WO2017022509A1 - 真空バルブの圧力診断装置及び真空バルブ装置 - Google Patents

真空バルブの圧力診断装置及び真空バルブ装置 Download PDF

Info

Publication number
WO2017022509A1
WO2017022509A1 PCT/JP2016/071468 JP2016071468W WO2017022509A1 WO 2017022509 A1 WO2017022509 A1 WO 2017022509A1 JP 2016071468 W JP2016071468 W JP 2016071468W WO 2017022509 A1 WO2017022509 A1 WO 2017022509A1
Authority
WO
WIPO (PCT)
Prior art keywords
vacuum valve
pressure
diagnostic device
insulator
pressure diagnostic
Prior art date
Application number
PCT/JP2016/071468
Other languages
English (en)
French (fr)
Inventor
佐藤 和弘
土屋 賢治
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2017022509A1 publication Critical patent/WO2017022509A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/668Means for obtaining or monitoring the vacuum

Definitions

  • the present invention relates to a vacuum valve pressure diagnostic device and a vacuum valve device.
  • Patent Document 1 Japanese Patent Laid-Open No. 7-65676 is known as a conventional technique related to a pressure diagnostic apparatus for a vacuum valve.
  • This publication states that “a detection electrode is provided outside the vacuum valve at a predetermined interval, a discharge generated when the vacuum degree of the vacuum valve is reduced by the detection electrode is detected as a discharge pulse current, and the current is input to the vacuum monitoring device.
  • the detection electrode In the vacuum drop detection device that determines that the vacuum is abnormal when the reference level set in advance by the vacuum monitoring device is reached, the detection electrode is formed in an arc shape along the outer diameter of the vacuum valve at substantially equal intervals.
  • a vacuum valve lowering detection device characterized by the above.
  • Patent Document 1 described above describes a device that detects an increase in the pressure of a vacuum valve.
  • the detection electrode for detecting the discharge pulse is always opposed to the vacuum bulb at a predetermined interval, the potential of the arc shield is always close to the ground potential. That is, since the potential difference between the main circuit conductor of the vacuum valve and the arc shield becomes large, each part has a high electric field. In this case, even if there is no abnormality in pressure, a discharge may occur between the main circuit conductor of the vacuum valve and the arc shield, which may be detected as an increase in pressure.
  • the vacuum valve or the switchgear equipped with the vacuum valve is increased in size.
  • An object of the present invention is to provide a vacuum valve pressure diagnostic device that can reduce the size of a vacuum valve or an opening / closing device equipped with a vacuum valve, and further improves safety and reliability.
  • a vacuum valve pressure diagnostic apparatus includes a vacuum container having a vacuum inside, a plurality of contacts disposed in the vacuum container and capable of contacting and separating from each other, and the contacts electrically
  • An insulator different from at least one insulator located on the side closer to the floating potential metal is connected to a potential fixing point at the time of pressure diagnosis.
  • the distance between the conductive material connected to the insulator of the at least one insulator group located on the side close to the floating potential metal and the floating potential metal is changed so as to be shortened at the time of pressure diagnosis.
  • a vacuum valve pressure diagnostic device that can reduce the size of a vacuum valve or an opening / closing device equipped with a vacuum valve and improve safety and reliability.
  • FIG. 1 is a side view of Example 1.
  • FIG. FIG. 2 is a cross-sectional view taken along line AA in FIG. 1 and is a schematic arrangement other than pressure diagnosis.
  • FIG. 2 is a cross-sectional view taken along line AA in FIG. 1 and is a schematic arrangement at the time of pressure diagnosis.
  • 6 is a schematic diagram of Example 2.
  • FIG. 6 is a schematic diagram of Example 3.
  • FIG. 6 is a schematic diagram of Example 4.
  • FIG. FIG. 7 is a sectional view taken along line BB in FIG. 6.
  • 10 is a schematic diagram of Example 5.
  • FIG. 7 is a schematic diagram of Example 6.
  • FIG. 10 is a schematic diagram of Example 7.
  • FIG. 10 is a schematic diagram of Example 8.
  • FIG. It is a characteristic view which shows the correlation of an atmospheric pressure and discharge voltage when the gap length between electrodes is 5 mm.
  • FIG. 1 to 3 show the first embodiment
  • FIG. 1 is a side view
  • FIG. 2 is a cross-sectional view taken along an arrow A in FIG. 1
  • FIG. 3 is an arrangement relationship between a vacuum valve and a pressure diagnostic device during pressure diagnosis. An example of each is shown.
  • the vacuum valve 1 shown on the left side of FIG. 1 includes a fixed side end plate 3 joined to one end of a cylindrical insulating material 2, a fixed side conductor 4 penetrating through the fixed side end plate 3, and a cylindrical insulating material 2.
  • a movable side end plate 5 joined to the other end, one end joined to the movable side end plate 5, and an bellows-shaped bellows 6 that allows driving of the movable part, and the bellows 6 are hermetically penetrated while maintaining a vacuum.
  • the movable container 7 driven in the axial direction constitutes a vacuum vessel, and the internal pressure is kept at a vacuum of about 10 ⁇ 2 Pa or less.
  • the floating potential metal 8 supported by the cylindrical insulating material 2 the fixed side electrode 9 connected to the end of the fixed side conductor 4, and the end of the movable side conductor 7 were connected.
  • the movable side electrode 10 is disposed, and the movable side conductor 7 is connected to an operation insulating rod (not shown) and an operating device connected to a wipe mechanism that applies a contact load to the electrode pair, and can be driven in the axial direction. Yes.
  • the fixed electrode 9 and the movable electrode 10 are contacted and separated, that is, the vacuum valve is opened and closed.
  • the pressure diagnostic apparatus 11 shown on the right side of FIG. 1 includes a plate-shaped conductive material 12 and a plurality of insulators having different impedances, in this case, an insulator 13 and an insulator 14 connected in series. It consists of a group and a potential measuring device 15 connected between insulators. The plurality of insulators only need to be at least partially connected in series. One end of the insulator 14 and one end of the potential measuring device 15 are connected to a potential fixing point, and a voltage generated at both ends of the insulator 14 can be measured by the potential measuring device 15.
