WO2023286784A1 - 通信制御方法、基地局、及びユーザ装置 - Google Patents

通信制御方法、基地局、及びユーザ装置 Download PDF

Info

Publication number
WO2023286784A1
WO2023286784A1 PCT/JP2022/027461 JP2022027461W WO2023286784A1 WO 2023286784 A1 WO2023286784 A1 WO 2023286784A1 JP 2022027461 W JP2022027461 W JP 2022027461W WO 2023286784 A1 WO2023286784 A1 WO 2023286784A1
Authority
WO
WIPO (PCT)
Prior art keywords
mbs
plmn
identifier
core networks
base station
Prior art date
Application number
PCT/JP2022/027461
Other languages
English (en)
French (fr)
Inventor
真人 藤代
光孝 秦
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2023534826A priority Critical patent/JPWO2023286784A5/ja
Publication of WO2023286784A1 publication Critical patent/WO2023286784A1/ja
Priority to US18/414,334 priority patent/US20240155733A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/40Connection management for selective distribution or broadcast
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/10Access point devices adapted for operation in multiple networks, e.g. multi-mode access points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems

Definitions

  • the present disclosure relates to communication control methods, base stations, and user equipment used in mobile communication systems.
  • NR New Radio
  • 5G fifth generation
  • 4G fourth generation
  • NR has features such as high speed, large capacity, high reliability, and low delay.
  • MBS multicast/broadcast service
  • One base station or one cell may be shared by multiple core networks belonging to different operators (Public Land Mobile Network: PLMN).
  • PLMN Public Land Mobile Network
  • the base station transmits MBS data using a radio resource common to multiple operators, thereby providing an MBS service.
  • a method for reducing the usage of radio resources has been proposed (see Non-Patent Document 1).
  • a communication control method is a communication control method used in a mobile communication system, wherein a base station shared by a plurality of core networks is provided by the core network from each of the plurality of core networks.
  • receiving an MBS service identifier indicating an MBS service and providing the base station with respect to a plurality of user devices belonging to a plurality of PLMNs (Public Land Mobile Networks) corresponding to the plurality of core networks to belong to the MBS service. and transmitting the MBS data by multicast or broadcast.
  • the MBS service identifier is a PLMN independent unique identifier.
  • a base station is a base station shared by a plurality of core networks in a mobile communication system, and an MBS service identifier indicating an MBS service provided by the core network from each of the plurality of core networks. and a wireless communication unit configured to multicast or broadcast MBS data belonging to the MBS service to a plurality of user devices belonging to a plurality of PLMNs corresponding to the plurality of core networks.
  • the MBS service identifier is a PLMN independent unique identifier.
  • a communication control method is a communication control method used in a mobile communication system, wherein a base station shared by a plurality of core networks belongs to a plurality of PLMNs corresponding to the plurality of core networks. transmitting control information used for receiving an MBS traffic channel and/or receiving an MBS control channel to a user equipment; and transmitting the MBS data by multicast or broadcast.
  • the control information includes PLMN identifiers of each of the plurality of PLMNs.
  • a base station is a base station shared by a plurality of core networks in a mobile communication system, and for a plurality of user devices belonging to a plurality of PLMNs corresponding to the plurality of core networks, MBS
  • a radio communication unit is provided for transmitting control information for use in receiving the traffic channel and/or receiving the MBS control channel.
  • the wireless communication unit uses the MBS traffic channel to multicast or broadcast MBS data to the plurality of user equipments.
  • the control information includes PLMN identifiers of each of the plurality of PLMNs.
  • a user apparatus is a user apparatus used in a mobile communication system, and includes control information used for receiving an MBS traffic channel and/or receiving an MBS control channel from a base station shared by a plurality of core networks. and a wireless communication unit that receives the The wireless communication unit uses the MBS traffic channel to receive MBS data transmitted by multicast or broadcast from the base station to a plurality of user devices belonging to a plurality of PLMNs corresponding to the plurality of core networks. .
  • the control information includes PLMN identifiers of each of the plurality of PLMNs.
  • FIG. 1 is a diagram showing the configuration of a mobile communication system according to a first embodiment; FIG. It is a figure which shows the structure of UE (user apparatus) based on 1st Embodiment.
  • FIG. 2 is a diagram showing the configuration of a gNB (base station) according to the first embodiment; FIG. 2 is a diagram showing the configuration of a protocol stack of a user plane radio interface that handles data; FIG. 2 is a diagram showing the configuration of a protocol stack of a radio interface of a control plane that handles signaling (control signals); 1 is a diagram showing an outline of MBS traffic distribution according to the first embodiment; FIG. It is a figure which shows the delivery mode which concerns on 1st Embodiment.
  • FIG. 10 is a diagram showing an example of MTCH (Multicast Traffic Channel) setting information according to the second embodiment
  • FIG. 13 is a diagram showing another example of MTCH setting information according to the second embodiment
  • FIG. 10 is a diagram showing an example of a plurality of MCCHs (Multicast Control Channels) according to a modification of the second embodiment
  • FIG. 10 is a diagram showing an example of MBS-SIB and MTCH configuration information according to a modification of the second embodiment
  • the current 3GPP technical specifications do not introduce a mechanism for facilitating the transmission of MBS data by a base station to multiple core networks (multiple PLMNs) using common radio resources. Therefore, there is a problem that it is difficult to perform efficient MBS distribution.
  • the present disclosure provides a communication control method, base station, and user equipment that enable efficient MBS distribution in a mobile communication system.
  • FIG. 1 is a diagram showing the configuration of a mobile communication system according to the first embodiment.
  • the mobile communication system 1 complies with the 3GPP standard 5th generation system (5GS: 5th Generation System).
  • 5GS will be described below as an example, an LTE (Long Term Evolution) system may be at least partially applied to the mobile communication system.
  • 6G systems may be at least partially applied in mobile communication systems.
  • the mobile communication system 1 includes a user equipment (UE: User Equipment) 100, a 5G radio access network (NG-RAN: Next Generation Radio Access Network) 10, and a 5G core network (5GC: 5G Core Network) 20.
  • UE User Equipment
  • NG-RAN Next Generation Radio Access Network
  • 5GC 5G Core Network
  • the NG-RAN 10 may be simply referred to as the RAN 10 below.
  • the 5GC 20 is sometimes simply referred to as a core network (CN) 20 .
  • CN core network
  • the UE 100 is a mobile wireless communication device.
  • the UE 100 may be any device as long as it is used by the user. (including chipset), sensors or devices installed in sensors, vehicles or devices installed in vehicles (Vehicle UE), aircraft or devices installed in aircraft (Aerial UE).
  • the NG-RAN 10 includes a base station (called “gNB” in the 5G system) 200.
  • the gNBs 200 are interconnected via an Xn interface, which is an interface between base stations.
  • the gNB 200 manages one or more cells.
  • the gNB 200 performs radio communication with the UE 100 that has established connection with its own cell.
  • the gNB 200 has a radio resource management (RRM) function, a user data (hereinafter simply referred to as “data”) routing function, a measurement control function for mobility control/scheduling, and the like.
  • RRM radio resource management
  • a “cell” is used as a term indicating the minimum unit of a wireless communication area.
  • a “cell” is also used as a term indicating a function or resource for radio communication with the UE 100 .
  • One cell belongs to one carrier frequency.
  • the gNB can also be connected to the EPC (Evolved Packet Core), which is the LTE core network.
  • EPC Evolved Packet Core
  • LTE base stations can also connect to 5GC.
  • An LTE base station and a gNB may also be connected via an inter-base station interface.
  • 5GC20 includes AMF (Access and Mobility Management Function) and UPF (User Plane Function) 300.
  • AMF performs various mobility control etc. with respect to UE100.
  • AMF manages the mobility of UE 100 by communicating with UE 100 using NAS (Non-Access Stratum) signaling.
  • the UPF controls data transfer.
  • AMF and UPF are connected to gNB 200 via NG interface, which is a base station-core network interface.
  • FIG. 2 is a diagram showing the configuration of the UE 100 (user equipment) according to the first embodiment.
  • UE 100 includes a receiver 110 , a transmitter 120 and a controller 130 .
  • the receiving unit 110 and the transmitting unit 120 constitute a wireless communication unit that performs wireless communication with the gNB 200 .
  • the receiving unit 110 performs various types of reception under the control of the control unit 130.
  • the receiver 110 includes an antenna and a receiver.
  • the receiver converts a radio signal received by the antenna into a baseband signal (received signal) and outputs the baseband signal (received signal) to control section 130 .
  • the transmission unit 120 performs various transmissions under the control of the control unit 130.
  • the transmitter 120 includes an antenna and a transmitter.
  • the transmitter converts a baseband signal (transmission signal) output from the control unit 130 into a radio signal and transmits the radio signal from an antenna.
  • Control unit 130 performs various controls and processes in the UE 100. Such processing includes processing of each layer, which will be described later.
  • Control unit 130 includes at least one processor and at least one memory.
  • the memory stores programs executed by the processor and information used for processing by the processor.
  • the processor may include a baseband processor and a CPU (Central Processing Unit).
  • the baseband processor modulates/demodulates and encodes/decodes the baseband signal.
  • the CPU executes programs stored in the memory to perform various processes.
  • FIG. 3 is a diagram showing the configuration of the gNB 200 (base station) according to the first embodiment.
  • the gNB 200 comprises a transmitter 210 , a receiver 220 , a controller 230 and a backhaul communicator 240 .
  • the transmitting unit 210 and the receiving unit 220 constitute a radio communication unit that performs radio communication with the UE 100 .
  • the backhaul communication unit 240 constitutes a network communication unit that communicates with the CN 20 .
  • the transmission unit 210 performs various transmissions under the control of the control unit 230.
  • Transmitter 210 includes an antenna and a transmitter.
  • the transmitter converts a baseband signal (transmission signal) output by the control unit 230 into a radio signal and transmits the radio signal from an antenna.
  • the receiving unit 220 performs various types of reception under the control of the control unit 230.
  • the receiver 220 includes an antenna and a receiver.
  • the receiver converts the radio signal received by the antenna into a baseband signal (received signal) and outputs the baseband signal (received signal) to the control unit 230 .
  • Control unit 230 performs various controls and processes in the gNB200. Such processing includes processing of each layer, which will be described later.
  • Control unit 230 includes at least one processor and at least one memory.
  • the memory stores programs executed by the processor and information used for processing by the processor.
  • the processor may include a baseband processor and a CPU.
  • the baseband processor modulates/demodulates and encodes/decodes the baseband signal.
  • the CPU executes programs stored in the memory to perform various processes.
  • the backhaul communication unit 240 is connected to an adjacent base station via an interface between base stations.
  • Backhaul communication unit 240 is connected to AMF/UPF 300 via a base station-core network interface.
  • the gNB may be composed of a CU (Central Unit) and a DU (Distributed Unit) (that is, functionally divided), and the two units may be connected via an F1 interface.
  • FIG. 4 is a diagram showing the configuration of the protocol stack of the radio interface of the user plane that handles data.
  • the user plane radio interface protocol includes a physical (PHY) layer, a MAC (Medium Access Control) layer, an RLC (Radio Link Control) layer, a PDCP (Packet Data Convergence Protocol) layer, and an SDAP (Service Data Adaptation Protocol) layer. layer.
  • PHY physical
  • MAC Medium Access Control
  • RLC Radio Link Control
  • PDCP Packet Data Convergence Protocol
  • SDAP Service Data Adaptation Protocol
  • the PHY layer performs encoding/decoding, modulation/demodulation, antenna mapping/demapping, and resource mapping/demapping. Data and control information are transmitted between the PHY layer of the UE 100 and the PHY layer of the gNB 200 via physical channels.
  • the MAC layer performs data priority control, retransmission processing by hybrid ARQ (HARQ: Hybrid Automatic Repeat reQuest), random access procedures, and the like. Data and control information are transmitted between the MAC layer of the UE 100 and the MAC layer of the gNB 200 via transport channels.
  • the MAC layer of gNB 200 includes a scheduler. The scheduler determines uplink and downlink transport formats (transport block size, modulation and coding scheme (MCS: Modulation and Coding Scheme)) and resource blocks to be allocated to UE 100 .
  • MCS Modulation and Coding Scheme
  • the RLC layer uses the functions of the MAC layer and PHY layer to transmit data to the RLC layer on the receiving side. Data and control information are transmitted between the RLC layer of the UE 100 and the RLC layer of the gNB 200 via logical channels.
  • the PDCP layer performs header compression/decompression, encryption/decryption, etc.
  • the SDAP layer maps IP flows, which are units for QoS (Quality of Service) control by the core network, and radio bearers, which are units for QoS control by AS (Access Stratum). Note that SDAP may not be present when the RAN is connected to the EPC.
  • FIG. 5 is a diagram showing the protocol stack configuration of the radio interface of the control plane that handles signaling (control signals).
  • the radio interface protocol stack of the control plane has an RRC (Radio Resource Control) layer and a NAS (Non-Access Stratum) layer instead of the SDAP layer shown in FIG.
  • RRC Radio Resource Control
  • NAS Non-Access Stratum
  • RRC signaling for various settings is transmitted between the RRC layer of the UE 100 and the RRC layer of the gNB 200.
  • the RRC layer controls logical, transport and physical channels according to establishment, re-establishment and release of radio bearers.
  • RRC connection connection between the RRC of UE 100 and the RRC of gNB 200
  • UE 100 is in the RRC connected state.
  • RRC connection no connection between RRC of UE 100 and RRC of gNB 200
  • UE 100 is in RRC idle state.
  • UE 100 is in RRC inactive state.
  • the NAS layer located above the RRC layer performs session management and mobility management.
  • NAS signaling is transmitted between the NAS layer of the UE 100 and the NAS layer of the AMF 300a.
  • the UE 100 has an application layer and the like in addition to the radio interface protocol.
