WO2017026257A1 - 圧電薄膜素子の製造方法 - Google Patents

圧電薄膜素子の製造方法 Download PDF

Info

Publication number
WO2017026257A1
WO2017026257A1 PCT/JP2016/071718 JP2016071718W WO2017026257A1 WO 2017026257 A1 WO2017026257 A1 WO 2017026257A1 JP 2016071718 W JP2016071718 W JP 2016071718W WO 2017026257 A1 WO2017026257 A1 WO 2017026257A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
thin film
piezoelectric
piezoelectric thin
single crystal
Prior art date
Application number
PCT/JP2016/071718
Other languages
English (en)
French (fr)
Inventor
井上 憲司
吉川 彰
雄二 大橋
有為 横田
圭 鎌田
俊介 黒澤
Original Assignee
株式会社Piezo Studio
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Piezo Studio, 国立大学法人東北大学 filed Critical 株式会社Piezo Studio
Priority to US15/750,821 priority Critical patent/US10771032B2/en
Priority to DE112016003608.6T priority patent/DE112016003608T5/de
Priority to JP2017534161A priority patent/JP6631925B2/ja
Publication of WO2017026257A1 publication Critical patent/WO2017026257A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H3/04Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks for obtaining desired frequency or temperature coefficient
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/13Driving means, e.g. electrodes, coils for networks consisting of piezoelectric or electrostrictive materials
    • H03H9/131Driving means, e.g. electrodes, coils for networks consisting of piezoelectric or electrostrictive materials consisting of a multilayered structure
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/171Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator implemented with thin-film techniques, i.e. of the film bulk acoustic resonator [FBAR] type
    • H03H9/172Means for mounting on a substrate, i.e. means constituting the material interface confining the waves to a volume
    • H03H9/175Acoustic mirrors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/06Forming electrodes or interconnections, e.g. leads or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/08Shaping or machining of piezoelectric or electrostrictive bodies
    • H10N30/085Shaping or machining of piezoelectric or electrostrictive bodies by machining
    • H10N30/086Shaping or machining of piezoelectric or electrostrictive bodies by machining by polishing or grinding
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H2003/025Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks the resonators or networks comprising an acoustic mirror
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H3/04Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks for obtaining desired frequency or temperature coefficient
    • H03H2003/0414Resonance frequency
    • H03H2003/0421Modification of the thickness of an element
    • H03H2003/0435Modification of the thickness of an element of a piezoelectric layer
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H3/04Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks for obtaining desired frequency or temperature coefficient
    • H03H2003/0414Resonance frequency
    • H03H2003/045Modification of the area of an element
    • H03H2003/0457Modification of the area of an element of an electrode
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/0538Constructional combinations of supports or holders with electromechanical or other electronic elements
    • H03H9/0547Constructional combinations of supports or holders with electromechanical or other electronic elements consisting of a vertical arrangement
    • H03H9/0561Constructional combinations of supports or holders with electromechanical or other electronic elements consisting of a vertical arrangement consisting of a multilayered structure
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezo-electric or electrostrictive material
    • H03H9/56Monolithic crystal filters
    • H03H9/564Monolithic crystal filters implemented with thin-film techniques