  • the potential fixing point is the ground potential, but is not limited to the ground as long as the potential can be specified at the time of diagnosis.
  • the impedance of the insulator 13 on the side close to the floating potential metal 8 is made larger than that of the insulator 14 on the side far from the floating potential metal 8.
  • a plurality of insulators having different impedances are used, but it is not always necessary to change the impedances.
  • the voltage measured by the measuring device 15 can be reduced to, for example, about several volts, and the potential measuring device 15 can be configured simply.
  • the pressure rise inside the vacuum vessel is mainly caused by gas permeation from the outside of the vacuum vessel, gas release from the internal members of the vacuum vessel, pinholes that rarely occur in bellows and joints, etc.
  • the insulation performance starts to drop sharply when the pressure is about 10 ⁇ 1 Pa or higher.
  • the fixed side conductor 4 the fixed side electrode 9, the movable side conductor 7, and the movable side electrode 10 A discharge is generated between the main circuit made of and the floating potential metal 8 which is electrically insulated from the main circuit.
  • the potential of the floating potential metal 8 during normal operation in which no pressure increase occurs in the vacuum valve 1 is approximately determined by the operating voltage, the vacuum valve structure, the arrangement of fixed potential members around the vacuum valve, and the like.
  • the potential of the floating potential metal 8 is a potential obtained by superimposing a discharge pulse on the potential during normal operation.
  • the pressure further rises, the increased discharge pulse is superimposed, and finally the potential of the floating potential metal 8 rises to a state close to the operating voltage.
  • the pressure diagnosis of the vacuum valve is performed by changing the distance between the floating potential metal 8 of the vacuum valve and the conductive material 12 at the time of pressure diagnosis.
  • the pressure diagnostic apparatus for a vacuum valve implemented in this way increases the opposing area of the floating potential metal 8 and the conductive material 12 and simultaneously shortens the distance between the two, so that the static potential between the floating potential metal 8 and the conductive material 12 is reduced.
  • the electric capacity increases. That is, since the impedance between the floating potential metal 8 and the conductive material 12 is reduced, the potential of the floating potential metal 8 can be intentionally lowered to a potential lower than that during normal operation.
  • the potential difference between the main circuit composed of the fixed-side conductor 4, the fixed-side electrode 9, the movable-side conductor 7, and the movable-side electrode 10 and the floating potential metal 8 becomes large, and each part becomes a high electric field.
  • This state is an environment in which a discharge between the main circuit and the floating potential metal 8 is more likely to occur than in a state where no pressure diagnosis is performed. Therefore, when the pressure rises in the vacuum valve 1, the discharge is performed with high sensitivity. Can be triggered.
  • the potential of the floating potential metal 8 becomes a potential obtained by superimposing a discharge pulse on the potential during normal operation, and this potential change is connected between the insulator 13 and the insulator 14 of the pressure diagnostic device 11. It can be detected by the voltage value measured by the potential measuring device 15.
  • the vacuum valve insulation requirements during normal operation can be relaxed, so the vacuum valve or the opening / closing device equipped with the vacuum valve can be miniaturized.
  • the vacuum valve pressure diagnosis is performed when the vacuum valve 1 is in the open state and the vacuum valve 1 is in a state where the pressure rises, the one on the power supply side of the vacuum valve 1 is used. Since there is a problem of discharge from the main circuit to the other main circuit on the load side, the safety diagnosis that prevents the ground fault by performing the pressure diagnosis of the vacuum valve only when the vacuum valve 1 is in the closed state It is possible to provide a pressure diagnostic device for a vacuum valve with improved performance and reliability.
  • the pressure diagnosis of the vacuum valve is performed by changing the distance between the floating potential metal 8 and the conductive material 12 of the vacuum valve at the time of pressure diagnosis.
  • a pressure diagnosis device for a vacuum valve for example, the following advantages can be considered. That is, since the discharge can be induced in a state where the discharge has not yet occurred during normal use, it is possible to grasp the pressure increase before the accident occurs. Therefore, since it becomes possible to raise pressure diagnosis precision, improvement in reliability can be expected.
  • the vacuum valve device provided with the pressure diagnostic device 12 since the pressure diagnostic accuracy is improved, it is possible to provide a highly reliable vacuum valve device particularly with respect to vacuum.
  • the distance between the floating potential metal of the vacuum valve and the conductive material is changed at the time of diagnosis, and the distance between the floating potential metal of the vacuum valve and the conductive material is kept apart from other than at the time of diagnosis. Insulation characteristics are not degraded. In this sense, the insulation reliability can be improved.
  • FIG. 4 shows the second embodiment. A description of the same parts as those in the first embodiment will be omitted.
  • the pressure diagnostic device 16 in this embodiment is provided with a conductive material 17 having a substantially arc shape that is larger than the outer diameter of the vacuum valve 1.
  • the conductive material 17 has been described as an example in which the conductive material 17 is bent at two locations. Alternatively, the shape may be a combination of bending and arc.
  • the pressure diagnosis of the vacuum valve is performed by changing the distance between the floating potential metal 8 and the conductive material 17 during normal operation of the vacuum valve.
  • the potential of the floating potential metal 8 can be intentionally lowered to a potential equal to or lower than that during normal operation as in the first embodiment.
  • the conductive material 17 has a substantially arc shape, the capacitance between the floating potential metal and the conductive material can be increased as compared with, for example, a flat plate conductive material which is not substantially arc-shaped. That is, the potential decrease width of the floating potential metal can be made larger than that of the flat plate conductive material.
