WO2017022305A1 - 流路構造体、測定ユニット、測定対象液体の測定方法、および測定対象液体の測定装置 - Google Patents
流路構造体、測定ユニット、測定対象液体の測定方法、および測定対象液体の測定装置 Download PDFInfo
- Publication number
- WO2017022305A1 WO2017022305A1 PCT/JP2016/065669 JP2016065669W WO2017022305A1 WO 2017022305 A1 WO2017022305 A1 WO 2017022305A1 JP 2016065669 W JP2016065669 W JP 2016065669W WO 2017022305 A1 WO2017022305 A1 WO 2017022305A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- liquid
- flow path
- liquid storage
- separation element
- unit
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/01—Arrangements or apparatus for facilitating the optical investigation
- G01N21/03—Cuvette constructions
- G01N21/05—Flow-through cuvettes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5027—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
- B01L3/502753—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by bulk separation arrangements on lab-on-a-chip devices, e.g. for filtration or centrifugation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D15/00—Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
- B01D15/08—Selective adsorption, e.g. chromatography
- B01D15/10—Selective adsorption, e.g. chromatography characterised by constructional or operational features
- B01D15/16—Selective adsorption, e.g. chromatography characterised by constructional or operational features relating to the conditioning of the fluid carrier
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81B—MICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
- B81B1/00—Devices without movable or flexible elements, e.g. microcapillary devices
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/08—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a stream of discrete samples flowing along a tube system, e.g. flow injection analysis
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N37/00—Details not covered by any other group of this subclass
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2200/00—Solutions for specific problems relating to chemical or physical laboratory apparatus
- B01L2200/06—Fluid handling related problems
- B01L2200/0684—Venting, avoiding backpressure, avoid gas bubbles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/08—Geometry, shape and general structure
- B01L2300/0809—Geometry, shape and general structure rectangular shaped
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/08—Geometry, shape and general structure
- B01L2300/0832—Geometry, shape and general structure cylindrical, tube shaped
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/08—Geometry, shape and general structure
- B01L2300/0861—Configuration of multiple channels and/or chambers in a single devices
- B01L2300/0874—Three dimensional network
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/08—Geometry, shape and general structure
- B01L2300/0861—Configuration of multiple channels and/or chambers in a single devices
- B01L2300/0883—Serpentine channels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/08—Geometry, shape and general structure
- B01L2300/0887—Laminated structure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/14—Means for pressure control
Definitions
- the present invention relates to a flow channel structure used in a measurement apparatus for a measurement target liquid that can support POCT, a measurement unit including the flow channel structure, a measurement method of a measurement target liquid using the measurement unit, and the measurement described above.
- the present invention relates to a measurement apparatus for a liquid to be measured that includes a unit.
- POCT point-of-care testing
- Patent Document 1 discloses a porous silica column containing porous silica as a main component, the first porous silica part having a first property and a first average pore diameter, A porous silica column is described that includes a second porous silica portion having a second property different from the first property and a second average pore size different from the first average pore size.
- FIG. 3 of Patent Document 1 shows an HPLC (high performance liquid chromatography) apparatus using the above porous silica column.
- Patent Document 2 includes at least a first base material and a second base material bonded together, and a flow between the first base material and the second base material.
- a flow path chip in which a processing tank connected to a path and the flow path is formed, and the flow path chip in which a plate-like porous body having a triangular shape in plan view is included in the processing tank is described. According to such a flow channel chip, since the liquid leakage and dead volume can be reduced as compared with the conventional one, the flow channel chip described in Patent Document 2 is suitable as a tool for POCT.
- the flow channel structure is incorporated into the flow channel chip.
- a device is required to distribute the liquid to the separation element in the structure. From the viewpoint of realizing POCT, such a device is preferably small.
- the flow channel structure can store the liquid flowing through the separation element of the flow channel structure, and is stored in the flow channel structure.
- the measuring device in which the flow channel structure is incorporated is not in direct contact with the liquid, the measuring device can be dried and the measuring device can be downsized. New knowledge that it is easy to deal with.
- liquid storage section having a liquid storage section capable of storing a liquid and an outflow section, a separation element storage section containing a separation element between two open ends, A supply channel connected to the outflow part of the liquid storage part and one open end of the separation element accommodation part to communicate the liquid storage part and the separation element accommodation part, and the other of the separation element accommodation part A flow path structure including a discharge flow path connected to an open end, wherein the supply flow path is connected to a liquid storage section side flow path connected to the outflow section of the liquid storage section, and the separation element housing section.
- the liquid storage part can transmit external force applied to the flow path structure as pressure fluctuation in the liquid storage part.
- a flow path structure comprising: a pressure transmission part, and the liquid stored in the liquid storage part can flow out from the outflow part to the supply path based on a pressure fluctuation in the liquid storage part. It is.
- the liquid stored in the liquid storage part can flow to the separation element without contacting any members other than the members constituting the flow path structure. .
- the flow path structure may be composed of a laminate of a plurality of plate-like base materials. By having such a configuration, a flow channel structure having various partial structures can be obtained efficiently.
