WO2017022720A1 - シリンダヘッドの冷却構造 - Google Patents

シリンダヘッドの冷却構造 Download PDF

Info

Publication number
WO2017022720A1
WO2017022720A1 PCT/JP2016/072533 JP2016072533W WO2017022720A1 WO 2017022720 A1 WO2017022720 A1 WO 2017022720A1 JP 2016072533 W JP2016072533 W JP 2016072533W WO 2017022720 A1 WO2017022720 A1 WO 2017022720A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder
cooling
inter
flow path
cooling water
Prior art date
Application number
PCT/JP2016/072533
Other languages
English (en)
French (fr)
Inventor
綱記 早崎
Original Assignee
いすゞ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by いすゞ自動車株式会社 filed Critical いすゞ自動車株式会社
Priority to CN201680045468.XA priority Critical patent/CN107850001B/zh
Priority to DE112016003551.9T priority patent/DE112016003551B4/de
Priority to US15/750,467 priority patent/US10393061B2/en
Publication of WO2017022720A1 publication Critical patent/WO2017022720A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/26Cylinder heads having cooling means
    • F02F1/36Cylinder heads having cooling means for liquid cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/02Arrangements for cooling cylinders or cylinder heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/26Cylinder heads having cooling means
    • F02F1/36Cylinder heads having cooling means for liquid cooling
    • F02F1/40Cylinder heads having cooling means for liquid cooling cylinder heads with means for directing, guiding, or distributing liquid stream 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/02Arrangements for cooling cylinders or cylinder heads
    • F01P2003/024Cooling cylinder heads