Definitions

  • the present invention relates to a method for manufacturing a piezoelectric thin film element including a piezoelectric thin film provided on an acoustic reflection film.
  • a piezoelectric thin film filter using a piezoelectric thin film resonator is used as a band-pass filter for selectively transmitting or receiving only a desired signal.
  • a piezoelectric thin film filter for example, a piezoelectric thin film resonator (Thin Film Bulk Acoustic Resonator: FBAR) filter is known.
  • FBAR Thi Film Bulk Acoustic Resonator
  • a piezoelectric thin film sandwiched between electrodes is formed on a substrate of Si or the like, and a gap is provided on the substrate side of the electrode forming portion so that the vibration energy does not leak to the Si substrate.
  • an SMR (Solidty-Mounted-Resonator) filter using an acoustic reflecting film instead of the air gap is also used. These are collectively referred to as BAW (Bulk Acousitic Wave) filters.
  • the operation principle of the BAW filter will be briefly described.
  • the piezoelectric thin film resonates at a frequency corresponding to the piezoelectric thin film, thereby forming a resonator.
  • a ladder circuit or the like is formed by connecting wiring to each electrode of the piezoelectric thin film resonator, desired filter characteristics can be obtained.
  • the BAW filter is a filter using a piezoelectric thin film resonator
  • the quality factor Q value of the piezoelectric thin film resonator needs to be sufficiently high.
  • it is ideal to completely confine the vibration energy generated by the resonance in the piezoelectric thin film.
  • vibration energy leaks due to a propagation mode in a transverse direction perpendicular to the thickness direction, and unnecessary vibration (spurious) occurs.
  • one electrode suppresses spurious due to the propagation mode in the lateral direction by making the vicinity of the edge thick.
  • spurious due to the propagation mode in the lateral direction is suppressed by thinning the excitation region of the piezoelectric thin film and thickening the non-excitation region at the periphery.
  • a depression is formed in the support substrate in the excitation region where the piezoelectric thin film is thinned, and the vibration excited in the excitation region does not interfere with the support substrate.
  • a single crystal substrate having a thickness capable of withstanding its own weight is bonded to a support substrate provided with a gap, and then thinned to a desired thickness by mechanical polishing or the like to obtain a predetermined frequency.
  • the piezoelectric thin film is formed without depending on the film formation by deposition or the like, there is no problem that the crystallinity is influenced by the base, and good piezoelectric performance can be obtained. I can expect that.
  • Patent Document 1 is effective in suppressing spurious in the piezoelectric layer, but since the thickness of the electrode in the vibrating portion is changed, there is a possibility that vibration different from the main vibration may occur. There is a problem of generating another spurious.
  • the present invention has been made to solve the above-described problems, and an object thereof is to improve the Q value of a piezoelectric thin film element in a state where unnecessary vibrations are suppressed.
  • a first electrode having a predetermined planar shape having an area smaller than that of a piezoelectric single crystal substrate is provided on one surface of a piezoelectric single crystal substrate composed of a single crystal of a piezoelectric material.
  • the electrode forming region where the first electrode of the piezoelectric thin film is formed The electrode formation region and the surrounding first electrode are formed Is the difference in polishing pressure between the have not electrode-free area in to a state of being thinner than the electrode-free area.
  • a dummy electrode not related to vibration of the piezoelectric thin film is formed around the first electrode on one surface of the piezoelectric single crystal substrate so as to be insulated from the first electrode.
  • the region where the first electrode and the dummy electrode are formed may be used as the electrode formation region.
  • the method for manufacturing a piezoelectric thin film element according to the present invention includes a first surface having a predetermined planar shape having an area smaller than that of the piezoelectric single crystal substrate on one surface of the piezoelectric single crystal substrate made of the single crystal of the piezoelectric material.
  • the piezoelectric thin film is obtained by polishing and thinning the piezoelectric single crystal substrate from the other surface of the piezoelectric single crystal substrate to form the first electrode.
  • the electrode forming region is preferably formed thinner than the electrode non-forming region due to a difference in polishing pressure between the electrode forming region and the electrode non-forming region where the first electrode around the electrode forming region is not formed. .
  • the present invention it is possible to obtain an excellent effect that the Q value of the piezoelectric thin film element can be improved in a state where unnecessary vibration is suppressed.
  • FIG. 1A is a cross-sectional view showing a state in each step for explaining a method of manufacturing a piezoelectric thin film element in the first embodiment of the present invention.
  • FIG. 1B is a cross-sectional view showing a state in each step for explaining the method of manufacturing the piezoelectric thin film element in the first embodiment of the present invention.
  • FIG. 1C is a cross-sectional view showing a state in each step for explaining the method of manufacturing the piezoelectric thin film element in the first embodiment of the present invention.
  • FIG. 1D is a cross-sectional view showing a state in each step for illustrating the method for manufacturing the piezoelectric thin film element in the first embodiment of the present invention.
  • FIG. 1E is a cross-sectional view showing a state in each step for explaining the method of manufacturing the piezoelectric thin film element in the first embodiment of the present invention.
  • FIG. 1F is a cross-sectional view showing a state in each step for explaining the method for manufacturing the piezoelectric thin film element in the first embodiment of the present invention.
  • FIG. 2A is a cross-sectional view showing a state in each step for explaining the method for manufacturing a piezoelectric thin film element in the second embodiment of the present invention.
  • FIG. 2B is a cross-sectional view showing a state in each step for explaining the method of manufacturing the piezoelectric thin film element in the second embodiment of the present invention.
  • FIG. 2C is a cross-sectional view showing a state in each step for explaining the method of manufacturing the piezoelectric thin film element in the second embodiment of the present invention.
  • FIG. 2D is a cross-sectional view showing a state in each step for describing the method for manufacturing the piezoelectric thin film element in the second embodiment of the present invention.
  • FIG. 2E is a cross-sectional view showing a state in each step for describing the method for manufacturing the piezoelectric thin film element in the second embodiment of the present invention.
  • FIG. 2F is a cross-sectional view showing a state in each step for describing the method for manufacturing the piezoelectric thin film element in the second embodiment of the present invention.
  • FIG. 3A is a cross-sectional view showing another configuration example of the piezoelectric thin film element in accordance with the second exemplary embodiment of the present invention.
  • FIG. 3B is a cross-sectional view showing another configuration example of the piezoelectric thin film element in accordance with the second exemplary embodiment of the present invention.
  • FIG. 3C is a cross-sectional view showing another configuration example of the piezoelectric thin film element in accordance with the second exemplary embodiment of the present invention.
  • FIGS. 1A to 1F are cross-sectional views showing states in respective steps for explaining a method of manufacturing a piezoelectric thin film element (piezoelectric resonator) according to Embodiment 1 of the present invention.
  • a first electrode 102 having a shape is formed (first step).
  • the piezoelectric single crystal substrate 101 has a plurality of element regions each serving as a piezoelectric resonator, and the first electrode 102 is formed in each element region.
  • One element region may be set in the piezoelectric single crystal substrate 101.
  • the central portion of the element region in plan view and the central portion of the first electrode 102 in plan view are substantially overlapped.
  • 1A to 1F show one element region.
  • the piezoelectric single crystal substrate 101 is an AlN single crystal substrate manufactured by using, for example, a sublimation method, the main surface is a c-plane, and the plate thickness is about 250 ⁇ m.
  • the first electrode 102 is made of a metal such as Pt, Mo, or W.
  • Mo is deposited by a well-known RF magnetron sputtering method to form a metal film, a resist pattern is formed thereon by a known photolithography technique, and the metal film is ion milled using the formed resist pattern as a mask.
  • the first electrode 102 can be formed by etching and then removing the resist pattern.
  • the resist pattern may be formed by performing alignment with reference to an alignment mark formed in advance on the piezoelectric single crystal substrate 101.
  • an acoustic reflection film 104 in which a plurality of layers having different acoustic impedances are alternately stacked is formed on the support substrate 103.
  • the adjacent layers have different acoustic impedances, and every other layer having the same acoustic impedance is laminated.
  • the support substrate 103 is made of, for example, Si (111) and has a thickness of 250 ⁇ m.
  • the support substrate 103 made of Si (111) desirably has a high resistance.
  • the specific resistance may be 1000 ⁇ / cm or more.
  • the acoustic reflection film 104 is configured by alternately stacking a plurality of high acoustic impedance layers 141 and low acoustic impedance layers 142 having different acoustic impedances. Two to four pairs of the high acoustic impedance layer 141 and the low acoustic impedance layer 142 may be stacked.
  • the high acoustic impedance layer 141 has higher acoustic impedance than the low acoustic impedance layer 142.
  • the high acoustic impedance layer 141 is made of AlN and has a thickness of 1.4 ⁇ m.
  • the low acoustic impedance layer 142 is made of, for example, SiO 2 and has a thickness of 0.7 ⁇ m. These can be formed by, for example, RF magnetron sputtering.
  • the high acoustic impedance layer 141 having a higher acoustic impedance is not limited to AlN but can be made of ZnO, W, Mo, Cu, Al 2 O 3, or the like.
  • the low acoustic impedance layer 142 having a lower acoustic impedance is not limited to SiO 2 but can be composed of Mg, Al, or the like. Note that the total thickness of the acoustic reflection film 104 is 1 ⁇ 4 of the wavelength when a sound wave (bulk wave) having a resonance frequency in a state where a piezoelectric thin film 105 (described later) alone propagates through the acoustic reflection film 104 in a single state. And
  • the acoustic reflection film 104 is attached to the first electrode 102 (second step).
  • the bonding surface of the acoustic reflection film 104 (the surface of the uppermost low acoustic impedance layer 142) and the surface of the first electrode 102 may be bonded by an atomic diffusion bonding method, an anodic bonding method, or the like.