  • MBS is a service that enables data transmission from the NG-RAN 10 to the UE 100 via broadcast or multicast, that is, point-to-multipoint (PTM).
  • MBS use cases include public safety communications, mission critical communications, V2X (Vehicle to Everything) communications, IPv4 or IPv6 multicast distribution, IPTV (Internet Protocol TeleVision), group communication, and software distribution. .
  • a broadcast service provides service to all UEs 100 within a specific service area for applications that do not require highly reliable QoS.
  • An MBS session used for broadcast services is called a broadcast session.
  • a multicast service provides a service not to all UEs 100 but to a group of UEs 100 participating in the multicast service.
  • An MBS session used for a multicast service is called a multicast session.
  • a multicast service can provide the same content to a group of UEs 100 in a more wirelessly efficient manner than a broadcast service.
  • FIG. 6 is a diagram showing an overview of MBS traffic distribution according to the first embodiment.
  • MBS traffic is distributed to multiple UEs from a single data source (application service provider).
  • a 5G CN (5GC) 20 which is a 5G core network, receives MBS data from an application service provider, creates a copy of the MBS data (Replication), and distributes it.
  • 5GC20 From the perspective of 5GC20, two multicast delivery methods are possible: 5GC Shared MBS Traffic delivery and 5GC Individual MBS Traffic delivery.
  • the 5GC 20 receives single copies of MBS data packets and delivers individual copies of those MBS data packets to individual UEs 100 via per-UE 100 PDU sessions. Therefore, one PDU session per UE 100 needs to be associated with the multicast session.
  • the 5GC 20 receives a single copy of MBS data packets and delivers the single copy of those MBS packets to the RAN nodes (ie gNB 200).
  • a gNB 200 receives MBS data packets over an MBS tunnel connection and delivers them to one or more UEs 100 .
  • PTP Point-to-Point
  • PTM Point-to-Multipoint
  • the gNB 200 delivers individual copies of MBS data packets to individual UEs 100 over the air.
  • the gNB 200 delivers a single copy of MBS data packets to a group of UEs 100 over the air.
  • the gNB 200 can dynamically determine which of PTM and PTP to use as the MBS data delivery method for one UE 100 .
  • the PTP and PTM delivery methods are primarily concerned with the user plane.
  • FIG. 7 is a diagram showing distribution modes according to the first embodiment.
  • the first delivery mode (delivery mode 1) is a delivery mode that can be used by UE 100 in the RRC connected state, and is a delivery mode for high QoS requirements.
  • the first delivery mode is used for multicast sessions among MBS sessions. However, the first delivery mode may be used for broadcast sessions.
  • the first delivery mode may also be available for UEs 100 in RRC idle state or RRC inactive state.
  • setting up MBS reception in the first delivery mode is performed by UE-dedicated signaling.
  • MBS reception settings in the first distribution mode are performed by an RRC Reconfiguration message (or RRC Release message), which is an RRC message unicast from the gNB 200 to the UE 100 .
  • the MBS reception configuration includes MBS traffic channel configuration information (hereinafter referred to as "MTCH configuration information") regarding the configuration of MBS traffic channels that carry MBS data.
  • MTCH configuration information includes MBS session information for an MBS session and scheduling information for MBS traffic channels corresponding to this MBS session.
  • the MBS traffic channel is a kind of logical channel and is sometimes called MTCH (Multicast Traffic Channel).
  • the MBS traffic channel is mapped to DL-SCH (Downlink Shared Channel), which is a type of transport channel.
  • DL-SCH Downlink Shared Channel
  • the second delivery mode (delivery mode 2) is a delivery mode that can be used not only by the UE 100 in the RRC connected state but also by the UE 100 in the RRC idle state or RRC inactive state, and is a delivery mode for low QoS requirements. .
  • the second delivery mode is used for broadcast sessions among MBS sessions. However, the second delivery mode may also be applicable to multicast sessions.
  • the setting for MBS reception in the second delivery mode is performed by broadcast signaling.
  • the MBS reception setting in the second distribution mode is performed by a logical channel broadcasted from the gNB 200 to the UE 100, for example, BCCH (Broadcast Control Channel) and/or MCCH (Multicast Control Channel).
  • BCCH Broadcast Control Channel
  • MCCH Multicast Control Channel
  • a control channel may be referred to as an MBS control channel.
  • the UE 100 can receive the BCCH and MCCH using, for example, a dedicated RNTI predefined in technical specifications.
  • An MBS session is identified by at least one of a TMGI (Temporary Mobile Group Identity), a session identifier, and a group RNTI (Radio Network Temporary Identifier). At least one of the TMGI and the session identifier is called an MBS session identifier (MBS session ID).
  • MBS session ID MBS session identifier
  • TMGI, session identifier, and group RNTI are collectively referred to as MBS session information.
  • FIG. 8 is a diagram for explaining the operation according to the first embodiment.
  • CN 20A belongs to PLMN#1
  • CN 20B belongs to PLMN#2.
  • PLMN ID PLMN identifiers
  • a plurality of UEs 100 that are receiving or interested in receiving MBS services (MBS data) provided by multicast or broadcast reside in the gNB 200 cell.
  • UE100A1 to UE100A3 belong to PLMN#1, and UE100B1 to UE100B3 belong to PLMN#2.
  • UE100A1 to UE100A3 are simply referred to as UE100A when not distinguished, and simply UE100B when not distinguished.
  • the number of UEs 100 belonging to each PLMN is three is shown, the number of UEs 100 belonging to each PLMN may be one, two, or four or more.
  • gNB 200 when providing the same MBS service from each CN 20 via gNB 200, gNB 200 uses common radio resources (that is, the same radio resource) for PLMN # 1 and PLMN # 2 to transmit MBS data. to send. Thereby, compared to the case where gNB 200 transmits MBS data using separate radio resources (that is, different radio resources) for PLMN # 1 and PLMN # 2, it is possible to reduce the usage of radio resources for MBS distribution. .
  • a gNB 200 shared by a plurality of CNs 20 receives MBS services provided by the CN 20 from each of the plurality of CNs 20. Receive the indicated MBS service identifier (MBS service ID).
  • MBS service ID MBS service identifier
  • the gNB 200 receives from CN 20A the MBS service ID of the MBS service provided by CN 20A, and receives the MBS service ID of the MBS service provided by CN 20B from CN 20B.
  • the MBS service ID is a PLMN-independent unique identifier (that is, a global identifier).
  • the MBS Service ID may be referred to as the MBS Application ID.
  • the gNB 200 can uniquely identify the MBS service provided by the CN 20 based on the MBS service ID received from the CN 20 . Therefore, gNB 200 can identify whether the MBS services provided by CN 20A and CN 20B are the same based on the MBS service IDs received from each of CN 20A and CN 20B.
  • gNB 200 Upon receiving the same MBS service ID from CN 20A and CN 20B, gNB 200 uses radio resources common to PLMN#1 and PLMN#2 to transmit MBS data belonging to that MBS service. Therefore, if the MBS services provided by CN 20A and CN 20B are the same, radio resource usage for MBS delivery can be reduced.
  • gNB 200 may acquire MBS data from one of CN 20A and CN 20B. Therefore, since the gNB 200 does not need to acquire MBS data from the other CN 20, it is possible to reduce the usage of backhaul communication resources.
  • the gNB 200 may receive MBS session start messages including MBS service IDs from each of CN 20A and CN 20B. For example, when CN 20A starts providing an MBS service, gNB 200 receives an MBS session start message including the MBS service ID of the MBS service from CN 20A. Similarly, when CN 20B starts providing an MBS service, gNB 200 receives an MBS session start message including the MBS service ID of the MBS service from CN 20B. This allows the gNB 200 to efficiently grasp the MBS service provided by each of the CN 20A and CN 20B. Note that the session start message may be an MBS session start scheduled message. The gNB 200 may broadcast the MBS session start schedule message to the UE 100 using an SIB (eg, MBS-SIB, etc.). UE 100 may perform cell selection or cell reselection based on the SIB.
  • SIB eg, MBS-SIB, etc.
  • the gNB 200 may transmit notification information indicating whether or not to provide the MBS service to any of the CN 20 based on the MBS service ID received from each of CN 20A and CN 20B. For example, in response to receiving the same MBS service identifier from CN 20A and CN 20B, gNB 200 transmits notification information indicating that provision of MBS service is unnecessary to CN 20, one of CN 20A and CN 20B. may As a result, it is possible to reduce the usage of backhaul communication resources and the load on the CN 20 for acquiring MBS data.
  • the gNB 200 receives from at least one CN 20 of the CN 20A and CN 20B information indicating whether to allow sharing of radio resources and/or CN resources for transmitting MBS data with other CN 20. good.
  • the information may be associated with the MBS service ID.
  • the information may further include either a PLMN identifier for which resource sharing is permitted and/or information indicating the CN 20 (or PLMN) that provides data (that is, the gNB 200 acquires data) when resource sharing is performed.
  • gNB 200 receives the same MBS service identifier from CN 20A and CN 20B, and in response to CN 20A and CN 20B permitting sharing of radio resources and/or CN resources, MBS data belonging to the MBS service, A radio resource common to PLMN#1 and PLMN#2 (ie, the same radio resource) is used for transmission. If gNB 200 does not allow at least one CN 20 of CN 20A and CN 20B to share radio resources and/or CN resources for transmitting MBS data with other CN 20, PLMN#1 and PLMN#2 MBS delivery using a common radio resource (ie, the same radio resource) may be prohibited.
  • FIG. 9 is a diagram showing an example of operations according to the first embodiment. Note that not all the steps in FIG. 9 need to be executed, and only some of the steps may be executed. Also, the order of the steps in FIG. 9 may be changed.
  • step S101 AMF 300A included in CN 20A, in order to start providing the MBS service in PLMN #1, uses an MBS session identifier (MBS session ID) corresponding to the MBS service and an MBS session ID that uniquely identifies the MBS service. and a service ID to the gNB 200.
  • MBS session ID MBS session identifier
  • the MBS session ID is a PLMN-specific identifier. Therefore, even if CN 20A and CN 20B provide the same MBS service, CN 20A and CN 20B may have different MBS session IDs.
  • the MBS session start message is a message sent and received on the NG interface, such as the NG-AP MBS Session Start (Activation) message.
  • the MBS service ID may be notified to the gNB 200 by a message other than the MBS session start message.
  • the gNB 200 that has received the MBS session start message from AMF 300A may transmit a response message to AMF 300A.
  • gNB 200 shall send an acknowledgment message to AMF 300A since it has not detected that other CN 20 also provides the MBS service provided by CN 20A.
  • CN 20A may start providing MBS service and start transmitting MBS data to gNB 200 upon receiving the acknowledgment message from gNB 200 .
  • AMF 300B included in CN 20B includes an MBS session ID corresponding to the MBS service and an MBS service ID that uniquely identifies the MBS service in order to start providing the MBS service in PLMN #2.
  • the MBS service provided by CN 20B is the same as the MBS service provided by CN 20A. Therefore, the MBS service ID transmitted by AMF 300B in step S103 is the same as the MBS service ID transmitted by AMF 300A in step S101.
  • Each of AMF 300A and AMF 300B may include information (permission information) indicating whether or not to permit sharing of radio resources (and backhaul/CN resources) with other PLMNs in the MBS session start message and transmit it. .
  • each of AMF 300A and AMF 300B (or CN 20A and CN 20B to which AMF 300A and AMF 300B belong, or other network function (for example, SMF) belonging to CN 20A or CN 20B) is connected from the MBS application server via, for example, API (Application Programming Interface)
  • An MBS service ID may be obtained.
  • Such an API may be provided by NEF (Network Exposure Function).
  • the AMF 300A and/or the AMF 300B may negotiate with the MBS application server for sharing radio resources and/or CN resources. For example, AMF 300A and/or AMF 300B inform the MBS application server that it is possible to share its own CN resources with other CNs (other PLMNs) and that other CNs (other PLMNs) permit sharing. Any one or more of the identifiers of PLMN) may be notified.
  • the MBS application server provides AMF 300A and/or AMF 300B with information specifying AMF 300 that provides MBS data (that is, information specifying the master-side network that provides the MBS service) and information on AMF 300 that does not provide MBS data. (that is, the information of the secondary side network that provides the MBS service: for example, the PLMN identifier), any one or more of them may be transmitted.
  • the gNB 200 Since the MBS service ID received in step S103 is the same as the MBS service ID received in step S101, the gNB 200 that has received the MBS session start message from the AMF 300B provides the MBS service that the CN 20B is to start providing in the CN 20A. or is being provided, and determines not to acquire MBS data belonging to the MBS service from CN 20B.
  • the gNB 200 transmits a response message to the AMF 300B.
  • gNB 200 since gNB 200 detects that CN 20A also provides the MBS service provided by CN 20B, it transmits to AMF 300B a response message indicating that provision of the MBS service is unnecessary.
  • the response message includes information indicating that the MBS session is already being provided by another PLMN, information indicating that the MBS tunnel connection for the MBS session is not required, and information indicating that the MBS tunnel connection for the MBS session is established. At least one of information indicating that data transfer is unnecessary (stop/suspend) may be included.
  • CN20B stops providing the MBS service and does not transmit MBS data to gNB200.
  • the gNB 200 may send such a response message only when CN 20A permits resource sharing. Alternatively, at this stage, the gNB 200 may request permission for resource sharing to the AMF 300A, and transmit the response message only when the AMF 300 permits.
  • the CN 20A transmits MBS data belonging to the MBS service to the gNB 200.
  • the gNB 200 receives MBS data.
  • step S106 the gNB 200 transmits MBS data to the UE 100A and UE 100B by multicast or broadcast using radio resources common to PLMN#1 and PLMN#2 (that is, the same radio resource).
  • Each of UE 100A and UE 100B receives MBS data.
  • this operation sequence assumes that CN 20A (PLMN#1) permits resource sharing with other CNs (other PLMNs). However, it is conceivable that CN 20A (PLMN#1) does not allow resource sharing with other CNs (other PLMNs). In such a case, the gNB 200 may notify (request) the AMF 300A to stop (suspend) the data transfer of the MBS session and permit (request) the AMF 300B to start the data transfer of the MBS session. Prior to such operation, the gNB 200 may ask the AMF 300B whether to allow resource sharing.
  • the gNB 200 shared by multiple CNs 20 receives an MBS service ID that uniquely identifies an MBS service from each of the multiple CNs 20, and the multiple Determine whether the CN 20 provides the same MBS service. Then, when it is determined that the plurality of CNs 20 provide the same MBS service, the gNB 200 obtains MBS data belonging to the MBS service from only one CN 20, and uses the common radio resource in a plurality of PLMNs to obtain the MBS data. Send data by multicast or broadcast. This enables efficient MBS distribution in the mobile communication system 1 .