Definitions

  • the present invention relates to a cooling structure for a cylinder head.
  • cooling structure for this type of cylinder head, one having a longitudinal flow path extending in the longitudinal direction of the engine (hereinafter also referred to as the longitudinal direction) on the intake side and exhaust side of the cylinder head is known. Further, as this type of cooling structure, there is also known a structure having a plurality of lateral flow paths extending in the short direction of the engine (hereinafter also referred to as lateral direction) between the cylinders of the cylinder head. (For example, refer to Patent Document 1).
  • the disclosed cooling structure aims to suppress an increase in pressure loss while effectively maintaining a flow velocity balance between cylinders and between intake and exhaust ports without increasing the number of cores of the water jacket.
  • a plurality of cylinders are arranged in series in the longitudinal direction of the engine, and a pair of exhaust ports and a pair of intake ports are arranged to face the cylinders.
  • a cylinder head cooling structure in which an injector is installed between the opposed intake ports, the intake side cooling flow path extending along the longitudinal direction of the engine on the intake side of the cylinder head, and between the cylinders
  • a plurality of inter-cylinder cooling passages that extend in a short direction of the engine and whose downstream ends merge with the intake-side cooling passage; and an upstream end of the cooling passage that branches from one inter-cylinder cooling passage;
  • a plurality of inter-port cooling passages that extend in the longitudinal direction of the engine between the intake ports and whose downstream ends merge with other inter-cylinder cooling passages, and an upstream end thereof is the cylinder block of the engine.
  • a plurality of first cooling water supply passages that are connected to a cooling water supply passage provided in the rack and whose downstream ends merge with the upstream ends of the inter-cylinder cooling passages, and the inter-cylinder cooling passages.
  • a blocking wall extending obliquely in a direction from the exhaust port of the upstream cylinder to the intake port of the downstream cylinder and dividing the inter-cylinder cooling flow path.
  • the pair of exhaust ports extends in the short direction of the engine, and its upstream end is connected to the cooling water supply path of the cylinder block, and its downstream end joins the inter-port cooling flow path in the vicinity of the injector.
  • a plurality of second cooling water supply channels may be further provided.
  • An upstream end of the first cooling water supply channel is connected to a block side cooling water circulation channel that is provided in the cylinder block and cools the cylinder, and an upstream end of the second cooling water supply channel is connected to the cylinder block And may be connected to a block-side cooling water supply passage that directly supplies the cooling water cooled by the radiator without passing through the cooling water circulation passage.
  • a plurality of cylinders are arranged in series in the longitudinal direction of the engine, and a pair of exhaust ports and a pair of intake ports are arranged to face the cylinders.
  • a cylinder head cooling structure in which an injector is installed between the opposed intake ports, the intake side cooling flow path extending along the longitudinal direction of the engine on the intake side of the cylinder head, and between the cylinders
  • a plurality of inter-cylinder cooling passages that extend in a short direction of the engine, and that include an upstream inter-cylinder cooling passage and a downstream inter-cylinder cooling passage where a downstream end merges with the intake-side cooling passage; One end is connected to the upstream inter-cylinder cooling passage of one inter-cylinder cooling passage, extends between the exhaust port and the intake port in the longitudinal direction of the engine, and the downstream end thereof is the other inter-cylinder cooling flow.
  • a plurality of inter-port cooling passages connected to the downstream cylinder cooling passage and an upstream end thereof are connected to a cooling water supply passage provided in a cylinder block of the engine, and a downstream end thereof is connected to the upstream cylinder.
  • an increase in pressure loss can be suppressed while effectively maintaining a flow rate balance between cylinders and between intake and exhaust ports without increasing the number of water jacket cores.
  • FIG. 1 is a schematic plan view of a part of a cooling structure for a cylinder head according to an embodiment of the present invention as viewed from above.
  • FIG. 2 is a schematic cross-sectional view of a part of the cooling structure of the cylinder head according to the embodiment of the present invention as viewed from the exhaust side.
  • FIG. 1 is a schematic plan view of a part of a cylinder head cooling structure according to an embodiment of the present invention as viewed from above.
  • the cooling structure of this embodiment is applied to a multi-cylinder in-line engine in which a plurality of cylinders are arranged in series in the longitudinal direction (crankshaft direction) of the engine.
  • each of the cylinders 11A to 11D of the cylinder head 1 accommodates a pair of exhaust ports 12A and 12B each accommodating two exhaust valves (not shown) and two intake valves (not shown).
  • a pair of intake ports 13A and 13B are arranged to face each other with a gap therebetween.
  • an injector installation portion 14 for installing an injector (not shown) is provided between the intake ports 13A and B facing the exhaust ports 12A and 12B.
  • Boss portions 15 and 16 for inserting a head bolt (not shown) or forming an oil drop hole or blow-by passage (not shown) between the cylinders 11A to 11D on the intake side and the exhaust side of the cylinder head 1 are provided. Is provided.
  • an intake-side cooling water passage 20 that extends in the vicinity of each of the cylinders 11A to 11D along the longitudinal direction (longitudinal direction) of the engine.
  • a cooling water outlet (not shown) for returning the cooling water to a radiator (not shown) is provided at the downstream end of the intake-side cooling water channel 20.
  • an exhaust side cooling water passage 21 that extends above the exhaust ports 12A and B along the longitudinal direction of the engine.
  • the downstream side of the exhaust-side cooling water passage 21 is connected to the cooling water outlet (not shown) described above.
