WO2017024795A1 - 一种电子膨胀阀 - Google Patents

一种电子膨胀阀 Download PDF

Info

Publication number
WO2017024795A1
WO2017024795A1 PCT/CN2016/076350 CN2016076350W WO2017024795A1 WO 2017024795 A1 WO2017024795 A1 WO 2017024795A1 CN 2016076350 W CN2016076350 W CN 2016076350W WO 2017024795 A1 WO2017024795 A1 WO 2017024795A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
seat
electronic expansion
port
gap
Prior art date
Application number
PCT/CN2016/076350
Other languages
English (en)
French (fr)
Inventor
吕铭
陈伟龙
Original Assignee
浙江三花制冷集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江三花制冷集团有限公司 filed Critical 浙江三花制冷集团有限公司
Priority to KR1020187006533A priority Critical patent/KR102096387B1/ko
Priority to EP16834421.6A priority patent/EP3336396A4/en
Priority to JP2018506417A priority patent/JP6450499B2/ja
Priority to US15/750,165 priority patent/US10670011B2/en
Publication of WO2017024795A1 publication Critical patent/WO2017024795A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • F25B41/35Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators by rotary motors, e.g. by stepping motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K3/00Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing
    • F16K3/22Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with sealing faces shaped as surfaces of solids of revolution
    • F16K3/24Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with sealing faces shaped as surfaces of solids of revolution with cylindrical valve members
    • F16K3/26Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with sealing faces shaped as surfaces of solids of revolution with cylindrical valve members with fluid passages in the valve member
    • F16K3/262Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with sealing faces shaped as surfaces of solids of revolution with cylindrical valve members with fluid passages in the valve member with a transverse bore in the valve member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/22Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by means of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/32Details
    • F16K1/34Cutting-off parts, e.g. valve members, seats
    • F16K1/36Valve members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K3/00Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing
    • F16K3/30Details
    • F16K3/314Forms or constructions of slides; Attachment of the slide to the spindle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/44Mechanical actuating means
    • F16K31/50Mechanical actuating means with screw-spindle or internally threaded actuating means
    • F16K31/508Mechanical actuating means with screw-spindle or internally threaded actuating means the actuating element being rotatable, non-rising, and driving a non-rotatable axially-sliding element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/44Mechanical actuating means
    • F16K31/53Mechanical actuating means with toothed gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/06Details of flow restrictors or expansion valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to the field of fluid control components, and more particularly to an electronic expansion valve.
  • Common electronic expansion valves include a valve seat and a valve stem.
  • the valve seat is provided with a valve port and two interfaces, and the two interfaces can be communicated through the valve port.
  • the valve stem has a sealing surface that can be sealed with the end surface of the valve port. .
  • the valve stem is located in the valve cavity of the valve seat and can be moved axially along the valve chamber by the motor to open or close the valve port to open or close the two interfaces.
  • valve stem Normally, an interface that communicates with the valve port will exert an axial upward force on the sealing surface of the valve stem.
  • the valve stem will be provided with an axial through hole to make the upper end of the valve stem. In the same pressure zone as the lower end, an axial downward force is exerted on the upper end of the valve stem to balance the force of the valve stem to ensure sealing.
  • the pressure receiving area of the upper end of the valve stem is larger than the bearing area of the lower end of the valve stem, after the integration, the valve stem is subjected to the axial downward force, which affects the valve opening capability of the electronic expansion valve.
  • an electronic expansion valve comprising:
  • valve seat member including a valve seat and a valve seat seated in the valve seat
  • valve stem member axially movable along a core cavity of the spool seat to open or close a valve port to open or close two interfaces of the electronic expansion valve
  • the valve stem member has an axial through hole communicating with the valve port and a sealing surface capable of sealingly sealing with the valve port;
  • the valve stem component includes a valve stem and a valve core fixed to a lower end of the valve stem; the valve stem is a cylindrical body, and includes a small diameter cylinder and a large diameter cylinder adjacent to the valve opening;
  • the large diameter segment cylinder and the valve core seat have a first gap, and the valve core and the valve port have a second gap.
  • the large-diameter cylinder of the valve stem member and the valve core seat have a first gap for forming a first throttle passage, and a second gap between the valve core and the valve port.
  • the second throttle passage is formed.
  • the first gap and the second gap are in a preset range for opening the valve, and the valve inlet between the first gap and the second gap forms a pressure between the refrigerant inlet and Medium pressure zone between refrigerant outlet pressures.
  • the first gap has a size of 0.1 to 0.5 mm.
  • the second gap has a size of 0.1 to 0.8 mm.
  • the axial dimension of the large diameter section cylinder is smaller than the axial dimension of the spool.
  • the two ports and the valve port are respectively opened in the valve seat; the inner cavity of the valve seat is divided into an upper cavity and a lower cavity by the valve port;
  • the spool seat is inserted into the upper cavity, and divides the upper cavity into a first upper cavity and a second upper cavity surrounding the first upper cavity, and a sidewall of the valve core seat is opened and connected a flow port of the first upper chamber and the second upper chamber;
  • the second upper chamber and the lower chamber are in communication with two of the interfaces, respectively.
  • the circumferential dimension of the flow port tapers downwardly along the axial direction of the spool seat.
  • the lower portion of the flow port has a V shape.
  • the valve stem member further includes a seal ring press-fitted to the valve stem and the spool The lower end surface of the seal ring forms the sealing surface.
  • FIG. 1 is a schematic structural view of a specific embodiment of an electronic expansion valve provided by the present invention.
  • FIG. 2 is a schematic structural view of the valve seat member of Figure 1;
  • FIG. 3 is a schematic structural view of the valve core seat of Figure 2;