  • the detection sensitivity is improved as compared with the first embodiment, it is possible to provide a highly reliable vacuum valve pressure diagnostic apparatus.
  • FIG. 5 shows the third embodiment. A description of the same parts as those in the first embodiment will be omitted.
  • the pressure diagnostic apparatus 18 in this embodiment is provided with a guide 19 for guiding a conductive material in the circumferential direction of the vacuum valve 1 around the vacuum valve 1, and the conductive material 20 has a flexible structure. .
  • the guide 19 in the present embodiment guides the conductive material 20 to approximately half the circumference of the vacuum valve 1, but it is sufficient that the guide 19 is guided so as to surround the vacuum valve 1 even a little. Of course, it may be guided so as to surround the entire circumference. Further, the conductive material 20 in the present embodiment may not be flexible as a whole, and a part thereof may be flexible.
  • the pressure diagnosis of the vacuum valve is performed by changing the distance between the floating potential metal 8 and the conductive material 20 during normal operation of the vacuum valve.
  • the potential of the floating potential metal 8 can be intentionally lowered to a potential equal to or lower than that during normal operation as in the first embodiment.
  • the conductive material 20 at the time of pressure diagnosis is arranged so as to surround the vacuum valve 1 by the guide 19 provided around the vacuum valve, so that the same effect as in the second embodiment can be obtained. Can do.
  • FIGS. 6 and 7 show Example 4, FIG. 6 shows a side view, and FIG. 7 shows a B cross-sectional view in FIG.
  • the vacuum valve shown on the left side of FIG. 6 is a resin mold vacuum valve 22 in which the vacuum valve 1 of Example 1 is covered with an insulating layer 21 such as an epoxy resin.
  • the same effect as in the first embodiment can be obtained. Also in the present embodiment, the same effect can be obtained by combining the second and third embodiments.
  • FIG. 8 shows the fifth embodiment. Description of the same parts as those in the fourth embodiment is omitted.
  • the pressure diagnostic device 23 in this embodiment is provided with a guide 24 for guiding a conductive material in the circumferential direction of the resin mold vacuum valve around the resin mold vacuum valve 22, and the conductive material 20 has a flexible structure. It has become.
  • the guide in this embodiment guides the conductive material 19 to approximately half the circumference of the resin mold vacuum valve 22, but it is only necessary to guide the conductive material 19 so as to surround the resin mold vacuum valve 22. Of course, it may be guided so as to surround the entire circumference. Further, the conductive material 20 in the present embodiment may not be flexible as a whole, and a part thereof may be flexible.
  • the pressure diagnosis of the vacuum valve is performed by changing the distance between the floating potential metal 8 and the conductive material 20 during normal operation of the vacuum valve.
  • the potential of the floating potential metal 8 can be intentionally lowered to a potential equal to or lower than that during normal operation as in the first embodiment.
  • the conductive material 20 at the time of pressure diagnosis is arranged so as to surround the vacuum valve 1 by the guide 24 provided around the vacuum valve, so that the same effect as in the second embodiment can be obtained. Can do.
  • FIG. 9 shows Example 6 and shows a side view of the pressure diagnostic apparatus. A description of the same parts as those in the first embodiment will be omitted.
  • the pressure diagnostic device 25 in this embodiment has a structure in which the conductive material 12 is covered with an insulator 26.
  • the conductive material can be brought closer to the vacuum valve than when not covered with an insulator. This means that the distance between the floating potential metal and the conductive material 12 is shortened, and the capacitance between both is increased. That is, the potential decrease width of the floating potential metal can be made larger than when the potential of the floating potential metal is not covered with the insulator.
  • the detection sensitivity is improved as compared with the first embodiment, it is possible to provide a highly reliable vacuum valve pressure diagnostic apparatus.
  • the insulator 26 may be covered at the time of pressure diagnosis. Specifically, it may be covered at least when approaching the floating potential metal. Of course, you may comprise so that it may always cover.
  • the insulator covering the conductive material may have a relative dielectric constant lower than that of the insulator located on the side close to the floating potential metal in the insulator group. Thereby, the electric field can be relaxed.
  • FIG. 10 shows Example 7. A description of the same parts as those in the first embodiment will be omitted.
  • a pressure abnormality determination device 27 is connected to the potential measurement device 15.
  • the pressure abnormality determination unit 27 can communicate information with a controller 28 of a switchgear equipped with a vacuum valve in a wired or wireless manner.
  • the pressure abnormality determination unit 27 detects a pressure abnormality, it outputs an opening operation disable command for disabling the opening operation of the vacuum valve or a pressure abnormality warning command for warning the pressure abnormality to the controller 28 of the switchgear.
  • the communication means for the vacuum valve may not be provided in the pressure abnormality determination device itself, and another means can perform communication based on the determination result by the pressure abnormality determination device.
  • FIG. 11 shows Example 8. A description of the same parts as those in the first embodiment will be omitted.
  • the pressure diagnosis apparatus according to the present invention is connected to a movement amount output device that outputs the movement amount of the conductive material at the time of pressure diagnosis.
  • the pressure diagnosis device for the vacuum valve can be used as a simple pressure gauge. That is, in practical use, the amount of movement of the conductive material and the detection signal can be detected, and the pressure can be converted from the detection signal. As a result, since the degree of pressure abnormality can be grasped, a highly reliable vacuum valve pressure diagnostic apparatus can be provided.
  • this invention is not limited to the above-mentioned Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.

