基地局及びネットワーク装置
WO2016121859A1 (ja) 基地局、ユーザ端末、及び通信制御方法
WO2016171123A1 (ja) 通信制御方法
WO2022239690A1 (ja) 通信制御方法及びユーザ装置
JPWO2016163549A1 (ja) 移動通信システム、基地局、mce及びプロセッサ
WO2018061760A1 (ja) 無線端末及びネットワーク装置
WO2022239691A1 (ja) 通信制御方法
JP6615729B2 (ja) 通信方法、ユーザ端末及びプロセッサ
JP2018129811A (ja) 通信方法
JP6144588B2 (ja) ユーザ端末、基地局、及びサーバ装置
JP6140292B2 (ja) ネットワーク装置及びユーザ端末
WO2023286784A1 (ja) 通信制御方法、基地局、及びユーザ装置
JP6140013B2 (ja) 移動通信システム、ユーザ端末、ネットワーク装置及びプロセッサ
WO2022024945A1 (ja) 通信制御方法
WO2022211127A1 (ja) 通信制御方法及び基地局

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16835105

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017534420

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15751222

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16835105

Country of ref document: EP

Kind code of ref document: A1