  • Figure 4 is a schematic structural view of the valve stem member of Figure 1;
  • Figure 5 is a partial enlarged view of the portion A of Figure 1;
  • Figure 6 is a schematic view showing the assembly of the valve stem member and the limit sleeve of Figure 1;
  • Figure 7 is a schematic structural view of the components of Figure 6 after assembly
  • Figure 8 is a partial enlarged view of a portion B of Figure 1;
  • Figure 9 is a schematic view showing the structure of the gear system of Figure 1 in cooperation with the valve stem member;
  • Figure 10 is a schematic structural view of the gear system of Figure 9;
  • FIG 11 is a schematic structural view of the valve stem member of Figure 9;
  • Figure 12 is a schematic view of the force of the valve stem member of Figure 1.
  • valve seat 11 valve seat 11, valve port 11a, first upper chamber 11b, second upper chamber 11c, lower chamber 11d, spool seat 12, flow port 12a, annular step surface 12b, first port tube 13, first Two interface tube 14;
  • Stem member 20 axial through hole 20a, sealing surface 20b, valve stem 21, small diameter cylinder 211, large diameter cylinder 212, valve core 22, sealing ring 23, snap 24, boss 241;
  • Gear system 40 gear 41, screw rod 42, limit rod 43;
  • the core of the present invention is to provide an electronic expansion valve that can simultaneously take into account valve port sealing and valve opening capabilities.
  • FIG. 1 is a schematic structural view of a specific embodiment of an electronic expansion valve according to the present invention
  • FIG. 2 is a schematic structural view of the valve seat component of FIG.
  • the electronic expansion valve includes a valve seat member 10 and a valve stem member 20.
  • valve seat member 10 includes a valve seat 11 and a valve core seat 12; the valve seat 11 is provided with a valve port 11a, a first interface and a second interface, respectively shown in FIGS. 1 and 2 The interface, the first interface tube 13 and the second interface tube 14 connected to the second interface.
  • the inner cavity of the valve seat 11 is partitioned into an upper chamber and a lower chamber 11d by a valve port 11a, the spool seat 12 is inserted into the upper chamber, and the upper chamber is partitioned into a first upper chamber 11b and a second surrounding the first upper chamber 11b.
  • the upper chamber 11c obviously, the core chamber of the valve core seat 12 is the first upper chamber 11b; the side wall of the valve core seat 12 defines a flow port 12a that communicates with the first upper chamber 11b and the second upper chamber 11c.
  • the first interface is in communication with the second upper chamber 11c, and the second interface is in communication with the lower chamber 11d.
  • the stem member 20 mates with the core cavity of the spool seat 12 and is axially movable to open or close the valve port 11a to open or close the first and second ports.
  • the stem member 20 has an axial through hole 20a that communicates with the valve port 11a and a sealing surface 20b that can be fitted and sealed with the valve port 11a.
  • sealing surface 20b is arranged to match the structure at the valve port 11a, and may be a flat surface or a sloped surface as long as the sealing can be achieved.
  • valve port 11a and the second interface are always open, and the second port communicates with the axial through hole 20a of the valve stem member 20, so that the refrigerant in the second port pipe 14 can pass through the valve stem member.
  • the axial through bore 20a of 20 enters the upper cavity of the stem member 20.
  • the inner wall of the spool seat 12 needs to be sealed with the stem member 20 to ensure that the upper cavity of the stem member 20 and the first interface do not pass between the stem member 20 and the sidewall of the spool seat 12.
  • the gaps are communicated to ensure that the first interface and the second interface are only connected after the valve port 11a is opened.
  • FIG. 3 is a schematic structural view of the valve core seat of FIG.
  • the first port communicates with the flow port 12a of the spool seat 12, specifically, the circumferential direction of the flow port 12a
  • the dimension tapers downwardly along the axial direction of the spool seat 12 such that when the stem member 20 is moved axially away from the valve port 11a, the first port can communicate with the valve port 11a through the flow port 12a, and with the valve stem
  • the member 20 is gradually moved upward, and the area of the flow port 12a through which the refrigerant flows is gradually increased, thereby achieving the effect of adjusting the flow rate of the refrigerant by the axial movement of the stem member 20.
  • the shape of the flow port 12a is V-shaped.
  • the shape of the flow port 12a is not limited thereto, and may be specifically designed according to a flow curve or the like of an actual demand.
  • FIG. 4 is a schematic structural view of the valve stem component of FIG.
  • the valve stem member 20 includes a valve stem 21 and a valve core 22 fixed to the lower end of the valve stem 21; wherein the valve stem 21 is a cylindrical body, including a small diameter cylinder 211 and a large diameter cylinder 212 close to the valve opening 11a.
  • the small diameter section cylinder 211 and the valve core seat 12 are kept sealed.
  • a seal ring 23 is further press-fitted between the large-diameter cylinder 212 and the valve body 22, and the lower end surface of the seal ring 23 can be fitted and sealed with the end surface at the valve port 11a. It will be understood that after assembly, the spool 22 extends into the lower chamber 11d.
  • the seal ring 23 may not be provided, so that the lower end surface of the large-diameter cylinder 212 forms a sealing surface 20b that is sealed to the end surface of the valve port 11a.
  • FIG. 5 is a partial enlarged view of the A portion of FIG.
  • the large diameter cylinder 212 and the valve core seat 12 have a first gap h1 to form a first throttle passage, and the second gap h2 is formed between the valve core 22 and the valve port 11a to form a second throttle.
  • the refrigerant inlet pressure (high pressure zone) and the refrigerant outlet pressure (low pressure) are formed at the valve port 11a due to the action of the first throttle passage and the second throttle passage.
  • the formation of the intermediate pressure zone can properly equalize the gas pressure received by the stem member 20, and improve the valve opening capability while ensuring the sealing property.
  • the throttling effect of the throttle passage is related to the size of the first gap h1 and the second gap h2, and the pressure of the intermediate pressure region formed is correspondingly related to the sizes of the first gap h1 and the second gap h2.
  • the force of the valve stem member 20 can be understood with reference to FIG. 12, which shows a simplified view of the force of the valve stem member of FIG. 1, wherein the valve stem member is simplified.
  • the leftmost dotted line is the inner wall of the valve core seat 12.