Landscapes

  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)
  • Arc-Extinguishing Devices That Are Switches (AREA)

Abstract

真空バルブを搭載した開閉装置の安全・信頼性を向上させた真空バルブの圧力診断装置を提供することを目的とする。 内部が真空の真空容器と、真空容器内に配置されて互いに接離可能な複数の接点と、接点と電気的に絶縁された浮遊電位金属を配置した真空バルブの圧力診断を行う圧力診断装置であって、複数の絶縁物を少なくとも部分的に直列に接続して構成した絶縁物群と、複数の絶縁物間に接続される電位測定器を備え、絶縁物群のうち浮遊電位金属に近い側に位置する少なくとも一つの絶縁物とは異なる絶縁物は、圧力診断時に電位固定点に接続され、絶縁物群のうち浮遊電位金属に近い側に位置する少なくとも一つの絶縁物群の絶縁物に接続した導電材の浮遊電位金属に対する距離が圧力診断時に短くなるように変更されることを特徴とする。

Description

真空バルブの圧力診断装置及び真空バルブ装置
 本発明は真空バルブの圧力診断装置及び真空バルブ装置に関する。
 真空バルブの圧力診断装置に関する従来技術として、特開平7-65676号公報(特許文献1)がある。この公報には、「真空バルブの外部に所定間隔をもって検出電極を対設し、検出電極で真空バルブの真空度低下時に発生する放電を放電パルス電流として検出し、電流を真空監視装置に入力して真空監視装置であらかじめ設定した基準レベルに達した時に真空異常と判定するようにした真空度低下検出装置において、検出電極を真空バルブの外径に略等間隔で沿った円弧状に形成したことを特徴とする真空バルブの真空度低下検出装置」が記載されている。
特開平7-65676号公報
 上述した特許文献1には、真空バルブの圧力上昇を検出する装置が記載されている。しかし、特許文献1の構成は、放電パルスを検出する検出電極が真空バルブに対して所定間隔で常時対設されているため、アークシールドの電位は常時接地電位に近くなっている。つまり、真空バルブの主回路導体とアークシールドとの電位差が大きくなるため、各部が高電界となる。この場合、圧力に異状がない場合でも真空バルブの主回路導体とアークシールドとの間で放電が発生し、圧力上昇として検出してしまう恐れがあるため、真空バルブの主回路導体とアークシールドとの絶縁距離を、真空バルブに要求される絶縁性能を確保するまでに長くすることで対策できるが、真空バルブまたは真空バルブを搭載した開閉装置が大型化する問題がある。
 本発明では、真空バルブまたは真空バルブを搭載した開閉装置を小形化でき、さらに安全性と信頼性を向上させた真空バルブの圧力診断装置を提供することを目的とする。
 上記課題を解決するために、本発明に係る真空バルブの圧力診断装置は、内部が真空の真空容器と、真空容器内に配置されて互いに接離可能な複数の接点と、接点と電気的に絶縁された浮遊電位金属を配置した真空バルブの圧力診断を行う圧力診断装置であって、複数の絶縁物を少なくとも部分的に直列に接続して構成した絶縁物群と、複数の絶縁物間に接続される電位測定器を備え、絶縁物群のうち浮遊電位金属に近い側に位置する少なくとも一つの絶縁物とは異なる絶縁物は、圧力診断時に電位固定点に接続され、絶縁物群のうち浮遊電位金属に近い側に位置する少なくとも一つの絶縁物群の絶縁物に接続した導電材の浮遊電位金属に対する距離が圧力診断時に短くなるように変更されることを特徴とする。
 本発明によれば、真空バルブまたは真空バルブを搭載した開閉装置を小形化でき、安全性と信頼性を向上させた真空バルブの圧力診断装置を提供することが可能になる。
実施例1の側面図である。 図1のA-A線断面図であり、圧力診断以外の概略配置である。 図1のA-A線断面図であり、圧力診断時の概略配置である。 実施例2の概略図である。 実施例3の概略図である。 実施例4の概略図である。 図6のB-B線断面図である。 実施例5の概略図である。 実施例6の概略図である。 実施例7の概略図である。 実施例8の概略図である。 電極間のギャップ長が5mmのときの雰囲気圧力と放電電圧との相関を示す特性図である。
 以下、本発明の真空バルブの圧力診断装置の実施例について図面を用いて説明する。尚、下記はあくまでも本発明の実施に好適な実施例であり、本発明の適用対象を限定することを意図する趣旨ではない。
 図1乃至3は実施例1を示すものであり、図1は側面図を、図2は図1におけるA断面矢視図を、図3は圧力診断時の真空バルブと圧力診断装置の配置関係の一例をそれぞれ示している。図1の左側に示した真空バルブ1は、円筒絶縁材2の一端に接合された固定側端板3と、固定側端板3を気密に貫通する固定側導体4と、円筒絶縁材2の他端に接合された可動側端板5と、可動側端板5に一端が接合され、可動部の駆動を許容する蛇腹形状のベローズ6と、ベローズ6を気密に貫通し真空を維持しながら軸方向に駆動する可動側導体7とで真空容器が構成され、内部圧力はおよそ10-2Pa以下の真空で保たれている。
 その真空容器の内部には、円筒絶縁材2で支持された浮遊電位金属8と、固定側導体4の端部に接続された固定側電極9と、可動側導体7の端部に接続された可動側電極10が配置され、可動側導体7は、図示しない操作用絶縁ロッド、及び電極対に接触荷重を加えるワイプ機構と連結された操作器と接続され、軸方向の駆動が可能となっている。これにより、固定側電極9と可動側電極10の接離、即ち、真空バルブの開状態と閉状態を切り替えている。