- the pressure transmission part is a tubular body communicating from the inside of the liquid storage part to the outside of the flow path structure, and the pressure in the liquid storage part can be increased by the pressure of the fluid supplied from the outside of the flow path structure to the tubular body. It may be.
- the pressure transmission unit may have a linear motion structure, and the pressure in the liquid storage unit may be increased by a force applied to the linear motion structure from outside the flow path structure.
- the specific configuration of the separation element is not limited.
- the separation element may be a separation column or an electrophoresis element.
- the liquid storage part may have an injection part capable of injecting the liquid.
- a vent part capable of discharging the gas in the liquid storage part of the liquid storage part is provided. You may do it.
- the injection unit promotes the mixing of the liquid to be measured and the liquid from the liquid storage unit. It is preferable that a porous body is disposed.
- the porous body arranged in the injection part may have a function of promoting the separation of the liquid to be measured in cooperation with the separation element.
- a rectifying unit that is disposed in the liquid storage unit side flow path and suppresses fluctuations in the flow rate of the liquid flowing in the injection unit.
- a plurality of the liquid storage side channels connected to the liquid storage unit, and the supply channel is disposed between an outflow part of the plurality of liquid storage units and the separation element side channel;
- a converging part for converging a plurality of liquid part side flow paths and communicating the plurality of liquid storage parts with the separation element side flow paths.
- a porous body that promotes the mixing of the liquids from the plurality of liquid storage units is disposed in the converging unit. More preferably, the porous body disposed in the convergent portion has a function of promoting the separation of the liquid to be measured in cooperation with the separation element.
- the flow rate of the liquid that is disposed between the outflow part and the converging part and flows in the converging part It is preferable to provide an individual rectification unit that suppresses fluctuations.
- the injection part is preferably provided integrally with the converging part.
- a waste liquid storage unit may be provided that is connected to an open end opposite to the open end connected to the separation element housing portion of the discharge flow path and stores the liquid that has passed through the separation element.
- the measuring device in which the flow channel structure is incorporated does not require contact with the liquid required for the analysis, and the measuring device can be made dry.
- the waste liquid storage part preferably has a vent part for discharging the internal gas.
- the flow path structure according to the present invention is composed of a laminate of a plurality of plate-like substrates
- at least one of the plurality of plate-like substrates constituting the paste is for measuring the measurement target liquid. It is preferable that it has transparency about the wavelength range of the measurement light to be irradiated, and the discharge channel includes a channel part along the thickness direction of the bonded body.
- the separation distance between the portion closest to one main surface of the bonded body and the one main surface of the bonded body in the liquid storage portion of the liquid storage portion is one of the bonded bodies in the separation element storage portion. It is preferable that the distance is smaller than the distance between the portion closest to the main surface and one main surface of the bonded body.
- the number of the plate-like base material is 3 or more. By having such a configuration, it is possible to increase the degree of freedom in designing the flow channel structure.
- the liquid storage portion is constituted by at least two portions of the plate-like base material that have been processed to remove, and the separation element accommodating portion is at least two plate-like shapes.
- the at least two plate-like members that are constituted by the removed part of the base material and that constitute the liquid storage part are different from the at least two plate-like members that constitute the separation element accommodating part. preferable.
- Another aspect of the present invention is a measurement unit including the flow channel structure according to the present invention described above and a liquid stored in the liquid storage portion of the flow channel structure. Since the measurement unit according to the present invention has a liquid necessary for the measurement in advance, the measurement apparatus in which the flow path structure is incorporated does not need to supply the liquid necessary for the measurement to the flow path structure.
- a liquid to be measured is injected into the injection unit of the measurement unit according to the present invention, an external force is applied to the pressure transmission unit, and the liquid in the liquid storage unit is supplied to the supply channel.
- the liquid containing the liquid to be measured is passed through the separation element, and the liquid containing the liquid to be measured that has passed through the separation element is measured to obtain information on the composition of the liquid to be measured.
- At least one of the plurality of plate-like base materials constituting the bonded body has transparency in a wavelength range of measurement light irradiated for measuring the measurement target liquid, and the separation Information relating to the composition of the liquid to be measured may be obtained by irradiating the liquid containing the liquid to be measured located in the discharge flow path through the element with the measurement light.
- the separation element may be a separation column, and the pressure of the liquid supplied to the separation column may be 1 MPa or less. Even if the flow channel structure according to the present invention is small, the analysis ability can be increased, so that the pressure of the liquid supplied to the separation column can be lowered.
- Another aspect of the present invention is a measuring apparatus for a liquid to be measured, comprising the measuring unit according to the present invention.
- Such a measuring apparatus is easy to cope with downsizing.
- a flow channel structure that is easily compatible with a measuring apparatus in which the flow channel structure is incorporated.
- the measuring unit provided with said flow-path structure, the measuring method of the measuring object liquid using said measuring unit, and the measuring apparatus of the measuring object liquid provided with said measuring unit are also provided.