  • a plurality of inter-cylinder cooling water passages 23 extending along the short direction (lateral direction) of the engine and having their downstream ends merged with the intake side cooling water passage 20 are provided. Is provided.
  • the inter-cylinder cooling water passage 23 is provided with a blocking wall 30 which will be described in detail later.
  • an inter-port cooling water passage 24 extending in the longitudinal direction of the engine is provided.
  • This inter-port cooling water flow path 24 branches off from an inter-cylinder cooling water flow path (upstream inter-cylinder flow path) 23 located on the upstream side in the longitudinal direction (left side in the figure) with respect to the cylinder. It extends between the intake ports 13A and 13B, and is formed so as to merge with an inter-cylinder cooling flow path (downstream inter-cylinder flow path) 23 positioned on the downstream side in the vertical direction (right side in the figure) with respect to the cylinder.
  • upstream inter-cylinder flow path located on the upstream side in the longitudinal direction (left side in the figure) with respect to the cylinder. It extends between the intake ports 13A and 13B, and is formed so as to merge with an inter-cylinder cooling flow path (downstream inter-cylinder flow path) 23 positioned on the downstream side in the vertical direction (right side in the figure) with respect to the cylinder.
  • branch and “merging” are terms that assume the case where the inter-cylinder cooling water flow path is directly continuous in the lateral direction. In this application, “branching” and “merging” are three. Not only the connection relationship of the above flow paths but also the connection relationship of two flow paths is meant.
  • Three first coolings that extend upward from the bottom of the cylinder head 1 and merge at the upstream end of the inter-cylinder cooling water channel 23 are provided in the cylinder head 1 on the upstream side in the lateral direction from the inter-cylinder cooling water channel 23.
  • Water supply channels 25A to 25C are provided.
  • the upstream ends of the three first cooling water supply passages 25A to 25C are connected to a cylinder block first cooling water supply passage 50 formed in the cylinder block 2 for cooling a combustion chamber (not shown) as shown in FIG. Has been.
  • a cooling water supply channel 26 is provided.
  • the upstream end of the second cooling water supply channel 26 is formed in the cylinder block 2 as shown in FIG. 2, and a cylinder that directly introduces cooling water cooled by a radiator (not shown) to the cylinder head 1 side. It is connected to the block second cooling water supply channel 51. That is, the low-temperature cooling water introduced from the radiator without cooling the combustion chamber in the cylinder block 2 is directly supplied to the vicinity of the high-temperature injector installation portion 14 via the second cooling water supply channel 26. It is like that.
  • the inter-cylinder cooling water flow path 23 is provided with a blocking wall 30 that divides the inside of the inter-cylinder cooling water flow path 23 into two regions and divides them.
  • the blocking wall 30 is connected to the inter-cylinder cooling water flow channel 23 from the exhaust port 12B located on the upstream side in the longitudinal direction (left side in the drawing) of the inter-cylinder cooling water flow channel 23. On the other hand, it extends obliquely toward the intake port 13A located on the downstream side in the vertical direction (right side in the figure).
  • the cooling water joined from the first cooling water supply flow paths 25A to 25C in the upstream portion of the inter-cylinder cooling water flow path 23 is guided to the inter-port cooling water flow path 24 without going straight in the lateral direction, so that the cooling water is supplied to the cylinder.
  • the head 1 is configured to flow obliquely.
  • a junction between the inter-port cooling water passage 24 and the second cooling water supply passage 26 of the cylinder head 1 branches from the junction and extends upward, and its downstream end is connected to the exhaust-side cooling water passage 21.
  • An exhaust-side supply channel (third cooling water supply channel) 27 joined with the gas is provided.
  • the exhaust-side supply flow path 27 connects the exhaust-side cooling water flow path 21 and the second cooling water supply flow path 26, and the exhaust-side supply flow path 27 and the first cooling water supply flow paths 25A to 25C are directly connected.
  • the inter-cylinder cooling water flow path 23 is obliquely divided by the blocking wall 30, so that the first cooling water supply flow paths 25 ⁇ / b> A to 25 ⁇ / b> C
  • the cooling water merged at the upstream portion of the inter-cooling water passage 23 is guided to the inter-port cooling water passage 24 without going straight in the lateral direction, and is caused to flow obliquely through the cylinder head 1.
  • the flow velocity balance between the cylinders 11A to 11D and between the intake and exhaust ports 12 and 13 can be effectively maintained, and an increase in pressure loss can be suppressed.
  • the cooling water that has flowed through the inter-port cooling water flow path 24 is guided to the intake-side cooling water flow path 20 without being used for cooling the other cylinders, and the rise in the cooling water temperature can be effectively suppressed. . Further, it is possible to effectively improve the cooling efficiency of the engine only by providing a single water jacket in the cylinder head 1, and it is possible to effectively suppress an increase in manufacturing cost.
  • the exhaust side cooling water passage 21 and the second cooling water supply passage 26 are connected by the exhaust side supply passage 27, while the first cooling water supply passage 25A.
  • ⁇ C and the exhaust-side cooling water passage 21 have a divided structure that is not directly connected.
  • the second cooling water supply flow path 26 that extends between the exhaust ports 12A and 12B and merges with the inter-port cooling water flow path 24 adjacent to the injector installation portion 14 is provided.
  • the downstream end is connected to a cylinder block second cooling water supply passage 51 that is provided in the cylinder block 2 and that directly introduces cooling water cooled by the radiator to the cylinder head 1 side.
  • cooling structure of the present disclosure it is possible to suppress an increase in pressure loss while effectively maintaining a flow rate balance between cylinders and between intake and exhaust ports without increasing the number of water jacket cores.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