 また、図1の右側に示した圧力診断装置11は、板状の導電材12と、インピーダンスが異なる複数の絶縁物、ここでは絶縁物13と絶縁物14を直列に接続して構成した絶縁物群と、絶縁物間に接続された電位測定器15とで構成される。尚、複数の絶縁物は少なくとも部分的に直列に接続されていれば足りる。絶縁物14の一端と電位測定器15の一端は、電位固定点に接続され、絶縁物14の両端に発生する電圧を電位測定器15にて測定できる。本実施例では電位固定点は接地電位であるが、診断時に電位が特定できれば接地に限られない。そして、浮遊電位金属8に近い側の絶縁物13のインピーダンスを浮遊電位金属8に遠い側の絶縁物14よりも大きくしている。尚、本実施例においてはインピーダンスが異なる複数の絶縁物を用いているが、必ずしもインピーダンスを異ならせる必要はない。但し、電位測定器15よりも浮遊電位金属8に近い側の絶縁物13のインピーダンスを、電位測定器15よりも浮遊電位金属8から遠い側の絶縁物14のインピーダンスよりも大きくすることで、電位測定器15で測定する電圧を、例えば数ボルト程度に小さくでき、電位測定器15を簡素な構成とすることが可能になる。
 次に真空バルブ1の圧力劣化、即ち真空容器内部の圧力が上昇した場合について説明する。真空容器内部の圧力上昇は、一般的に真空容器外部からのガス透過、真空容器の内部部材からのガス放出、ベローズや接合部などに稀に発生するピンホールなどが主要因で発生し、図12のパッシェンカーブに示されるように、およそ10-1Pa以上になると絶縁性能が急激に低下し始める。
 真空バルブ1を搭載した開閉装置が通常運転状態にあるときに真空バルブ1に圧力上昇が生じて絶縁性能が低下すると、固定側導体4、固定側電極9、可動側導体7、可動側電極10から成る主回路と、この主回路とは電気的に絶縁されている浮遊電位金属8の間で放電が発生する。
 ここで真空バルブ1に圧力上昇が発生しない通常運転時の浮遊電位金属8の電位は、運転電圧と、真空バルブ構造と、真空バルブ周囲の固定電位部材の配置などによりおよそ決定されるが、圧力上昇が発生して真空バルブ1の主回路と浮遊電位金属8の間で放電が発生したときの浮遊電位金属8の電位は、通常運転時の電位に放電パルスが重畳された電位となる。さらに圧力が上昇すると増加した放電パルスが重畳され、最終的に浮遊電位金属8の電位は運転電圧に程近い状態まで上昇する。
 本実施例では、上述した真空バルブ1と圧力診断装置11において、圧力診断時に真空バルブの浮遊電位金属8と導電材12の距離を短く変更して真空バルブの圧力診断を実施する。このように実施される真空バルブの圧力診断装置は、浮遊電位金属8と導電材12の対向面積が増えると同時に双方間の距離が短くなるため、浮遊電位金属8と導電材12の間の静電容量が大きくなる。つまり、浮遊電位金属8と導電材12の間のインピーダンスが小さくなるため、浮遊電位金属8の電位を通常運転時の電位以下に意図的に低下することができる。この結果、固定側導体4、固定側電極9、可動側導体7、可動側電極10から成る主回路と浮遊電位金属8の間の電位差が大きくなり、各部が高電界となる。この状態は、圧力診断をしていない状態に比べ、主回路と浮遊電位金属8の間での放電が発生し易い環境となるため、真空バルブ1に圧力上昇が生じた場合では、感度良く放電を誘発することができる。放電が発生した場合、浮遊電位金属8の電位は通常運転時の電位に放電パルスが重畳された電位となり、この電位変化を圧力診断装置11の絶縁物13と絶縁物14の間に接続された電位測定器15により測定した電圧値により検出することができる。
 上述した真空バルブの圧力診断装置によると、通常運転時における真空バルブの絶縁要求を緩和することができるため、真空バルブ、または真空バルブを搭載した開閉装置を小形化できる。
 なお、真空バルブ1が開状態であるときに真空バルブの圧力診断を実施した場合で、真空バルブ1に圧力上昇が生じている状態であったときは、真空バルブ1の電源側となる一方の主回路から負荷側となる他方の主回路に放電する問題があるため、真空バルブの圧力診断を真空バルブ1が閉状態のときにのみ圧力診断を実施することで、地絡事故を防止できる安全性と信頼性を向上させた真空バルブの圧力診断装置を提供することができる。
 本実施例によれば、圧力診断時に真空バルブの浮遊電位金属8と導電材12の距離を変更して真空バルブの圧力診断を実施している。真空バルブの圧力診断装置としては、例えば次のような利点が考えられる。即ち、通常の使用時には放電が未だ生じていない状況で放電を誘発できるので、圧力上昇を事故が生ずる前に把握することが可能となる。よって、圧力診断精度を高めることが可能になるため、信頼性向上が期待できる。
 更に本実施例に係る圧力診断装置12を備えた真空バルブ装置に関して言えば、圧力診断精度が高まるので、特に真空に関して高信頼性の真空バルブ装置の提供が可能になる。加えて、診断時に真空バルブの浮遊電位金属と導電材の距離を変更するようにしており、診断時以外には真空バルブの浮遊電位金属と導電材の距離を離しておくことで、診断時以外における絶縁特性低下は生じさせない。この意味合いにおいても絶縁信頼性の向上が期待できる。
 図4は実施例2を示すものである。実施例1と同様な部分については説明を省略する。本実施例での圧力診断装置16は、真空バルブ1の外径より大きく、略円弧な形状である導電材17を設けている。本実施例では、簡便な説明のために、導電材17は2箇所で折り曲げた場合を例にして説明しているが、1箇所以上で折り曲げた形状であれば良く、また折り曲げがない円弧形状や、折り曲げと円弧を組み合わせた形状でも良い。
 本実施例では、真空バルブの通常運転時に浮遊電位金属8と導電材17の距離を変更して真空バルブの圧力診断を実施する。このように実施される真空バルブの圧力診断装置においても、実施例1と同様に浮遊電位金属8の電位を通常運転時の電位以下に意図的に低下することができる。更に本実施例では、導電材17を略円弧形状にしているため、略円弧形状でない、例えば平板の導電材に比べ、浮遊電位金属と導電材の間の静電容量を大きくできる。即ち、浮遊電位金属の電位の低下幅を平板の導電材より大きくすることができる。その結果、実施例1より検出感度が向上するため、信頼性の高い真空バルブの圧力診断装置を提供することが可能になる。
 図5は実施例3を示すものである。実施例1と同様の部分については説明を省略する。本実施例での圧力診断装置18は、真空バルブ1の周囲に導電材を真空バルブの円周方向に案内するガイド19を設けてあり、導電材20は可撓性を有する構造になっている。本実施例でのガイド19は、真空バルブ1のおよそ半周まで導電材20を案内するようになっているが、僅かでも真空バルブ1を囲むように案内されていれば良い。勿論、全周を囲むように案内されていても良い。また、本実施例での導電材20は、全体が可撓性を有していなくても良く、その一部が可撓性を有するものであっても良い。