  • the large diameter cylinder 212 of the valve stem member 20 and the valve core seat 12 have a first gap h1, and the spool 22 is There is a second gap h2 between the valve ports 11a; the refrigerant enters from the first interface, the pressure is P1, and the pressure at the second interface The force is P3.
  • the pressure of the second upper chamber 11c is P1
  • the step surface at the junction of the large-diameter cylinder 212 and the small-diameter cylinder 211 of the valve stem 21 is subjected to the first interface refrigerant.
  • the effective pressure bearing area is S1; since the second port is in communication with the lower chamber 11d, the pressure of the lower chamber 11d is P3, that is, the pressure received at the bottom of the valve core 22 is P3, and the bottom of the valve core 22 is subjected to the second interface refrigerant force.
  • the effective bearing area is S3; in addition, since the valve stem member 20 has the axial through hole 20a, the pressure of the top end of the valve stem member 20 is also P3, and the corresponding effective bearing area is S4. Obviously, the effective bearing The pressing area S4 is larger than the effective bearing area S3 at the bottom of the spool 22.
  • valve stem member 20 is axially moved upward, and at a small opening degree, a medium pressure region is formed between the first throttle passage and the second throttle passage, the pressure is P2, and the large diameter cylinder 212 and the spool
  • the end face of the mating portion i.e., the end surface forming the sealing surface of the valve port 11a
  • the effective bearing area S2 is greater than the effective efficiency of the first interface refrigerant.
  • the electronic expansion valve provided by the embodiment adds a first throttle passage and a second throttle passage, so that when the valve opening 11a has a small opening degree, a medium pressure region is formed at the valve port 11a, and the pair is passed.
  • the control of the pressure in the intermediate pressure zone tends to balance the force of the valve stem member 20, thereby reducing the valve opening resistance and improving the valve opening capability.
  • valve stem member 20 when the refrigerant flows in the opposite direction as described above, the force analysis of the valve stem member 20 is similar to the above, and will not be described again.
  • the magnitude of the pressure in the medium pressure zone is related to the size of the first throttle channel and the second throttle channel.
  • the first gap h1 between the large diameter cylinder 212 and the valve core seat 12 may be selected within a range of 0.1 to 0.5 mm.
  • the second gap h2 between the spool 22 and the valve port 11a may be selected within a range of 0.1 to 0.8 mm.
  • the gap should not be too small, so as to avoid the phenomenon of jamming when the valve is operated, and the gap should not be too large, so as to avoid the effect of throttling.
  • the axial extent of the large diameter section cylinder 212 is less than the axial dimension of the spool 22.
  • the pressure P2 of the intermediate pressure zone is related to the length of the gap, in addition to the length of the gap.
  • the length of the first throttle passage ie, the diameter of the large diameter section 212
  • the inner wall of the valve core seat 12 and the outer wall of the valve stem member 20 may be provided with a mounting groove in which a sealing ring 32 is disposed, and the sealing ring 32 causes the valve stem member 20 and the valve core seat 12 Good sealing performance between.
  • the core cavity of the valve core seat 12 is a stepped hole, and forms an annular step surface 12b facing the motor 50.
  • the electronic expansion valve further includes a limiting sleeve 31, the limiting sleeve 31 is inserted into the stepped hole of the valve core seat 12, and the upper end portion of the limiting sleeve 31 has an annular radial boss which is overlapped with the valve core seat.
  • the upper end surface of the valve body 12, at this time, the inner wall of the valve core seat 12, the limiting sleeve 31 facing the end surface of the valve port 11a and the annular step surface 12b of the valve core seat 12 form the aforementioned mounting groove, and the sealing ring 32 can be placed in the mounting groove .
  • the structure facilitates the installation of the sealing ring 32; the valve stem member 20 can be first assembled into the valve core seat 12, and then the sealing ring 32 and the limiting sleeve 31 are sequentially loaded, or, as shown in FIG. 6, the sealing ring 32, After the stopper sleeve 31 is engaged with the stem member 20, the spool seat 12 is integrally inserted.
  • a retaining ring 33 may be disposed between the sealing ring 32 and the annular stepped surface 12b.
  • the retaining ring 33 is disposed to prevent the sealing ring 32 from coming off the mounting groove during the axial movement of the valve stem member 20.
  • an annular auxiliary sliding piece 34 is disposed in the mounting groove, and the auxiliary sliding piece 34 is in contact with the outer wall of the valve stem member 20, and the sealing ring 32 is between the auxiliary sliding piece 34 and the inner wall of the valve core seat 12.
  • the pressure causes the sealing ring 32 to be pressed and deformed, and the sliding fin 34 can capture the pressing force of the sealing ring 32, and is in close contact with the outer wall of the valve stem member 20, ensuring the valve. Body not Will leak.
  • the provision of the slide 34 also greatly reduces the frictional resistance of the axial movement of the stem member 20.
  • the assembled limiting sleeve 31 and the valve core seat 12 need to be relatively fixed, and can be fixed by welding, screwing or the like.
  • the component that drives the valve stem member 20 to move axially is the gear system 40; as will be understood in conjunction with Figures 9-11.
  • the gear system 40 includes a gear 41 and a screw 42.
  • the motor 50 of the electronic expansion valve drives the gear 41 of the gear system 40 to rotate.
  • the gear 41 rotates
  • the screw 42 rotates accordingly, and the screw 42 is threadedly engaged with the valve stem member 20, and the valve After the rod member 20 is circumferentially positioned, the rotation of the screw 42 can be converted into an axial movement.
  • the gear system 40 further includes a limit lever 43 that limits the circumferential rotation of the valve stem member 20.
  • the upper end of the valve stem member 20 is provided with a buckle 24, and the boss 241 of the buckle 24 is carded. Between the two limit bars 43, since the position of the limit lever 43 is fixed, the buckle 24 cannot be rotated, thereby restricting the circumferential rotation of the valve stem member 20, so that the valve stem member 20 can only move axially.
  • the limiting rod 43 of the gear system 40 can press the limiting sleeve 31 against the upper end surface of the valve core seat 12 to realize the fixing of the limiting sleeve 31 and the valve core seat 12, which is simple and reliable, so that The replacement of the limiting sleeve 31, the sealing ring 32 and the like is more convenient.

