WO2017026026A1 - 鉄道車両用制御装置 - Google Patents

鉄道車両用制御装置 Download PDF

Info

Publication number
WO2017026026A1
WO2017026026A1 PCT/JP2015/072625 JP2015072625W WO2017026026A1 WO 2017026026 A1 WO2017026026 A1 WO 2017026026A1 JP 2015072625 W JP2015072625 W JP 2015072625W WO 2017026026 A1 WO2017026026 A1 WO 2017026026A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
contactor
smoothing capacitor
generator
railway vehicle
Prior art date
Application number
PCT/JP2015/072625
Other languages
English (en)
French (fr)
Inventor
康介 時任
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US15/750,328 priority Critical patent/US10913365B2/en
Priority to CN201580082126.0A priority patent/CN107848425B/zh
Priority to PCT/JP2015/072625 priority patent/WO2017026026A1/ja
Priority to JP2017534050A priority patent/JP6324631B2/ja
Priority to EP15900980.2A priority patent/EP3335923B1/en
Publication of WO2017026026A1 publication Critical patent/WO2017026026A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/13Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines using AC generators and AC motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • B60L9/16Electric propulsion with power supply external to the vehicle using ac induction motors
    • B60L9/18Electric propulsion with power supply external to the vehicle using ac induction motors fed from dc supply lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61CLOCOMOTIVES; MOTOR RAILCARS
    • B61C7/00Other locomotives or motor railcars characterised by the type of motive power plant used; Locomotives or motor railcars with two or more different kinds or types of motive power
    • B61C7/04Locomotives or motor railcars with two or more different kinds or types of engines, e.g. steam and IC engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T30/00Transportation of goods or passengers via railways, e.g. energy recovery or reducing air resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors

Definitions

  • the present invention relates to a railway vehicle control device mounted on a railway vehicle using an internal combustion engine.
  • the railway vehicle control device mounted on a railway vehicle traveling on a non-electrified route without overhead equipment converts the AC power generated by a generator driven by an internal combustion engine such as a diesel engine, and converts the converted AC power.
  • a generator driven by an internal combustion engine such as a diesel engine
  • To the main motor to drive the main motor As the generator, a separately excited synchronous generator that generates electromotive force by rotation is used.
  • a permanent magnet synchronous generator may be used.
  • a railcar drive device disclosed in Patent Document 1 includes an induction generator driven by an engine, a first power conversion device that converts AC power output from the induction generator into DC power, and a first A smoothing capacitor is provided for smoothing the DC power output from the power converter.
  • the driving device of the railway vehicle charges the smoothing capacitor with power storage means for supplying power to the control device on the vehicle, and supplies power for starting the power generation operation to the induction generator using the power charged in the smoothing capacitor. And excite the induction generator.
  • a contactor and a resistor connected in series are provided between the power storage means and the smoothing capacitor, and the power storage means and the smoothing capacitor are electrically connected to each other. Connected. While the railway vehicle is traveling, in the railway vehicle drive device, the voltage of the smoothing capacitor is high, but the power storage means is low voltage. In the railway vehicle drive device, even when the contactor is stiff or when the contactor is erroneously inserted, the insulation between the high voltage circuit including the smoothing capacitor and the low voltage circuit including the storage means It is necessary to ensure.
  • the internal combustion engine When the internal combustion engine does not have a cell motor, the internal combustion engine is started using the power storage means. Since the power storage means is generally a low voltage of DC 100 V or less, a large current of several hundreds of A is required when starting the internal combustion engine. For this reason, in the configuration of the railway vehicle drive device disclosed in Patent Document 1, the terminal voltage is temporarily significantly reduced due to the internal resistance of the power storage means, which adversely affects the control equipment on the vehicle connected to the power storage means. There is a possibility of effect.
  • the present invention has been made in view of the above circumstances, and is driven by an internal combustion engine while preventing the high-voltage circuit and the low-voltage circuit from being mixed in a railway vehicle control device mounted on a railway vehicle using the internal combustion engine.
  • the purpose is to supply power to the generator.
  • a railway vehicle control device of the present invention includes a first power converter, a smoothing capacitor, a second power converter, a first power storage device, and a first contactor. And a control unit.
  • a generator that is driven by an internal combustion engine to generate AC power is connected to the primary side, and performs bidirectional power conversion between the primary side and the secondary side.
  • the smoothing capacitor is connected between the terminals on the secondary side of the first power converter.
  • the second power conversion device converts and outputs power supplied from a power source connected to the input side in a state where the input side and the output side are insulated.
  • the first power storage device is connected in parallel with the smoothing capacitor between the secondary-side terminals of the first power conversion device, and connected between the output-side terminals of the second power conversion device, It is charged by the power output from the power converter.
  • the first contactor opens and closes an electric circuit between the smoothing capacitor and the first power storage device.
  • the control unit controls the first power conversion device and the second power conversion device. After the smoothing capacitor is charged with the power charged in the first power storage device by turning on the first contactor, the control unit controls the first power conversion device so that the first power conversion device is smoothed. Power conversion of the electric power charged in the capacitor is performed, and the converted electric power is supplied as electric power for operating the generator.
  • the first power storage device that is charged by the second power conversion device that performs power conversion in a state where the input side and the output side are insulated is provided.
  • the smoothing capacitor By charging the smoothing capacitor with the power charged in the device, converting the power charged in the smoothing capacitor and supplying it to the generator, the power is supplied to the generator while preventing the high-voltage circuit and the low-voltage circuit from being mixed. It becomes possible to supply.
  • FIG. 1 is a block diagram illustrating a configuration example of a railway vehicle control device according to a first embodiment.
  • 3 is a timing chart illustrating an operation of starting the internal combustion engine performed by the railway vehicle control device according to the first embodiment.
  • FIG. 1 is a block diagram illustrating a configuration example of a railway vehicle control device according to Embodiment 1 of the present invention.
  • the railway vehicle control device 1 is mounted on a railway vehicle driven by the power of an internal combustion engine 2 such as a diesel engine, for example.
  • an internal combustion engine 2 such as a diesel engine
  • the railway vehicle control device 1 starts the internal combustion engine 2.
  • the railway vehicle control device 1 includes a first power conversion device 11 to which a generator 3 that is driven by an internal combustion engine 2 to generate AC power is connected to a primary side, and a secondary side of the first power conversion device.
  • a smoothing capacitor 12 connected between the terminals, an inverter 13 that is a load device connected in parallel with the smoothing capacitor 12 between the terminals on the secondary side of the first power converter, and a start control unit 14 are provided.
  • the start control unit 14 includes a first power storage device 16 connected in parallel with the smoothing capacitor 12 between the terminals on the secondary side of the first power converter 11 via the first contactor 15, and a second And a power conversion device 17.
  • the first power converter 11 is an AC (Alternative Current) -DC (Direct Current) direct current converter that performs bidirectional power conversion between the primary side and the secondary side.
  • Smoothing capacitor 12 smoothes each of the DC power output from first power converter 11 and the power discharged from first power storage device 16.
  • the inverter 13 converts the power charged in the smoothing capacitor 12 from DC power to AC power and supplies the AC power as power for operating the motor 4.
  • the second power conversion device 17 converts the power supplied from the power source connected to the input side in a state where the input side and the output side are insulated, and is connected between the terminals on the output side. The converted power is supplied to the power storage device 16.
  • the second power conversion device 17 is a DC-DC converter.
  • the power source connected to the input side of the second power conversion device 17 is, for example, a power storage device that supplies power to a control device on the vehicle.
  • FIG. 2 is a block diagram illustrating a configuration example of the railway vehicle control device according to the first embodiment.
  • the power source connected to the input side of the second power conversion device 17 is the second power storage device 19.
  • the second power storage device 19 performs power conversion of the power supplied between the terminals on the secondary side of the first power conversion device 11 while the input side and the output side are insulated while the generator 3 is driven. It is charged by the transmission circuit that performs.
  • the second power storage device 19 is charged with electric power output from an SIV (Static Inverter) 20.
  • the second power storage device 19 supplies power to a control device on the vehicle (not shown).
  • the control unit 18 controls the first power conversion device 11, the inverter 13, and the second power conversion device 17.
  • the control unit 18 includes a processor including a CPU (Central Processing Unit) and an internal memory, and a memory including a RAM (Random Access Memory) and a flash memory.
  • the control unit 18 executes a control program stored in the memory, sends a control signal to the switching elements included in the first power conversion device 11, the inverter 13, and the second power conversion device 17, and outputs the first control signal.
  • the power converter 11, the inverter 13, and the second power converter 17 are controlled.
  • FIG. 3 is a timing chart showing an operation of starting the internal combustion engine performed by the railway vehicle control apparatus according to the first embodiment.
  • the starting of the internal combustion engine 2 by the railway vehicle control device 1 will be described with reference to FIG.
  • the second power storage device 19 is charged with sufficient power.
  • T1 for example, by the engine start operation of the crew member, the operation of starting the internal combustion engine 2 by the railcar control device 1 is started, and in response to the start operation, for example, a second control signal output by the control unit 18 is used.