 本実施例では、真空バルブの通常運転時に浮遊電位金属8と導電材20の距離を変更して真空バルブの圧力診断を実施する。このように実施される真空バルブの圧力診断装置においても、実施例1と同様に浮遊電位金属8の電位を通常運転時の電位以下に意図的に低下することができる。更に本実施例では、圧力診断時における導電材20は、真空バルブの周囲に設けたガイド19により真空バルブ1を囲むように配置されることになるため、実施例2と同様な効果を得ることができる。
 図6、7は実施例4を示すものであり、図6は側面図を、図7は図6におけるB断面矢視図をそれぞれ示している。図6の左側に示した真空バルブは、実施例1の真空バルブ1をエポキシ樹脂などの絶縁層21で覆った樹脂モールド真空バルブ22である。
 本実施例においても真空バルブの通常運転時に浮遊電位金属8と導電材12の距離を変更して真空バルブの圧力診断を実施するため、実施例1と同様な効果を得ることができる。また、本実施例においても実施例2や実施例3を組み合わせることで同様の効果を得ることができる。
 図8は実施例5を示すものである。実施例4と同様の部分については説明を省略する。本実施例での圧力診断装置23は、樹脂モールド真空バルブ22の周囲に導電材を樹脂モールド真空バルブの円周方向に案内するガイド24を設けてあり、導電材20は可撓性を有する構造になっている。本実施例でのガイドは、樹脂モールド真空バルブ22のおよそ半周まで導電材19を案内するようになっているが、僅かでも樹脂モールド真空バルブ22を囲むように案内されていれば良い。勿論、全周を囲むように案内されていても良い。また、本実施例での導電材20は、全体が可撓性を有していなくても良く、その一部が可撓性を有するものであっても良い。
 本実施例では、真空バルブの通常運転時に浮遊電位金属8と導電材20の距離を変更して真空バルブの圧力診断を実施する。このように実施される真空バルブの圧力診断装置においても、実施例1と同様に浮遊電位金属8の電位を通常運転時の電位以下に意図的に低下することができる。更に本実施例では、圧力診断時における導電材20は、真空バルブの周囲に設けたガイド24により真空バルブ1を囲むように配置されることになるため、実施例2と同様な効果を得ることができる。
 図9は実施例6を示すものであり、圧力診断装置の側面図を示している。実施例1と同様の部分については説明を省略する。本実施例での圧力診断装置25は、導電材12が絶縁物26で覆われた構造になっている。このように構成される本実施例では、圧力診断時の導電材の端部の電界を緩和できるため、絶縁物で覆っていない場合より、導電材を真空バルブに近付けることができる。これは、浮遊電位金属と導電材12の距離が短くなり、双方間の静電容量が大きくなることを意味する。つまり、浮遊電位金属の電位を絶縁物で覆っていない場合より、浮遊電位金属の電位の低下幅を大きくすることができる。その結果、実施例1より検出感度が向上するため、信頼性の高い真空バルブの圧力診断装置を提供することが可能になる。
 なお、導電材12を絶縁物26は、常時覆っていなくても、圧力診断時に覆っていればよい。具体的には、少なくとも浮遊電位金属に近付ける際に覆っていれば良い。勿論、常時覆う様に構成しても良い。また、導電材を覆う絶縁物は、絶縁物群のうち浮遊電位金属に近い側に位置する絶縁物の比誘電率よりも低比誘電率として良い。これにより電界を緩和することができる。
 図10は実施例7を示すものである。実施例1と同様な部分については説明を省略する。本発明での圧力診断装置は、電位測定器15に圧力異常判定器27が接続されている。また、この圧力異常判定器27は、真空バルブを搭載した開閉装置の制御器28と有線、または無線で情報通信できるようになっている。圧力異常判定器27が圧力異常を検出した場合に、真空バルブの開動作を不可とする開動作不可指令、または圧力異常を警告する圧力異常警告指令を開閉装置の制御器28に出力する。尚、真空バルブへの通信手段は、圧力異常判定器自体が備えていなくても良く、圧力異常判定器による判定結果に基づいて別の手段が通信を行う様にすることも可能である。
 このように構成される本実施例では、地絡事故を防止できる安全性と信頼性を向上させた真空バルブの圧力診断装置を提供することができる。
 真空バルブに圧力異常が生じていたときに開動作した場合、電極間で放電が発生し、地絡事故を引き起こす問題があるため、真空バルブの圧力異常を検出した場合に、真空バルブの開動作を不可とする開動作不可指令、または圧力異常を警告する圧力異常警告指令を出力することで、地絡事故を防止できる安全性と信頼性を向上させた真空バルブの圧力診断装置を提供することができる。
 図11は実施例8を示すものである。実施例1と同様な部分については説明を省略する。本発明での圧力診断装置は、圧力診断時における導電材の移動量を出力する移動量出力器が接続されている。
 このように構成される本実施例では、予め真空バルブの圧力と導電材の移動量と検出信号の関係を取得しておけば、真空バルブの御圧力診断装置を簡易な圧力計として使用できる。つまり、実用する場合は導電材の移動量と検出信号を検出し、その検出信号から圧力を換算できる。その結果、圧力異常の度合いを把握することができるため、信頼性の高い真空バルブの圧力診断装置を提供することができる。
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
1…真空バルブ
2…円筒絶縁材
3…固定側端板
4…固定側導体
5…可動側端板
6…ベローズ
7…可動側導体
8…浮遊電位金属
9…固定側電極
10…可動側電極
11、16、18、23、25…圧力診断装置
12、17、20…導電材
13、14、26…絶縁物
15…電位測定器
19、24…ガイド
21…樹脂モールド
22…樹脂モールド真空バルブ
27…圧力異常判定器
28…開閉装置の制御器
29…移動量出力器