  • the piezoelectric single crystal substrate 101 is polished and thinned from the other surface 101b of the piezoelectric single crystal substrate 101, and the first electrode 102 and the piezoelectric thin film 105 are formed on the acoustic reflection film 104 as shown in FIG. 1D. It is set as the laminated state (3rd process).
  • the piezoelectric single crystal substrate 101 is thinned to form a piezoelectric thin film 105.
  • the electrode forming region (vibrating portion) where the first electrode 102 of the piezoelectric thin film 105 is formed is formed thinner than the surrounding electrode non-forming region (non-vibrating portion) where the first electrode 102 is not formed. To do.
  • the thickness of the piezoelectric thin film 105 in the electrode formation region where the first electrode 102 is formed may be about 2.8 ⁇ m.
  • the thickness of the electrode formation region in which the first electrode 102 of the piezoelectric thin film 105 is formed has a wavelength ⁇ when a sound wave having a resonance frequency of the piezoelectric thin film 105 in a single state propagates through the single piezoelectric thin film 105. It may be half or 1/4.
  • a hard polishing pad may be used.
  • the first electrode 102 is partially formed on the surface 101a that is the back surface with respect to the surface 101b that is the polishing surface, and the electrode non-forming region around the first electrode 102 is the acoustic reflection film 104 and There is an air gap between the surface 101a. For this reason, the pressure (polishing pressure) applied to the surface 101b in polishing is different between the electrode forming region where the first electrode 102 is formed and the surrounding electrode non-forming region.
  • the electrode forming region where the first electrode 102 is formed has a larger polishing pressure and a higher polishing speed than the surrounding electrode non-formed region.
  • the polishing pressure is low and the polishing speed is slow. Due to the difference in polishing rate, a planar recess 106 having a center in common with the first electrode 102 in plan view is formed in the electrode formation region of the piezoelectric thin film 105.
  • the electrode forming region of the piezoelectric thin film 105 where the first electrode 102 is formed is formed thinner than the surrounding electrode non-forming region.
  • a second electrode 107 having a smaller area than the first electrode 102 is formed on the piezoelectric thin film 105 with the piezoelectric thin film 105 sandwiched therebetween (fourth step). What is necessary is just to arrange
  • the second electrode 107 is made of a metal such as Pt, Mo, or W.
  • Mo is deposited by a well-known RF magnetron sputtering method to form a metal film, a resist pattern is formed thereon by a known photolithography technique, and the metal film is ion milled using the formed resist pattern as a mask.
  • the second electrode 107 can be formed by etching and then removing the resist pattern.
  • the second electrode 107 may be formed by a well-known lift-off method.
  • the resist pattern lift-off pattern
  • an SMR filter is configured by electrically connecting a plurality of elements (piezoelectric resonators) composed of a set of the first electrode 102 and the second electrode 107 to each SMR filter. Cut out from the support substrate 103.
  • some piezoelectric resonators constituting the SMR filter need to have different resonance frequencies.
  • an overlapping electrode is formed on the second electrode 107 of the corresponding piezoelectric resonator, and the frequency of the corresponding piezoelectric resonator is set.
  • a portion where the first electrode 102 and the second electrode 107 overlap in a plan view is a region where an electric field is effectively applied, and an AC voltage is applied between the first electrode 102 and the second electrode 107.
  • resonance occurs at a frequency that is the resonance frequency.
  • the bulk wave due to the resonance propagated to the second electrode 107 side is reflected by the substantially end face of the second electrode 107, and the bulk wave propagated to the first electrode 102 side propagates to the acoustic reflection film 104.
  • the thickness of the acoustic reflection film 104 is 1 ⁇ 4 of the wavelength when the bulk wave of the resonance frequency propagates through the acoustic reflection film 104 in a single state.
  • the phases of the reflected waves from the boundary surface of the acoustic impedance layer 142 are overlapped, so that the influence of the support substrate 103 is effectively eliminated.
  • the bulk wave excited by the piezoelectric thin film 105 also propagates in the plane direction (lateral direction) of the piezoelectric thin film 105.
  • the thickness of the piezoelectric thin film 105 in the vibrating portion (electrode forming region) below the second electrode 107 is larger than that of the second electrode 107 in plan view. Since the thickness of the piezoelectric thin film 105 in the non-vibration part (electrode non-formation region) is made thinner, vibration energy is confined in the vibration part, and unnecessary spurious is not generated.
  • an auxiliary electrode 107a may be formed on the second electrode 107.
  • the auxiliary electrode 107a may be provided on the peripheral surface of the upper surface of the second electrode 107 or in a region close to the peripheral edge.
  • the auxiliary electrode 107a may be formed in a planar shape along the periphery of the second electrode 107.
  • the shape of the second electrode 107 in plan view may be an ellipse or a polygonal shape such that opposing sides are not parallel.
  • a dummy electrode not related to vibration of the piezoelectric thin film 105 is appropriately insulated from the first electrode 102 around the first electrode 102 on one surface of the piezoelectric single crystal substrate 101.
  • the region where the first electrode 102 and the dummy electrode are formed may be used as the electrode formation region.
  • the first surface of a predetermined planar shape having an area smaller than the piezoelectric single crystal substrate is formed on one surface of the piezoelectric single crystal substrate formed of the single crystal of the piezoelectric material.
  • One electrode is formed, and the thickness of the piezoelectric thin film sandwiched between the two electrodes is reduced by providing a difference in the polishing pressure in polishing the piezoelectric single crystal substrate, thereby suppressing spurious due to the propagation mode in the lateral direction. Therefore, the Q value of the piezoelectric thin film element can be improved while unnecessary vibrations are suppressed.
  • the piezoelectric thin film is formed without using film formation by deposition or the like, various piezoelectric materials can be selected as the piezoelectric thin film.
  • various piezoelectric materials can be selected as the piezoelectric thin film.
  • the piezoelectric thin film not only the above-described AlN but also ZnO, LiTaO 3 , LiNbO 3 , quartz, KNbO 3, etc. can be used as the piezoelectric thin film (piezoelectric single crystal substrate).
  • a piezoelectric single crystal substrate having an arbitrary crystal orientation can be selected to form a piezoelectric thin film, the degree of freedom in filter design is high.
  • the BAW filter is a filter using a piezoelectric thin film resonator, it is necessary to sufficiently increase the quality factor Q value of the piezoelectric thin film resonator.
  • the crystallinity of the piezoelectric thin film is important.
  • the crystallinity of the piezoelectric thin film forming surface of one of the electrodes affects the orientation of the piezoelectric thin film.
  • the crystallinity of the support substrate and the acoustic reflection film affects the orientation (crystallinity) of the finally obtained piezoelectric thin film and affects the performance of the element.
  • the KNN element is cut out from the bulk of the piezoelectric material, the cut KNN element is bonded to the lower electrode formed on the acoustic multilayer film, and the bonded KNN element is patterned to form a piezoelectric material part.
  • a technique for forming a BAW resonator having an excellent Q value by forming an upper electrode thereon see Patent Document 3.
  • the bonding metal layer formed on the KNN element side and the upper metal layer of the lower electrode are bonded to obtain a high bonding strength between the KNN element and the lower electrode.
  • the KNN element by patterning the KNN element to form a piezoelectric material portion having an area smaller than that of the lower electrode, vibration energy generated by resonance is confined in the piezoelectric material portion.
  • the piezoelectric material portion has a small area
  • the periphery of the piezoelectric material portion is embedded with an insulating layer in order to form the upper electrode and the wiring to the upper electrode.
  • the insulating layer is formed around the vibrating portion, there is a problem that vibration leakage occurs in the lateral direction and Q is lowered.
  • a piezoelectric thin film element that enables a high crystalline piezoelectric thin film and an acoustic reflection film to be integrated with high strength in a state where vibration leakage in the lateral direction is suppressed.
  • a manufacturing method will be described with reference to the second embodiment.
  • FIGS. 2A to 2F are cross-sectional views showing states in respective steps for explaining a method of manufacturing a piezoelectric thin film element (piezoelectric resonator) in Embodiment 2 of the present invention.
  • a first electrode 202a having a shape is formed (first step).
  • a plurality of element regions each serving as a piezoelectric resonator are set, and a first electrode 202a is formed in each element region.
  • One element region may be set in the piezoelectric single crystal substrate 201.
  • the central portion of the element region in plan view and the central portion of the first electrode 202a in plan view substantially overlap each other.
  • 2A to 2F show one element region.
  • the piezoelectric single crystal substrate 201 is an AlN single crystal substrate manufactured using, for example, a sublimation method, and has a main surface of c-plane and a plate thickness of about 250 ⁇ m.
  • the first electrode 202a is made of a metal such as Pt, Mo, or W.
  • Mo is deposited by a well-known RF magnetron sputtering method to form a metal film, a resist pattern is formed thereon by a known photolithography technique, and the metal film is ion milled using the formed resist pattern as a mask.
  • the first electrode 202a can be formed by etching and then removing the resist pattern.
  • the resist pattern may be formed by performing alignment with reference to an alignment mark formed in advance on the piezoelectric single crystal substrate 201.
  • an acoustic reflection film 204 in which a plurality of layers having different acoustic impedances are alternately stacked is formed on the support substrate 203, and the first surface 204 a of the acoustic reflection film 204 is formed on the first surface 204 a.
  • Two electrodes 202b are formed (second step).
  • the surface 204a is a surface on the bonding side.
  • adjacent layers have different acoustic impedances, and every other layer having the same acoustic impedance is laminated.
  • the second electrode 202b is formed in a different area from the first electrode 202a.
  • the second electrode 202b is formed in a smaller area than the first electrode 202a.
  • the first electrode 202a may be formed in a smaller area than the second electrode 202b.
  • the second electrode 202b is formed thinner than the first electrode 202a.
  • the support substrate 203 is made of, for example, Si (111) and has a thickness of 250 ⁇ m.
  • the support substrate 203 made of Si (111) desirably has a high resistance.
  • the specific resistance may be 1000 ⁇ / cm or more.