  • the power conversion device 17 is activated.
  • the control unit 18 controls the second power conversion device 17, and the second power conversion device 17 performs power conversion of the power charged in the second power storage device 19 and supplies power to the first power storage device 16. .
  • the first power storage device 16 is charged by, for example, a constant voltage charging method.
  • the first contactor 15 when the first contactor 15 is turned on, charging of the smoothing capacitor 12 with electric power charged in the first power storage device 16 is started. After charging of the smoothing capacitor 12 is completed at time T3, the first power converter 11 is activated at time T4.
  • the control unit 18 controls the first power converter 11, the first power converter 11 performs power conversion of the power charged in the smoothing capacitor 12, and power for operating the generator 3 with the converted power Supply as.
  • the internal combustion engine 2 is started by the torque output from the generator 3 that receives the supply of electric power. Thereafter, when the rotational speed of the internal combustion engine 2 is stabilized at time T5, the first contactor 15 is opened.
  • whether or not the rotational speed of the internal combustion engine 2 is stable can be determined based on whether or not the fluctuation of the rotational speed of the internal combustion engine 2 is within a certain range.
  • the control unit 18 controls the first power converter 11, and the first power converter 11 has a voltage of the smoothing capacitor 12 that is a constant value, for example, Conversion of the electric power supplied from the generator 3 so as to be DC 600 V is started.
  • the inverter 13 can be activated. Thereafter, when a power running command is input by the operation of the crew, the inverter 13 is activated, the electric motor 4 is driven, and the vehicle starts running.
  • the first power storage device 16 Since the first power storage device 16 is charged by the second power conversion device 17 after time T2, even when the voltage of the first power storage device 16 decreases due to the charging of the smoothing capacitor 12, at time T8. The voltage of the first power storage device 16 rises to the same level as the voltage at time T2. After time T8, the internal combustion engine 2 can be restarted.
  • the second power is provided between the high voltage circuit including the smoothing capacitor 12 and the low voltage circuit including the second power storage device 19.
  • the conversion device 17 By providing the conversion device 17, it is possible to supply electric power to the generator 3 and start the internal combustion engine 2 while preventing the high voltage circuit and the low voltage circuit from being mixed.
  • the smoothing capacitor 12 is charged with the electric power charged in the first power storage device 16 and the internal combustion engine 2 is started with the electric power charged in the smoothing capacitor 12, a voltage drop occurs when the internal combustion engine 2 is started, and the second Adversely affecting on-vehicle control equipment connected to the power storage device 19.
  • FIG. 4 is a block diagram illustrating a configuration example of the railway vehicle control device according to the second embodiment of the present invention.
  • the second power storage device 19 is supplied with electric power from the first power conversion device 11 or the internal power supply 21 of the inverter 13.
  • the internal power supply 21 is, for example, a power supply for driving a switching circuit or a control relay included in the first power converter 11 or the inverter 13.
  • the starting operation of the internal combustion engine 2 of the railway vehicle control apparatus 1 according to the second embodiment is the same as that of the first embodiment.
  • the internal power supply 21 is generally lower in output than the second power storage device 19 that supplies power to the on-vehicle control device provided in the railway vehicle control device 1 according to the first embodiment, the second power conversion The capacity
  • capacitance of the apparatus 17 can be made low and the size reduction of the control apparatus 1 for rail vehicles is attained.
  • the second power storage device 19 that receives power supply from the first power conversion device 11 or the internal power supply 21 of the inverter 13 is used.
  • the railway vehicle control device 1 can be downsized.
  • FIG. 5 is a block diagram illustrating a configuration example of the railway vehicle control device according to the third embodiment of the present invention.
  • the railway vehicle control device 1 according to the third embodiment is connected to the first contactor 15 in series.
  • the contactor 22 includes a resistor 23 connected in parallel to the second contactor 22, and a voltage detector 24 that detects the voltage of the first power storage device 16.
  • the smoothing capacitor 12 is in a high voltage state. In this state, if the first contactor 15 is normally opened when the second contactor 22 is erroneously inserted or when the second contactor 22 is in trouble, the first power storage device No high voltage is applied to 16. In addition, even when the first contactor 15 is erroneously inserted or when the first contactor 15 is stiff, since the resistor 23 is provided, the current flowing through the first power storage device 16 is The voltage of the first power storage device 16 is not suddenly increased.
  • the control unit 18 controls the first contactor 15 and the second contactor 15. It may be determined that an abnormality has occurred in the contactor 22, the first power converter 11 and the inverter 13 are stopped, and the smoothing capacitor 12 may be discharged. As a result, the first power storage device 16 can be protected.
  • the above range can be arbitrarily determined according to the withstand voltage performance of the first power storage device 16.
  • the operation of starting the internal combustion engine 2 of the railway vehicle control apparatus 1 according to the third embodiment is the same as that of the first embodiment.
  • the smoothing capacitor 12 is charged with the electric power charged in the first power storage device 16, that is, between the time T2 and the time T3 in FIG. 3, the first contactor 15 is turned on, The second contactor 22 is in an open state.
  • the second contactor 22 is turned on, and the first power storage device 16 and the smoothing capacitor 12 are electrically connected.
  • the voltage drop in the resistor 23 does not occur, the rated voltage of the first power storage device 16 can be lowered, the rated power of the resistor 23 can be reduced, and the railway vehicle control device 1 can be reduced in size. Can be realized.
  • the number of contactors provided in the railway vehicle control device 1 is not limited to two.
  • the resistor 23 may be configured so that the resistor 23 can be turned on and off, and the charging condition of the resistor 23 may be changed depending on whether the smoothing capacitor 12 is charged or the internal combustion engine 2 is started.
  • the second contactor 22 to which the resistor 23 is connected in parallel is connected in series with the first contactor 15.
  • the configuration of the railway vehicle control device 1 according to the fourth embodiment is the same as the configuration of the railway vehicle control device 1 according to the first embodiment shown in FIG.
  • the internal combustion engine 2 has a starter such as a cell motor, and the railway vehicle control device 1 excites the generator 3 that is an induction generator.
  • FIG. 6 is a timing chart showing the starting operation of the internal combustion engine performed by the railway vehicle control apparatus according to Embodiment 4 of the present invention.
  • the internal combustion engine 2 is started by the starter.
  • the second power conversion device 17 is started at time T12.
  • the first contactor 15 is turned on and charging of the smoothing capacitor 12 is started.
  • the first contactor 15 is opened.
  • the first power conversion device 11 is activated, starts power conversion of the power charged in the smoothing capacitor 12, and supplies it as power for operating the generator 3. That is, an exciting current flows from the first power converter 11 to the generator 3.
  • the first power converter 11 raises the torque current and starts constant voltage control, whereby the power generation operation of the generator 3 is started.
  • the control unit 18 controls the first power converter 11, and the first power converter 11 starts converting the power supplied from the generator 3 so that the voltage of the smoothing capacitor 12 becomes a constant value.
  • the inverter 13 can be activated.
  • the voltage of first power storage device 16 rises to the same extent as the voltage at time T12. After time T18, the internal combustion engine 2 can be restarted.
  • the second power is provided between the high voltage circuit including the smoothing capacitor 12 and the low voltage circuit including the second power storage device 19.
  • the generator 3 can be excited while preventing the high voltage circuit and the low voltage circuit from being mixed.
  • the embodiment of the present invention is not limited to the above-described embodiment, and may be configured by arbitrarily combining a plurality of the above-described embodiments.
  • the configurations of the first power converter 11 and the second power converter 17 are not limited to the above-described embodiments.
  • the second power conversion device 17 is an arbitrary circuit capable of performing power conversion in a state where the input side and the output side are insulated, and may be, for example, an AC-DC converter.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