- FIG. 1 It is a perspective view of the channel structure concerning a 1st embodiment of the present invention. It is a perspective view in the state where two plate-like members which constitute a channel structure concerning a 1st embodiment of the present invention separated. It is a perspective view which shows only the flow-path part of the flow-path structure based on 1st Embodiment of this invention. It is a perspective view in the state where two plate-like members which constitute a channel structure concerning one of modifications of a 1st embodiment of the present invention were separated. It is a perspective view of the channel structure concerning a 2nd embodiment of the present invention. It is a perspective view in the state where four plate-like members which constitute a channel structure concerning a 2nd embodiment of the present invention separated.
- FIG. 1st embodiment of the present invention It is a perspective view in the state where two plate-like members which constitute a channel structure concerning a 1st embodiment of the present invention separated. It is a perspective view which shows only the flow-path part of the flow-path structure based
- FIG. 6 is a cross-sectional view taken along line AA shown in FIG.
- FIG. 6 is a cross-sectional view taken along line BB shown in FIG.
- FIG. 10 is a cross-sectional view taken along line CC shown in FIG. 9.
- FIG. 10 is a sectional view taken along line DD shown in FIG. 9. It is a perspective view of the channel structure concerning a 4th embodiment of the present invention. It is a perspective view in the state where two plate-like members which constitute a channel structure concerning a 4th embodiment of the present invention separated.
- FIG. 1 is a perspective view of a flow channel structure according to the first embodiment of the present invention.
- FIG. 2 is a perspective view showing a state where two plate-like members constituting the flow channel structure according to the first embodiment of the present invention are separated.
- FIG. 3 is a perspective view showing only the flow channel portion of the flow channel structure according to the first embodiment of the present invention.
- the flow path structure 1 according to the first embodiment shown in FIGS. 1 to 3 is a bonded body of two plate-like members P1 and P2 each made of a transparent material.
- the transparent material include glass, acrylic resin material, cycloolefin resin material, and polyester resin material.
- at least one of the two plate-like members P1 and P2 is preferably made of a cycloolefin-based material, and the two plate-like members P1 and P2 are both cycloolefins. More preferably, it is made of a system material.
- the flow path structure 1 includes a liquid storage section 10 having a liquid storage section 11 and an outflow section 12 that can store a liquid.
- the flow channel structure 1 includes a separation element accommodating portion 20 that encloses a separation element (in this embodiment, a separation column CL) between two open ends 21 and 22.
- the flow path structure 1 is connected to the outflow part 12 of the liquid storage part 10 and one open end 21 of the separation element accommodating part 20 so that the liquid storage part 10 and the separation element accommodating part 20 communicate with each other. 30.
- the flow channel structure 1 includes a discharge flow channel 40 connected to the other open end 22 of the separation element housing portion 20.
- the supply flow path 30 includes a liquid storage section side flow path 31 connected to the outflow section 12 of the liquid storage section 10, a separation element side flow path 32 connected to the separation element storage section 20, and a liquid storage section side flow path 31.
- An injection unit 33 is provided between the separation element side channel 32 and capable of introducing the liquid to be measured into the supply channel 30.
- the connecting portion of the liquid storage unit side flow channel 31, the separation element side flow channel 32, and the injection unit 33 is configured by a T-shaped branch path.
- the liquid storage unit 10 includes a pressure transmission unit 13 that can transmit an external force applied to the flow path structure 1 as a pressure fluctuation in the liquid storage unit 10.
- the pressure transmission unit 13 allows the liquid stored in the liquid storage unit 10 to flow out from the outflow unit 12 to the supply path 30 based on the pressure fluctuation in the liquid storage unit 10.
- a measuring device (not shown) in which the flow channel structure 1 is incorporated causes the liquid stored in the liquid storage unit 10 to flow out to the supply path 30 by applying an external force to the pressure transmission unit 13, and this The liquid can be supplied into the separation element (separation column CL). Therefore, the measuring device can function the separation element (separation column CL) without coming into contact with the liquid accommodated in the flow path structure 1.
- the pressure transmission unit 13 is a tubular body that communicates from the liquid storage unit 10 to the outside of the flow channel structure 1. And the pressure in the liquid storage part 10 can be increased by the pressure of the fluid supplied from the outside of the flow path structure 1 into the tubular body constituting the pressure transmission part 13.
- a gas supply system for example, a compressed air system
- a separation element The liquid in the liquid storage part 11 of the liquid storage part 10 can be supplied into the separation column CL).
- the liquid storage unit 11 may have an injection unit (not shown) that can inject liquid.
- the injection part may be configured, for example, from a through hole provided in the main surface of the lower plate-like member P2 in FIG. 1 with one open end connected to the liquid storage part 11 and the other open end.
- the injection portion is sealed by some method so that the main surface of the lower plate-like member P2 in FIG. 1 does not have an open end. do it.
- the gas in the liquid storage part 11 of the liquid storage part 10 can be discharged. It may have a bent part (not shown).