  • the acoustic reflection film 204 is configured by alternately stacking a plurality of high acoustic impedance layers 241 and low acoustic impedance layers 242 having different acoustic impedances. Two to four pairs of the high acoustic impedance layer 241 and the low acoustic impedance layer 242 may be stacked.
  • the high acoustic impedance layer 241 has higher acoustic impedance than the low acoustic impedance layer 242.
  • the high acoustic impedance layer 241 is made of AlN and has a thickness of 1.4 ⁇ m.
  • the low acoustic impedance layer 242 is made of, for example, SiO 2 and has a thickness of 0.7 ⁇ m. These can be formed by, for example, RF magnetron sputtering.
  • the high acoustic impedance layer 241 having a higher acoustic impedance is not limited to AlN but can be composed of ZnO, W, Mo, Cu, Al 2 O 3, or the like.
  • the low acoustic impedance layer 242 having a lower acoustic impedance is not limited to SiO 2 but can be composed of Mg, Al, or the like.
  • the total thickness of the acoustic reflection film 204 is 1 ⁇ 4 of the wavelength when a sound wave (bulk wave) having a resonance frequency in a state where a piezoelectric thin film 205 (described later) alone propagates through the acoustic reflection film 204 in a single state.
  • the second electrode 202b is made of a metal such as Pt, Mo, or W.
  • Mo is deposited by a well-known RF magnetron sputtering method to form a metal film, a resist pattern is formed thereon by a known photolithography technique, and the metal film is ion milled using the formed resist pattern as a mask.
  • the second electrode 202b can be formed by etching and then removing the resist pattern.
  • the resist pattern may be formed by performing alignment with reference to an alignment mark formed in advance on the support substrate 203.
  • the first electrode 202a and the second electrode 202b are bonded together (third step).
  • the central portion (center) of the first electrode 202a and the central portion of the second electrode 202b are aligned and bonded together (bonded).
  • the second electrode 202b since the second electrode 202b has a smaller area than the first electrode 202a, the second electrode 202b is disposed inside the formation region of the first electrode 202a in plan view. In this way, since the metals are bonded together, high bonding strength can be obtained. Further, by bonding, the first electrode 202a and the second electrode 202b are integrated with each other, and become one electrode constituting a resonator by the piezoelectric thin film 205 described later.
  • first electrode 202a and the second electrode 202b are aligned and contacted as described above, heated to about 200 to 300 ° C. in this state, and bonded by applying pressure between them. good. Further, bonding may be performed by a surface activated bonding method or an atomic diffusion bonding method. Moreover, you may join by eutectic bonding.
  • the piezoelectric single crystal substrate 201 is thinned from the other surface 201b of the piezoelectric single crystal substrate 201, and as shown in FIG. 2D, the second electrode 202b, the first electrode 202a, and the piezoelectric are formed on the acoustic reflection film 204.
  • the piezoelectric thin film 205 obtained by thinning the single crystal substrate 201 is laminated (fourth step).
  • the thickness of the piezoelectric thin film 205 in the electrode formation region where the first electrode 202a is formed may be about 2.8 ⁇ m.
  • the piezoelectric thin film 205 since the piezoelectric thin film 205 is obtained by laminating the piezoelectric single crystal substrate 201 having high crystallinity to form a thin layer, the piezoelectric thin film 205 also has high crystallinity.
  • This thinning may be performed by polishing.
  • the electrode forming region (vibrating part) where the first electrode 202a of the piezoelectric thin film 205 is formed becomes an electrode non-forming region (non-vibrating) where the surrounding first electrode 202a is not formed. Part) becomes thinner.
  • the thickness of the electrode formation region where the first electrode 202a of the piezoelectric thin film 205 is formed has a wavelength ⁇ when a sound wave having a resonance frequency of the piezoelectric thin film 205 in a single state propagates through the single piezoelectric thin film 205. It may be half or 1/4.
  • a hard type polishing pad may be used.
  • the first electrode 202a is partially formed on the surface 201a that is the back surface with respect to the surface 201b that is the polishing surface, and the electrode non-forming region around the first electrode 202a is the acoustic reflection film 204 and There is a gap between the surface 201a. For this reason, the pressure (polishing pressure) applied to the surface 201b in polishing is different between the electrode forming region where the first electrode 202a is formed and the surrounding electrode non-forming region.
  • the polishing pressure is larger than the surrounding electrode non-forming region, and the polishing speed is increased.
  • the electrode non-forming region around the first electrode 202a has a low polishing pressure and a low polishing speed. Due to the difference in the polishing rate, a planar recess 206 having a center in common with the first electrode 202a in plan view is formed in the electrode formation region of the piezoelectric thin film 205. As a result, the electrode forming region in which the first electrode 202a of the piezoelectric thin film 205 is formed is formed thinner than the surrounding electrode non-forming region.
  • a third electrode 207 having a larger area than the first electrode 202a is formed on the piezoelectric thin film 205 while sandwiching the piezoelectric thin film 205 (fifth step).
  • the third electrode 207 serves as the other electrode constituting the resonator formed by the piezoelectric thin film 205.
  • the third electrode 207 may be arranged in a state where the central portion of the first electrode 202a (second electrode 202b) and the central portion of the third electrode 207 overlap in plan view. In plan view, the first electrode 202 a is disposed inside the formation region of the third electrode 207.
  • the third electrode 207 is made of a metal such as Pt, Mo, or W.
  • Mo is deposited by a well-known RF magnetron sputtering method to form a metal film, a resist pattern is formed thereon by a known photolithography technique, and the metal film is ion milled using the formed resist pattern as a mask.
  • the third electrode 207 can be formed by etching and then removing the resist pattern.
  • the third electrode 207 may be formed by a well-known lift-off method.
  • the resist pattern lift-off pattern
  • an SMR filter is configured by electrically connecting a plurality of elements (piezoelectric resonators) composed of a set of the second electrode 202b, the first electrode 202a, and the third electrode 207 to each other. Then, each SMR filter is cut out from the support substrate 203.
  • some piezoelectric resonators constituting the SMR filter need to have different resonance frequencies. In that case, an overlapping electrode is formed on the third electrode 207 of the corresponding piezoelectric resonator, and the frequency of the corresponding piezoelectric resonator is set. Moreover, it is good also as a some element cut out in each element area
  • a portion where the first electrode 202a and the third electrode 207 overlap in a plan view is a region where an electric field is effectively applied, and an AC voltage is applied between the first electrode 202a and the third electrode 207.
  • resonance occurs at a frequency that is the resonance frequency.
  • the bulk wave due to resonance propagated to the third electrode 207 side is reflected by the substantially end face of the third electrode 207, and the bulk wave propagated to the first electrode 202 a side propagates to the acoustic reflection film 204.
  • the thickness of the acoustic reflection film 204 is set to 1 ⁇ 4 of the wavelength when the bulk wave of the resonance frequency propagates through the acoustic reflection film 204 in a single state.
  • the phases of the reflected waves from the boundary surface of the acoustic impedance layer 242 are overlapped, and are effectively not affected by the support substrate 203.
  • the bulk wave excited by the piezoelectric thin film 205 also propagates in the plane direction (lateral direction) of the piezoelectric thin film 205.
  • the piezoelectric thin film element in Embodiment 2 described above since the areas of the second electrode 202b and the first electrode 202a are different from each other, the acoustic impedance around one of the electrodes is the inside of the electrode. The acoustic impedance is different. As a result, vibration energy can be confined in the formation region of one electrode, and vibration leakage in the lateral direction can be suppressed.
  • the piezoelectric thin film is formed on the acoustic reflection film 204 by bonding the first electrode 202a and the second electrode 202b having an area different from the first electrode 202a. Since 205 is disposed, the highly crystalline piezoelectric thin film 205 and the acoustic reflection film 204 can be integrated with high strength in a state where vibration leakage in the lateral direction is suppressed.
  • the piezoelectric thin film 205 is formed from the piezoelectric single crystal substrate 201 by bonding after bonding, the thickness of the piezoelectric thin film 205 in the vibration part (electrode formation region) of the formation region of the first electrode 202a is formed. However, it becomes thinner than the thickness of the piezoelectric thin film 205 in the non-vibration part (electrode non-formation area
  • an auxiliary electrode 207a may be formed on the third electrode 207.
  • the auxiliary electrode 207a may be provided on the peripheral surface of the upper surface of the third electrode 207 or a region close to the peripheral edge. Further, the auxiliary electrode 207 a may be formed in a planar shape along the periphery of the third electrode 207.
  • the planar shape of the portion where the electrodes sandwiching the piezoelectric thin film 205 overlap is an ellipse or a polygon that does not parallel the opposing sides. Shape it.
  • the auxiliary second electrode 221 and the auxiliary second electrode 222 are provided around the second electrode 202b. You may form and arrange
  • an auxiliary electrode may be provided around the first electrode 202a.
  • an auxiliary third electrode 223 may be formed on the third electrode 207.
  • the piezoelectric thin film is formed regardless of the film formation by deposition or the like, various piezoelectric materials can be selected as the piezoelectric thin film.
  • various piezoelectric materials can be selected as the piezoelectric thin film.
  • the piezoelectric thin film not only the above-described AlN but also ZnO, LiTaO 3 , LiNbO 3 , quartz, KNbO 3, etc. can be used as the piezoelectric thin film (piezoelectric single crystal substrate).
  • a piezoelectric single crystal substrate having an arbitrary crystal orientation can be selected to form a piezoelectric thin film, the degree of freedom in filter design is high.
  • the present invention is not limited to the embodiment described above, and many modifications and combinations can be implemented by those having ordinary knowledge in the art within the technical idea of the present invention. It is obvious.
  • the piezoelectric thin film element of the present invention can be applied to a duplexer.
  • This application is an application related to the results of research and development related to the commission of the government (Ministry of Internal Affairs and Communications, 2016 Strategic Information and Communications Research and Development Promotion Project).
  • acoustic reflection film 204a Reference numeral 205, a piezoelectric thin film, 206, a concave portion, 207, a third electrode, 241, a high acoustic impedance layer, 242, a low acoustic impedance layer.