第2の電力変換装置(17)は入力側に接続された電圧源から供給される電力を変換して、第1の蓄電装置(16)に電力を供給する。第1の接触器(15)が投入され、第1の蓄電装置(16)に充電された電力によって平滑コンデンサ(12)が充電される。制御部(18)が第1の電力変換装置(11)を制御し、第1の電力変換装置(11)は平滑コンデンサ(12)に充電された電力の電力変換を行い、変換した電力を発電機(3)に供給する。

Description

鉄道車両用制御装置
 この発明は、内燃機関を用いる鉄道車両に搭載される鉄道車両用制御装置に関する。
 架線の設備がない非電化路線を走行する鉄道車両に搭載された鉄道車両用制御装置は、ディーゼルエンジンなどの内燃機関により駆動される発電機が生じさせる交流電力を変換して、変換した交流電力を主電動機に供給して主電動機を駆動させる。発電機として、回転によって起電力を生じさせる他励同期発電機が用いられる。また小型化、軽量化、および高効率化を図るために、永久磁石式同期発電機が用いられる場合もある。
 特許文献1に開示される鉄道車両の駆動装置は、エンジンによって駆動される誘導発電機と、誘導発電機から出力される交流電力を直流電力に変換する第1の電力変換装置と、第1の電力変換装置から出力される直流電力を平滑する平滑コンデンサを有する。該鉄道車両の駆動装置は、車上の制御装置に電力を供給する蓄電手段により平滑コンデンサを充電し、平滑コンデンサに充電された電力を用いて誘導発電機に発電動作開始のための電力を供給し、誘導発電機を励磁する。
特開2014-011828号公報
 特許文献1に開示される鉄道車両の駆動装置においては、蓄電手段と平滑コンデンサとの間に直列に接続された接触器および抵抗器が設けられており、蓄電手段と平滑コンデンサとは電気的に接続される。鉄道車両の走行中は、該鉄道車両の駆動装置において、平滑コンデンサの電圧は高電圧となるが、蓄電手段は低電圧である。該鉄道車両の駆動装置では、接触器が固渋した場合または接触器が誤投入された場合であっても、平滑コンデンサを含む高電圧回路と蓄電手段を含む低電圧回路との間の絶縁性を確保する必要がある。
 内燃機関がセルモータを有さない場合、蓄電手段を用いて内燃機関を始動する。蓄電手段は一般的にDC100V以下の低電圧であるため、内燃機関の始動時に数100Aの大電流が必要となる。そのため、特許文献1に開示される鉄道車両の駆動装置の構成では、蓄電手段の内部抵抗により、端子電圧が一時的に著しく低下し、蓄電手段に接続されている車上の制御機器に悪影響を及ぼす可能性がある。
 本発明は上述の事情に鑑みてなされたものであり、内燃機関を用いる鉄道車両に搭載される鉄道車両用制御装置における高電圧回路と低電圧回路の混触を防止しながら、内燃機関によって駆動される発電機に電力を供給することを目的とする。
 上記目的を達成するために、本発明の鉄道車両用制御装置は、第1の電力変換装置と、平滑コンデンサと、第2の電力変換装置と、第1の蓄電装置と、第1の接触器と、制御部とを備える。第1の電力変換装置は、内燃機関によって駆動されて交流電力を生じさせる発電機が一次側に接続され、一次側と二次側との間の双方向の電力変換を行う。平滑コンデンサは第1の電力変換装置の二次側の端子間に接続される。第2の電力変換装置は、入力側と出力側とを絶縁した状態で、入力側に接続される電源から供給される電力を変換して出力する。第1の蓄電装置は、第1の電力変換装置の二次側の端子間に平滑コンデンサと並列に接続され、かつ、第2の電力変換装置の出力側の端子間に接続され、第2の電力変換装置が出力する電力によって充電される。第1の接触器は、平滑コンデンサと第1の蓄電装置との間の電路の開閉を行う。制御部は、第1の電力変換装置および第2の電力変換装置の制御を行う。第1の接触器の投入によって第1の蓄電装置に充電された電力で平滑コンデンサが充電された後に、制御部が第1の電力変換装置を制御することで、第1の電力変換装置は平滑コンデンサに充電された電力の電力変換を行い、変換した電力を発電機を作動させるための電力として供給する。
 本発明によれば、鉄道車両用制御装置において、入力側と出力側とを絶縁した状態で電力変換を行う第2の電力変換装置によって充電される第1の蓄電装置を設け、第1の蓄電装置に充電された電力で平滑コンデンサを充電し、平滑コンデンサに充電された電力を変換して発電機に供給することで、高電圧回路と低電圧回路の混触を防止しながら発電機に電力を供給することが可能となる。
本発明の実施の形態1に係る鉄道車両用制御装置の構成例を示すブロック図である。 実施の形態1に係る鉄道車両用制御装置の構成例を示すブロック図である。 実施の形態1に係る鉄道車両用制御装置が行う内燃機関の始動の動作を示すタイミングチャートである。 本発明の実施の形態2に係る鉄道車両用制御装置の構成例を示すブロック図である。 本発明の実施の形態3に係る鉄道車両用制御装置の構成例を示すブロック図である。 本発明の実施の形態4に係る鉄道車両用制御装置が行う内燃機関の始動の動作を示すタイミングチャートである。
 以下、本発明の実施の形態について図面を参照して詳細に説明する。なお図中、同一または同等の部分には同一の符号を付す。
 (実施の形態1)
 図1は、本発明の実施の形態1に係る鉄道車両用制御装置の構成例を示すブロック図である。鉄道車両用制御装置1は、例えばディーゼルエンジンなどの内燃機関2の動力で駆動される鉄道車両に搭載される。実施の形態1においては、内燃機関2はセルモータなどの始動装置を有さないため、鉄道車両用制御装置1が内燃機関2を始動させる。鉄道車両用制御装置1は、内燃機関2によって駆動されて交流電力を生じさせる発電機3が一次側に接続される第1の電力変換装置11と、第1の電力変換装置の二次側の端子間に接続される平滑コンデンサ12と、第1の電力変換装置の二次側の端子間に平滑コンデンサ12と並列に接続される負荷装置であるインバータ13と始動制御部14とを備える。始動制御部14は、第1の接触器15を介して第1の電力変換装置11の二次側の端子間に平滑コンデンサ12と並列に接続される第1の蓄電装置16と、第2の電力変換装置17とを備える。