- one open end of the vent portion may be connected to the liquid storage portion 11, and the other open end may be formed of a through hole provided in the main surface of the upper plate-like member P1 in FIG.
- the vent portion is sealed by some method so that the main surface of the upper plate member P1 in FIG. 1 does not have an open end. Also good.
- the injection unit 33 specifically, the liquid storage unit side channel 31 in the injection unit 33 and It is preferable that a porous body that promotes mixing of the liquid to be measured and the liquid from the liquid storage unit 10 is disposed at the junction with the separation element side flow path 32.
- the porous body disposed in the injection part 33 is made of silica monolith.
- Silica monolith can appropriately mix the liquid supplied to the inside thereof. If the shape of the silica monolith is set appropriately, the liquid flowing out to the separation element side flow path 32 is completely mixed with the liquid flowing in from the liquid storage section side flow path 31 and the liquid supplied to the injection section 33. It can be liquid.
- the porous body disposed in the injection part 33 has a function of promoting the separation of the liquid to be measured in cooperation with the separation element (in this embodiment, the separation column CL) accommodated in the separation element accommodation part 20.
- the porous body arranged in the injection part 33 may have a function positioned in the pretreatment in relation to the separation element accommodated in the separation element accommodation part 20, or the porous body arranged in the injection part 33.
- the mass may have a function of a separation element, and a separation element having one function may be configured in cooperation with the separation element (separation column CL) accommodated in the separation element accommodating portion 20. This point will be further described in the third embodiment.
- a rectifying unit 311 is provided that is arranged in the liquid storage unit side flow path 31 and suppresses fluctuations in the flow rate of the liquid flowing in the injection unit 33 so that the separation performance of the separation element (separation column CL) can be improved. Is preferred.
- the specific shape of the rectifying unit 311 is appropriately set according to the application.
- the rectifying unit 311 is constituted by a meandering flow channel.
- one open end 42 is connected to the other open end 22 of the separation element accommodating portion 20, and the other open end 43 is the main surface where the plate-like member P1 is exposed. It is an opening. Accordingly, the liquid supplied from the liquid storage unit 10 can be discharged out of the flow channel structure 1 from the other open end 43 of the discharge flow channel 40.
- At least one of the plurality of plate-like base materials constituting the flow path structure 1 measures the liquid to be measured.
- the discharge flow path 40 is a flow path section (in the thickness direction of the flow path structure 1 made of a bonded body ( It is preferable to include a measurement flow path portion 41.
- the planar shape (the shape when viewed from the thickness direction) of the plate-like members P1 and P2 is a rectangle of several cm ⁇ several cm,
- the cross-sectional area of the road is 0.01 mm 2 or less.
- the discharge flow channel 40 of the flow channel structure 1 according to the present embodiment has a measurement flow channel portion 41.
- the thickness of the flow path structure 1 is several mm as a non-limiting example.
- the measurement light When the measurement light is irradiated in the thickness direction of the flow channel structure 1, the measurement light is irradiated in a direction along the flow direction of the flow channel of the measurement flow channel portion 41, so that the volume of the measurement region is increased and measurement is performed. Sensitivity can be increased.
- FIG. 3 shows a flow path portion 1 ′ of the flow path structure 1 according to the first embodiment.
- FIG. 4 is a perspective view showing a state where two plate-like members constituting the flow channel structure according to one of the modifications of the first embodiment of the present invention are separated.
- 1 A of flow path structures which concern on this modification differ in the structure of the separation element accommodating part 20 compared with the flow path structure 1 which concerns on 1st Embodiment.
- the separation element accommodating portion 20 of the flow channel structure 1A can receive two independent separation elements (in this example, the first separation column CL1 and the second separation column CL2). As described above, the separation element accommodating portion 20 can have various shapes for the purpose of measurement.
- the measurement target liquid is blood and HbA1c is a specific analysis target.
- an anion-modified silica monolith can be used as the first separation column CL1
- a cation-modified silica monolith can be used as the second separation column CL2.
- FIG. 5 is a perspective view of the flow channel structure according to the second embodiment of the present invention.
- FIG. 6 is a perspective view showing a state where four plate-like members constituting the flow channel structure according to the second embodiment of the present invention are separated.
- 7 is a cross-sectional view taken along line AA shown in FIG. 8 is a cross-sectional view taken along line BB shown in FIG.
- the flow path structure 2 according to the second embodiment shown in FIGS. 5 to 8 is different from the flow path structure 1 according to the first embodiment in that the number of plate-like members constituting the flow path structure is the same. Is different. That is, the flow path structure 1 according to the first embodiment includes a bonded body of two plate-like members P1 and P2, and the flow path structure 2 according to the second embodiment includes four plate-like members P1 and P2. , P3, P4.
- the liquid storage unit 10 is defined by grooves provided in the two plate-like members P1 and P2.