Abstract

不要振動が抑制された状態で、圧電薄膜素子のQ値が向上できるようにするために、第1電極(102)に音響反射膜(104)を貼り付けた後、圧電単結晶基板(101)の他方の面(101b)から圧電単結晶基板(101)を研磨して薄層化し、音響反射膜(104)の上に第1電極(102)および圧電薄膜(105)が積層された状態とする。この研磨において、第1電極(102)が形成されている電極形成領域と、この周囲の電極未形成領域とでは、研磨における面(101b)に対する圧力(研磨圧力)が異なる。この結果、圧電薄膜(105)の第1電極(102)が形成されている電極形成領域は、この周囲の電極未形成領域より薄く形成される。

Description

圧電薄膜素子の製造方法
 本発明は、音響反射膜の上に設けられた圧電薄膜を備えた圧電薄膜素子の製造方法に関する。
 携帯電話などの通信機器において、所望の信号のみを選択的に送信または受信するための帯域通過型フィルタとして、圧電薄膜共振器を用いた圧電薄膜フィルタが利用されるようになっている。圧電薄膜フィルタとして、例えば、圧電薄膜共振器(Thin Film Bulk Acoustic Resonator:FBAR)フィルタが知られている。これは、Siなどの基板上に、電極で挟まれた圧電薄膜を形成し、かつその振動エネルギーがSi基板に漏れないよう、電極形成部の基板側に空隙を設けている。また、空隙の代わりに音響反射膜を用いたSMR(Solidty Mounted Resonator)フィルタも利用されている。これらは、BAW(Bulk Acousitic Wave)フィルタと総称されている。
 ここで、BAWフィルタの動作原理について簡単に説明する。圧電薄膜を挟んでいる2つの電極間に高周波信号を印可すると、圧電薄膜に応じた周波数で圧電薄膜が共振を起こし、共振器となる。この圧電薄膜共振器の各電極に配線を接続してラダー型回路などを形成すると、所望のフィルタ特性を得ることができる。
 BAWフィルタは、圧電薄膜共振器を用いるフィルタであるため、圧電薄膜共振器の品質係数Q値を十分高くする必要がある。共振子のQ値を向上させるためには、共振で生じた振動エネルギーを、圧電薄膜内に完全に閉じ込めることが理想である。しかしながら、実際の圧電薄膜共振器では、厚み方向に直交する横方向への伝搬モードにより振動エネルギーが漏洩し、不要振動(スプリアス)が発生する。
 この問題に対し、特許文献1では、一方の電極(頂部電極)は、縁付近を厚くすることで、横方向の伝搬モードによるスプリアスを抑制している。また、特許文献2では、圧電薄膜を励振領域は薄くし、周縁部の非励振領域は厚くすることにより、横方向の伝搬モードに起因するスプリアスを抑制している。また、特許文献2では、圧電薄膜の薄くした励振領域における支持基板に陥没を形成し、励振領域に励振された振動が支持基板と干渉しない構成としている。
 また、特許文献2の技術では、自重に耐えうる厚みの単結晶基板を、空隙を設けた支持基板に接着したのち、機械的研磨などにより所望の厚みまで薄板化し所定の周波数を得ている。このように、特許文献2の技術では、堆積などによる成膜によらずに圧電薄膜を形成しているため、結晶性が下地の影響を受けるなどの問題が無く、良好な圧電性能が得られることが期待できる。
特表2003-505906号公報 特開2007-243451号公報 特開2009-290374号公報
 しかしながら、上述した技術では、次に示す問題があった。まず、特許文献1に記載の技術では、圧電層におけるスプリアスの抑制には効果があるが、振動部における電極の厚さを変化させているため、主振動とは別の振動が生じる可能性があり、別のスプリアスを発生させるという問題がある。
 また、特許文献2に記載の技術では、圧電薄膜の薄くした励振領域における支持基板に陥没を形成している。このため、圧電薄膜の薄くした領域と支持基板の陥没部分とが、精度よく位置合わせされずにずれると、新たなスプリアスが発生する恐れがある。また、特許文献2の技術では、フィルタとして使用する周波数の上昇に伴い、圧電薄膜をより薄くすると、圧電薄膜の支持が困難となり、励振領域における圧電薄膜の反りなどが周波数バラつきを増加させる懸念がある。
 本発明は、以上のような問題点を解消するためになされたものであり、不要振動が抑制された状態で、圧電薄膜素子のQ値が向上できるようにすることを目的とする。
 本発明に係る圧電薄膜素子の製造方法は、圧電材料の単結晶から構成された圧電単結晶基板の一方の面に、圧電単結晶基板より小さい面積とされた所定の平面形状の第1電極を形成する第1工程と、第1電極に互いに音響インピーダンスの異なる複数の層が交互に積層された音響多層膜を貼り付ける第2工程と、圧電単結晶基板の他方の面から圧電単結晶基板を研磨して薄層化し、音響多層膜の上に第1電極および圧電単結晶基板を薄層化して得られた圧電薄膜が積層された状態とする第3工程と、圧電薄膜を挾んで第1電極に向かい合い第1電極より小さな面積の第2電極を圧電薄膜の上に形成する第4工程とを備え、第3工程では、圧電薄膜の第1電極が形成されている電極形成領域は、この電極形成領域とこの周囲の第1電極が形成されていない電極未形成領域との間の研磨圧力の差により、電極未形成領域より薄く形成された状態とする。
 上記圧電薄膜素子の製造方法において、第1工程では、圧電単結晶基板の一方の面の第1電極の周囲に圧電薄膜の振動に関係しないダミー電極を第1電極と絶縁分離した状態で形成し、第1電極およびダミー電極が形成されている領域を電極形成領域としてもよい。
 また、本発明に係る圧電薄膜素子の製造方法は、圧電材料の単結晶から構成された圧電単結晶基板の一方の面に、圧電単結晶基板より小さい面積とされた所定の平面形状の第1電極を形成する第1工程と、音響インピーダンスの異なる複数の層が交互に積層された音響多層膜の一方の面に第1電極とは異なる面積の第2電極を形成する第2工程と、第1電極と第2電極とを貼り合わせる第3工程と、圧電単結晶基板を薄層化して音響多層膜の上に第2電極,第1電極,および圧電単結晶基板を薄層化して得られた圧電薄膜が積層された状態とする第4工程と、圧電薄膜を挾んで第1電極に向かい合い第1電極より大きな面積の第3電極を圧電薄膜の上に形成する第5工程とを備える。
 上記圧電薄膜素子の製造方法において、第4工程では、圧電薄膜は、圧電単結晶基板の他方の面から圧電単結晶基板を研磨して薄層化することによって得られ、第1電極が形成されている電極形成領域は、この電極形成領域とこの周囲の第1電極が形成されていない電極未形成領域との間の研磨圧力の差により、電極未形成領域より薄く形成された状態とするとよい。
 以上に説明したことにより、本発明によれば、不要振動が抑制された状態で、圧電薄膜素子のQ値が向上できるという優れた効果が得られるようになる。
図1Aは、本発明の実施の形態1における圧電薄膜素子の製造方法を説明するための各工程における状態を示す断面図である。 図1Bは、本発明の実施の形態1における圧電薄膜素子の製造方法を説明するための各工程における状態を示す断面図である。 図1Cは、本発明の実施の形態1における圧電薄膜素子の製造方法を説明するための各工程における状態を示す断面図である。 図1Dは、本発明の実施の形態1における圧電薄膜素子の製造方法を説明するための各工程における状態を示す断面図である。 図1Eは、本発明の実施の形態1における圧電薄膜素子の製造方法を説明するための各工程における状態を示す断面図である。 図1Fは、本発明の実施の形態1における圧電薄膜素子の製造方法を説明するための各工程における状態を示す断面図である。 図2Aは、本発明の実施の形態2における圧電薄膜素子の製造方法を説明するための各工程における状態を示す断面図である。 図2Bは、本発明の実施の形態2における圧電薄膜素子の製造方法を説明するための各工程における状態を示す断面図である。 図2Cは、本発明の実施の形態2における圧電薄膜素子の製造方法を説明するための各工程における状態を示す断面図である。 図2Dは、本発明の実施の形態2における圧電薄膜素子の製造方法を説明するための各工程における状態を示す断面図である。 図2Eは、本発明の実施の形態2における圧電薄膜素子の製造方法を説明するための各工程における状態を示す断面図である。 図2Fは、本発明の実施の形態2における圧電薄膜素子の製造方法を説明するための各工程における状態を示す断面図である。 図3Aは、本発明の実施の形態2における圧電薄膜素子の他の構成例を示す断面図である。 図3Bは、本発明の実施の形態2における圧電薄膜素子の他の構成例を示す断面図である。 図3Cは、本発明の実施の形態2における圧電薄膜素子の他の構成例を示す断面図である。
 以下、本発明の実施の形態について図を参照して説明する。
[実施の形態1]
 はじめに、本発明の実施の形態1について、図1A~図1Fを参照して説明する。図1A~図1Fは、本発明の実施の形態1における圧電薄膜素子(圧電共振器)の製造方法を説明するための各工程における状態を示す断面図である。
 まず、図1Aに示すように、圧電材料の単結晶から構成された圧電単結晶基板101の一方の面101aに、圧電単結晶基板101の設計された素子領域より小さい面積とされた所定の平面形状の第1電極102を形成する(第1工程)。例えば、圧電単結晶基板101には、各々が圧電共振器となる複数の素子領域が設定され、各素子領域の各々に第1電極102を形成する。圧電単結晶基板101に、1つの素子領域が設定されていても良い。素子領域の平面視中央部と第1電極102の平面視中央部とが実質的に重なる状態とする。なお、図1A~図1Fでは、1つの素子領域を示している。
 圧電単結晶基板101は、例えば昇華法を用いて作製したAlNの単結晶基板であり、主表面がc面とされ、板厚が250μm程度とされている。また、第1電極102は、Pt,Mo,Wなどの金属から構成する。例えば、よく知られたRFマグネトロンスパッタ法によりMoを堆積して金属膜を形成し、この上に公知のフォトリソグラフィー技術によりレジストパターンを形成し、形成したレジストパターンをマスクとして金属膜をイオンミリングによりエッチングし、この後レジストパターンを除去することで、第1電極102が形成できる。上記レジストパターンは、圧電単結晶基板101に予め形成してある位置合わせマークを基準として位置合わせを行って形成すれば良い。
 次に、図1Bに示すように、支持基板103の上に、互いに音響インピーダンスの異なる複数の層が交互に積層された音響反射膜104を形成する。音響反射膜104においては、隣り合う層は音響インピーダンスが異なり、1つおきに同じ音響インピーダンスの層が積層されている。支持基板103は、例えば、Si(111)から構成され、厚さ250μmとされている。Si(111)から構成した支持基板103は、高抵抗であることが望ましく、例えば、比抵抗が1000Ω/cm以上であればよい。
 音響反射膜104は、音響インピーダンスの異なる複数の高音響インピーダンス層141,低音響インピーダンス層142が、交互に3対積層されて構成されている。高音響インピーダンス層141,低音響インピーダンス層142の対が、2対から4対積層されていれば良い。ここで、高音響インピーダンス層141は、低音響インピーダンス層142より音響インピーダンスが高い。例えば、高音響インピーダンス層141は、AlNから構成されて厚さ1.4μmとされている。また、低音響インピーダンス層142は、例えば、SiO2から構成されて厚さ0.7μmとされている。これらは、例えば、RFマグネトロンスパッタ法により形成できる。
 より音響インピーダンスが高い高音響インピーダンス層141は、AlNに限らず、ZnO,W,Mo,Cu,Al23などから構成することができる。また、より音響インピーダンスが低い低音響インピーダンス層142は、SiO2に限らず、Mg,Alなどから構成することができる。なお、音響反射膜104の総厚は、後述する圧電薄膜105が単独の状態における共振周波数の音波(バルク波)が、単独の状態とした音響反射膜104を伝搬するときの波長の1/4とする。