  • the second embodiment will be described mainly with respect to the differences from the above-described first embodiment.
  • the second delivery mode (Delivery mode 2) is mainly assumed.
  • the configuration of the mobile communication system 1 is the same as that of the first embodiment described above.
  • FIG. 10 is a diagram for explaining the operation according to the second embodiment.
  • the gNB 200 broadcasts the MBS traffic channel setting information (MTCH setting information) used for receiving the MBS traffic channel (MTCH) to the UE 100 on the MBS control channel (eg, MCCH).
  • the MTCH configuration information includes an MBS session ID and MTCH scheduling information associated with the MBS session ID.
  • the UE 100 acquires MTCH scheduling information associated with the MBS session ID of the MBS service that the UE 100 intends to receive, and receives the MTCH.
  • the MTCH setting information may be called PTM setting information.
  • the MBS session ID is a PLMN-specific identifier. Therefore, for example, when the UE 100B belonging to the PLMN#2 receives the MBS service provided by the CN 20A belonging to the PLMN#1, the UE 100B may not be able to correctly interpret the MBS session ID of the PLMN#1. Therefore, there is a concern that the UE 100B cannot receive MTCH based on the MTCH setting information. On the contrary, when UE 100A belonging to PLMN#1 receives the MBS service provided by CN 20B belonging to PLMN#2, a similar problem may occur.
  • gNB200 shared by a plurality of CN20 is a plurality of UE100 (UE100A and UE100B) belonging to a plurality of PLMN (PLMN #1 and PLMN #2) corresponding to the plurality of CN20 , control information (MTCH setting information) used for MTCH reception is transmitted.
  • the MTCH configuration information includes PLMN identifiers for each of the multiple PLMNs.
  • the MTCH configuration information includes multiple sets of MBS session IDs and PLMN identifiers (PLMN IDs). That is, the MTCH configuration information includes an MBS session ID for each PLMN.
  • the UE 100 can identify the MBS session ID of the PLMN to which the UE 100 belongs in the MTCH configuration information, and can correctly acquire the MTCH scheduling information.
  • FIG. 11 is a diagram showing an example of MTCH setting information according to the second embodiment. Here, it is assumed that MTCH setting information is transmitted by MCCH.
  • the MTCH setting information includes MTCH setting (MTCH-Info) for each PLMN.
  • the MTCH setting information includes an MTCH setting for PLMN#1 (MTCH-Info#1) and an MTCH setting for PLMN#2 (MTCH-Info#2).
  • MTCH-Info#1 and MTCH setting for PLMN#2 indicate the same MTCH (that is, the same MBS service).
  • Each MTCH setting includes PLMN ID, MBS session ID (TMGI), G-RNTI, and MTCH scheduling information (Scheduling info).
  • the MTCH settings for PLMN#1 are PLMN ID "#1" of PLMN#1, MBS session ID "TMGI#A" of PLMN#1, G-RNTI, and MTCH including scheduling information.
  • the MTCH settings for PLMN#2 are PLMN ID "#2" of PLMN#2, MBS session ID "TMGI#B" of PLMN#2, G-RNTI, and MTCH scheduling information. (Scheduling info).
  • the UE 100A belonging to PLMN#1 receives the MTCH setting information shown in FIG. UE 100A is interested in receiving the MBS session ID "TMGI#A" of PLMN#1.
  • the UE 100A identifies the MTCH setting (MTCH-Info#1) including the PLMN ID "#1" of PLMN#1. Since the identified MTCH setting (MTCH-Info#1) includes the MBS session ID "TMGI#A", the UE 100A recognizes that the MBS service of "TMGI#A" is provided, and uses the identified MTCH setting.
  • MTCH reception is attempted based on the G-RNTI and MTCH scheduling information (Scheduling info) included in (MTCH-Info#1). Specifically, PDCCH is monitored at the timing indicated by MTCH scheduling information (Scheduling info), and PDCCH decoding is attempted using G-RNTI. Then, MBS data is received in the radio resource (PDSCH) indicated by PDCCH.
  • PDSCH radio resource
  • the UE 100B belonging to PLMN#2 receives the MTCH setting information shown in FIG. UE 100B is interested in receiving MBS session ID "TMGI#B" for PLMN#2.
  • the UE 100B identifies the MTCH setting (MTCH-Info#2) including the PLMN ID "#2" of PLMN#2. Since the identified MTCH setting (MTCH-Info#2) includes the MBS session ID "TMGI#B", the UE 100B recognizes that the MBS service of "TMGI#B" is provided, and uses the identified MTCH setting.
  • MTCH reception is attempted based on the G-RNTI and MTCH scheduling information (Scheduling info) included in (MTCH-Info#2). Specifically, PDCCH is monitored at the timing indicated by MTCH scheduling information (Scheduling info), and PDCCH decoding is attempted using G-RNTI. Then, MBS data is received in the radio resource (PDSCH) indicated by PDCCH.
  • PDSCH radio resource
  • G-RNTI and MTCH scheduling information included in MTCH setting (MTCH-Info # 1) of PLMN # 1 has the same content as the G-RNTI and MTCH scheduling information (Scheduling info) included in the MTCH setting (MTCH-Info#2) of PLMN#2.
  • MTCH-Info #1 the same content as the G-RNTI and MTCH scheduling information (Scheduling info) included in the MTCH setting (MTCH-Info#2) of PLMN#2.
  • FIG. 12 is a diagram showing another example of MTCH setting information according to the second embodiment. Here, it is assumed that MTCH setting information is transmitted by MCCH.
  • the MTCH configuration information has MTCH-Cont as an information element common to PLMN#1 and PLMN#2.
  • FIG. 12 shows an example in which the MTCH configuration information has three MTCH-Conts: MTCH-Cont#a, MTCH-Cont#b, and MTCH-Cont#c.
  • "#a", "#b", and "#c" are indices of MTCH-Cont.
  • the MTCH setting (MTCH-Info#1) of PLMN#1 has the MTCH-Cont index "#a" instead of the G-RNTI and MTCH scheduling information (Scheduling info).
  • the MTCH setting (MTCH-Info#2) of PLMN#2 has the MTCH-Cont index "#a” instead of the G-RNTI and MTCH scheduling information (Scheduling info).
  • the UE 100A belonging to PLMN#1 receives the MTCH setting information shown in FIG. UE 100A is interested in receiving the MBS session ID "TMGI#A" of PLMN#1.
  • the UE 100A identifies the MTCH setting (MTCH-Info#1) including the PLMN ID "#1" of PLMN#1. Since the identified MTCH setting (MTCH-Info#1) includes the MBS session ID "TMGI#A", the UE 100A recognizes that the MBS service of "TMGI#A" is provided, and uses the identified MTCH setting.
  • the G-RNTI and MTCH scheduling information (Scheduling info) in MTCH-Cont#a are acquired, and MTCH reception is attempted. .
  • the UE 100B belonging to PLMN#2 receives the MTCH setting information shown in FIG. UE 100B is interested in receiving MBS session ID "TMGI#B" for PLMN#2.
  • the UE 100B identifies the MTCH setting (MTCH-Info#2) including the PLMN ID "#2" of PLMN#2. Since the identified MTCH setting (MTCH-Info#2) includes the MBS session ID "TMGI#B", the UE 100B recognizes that the MBS service of "TMGI#B" is provided, and uses the identified MTCH setting. Based on the MTCH-Cont index "#a" included in (MTCH-Info#2), acquire the G-RNTI and MTCH scheduling information (Scheduling info) in MTCH-Cont#a, and attempt to receive MTCH. .
  • the MCCH may contain adjacent cell information and/or adjacent frequency information for each PLMN.
  • MTCH-Info#1 may contain information of adjacent cells and/or adjacent frequencies that provide MBS service on PLMN#1.
  • MTCH-Info#2 may contain information of neighboring cells and/or neighboring frequencies that provide MBS service on PLMN #2.
  • FIG. 13 is a diagram showing an example of operations according to the second embodiment. Note that not all the steps in FIG. 13 need to be executed, and only some of the steps may be executed.
  • the gNB 200 determines to transmit MBS data of different PLMNs (different MBS sessions) in the same MBS service using the same radio resource (same MTCH).
  • the gNB 200 transmits MTCH configuration information, for example, on MCCH.
  • the MTCH configuration information includes multiple MTCH configurations.
  • Each MTCH setting contains the PLMN ID and TMGI (MBS session ID).
  • Each MTCH configuration further includes G-RNTI and scheduling information.
  • Each of the UE 100A and UE 100B receives the MTCH setting information.
  • the gNB 200 transmits MBS data on the MTCH according to the scheduling indicated by the MTCH configuration information.
  • the UE 100A receives the MTCH of TMGI#A of PLMN#1 based on the MTCH setting information received in step S201.
  • the UE 100B receives MTCH of TMGI#B of PLMN#2 based on the MTCH setting information received in step S201. Note that the UE 100A and the UE 100B actually receive the same MTCH.
  • the gNB 200 shared by a plurality of CN 20 is a plurality of UE 100 ( MTCH setting information used for MTCH reception is transmitted to UE 100A and UE 100B).
  • the MTCH setting information includes multiple sets of MBS session IDs and PLMN IDs. That is, the MTCH configuration information includes an MBS session ID for each PLMN.
  • the UE 100 can identify the MBS session ID of the PLMN to which the UE 100 belongs in the MTCH setting information, and can correctly receive the MTCH.
  • the second embodiment can also be applied when the same MTCH is not used. That is, the second embodiment can be applied to a scenario in which the gNB 200 is shared by a plurality of CNs 20 (CN 20A and CN 20B).
  • FIG. 14 is a diagram showing an example of multiple MCCHs according to this modification.
  • the gNB 200 provides the UE 100 with MBS control channel configuration information, specifically MCCH configuration information (scheduling information), using a system information block (SIB) transmitted by the BCCH.
  • SIB system information block
  • UE 100 receives MCCH (ie, MTCH configuration information) based on MBS-SIB received from gNB 200, and receives MTCH (ie, MBS data) based on the received MCCH.
  • the gNB 200 configures multiple MCCHs (Multiple MCCHs) within one own cell. Each MCCH may have a different scheduling (for example, a transmission period) from each other.
  • FIG. 15 is a diagram showing an example of MBS-SIB and MTCH configuration information according to this modified example.
  • MBS-SIB includes multiple sets of PLMN IDs and MCCH IDs (MBS Control Channel Identifiers). That is, MBS-SIB contains MCCH ID for each PLMN. MCCH ID is an identifier that uniquely identifies the MCCH. MBS-SIB may include MCCH configuration information (scheduling information) associated with MCCH ID.
  • UE 100A belonging to PLMN#1 receives the MBS-SIB shown in FIG.
  • UE 100A identifies MCCH ID "#1" associated with PLMN ID "#1" of PLMN #1 based on MBS-SIB, and sets MCCH (MTCH configuration information) indicated by MCCH ID "#1". receive. Subsequent operations are the same as those of the above-described second embodiment.
  • the UE 100B belonging to PLMN#2 receives the MBS-SIB shown in FIG.
  • UE 100B identifies MCCH ID "#2" associated with PLMN ID "#2" of PLMN#2 based on MBS-SIB, and sets MCCH (MTCH configuration information) indicated by MCCH ID "#2". receive. Subsequent operations are the same as those of the above-described second embodiment.
  • FIG. 16 is a diagram showing an example of the operation according to this modified example. Note that not all the steps in FIG. 16 need to be executed, and only some of the steps may be executed.
  • the gNB 200 determines to transmit MBS data of different PLMNs (different MBS sessions) in the same MBS service using the same resource (same MTCH).
  • step S211 the gNB 200 transmits MBS-SIB.
  • MBS-SIB contains information linking PLMN ID and MCCH ID.
  • Each of UE 100A and UE 100B receives MBS-SIB.
  • each MCCH contains MTCH configuration information, ie TMGI, G-RNTI and MTCH scheduling information.
  • Each MCCH also includes an MCCH ID.
  • Each of UE 100A and UE 100B receives the MCCH corresponding to the PLMN to which it belongs, based on the MBS-SIB received in step S211.
  • the gNB 200 transmits MBS data on the MTCH according to the scheduling indicated by the MTCH configuration information.
  • the UE 100A receives the MTCH of TMGI#A of PLMN#1 based on the MCCH received in step S212.
  • the UE 100B receives the MTCH of TMGI#B of PLMN#2 based on the MCCH received in step S212.
  • UE 100A and UE 100B actually receive the same MTCH.
  • MCCH is assumed to be PLMN-specific, but MCCH independent of PLMN may be assumed.
  • MBS-SIB does not need to include PLMN ID.
  • MBS data may be encrypted (eg IPsec). It is also assumed that such encryption is performed with a PLMN-specific security key. If the MBS data provided by the PLMN is encrypted, there is a concern that the UE 100 belonging to a PLMN different from the PLMN cannot decrypt (decrypt) the MBS data even if it receives it.
  • CN 20 that sends encrypted MBS data to gNB 200 may provide security keys to UE 100 via gNB 200 . For example, the CN 20 notifies the security key to the gNB 200 in step S101 or S103 of FIG. 9, and the gNB 200 notifies the security key to the UE 100 by, for example, an RRC message. Alternatively, the CN 20 may notify the UE 100 of the security key through NAS signaling, or may notify the UE 100 of the security key from the application layer.
  • the PLMN may be NPN (Non-Public Network).
  • PLMN ID may be read as NPN ID.
  • the PLMN and NPN may share the RAN.
  • Each operation flow described above is not limited to being implemented independently, but can be implemented by combining two or more operation flows. For example, some steps of one operational flow may be added to another operational flow. Also, some steps of one operation flow may be replaced with some steps of another operation flow.
  • the base station may be an NR base station (gNB) or a 6G base station.
  • the base station may be a relay node such as an IAB (Integrated Access and Backhaul) node.
  • the base station may be a DU (Distributed Unit) of an IAB node.
  • the user equipment may be an MT (Mobile Termination) of an IAB node.
  • a program that causes a computer to execute each process performed by the UE 100 or the gNB 200 may be provided.
  • the program may be recorded on a computer readable medium.
  • a computer readable medium allows the installation of the program on the computer.
  • the computer-readable medium on which the program is recorded may be a non-transitory recording medium.
  • the non-transitory recording medium is not particularly limited, but may be, for example, a recording medium such as CD-ROM or DVD-ROM.
  • a circuit that executes each process performed by the UE 100 or gNB 200 may be integrated, and at least part of the UE 100 or gNB 200 may be configured as a semiconductor integrated circuit (chipset, SoC: System on a chip).
  • the terms “based on” and “depending on,” unless expressly stated otherwise, “based only on.” does not mean The phrase “based on” means both “based only on” and “based at least in part on.” Similarly, the phrase “depending on” means both “only depending on” and “at least partially depending on.” Also, “obtain/acquire” may mean obtaining information among stored information, or it may mean obtaining information among information received from other nodes. or it may mean obtaining the information by generating the information.
  • the terms “include,” “comprise,” and variations thereof are not meant to include only the recited items, and may include only the recited items or in addition to the recited items. Means that it may contain further items.
  • references to elements using the "first,” “second,” etc. designations used in this disclosure do not generally limit the quantity or order of those elements. These designations may be used herein as a convenient method of distinguishing between two or more elements. Thus, references to first and second elements do not imply that only two elements may be employed therein, or that the first element must precede the second element in any way.
  • references to first and second elements do not imply that only two elements may be employed therein, or that the first element must precede the second element in any way.
  • Mobile communication system 10 RAN (NG-RAN/5G RAN) 20: CN (5GC/5G CN) 100: UE 110: Reception unit 120: Transmission unit 130: Control unit 200: gNB 210: Transmission unit 220: Reception unit 230: Control unit 240: Backhaul communication unit 300: AMF