- the separation element accommodating portion 20 is defined by grooves provided in the two plate-like members P3 and P4. Therefore, as shown in the sectional views 7 and 8, the entire liquid storage unit 10 is located above the separation element housing unit 20 (on the plate-like member P ⁇ b> 1 side). Therefore, in the state of the measurement unit in which the liquid is appropriately injected into the flow channel structure 2, it is difficult for gas to enter the separation element (column CL in the present embodiment) in the separation element housing 20. For this reason, it is hard to produce the fall of the measurement accuracy originating in a bubble.
- the liquid storage portion 11 of the liquid storage portion 10 has a region overlapping with the separation element storage portion 20 in a plan view.
- Such a structure is not easy to realize with the flow path structure 1 according to the first embodiment formed of a bonded body of two plate-like members P1 and P2. Therefore, the flow path structure 2 according to the second embodiment increases the volume of the liquid storage unit 11 or reduces the area in plan view, compared to the flow path structure 1 according to the first embodiment. Is easy.
- the supply flow path 30 is defined by grooves and through holes provided in the three plate-like members P2, P3, and P4.
- the liquid storage part 11 also has a region overlapping with the supply flow path 30 in plan view. Therefore, the flow path structure 2 according to the second embodiment is easier to complicate the structure of the supply path 30 than the flow path structure 1 according to the first embodiment. Complicating the structure of the supply path 30 often means that the supply path 30 is multifunctional.
- FIG. 9 is a perspective view showing a state where the four plate-like members constituting the flow channel structure according to the third embodiment of the present invention are separated.
- 10 is a cross-sectional view taken along line CC shown in FIG. 11 is a cross-sectional view taken along line DD shown in FIG.
- the flow path structure 3 according to the third embodiment is different from the flow path structure 1 according to the first embodiment in that the number of plate-like members constituting the flow path structure is different and the waste liquid storage section 60 is provided. It is also different in that the injection part 31 has a hollow part 331 that can receive the porous body MN.
- the flow path structure 3 is composed of a bonded body of four plate-like members P1, P2, P3, and P4.
- the open end 43 on the opposite side of the open end 42 connected to the other open end 22 of the separation element accommodating portion 20 in the discharge flow path 40 of the flow path structure 3 is connected to the inflow portion 62 of the waste liquid storage portion 60. Yes.
- the waste liquid storage unit 60 can store the liquid flowing in from the inflow part 62 in the hollow waste liquid storage unit 61.
- the waste liquid storage section 60 includes a waste liquid vent section 63 that allows the inside of the waste liquid storage section 61 to communicate with the outside, and facilitates the flow of liquid into the waste liquid storage section 61.
- the waste liquid vent 63 may be a through hole.
- the opening on the main surface side where the plate-like member P1 is exposed may be completely open, or a film-like body that allows gas to pass but hardly allows liquid to pass therethrough may be provided.
- the waste liquid vent 63 may have a check valve, and the back flow of the liquid in the flow path structure 3 may be suppressed.
- the injection part 31 of the flow path structure 3 has a hollow part 331 that can receive the porous body MN at the junction between the liquid storage part side flow path 31 and the separation element side flow path 32. .
- the hollow portion 331 is defined by the groove portions of the two plate-like members P3 and P4.
- the liquid to be measured injected from the opening 332 of the injection part 31 located on the exposed main surface of the plate-like member P4 diffuses into the porous body MN disposed in the hollow part 331. Then, it flows in from the liquid storage unit side flow path 31 and is mixed with the liquid in the porous body MN, and the obtained mixed liquid flows out to the separation element side flow path 32.
- the material constituting the porous body MN is not limited. As mentioned above, a silica monolith can be mentioned as a preferred example.
- the porous body MN may have a function of promoting the separation of the liquid to be measured in cooperation with the separation element housed in the separation element housing portion 20. As an example of such a configuration, there is a case where the porous body MN disposed in the injection part 33 has a function positioned in the pretreatment in relation to the separation element.
- the porous body MN arranged in the injection part 33 has the function of a separation element, and forms a separation element having one function in cooperation with the separation element housed in the separation element housing part 20 If you want to.
- the first separation column CL1 is arranged in the hollow portion 331, and the second separation column CL2 is arranged in the separation element accommodating portion 20.
- an anion-modified silica monolith is used as the first separation column CL1 disposed in the injection section 33, and the separation is performed.
- a cation-modified silica monolith can be used as the second separation column CL2 accommodated in the element accommodating portion 20.
- FIG. 12 is a perspective view of a flow channel structure according to the fourth embodiment of the present invention.
- FIG. 13 is a perspective view showing a state where two plate-like members constituting the flow channel structure according to the fourth embodiment of the present invention are separated.
- FIG. 14 is a perspective view showing only the flow channel portion of the flow channel structure according to the fourth embodiment of the present invention.
- the flow path structure 4 according to the fourth embodiment shown in FIGS. 12 to 14 is different from the flow path structure 1 according to the first embodiment in that a plurality of liquid storage portions are provided. Accordingly, the configuration of the supply flow path is also different.
- the flow path structure 4 includes a liquid storage section 10 (referred to as “first liquid storage section 10” in the present embodiment) and a liquid storage side flow path 31 (in the present embodiment).