 次に、図1Cに示すように、第1電極102に音響反射膜104を貼り付ける(第2工程)。例えば、音響反射膜104の貼り合わせ面(最上の低音響インピーダンス層142の表面)と、第1電極102の表面とを、原子拡散接合法や陽極接合法などにより貼り合わせれば良い。
 次に、圧電単結晶基板101の他方の面101bから圧電単結晶基板101を研磨して薄層化し、図1Dに示すように、音響反射膜104の上に第1電極102および圧電薄膜105が積層された状態とする(第3工程)。圧電単結晶基板101を薄層化して圧電薄膜105とする。この工程では、圧電薄膜105の第1電極102が形成されている電極形成領域(振動部)は、この周囲の第1電極102が形成されていない電極未形成領域(非振動部)より薄く形成する。例えば、第1電極102が形成されている電極形成領域の圧電薄膜105の厚さは、2.8μm程度にすれば良い。なお、圧電薄膜105の第1電極102が形成されている電極形成領域の厚さは、単独の状態とした圧電薄膜105の共振周波数の音波が単独の圧電薄膜105を伝搬するときの波長λの半分もしくは1/4とされていれば良い。
 圧電単結晶基板101を研磨においては、硬質タイプの研磨用パッドを用いると良い。この研磨において、研磨面となる面101bに対して裏面となる面101aには、部分的に第1電極102が形成され、第1電極102の周囲の電極未形成領域は、音響反射膜104と面101aとの間に空隙が存在している。このため、第1電極102が形成されている電極形成領域と、この周囲の電極未形成領域とでは、研磨における面101bに対する圧力(研磨圧力)が異なる状態となる。
 第1電極102が形成されている電極形成領域は、この周囲の電極未形成領域に比較して研磨圧力が大きく、研磨の速度が速くなる。一方、第1電極102の周囲の電極未形成領域は、研磨圧力が小さく、研磨の速度が遅くなる。この研磨速度の差により、圧電薄膜105の電極形成領域には、平面視で第1電極102と中心を共通とする平面形状の凹部106が形成される。この結果、圧電薄膜105の第1電極102が形成されている電極形成領域は、この周囲の電極未形成領域より薄く形成されるものとなる。
 次に、図1Eに示すように、圧電薄膜105を挾んで第1電極102に向かい合い第1電極102より小さな面積の第2電極107を、圧電薄膜105の上に形成する(第4工程)。平面視で、第1電極102の中央部と第2電極107の中央部とが重なる状態に、第2電極107を配置すれば良い。平面視で、第2電極107は、第1電極102の形成領域の内側に配置される。
 例えば、第2電極107は、Pt,Mo,Wなどの金属から構成する。例えば、よく知られたRFマグネトロンスパッタ法によりMoを堆積して金属膜を形成し、この上に公知のフォトリソグラフィー技術によりレジストパターンを形成し、形成したレジストパターンをマスクとして金属膜をイオンミリングによりエッチングし、この後レジストパターンを除去することで、第2電極107が形成できる。また、よく知られたリフトオフ法により、第2電極107を形成しても良い。いずれにおいても、レジストパターン(リフトオフパターン)は、圧電単結晶基板101に形成してあり圧電薄膜105の状態においても残っている位置合わせマークを基準として位置合わせを行って形成すれば良い。
 なお、図示はしないが、第1電極102および第2電極107との組からなる複数の素子(圧電共振器)を、電気的に所定の接続をしてSMRフィルタを構成し、SMRフィルタ毎に支持基板103より切り出す。また、SMRフィルタを構成する一部の圧電共振器は、異なる共振周波数にする必要がある。その場合は、対応する圧電共振器の第2電極107の上にさらに重し電極を形成し、対応する圧電共振器の周波数を設定する。また、個々の素子領域で切り出して複数の素子としても良い。
 上述した圧電薄膜素子は、平面視で第1電極102と第2電極107とが重なる部分が実効的に電界の印加される領域となり、第1電極102と第2電極107の間に交流電圧を印可すると、共振周波数となる周波数で共振を生じる。
 第2電極107の側に伝搬した共振によるバルク波は、第2電極107の概ね端面にて反射し、第1電極102の側に伝搬したバルク波は、音響反射膜104に伝搬する。音響反射膜104の厚さは、共振周波数のバルク波が、単独の状態とした音響反射膜104を伝搬するときの波長の1/4とされているため、各々の高音響インピーダンス層141,低音響インピーダンス層142の境界面からの反射波の位相が重なり、実効的に支持基板103の影響を受けなくなる。
 また、圧電薄膜105で励振したバルク波は、圧電薄膜105の平面方向(横方向)にも伝搬する。これに対し、上述した実施の形態1における圧電薄膜素子によれば、第2電極107の下の振動部(電極形成領域)の圧電薄膜105の厚さが、平面視で第2電極107より外周の非振動部(電極未形成領域)における圧電薄膜105の厚さより薄くしているので、振動エネルギーが振動部に閉じ込められるため、不要なスプリアスが発生しない。
 また、図1Fに示すように、第2電極107の上に補助電極107aを形成しても良い。補助電極107aは、第2電極107の上面の、周縁部または周縁に近い領域に設ければよい。また、補助電極107aは、第2電極107の周縁に沿う平面形状に形成すればよい。第2電極107の上に補助電極107aを設けることで、更に、振動エネルギーが振動部へ閉じ込められ、不要なスプリアスの発生が更に抑制できるようになる。また、補助電極107aを可能な範囲で厚くするとより上記効果がより得られるようになる。補助電極107aの形成箇所や厚さは、スプリアスの発生周波数により適宜に設定すればよい。
 なお、第2電極107下に振動エネルギーが閉じ込められると、第2電極107内での多重反射によるスプリアスが発生する。これを抑制するために、第2電極107の平面視の形状を、楕円や、対向する辺が平行にならないような多角形の形状にするとよい。
 ところで、第1電極102の形成時に、圧電単結晶基板101の一方の面の第1電極102の周囲に圧電薄膜105の振動に関係しないダミー電極を第1電極102と絶縁分離した状態で適切に配置して形成しておき、第1電極102およびダミー電極が形成されている領域を電極形成領域としてもよい。このダミー電極の配置で圧電単結晶基板101の研磨時に加わる応力を調整することにより、圧電薄膜105における振動部の厚さと非振動部の厚さの比を調整することができる。第1電極102の周囲に適宜にダミー電極を設けることで、パターンの粗密による研磨速度のバラつきを削減でき、圧電薄膜105における振動部の厚さと非振動部の厚さとを適切に設定することが可能となる。
 以上に説明したように、実施の形態1によれば、圧電材料の単結晶から構成された圧電単結晶基板の一方の面に、圧電単結晶基板より小さい面積とされた所定の平面形状の第1電極を形成しておき、圧電単結晶基板の研磨における研磨圧力に差を設けることで2つの電極に挾まれた圧電薄膜の厚さを薄くし、横方向の伝搬モードに起因するスプリアスを抑制しているので、不要振動が抑制された状態で、圧電薄膜素子のQ値が向上できるようになる。
 また、実施の形態1によれば、堆積などによる成膜によらずに圧電薄膜を形成しているため、圧電薄膜として種々の圧電材料が選択可能である。例えば、上述したAlNに限らず、ZnO,LiTaO3,LiNbO3,水晶、KNbO3などを圧電薄膜(圧電単結晶基板)として用いることができる。さらに、任意の結晶方位の圧電単結晶基板を選択して圧電薄膜とすることができるため、フィルタ設計の自由度が高い。
 ところで、BAWフィルタは、圧電薄膜共振器を用いるフィルタであるため、圧電薄膜共振器の品質係数Q値を十分高くする必要がある。共振子のQ値を向上させるためには、圧電薄膜の結晶性が重要である。例えば、一方の電極の上に圧電薄膜を成膜し、成膜した圧電薄膜の上に他方の電極を形成する場合、一方の電極の上に配向性よく圧電薄膜を形成することが重要となる。この場合、一方の電極の圧電薄膜形成面の結晶性が、圧電薄膜の配向性を左右する。また、音響反射膜を用いるSMRフィルタにおいては、支持基板や音響反射膜における結晶性が、最終的に得られる圧電薄膜の配向性(結晶性)を左右し、素子の性能を左右していた。
 上記課題に対し、圧電材料のバルクよりKNN素片を切り出し、音響多層膜上に形成してある下部電極に切り出したKNN素片を接合し、接合したKNN素片をパターニングして圧電材料部とし、この上に上部電極を形成することで、Q値に優れたBAW共振器とする技術がある(特許文献3参照)。この技術では、KNN素片の側に形成してある接合金属層と下部電極の上側金属層とを接合することで、KNN素片と下部電極との高い接合強度を得ている。また、KNN素片をパターニングして下部電極より小さい面積の圧電材料部とすることで、共振で生じた振動エネルギーを、圧電材料部に閉じ込めている。
 しかしながら、上述した技術では、圧電材料部を小さい面積としているため、上部電極の形成や上部電極への配線などの形成のために、圧電材料部の周囲を絶縁層で埋め込んでいる。このように、振動部の周囲に絶縁層が形成されているため、横方向への振動漏れが生じ、Qが低下するという問題がある。
 以下、上述した問題点を解消するために、横方向への振動漏れを抑制した状態で、高い結晶性の圧電薄膜と音響反射膜とを、高い強度で一体にできるようにする圧電薄膜素子の製造方法について、実施の形態2を用いて説明する。
[実施の形態2]
 以下、本発明の実施の形態2について図2A~図2Fを参照して説明する。図2A~図2Fは、本発明の実施の形態2における圧電薄膜素子(圧電共振器)の製造方法を説明するための各工程における状態を示す断面図である。
 まず、図2Aに示すように、圧電材料の単結晶から構成された圧電単結晶基板201の一方の面201aに、圧電単結晶基板201の設計された素子領域より小さい面積とされた所定の平面形状の第1電極202aを形成する(第1工程)。例えば、圧電単結晶基板201には、各々が圧電共振器となる複数の素子領域が設定され、各素子領域の各々に第1電極202aを形成する。圧電単結晶基板201に、1つの素子領域が設定されていても良い。素子領域の平面視中央部と第1電極202aの平面視中央部とが実質的に重なる状態とする。なお、図2A~図2Fでは、1つの素子領域を示している。
 圧電単結晶基板201は、例えば昇華法を用いて作製したAlNの単結晶基板であり、主表面がc面とされ、板厚が250μm程度とされている。また、第1電極202aは、Pt,Mo,Wなどの金属から構成する。例えば、よく知られたRFマグネトロンスパッタ法によりMoを堆積して金属膜を形成し、この上に公知のフォトリソグラフィー技術によりレジストパターンを形成し、形成したレジストパターンをマスクとして金属膜をイオンミリングによりエッチングし、この後レジストパターンを除去することで、第1電極202aが形成できる。上記レジストパターンは、圧電単結晶基板201に予め形成してある位置合わせマークを基準として位置合わせを行って形成すれば良い。
 次に、図2Bに示すように、支持基板203の上に、互いに音響インピーダンスの異なる複数の層が交互に積層された音響反射膜204を形成し、音響反射膜204の一方の面204aに第2電極202bを形成する(第2工程)。面204aは、貼り合わせ側の面となる。音響反射膜204においては、隣り合う層は音響インピーダンスが異なり、1つおきに同じ音響インピーダンスの層が積層されている。第2電極202bは、第1電極202aとは異なる面積に形成する。例えば、第2電極202bは、第1電極202aより小さい面積に形成する。なお、第1電極202aを、第2電極202bより小さい面積に形成しても良い。また、第2電極202bは、第1電極202aより薄く形成する。
 支持基板203は、例えば、Si(111)から構成され、厚さ250μmとされている。Si(111)から構成した支持基板203は、高抵抗であることが望ましく、例えば、比抵抗が1000Ω/cm以上であればよい。