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

移動通信システムで用いる通信制御方法は、複数のコアネットワークにより共用される基地局が、前記複数のコアネットワークのそれぞれから、当該コアネットワークが提供するMBSサービスを示すMBSサービス識別子を受信することと、前記基地局が、前記複数のコアネットワークに対応する複数のPLMN(Public Land Mobile Network)に属する複数のユーザ装置に対して、前記MBSサービスに属するMBSデータをマルチキャスト又はブロードキャストで送信することと、を有する。前記MBSサービス識別子は、PLMNに依存しない一意な識別子である。

Description

通信制御方法、基地局、及びユーザ装置
 本開示は、移動通信システムで用いる通信制御方法、基地局、及びユーザ装置に関する。
 3GPP(3rd Generation Partnership Project)規格において、第5世代(5G)の無線アクセス技術であるNR(New Radio)の技術仕様が規定されている。NRは、第4世代(4G)の無線アクセス技術であるLTE(Long Term Evolution)に比べて、高速・大容量かつ高信頼・低遅延といった特徴を有する。このような5Gシステムにマルチキャスト・ブロードキャストサービス(MBS)を導入することが検討されている。
 1つの基地局又は1つのセルが、それぞれ異なるオペレータ(Public Land Mobile Network:PLMN)に属する複数のコアネットワークにより共用されることがある。このようなシナリオにおいて、各コアネットワークから基地局を介して同一のMBSサービスを提供する場合、複数のオペレータに共通の無線リソースを用いて基地局がMBSデータを送信することで、MBSのための無線リソースの使用量を削減する方法が提案されている(非特許文献1参照)。
 第1の態様に係る通信制御方法は、移動通信システムで用いる通信制御方法であって、複数のコアネットワークにより共用される基地局が、前記複数のコアネットワークのそれぞれから、当該コアネットワークが提供するMBSサービスを示すMBSサービス識別子を受信することと、前記基地局が、前記複数のコアネットワークに対応する複数のPLMN(Public Land Mobile Network)に属する複数のユーザ装置に対して、前記MBSサービスに属するMBSデータをマルチキャスト又はブロードキャストで送信することと、を有する。前記MBSサービス識別子は、PLMNに依存しない一意な識別子である。
 第2の態様に係る基地局は、移動通信システムにおいて複数のコアネットワークにより共用される基地局であって、前記複数のコアネットワークのそれぞれから、当該コアネットワークが提供するMBSサービスを示すMBSサービス識別子を受信するネットワーク通信部と、前記複数のコアネットワークに対応する複数のPLMNに属する複数のユーザ装置に対して、前記MBSサービスに属するMBSデータをマルチキャスト又はブロードキャストで送信する無線通信部と、を有する。前記MBSサービス識別子は、PLMNに依存しない一意な識別子である。
 第3の態様に係る通信制御方法は、移動通信システムで用いる通信制御方法であって、複数のコアネットワークにより共用される基地局が、前記複数のコアネットワークに対応する複数のPLMNに属する複数のユーザ装置に対して、MBSトラフィックチャネルの受信及び/又はMBS制御チャネルの受信に用いる制御情報を送信することと、前記基地局が、前記MBSトラフィックチャネルを用いて、前記複数のユーザ装置に対してMBSデータをマルチキャスト又はブロードキャストで送信することと、を有する。前記制御情報は、前記複数のPLMNのそれぞれのPLMN識別子を含む。
 第4の態様に係る基地局は、移動通信システムにおいて複数のコアネットワークにより共用される基地局であって、前記複数のコアネットワークに対応する複数のPLMNに属する複数のユーザ装置に対して、MBSトラフィックチャネルの受信及び/又はMBS制御チャネルの受信に用いる制御情報を送信する無線通信部を備える。前記無線通信部は、前記MBSトラフィックチャネルを用いて、前記複数のユーザ装置に対してMBSデータをマルチキャスト又はブロードキャストで送信する。前記制御情報は、前記複数のPLMNのそれぞれのPLMN識別子を含む。
 第5の態様に係るユーザ装置は、移動通信システムで用いるユーザ装置であって、複数のコアネットワークにより共用される基地局から、MBSトラフィックチャネルの受信及び/又はMBS制御チャネルの受信に用いる制御情報を受信する無線通信部を備える。前記無線通信部は、前記MBSトラフィックチャネルを用いて、前記複数のコアネットワークに対応する複数のPLMNに属する複数のユーザ装置に対して前記基地局からマルチキャスト又はブロードキャストで送信されるMBSデータを受信する。前記制御情報は、前記複数のPLMNのそれぞれのPLMN識別子を含む。
第1実施形態に係る移動通信システムの構成を示す図である。 第1実施形態に係るUE(ユーザ装置)の構成を示す図である。 第1実施形態に係るgNB(基地局)の構成を示す図である。 データを取り扱うユーザプレーンの無線インターフェイスのプロトコルスタックの構成を示す図である。 シグナリング(制御信号)を取り扱う制御プレーンの無線インターフェイスのプロトコルスタックの構成を示す図である。 第1実施形態に係るMBSトラフィック配信の概要を示す図である。 第1実施形態に係る配信モードを示す図である。 第1実施形態に係る動作を説明するための図である。 第1実施形態に係る動作の一例を示す図である。 第2実施形態に係る動作を説明するための図である。 第2実施形態に係るMTCH(Multicast Traffic Channel)設定情報の一例を示す図である。 第2実施形態に係るMTCH設定情報の他の例を示す図である。 第2実施形態に係る動作の一例を示す図である。 第2実施形態の変更例に係る複数のMCCH(Multicast Control Channel)の一例を示す図である。 第2実施形態の変更例に係るMBS-SIB及びMTCH設定情報の一例を示す図である。 第2実施形態の変更例に係る動作の一例を示す図である。
 現状の3GPPの技術仕様には、基地局が複数のコアネットワーク(複数のPLMN)に共通の無線リソースを用いてMBSデータを送信することを円滑化するための仕組みが導入されていない。よって、効率的なMBS配信を行うことが難しいという問題がある。
 そこで、本開示は、移動通信システムにおいて効率的なMBS配信を行うことを可能とする通信制御方法、基地局、及びユーザ装置を提供する。
 図面を参照しながら、実施形態に係る移動通信システムについて説明する。図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。
 [第1実施形態]
 まず、図1乃至図9を参照して、第1実施形態に係る移動通信システムについて説明する。
 (移動通信システムの構成)
 図1は、第1実施形態に係る移動通信システムの構成を示す図である。移動通信システム1は、3GPP規格の第5世代システム(5GS:5th Generation System)に準拠する。以下において、5GSを例に挙げて説明するが、移動通信システムにはLTE(Long Term Evolution)システムが少なくとも部分的に適用されてもよい。移動通信システムには第6世代(6G)システムが少なくとも部分的に適用されてもよい。
 移動通信システム1は、ユーザ装置(UE:User Equipment)100と、5Gの無線アクセスネットワーク(NG-RAN:Next Generation Radio Access Network)10と、5Gのコアネットワーク(5GC:5G Core Network)20とを有する。以下において、NG-RAN10を単にRAN10と呼ぶことがある。また、5GC20を単にコアネットワーク(CN)20と呼ぶことがある。
 UE100は、移動可能な無線通信装置である。UE100は、ユーザにより利用される装置であればどのような装置であっても構わないが、例えば、UE100は、携帯電話端末(スマートフォンを含む)又はタブレット端末、ノートPC、通信モジュール(通信カード又はチップセットを含む)、センサ若しくはセンサに設けられる装置、車両若しくは車両に設けられる装置(Vehicle UE)、飛行体若しくは飛行体に設けられる装置(Aerial UE)である。
 NG-RAN10は、基地局(5Gシステムにおいて「gNB」と呼ばれる)200を含む。gNB200は、基地局間インターフェイスであるXnインターフェイスを介して相互に接続される。gNB200は、1又は複数のセルを管理する。gNB200は、自セルとの接続を確立したUE100との無線通信を行う。gNB200は、無線リソース管理(RRM)機能、ユーザデータ(以下、単に「データ」という)のルーティング機能、モビリティ制御・スケジューリングのための測定制御機能等を有する。「セル」は、無線通信エリアの最小単位を示す用語として用いられる。「セル」は、UE100との無線通信を行う機能又はリソースを示す用語としても用いられる。1つのセルは1つのキャリア周波数に属する。
 なお、gNBがLTEのコアネットワークであるEPC(Evolved Packet Core)に接続することもできる。LTEの基地局が5GCに接続することもできる。LTEの基地局とgNBとが基地局間インターフェイスを介して接続されることもできる。
 5GC20は、AMF(Access and Mobility Management Function)及びUPF(User Plane Function)300を含む。AMFは、UE100に対する各種モビリティ制御等を行う。AMFは、NAS(Non-Access Stratum)シグナリングを用いてUE100と通信することにより、UE100のモビリティを管理する。UPFは、データの転送制御を行う。AMF及びUPFは、基地局-コアネットワーク間インターフェイスであるNGインターフェイスを介してgNB200と接続される。
 図2は、第1実施形態に係るUE100(ユーザ装置)の構成を示す図である。UE100は、受信部110、送信部120、及び制御部130を備える。受信部110及び送信部120は、gNB200との無線通信を行う無線通信部を構成する。
 受信部110は、制御部130の制御下で各種の受信を行う。受信部110は、アンテナ及び受信機を含む。受信機は、アンテナが受信する無線信号をベースバンド信号(受信信号)に変換して制御部130に出力する。
 送信部120は、制御部130の制御下で各種の送信を行う。送信部120は、アンテナ及び送信機を含む。送信機は、制御部130が出力するベースバンド信号(送信信号)を無線信号に変換してアンテナから送信する。
 制御部130は、UE100における各種の制御及び処理を行う。このような処理は、後述の各レイヤの処理を含む。制御部130は、少なくとも1つのプロセッサ及び少なくとも1つのメモリを含む。メモリは、プロセッサにより実行されるプログラム、及びプロセッサによる処理に用いられる情報を記憶する。プロセッサは、ベースバンドプロセッサと、CPU(Central Processing Unit)とを含んでもよい。ベースバンドプロセッサは、ベースバンド信号の変調・復調及び符号化・復号等を行う。CPUは、メモリに記憶されるプログラムを実行して各種の処理を行う。
 図3は、第1実施形態に係るgNB200(基地局)の構成を示す図である。gNB200は、送信部210、受信部220、制御部230、及びバックホール通信部240を備える。送信部210及び受信部220は、UE100との無線通信を行う無線通信部を構成する。バックホール通信部240は、CN20との通信を行うネットワーク通信部を構成する。
 送信部210は、制御部230の制御下で各種の送信を行う。送信部210は、アンテナ及び送信機を含む。送信機は、制御部230が出力するベースバンド信号(送信信号)を無線信号に変換してアンテナから送信する。
 受信部220は、制御部230の制御下で各種の受信を行う。受信部220は、アンテナ及び受信機を含む。受信機は、アンテナが受信する無線信号をベースバンド信号(受信信号)に変換して制御部230に出力する。
 制御部230は、gNB200における各種の制御及び処理を行う。このような処理は、後述の各レイヤの処理を含む。制御部230は、少なくとも1つのプロセッサ及び少なくとも1つのメモリを含む。メモリは、プロセッサにより実行されるプログラム、及びプロセッサによる処理に用いられる情報を記憶する。プロセッサは、ベースバンドプロセッサと、CPUとを含んでもよい。ベースバンドプロセッサは、ベースバンド信号の変調・復調及び符号化・復号等を行う。CPUは、メモリに記憶されるプログラムを実行して各種の処理を行う。
 バックホール通信部240は、基地局間インターフェイスを介して隣接基地局と接続される。バックホール通信部240は、基地局-コアネットワーク間インターフェイスを介してAMF/UPF300と接続される。なお、gNBは、CU(Central Unit)とDU(Distributed Unit)とで構成され(すなわち、機能分割され)、両ユニット間はF1インターフェイスで接続されてもよい。
 図4は、データを取り扱うユーザプレーンの無線インターフェイスのプロトコルスタックの構成を示す図である。
 ユーザプレーンの無線インターフェイスプロトコルは、物理(PHY)レイヤと、MAC(Medium Access Control)レイヤと、RLC(Radio Link Control)レイヤと、PDCP(Packet Data Convergence Protocol)レイヤと、SDAP(Service Data Adaptation Protocol)レイヤとを有する。
 PHYレイヤは、符号化・復号、変調・復調、アンテナマッピング・デマッピング、及びリソースマッピング・デマッピングを行う。UE100のPHYレイヤとgNB200のPHYレイヤとの間では、物理チャネルを介してデータ及び制御情報が伝送される。
 MACレイヤは、データの優先制御、ハイブリッドARQ(HARQ:Hybrid Automatic Repeat reQuest)による再送処理、及びランダムアクセスプロシージャ等を行う。UE100のMACレイヤとgNB200のMACレイヤとの間では、トランスポートチャネルを介してデータ及び制御情報が伝送される。gNB200のMACレイヤはスケジューラを含む。スケジューラは、上下リンクのトランスポートフォーマット(トランスポートブロックサイズ、変調・符号化方式(MCS:Modulation and Coding Scheme))及びUE100への割当リソースブロックを決定する。