吸気側冷却流路20と、気筒間冷却流路23と、ポート間冷却流路24と、上流端をエンジンのシリンダブロック2内に設けられた冷却水供給路50に接続されると共に、下流端を気筒間冷却流路23の上流端に合流させた第1冷却水供給流路25A~Cと、気筒間冷却流路23内を上流側の気筒の排気ポート12Bから排気側の気筒の吸気ポート13Aに向う方向に斜めに延設されて、気筒間冷却流路23を分断する遮断壁30とを備えた。

Description

シリンダヘッドの冷却構造
 本発明は、シリンダヘッドの冷却構造に関する。
 この種のシリンダヘッドの冷却構造として、シリンダヘッドの吸気側及び排気側にエンジンの長手方向(以下、縦方向ともいう)に延設された縦方向流路を備えたものが知られている。また、この種の冷却構造として、シリンダヘッドの各気筒間にエンジンの短手方向(以下、横方向ともいう)に延設された複数本の横方向流路を備えたものも知られている(例えば、特許文献1参照)。
日本国特開平11-229955号公報
 ところで、縦方向流路では、冷却水が下流側に行くほどその流量は増加されるため、各気筒間や吸排気ポート間の流速バランスを取り難く、また、圧力損失も大きくなる課題がある。また、下流側に行くほど冷却水の温度が上昇するため、下流側の気筒の冷却効率が低下する課題もある。
 一方、横方向流路では、冷却性能を向上するために、ウォータジャケットを気筒毎に分けたり、上下二段にする等の工夫が必要となり、製造コストの上昇を招く課題がある。また、流速を確保するために流路面積を絞る必要があり、鋳造性が悪化する課題もある。
 開示の冷却構造は、ウォータジャケットの中子の数を増やすことなく、気筒間や吸排気ポート間の流速バランスを効果的に維持しつつ、圧力損失の増大を抑制することを目的とする。
 本開示の第1の様態の冷却構造は、エンジンの長手方向に複数の気筒が直列に配置され、前記気筒に一対の排気ポート及び一対の吸気ポートが対向するように配置され、前記排気ポートに対向する前記吸気ポート間にインジェクタが設置されたシリンダヘッドの冷却構造であって、前記シリンダヘッドの吸気側を前記エンジンの前記長手方向に沿って延びる吸気側冷却流路と、各気筒間を前記エンジンの短手方向に延びると共に、その下流端が前記吸気側冷却流路に合流する複数の気筒間冷却流路と、その上流端が一の気筒間冷却流路から分岐し、前記排気ポートと前記吸気ポートとの間を前記エンジンの前記長手方向に延び、その下流端が他の気筒間冷却流路に合流する複数のポート間冷却流路と、その上流端が前記エンジンのシリンダブロック内に設けられた冷却水供給路に接続され、その下流端が前記気筒間冷却流路の上流端に合流する複数の第1冷却水供給流路と、前記気筒間冷却流路内を上流側の気筒の排気ポートから下流側の気筒の吸気ポートに向かう方向に斜めに延設されて、当該気筒間冷却流路を分断する遮断壁と、を備える
である。
 前記一対の排気ポート間を前記エンジンの短手方向に延びると共に、その上流端が前記シリンダブロックの冷却水供給路に接続されて、その下流端が前記インジェクタ近傍の前記ポート間冷却流路に合流する複数の第2冷却水供給流路をさらに備えてもよい。
 前記シリンダヘッドの排気側における前記排気ポートの上方を前記エンジンの長手方向に沿って延びる排気側冷却流路と、前記ポート間冷却流路と前記第2冷却水供給流路との合流部から分岐して前記排気冷却流路に合流する第3冷却水供給流路と、をさらに備えてもよい。
 前記第1冷却水供給流路の上流端が、前記シリンダブロックに設けられて気筒を冷却するブロック側冷却水循環流路に接続され、前記第2冷却水供給流路の上流端が、前記シリンダブロックに設けられると共に前記冷却水循環流路を介さずにラジエータで冷却された冷却水を直接供給するブロック側冷却水供流路に接続されてもよい。
 本開示の第2の様態の冷却構造は、エンジンの長手方向に複数の気筒が直列に配置され、前記気筒に一対の排気ポート及び一対の吸気ポートが対向するように配置され、前記排気ポートに対向する前記吸気ポート間にインジェクタが設置されたシリンダヘッドの冷却構造であって、前記シリンダヘッドの吸気側を前記エンジンの前記長手方向に沿って延びる吸気側冷却流路と、各気筒間が前記エンジンの短手方向に延びると共に、上流側気筒間冷却路と、下流端が前記吸気側冷却流路に合流する下流側気筒間冷却路と、を備える複数の気筒間冷却流路と、その上流端が一の気筒間冷却流路の上流側気筒間冷却路に接続され、前記排気ポートと前記吸気ポートとの間を前記エンジンの前記長手方向に延び、その下流端が他の気筒間冷却流路の前記下流側気筒冷却路に接続される、複数のポート間冷却流路と、その上流端が前記エンジンのシリンダブロック内に設けられた冷却水供給路に接続され、その下流端が前記上流側気筒間冷却流路の上流端に接続される、複数の第1冷却水供給流路と、上流側の気筒の排気ポートから下流側の気筒の吸気ポートに向かう方向に斜めに延設されて、当該気筒間冷却流路を前記上流側気筒間冷却路と前記下流側筒間冷却路とに分断する遮断壁と、を備える。