- first liquid storage section 10 referred to as “first liquid storage section 10” in the present embodiment
- second liquid storage section 50 and a second liquid storage side flow path 31 ′ are provided.
- the second liquid storage part 50 includes a liquid storage part 51, an outflow part 52, and a pressure transmission part 53.
- the supply flow path 31 of the flow path structure 2 is disposed between the outflow portions 12 and 52 of the plurality of liquid storage sections (the first liquid storage section 10 and the second liquid storage section 50) and the separation element side flow path 32.
- first liquid storage side flow path 31, second liquid storage side flow path 31 ' a plurality of liquid storage section side channels (first liquid storage side flow path 31, second liquid storage side flow path 31 ') are converged to form a plurality of liquid storage sections (first liquid storage section 10, second liquid storage section).
- a converging part 34 for communicating the liquid part 50) with the separation element side flow path 32 is provided.
- the composition of the liquid supplied to the separation element can be a plurality of types. It becomes. Specifically, at the beginning of the measurement, the liquid (first liquid) stored in the first liquid storage unit 10 is supplied to the separation element (separation column CL), and then, after a predetermined time has elapsed, the second liquid storage unit 50. The liquid (second liquid) contained in the liquid can be supplied to the separation element (separation column CL).
- the first liquid and the second liquid can be mixed by the converging unit 34 and the mixed liquid can be supplied to the separation element (separation column CL).
- the separation element separation column CL.
- liquids having various compositions can be supplied to the separation element (separation column CL).
- the amount of the first liquid and the amount of the second liquid supplied to the converging unit 34 over time the liquid whose concentration continuously changes over time is supplied to the separation element (separation column CL). It is also possible to supply.
- the porous body MN is disposed in the converging part 34 from the viewpoint of more appropriately mixing the liquid from the plurality of liquid storage parts in the converging part 34.
- the porous body MN disposed in the convergent portion 34 is preferably made of silica monolith.
- the porous body MN disposed in the convergent portion 34 is disposed in the separation element housing portion 20 in the same manner as the porous body MN disposed in the hollow portion 331 of the injection portion 33.
- the individual rectifying unit 311 ′ is functionally equivalent to the rectifying unit 311 disposed between the outflow unit 12 and the converging unit 34 of the first liquid storage unit 10. That is, the rectifying unit 311 facilitates appropriate mixing of the liquid from the first liquid storage unit 10 and the liquid from the second liquid storage unit 50 in the converging unit 34.
- FIG. 14 shows a flow path portion 4 ′ of the flow path structure 4 according to the fourth embodiment.
- FIG. 15 is a perspective view showing only the flow channel portion of the flow channel structure according to one modification (first modification) of the fourth embodiment of the present invention.
- FIG. 16 is a perspective view which shows only the flow-path part of the flow-path structure based on another one (2nd modification) of the modification of 4th Embodiment of this invention.
- FIG. 17 is a perspective view showing a state where two plate-like members constituting the flow channel structure according to the second modification of the fourth embodiment of the present invention are separated.
- FIG. 18 is a perspective view showing only the flow channel portion of the flow channel structure according to another modification (third modification) of the fourth embodiment of the present invention.
- FIG. 19 is a perspective view showing a state in which two plate-like members constituting a flow path structure according to another modification (fourth modification) of the fourth embodiment of the present invention are separated.
- FIG. 20 is a perspective view of a flow path structure according to still another modification (fifth modification) of the fourth embodiment of the present invention.
- FIG. 21 is a perspective view showing a state where three plate-like members constituting the flow path structure according to the fifth modification of the fourth embodiment of the present invention are separated.
- FIG. 22 is a perspective view showing only the flow channel portion of the flow channel structure according to the fifth modification of the fourth embodiment of the present invention.
- the flow path structure according to the first modification of the fourth embodiment is an injection.
- the portion 33 includes a hollow portion 331 that can accommodate the porous body MN. Therefore, in the flow path structure according to the first modification of the fourth embodiment, the porous body MN is disposed in each of the converging part 34 and the injection part 33. By having such a configuration, it is possible to increase the degree of mixing of the liquid that flows through the separation element side flow path 32 and is supplied to the separation element. Further, the two porous bodies MN and the separation column CL may be linked to function as one separation element.
- the flow path structure 4B according to the second modification of the fourth embodiment is The injection part 33 and the convergence part 34 are integrated. Since it has such a configuration, the flow path structure 4B shown in FIG. 17 can appropriately mix the first liquid, the second liquid, and the liquid to be measured while having a simple structure. Also in this case, the porous body MN arranged in the converging part 34 and the separation element (separation column CL) arranged in the separation element accommodating part 20 cooperate to form one separation element (a specific example is shown in FIG. 17). The first separation column CL1 and the second separation column CL2 shown in FIG.
- the flow path structure according to the third modification of the fourth embodiment is converged.