 音響反射膜204は、音響インピーダンスの異なる複数の高音響インピーダンス層241,低音響インピーダンス層242が、交互に3対積層されて構成されている。高音響インピーダンス層241,低音響インピーダンス層242の対が、2対から4対積層されていれば良い。ここで、高音響インピーダンス層241は、低音響インピーダンス層242より音響インピーダンスが高い。例えば、高音響インピーダンス層241は、AlNから構成されて厚さ1.4μmとされている。また、低音響インピーダンス層242は、例えば、SiO2から構成されて厚さ0.7μmとされている。これらは、例えば、RFマグネトロンスパッタ法により形成できる。
 より音響インピーダンスが高い高音響インピーダンス層241は、AlNに限らず、ZnO,W,Mo,Cu,Al23などから構成することができる。また、より音響インピーダンスが低い低音響インピーダンス層242は、SiO2に限らず、Mg,Alなどから構成することができる。なお、音響反射膜204の総厚は、後述する圧電薄膜205が単独の状態における共振周波数の音波(バルク波)が、単独の状態とした音響反射膜204を伝搬するときの波長の1/4とする。
 また、第2電極202bは、Pt,Mo,Wなどの金属から構成する。例えば、よく知られたRFマグネトロンスパッタ法によりMoを堆積して金属膜を形成し、この上に公知のフォトリソグラフィー技術によりレジストパターンを形成し、形成したレジストパターンをマスクとして金属膜をイオンミリングによりエッチングし、この後レジストパターンを除去することで、第2電極202bが形成できる。上記レジストパターンは、支持基板203に予め形成してある位置合わせマークを基準として位置合わせを行って形成すれば良い。
 次に、図2Cに示すように、第1電極202aと第2電極202bとを貼り合わせる(第3工程)。平面視で、第1電極202aの中央部(中心)と第2電極202bの中央部とが重なる状態に位置合わせして貼り合わせる(接合させる)。この実施の形態2では、第2電極202bを第1電極202aより小さい面積としているので、平面視で、第2電極202bは、第1電極202aの形成領域の内側に配置される。このように、金属同士を接合させているので、高い接合強度が得られるようになる。また、接合させたことにより、第1電極202aと第2電極202bとは一体となり、これらにより後述する圧電薄膜205による共振器を構成する一方の電極となる。
 例えば、第1電極202aと第2電極202bとを上述したように位置合わせして当接させ、この状態で200~300℃程度に加熱し、両者の間に圧力を加えることで接合させれば良い。また、表面活性化接合法や原子拡散接合法などにより接合させても良い。また、共晶接合により接合させても良い。
 次に、圧電単結晶基板201の他方の面201bから圧電単結晶基板201を薄層化し、図2Dに示すように、音響反射膜204の上に第2電極202b,第1電極202a,および圧電単結晶基板201を薄層化して得られた圧電薄膜205が積層された状態とする(第4工程)。例えば、第1電極202aが形成されている電極形成領域の圧電薄膜205の厚さは、2.8μm程度にすれば良い。このように、高い結晶性を有する圧電単結晶基板201を貼り合わせて薄層化することで圧電薄膜205を得ているので、圧電薄膜205も高い結晶性が得られている。
 この薄層化は、研磨により実施するとよい。研磨により薄層化することで、圧電薄膜205の第1電極202aが形成されている電極形成領域(振動部)が、この周囲の第1電極202aが形成されていない電極未形成領域(非振動部)より薄くなる。なお、圧電薄膜205の第1電極202aが形成されている電極形成領域の厚さは、単独の状態とした圧電薄膜205の共振周波数の音波が単独の圧電薄膜205を伝搬するときの波長λの半分もしくは1/4とされていれば良い。
 上述した薄層化における圧電単結晶基板201を研磨においては、硬質タイプの研磨用パッドを用いると良い。この研磨において、研磨面となる面201bに対して裏面となる面201aには、部分的に第1電極202aが形成され、第1電極202aの周囲の電極未形成領域は、音響反射膜204と面201aとの間に空隙が存在している。このため、第1電極202aが形成されている電極形成領域と、この周囲の電極未形成領域とでは、研磨における面201bに対する圧力(研磨圧力)が異なる状態となる。
 第1電極202aが形成されている電極形成領域は、この周囲の電極未形成領域に比較して研磨圧力が大きく、研磨の速度が速くなる。一方、第1電極202aの周囲の電極未形成領域は、研磨圧力が小さく、研磨の速度が遅くなる。この研磨速度の差により、圧電薄膜205の電極形成領域には、平面視で第1電極202aと中心を共通とする平面形状の凹部206が形成される。この結果、圧電薄膜205の第1電極202aが形成されている電極形成領域は、この周囲の電極未形成領域より薄く形成されるものとなる。
 次に、図2Eに示すように、圧電薄膜205を挾んで第1電極202aに向かい合い第1電極202aより大きな面積の第3電極207を、圧電薄膜205の上に形成する(第5工程)。第3電極207は、圧電薄膜205による共振器を構成する他方の電極となる。平面視で、第1電極202a(第2電極202b)の中央部と第3電極207の中央部とが重なる状態に、第3電極207を配置すれば良い。平面視で、第1電極202aは、第3電極207の形成領域の内側に配置される。
 例えば、第3電極207は、Pt,Mo,Wなどの金属から構成する。例えば、よく知られたRFマグネトロンスパッタ法によりMoを堆積して金属膜を形成し、この上に公知のフォトリソグラフィー技術によりレジストパターンを形成し、形成したレジストパターンをマスクとして金属膜をイオンミリングによりエッチングし、この後レジストパターンを除去することで、第3電極207が形成できる。また、よく知られたリフトオフ法により、第3電極207を形成しても良い。いずれにおいても、レジストパターン(リフトオフパターン)は、圧電単結晶基板201に形成してあり圧電薄膜205の状態においても残っている位置合わせマークを基準として位置合わせを行って形成すれば良い。
 なお、図示はしないが、第2電極202b,第1電極202a,および第3電極207との組からなる複数の素子(圧電共振器)を、電気的に所定の接続をしてSMRフィルタを構成し、SMRフィルタ毎に支持基板203より切り出す。また、SMRフィルタを構成する一部の圧電共振器は、異なる共振周波数にする必要がある。その場合は、対応する圧電共振器の第3電極207の上にさらに重し電極を形成し、対応する圧電共振器の周波数を設定する。また、個々の素子領域で切り出して複数の素子としても良い。
 上述した圧電薄膜素子は、平面視で第1電極202aと第3電極207とが重なる部分が実効的に電界の印加される領域となり、第1電極202aと第3電極207の間に交流電圧を印可すると、共振周波数となる周波数で共振を生じる。
 第3電極207の側に伝搬した共振によるバルク波は、第3電極207の概ね端面にて反射し、第1電極202aの側に伝搬したバルク波は、音響反射膜204に伝搬する。音響反射膜204の厚さは、共振周波数のバルク波が、単独の状態とした音響反射膜204を伝搬するときの波長の1/4とされているため、各々の高音響インピーダンス層241,低音響インピーダンス層242の境界面からの反射波の位相が重なり、実効的に支持基板203の影響を受けなくなる。
 また、圧電薄膜205で励振したバルク波は、圧電薄膜205の平面方向(横方向)にも伝搬する。これに対し、上述した実施の形態2における圧電薄膜素子によれば、第2電極202bと第1電極202aとの面積が異なっていることから、これらによる一方の電極周囲の音響インピーダンスが、電極内側の音響インピーダンスと異なっている。この結果、振動エネルギーを、一方の電極の形成領域内に閉じ込めることが可能となり、横方向への振動漏れが抑制できる。
 以上に説明したように、実施の形態2によれば、第1電極202aと、第1電極202aとは異なる面積の第2電極202bとを貼り合わせることで、音響反射膜204の上に圧電薄膜205を配置するようにしたので、横方向への振動漏れを抑制した状態で、高い結晶性の圧電薄膜205と音響反射膜204とを、高い強度で一体にすることができる。
 また、上述したように、接合した後に研磨により圧電単結晶基板201から圧電薄膜205を形成しているため、第1電極202aの形成領域の振動部(電極形成領域)の圧電薄膜205の厚さが、平面視で第1電極202aより外周の非振動部(電極未形成領域)における圧電薄膜205の厚さより薄くなる。この構成によっても、振動エネルギーが振動部に閉じ込められるため、横方向への振動漏れが抑制でき、不要なスプリアスの発生が抑制できるようになる。
 また、図2Fに示すように、第3電極207の上に補助電極207aを形成しても良い。補助電極207aは、第3電極207の上面の、周縁部または周縁に近い領域に設ければよい。また、補助電極207aは、第3電極207の周縁に沿う平面形状に形成すればよい。第3電極207の上に補助電極207aを設けることで、更に、振動エネルギーが振動部へ閉じ込められ、不要なスプリアスの発生が更に抑制できるようになる。また、補助電極207aを可能な範囲で厚くするとより上記効果がより得られるようになる。補助電極207aの形成箇所や厚さは、スプリアスの発生周波数により適宜に設定すればよい。
 なお、第3電極207下に振動エネルギーが閉じ込められると、第3電極207内での多重反射によるスプリアスが発生する。これを抑制するために、圧電薄膜205を挾む電極が重なる部分の平面形状、言い換えると、第1電極202aの平面視の形状を、楕円や、対向する辺が平行にならないような多角形の形状にするとよい。
 ところで、第1電極202aより第2電極202bの方を小さい面積としている場合、図3A,図3Bに示すように、第2電極202bの周囲に、補助第2電極221,補助第2電極222を適切に配置して形成してもよい。このように、補助第2電極221,補助第2電極222を設けることで、第1電極202aとの接合後に一体となった状態において、中心部と周辺部とで、異なる音響インピーダンス領域を設定することができる。第2電極202bより第1電極202aの方を小さい面積としている場合、第1電極202aの周囲に補助電極を設ければ良い。また、図3Cに示すように、第3電極207の上に補助第3電極223を形成しても良い。補助第3電極223を設けることで、前述した補助電極207aと同様の効果が得られる。
 また、実施の形態2によれば、堆積などによる成膜によらずに圧電薄膜を形成しているため、圧電薄膜として種々の圧電材料が選択可能である。例えば、上述したAlNに限らず、ZnO,LiTaO3,LiNbO3,水晶、KNbO3などを圧電薄膜(圧電単結晶基板)として用いることができる。さらに、任意の結晶方位の圧電単結晶基板を選択して圧電薄膜とすることができるため、フィルタ設計の自由度が高い。
 なお、本発明は以上に説明した実施の形態に限定されるものではなく、本発明の技術的思想内で、当分野において通常の知識を有する者により、多くの変形および組み合わせが実施可能であることは明白である。例えば、本発明の圧電薄膜素子は、デュプレクサにも適用可能である。
 なお、本出願は国の委託(総務省 平成28年度戦略的情報通信研究開発推進事業)に係る研究開発の成果に係る出願である。
 101…圧電単結晶基板、101a…面、101b…面、102…第1電極、103…支持基板、104…音響反射膜、105…圧電薄膜、106…凹部、107…第2電極、141…高音響インピーダンス層、142…低音響インピーダンス層、201…圧電単結晶基板、201a…面、201b…面、202a…第1電極、202b…第2電極、203…支持基板、204…音響反射膜、204a…面、205…圧電薄膜、206…凹部、207…第3電極、241…高音響インピーダンス層、242…低音響インピーダンス層。