Claims (10)

  1.  内部が真空の真空容器と、真空容器内に配置されて互いに接離可能な複数の接点と、接点と電気的に絶縁された浮遊電位金属を配置した真空バルブの圧力診断を行う圧力診断装置であって、
     複数の絶縁物を少なくとも部分的に直列に接続して構成した絶縁物群と、複数の絶縁物間に接続される電位測定器を備え、
     前記絶縁物群のうち浮遊電位金属に近い側に位置する少なくとも一つの絶縁物とは異なる絶縁物は、圧力診断時に電位固定点に接続され、
     前記絶縁物群のうち浮遊電位金属に近い側に位置する少なくとも一つの絶縁物群の絶縁物に接続した導電材の浮遊電位金属に対する距離が圧力診断時に短くなるように変更されることを特徴とする真空バルブの圧力診断装置。
  2.  請求項1に記載の真空バルブの圧力診断装置において、
     前記絶縁物群のうち浮遊電位金属に近い側に位置する絶縁物に接続した導電材は、真空バルブの外径より大きい略円弧な形状であることを特徴とする真空バルブの圧力診断装置。
  3.  請求項1又は2のいずれか1項に記載の真空バルブの圧力診断装置において、
     前記導電材は、その一部または全てが可撓性を有する材質で形成されていることを特徴とする真空バルブの圧力診断装置。
  4.  請求項3に記載の真空バルブの圧力診断装置において、
     前記真空バルブの外周に導電材を真空バルブの円周方向に案内するガイドが配置されていることを特徴とする真空バルブの圧力診断装置。
  5.  請求項1乃至4のいずれか1項に記載の真空バルブの圧力診断装置において、
     前記真空バルブは、真空バルブと真空バルブの周囲に設けられた絶縁層とで構成する樹脂モールド真空バルブであることを特徴とする真空バルブの圧力診断装置。
  6.  請求項1乃至5のいずれか1項に記載の真空バルブの圧力診断装置において、
     前記導電材は、少なくとも圧力診断を行う際、もしくは常時、絶縁物で覆われていることを特徴とする真空バルブの圧力診断装置。
  7.  請求項6に記載の真空バルブの圧力診断装置において、
     前記導電材を覆う絶縁物は、絶縁物群のうち浮遊電位金属に近い側に位置する少なくとも一つの絶縁物群の絶縁物の比誘電率よりも低比誘電率であることを特徴とする真空バルブの圧力診断装置。
  8.  請求項1乃至7のいずれか1項に記載の真空バルブの圧力診断装置において、
     圧力異常を検出した場合に、真空バルブに対して開動作を不可とする開動作不可指令、または圧力異常を警告する圧力異常指令を出力することを特徴とする真空バルブの圧力診断装置。
  9.  請求項1乃至8のいずれか1項に記載の真空バルブの圧力診断装置において、
     圧力診断の際に真空バルブと導電材の位置関係を出力することを特徴とする真空バルブの圧力診断装置。
  10.  請求項1乃至9のいずれか1項に記載の真空バルブの圧力診断装置と真空バルブとを備えることを特徴とする圧力診断機能を有する真空バルブ装置。
PCT/JP2016/071468 2015-08-04 2016-07-22 真空バルブの圧力診断装置及び真空バルブ装置 WO2017022509A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015153800A JP6560928B2 (ja) 2015-08-04 2015-08-04 真空バルブの圧力診断装置及び真空バルブ装置
JP2015-153800 2015-08-04