- the part 34 is composed of a flow path having a T-shaped branch structure, and no porous body MN is disposed in the convergent part 34. For this reason, the flow path structure according to the third modification of the fourth embodiment has a simplified structure.
- two separation elements are arranged in the separation element accommodating portion 20. Yes.
- the two separation elements (first separation column CL1 and second separation column CL2) arranged in the separation element accommodating unit 20 and the porous body MN arranged in the converging unit 34 cooperate to function as one separation element. You may let them.
- a flow path structure 4E according to a fifth modification of the fourth embodiment shown in FIG. 20 is composed of a bonded body of three plate-like members P1, P2, and P3.
- the plate member P ⁇ b> 2 of the flow path structure 4 ⁇ / b> E according to the fifth modification of the fourth embodiment has a through-hole 101 that defines the liquid storage part of the first liquid storage part 10.
- the part which defines the liquid storage part of the 2nd liquid storage part 50 consists of through-holes 501.
- the volume of the liquid storage part of the first liquid storage part 10 and the liquid storage part of the second liquid storage part 50 is larger in the flow path structure 4E than the flow path structure 4 according to the fourth embodiment.
- the flow path structure 4E contains more first liquid and second liquid than the flow path structure 4. Can do.
- a measurement unit is obtained by storing a liquid (specific examples include a developing solution and a cleaning solution) in the liquid storage unit of the liquid storage unit of the flow channel structure according to the embodiment of the present invention described above.
- This measurement unit can start measurement of the liquid to be measured simply by being set in the apparatus.
- a liquid a developing solution is mentioned as a specific example
- An example of the measurement method of the used liquid to be measured is shown below.
- the liquid in the liquid storage part of the measurement unit is supplied to the supply flow path, and the liquid is filled up to the discharge path.
- the measurement unit may be provided in advance with such a configuration (the liquid in the liquid container is in a state where the liquid is filled from the supply channel to the discharge channel).
- the liquid to be measured is injected into the injection unit of the measurement unit.
- a liquid mixture of the liquid supplied from the liquid storage part and the liquid to be measured is formed.
- an external force is applied to the pressure transmission unit, the developing liquid in the liquid storage unit is supplied into the supply flow path, the mixed liquid formed in the injection unit is supplied into the separation element, and the measurement target element is separated. I do. And the liquid which passed the separation element is measured and the information regarding the composition of the liquid to be measured is obtained.
- the flow path structure in the measurement unit is a bonded body of a plurality of plate members. It is preferable that at least one of the plurality of plate-like substrates has transparency in the wavelength range of the measurement light irradiated for measuring the liquid to be measured. In this case, information on the composition of the measurement target liquid can be obtained by irradiating the measurement light with respect to the liquid containing the measurement target liquid that passes through the separation element and is located in the discharge channel.
- the separation element may be a separation column.
- the pressure (supply pressure) of the liquid supplied to the separation column is 1 MPa or less, which facilitates the configuration of the apparatus (measurement apparatus) in which the measurement unit is incorporated, and promotes downsizing of the measurement apparatus. It is preferable from a viewpoint to do.
- the separation column is made of silica monolith, it is easy to set the supply pressure to 1 MPa or less.
- the separation column is made of an aggregate of resin particles (polymer beads), it is not easy to set the supply pressure to 1 MPa or less.
- the specific configuration of the above-described measurement apparatus is appropriately set according to the configuration of the measurement unit, the type of liquid to be measured, and the like.
- the pressure transmission part may have a linear motion structure, and the pressure in the liquid storage part may be increased by a force applied to the linear motion structure from outside the flow path structure.
- the separation element may be an electrophoresis element.
- the flow channel structure has an electrode portion in the flow channel, and this electrode portion can be electrically connected to the measuring device.
- the flow path structure 4 includes a first liquid storage unit 10 and a second liquid storage unit 50, and a plurality of these liquid storage units (first liquid storage unit 10) according to the unit of the number of times of use.
- the second liquid storage unit 50 holds the necessary liquid (for example, 100 times), but in addition, the same structure may have another tank for storing the liquid for one time. good. By reducing the load for sending the liquid, it is possible to control a minute amount of mixing.
- the flow channel structure according to the present invention is suitable as a flow channel structure incorporated in a measurement apparatus that realizes POCT using HbA1c or the like as a specific measurement target. Since the measurement unit including the flow channel structure according to the present invention can perform measurement without supplying liquid from the outside other than the liquid to be measured, the measurement apparatus can be downsized. .