 開示の冷却構造によれば、ウォータジャケットの中子の数を増やすことなく、気筒間や吸排気ポート間の流速バランスを効果的に維持しつつ、圧力損失の増大を抑制することができる。
図1は、本発明の一実施形態に係るシリンダヘッドの冷却構造の一部を上方から視た模式的な平面図である。 図2は、本発明の一実施形態に係るシリンダヘッドの冷却構造の一部を排気側から側方視した模式的な断面図である。
 以下、添付図面に基づいて、本発明の一実施形態に係るシリンダヘッドの冷却構造を説明する。同一の部品には同一の符号を付してあり、それらの名称および機能も同じである。したがって、それらについての詳細な説明は繰返さない。
 図1は、本発明の一実施形態に係るシリンダヘッドの冷却構造の一部を上方から視た模式的な平面図である。本実施形態の冷却構造は、複数の気筒がエンジンの長手方向(クランク軸方向)に直列に配置された多気筒直列エンジンに適用される。
 図1に示すように、シリンダヘッド1の各気筒11A~Dには、図示しない二本の排気バルブをそれぞれ収容した一対の排気ポート12A,B及び、図示しない二本の吸気バルブをそれぞれ収容した一対の吸気ポート13A,Bが間隔を隔てて対向配置されている。また、各排気ポート12A,B間に臨む吸気ポート13A,B間には、図示しないインジェクタを設置するインジェクタ設置部14が設けられている。また、シリンダヘッド1の吸気側及び排気側の各気筒11A~D間には、図示しないヘッドボルトを挿入、若しくは、何れも図示しないオイル落とし穴やブローバイ通路を形成するためのボス部15,16が設けられている。
 シリンダヘッド1の吸気側には、各気筒11A~Dの近傍をエンジンの長手方向(縦方向)に沿って延びる吸気側冷却水流路20が設けられている。この吸気側冷却水流路20の下流端には、ラジエータ(不図示)に冷却水を戻すための冷却水出口部(不図示)が設けられている。
 シリンダヘッド1の排気側には、排気ポート12A,Bの上方をエンジンの長手方向に沿って延びる排気側冷却水流路21が設けられている。この排気側冷却水流路21の下流側は、上述した冷却水出口部(不図示)に接続されている。
 シリンダヘッド1の各気筒11A~D間には、エンジンの短手方向(横方向)に沿って延びると共に、その下流端を吸気側冷却水流路20に合流させた複数の気筒間冷却水流路23が設けられている。この気筒間冷却水流路23には、詳細を後述する遮断壁30が設けられている。
 シリンダヘッド1の排気ポート12A,Bと吸気ポート13A,Bとの間には、エンジンの長手方向に延びるポート間冷却水流路24が設けられている。このポート間冷却水流路24は、気筒に対して縦方向上流側(図中左側)に位置する気筒間冷却水流路(上流側の気筒間流路)23から分岐して排気ポート12A,Bと吸気ポート13A,Bとの間を延びると共に、当該気筒に対して縦方向下流側(図中右側)に位置する気筒間冷却流路(下流側の気筒間流路)23に合流するように形成されている。なお、ここでいう「分岐」や「合流」は、気筒間冷却水流路が横方向に直接的に連続するケースを仮定した用語であって、本願において、「分岐」や「合流」は3つ以上の流路の接続関係を示すものに限らず、2つの流路の接続関係も意味する。
 気筒間冷却水流路23よりも横方向上流側のシリンダヘッド1には、シリンダヘッド1の底部から上方に向かって延びると共に、気筒間冷却水流路23の上流端でそれぞれ合流する三つの第1冷却水供給流路25A~Cが設けられている。これら三つの第1冷却水供給流路25A~Cの上流端は、図2に示すようにシリンダブロック2に形成されて図示しない燃焼室を冷却するシリンダブロック第1冷却水供給流路50に接続されている。
 シリンダヘッド1の各排気ポート12A,B間には、シリンダヘッド1の底部から上方に向かって延びると共に、その下流端をインジェクタ設置部14と隣接するポート間冷却水流路24に合流させた第2冷却水供給流路26が設けられている。この第2冷却水供給流路26の上流端は、図2に示すようにシリンダブロック2に形成されると共に、図示しないラジエータで冷却された冷却水をシリンダヘッド1側に直接的に導入するシリンダブロック第2冷却水供給流路51に接続されている。すなわち、ラジエータからシリンダブロック2内の燃焼室を冷却することなく導入される低温の冷却水が、第2冷却水供給流路26を介して高温のインジェクタ設置部14近傍に直接的に供給されるようになっている。