Publications (1)

Publication Number Publication Date
WO2017022509A1 true WO2017022509A1 (ja) 2017-02-09

Family

ID=57942840

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/071468 WO2017022509A1 (ja) 2015-08-04 2016-07-22 真空バルブの圧力診断装置及び真空バルブ装置

Country Status (2)

Country Link
JP (1) JP6560928B2 (ja)
WO (1) WO2017022509A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220068579A1 (en) * 2019-03-04 2022-03-03 Hitachi Industrial Equipment Systems Co., Ltd. Pressure monitoring device and pressure monitoring method for vacuum valve

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55137707U (ja) * 1979-03-23 1980-10-01
JPS6119020A (ja) * 1984-07-06 1986-01-27 株式会社日立製作所 電力用遮断器の真空劣化検出装置
JPS62116265A (ja) * 1985-11-15 1987-05-27 Sumitomo Electric Ind Ltd 電圧検出器
JPS6459165A (en) * 1987-08-31 1989-03-06 Matsushita Electric Ind Co Ltd Voltage divider
JPH02210729A (ja) * 1989-02-09 1990-08-22 Toshiba Corp 真空開閉装置
JPH0765676A (ja) * 1993-08-24 1995-03-10 Meidensha Corp 真空インタラプタの真空度低下検出装置
JP2009525583A (ja) * 2006-01-31 2009-07-09 トーマス・アンド・ベッツ・インターナショナル・インコーポレーテッド 真空開閉装置
JP2012190564A (ja) * 2011-03-08 2012-10-04 Toshiba Corp 樹脂モールド真空バルブ

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5553840U (ja) * 1978-10-06 1980-04-11

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55137707U (ja) * 1979-03-23 1980-10-01
JPS6119020A (ja) * 1984-07-06 1986-01-27 株式会社日立製作所 電力用遮断器の真空劣化検出装置
JPS62116265A (ja) * 1985-11-15 1987-05-27 Sumitomo Electric Ind Ltd 電圧検出器
JPS6459165A (en) * 1987-08-31 1989-03-06 Matsushita Electric Ind Co Ltd Voltage divider
JPH02210729A (ja) * 1989-02-09 1990-08-22 Toshiba Corp 真空開閉装置
JPH0765676A (ja) * 1993-08-24 1995-03-10 Meidensha Corp 真空インタラプタの真空度低下検出装置
JP2009525583A (ja) * 2006-01-31 2009-07-09 トーマス・アンド・ベッツ・インターナショナル・インコーポレーテッド 真空開閉装置
JP2012190564A (ja) * 2011-03-08 2012-10-04 Toshiba Corp 樹脂モールド真空バルブ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220068579A1 (en) * 2019-03-04 2022-03-03 Hitachi Industrial Equipment Systems Co., Ltd. Pressure monitoring device and pressure monitoring method for vacuum valve
US11842866B2 (en) * 2019-03-04 2023-12-12 Hitachi Industrial Equipment Systems Co., Ltd. Pressure monitoring device and pressure monitoring method for vacuum valve

Also Published As

Publication number Publication date
JP2017033810A (ja) 2017-02-09
JP6560928B2 (ja) 2019-08-14

Similar Documents

Publication Publication Date Title
TWI313019B (ja)
US4087744A (en) Device for determining a high-voltage potential in metal-encapsulated high-voltage switching installations and equipment
US11865931B2 (en) Line set for a charging station, charging station
WO2010023830A1 (ja) ガス絶縁装置
KR102023174B1 (ko) 모니터링 시스템, 그러한 시스템에 대한 안전 케이블 및 튜브, 및 모니터링 시스템을 동작시키기 위한 방법
KR102172757B1 (ko) 피뢰기
CN107957529B (zh) 用于测试高压电容式套管组合件的电流连接的方法和装置
JP4686555B2 (ja) 真空開閉装置
BR112016026349B1 (pt) Sistema de detecção de um interruptor a vácuo, método para detectar uma perda de vácuo em um interruptor a vácuo, interruptor a vácuo e sistema
JP6560928B2 (ja) 真空バルブの圧力診断装置及び真空バルブ装置
JP6397700B2 (ja) 真空バルブの圧力診断装置または真空バルブ装置
EP3370243B1 (en) Vacuum circuit breaker
KR101238643B1 (ko) 진공차단기의 진공인터럽터 및 이의 진공도 검출방법
CN106537546A (zh) 能够测试真空的真空绝缘开关、开关组件及测试方法
US11668751B2 (en) Sensor device and method for determining an alternating voltage
JP5501263B2 (ja) 真空絶縁開閉器及び真空絶縁スイッチギヤ
JP2012150970A (ja) 真空バルブ及びタンク形真空遮断器
JP2007174726A (ja) ガス絶縁電力機器
JP7175799B2 (ja) 真空バルブの圧力監視装置、および、圧力監視方法
JP6207805B1 (ja) 真空バルブの真空劣化監視装置及びこれを備えた開閉装置
JP5222230B2 (ja) 真空遮断器の圧力診断装置
CN111653428A (zh) 圆柱形电容器杯以及具有圆柱形电容器杯的电容器
JP2015210851A (ja) 真空開閉装置の放電検出装置及び放電検出方法
JP5658734B2 (ja) バルブユニット
CN102201296B (zh) 真空开关及真空绝缘开关装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16832788

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16832788

Country of ref document: EP

Kind code of ref document: A1