 図1の例において、第1の電力変換装置11は、一次側と二次側との間の双方向の電力変換を行うAC(Alternative Current:交流)-DC(Direct Current:直流)コンバータである。平滑コンデンサ12は、第1の電力変換装置11が出力する直流電力および第1の蓄電装置16から放電される電力のそれぞれを平滑する。インバータ13は、平滑コンデンサ12に充電された電力を直流電力から交流電力に変換し、交流電力を電動機4を作動させるための電力として供給する。第2の電力変換装置17は、入力側と出力側とを絶縁した状態で、入力側に接続される電源から供給される電力を変換して、出力側の端子間に接続される第1の蓄電装置16に変換した電力を供給する。図1の例において、第2の電力変換装置17は、DC-DCコンバータである。
 第2の電力変換装置17の入力側に接続される電源は、例えば、車上の制御機器に電力を供給する蓄電装置である。図2は、実施の形態1に係る鉄道車両用制御装置の構成例を示すブロック図である。図2の例では、第2の電力変換装置17の入力側に接続される電源は、第2の蓄電装置19である。第2の蓄電装置19は、発電機3の駆動中に、入力側と出力側を絶縁した状態で、第1の電力変換装置11の二次側の端子間に供給される電力の電力変換を行う伝達回路によって充電される。図2の例では、第2の蓄電装置19は、SIV(Static InVerter:静止形インバータ)20が出力する電力によって充電される。また第2の蓄電装置19は、図示しない車上の制御機器に電力を供給する。
 制御部18は、第1の電力変換装置11、インバータ13、および第2の電力変換装置17を制御する。制御部18は、CPU(Central Processing Unit)および内部メモリなどから構成されるプロセッサ、およびRAM(Random Access Memory)およびフラッシュメモリなどから構成されるメモリを備える。制御部18は、メモリに記憶されている制御プログラムを実行し、第1の電力変換装置11、インバータ13、および第2の電力変換装置17が有するスイッチング素子に制御信号を送って、第1の電力変換装置11、インバータ13、および第2の電力変換装置17の制御を行う。
 図3は、実施の形態1に係る鉄道車両用制御装置が行う内燃機関の始動の動作を示すタイミングチャートである。図3を用いて、鉄道車両用制御装置1による内燃機関2の始動について説明する。第2の蓄電装置19には、十分な電力が充電されている。時刻T1において、例えば乗務員のエンジン始動操作によって、鉄道車両用制御装置1による内燃機関2の始動の動作が開始され、該始動操作に応じて、例えば制御部18が出力する制御信号により第2の電力変換装置17が起動する。制御部18が第2の電力変換装置17を制御し、第2の電力変換装置17は第2の蓄電装置19に充電された電力の電力変換を行い第1の蓄電装置16に電力を供給する。第1の蓄電装置16は、例えば定電圧充電方式で充電される。なお第2の蓄電装置19の供給電力の制限または第2の電力変換装置17の容量などに応じて、通電電流の制限を設けることが好ましい。
 時刻T2において、第1の接触器15が投入されると、第1の蓄電装置16に充電された電力による平滑コンデンサ12の充電が開始される。時刻T3において平滑コンデンサ12の充電が完了した後、時刻T4において第1の電力変換装置11が起動される。制御部18が第1の電力変換装置11を制御し、第1の電力変換装置11は平滑コンデンサ12に充電された電力の電力変換を行い、変換した電力を発電機3を作動させるための電力として供給する。電力の供給を受けた発電機3が出力するトルクによって内燃機関2が始動する。その後、時刻T5において内燃機関2の回転数が安定すると、第1の接触器15が開放される。例えば内燃機関2の回転数の変動が一定の範囲内にあるか否かによって、内燃機関2の回転数が安定しているか否かを判断することができる。第1の接触器15が開放されることで、平滑コンデンサ12を含む高電圧回路と、第2の蓄電装置19を含む低電圧回路とが、絶縁される。
 第1の接触器15が開放された後、時刻T6において、制御部18が第1の電力変換装置11を制御し、第1の電力変換装置11は、平滑コンデンサ12の電圧が一定値、例えばDC600Vとなるような発電機3から供給される電力の変換を開始する。これにより、時刻T7において、インバータ13が起動可能な状態となる。その後、乗務員の操作によって、力行指令が入力されると、インバータ13が起動し、電動機4を駆動し、車両が走行を開始する。
 時刻T2以降、第2の電力変換装置17によって、第1の蓄電装置16が充電されるため、平滑コンデンサ12の充電のために第1の蓄電装置16の電圧が低下した場合でも、時刻T8において、第1の蓄電装置16の電圧は、時刻T2における電圧と同程度まで上昇する。時刻T8以降は、内燃機関2の再始動が可能となる。
 以上説明したとおり、本実施の形態1に係る鉄道車両用制御装置1によれば、平滑コンデンサ12を含む高電圧回路と第2の蓄電装置19を含む低電圧回路との間に第2の電力変換装置17を設けることで、高電圧回路と低電圧回路の混触を防止しながら、発電機3に電力を供給し、内燃機関2を始動することが可能となる。また第1の蓄電装置16に充電された電力によって平滑コンデンサ12を充電し、平滑コンデンサ12に充電された電力で内燃機関2を始動するため、内燃機関2の始動時に電圧降下が生じて第2の蓄電装置19に接続される車上の制御機器に悪影響を及ぼすことを防止することができる。
 (実施の形態2)
 図4は、本発明の実施の形態2に係る鉄道車両用制御装置の構成例を示すブロック図である。実施の形態2に係る鉄道車両用制御装置1において、第2の蓄電装置19は、第1の電力変換装置11またはインバータ13の内部電源21から電力の供給を受ける。内部電源21は、例えば第1の電力変換装置11またはインバータ13に含まれるスイッチング回路または制御用リレーを駆動するための電源などである。実施の形態2に係る鉄道車両用制御装置1の内燃機関2の始動の動作については、実施の形態1と同様である。内部電源21は、一般的に実施の形態1に係る鉄道車両用制御装置1が備える、車上の制御機器に電力を供給する第2の蓄電装置19より出力が低いため、第2の電力変換装置17の容量を低くすることができ、鉄道車両用制御装置1の小型化が可能となる。
 以上説明したとおり、本実施の形態2に係る鉄道車両用制御装置1によれば、第1の電力変換装置11またはインバータ13の内部電源21から電力の供給を受ける第2の蓄電装置19を用いることで、鉄道車両用制御装置1の小型化が可能となる。