 RLCレイヤは、MACレイヤ及びPHYレイヤの機能を利用してデータを受信側のRLCレイヤに伝送する。UE100のRLCレイヤとgNB200のRLCレイヤとの間では、論理チャネルを介してデータ及び制御情報が伝送される。
 PDCPレイヤは、ヘッダ圧縮・伸張、及び暗号化・復号化等を行う。
 SDAPレイヤは、コアネットワークがQoS(Quality of Service)制御を行う単位であるIPフローとAS(Access Stratum)がQoS制御を行う単位である無線ベアラとのマッピングを行う。なお、RANがEPCに接続される場合は、SDAPが無くてもよい。
 図5は、シグナリング(制御信号)を取り扱う制御プレーンの無線インターフェイスのプロトコルスタックの構成を示す図である。
 制御プレーンの無線インターフェイスのプロトコルスタックは、図4に示したSDAPレイヤに代えて、RRC(Radio Resource Control)レイヤ及びNAS(Non-Access Stratum)レイヤを有する。
 UE100のRRCレイヤとgNB200のRRCレイヤとの間では、各種設定のためのRRCシグナリングが伝送される。RRCレイヤは、無線ベアラの確立、再確立及び解放に応じて、論理チャネル、トランスポートチャネル、及び物理チャネルを制御する。UE100のRRCとgNB200のRRCとの間に接続(RRC接続)がある場合、UE100はRRCコネクティッド状態にある。UE100のRRCとgNB200のRRCとの間に接続(RRC接続)がない場合、UE100はRRCアイドル状態にある。UE100のRRCとgNB200のRRCとの間の接続がサスペンドされている場合、UE100はRRCインアクティブ状態にある。
 RRCレイヤの上位に位置するNASレイヤは、セッション管理及びモビリティ管理等を行う。UE100のNASレイヤとAMF300aのNASレイヤとの間では、NASシグナリングが伝送される。
 なお、UE100は、無線インターフェイスのプロトコル以外にアプリケーションレイヤ等を有する。
 (MBSの概要)
 第1実施形態に係るMBSの概要について説明する。MBSは、NG-RAN10からUE100に対してブロードキャスト又はマルチキャスト、すなわち、1対多(PTM:Point To Multipoint)でのデータ送信を可能とするサービスである。MBSのユースケース(サービス種別)としては、公安通信、ミッションクリティカル通信、V2X(Vehicle to Everything)通信、IPv4又はIPv6マルチキャスト配信、IPTV(Internet Protocol TeleVision)、グループ通信、及びソフトウェア配信等が想定される。
 ブロードキャストサービスは、高信頼性のQoSを必要としないアプリケーションのために、特定のサービスエリア内のすべてのUE100に対してサービスを提供する。ブロードキャストサービスに用いるMBSセッションをブロードキャストセッションと呼ぶ。
 マルチキャストサービスは、すべてのUE100に対してではなく、マルチキャストサービスに参加しているUE100のグループに対してサービスを提供する。マルチキャストサービスに用いるMBSセッションをマルチキャストセッションと呼ぶ。マルチキャストサービスによれば、ブロードキャストサービスに比べて、無線効率の高い方法でUE100のグループに対して同じコンテンツを提供できる。
 図6は、第1実施形態に係るMBSトラフィック配信の概要を示す図である。
 図6に示すように、MBSトラフィック(MBSデータ)は、単一のデータソース(アプリケーションサービスプロバイダ)から複数のUEに配信される。5Gコアネットワークである5G CN(5GC)20は、アプリケーションサービスプロバイダからMBSデータを受信し、MBSデータのコピーの作成(Replication)を行って配信する。
 5GC20の観点からは、5GC共有MBSトラフィック配信(5GC Shared MBS Traffic delivery)及び5GC個別MBSトラフィック配信(5GC Individual MBS Traffic delivery)の2つのマルチキャスト配信方法が可能である。
 5GC個別MBSトラフィック配信方法では、5GC20は、MBSデータパケットの単一コピーを受信し、UE100ごとのPDUセッションを介してそれらのMBSデータパケットの個別のコピーを個別のUE100に配信する。したがって、UE100ごとに1つのPDUセッションをマルチキャストセッションと関連付ける必要がある。
 5GC共有MBSトラフィック配信方法では、5GC20は、MBSデータパケットの単一コピーを受信し、それらのMBSパケットの単一コピーをRANノード(すなわち、gNB200)に配信する。gNB200は、MBSトンネル接続を介してMBSデータパケットを受信し、それらを1つ又は複数のUE100に配信する。
 RAN(5G RAN)10の観点からは、5GC共有MBSトラフィック配信方法における無線を介したMBSデータの送信には、PTP(Point-to-Point)及びPTM(Point-to-Multipoint)の2つの配信方法が可能である。PTPはユニキャストを意味し、PTMはマルチキャスト及びブロードキャストを意味する。
 PTP配信方法では、gNB200は、MBSデータパケットの個別のコピーを無線で個々のUE100に配信する。他方、PTM配信方法では、gNB200は、MBSデータパケットの単一コピーを無線でUE100のグループに配信する。gNB200は、1つのUE100に対するMBSデータの配信方法としてPTM及びPTPのどちらを用いるかを動的に決定できる。
 PTP配信方法及びPTM配信方法は主としてユーザプレーンに関するものである。MBSデータ配信の制御モードとしては、第1配信モード及び第2配信モードの2つの配信モードがある。図7は、第1実施形態に係る配信モードを示す図である。
 図7に示すように、第1配信モード(Delivery mode 1)は、RRCコネクティッド状態のUE100が利用できる配信モードであって、高QoS要件のための配信モードである。第1配信モードは、MBSセッションのうちマルチキャストセッションに用いられる。但し、第1配信モードがブロードキャストセッションに用いられてもよい。第1配信モードは、RRCアイドル状態又はRRCインアクティブ状態のUE100も利用可能であってもよい。
 第1実施形態において、第1配信モードにおけるMBS受信の設定は、UE固有(UE-dedicated)シグナリングにより行われる。例えば、第1配信モードにおけるMBS受信の設定は、gNB200からUE100にユニキャストで送信されるRRCメッセージであるRRC Reconfigurationメッセージ(又はRRC Releaseメッセージ)により行われる。
 MBS受信の設定は、MBSデータを運ぶMBSトラフィックチャネルの設定に関するMBSトラフィックチャネル設定情報(以下、「MTCH設定情報」と呼ぶ)を含む。MTCH設定情報は、MBSセッションに関するMBSセッション情報と、このMBSセッションに対応するMBSトラフィックチャネルのスケジューリング情報とを含む。
 なお、MBSトラフィックチャネルは論理チャネルの一種であって、MTCH(Multicast Traffic Channel)と呼ばれることがある。MBSトラフィックチャネルは、トランスポートチャネルの一種であるDL-SCH(Downlink Shared Channel)にマッピングされる。
 第2配信モード(Delivery mode 2)は、RRCコネクティッド状態のUE100だけではなく、RRCアイドル状態又はRRCインアクティブ状態のUE100が利用できる配信モードであって、低QoS要件のための配信モードである。第2配信モードは、MBSセッションのうちブロードキャストセッションに用いられる。但し、第2配信モードは、マルチキャストセッションにも適用可能であってもよい。
 第2配信モードにおけるMBS受信の設定は、ブロードキャストシグナリングにより行われる。例えば、第2配信モードにおけるMBS受信の設定は、gNB200からUE100にブロードキャストで送信される論理チャネル、例えば、BCCH(Broadcast Control Channel)及び/又はMCCH(Multicast Control Channel)により行われる。以下において、このような制御チャネルをMBS制御チャネルと呼ぶことがある。UE100は、例えば、技術仕様で予め規定された専用のRNTIを用いてBCCH及びMCCHを受信できる。
 なお、ネットワークは、MBSセッションごとに異なるMBSサービスを提供できる。MBSセッションは、TMGI(Temporary Mobile Group Identity)、セッション識別子、及びグループRNTI(Radio Network Temporary Identifier)のうち少なくとも1つにより識別される。TMGI及びセッション識別子の少なくとも一方をMBSセッション識別子(MBSセッションID)と呼ぶ。TMGI、セッション識別子、及びグループRNTIを総括してMBSセッション情報と呼ぶ。
 (移動通信システムの動作)
 第1実施形態に係る移動通信システム1の動作について説明する。図8は、第1実施形態に係る動作を説明するための図である。
 1つのgNB200(1つのセル)が、それぞれ異なるオペレータ(PLMN)に属する複数のCN20により共用されるシナリオを想定する。図8において、1つのgNB200(1つのセル)がCN20A及びCN20Bの2つのCN20により共用される一例を示しているが、1つのgNB200(1つのセル)が3つ以上のCN20により共用されてもよい。CN20AはPLMN#1に属し、CN20BはPLMN#2に属する。ここで、“#1”及び“#2”は、PLMNの識別子(PLMN ID)を意味する。
 gNB200のセルには、マルチキャスト又はブロードキャストで提供されるMBSサービス(MBSデータ)を受信している又は受信に興味を持つ複数のUE100が在圏している。ここで、UE100A1乃至UE100A3はPLMN#1に属し、UE100B1乃至UE100B3はPLMN#2に属する。以下において、UE100A1乃至UE100A3を区別しないときは単にUE100Aと呼び、UE100B1乃至UE100B3を区別しないときは単にUE100Bと呼ぶ。なお、各PLMNに属するUE100の数が3つである一例を示しているが、各PLMNに属するUE100の数は1つ、2つ、又は4つ以上であってもよい。
 このようなシナリオにおいて、各CN20からgNB200を介して同一のMBSサービスを提供する際に、PLMN#1及びPLMN#2に共通の無線リソース(すなわち、同一の無線リソース)を用いてgNB200がMBSデータを送信する。これにより、PLMN#1及びPLMN#2に個別の無線リソース(すなわち、異なる無線リソース)を用いてgNB200がMBSデータを送信する場合に比べて、MBS配信のための無線リソースの使用量を削減できる。
 第1実施形態において、複数のCN20により共用されるgNB200(具体的には、複数のPLMNにより共用されるセルを管理するgNB200)は、複数のCN20のそれぞれから、当該CN20が提供するMBSサービスを示すMBSサービス識別子(MBSサービスID)を受信する。図8の例において、gNB200は、CN20Aが提供するMBSサービスのMBSサービスIDをCN20Aから受信し、CN20Bが提供するMBSサービスのMBSサービスIDをCN20Bから受信する。
 MBSサービスIDは、PLMNに依存しない一意な識別子(すなわち、グローバルな識別子)である。MBSサービスIDは、MBSアプリケーションIDと呼ばれてもよい。gNB200は、CN20から受信するMBSサービスIDに基づいて、当該CN20が提供するMBSサービスを一意に識別できる。したがって、gNB200は、CN20A及びCN20Bのそれぞれから受信するMBSサービスIDに基づいて、CN20A及びCN20Bが提供するMBSサービスが同じであるか否かを特定できる。
 gNB200は、CN20A及びCN20Bから同一のMBSサービスIDを受信したことに応じて、PLMN#1及びPLMN#2に共通の無線リソースを用いて、当該MBSサービスに属するMBSデータを送信する。したがって、CN20A及びCN20Bが提供するMBSサービスが同じである場合、MBS配信のための無線リソースの使用量を削減できる。
 また、CN20A及びCN20Bが提供するMBSサービスが同じである場合、gNB200は、CN20A及びCN20Bのうち一方のCN20からMBSデータを取得すればよい。したがって、gNB200は、他方のCN20からMBSデータを取得しなくても済むため、バックホールの通信リソースの使用量も削減できる。
 gNB200は、CN20A及びCN20Bのそれぞれから、MBSサービスIDを含むMBSセッション開始メッセージを受信してもよい。例えば、gNB200は、CN20AがMBSサービスの提供を開始する際に、当該MBSサービスのMBSサービスIDを含むMBSセッション開始メッセージをCN20Aから受信する。同様に、gNB200は、CN20BがMBSサービスの提供を開始する際に、当該MBSサービスのMBSサービスIDを含むMBSセッション開始メッセージをCN20Bから受信する。これにより、CN20A及びCN20Bのそれぞれが提供するMBSサービスをgNB200が効率的に把握できる。なお、セッション開始メッセージは、MBSセッション開始予定メッセージであってもよい。gNB200は、当該MBSセッション開始予定メッセージをUE100に対してSIB(例えばMBS-SIB等)でブロードキャストしてもよい。UE100は、当該SIBに基づいてセル選択又はセル再選択を行ってもよい。
 gNB200は、CN20A及びCN20Bのそれぞれから受信したMBSサービスIDに基づいて、いずれかのCN20に対して、MBSサービスの提供の要否を示す通知情報を送信してもよい。例えば、gNB200は、CN20A及びCN20Bから同一のMBSサービス識別子を受信したことに応じて、CN20A及びCN20Bのうち一方のCN20に対して、MBSサービスの提供が不要であることを示す通知情報を送信してもよい。これにより、MBSデータを取得するためのバックホールの通信リソースの使用量及びCN20の負荷を削減できる。
 gNB200は、CN20A及びCN20Bのうち少なくとも1つのCN20から、MBSデータを送信するための無線リソース及び/又はCNリソースを他のCN20と共有することを許可するか否かを示す情報を受信してもよい。当該情報は、MBSサービスIDと紐づいていてもよい。当該情報は、リソース共用が許可されるPLMN識別子及び/又はリソース共用した場合にデータ提供(すなわち、gNB200がデータ取得)を行うCN20(もしくはPLMN)を示す情報のいずれかを更に含んでもよい。gNB200は、CN20A及びCN20Bから同一のMBSサービス識別子を受信し、且つ、CN20A及びCN20Bが無線リソース及び/又はCNリソースの共有を許可していることに応じて、当該MBSサービスに属するMBSデータを、PLMN#1及びPLMN#2に共通の無線リソース(すなわち、同一の無線リソース)を用いて送信する。gNB200は、CN20A及びCN20Bのうち少なくとも1つのCN20が、MBSデータを送信するための無線リソース及び/又はCNリソースを他のCN20と共有することを許可していない場合、PLMN#1及びPLMN#2に共通の無線リソース(すなわち、同一の無線リソース)を用いたMBS配信が禁止されてもよい。