Claims (4)

  1.  圧電材料の単結晶から構成された圧電単結晶基板の一方の面に、前記圧電単結晶基板より小さい面積とされた所定の平面形状の第1電極を形成する第1工程と、
     前記第1電極に互いに音響インピーダンスの異なる複数の層が交互に積層された音響多層膜を貼り付ける第2工程と、
     前記圧電単結晶基板の他方の面から前記圧電単結晶基板を研磨して薄層化し、前記音響多層膜の上に前記第1電極および前記圧電単結晶基板を薄層化して得られた圧電薄膜が積層された状態とする第3工程と、
     前記圧電薄膜を挾んで前記第1電極に向かい合い前記第1電極より小さな面積の第2電極を前記圧電薄膜の上に形成する第4工程と
     を備え、
     前記第3工程では、前記圧電薄膜の前記第1電極が形成されている電極形成領域は、この電極形成領域とこの周囲の前記第1電極が形成されていない電極未形成領域との間の研磨圧力の差により、前記電極未形成領域より薄く形成された状態とする
     ことを特徴とする圧電薄膜素子の製造方法。
  2.  請求項1記載の圧電薄膜素子の製造方法において、
     前記第1工程では、前記圧電単結晶基板の一方の面の前記第1電極の周囲に前記圧電薄膜の振動に関係しないダミー電極を前記第1電極と絶縁分離した状態で形成し、前記第1電極および前記ダミー電極が形成されている領域を前記電極形成領域とする
     ことを特徴とする圧電薄膜素子の製造方法。
  3.  圧電材料の単結晶から構成された圧電単結晶基板の一方の面に、前記圧電単結晶基板より小さい面積とされた所定の平面形状の第1電極を形成する第1工程と、
     音響インピーダンスの異なる複数の層が交互に積層された音響多層膜の一方の面に前記第1電極とは異なる面積の第2電極を形成する第2工程と、
     前記第1電極と前記第2電極とを貼り合わせる第3工程と、
     前記圧電単結晶基板を薄層化して前記音響多層膜の上に前記第2電極,前記第1電極,および前記圧電単結晶基板を薄層化して得られた圧電薄膜が積層された状態とする第4工程と、
     前記圧電薄膜を挾んで前記第1電極に向かい合い前記第1電極より大きな面積の第3電極を前記圧電薄膜の上に形成する第5工程と
     を備えることを特徴とする圧電薄膜素子の製造方法。
  4.  請求項3記載の圧電薄膜素子の製造方法において、
     前記第4工程では、
     前記圧電薄膜は、前記圧電単結晶基板の他方の面から前記圧電単結晶基板を研磨して薄層化することによって得られ、
     前記第1電極が形成されている電極形成領域は、この電極形成領域とこの周囲の前記第1電極が形成されていない電極未形成領域との間の研磨圧力の差により、前記電極未形成領域より薄く形成された状態とする
     ことを特徴とする圧電薄膜素子の製造方法。
PCT/JP2016/071718 2015-08-07 2016-07-25 圧電薄膜素子の製造方法 WO2017026257A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/750,821 US10771032B2 (en) 2015-08-07 2016-07-25 Method for manufacturing piezoelectric thin-film element
DE112016003608.6T DE112016003608T5 (de) 2015-08-07 2016-07-25 Verfahren zum Herstellen eines piezoelektrischen Dünnschichtelements
JP2017534161A JP6631925B2 (ja) 2015-08-07 2016-07-25 圧電薄膜素子の製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-156979 2015-08-07
JP2015-156982 2015-08-07
JP2015156979 2015-08-07
JP2015156982 2015-08-07

Publications (1)

Publication Number Publication Date
WO2017026257A1 true WO2017026257A1 (ja) 2017-02-16

Family

ID=57983172

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/071718 WO2017026257A1 (ja) 2015-08-07 2016-07-25 圧電薄膜素子の製造方法

Country Status (4)

Country Link
US (1) US10771032B2 (ja)
JP (2) JP6631925B2 (ja)
DE (1) DE112016003608T5 (ja)
WO (1) WO2017026257A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021057805A (ja) * 2019-09-30 2021-04-08 国立大学法人東北大学 弾性波デバイス

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017026257A1 (ja) 2015-08-07 2017-02-16 株式会社Piezo Studio 圧電薄膜素子の製造方法
TWI721315B (zh) * 2018-09-05 2021-03-11 立積電子股份有限公司 體聲波結構、體聲波裝置及其製造方法
CN113824420A (zh) * 2021-08-23 2021-12-21 杭州电子科技大学 具有双环形结构电极的单晶薄膜体声波谐振器制备方法
CN113839637A (zh) * 2021-08-26 2021-12-24 杭州电子科技大学 电极带环槽及条状凸起的单晶薄膜体声波谐振器制备方法
CN113839638A (zh) * 2021-08-30 2021-12-24 杭州电子科技大学 电极设有双环形与桥型结构的薄膜体声波谐振器制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008172713A (ja) * 2007-01-15 2008-07-24 Hitachi Media Electoronics Co Ltd 圧電薄膜共振器および圧電薄膜共振器フィルタおよびその製造方法
WO2008126473A1 (ja) * 2007-04-11 2008-10-23 Murata Manufacturing Co., Ltd. 圧電薄膜フィルタ
JP2009232283A (ja) * 2008-03-24 2009-10-08 Panasonic Electric Works Co Ltd Baw共振装置の製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI107660B (fi) 1999-07-19 2001-09-14 Nokia Mobile Phones Ltd Resonaattorirakenne
US6767749B2 (en) * 2002-04-22 2004-07-27 The United States Of America As Represented By The Secretary Of The Navy Method for making piezoelectric resonator and surface acoustic wave device using hydrogen implant layer splitting
JP4828966B2 (ja) 2006-03-07 2011-11-30 日本碍子株式会社 圧電薄膜デバイス
JP4905142B2 (ja) 2007-01-15 2012-03-28 富士通株式会社 画像処理装置、印刷物および画像処理プログラム
JP2008306280A (ja) * 2007-06-05 2008-12-18 Ngk Insulators Ltd 圧電薄膜デバイス
US8514033B2 (en) * 2007-10-18 2013-08-20 Avago Technologies General Ip (Singapore) Pte. Ltd. BAW structure with reduced topographic steps and related method
JP2009290374A (ja) 2008-05-27 2009-12-10 Panasonic Electric Works Co Ltd Baw共振器の製造方法
WO2017026257A1 (ja) 2015-08-07 2017-02-16 株式会社Piezo Studio 圧電薄膜素子の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008172713A (ja) * 2007-01-15 2008-07-24 Hitachi Media Electoronics Co Ltd 圧電薄膜共振器および圧電薄膜共振器フィルタおよびその製造方法
WO2008126473A1 (ja) * 2007-04-11 2008-10-23 Murata Manufacturing Co., Ltd. 圧電薄膜フィルタ
JP2009232283A (ja) * 2008-03-24 2009-10-08 Panasonic Electric Works Co Ltd Baw共振装置の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021057805A (ja) * 2019-09-30 2021-04-08 国立大学法人東北大学 弾性波デバイス
JP7378723B2 (ja) 2019-09-30 2023-11-14 国立大学法人東北大学 弾性波デバイス

Also Published As

Publication number Publication date
DE112016003608T5 (de) 2018-04-26
JP2019208260A (ja) 2019-12-05
JP6631925B2 (ja) 2020-01-15
JPWO2017026257A1 (ja) 2018-05-31
US20180226939A1 (en) 2018-08-09
US10771032B2 (en) 2020-09-08

Similar Documents

Publication Publication Date Title
JP6631925B2 (ja) 圧電薄膜素子の製造方法
US11152914B2 (en) Elastic wave device and method for manufacturing the same
WO2017212774A1 (ja) 弾性波装置及びその製造方法
JP6642499B2 (ja) 弾性波装置
JP4428354B2 (ja) 圧電薄膜共振子
WO2007119556A1 (ja) 圧電共振子及び圧電フィルタ
JP7138988B2 (ja) バルク音響波共振器及びその製造方法並びにフィルタ、無線周波数通信システム
JP2008035358A (ja) 薄膜圧電バルク波共振器及びそれを用いた高周波フィルタ
JP2007312164A (ja) 圧電薄膜共振器並びにそれを用いた高周波フィルタ及び高周波モジュール
CN110798167A (zh) 声波器件及其制作方法
WO2020209359A1 (ja) 弾性波装置
JP7081041B2 (ja) 薄膜バルク音響波共振器とその製造方法、フィルタ、および無線周波数通信システム
JP4836748B2 (ja) バルク音響波共振子及びフィルタ装置並びに通信装置
JP2016123016A (ja) 弾性波装置及びその製造方法
JP2022507318A (ja) バルク音響波共振器及びその製造方法並びにフィルタ、無線周波数通信システム
JP2006217606A (ja) 圧電薄膜共振器及びその製作方法
JP2020014088A (ja) 弾性波共振器、フィルタ並びにマルチプレクサ
JP2017112437A (ja) 圧電薄膜共振器、フィルタおよびデュプレクサ
WO2022158249A1 (ja) 弾性波装置、フィルタ装置及び弾性波装置の製造方法
JP2007288504A (ja) 圧電薄膜共振子
JP7199758B2 (ja) バルク音響波共振器及びその製造方法並びにフィルタ、無線周波数通信システム
CN114978093A (zh) 声波谐振器、滤波器、通信设备及其制造方法
JP2008022408A (ja) 圧電薄膜共振子
JP2021534612A (ja) 薄膜バルク音響波共振器およびその製造方法
US20220038073A1 (en) Elastic wave device and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16834954

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017534161

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15750821

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112016003608

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16834954

Country of ref document: EP

Kind code of ref document: A1