 (実施の形態3)
 図5は、本発明の実施の形態3に係る鉄道車両用制御装置の構成例を示すブロック図である。実施の形態3に係る鉄道車両用制御装置1は、図1に示す実施の形態1に係る鉄道車両用制御装置1の構成に加え、第1の接触器15と直列に接続される第2の接触器22と、第2の接触器22に並列に接続される抵抗器23と、第1の蓄電装置16の電圧を検出する電圧検出器24とを備える。
 抵抗器23が並列に接続された第2の接触器22を設けることで、第1の接触器15および第2の接触器22のいずれかに異常が生じた場合であっても、第1の蓄電装置16が過電圧の状態になることを防ぐことができる。第1の電力変換装置11およびインバータ13が駆動して電動機4を駆動している間は、平滑コンデンサ12は高電圧の状態である。この状態で、第2の接触器22が誤投入された場合または第2の接触器22が固渋した場合に、第1の接触器15が正常に開放されていれば、第1の蓄電装置16に高電圧が印加されることはない。また第1の接触器15が誤投入された場合または第1の接触器15が固渋した場合であっても、抵抗器23が設けられているため、第1の蓄電装置16に流れる電流は制限され、第1の蓄電装置16の電圧が急激に上昇することはない。
 電圧検出器24を設け、電圧検出器24で検出された第1の蓄電装置16の電圧が定められた範囲を超えた場合には、制御部18は、第1の接触器15および第2の接触器22に異常が生じたと判断し、第1の電力変換装置11およびインバータ13を停止し、平滑コンデンサ12を放電するようにしてもよい。これにより、第1の蓄電装置16を保護することが可能となる。上記範囲は、第1の蓄電装置16の耐電圧性能に応じて任意に定めることができる。
 実施の形態3に係る鉄道車両用制御装置1の内燃機関2の始動の動作については、実施の形態1と同様である。ただし、第1の蓄電装置16に充電された電力によって平滑コンデンサ12を充電する場合、すなわち図3の時刻T2から時刻T3までの間には、第1の接触器15が投入された状態で、第2の接触器22は開放された状態である。平滑コンデンサ4の充電が完了した後、すなわち図3の時刻T4において第2の接触器22を投入し、第1の蓄電装置16と平滑コンデンサ12とを電気的に接続する。これにより、抵抗器23における電圧降下が生じないため、第1の蓄電装置16の定格電圧を下げることができ、抵抗器23の定格電力を小さくすることができ、鉄道車両用制御装置1の小型化が可能となる。
 その後、内燃機関2の回転数が安定すると、第1の接触器15および第2の接触器22は開放される。
 鉄道車両用制御装置1が備える接触器の数は2つに限られない。また抵抗器23を、抵抗器23の投入および切り離しが可能な構成とし、平滑コンデンサ12を充電する場合と、内燃機関2を始動する場合とで、抵抗器23の投入条件を変えてもよい。
 以上説明したとおり、本実施の形態3に係る鉄道車両用制御装置1によれば、抵抗器23が並列に接続された第2の接触器22を第1の接触器15と直列に接続することで、第1の蓄電装置16が過電圧となることを防ぐことが可能となる。
 (実施の形態4)
 実施の形態4に係る鉄道車両用制御装置1の構成は、図1に示す実施の形態1に係る鉄道車両用制御装置1の構成と同じである。実施の形態4においては、内燃機関2がセルモータなどの始動装置を有し、鉄道車両用制御装置1は、誘導発電機である発電機3の励磁を行う。
 図6は、本発明の実施の形態4に係る鉄道車両用制御装置が行う内燃機関の始動の動作を示すタイミングチャートである。時刻T11において、始動装置によって内燃機関2が始動する。内燃機関2の回転数が安定した後、時刻T12において第2の電力変換装置17が起動される。時刻T13において第1の接触器15が投入され、平滑コンデンサ12の充電が開始される。時刻T14において平滑コンデンサ12の充電が完了すると、第1の接触器15は開放される。時刻T15において第1の電力変換装置11が起動し、平滑コンデンサ12に充電された電力の電力変換を開始し、発電機3を作動させるための電力として供給する。すなわち、第1の電力変換装置11から発電機3に励磁電流が流れる。その後時刻T16において第1の電力変換装置11がトルク電流を立ち上げて定電圧制御を開始することで、発電機3の発電動作が開始される。制御部18が第1の電力変換装置11を制御し、第1の電力変換装置11は、平滑コンデンサ12の電圧が一定値となるような発電機3から供給される電力の変換を開始する。これにより、時刻T17において、インバータ13が起動可能な状態となる。実施の形態1と同様に、時刻T18において、第1の蓄電装置16の電圧は、時刻T12における電圧と同程度まで上昇する。時刻T18以降は、内燃機関2の再始動が可能となる。
 以上説明したとおり、本実施の形態1に係る鉄道車両用制御装置1によれば、平滑コンデンサ12を含む高電圧回路と第2の蓄電装置19を含む低電圧回路との間に第2の電力変換装置17を設けることで、高電圧回路と低電圧回路の混触を防止しながら、発電機3を励磁することが可能となる。
 本発明の実施の形態は上述の実施の形態に限られず、上述の実施の形態のうち複数の形態を任意に組み合わせたもので構成してもよい。第1の電力変換装置11および第2の電力変換装置17の構成は上述の実施の形態に限られない。第2の電力変換装置17は、入力側と出力側を絶縁した状態で電力変換を行うことができる任意の回路であり、例えば、AC-DCコンバータであってもよい。
 本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施の形態及び変形が可能とされるものである。また、上述した実施の形態は、この発明を説明するためのものであり、本発明の範囲を限定するものではない。すなわち、本発明の範囲は、実施の形態ではなく、特許請求の範囲によって示される。そして、特許請求の範囲内及びそれと同等の発明の意義の範囲内で施される様々な変形が、この発明の範囲内とみなされる。
 1 鉄道車両用制御装置、2 内燃機関、3 発電機、4 電動機、11 第1の電力変換装置、12 平滑コンデンサ、13 インバータ、14 始動制御部、15 第1の接触器、16 第1の蓄電装置、17 第2の電力変換装置、18 制御部、19 第2の蓄電装置、20 SIV、21 内部電源、22 第2の接触器、23 抵抗器、24 電圧検出器。