Abstract

一种电子膨胀阀包括:阀座部件(10),其包括阀座(11)和插装于该阀座(11)内的阀芯座(12);阀杆部件(20),其能够沿阀芯座(12)的芯腔轴向移动以开启或关闭阀口(11a),以便导通或断开电子膨胀阀的两个接口。该阀杆部件(20)具有连通阀口(11a)的轴向通孔(20a)以及能够与阀口(11a)贴合密封的密封面(20b);阀杆部件(20)包括阀杆(21)和固设于阀杆下端的阀芯(22)。该阀杆(21)为圆筒状体,其包括小径段筒体(211)和靠近阀口的大径段筒体(212);大径段筒体(212)与阀芯座(12)之间具有第一间隙(h1),阀芯(22)与阀口(11a)之间具有第二间隙(h2)。该电子膨胀阀能够兼顾阀口密封性和开阀能力。

Description

一种电子膨胀阀
本申请要求于2015年08月11日提交中国专利局、申请号为201510490496.X、发明名称为“一种电子膨胀阀”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及流体控制部件技术领域,特别是涉及一种电子膨胀阀。
背景技术
电子膨胀阀作为组成制冷系统的重要部件,广泛应用于大型冷冻机组、大型冷库、超市冷柜等。电子膨胀阀的工作过程一般为:随着电机的通电或断电,调节阀杆的开度,从而调节制冷剂的流量。
常见的电子膨胀阀包括阀座和阀杆,通常,阀座上开设有阀口和两个接口,两个接口可通过阀口连通,阀杆具有能够与阀口处端面贴合密封的密封面。阀杆位于阀座的阀腔内,能够在电机的带动下沿阀腔轴向移动以开启或关闭阀口,以便将两个接口导通或断开。
常态下,与阀口连通的一接口会对阀杆的密封面产生轴向向上的作用力,为避免阀口处密封不严出现泄漏,阀杆会设置轴向通孔,使阀杆的上端和下端处于同样的压力区,对阀杆上端产生轴向向下的作用力,以平衡阀杆受力,确保密封性。但,通过阀杆上端的承压面积大于阀杆下端的承压面积,综合后,阀杆受到轴向向下的作用力,影响电子膨胀阀的开阀能力。
有鉴于此,如何改进电子膨胀阀的结构,能够既确保阀口密封性,又满足开阀能力,是本领域技术人员目前需要解决的技术问题。
发明内容
本发明的目的是提供一种电子膨胀阀,该电子膨胀阀能够同时兼顾阀口密封性和开阀能力。
为解决上述技术问题,本发明提供一种电子膨胀阀,包括:
阀座部件,包括阀座和插装于所述阀座内的阀芯座;
阀杆部件,其能够沿所述阀芯座的芯腔轴向移动以开启或关闭阀口,以便导通或断开电子膨胀阀的两个接口;
所述阀杆部件具有连通所述阀口的轴向通孔以及能够与所述阀口贴合密封的密封面;
所述阀杆部件包括阀杆和固设于所述阀杆下端的阀芯;所述阀杆为圆筒状体,其包括小径段筒体和靠近所述阀口的大径段筒体;所述大径段筒体与所述阀芯座之间具有第一间隙,所述阀芯与所述阀口之间具有第二间隙。
本发明提供的电子膨胀阀中,阀杆部件的大径段筒体与阀芯座之间具有第一间隙,用以形成第一节流通道,阀芯与阀口之间具有第二间隙,用以形成第二节流通道,如此,阀口小开度时,由于第一节流通道和第二节流通道的节流作用,在阀口处会形成介于冷媒进口压力和冷媒出口压力之间的中压区,中压区的形成可以适当均衡阀杆部件受到的气压力,在确保密封性的同时,提升开阀能力。
所述第一间隙、所述第二间隙的大小处于预设范围,以便开阀初始,位于所述第一间隙和所述第二间隙之间的所述阀口处形成介于冷媒进口压力和冷媒出口压力之间的中压区。
所述第一间隙的大小为0.1~0.5mm。
所述第二间隙的大小为0.1~0.8mm。
所述大径段筒体的轴向尺寸小于所述阀芯的轴向尺寸。
两个所述接口及所述阀口均开设于所述阀座;所述阀座的内腔被所述阀口分隔为上腔和下腔;
所述阀芯座插装于所述上腔,并将所述上腔分隔为第一上腔和环绕所述第一上腔的第二上腔,所述阀芯座的侧壁开设有连通所述第一上腔和所述第二上腔的流通口;
所述第二上腔和所述下腔分别与两个所述接口连通。
所述流通口的周向尺寸沿所述阀芯座的轴向向下渐缩。
所述流通口的下部呈V字形。
所述阀杆部件还包括密封环,所述密封环压装于所述阀杆和所述阀芯 之间,所述密封环的下端面形成所述密封面。
附图说明
图1为本发明所提供电子膨胀阀一种具体实施例的结构示意图;
图2为图1中阀座部件的结构示意图;
图3为图2中阀芯座的结构示意图;
图4为图1中阀杆部件的结构示意图;
图5为图1中A部位的局部放大图;
图6为图1中阀杆部件与限位套的装配示意图;
图7为图6中各部件装配后的结构示意图;
图8为图1中B部位的局部放大图;
图9为图1中齿轮系统与阀杆部件配合的结构示意图;
图10为图9中齿轮系统的结构示意图;
图11为图9中阀杆部件的结构示意图;
图12为图1中阀杆部件受力的简示图。
其中,图1至图12中部件名称与附图标记之间的一一对应关系如下所示:
阀座部件10,阀座11,阀口11a,第一上腔11b,第二上腔11c,下腔11d,阀芯座12,流通口12a,环形台阶面12b,第一接口管13,第二接口管14;