 図9は、第1実施形態に係る動作の一例を示す図である。なお、必ずしも図9におけるすべてのステップが実行される必要は無く、一部のステップのみが実行されてもよい。また、図9におけるステップの順番が変更されてもよい。
 ステップS101において、CN20Aに含まれるAMF300Aは、PLMN#1におけるMBSサービスの提供を開始するために、当該MBSサービスに対応するMBSセッション識別子(MBSセッションID)と、当該MBSサービスを一意に識別するMBSサービスIDとを含むMBSセッション開始メッセージをgNB200に送信する。
 ここで、MBSセッションIDは、PLMN固有の識別子である。そのため、CN20A及びCN20Bが同一のMBSサービスを提供する場合でも、CN20A及びCN20BでMBSセッションIDが異なり得る。
 MBSセッション開始メッセージは、NGインターフェイス上で送受信されるメッセージであって、例えば、NG-AP MBS Session Start(Activation)メッセージである。但し、MBSセッション開始メッセージ以外のメッセージでMBSサービスIDがgNB200に通知されてもよい。
 ステップS102において、AMF300AからMBSセッション開始メッセージを受信したgNB200は、応答メッセージをAMF300Aに送信してもよい。ここでは、gNB200は、CN20Aが提供するMBSサービスを他のCN20も提供することを検知していないため、肯定応答メッセージをAMF300Aに送信するものとする。CN20Aは、gNB200からの肯定応答メッセージの受信に応じて、MBSサービスの提供を開始し、gNB200に対するMBSデータの送信を開始してもよい。
 ステップS103において、CN20Bに含まれるAMF300Bは、PLMN#2におけるMBSサービスの提供を開始するために、当該MBSサービスに対応するMBSセッションIDと、当該MBSサービスを一意に識別するMBSサービスIDとを含むMBSセッション開始メッセージをgNB200に送信する。ここで、CN20Bが提供するMBSサービスは、CN20Aが提供するMBSサービスと同じであるものとする。そのため、ステップS103でAMF300Bが送信するMBSサービスIDは、ステップS101でAMF300Aが送信するMBSサービスIDと同じである。
 AMF300A及びAMF300Bのそれぞれは、他のPLMNとの無線リソース(及びバックホール・CNリソース)の共有を許可するか否かを示す情報(許可情報)をMBSセッション開始メッセージに含めて送信してもよい。
 なお、AMF300A及びAMF300Bのそれぞれ(或いは、AMF300A及びAMF300Bが属するCN20A及びCN20B、もしくは、CN20A又はCN20Bに属する他のネットワークファンクション(例えばSMF))は、MBSアプリケーションサーバから例えばAPI(Application Programming Interface)経由でMBSサービスIDを取得してもよい。このようなAPIは、NEF(Network Exposure Function)が提供してもよい。
 また、AMF300A及び/又はAMF300Bは、無線リソース及び/又はCNリソースの共用についてのネゴシエーションをMBSアプリケーションサーバと行っていてもよい。例えば、AMF300A及び/又はAMF300Bは、MBSアプリケーションサーバに対して、自身のCNリソースを他のCN(他のPLMN)と共用することが可能であること、及び、共用を許可する他のCN(他のPLMN)の識別子のうち、いずれかひとつ以上を通知してもよい。MBSアプリケーションサーバは、AMF300A及び/又はAMF300Bに対して、MBSデータを提供するAMF300を指定する情報(つまり当該MBSサービス提供のマスタ側ネットワークを指定する情報)、及び、MBSデータを提供しないAMF300の情報(つまり当該MBSサービス提供のセカンダリ側ネットワークの情報:例えばPLMN識別子)のうち、いずれかひとつ以上を送信してもよい。
 AMF300BからMBSセッション開始メッセージを受信したgNB200は、ステップS103で受信したMBSサービスIDがステップS101で受信したMBSサービスIDと同じであることから、CN20Bが提供を開始しようとするMBSサービスがCN20Aで提供される又は提供中であることを検知し、当該MBSサービスに属するMBSデータをCN20Bから取得しないと判断する。
 ステップS104において、gNB200は、応答メッセージをAMF300Bに送信する。ここでは、gNB200は、CN20Bが提供するMBSサービスをCN20Aも提供することを検知しているため、当該MBSサービスの提供が不要であることを示す応答メッセージをAMF300Bに送信する。当該応答メッセージは、当該MBSセッションが既に別PLMNで提供中であることを示す情報、当該MBSセッションのMBSトンネル接続が不要であることを示す情報、及び当該MBSセッションのMBSトンネル接続は確立するがデータ転送は不要(停止・サスペンド)であることを示す情報のうち少なくとも1つを含んでもよい。CN20Bは、gNB200からの応答メッセージの受信に応じて、MBSサービスの提供を中止し、gNB200に対してMBSデータを送信しない。
 gNB200は、このような応答メッセージを、CN20Aがリソース共有を許可している場合にのみ送信してもよい。或いは、gNB200は、この段階で、リソース共有の許可要求をAMF300Aに対して行い、AMF300が許可した場合のみ当該応答メッセージを送信するとしてもよい。
 ステップS105において、CN20Aは、当該MBSサービスに属するMBSデータをgNB200に送信する。gNB200は、MBSデータを受信する。
 ステップS106において、gNB200は、PLMN#1及びPLMN#2に共通の無線リソース(すなわち、同一の無線リソース)を用いてMBSデータをマルチキャスト又はブロードキャストでUE100A及びUE100Bに送信する。UE100A及びUE100Bのそれぞれは、MBSデータを受信する。
 なお、本動作シーケンスでは、CN20A(PLMN#1)が他のCN(他のPLMN)とのリソース共有を許可していることを前提としている。しかしながら、CN20A(PLMN#1)が他のCN(他のPLMN)とのリソース共有を許可していない場合も想定し得る。このような場合、gNB200は、当該MBSセッションのデータ転送を停止(サスペンド)する旨をAMF300Aに通知(要求)し、当該MBSセッションのデータ転送の開始をAMF300Bに許可(要求)してもよい。このような動作に先立ち、gNB200は、リソース共有を許可するか否かをAMF300Bに問い合わせてもよい。
 このように、第1実施形態において、複数のCN20(複数のPLMN)により共用されるgNB200は、当該複数のCN20のそれぞれから、MBSサービスを一意に識別するMBSサービスIDを受信し、当該複数のCN20が同一のMBSサービスを提供するか否かを判定する。そして、gNB200は、当該複数のCN20が同一のMBSサービスを提供すると判定した場合、当該MBSサービスに属するMBSデータを1つのCN20のみから取得し、複数のPLMNで共通の無線リソースを用いて当該MBSデータをマルチキャスト又はブロードキャストで送信する。これにより、移動通信システム1において効率的なMBS配信を行うことが可能になる。
 [第2実施形態]
 次に、図10乃至図13を参照して、第2実施形態について上述の第1実施形態との相違点を主として説明する。第2実施形態においては、第2配信モード(Delivery mode 2)を主として想定する。移動通信システム1の構成については、上述の第1実施形態と同様である。
 第2実施形態に係る移動通信システム1の動作について説明する。第2実施形態に係る動作は、上述の第1実施形態に係る動作を前提としてもよい。図10は、第2実施形態に係る動作を説明するための図である。
 図10に示すように、gNB200は、MBSトラフィックチャネル(MTCH)の受信に用いるMBSトラフィックチャネル設定情報(MTCH設定情報)を、MBS制御チャネル(例えば、MCCH)上でUE100にブロードキャストで送信する。MTCH設定情報は、MBSセッションIDと、当該MBSセッションIDと対応付けられたMTCHスケジューリング情報とを含む。UE100は、MTCH設定情報に基づいて、自身が受信しようとするMBSサービスのMBSセッションIDと対応付けられたMTCHスケジューリング情報を取得してMTCHを受信する。なお、MTCH設定情報は、PTM設定情報と呼ばれてもよい。
 しかしながら、上述のように、MBSセッションIDはPLMN固有の識別子である。そのため、例えば、PLMN#1に属するCN20Aが提供するMBSサービスをPLMN#2に属するUE100Bが受信する場合、PLMN#1のMBSセッションIDをUE100Bが正しく解釈できない可能性がある。よって、UE100BがMTCH設定情報に基づいてMTCHを受信することができない懸念がある。それとは逆に、PLMN#2に属するCN20Bが提供するMBSサービスをPLMN#1に属するUE100Aが受信する場合にも、同様な問題が生じ得る。
 第2実施形態において、複数のCN20(CN20A及びCN20B)により共用されるgNB200は、当該複数のCN20に対応する複数のPLMN(PLMN#1及びPLMN#2)に属する複数のUE100(UE100A及びUE100B)に対して、MTCHの受信に用いる制御情報(MTCH設定情報)を送信する。MTCH設定情報は、当該複数のPLMNのそれぞれのPLMN識別子を含む。具体的には、MTCH設定情報は、MBSセッションIDとPLMN識別子(PLMN ID)とのセットを複数含む。すなわち、MTCH設定情報は、PLMNごとのMBSセッションIDを含む。これにより、UE100は、MTCH設定情報において、自身が属するPLMNのMBSセッションIDを特定可能になり、MTCHスケジューリング情報を正しく取得できる。
 図11は、第2実施形態に係るMTCH設定情報の一例を示す図である。ここでは、MTCH設定情報がMCCHにより伝送されるものとしている。
 MTCH設定情報は、PLMNごとのMTCH設定(MTCH-Info)を含む。例えば、MTCH設定情報は、PLMN#1用のMTCH設定(MTCH-Info#1)と、PLMN#2用のMTCH設定(MTCH-Info#2)とを含む。ここでは、PLMN#1用のMTCH設定(MTCH-Info#1)及びPLMN#2用のMTCH設定(MTCH-Info#2)が同一のMTCH(すなわち、同一のMBSサービス)を指し示すものとする。
 各MTCH設定(MTCH-Info)は、PLMN IDと、MBSセッションID(TMGI)と、G-RNTIと、MTCHスケジューリング情報(Scheduling info)とを含む。例えば、PLMN#1用のMTCH設定(MTCH-Info#1)は、PLMN#1のPLMN ID“#1”と、PLMN#1のMBSセッションID“TMGI#A”と、G-RNTIと、MTCHスケジューリング情報(Scheduling info)とを含む。PLMN#2用のMTCH設定(MTCH-Info#2)は、PLMN#2のPLMN ID“#2”と、PLMN#2のMBSセッションID“TMGI#B”と、G-RNTIと、MTCHスケジューリング情報(Scheduling info)とを含む。
 PLMN#1に属するUE100Aは、図11に示すMTCH設定情報を受信する。UE100Aは、PLMN#1のMBSセッションID“TMGI#A”の受信に興味を持つものとする。この場合、UE100Aは、PLMN#1のPLMN ID“#1”を含むMTCH設定(MTCH-Info#1)を特定する。UE100Aは、特定したMTCH設定(MTCH-Info#1)にMBSセッションID“TMGI#A”が含まれることから、“TMGI#A”のMBSサービスが提供されることを認識し、特定したMTCH設定(MTCH-Info#1)に含まれるG-RNTI及びMTCHスケジューリング情報(Scheduling info)に基づいてMTCHの受信を試みる。具体的には、MTCHスケジューリング情報(Scheduling info)が示すタイミングにおいてPDCCHを監視し、G-RNTIを用いてPDCCHの復号を試みる。そして、PDCCHが示す無線リソース(PDSCH)においてMBSデータを受信する。
 同様に、PLMN#2に属するUE100Bは、図11に示すMTCH設定情報を受信する。UE100Bは、PLMN#2のMBSセッションID“TMGI#B”の受信に興味を持つものとする。この場合、UE100Bは、PLMN#2のPLMN ID“#2”を含むMTCH設定(MTCH-Info#2)を特定する。UE100Bは、特定したMTCH設定(MTCH-Info#2)にMBSセッションID“TMGI#B”が含まれることから、“TMGI#B”のMBSサービスが提供されることを認識し、特定したMTCH設定(MTCH-Info#2)に含まれるG-RNTI及びMTCHスケジューリング情報(Scheduling info)に基づいてMTCHの受信を試みる。具体的には、MTCHスケジューリング情報(Scheduling info)が示すタイミングにおいてPDCCHを監視し、G-RNTIを用いてPDCCHの復号を試みる。そして、PDCCHが示す無線リソース(PDSCH)においてMBSデータを受信する。
 ここで、PLMN#1及びPLMN#2に共通の無線リソースを用いてgNB200がMBSデータを送信する場合、PLMN#1のMTCH設定(MTCH-Info#1)に含まれるG-RNTI及びMTCHスケジューリング情報(Scheduling info)と、PLMN#2のMTCH設定(MTCH-Info#2)に含まれるG-RNTI及びMTCHスケジューリング情報(Scheduling info)と、は同じ内容になる。このような同一の情報を二重で送信することは無線リソースの利用効率の低下につながる。
 したがって、MTCH設定情報においてG-RNTI及びMTCHスケジューリング情報(Scheduling info)を統一化する構成としてもよい。図12は、第2実施形態に係るMTCH設定情報の他の例を示す図である。ここでは、MTCH設定情報がMCCHにより伝送されるものとしている。