Claims (6)

  1.  内燃機関によって駆動されて交流電力を生じさせる発電機が一次側に接続され、一次側と二次側との間の双方向の電力変換を行う第1の電力変換装置と、
     前記第1の電力変換装置の二次側の端子間に接続される平滑コンデンサと、
     入力側と出力側とを絶縁した状態で、入力側に接続される電源から供給される電力を変換して出力する第2の電力変換装置と、
     前記第1の電力変換装置の二次側の端子間に前記平滑コンデンサと並列に接続され、かつ、前記第2の電力変換装置の出力側の端子間に接続され、前記第2の電力変換装置が出力する電力によって充電される第1の蓄電装置と、
     前記平滑コンデンサと前記第1の蓄電装置との間の電路の開閉を行う第1の接触器と、
     前記第1の電力変換装置および前記第2の電力変換装置の制御を行う制御部と、
     を備え、
     前記第1の接触器の投入によって前記第1の蓄電装置に充電された電力で前記平滑コンデンサが充電された後に、前記制御部が前記第1の電力変換装置を制御することで、前記第1の電力変換装置は前記平滑コンデンサに充電された電力の電力変換を行い、変換した電力を前記発電機を作動させるための電力として供給する、
     鉄道車両用制御装置。
  2.  前記第1の電力変換装置から電力を供給された前記発電機が出力するトルクによって前記内燃機関が始動した後に、前記第1の接触器が開放され、前記制御部が前記第1の電力変換装置を制御することで、前記第1の電力変換装置は前記発電機から供給される電力を変換し、変換した電力を出力する請求項1に記載の鉄道車両用制御装置。
  3.  前記第2の電力変換装置の入力側に接続される電源は、前記発電機の駆動中に、入力側と出力側を絶縁した状態で、前記第1の電力変換装置の二次側の端子間に供給される電力の電力変換を行う伝達回路によって充電される第2の蓄電装置である請求項1に記載の鉄道車両用制御装置。
  4.  前記第2の電力変換装置の入力側に接続される電源は、前記第1の電力変換装置の内部電源または前記第1の電力変換装置の二次側に接続される負荷装置の内部電源である請求項1に記載の鉄道車両用制御装置。
  5.  抵抗器が並列に接続された第2の接触器が、前記第1の接触器に直列に接続される請求項1に記載の鉄道車両用制御装置。
  6.  前記発電機は誘導発電機であり、
     外部の始動装置によって前記内燃機関が始動した後に、前記第1の接触器が開放され、
     前記第1の接触器が開放された状態で、前記制御部が前記第1の電力変換装置を制御することで、前記第1の電力変換装置は前記平滑コンデンサに充電された電力の電力変換を行い、変換した電力を前記発電機に供給し、前記発電機が励磁される、
     請求項1に記載の鉄道車両用制御装置。
PCT/JP2015/072625 2015-08-10 2015-08-10 鉄道車両用制御装置 WO2017026026A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/750,328 US10913365B2 (en) 2015-08-10 2015-08-10 Railroad vehicle control device
CN201580082126.0A CN107848425B (zh) 2015-08-10 2015-08-10 铁路车辆用控制装置
PCT/JP2015/072625 WO2017026026A1 (ja) 2015-08-10 2015-08-10 鉄道車両用制御装置
JP2017534050A JP6324631B2 (ja) 2015-08-10 2015-08-10 鉄道車両用制御装置
EP15900980.2A EP3335923B1 (en) 2015-08-10 2015-08-10 Railroad vehicle control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/072625 WO2017026026A1 (ja) 2015-08-10 2015-08-10 鉄道車両用制御装置

Publications (1)

Publication Number Publication Date
WO2017026026A1 true WO2017026026A1 (ja) 2017-02-16

Family

ID=57984208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/072625 WO2017026026A1 (ja) 2015-08-10 2015-08-10 鉄道車両用制御装置

Country Status (5)