阀杆部件20,轴向通孔20a,密封面20b,阀杆21,小径段筒体211,大径段筒体212,阀芯22,密封环23,卡扣24,凸台241;
限位套31,密封圈32,挡圈33,助滑片34;
齿轮系统40,齿轮41,丝杆42,限位杆43;
电机50。
具体实施方式
本发明的核心是提供一种电子膨胀阀,该电子膨胀阀能够同时兼顾阀口密封性和开阀能力。
为了使本技术领域的人员更好地理解本发明方案,下面结合附图和具体实施方式对本发明作进一步的详细说明。
本文中所涉及的上、下等方位词均是以图1-12中零部件位于图中及零部件相互之间的位置来定义的,只是为了表述技术方案的清楚及方便。应当理解,本文所采用的方位词不应限制本申请请求保护的范围。
请参考图1和图2,图1为本发明所提供电子膨胀阀一种具体实施例的结构示意图;图2为图1中阀座部件的结构示意图。
该电子膨胀阀,包括阀座部件10和阀杆部件20。
该实施例中,阀座部件10包括阀座11和阀芯座12;阀座11上开设有阀口11a、第一接口和第二接口,图1和图2中示出了分别与第一接口、第二接口连接的第一接口管13和第二接口管14。
阀座11的内腔被阀口11a分隔为上腔和下腔11d,阀芯座12插装于上腔,并将上腔分隔为第一上腔11b和环绕第一上腔11b的第二上腔11c,显然,阀芯座12的芯腔即为该第一上腔11b;阀芯座12的侧壁开设连通第一上腔11b和第二上腔11c的流通口12a。
第一接口与第二上腔11c连通,第二接口与下腔11d连通。
阀杆部件20与阀芯座12的芯腔配合,能够轴向移动以开启或关闭阀口11a,以便将第一接口和第二接口导通或断开。
阀杆部件20具有连通阀口11a的轴向通孔20a以及能够与阀口11a贴合密封的密封面20b。
可以理解,密封面20b的设置形式与阀口11a处的结构相匹配,可以为平面,也可以为斜面,只要能够实现密封即可。
从图2中可以看出,阀口11a与第二接口始终导通,则第二接口与阀杆部件20的轴向通孔20a连通,从而第二接口管14内的冷媒可通过阀杆部件20的轴向通孔20a进入阀杆部件20的上部腔体中。为了确保密封,显然,阀芯座12的内壁需与阀杆部件20密封,以保证阀杆部件20的上部腔体与第一接口不会通过阀杆部件20与阀芯座12侧壁之间的空隙连通,从而确保第一接口与第二接口只有在阀口11a开启后才能连通。
请一并参考图3,图3为图2中阀芯座的结构示意图。
第一接口与阀芯座12的流通口12a连通,具体地,流通口12a的周向 尺寸沿阀芯座12的轴向向下渐缩,如此,阀杆部件20沿轴向移动脱离阀口11a时,第一接口可通过流通口12a与阀口11a连通,并,随着阀杆部件20的逐渐上移,供冷媒流通的流通口12a的面积渐增,从而达到通过阀杆部件20的轴向移动调节冷媒流量的作用。
具体的方案中,流通口12a的形状呈V字形。当然,实际设置时,流通口12a的形状并不局限与此,可以根据实际需求的流量曲线等来具体设计。
请一并结合图4,图4为图1中阀杆部件的结构示意图。
阀杆部件20包括阀杆21和固设于阀杆21下端的阀芯22;其中,阀杆21为圆筒状体,包括小径段筒体211和靠近阀口11a的大径段筒体212,小径段筒体211与阀芯座12保持密封。
该实施例中,大径段筒体212与阀芯22之间还压装有密封环23,密封环23的下端面能够与阀口11a处的端面贴合密封。可以理解,装配后,阀芯22伸入下腔11d。
需要指出的是,实际应用中,也可不设置密封环23,使大径段筒体212的下端面形成与阀口11a处端面密封的密封面20b。
请一并参考图5,图5为图1中A部位的局部放大图。
其中,大径段筒体212与阀芯座12之间具有第一间隙h1,以形成第一节流通道,阀芯22与阀口11a之间具有第二间隙h2,以形成第二节流通道;如此,开阀初始,开度较小时,由于第一节流通道和第二节流通道的作用,在阀口11a处会形成介于冷媒进口压力(高压区)和冷媒出口压力(低压区)之间的中压区,中压区的形成可以适当均衡阀杆部件20受到的气压力,在确保密封性的同时,提升开阀能力。显然,节流通道的节流作用与第一间隙h1、第二间隙h2的大小有关,形成的所述中压区的压力大小相应地也与第一间隙h1、第二间隙h2的大小相关。
具体地,该实施例中,阀杆部件20的受力可参照图12理解,图12示出了图1中阀杆部件受力的简示图,其中的阀杆部件简化示意。
如图12中所示,图示最左侧的虚线为阀芯座12的内壁,阀杆部件20的大径段筒体212与阀芯座12之间具有第一间隙h1,阀芯22与阀口11a之间具有第二间隙h2;冷媒自第一接口进入,压力为P1,第二接口处的压 力为P3。
由于第一接口与第二上腔11c连通,所以第二上腔11c的压力为P1,阀杆21的大径段筒体212与小径段筒体211连接处的台阶面承受第一接口冷媒作用力,有效承压面积为S1;由于第二接口与下腔11d连通,所以下腔11d的压力为P3,即阀芯22底部受到的压力为P3,阀芯22底部承受第二接口冷媒作用力的有效承压面积为S3;另外,由于阀杆部件20具有轴向通孔20a,所以阀杆部件20的顶端所承受压力也为P3,对应的有效承压面积为S4,显然,该有效承压面积S4大于阀芯22底部的有效承压面积S3。