 図12に示すように、MTCH設定情報は、PLMN#1及びPLMN#2に共通の情報要素としてMTCH-Contを有する。図12において、MTCH設定情報が、MTCH-Cont#a、MTCH-Cont#b、及びMTCH-Cont#cの3つのMTCH-Contを有する一例を示している。ここで、“#a”、“#b”、“#c”は、MTCH-Contのインデックスである。PLMN#1のMTCH設定(MTCH-Info#1)は、G-RNTI及びMTCHスケジューリング情報(Scheduling info)に代えて、MTCH-Contのインデックス“#a”を有する。同様に、PLMN#2のMTCH設定(MTCH-Info#2)は、G-RNTI及びMTCHスケジューリング情報(Scheduling info)に代えて、MTCH-Contのインデックス“#a”を有する。
 PLMN#1に属するUE100Aは、図12に示すMTCH設定情報を受信する。UE100Aは、PLMN#1のMBSセッションID“TMGI#A”の受信に興味を持つものとする。この場合、UE100Aは、PLMN#1のPLMN ID“#1”を含むMTCH設定(MTCH-Info#1)を特定する。UE100Aは、特定したMTCH設定(MTCH-Info#1)にMBSセッションID“TMGI#A”が含まれることから、“TMGI#A”のMBSサービスが提供されることを認識し、特定したMTCH設定(MTCH-Info#1)に含まれるMTCH-Contのインデックス“#a”に基づいて、MTCH-Cont#a中のG-RNTI及びMTCHスケジューリング情報(Scheduling info)を取得し、MTCHの受信を試みる。
 同様に、PLMN#2に属するUE100Bは、図12に示すMTCH設定情報を受信する。UE100Bは、PLMN#2のMBSセッションID“TMGI#B”の受信に興味を持つものとする。この場合、UE100Bは、PLMN#2のPLMN ID“#2”を含むMTCH設定(MTCH-Info#2)を特定する。UE100Bは、特定したMTCH設定(MTCH-Info#2)にMBSセッションID“TMGI#B”が含まれることから、“TMGI#B”のMBSサービスが提供されることを認識し、特定したMTCH設定(MTCH-Info#2)に含まれるMTCH-Contのインデックス“#a”に基づいて、MTCH-Cont#a中のG-RNTI及びMTCHスケジューリング情報(Scheduling info)を取得し、MTCHの受信を試みる。
 第2実施形態において、MCCH(MTCH設定情報)は、PLMNごとの隣接セル情報及び/又は隣接周波数情報を含んでもよい。例えば、MTCH-Info#1は、PLMN#1でMBSサービスを提供する隣接セル及び/又は隣接周波数の情報を含んでもよい。MTCH-Info#2は、PLMN#2でMBSサービスを提供する隣接セル及び/又は隣接周波数の情報を含んでもよい。
 図13は、第2実施形態に係る動作の一例を示す図である。なお、必ずしも図13におけるすべてのステップが実行される必要は無く、一部のステップのみが実行されてもよい。
 gNB200は、同一のMBSサービスにおける異なるPLMN(異なるMBSセッション)のMBSデータを、同一の無線リソース(同一のMTCH)で送信することを決定する。
 ステップS201において、gNB200は、例えばMCCH上で、MTCH設定情報を送信する。上述のように、MTCH設定情報は、複数のMTCH設定を含む。各MTCH設定は、PLMN ID及びTMGI(MBSセッションID)を含む。各MTCH設定は、G-RNTI及びスケジューリング情報をさらに含む。UE100A及びUE100Bのそれぞれは、MTCH設定情報を受信する。
 ステップS202において、gNB200は、MTCH設定情報が示すスケジューリングに従ってMTCH上でMBSデータを送信する。UE100Aは、ステップS201で受信したMTCH設定情報に基づいて、PLMN#1のTMGI#AのMTCHを受信する。UE100Bは、ステップS201で受信したMTCH設定情報に基づいて、PLMN#2のTMGI#BのMTCHを受信する。なお、UE100A及びUE100Bは、実際には同一のMTCHを受信する。
 このように、第2実施形態において、複数のCN20(CN20A及びCN20B)により共用されるgNB200は、当該複数のCN20に対応する複数のPLMN(PLMN#1及びPLMN#2)に属する複数のUE100(UE100A及びUE100B)に対して、MTCHの受信に用いるMTCH設定情報を送信する。MTCH設定情報は、MBSセッションIDとPLMN IDとのセットを複数含む。すなわち、MTCH設定情報は、PLMNごとのMBSセッションIDを含む。これにより、UE100は、MTCH設定情報において、自身が属するPLMNのMBSセッションIDを特定可能になり、MTCHを正しく受信できる。
 なお、第2実施形態は、同一のMTCHを用いない場合にも適用可能である。すなわち、複数のCN20(CN20A及びCN20B)によりgNB200が共用されるシナリオであれば第2実施形態を適用可能である。
 [第2実施形態の変更例]
 次に、図14乃至図16を参照して、第2実施形態の変更例について上述の第2実施形態との相違点を主として説明する。本変更例において、gNB200の1つのセル内に複数のMCCHが設けられることを想定する。また、MCCHがPLMNごとに設けられるものとする。すなわち、MCCHはPLMNに固有である。
 図14は、本変更例に係る複数のMCCHの一例を示す図である。
 図14に示すように、gNB200は、BCCHにより送信するシステム情報ブロック(SIB)により、MBS制御チャネル設定情報、具体的には、MCCHの設定情報(スケジューリング情報)をUE100に提供する。以下において、このようなSIBをMBS-SIBと呼ぶことがある。UE100は、gNB200から受信するMBS-SIBに基づいてMCCH(すなわち、MTCH設定情報)を受信し、受信したMCCHに基づいてMTCH(すなわち、MBSデータ)を受信する。本変更例において、gNB200は、1つの自セル内に複数のMCCH(Multiple MCCHs)を構成する。各MCCHは、互いにスケジューリング(例えば送信周期)が異なっていてもよい。
 図15は、本変更例に係るMBS-SIB及びMTCH設定情報の一例を示す図である。
 図15に示すように、MBS-SIBは、PLMN IDとMCCH ID(MBS制御チャネル識別子)とのセットを複数含む。すなわち、MBS-SIBは、PLMNごとにMCCH IDを含む。MCCH IDは、MCCHを一意に識別する識別子である。MBS-SIBは、MCCH IDと対応付けられたMCCH設定情報(スケジューリング情報)を含んでもよい。
 PLMN#1に属するUE100Aは、図15に示すMBS-SIBを受信する。UE100Aは、MBS-SIBに基づいて、PLMN#1のPLMN ID“#1”と対応付けられたMCCH ID“#1”を特定し、MCCH ID“#1”が示すMCCH(MTCH設定情報)を受信する。その後の動作は上述の第2実施形態と同様である。
 PLMN#2に属するUE100Bは、図15に示すMBS-SIBを受信する。UE100Bは、MBS-SIBに基づいて、PLMN#2のPLMN ID“#2”と対応付けられたMCCH ID“#2”を特定し、MCCH ID“#2”が示すMCCH(MTCH設定情報)を受信する。その後の動作は上述の第2実施形態と同様である。
 図16は、本変更例に係る動作の一例を示す図である。なお、必ずしも図16におけるすべてのステップが実行される必要は無く、一部のステップのみが実行されてもよい。
 gNB200は、同一のMBSサービスにおける異なるPLMN(異なるMBSセッション)のMBSデータを、同一のリソース(同一のMTCH)で送信することを決定する。
 ステップS211において、gNB200は、MBS-SIBを送信する。上述のように、MBS-SIBは、PLMN IDとMCCH IDとを紐づける情報を含む。UE100A及びUE100Bのそれぞれは、MBS-SIBを受信する。
 ステップS212において、gNB200は、複数のMCCHを送信する。各MCCHは、MTCH設定情報、すなわち、TMGIとG-RNTIとMTCHスケジューリング情報とを含む。また、各MCCHは、MCCH IDを含む。UE100A及びUE100Bのそれぞれは、ステップS211で受信したMBS-SIBに基づいて、自身が属するPLMNに対応するMCCHを受信する。
 ステップS213において、gNB200は、MTCH設定情報が示すスケジューリングに従ってMTCH上でMBSデータを送信する。UE100Aは、ステップS212で受信したMCCHに基づいて、PLMN#1のTMGI#AのMTCHを受信する。UE100Bは、ステップS212で受信したMCCHに基づいて、PLMN#2のTMGI#BのMTCHを受信する。UE100A及びUE100Bは、実際には同一のMTCHを受信している。
 本変更例において、MCCHはPLMNに固有である場合を想定したが、PLMNに依存しないMCCHを想定してもよい。例えば、FTA(Free-to-Air)又はROM(Receive Only Mode)等を想定した場合、MBS-SIBは、PLMN IDを含まなくてもよい。もしくは、MBS-SIBは、MCCHがPLMNに依存しない旨の情報を含んでもよい(例えば、ROM=true)。
 [その他の実施形態]
 上述の実施形態において、MBSデータが暗号化(例えばIPsec)されていてもよい。このような暗号化は、PLMN固有のセキュリティーキーにより行われていることも想定される。PLMNが提供するMBSデータが暗号化されている場合、当該PLMNと異なるPLMNに属するUE100が当該MBSデータを受信しても復号(暗号解除)できない懸念がある。そのため、暗号化されたMBSデータをgNB200に送信するCN20は、gNB200を介してUE100にセキュリティーキーを提供してもよい。例えば、CN20は、図9のステップS101又はS103でセキュリティーキーをgNB200に通知し、gNB200は、例えばRRCメッセージにより当該セキュリティーキーをUE100に通知する。或いは、CN20は、NASシグナリングにより当該セキュリティーキーをUE100に通知してもよいし、アプリケーションレイヤからUE100へセキュリティーキーを通知してもよい。
 上述の実施形態において、PLMNは、NPN(Non-Public Network)であってもよい。PLMN IDは、NPN IDと読み替えてもよい。PLMNとNPNとがRANを共用(Sharing)してもよい。
 上述の各動作フローは、別個独立に実施する場合に限らず、2以上の動作フローを組み合わせて実施可能である。例えば、1つの動作フローの一部のステップを他の動作フローに追加してもよい。また、1つの動作フローの一部のステップを他の動作フローの一部のステップと置換してもよい。
 上述の実施形態及び実施例において、基地局がNR基地局(gNB)である一例について説明したが基地局がLTE基地局(eNB)又は6G基地局であってもよい。また、基地局は、IAB(Integrated Access and Backhaul)ノード等の中継ノードであってもよい。基地局は、IABノードのDU(Distributed Unit)であってもよい。また、ユーザ装置は、IABノードのMT(Mobile Termination)であってもよい。
 UE100又はgNB200が行う各処理をコンピュータに実行させるプログラムが提供されてもよい。プログラムは、コンピュータ読取り可能媒体に記録されていてもよい。コンピュータ読取り可能媒体を用いれば、コンピュータにプログラムをインストールすることが可能である。ここで、プログラムが記録されたコンピュータ読取り可能媒体は、非一過性の記録媒体であってもよい。非一過性の記録媒体は、特に限定されるものではないが、例えば、CD-ROM又はDVD-ROM等の記録媒体であってもよい。また、UE100又はgNB200が行う各処理を実行する回路を集積化し、UE100又はgNB200の少なくとも一部を半導体集積回路(チップセット、SoC:System on a chip)として構成してもよい。
 本開示で使用されている「に基づいて(based on)」、「に応じて(depending on)」という記載は、別段に明記されていない限り、「のみに基づいて」、「のみに応じて」を意味しない。「に基づいて」という記載は、「のみに基づいて」及び「に少なくとも部分的に基づいて」の両方を意味する。同様に、「に応じて」という記載は、「のみに応じて」及び「に少なくとも部分的に応じて」の両方を意味する。また、「取得する(obtain/acquire)」は、記憶されている情報の中から情報を取得することを意味してもよく、他のノードから受信した情報の中から情報を取得することを意味してもよく、又は、情報を生成することにより当該情報を取得することを意味してもよい。「含む(include)」、「備える(comprise)」、及びそれらの変形の用語は、列挙する項目のみを含むことを意味せず、列挙する項目のみを含んでもよいし、列挙する項目に加えてさらなる項目を含んでもよいことを意味する。また、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。さらに、本開示で使用されている「第1」、「第2」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定するものではない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本明細書で使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみがそこで採用され得ること、又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。本開示において、例えば、英語でのa,an,及びtheのように、翻訳により冠詞が追加された場合、これらの冠詞は、文脈から明らかにそうではないことが示されていなければ、複数のものを含むものとする。
 以上、図面を参照して実施形態について詳しく説明したが、具体的な構成は上述のものに限られることはなく、要旨を逸脱しない範囲内において様々な設計変更等をすることが可能である。
 本願は、日本国特許出願第2021-118340号(2021年7月16日出願)の優先権を主張し、その内容の全てが本願明細書に組み込まれている。
1    :移動通信システム
10   :RAN(NG-RAN/5G RAN)
20   :CN(5GC/5G CN)
100  :UE
110  :受信部
120  :送信部
130  :制御部
200  :gNB
210  :送信部
220  :受信部
230  :制御部
240  :バックホール通信部
300  :AMF