Country Link
US (1) US10913365B2 (ja)
EP (1) EP3335923B1 (ja)
JP (1) JP6324631B2 (ja)
CN (1) CN107848425B (ja)
WO (1) WO2017026026A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10689999B2 (en) * 2018-02-22 2020-06-23 Ge Aviation Systems, Llc Power generation system
DE112018007761T5 (de) * 2018-06-22 2021-03-11 Mitsubishi Electric Corporation Antriebssteuerungseinrichtung und Antriebssteuerung für Schienenwagen
JP6972343B2 (ja) * 2018-07-04 2021-11-24 三菱電機株式会社 鉄道車両用制御装置および離線判定方法
JP7168388B2 (ja) * 2018-09-18 2022-11-09 東海旅客鉄道株式会社 鉄道車両の制御装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11215607A (ja) * 1998-01-21 1999-08-06 Fuji Electric Co Ltd 電気駆動車両の電気システム
JP2007166885A (ja) * 2005-11-17 2007-06-28 Toshiba Corp 電気車制御装置
JP2012125128A (ja) * 2010-11-18 2012-06-28 Tokyo Electric Power Co Inc:The 蓄電池式車両
JP2013051844A (ja) * 2011-08-31 2013-03-14 Toshiba Corp 電気鉄道車両の充電システム
JP2013102686A (ja) * 2008-07-24 2013-05-23 General Electric Co <Ge> 車両用エネルギー貯蔵装置を制御する方法およびシステム
JP2014011828A (ja) * 2012-06-28 2014-01-20 Hitachi Ltd 鉄道車両の駆動装置
JP2014091504A (ja) * 2012-11-07 2014-05-19 Hitachi Ltd 鉄道車両駆動システム

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05176555A (ja) 1991-12-24 1993-07-13 Shinko Electric Co Ltd バッテリ内蔵エンジン式発電装置
KR101386739B1 (ko) 2009-06-15 2014-04-17 가부시키가이샤 히타치세이사쿠쇼 철도 차량의 구동 시스템
WO2012014324A1 (ja) * 2010-07-30 2012-02-02 三菱電機株式会社 電気車の推進制御装置、および鉄道車両システム
DE102011056751A1 (de) * 2011-12-21 2013-06-27 Still Gmbh Mobile Arbeitsmaschine mit Startgenerator
EP2810813B1 (en) * 2012-01-30 2017-07-12 Mitsubishi Electric Corporation Propulsion control device of electric vehicle and control method thereof
US9333862B2 (en) * 2012-06-28 2016-05-10 Mitsubishi Electric Corporation Control device for AC electric vehicle
US9079503B2 (en) 2012-09-06 2015-07-14 General Electric Company Systems and methods for generating power in a vehicle
US9403438B2 (en) * 2013-09-06 2016-08-02 Samsung Sdi Co., Ltd. Control device for hybrid vehicle and control method for hybrid vehicle
EP3208882B1 (en) * 2014-10-17 2021-01-06 Mitsubishi Electric Corporation Charge-discharge control device
WO2016113880A1 (ja) * 2015-01-15 2016-07-21 三菱電機株式会社 充放電制御装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11215607A (ja) * 1998-01-21 1999-08-06 Fuji Electric Co Ltd 電気駆動車両の電気システム
JP2007166885A (ja) * 2005-11-17 2007-06-28 Toshiba Corp 電気車制御装置
JP2013102686A (ja) * 2008-07-24 2013-05-23 General Electric Co <Ge> 車両用エネルギー貯蔵装置を制御する方法およびシステム
JP2012125128A (ja) * 2010-11-18 2012-06-28 Tokyo Electric Power Co Inc:The 蓄電池式車両
JP2013051844A (ja) * 2011-08-31 2013-03-14 Toshiba Corp 電気鉄道車両の充電システム
JP2014011828A (ja) * 2012-06-28 2014-01-20 Hitachi Ltd 鉄道車両の駆動装置
JP2014091504A (ja) * 2012-11-07 2014-05-19 Hitachi Ltd 鉄道車両駆動システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3335923A4 *

Also Published As

Publication number Publication date
US20180222328A1 (en) 2018-08-09
CN107848425A (zh) 2018-03-27
US10913365B2 (en) 2021-02-09
CN107848425B (zh) 2020-08-25
EP3335923A1 (en) 2018-06-20
JP6324631B2 (ja) 2018-05-16
JPWO2017026026A1 (ja) 2017-11-16
EP3335923A4 (en) 2019-03-27
EP3335923B1 (en) 2021-09-22

Similar Documents

Publication Publication Date Title
US9895982B2 (en) Vehicle driving system and method
US9444380B2 (en) Power converter and control method for power converter
KR20170065741A (ko) 점프 스타트를 위한 차량 전원 제어 방법 및 시스템
US20150336474A1 (en) Vehicle power supply apparatus and vehicle power regeneration system
KR20120012661A (ko) 전기자동차의 배터리 제어장치 및 그 제어방법
JP6324631B2 (ja) 鉄道車両用制御装置
EP2679459B1 (en) Railway vehicle traction system
CN110557017B (zh) Dc/dc转换单元
US9475456B2 (en) Battery system for micro-hybrid vehicles comprising high-efficiency consumers
CN110549890A (zh) Dc/dc转换单元
JP2017225279A (ja) 電力変換システム
EP2544346A1 (en) Load driving device
JP5939165B2 (ja) 回転電機制御装置
US20140306631A1 (en) Method for operating an energy supply unit for a motor vehicle electrical system
US20100321968A1 (en) Load fault handling for switched reluctance or induction type machines
JP6305364B2 (ja) 回転電機システム
RU2646770C2 (ru) Схема аккумулирования энергии, система аккумулирования энергии и способ эксплуатации схемы аккумулирования энергии
JP5529393B2 (ja) 発電電動機駆動装置に適用される蓄電装置の放電装置
JP2016213969A (ja) 電源供給装置
JP6786268B2 (ja) 蓄電システム
KR102338378B1 (ko) 차량용 배터리 충전 시스템
KR102336964B1 (ko) 마일드 하이브리드 자동차의 배터리 및 배터리 제어 방법
JP2015050825A (ja) 放電制御装置
JP6815762B2 (ja) 電力変換システム
WO2021039276A1 (ja) 放電制御装置、放電制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15900980

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017534050

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15750328

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2015900980

Country of ref document: EP