如前所述,阀杆部件20轴向上移,小开度时,第一节流通道和第二节流通道之间形成中压区,压力为P2,大径段筒体212与阀芯22配合处的端面(即形成阀口11a密封面的端面)承受该中压区的作用力,对应的有效承压面积为S2,显然,该有效承压面积S2大于前述第一接口冷媒的有效承压面积S1。
如上分析,阀杆部件20受力F=P1S1-P2S2+P3S4-P3S3;
从图12可以看出S1+S4=S2+S3,与上式结合,可得:
阀杆部件20受力F=(P1-P3)S1-(P2-P3)S2;其中,S1<S2;
由于P1>P2>P3,所以P1-P3>P2-P3,从而,可以通过控制P2的大小,使阀杆部件20的受力F趋于零,减小开阀阻力,同时阀杆部件20不再受到轴向向上的作用力,也能够确保密封性。
与现有技术相比,该实施例提供的电子膨胀阀增设了第一节流通道和第二节流通道,使得阀口11a小开度时,在阀口11a处形成中压区,通过对该中压区压力的控制可使阀杆部件20的受力趋于平衡,从而减小开阀阻力,提高开阀能力。
可以理解,冷媒与上述反向流动时,阀杆部件20的受力分析与上述类似,不再赘述。
其中,中压区内压力的大小与第一节流通道和第二节流通道的大小相关。
具体的方案中,大径段筒体212与阀芯座12之间的第一间隙h1可以在0.1~0.5mm范围内选取。
具体的方案中,阀芯22与阀口11a之间的第二间隙h2可以在0.1~0.8mm范围内选取。
应用中,可根据实际需求来选定,间隙不可过小,以免阀动作时出现卡死现象,间隙也不可过大,以免起不到节流作用。
进一步的方案中,大径段筒体212的轴向尺寸小于阀芯22的轴向尺寸。
中压区的压力P2除了与间隙大小相关外,还与形成的节流通道的长度相关,在第一间隙h1相同的情况下,第一节流通道的长度(即大径段筒体212的轴向尺寸)越小,高压区P1与中压区P2的压力梯度越小,即P1与P2的压差越小,可进一步减小阻碍阀杆部件20开阀的轴向气压力,有利于提升开阀性能。
针对上述各实施例,阀芯座12的内壁和阀杆部件20的外壁,二者之一可以设置安装槽,安装槽内设置密封圈32,密封圈32使阀杆部件20与阀芯座12之间具有良好的密封性能。
结合图2-3及图6-8理解,具体的方案中,阀芯座12的芯腔呈台阶孔,形成朝向电机50的环形台阶面12b。
电子膨胀阀还包括限位套31,该限位套31插入阀芯座12的台阶孔,限位套31的上端部具有环形的径向凸台,该径向凸台搭接于阀芯座12的上端面,此时,阀芯座12的内壁、限位套31朝向阀口11a的端面及阀芯座12的环形台阶面12b形成前述安装槽,密封圈32可置于该安装槽内。
该种结构便于密封圈32的安装;阀杆部件20可先装配入阀芯座12内,再依次装入密封圈32和限位套31,或者,如图6所示,将密封圈32、限位套31与阀杆部件20配合后,整体装入阀芯座12。
当然,安装槽设置于阀杆部件20上也是可以的,鉴于阀杆部件20的强度和设计需求,设于阀芯座12上为较为优选的方式。
进一步地,密封圈32和环形台阶面12b之间还可设有挡圈33,挡圈33的设置能够防止密封圈32在阀杆部件20轴向移动过程中脱离安装槽。
进一步地,安装槽内还设置有环形助滑片34,助滑片34与阀杆部件20的外壁接触,密封圈32处于助滑片34和阀芯座12的内壁之间。当第一接口和第二接口存在压差时,压力使密封圈32挤压变形,助滑片34能够捕捉到密封圈32的挤压力,而紧贴于阀杆部件20的外壁,确保阀体不 会泄露。此外,助滑片34的设置还大大减小了阀杆部件20轴向移动的摩擦阻力。
采用限位套31和阀芯座12配合形成安装槽时,装配后的限位套31与阀芯座12需要保持相对固定,可以通过焊接、螺纹连接等方式实现固定。
该实施例中,驱动阀杆部件20轴向移动的部件为齿轮系统40;请一并结合图9-11理解。
齿轮系统40包括齿轮41和丝杆42,电子膨胀阀的电机50驱动齿轮系统40的齿轮41转动,齿轮41转动时,丝杆42随之转动,丝杆42与阀杆部件20螺纹配合,阀杆部件20周向定位后,可将丝杆42的转动转化为轴向移动。
为实现阀杆部件20的周向定位,齿轮系统40还包括限制阀杆部件20周向转动的限位杆43,阀杆部件20的上端设有卡扣24,卡扣24的凸台241卡入两根限位杆43之间,由于限位杆43的位置固定,所以卡扣24无法转动,从而限制了阀杆部件20的周向转动,使阀杆部件20仅能作轴向移动。
在此基础上,齿轮系统40的限位杆43可将前述限位套31压紧于阀芯座12的上端面上,实现限位套31和阀芯座12的固定,简单、可靠,使得限位套31、密封圈32等构件的更换更便捷。
以上对本发明所提供的一种电子膨胀阀进行了详细介绍。本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。