 気筒間冷却水流路23には、気筒間冷却水流路23内を二つの領域に区画して分断する遮断壁30が設けられている。この遮断壁30は、気筒間冷却水流路23内を、当該気筒間冷却水流路23に対して縦方向上流側(図中左側)に位置する排気ポート12Bから、当該気筒間冷却水流路23に対して縦方向下流側(図中右側)に位置する吸気ポート13Aに向かって斜めに延設されている。すなわち、第1冷却水供給流路25A~Cから気筒間冷却水流路23の上流部で合流した冷却水を横方向に直進させることなくポート間冷却水流路24に導くことで、冷却水がシリンダヘッド1内を斜めに流されるように構成されている。
 シリンダヘッド1のポート間冷却水流路24と第2冷却水供給流路26との合流部には、当該合流部から分岐して上方に向かって延びると共に、その下流端を排気側冷却水流路21に合流させた排気側供給流路(第3冷却水供給流路)27が設けられている。すなわち、排気側供給流路27によって排気側冷却水流路21と第2冷却水供給流路26とを接続し、排気側供給流路27と第1冷却水供給流路25A~Cとを直接的に接続しない分断構造にしたことで、高温の吸排気ポート12,13間に導く冷却水流量を効果的に確保できるようになっている。
 以上詳述したように、本実施形態のシリンダヘッドの冷却構造によれば、気筒間冷却水流路23を遮断壁30によって斜めに分断したことで、第1冷却水供給流路25A~Cから気筒間冷却水流路23の上流部で合流した冷却水が横方向に直進することなくポート間冷却水流路24に導かれて、シリンダヘッド1内を斜めに流されるように構成されている。これにより、各気筒11A~D間や吸排気ポート12,13間の流速バランスを効果的に維持することが可能となり、圧力損失の増大を抑制することができる。また、ポート間冷却水流路24を流れた冷却水が他の気筒の冷却に用いられることなく吸気側冷却水流路20に導かれるようになり、冷却水温の上昇を効果的に抑止することができる。また、シリンダヘッド1に一段のウォータジャケットを設けるのみで、エンジンの冷却効率を効果的に向上することが可能となり、製造コストの上昇も効果的に抑制することができる。
 また、本実施形態のシリンダヘッドの冷却構造では、排気側冷却水流路21と第2冷却水供給流路26とが排気側供給流路27によって接続される一方、第1冷却水供給流路25A~Cと排気側冷却水流路21とは直接的に接続されない分断構造になっている。これにより、高温の吸排気ポート12,13間に導入する冷却水流量を確保することが可能となり、冷却効率を効果的に向上することができる。
 また、本実施形態のシリンダヘッドの冷却構造によれば、各排気ポート12A,B間を延びてインジェクタ設置部14と隣接するポート間冷却水流路24に合流する第2冷却水供給流路26の下流端は、シリンダブロック2に設けられてラジエータで冷却された冷却水をシリンダヘッド1側に直接導入するシリンダブロック第2冷却水供給流路51に接続されている。これにより、低温の冷却水が第2冷却水供給流路26を介して高温のインジェクタ設置部14に直接的に供給されるようになり、冷却性能を確実に向上することができる。
 なお、本発明は、上述の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、適宜変形して実施することが可能である。
 本出願は、2015年08月5日付で出願された日本国特許出願(特願2015-154783)に基づくものであり、その内容はここに参照として取り込まれる。
 本開示の冷却構造によれば、ウォータジャケットの中子の数を増やすことなく、気筒間や吸排気ポート間の流速バランスを効果的に維持しつつ、圧力損失の増大を抑制することができる。
 1 シリンダヘッド
 2 シリンダブロック
 11A~D 気筒
 12A,B 排気ポート
 13A,B 吸気ポート
 14 インジェクタ設置部
 15,16 ボス部
 20 吸気側冷却水流路
 21 排気側冷却水流路
 23 気筒間冷却水流路
 24 ポート間冷却水流路
 25A~C 第1冷却水供給流路
 26 第2冷却水供給流路
 27 排気側供給流路
 30 遮断壁
 50 シリンダブロック第1冷却水供給流路
 51 シリンダブロック第2冷却水供給流路