Claims (16)

  1.  移動通信システムで用いる通信制御方法であって、
     複数のコアネットワークにより共用される基地局が、前記複数のコアネットワークのそれぞれから、当該コアネットワークが提供するMBSサービスを示すMBSサービス識別子を受信することと、
     前記基地局が、前記複数のコアネットワークに対応する複数のPLMN(Public Land Mobile Network)に属する複数のユーザ装置に対して、前記MBSサービスに属するMBSデータをマルチキャスト又はブロードキャストで送信することと、を有し、
     前記MBSサービス識別子は、PLMNに依存しない一意な識別子である
     通信制御方法。
  2.  前記送信することは、前記基地局が前記複数のコアネットワークから同一のMBSサービス識別子を受信したことに応じて、前記複数のPLMNに共通の無線リソースを用いて前記MBSデータを送信することを含む
     請求項1に記載の通信制御方法。
  3.  前記受信することは、前記複数のコアネットワークのそれぞれから、前記MBSサービス識別子を含むMBSセッション開始メッセージを受信することを含む
     請求項1又は2に記載の通信制御方法。
  4.  前記基地局が、前記複数のコアネットワークのそれぞれから、当該コアネットワークが配信するMBSサービスに対応するMBSセッション識別子を受信することをさらに有し、
     前記MBSセッション識別子は、PLMN固有の識別子であり、
     前記MBSサービス識別子は、前記MBSセッション識別子と異なる識別子である
     請求項1又は2に記載の通信制御方法。
  5.  前記基地局が、前記複数のコアネットワークのそれぞれから受信した前記MBSサービス識別子に基づいて、いずれかのコアネットワークに対して、前記MBSサービスの提供の要否を示す通知情報を送信することをさらに有する
     請求項1又は2に記載の通信制御方法。
  6.  前記通知情報を送信することは、前記基地局が前記複数のコアネットワークから同一のMBSサービス識別子を受信したことに応じて、前記いずれかのコアネットワークに対して、前記MBSサービスの提供が不要であることを示す前記通知情報を送信することを含む
     請求項5に記載の通信制御方法。
  7.  前記基地局が、前記複数のコアネットワークのいずれかのコアネットワークから、前記MBSデータを送信するための無線リソース及び/又はコアネットワークリソースを他のコアネットワークと共有することを許可するか否かを示す情報を受信することをさらに有する
     請求項1又は2に記載の通信制御方法。
  8.  前記MBSデータを送信することは、前記複数のコアネットワークから同一のMBSサービス識別子を受信し、且つ、前記複数のコアネットワークが前記無線リソース及び/又は前記コアネットワークリソースの共有を許可していることに応じて、前記複数のPLMNに共通の前記無線リソースを用いて前記MBSデータを送信することを含む
     請求項7に記載の通信制御方法。
  9.  移動通信システムにおいて複数のコアネットワークにより共用される基地局であって、
     前記複数のコアネットワークのそれぞれから、当該コアネットワークが提供するMBSサービスを示すMBSサービス識別子を受信するネットワーク通信部と、
     前記複数のコアネットワークに対応する複数のPLMNに属する複数のユーザ装置に対して、前記MBSサービスに属するMBSデータをマルチキャスト又はブロードキャストで送信する無線通信部と、を有し、
     前記MBSサービス識別子は、PLMNに依存しない一意な識別子である
     基地局。
  10.  移動通信システムで用いる通信制御方法であって、
     複数のコアネットワークにより共用される基地局が、前記複数のコアネットワークに対応する複数のPLMNに属する複数のユーザ装置に対して、MBSトラフィックチャネルの受信及び/又はMBS制御チャネルの受信に用いる制御情報を送信することと、
     前記基地局が、前記MBSトラフィックチャネルを用いて、前記複数のユーザ装置に対してMBSデータをマルチキャスト又はブロードキャストで送信することと、を有し、
     前記制御情報は、前記複数のPLMNのそれぞれのPLMN識別子を含む
     通信制御方法。
  11.  前記制御情報を送信することは、前記MBS制御チャネルを用いて、前記MBSトラフィックチャネルの受信に用いるMBSトラフィックチャネル設定情報を送信することを含み、
     前記MBSトラフィックチャネル設定情報は、PLMNに固有のMBSセッション識別子と、当該PLMNの前記PLMN識別子とのセットを複数含む
     請求項10に記載の通信制御方法。
  12.  前記MBSトラフィックチャネル設定情報を受信したユーザ装置が、当該ユーザ装置が属するPLMNの前記PLMN識別子と対応付けられた前記MBSセッション識別子に基づいて、前記MBSトラフィックチャネルの受信を行うことをさらに有する
     請求項11に記載の通信制御方法。
  13.  前記制御情報を送信することは、システム情報ブロックを用いて、前記MBS制御チャネルの受信に用いるMBS制御チャネル設定情報を送信することを含み、
     前記MBS制御チャネル設定情報は、PLMNに固有の前記MBS制御チャネルを示すMBS制御チャネル識別子と、当該PLMNの前記PLMN識別子とのセットを複数含む
     請求項10に記載の通信制御方法。
  14.  前記MBS制御チャネル設定情報を受信したユーザ装置が、当該ユーザ装置が属するPLMNの前記PLMN識別子と対応付けられた前記MBS制御チャネル識別子に基づいて、前記PLMNに固有の前記MBS制御チャネルの受信を行うことをさらに有する
     請求項13に記載の通信制御方法。
  15.  移動通信システムにおいて複数のコアネットワークにより共用される基地局であって、
     前記複数のコアネットワークに対応する複数のPLMNに属する複数のユーザ装置に対して、MBSトラフィックチャネルの受信及び/又はMBS制御チャネルの受信に用いる制御情報を送信する無線通信部を備え、
     前記無線通信部は、前記MBSトラフィックチャネルを用いて、前記複数のユーザ装置に対してMBSデータをマルチキャスト又はブロードキャストで送信し、
     前記制御情報は、前記複数のPLMNのそれぞれのPLMN識別子を含む
     基地局。
  16.  移動通信システムで用いるユーザ装置であって、
     複数のコアネットワークにより共用される基地局から、MBSトラフィックチャネルの受信及び/又はMBS制御チャネルの受信に用いる制御情報を受信する無線通信部を備え、
     前記無線通信部は、前記MBSトラフィックチャネルを用いて、前記複数のコアネットワークに対応する複数のPLMNに属する複数のユーザ装置に対して前記基地局からマルチキャスト又はブロードキャストで送信されるMBSデータを受信し、
     前記制御情報は、前記複数のPLMNのそれぞれのPLMN識別子を含む
     ユーザ装置。
PCT/JP2022/027461 2021-07-16 2022-07-12 通信制御方法、基地局、及びユーザ装置 WO2023286784A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023534826A JPWO2023286784A5 (ja) 2022-07-12 通信制御方法、基地局、移動通信システム及びプログラム
US18/414,334 US20240155733A1 (en) 2021-07-16 2024-01-16 Communication control method, base station, and user equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021118340 2021-07-16
JP2021-118340 2021-07-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/414,334 Continuation US20240155733A1 (en) 2021-07-16 2024-01-16 Communication control method, base station, and user equipment

Publications (1)

Publication Number Publication Date
WO2023286784A1 true WO2023286784A1 (ja) 2023-01-19

Family

ID=84919355

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/027461 WO2023286784A1 (ja) 2021-07-16 2022-07-12 通信制御方法、基地局、及びユーザ装置

Country Status (2)

Country Link
US (1) US20240155733A1 (ja)
WO (1) WO2023286784A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2627245A (en) * 2023-02-16 2024-08-21 Nec Corp Communication system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008093472A1 (ja) * 2007-01-30 2008-08-07 Nec Corporation 移動通信システム、マルチキャストデータ配信方法、コアネットワーク装置、およびアクセスネットワーク装置
JP2016538762A (ja) * 2013-10-24 2016-12-08 クアルコム,インコーポレイテッド 発展型マルチメディアブロードキャストマルチキャストサービスのネットワーク共有およびローミングサポート

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008093472A1 (ja) * 2007-01-30 2008-08-07 Nec Corporation 移動通信システム、マルチキャストデータ配信方法、コアネットワーク装置、およびアクセスネットワーク装置
JP2016538762A (ja) * 2013-10-24 2016-12-08 クアルコム,インコーポレイテッド 発展型マルチメディアブロードキャストマルチキャストサービスのネットワーク共有およびローミングサポート

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON, QUALCOMM INC., NOKIA, NOKIA SHANGHAI-BELL: "KI #1, Conclusion Update and Resolve EN on TMGI", 3GPP DRAFT; S2-2101410, vol. SA WG2, 10 March 2021 (2021-03-10), Electronic, Elbonia, pages 1 - 3, XP051984985 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2627245A (en) * 2023-02-16 2024-08-21 Nec Corp Communication system
WO2024172040A1 (en) * 2023-02-16 2024-08-22 Nec Corporation Access network node, second communication node, user equipment, and methods of them

Also Published As

Publication number Publication date
US20240155733A1 (en) 2024-05-09
JPWO2023286784A1 (ja) 2023-01-19

Similar Documents

Publication Publication Date Title
JP7518245B2 (ja) 通信制御方法、ユーザ装置及びプロセッサ
US10448363B2 (en) Base station, user terminal, and communication control method
JP6749914B2 (ja) 無線端末
WO2022085717A1 (ja) 通信制御方法
WO2022239690A1 (ja) 通信制御方法及びユーザ装置
US20240155733A1 (en) Communication control method, base station, and user equipment
WO2022030452A1 (ja) 通信制御方法、基地局、及びユーザ装置
JP7280443B2 (ja) 通信制御方法、基地局、ユーザ装置及びプロセッサ
JP7299429B2 (ja) 通信制御方法及び基地局
WO2022211127A1 (ja) 通信制御方法及び基地局
WO2022085644A1 (ja) 通信制御方法
WO2023063374A1 (ja) 通信方法及びユーザ装置
WO2023002988A1 (ja) 通信方法
WO2023074529A1 (ja) 通信方法
JP7259136B2 (ja) 通信制御方法、基地局、ユーザ装置及びプロセッサ
WO2022024945A1 (ja) 通信制御方法
WO2023013607A1 (ja) 通信方法
WO2023068263A1 (ja) 通信方法
WO2024162424A1 (ja) 通信方法
WO2022085646A1 (ja) 通信制御方法
WO2024048772A1 (ja) 通信方法及びユーザ装置
WO2022085573A1 (ja) 通信制御方法
WO2023013608A1 (ja) 通信方法
WO2023153452A1 (ja) 通信方法及びユーザ装置
WO2022030518A1 (ja) 通信制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22842127

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023534826

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22842127

Country of ref document: EP

Kind code of ref document: A1