Claims (9)

  1. 一种电子膨胀阀,包括:
    阀座部件(10),包括阀座(11)和插装于所述阀座(11)内的阀芯座(12);
    阀杆部件(20),其能够沿所述阀芯座(12)的芯腔轴向移动以开启或关闭阀口(11a),以便导通或断开电子膨胀阀的两个接口;
    所述阀杆部件(20)具有连通所述阀口(11a)的轴向通孔(20a)以及能够与所述阀口(11a)贴合密封的密封面(20b);
    其特征在于,所述阀杆部件(20)包括阀杆(21)和固设于所述阀杆(21)下端的阀芯(22);所述阀杆(21)为圆筒状体,其包括小径段筒体(211)和靠近所述阀口(11a)的大径段筒体(212);所述大径段筒体(212)与所述阀芯座(12)之间具有第一间隙,所述阀芯(22)与所述阀口(11a)之间具有第二间隙。
  2. 根据权利要求1所述的电子膨胀阀,其特征在于,所述第一间隙、所述第二间隙的大小处于预设范围,以便开阀初始,位于所述第一间隙和所述第二间隙之间的所述阀口(11a)处形成介于冷媒进口压力和冷媒出口压力之间的中压区。
  3. 根据权利要求2所述的电子膨胀阀,其特征在于,所述第一间隙的大小为0.1~0.5mm。
  4. 根据权利要求2所述的电子膨胀阀,其特征在于,所述第二间隙的大小为0.1~0.8mm。
  5. 根据权利要求1所述的电子膨胀阀,其特征在于,所述大径段筒体(212)的轴向尺寸小于所述阀芯(22)的轴向尺寸。
  6. 根据权利要求1-5任一项所述的电子膨胀阀,其特征在于,两个所述接口及所述阀口(11a)均开设于所述阀座(11);所述阀座(11)的内腔被所述阀口(11a)分隔为上腔和下腔(11d);
    所述阀芯座(12)插装于所述上腔,并将所述上腔分隔为第一上腔(11b)和环绕所述第一上腔(11b)的第二上腔(11c),所述阀芯座(12)的侧壁开设有连通所述第一上腔(11b)和所述第二上腔(11c)的流通口(12a);
    所述第二上腔(11c)和所述下腔(11d)分别与两个所述接口连通。
  7. 根据权利要求6所述的电子膨胀阀,其特征在于,所述流通口(12a)的周向尺寸沿所述阀芯座(12)的轴向向下渐缩。
  8. 根据权利要求7所述的电子膨胀阀,其特征在于,所述流通口(12a)的下部呈V字形。
  9. 根据权利要求1-5任一项所述的电子膨胀阀,其特征在于,所述阀杆部件(20)还包括密封环(23),所述密封环(23)压装于所述阀杆(21)和所述阀芯(22)之间,所述密封环(23)的下端面形成所述密封面(20b)。
PCT/CN2016/076350 2015-08-11 2016-03-15 一种电子膨胀阀 WO2017024795A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020187006533A KR102096387B1 (ko) 2015-08-11 2016-03-15 전자 팽창 밸브
EP16834421.6A EP3336396A4 (en) 2015-08-11 2016-03-15 ELECTRONIC RELIEF VALVE
JP2018506417A JP6450499B2 (ja) 2015-08-11 2016-03-15 電子膨張弁
US15/750,165 US10670011B2 (en) 2015-08-11 2016-03-15 Electronic expansion valve

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510490496.X 2015-08-11
CN201510490496.XA CN106439072B (zh) 2015-08-11 2015-08-11 一种电子膨胀阀

Publications (1)

Publication Number Publication Date
WO2017024795A1 true WO2017024795A1 (zh) 2017-02-16

Family

ID=57983453

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/076350 WO2017024795A1 (zh) 2015-08-11 2016-03-15 一种电子膨胀阀

Country Status (6)

Country Link
US (1) US10670011B2 (zh)
EP (1) EP3336396A4 (zh)
JP (1) JP6450499B2 (zh)
KR (1) KR102096387B1 (zh)
CN (1) CN106439072B (zh)
WO (1) WO2017024795A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10870320B2 (en) * 2016-08-02 2020-12-22 Parker-Hannifin Corporation High flow direct acting valve
CN109425151B (zh) * 2017-08-30 2020-08-28 浙江三花智能控制股份有限公司 电子膨胀阀及具有其的制冷系统
CN111379864B (zh) * 2018-12-28 2022-09-20 浙江三花商用制冷有限公司 一种流量控制阀
CN111379872B (zh) * 2018-12-28 2021-06-08 浙江三花制冷集团有限公司 一种流量控制阀
CN111765258B (zh) * 2019-04-02 2022-01-28 浙江三花制冷集团有限公司 一种电动阀
CN111765252B (zh) * 2019-04-02 2021-12-21 浙江三花制冷集团有限公司 一种电动阀
CN112901803B (zh) * 2019-11-19 2022-05-13 浙江盾安禾田金属有限公司 电子膨胀阀
CN112879576B (zh) * 2019-11-29 2023-01-06 杭州三花研究院有限公司 阀装置
DE102019134523A1 (de) * 2019-12-16 2021-06-17 Hanon Systems Vorrichtung zum Regeln eines Durchflusses und Expandieren eines Fluids in einem Fluidkreislauf und Verfahren zum Betreiben der Vorrichtung
DE102019134524A1 (de) * 2019-12-16 2021-06-17 Hanon Systems Vorrichtung zum Regeln eines Durchflusses und Expandieren eines Fluids in einem Fluidkreislauf und Verfahren zum Betreiben der Vorrichtung
CN112728146B (zh) * 2020-12-28 2023-01-31 江苏联新阀门有限公司 一种电动回转式调节阀
CN216742876U (zh) * 2021-12-18 2022-06-14 浙江盾安人工环境股份有限公司 截止阀及其制冷系统
WO2023160709A1 (zh) * 2022-02-25 2023-08-31 浙江盾安人工环境股份有限公司 流量调节组件及电子膨胀阀
CN116592146B (zh) * 2023-07-07 2023-12-05 长沙华实半导体有限公司 一种直通密封型真空角阀及其组装方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202441956U (zh) * 2012-02-23 2012-09-19 河南源泉电器有限公司 一种电子膨胀阀丝杆结构
CN203489549U (zh) * 2013-06-17 2014-03-19 珠海格力电器股份有限公司 一种空调及其电子膨胀阀
CN104613185A (zh) * 2013-11-01 2015-05-13 浙江三花股份有限公司 电子膨胀阀
CN204438622U (zh) * 2014-12-31 2015-07-01 温岭市恒发空调部件有限公司 一种机械自动膨胀阀