Claims (5)

  1.  エンジンの長手方向に複数の気筒が直列に配置され、前記気筒に一対の排気ポート及び一対の吸気ポートが対向するように配置され、前記排気ポートに対向する前記吸気ポート間にインジェクタが設置されたシリンダヘッドの冷却構造であって、
     前記シリンダヘッドの吸気側を前記エンジンの前記長手方向に沿って延びる吸気側冷却流路と、
     各気筒間を前記エンジンの短手方向に延びると共に、その下流端が前記吸気側冷却流路に合流する複数の気筒間冷却流路と、
     その上流端が一の気筒間冷却流路から分岐し、前記排気ポートと前記吸気ポートとの間を前記エンジンの前記長手方向に延び、その下流端が他の気筒間冷却流路に合流する複数のポート間冷却流路と、
     その上流端が前記エンジンのシリンダブロック内に設けられた冷却水供給路に接続され、その下流端が前記気筒間冷却流路の上流端に合流する複数の第1冷却水供給流路と、
     前記気筒間冷却流路内を上流側の気筒の排気ポートから下流側の気筒の吸気ポートに向かう方向に斜めに延設されて、当該気筒間冷却流路を分断する遮断壁と、を備える
     シリンダヘッドの冷却構造。
  2.  前記一対の排気ポート間を前記エンジンの短手方向に延びると共に、その上流端が前記シリンダブロックの冷却水供給路に接続されて、その下流端が前記インジェクタ近傍の前記ポート間冷却流路に合流する複数の第2冷却水供給流路をさらに備える
     請求項1に記載のシリンダヘッドの冷却構造。
  3.  前記シリンダヘッドの排気側における前記排気ポートの上方を前記エンジンの長手方向に沿って延びる排気側冷却流路と、
     前記ポート間冷却流路と前記第2冷却水供給流路との合流部から分岐して前記排気冷却流路に合流する第3冷却水供給流路と、をさらに備える
     請求項2に記載のシリンダヘッドの冷却構造。
  4.  前記第1冷却水供給流路の上流端が、前記シリンダブロックに設けられて気筒を冷却するブロック側冷却水循環流路に接続され、
     前記第2冷却水供給流路の上流端が、前記シリンダブロックに設けられると共に前記冷却水循環流路を介さずにラジエータで冷却された冷却水を直接供給するブロック側冷却水供流路に接続された
     請求項2又は3に記載のシリンダヘッドの冷却構造。
  5.  エンジンの長手方向に複数の気筒が直列に配置され、前記気筒に一対の排気ポート及び一対の吸気ポートが対向するように配置され、前記排気ポートに対向する前記吸気ポート間にインジェクタが設置されたシリンダヘッドの冷却構造であって、
     前記シリンダヘッドの吸気側を前記エンジンの前記長手方向に沿って延びる吸気側冷却流路と、
     各気筒間が前記エンジンの短手方向に延びると共に、上流側気筒間冷却路と、下流端が前記吸気側冷却流路に合流する下流側気筒間冷却路と、を備える複数の気筒間冷却流路と、
     その上流端が一の気筒間冷却流路の上流側気筒間冷却路に接続され、前記排気ポートと前記吸気ポートとの間を前記エンジンの前記長手方向に延び、その下流端が他の気筒間冷却流路の前記下流側気筒冷却路に接続される、複数のポート間冷却流路と、
     その上流端が前記エンジンのシリンダブロック内に設けられた冷却水供給路に接続され、その下流端が前記上流側気筒間冷却流路の上流端に接続される、複数の第1冷却水供給流路と、
     上流側の気筒の排気ポートから下流側の気筒の吸気ポートに向かう方向に斜めに延設されて、当該気筒間冷却流路を前記上流側気筒間冷却路と前記下流側筒間冷却路とに分断する遮断壁と、を備える
     シリンダヘッドの冷却構造。
PCT/JP2016/072533 2015-08-05 2016-08-01 シリンダヘッドの冷却構造 WO2017022720A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680045468.XA CN107850001B (zh) 2015-08-05 2016-08-01 气缸盖的冷却构造
DE112016003551.9T DE112016003551B4 (de) 2015-08-05 2016-08-01 Zylinderkopf-kühlanordnung
US15/750,467 US10393061B2 (en) 2015-08-05 2016-08-01 Cylinder head cooling structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-154783 2015-08-05
JP2015154783A JP6696125B2 (ja) 2015-08-05 2015-08-05 シリンダヘッドの冷却構造

Publications (1)

Publication Number Publication Date
WO2017022720A1 true WO2017022720A1 (ja) 2017-02-09

Family

ID=57944198

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/072533 WO2017022720A1 (ja) 2015-08-05 2016-08-01 シリンダヘッドの冷却構造

Country Status (5)

Country Link
US (1) US10393061B2 (ja)
JP (1) JP6696125B2 (ja)
CN (1) CN107850001B (ja)
DE (1) DE112016003551B4 (ja)
WO (1) WO2017022720A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019112991A (ja) * 2017-12-22 2019-07-11 トヨタ自動車株式会社 内燃機関

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6696125B2 (ja) 2015-08-05 2020-05-20 いすゞ自動車株式会社 シリンダヘッドの冷却構造

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11117803A (ja) * 1997-10-21 1999-04-27 Nissan Motor Co Ltd 内燃機関のシリンダヘッド構造
JP2008075506A (ja) * 2006-09-20 2008-04-03 Yamaha Motor Co Ltd 水冷式多気筒エンジン
JP2012012959A (ja) * 2010-06-29 2012-01-19 Mazda Motor Corp エンジンの冷却構造

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11229955A (ja) 1998-02-13 1999-08-24 Daihatsu Motor Co Ltd 内燃機関におけるシリンダヘッドの構造
EP1108868B1 (en) * 1999-12-14 2005-04-13 Nissan Motor Co., Ltd. Compression self-ignition gasoline engine
JP4206326B2 (ja) * 2003-03-24 2009-01-07 株式会社クボタ 多気筒エンジンとその造り分け方法
JP5740463B2 (ja) 2010-11-25 2015-06-24 シャープ株式会社 植物栽培用led光源を備えた発芽棚、育苗棚、栽培棚及び植物工場
JP6696125B2 (ja) 2015-08-05 2020-05-20 いすゞ自動車株式会社 シリンダヘッドの冷却構造

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11117803A (ja) * 1997-10-21 1999-04-27 Nissan Motor Co Ltd 内燃機関のシリンダヘッド構造
JP2008075506A (ja) * 2006-09-20 2008-04-03 Yamaha Motor Co Ltd 水冷式多気筒エンジン
JP2012012959A (ja) * 2010-06-29 2012-01-19 Mazda Motor Corp エンジンの冷却構造

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019112991A (ja) * 2017-12-22 2019-07-11 トヨタ自動車株式会社 内燃機関

Also Published As

Publication number Publication date
CN107850001A (zh) 2018-03-27
US20180223767A1 (en) 2018-08-09
DE112016003551T5 (de) 2018-04-19
CN107850001B (zh) 2020-08-18
DE112016003551B4 (de) 2024-04-04
US10393061B2 (en) 2019-08-27
JP2017031927A (ja) 2017-02-09
JP6696125B2 (ja) 2020-05-20

Similar Documents

Publication Publication Date Title
US10107171B2 (en) Cooling structure of internal combustion engine
US8671904B2 (en) Cylinder head for an internal combustion engine, with integrated exhaust manifold and subgroups of exhaust conduits merging into manifold portions which are superimposed and spaced apart from each other
JP5631859B2 (ja) 一体化した排気マニホールドおよび重ね合わされ互いに間隔をあけたマニホールド部分に合流する排気導管のサブグループを有する内部燃焼エンジン用シリンダヘッド
US20100126153A1 (en) Internal combustion engine
JP2006242030A (ja) エンジンのシリンダヘッド構造
EP3342999B1 (en) Water-cooled engine
JP2007278065A (ja) 排気マニホールド一体型シリンダヘッドの冷却構造
JP2007051601A (ja) シリンダヘッドの冷却構造
JP2013015039A (ja) シリンダヘッドの冷却構造
JP5278299B2 (ja) シリンダヘッドの冷却構造
WO2017022720A1 (ja) シリンダヘッドの冷却構造
WO2017030075A1 (ja) シリンダヘッドの冷却構造
JP2015059492A (ja) シリンダヘッド
JP6062312B2 (ja) シリンダブロックの冷却構造
JP6747029B2 (ja) エンジンのシリンダヘッド
JP6665472B2 (ja) シリンダヘッドの冷却構造
US20210317770A1 (en) Internal combustion engine
JP2017193971A (ja) シリンダヘッド
JP7115158B2 (ja) 内燃機関
JP2017180304A (ja) ヘッドガスケット及び、シリンダヘッド
JP6583115B2 (ja) シリンダヘッド
JP2008095616A (ja) シリンダヘッドのウォータジャケット
JP6728952B2 (ja) 内燃機関のシリンダヘッド
JP2024005397A (ja) シリンダヘッド構造
JP2022139765A (ja) モノブロック式多気筒内燃機関

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16832999

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15750467

Country of ref document: US

Ref document number: 112016003551

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16832999

Country of ref document: EP

Kind code of ref document: A1