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3331583A (en) * 1966-06-23 1967-07-18 Elizabeth N Willis Balanced shut-off valve
DE19727785B4 (de) * 1997-06-30 2006-04-13 Robert Bosch Gmbh Mengenregelventil zur Steuerung von Flüssigkeiten
US6568656B1 (en) * 1998-07-09 2003-05-27 Sporlan Valve Company Flow control valve with lateral port balancing
US6460567B1 (en) * 1999-11-24 2002-10-08 Hansen Technologies Corpporation Sealed motor driven valve
US7104281B2 (en) * 2003-08-15 2006-09-12 Dresser, Inc. Fluid flow regulation
US7240694B2 (en) * 2004-07-09 2007-07-10 Danfoss A/S Flow control valve for refrigeration system
JP3826951B1 (ja) * 2005-03-31 2006-09-27 ダイキン工業株式会社 膨張弁及び冷凍装置
US9416890B2 (en) * 2010-10-06 2016-08-16 Danfoss A/S Flow control valve and a method of assembling a flow control valve
CN102853126B (zh) * 2011-06-27 2015-03-11 浙江三花股份有限公司 一种流量调节阀
CN202719158U (zh) * 2012-05-10 2013-02-06 重庆海王仪器仪表有限公司 调节阀密封结构
CN103867732B (zh) * 2012-12-11 2017-02-15 浙江三花制冷集团有限公司 电子膨胀阀
CN103867789A (zh) * 2012-12-11 2014-06-18 浙江三花股份有限公司 一种流量调节阀
JP6136035B2 (ja) * 2012-12-11 2017-05-31 浙江三花制冷集団有限公司 電子膨張弁
CN203223617U (zh) * 2013-02-28 2013-10-02 浙江盾安禾田金属有限公司 一种减速式电子膨胀阀
CN104791497A (zh) * 2014-01-20 2015-07-22 浙江三花股份有限公司 一种直动式电动阀
CN104791502B (zh) * 2014-01-20 2017-02-22 浙江三花制冷集团有限公司 一种电动阀
WO2015106724A1 (zh) * 2014-01-20 2015-07-23 浙江三花股份有限公司 一种直动式电动阀及其装配方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202441956U (zh) * 2012-02-23 2012-09-19 河南源泉电器有限公司 一种电子膨胀阀丝杆结构
CN203489549U (zh) * 2013-06-17 2014-03-19 珠海格力电器股份有限公司 一种空调及其电子膨胀阀
CN104613185A (zh) * 2013-11-01 2015-05-13 浙江三花股份有限公司 电子膨胀阀
CN204438622U (zh) * 2014-12-31 2015-07-01 温岭市恒发空调部件有限公司 一种机械自动膨胀阀

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3336396A4 *

Also Published As

Publication number Publication date
KR20180037045A (ko) 2018-04-10
CN106439072A (zh) 2017-02-22
KR102096387B1 (ko) 2020-04-02
US10670011B2 (en) 2020-06-02
JP2018529921A (ja) 2018-10-11
EP3336396A1 (en) 2018-06-20
JP6450499B2 (ja) 2019-01-09
US20180258927A1 (en) 2018-09-13
CN106439072B (zh) 2019-04-02
EP3336396A4 (en) 2019-02-20

Similar Documents

Publication Publication Date Title
WO2017024795A1 (zh) 一种电子膨胀阀
US9200716B2 (en) Self aligning valve plug
US8038121B2 (en) Fluid control valve with sensing port
JP2010533268A5 (zh)
JP3861206B2 (ja) 流体制御器
WO2016119553A1 (zh) 一种截止阀
MX2011012617A (es) Aparato para asiento de valvula, para uso con valvulas para fluidos.
WO2013000389A1 (zh) 一种流量调节阀
US20180094740A1 (en) Mounting structure of solenoid valve for operation, and fluid control valve
CA2885747C (en) Self-aligning valve plug
JP2014526025A (ja) 複数の流体流動制御部材を有する流体弁
JP2005164208A (ja) 膨張弁
WO2019154342A1 (zh) 电子膨胀阀
CN109751426B (zh) 一种动态流量平衡阀
CN109812587B (zh) 一种带有溢流功能的节流阀
WO2013057983A1 (ja) 流量調整器
US11835145B2 (en) Electric valve
JP2023533126A (ja) 止め弁
US20150060708A1 (en) Bellows valve with valve body cylinder adapter
JP6846875B2 (ja) 膨張弁
CN102032383B (zh) 直动式双向电磁阀
WO2013078866A1 (en) Ball valve
JP4596830B2 (ja) 四方弁
CN219035578U (zh) 电子膨胀阀
JP5722164B2 (ja) 減圧装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16834421

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15750165

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2018506417

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187006533

Country of ref document: KR

Kind code of ref document: A