- Rectification part 311' ... Individual rectification part 32 ... Separation element side flow path 33 ... Injection part MN ; Porous body 331 .... Hollow part 332 ... Opening part 34 ... Converging part 40 ... Discharge flow path 41 ... Measurement flow path part 42, 43 ... Open end 50 ... Second liquid storage part 51 ... Liquid storage part 52 ... Outflow part 53 ... Pressure transmission part 60 ... Waste liquid storage part 61 ... Waste liquid storage part 62 ... Inflow part 63 ... Waste liquid vent part 101,501 ..Through holes
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Biochemistry (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Physics & Mathematics (AREA)
- Hematology (AREA)
- Clinical Laboratory Science (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Molecular Biology (AREA)
- Dispersion Chemistry (AREA)
- Automatic Analysis And Handling Materials Therefor (AREA)
- Micromachines (AREA)
- Treatment Of Liquids With Adsorbents In General (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
流路構造体が組み込まれる装置を小型化したり可搬性を向上させたりすることが可能な流路構造体として、液体を収容可能な液収容部11と流出部12とを有する貯液部10、2つの開放端21,22の間に分離素子を内包する分離素子収容部20、貯液部10の流出部12と分離素子収容部20の一方の開放端21とに接続して貯液部10と分離素子収容部20とを連通させる供給流路30、および分離素子収容部20の他方の開放端22に接続される排出流路40を備える流路構造体1であって、供給流路30は、貯液部10の流出部12に接続する貯液部側流路31と、分離素子収容部20に接続する分離素子側流路32と、貯液部側流路31と分離素子側流路32との間に位置して測定対象液体を供給流路30内に導入可能なインジェクション部33とを備え、貯液部10は流路構造体1に加えられた外力を貯液部10内の圧力変動として伝達可能な圧力伝達部13を備え、貯液部10内に収容された液体を貯液部10内の圧力変動に基づいて流出部12から供給経路30へと流出可能とされる流路構造体1が提供される。
Description
本発明は、POCTに対応しうる測定対象液体の測定装置に使用される流路構造体、当該流路構造体を備える測定ユニット、当該測定ユニットを用いる測定対象液体の測定方法、および上記の測定ユニットを備える測定対象液体の測定装置に関する。
近年、診療・看護現場で医療スタッフが実施する簡易・迅速検査などを意味するポイント・オブ・ケア検査(Point-of-Care Testing,POCT)の普及が進んでいる。
POCTに関し、特許文献1には、多孔性シリカを主成分とする多孔性シリカカラムであって、第1の性質と第1の平均細孔径とを有する第1の多孔性シリカ部と、前記第1の性質とは異なる第2の性質と第1の平均細孔径とは異なる第2の平均細孔径とを有する第2の多孔性シリカ部とを含む、多孔性シリカカラムが記載されている。特許文献1の図3には、上記の多孔性シリカカラムを用いたHPLC(高速液体クロマトグラフィー)装置が示されている。
一方、マイクロ流路チップに関し、特許文献2には、少なくとも第1の基材と第2の基材とを張り合わせてなり、前記第1の基材と前記第2の基材との間に流路及び前記流路と繋がる処理槽が形成された流路チップであって、前記処理槽には平面視三角形の板状の多孔質体が内包されている流路チップが記載されている。かかる流路チップによれば、従来に比べて液漏れやデッドボリュームを小さくできるため、特許文献2に記載される流路チップはPOCTのためのツールとして好適である。
特許文献2に記載されるような流路チップ(流路構造体)を用いて測定対象液体の組成に関する情報を得る測定を行う場合には、流路構造体をその内部に組み込んで、流路構造体内の分離素子に液体を流通させる装置が必要となる。POCTを実現する観点から、そのような装置は小型であることが好ましい。
本発明は、流路構造体が組み込まれた測定装置の小型化に対応しやすい流路構造体を提供することを目的とする。本発明は、当該流路構造体を備える測定ユニット、当該測定ユニットを用いる測定対象液体の測定方法、および上記の測定ユニットを備える測定対象液体の測定装置を提供することも目的とする。
上記課題を解決するために本発明者らが鋭意検討した結果、流路構造体の分離素子内を流通させる液体を流路構造体が収容可能であり、かつ、流路構造体内に収容された液体を、分離素子内に流通させる際に、流路構造体が組み込まれた測定装置がその液体に直接的に接触しないようにすれば、測定装置のドライ化が可能となり、測定装置の小型化に対応しやすいとの新たな知見を得た。
かかる知見に基づき完成された本発明の一態様は、液体を収容可能な液収容部と流出部とを有する貯液部、2つの開放端の間に分離素子を内包する分離素子収容部、前記貯液部の前記流出部と前記分離素子収容部の一方の開放端とに接続して前記貯液部と前記分離素子収容部とを連通させる供給流路、および前記分離素子収容部の他方の開放端に接続される排出流路を備える流路構造体であって、前記供給流路は、前記貯液部の前記流出部に接続する貯液部側流路と、前記分離素子収容部に接続する分離素子側流路と、前記貯液部側流路と前記分離素子側流路との間に位置して測定対象液体を前記供給流路内に導入可能なインジェクション部とを備え、前記貯液部は前記流路構造体に加えられた外力を前記貯液部内の圧力変動として伝達可能な圧力伝達部を備え、前記貯液部内に収容された液体を前記貯液部内の圧力変動に基づいて前記流出部から前記供給経路へと流出可能とされることを特徴とする流路構造体である。
流路構造体が上記のような構成を有することにより、貯液部内に収容された液体は、流路構造体を構成する部材以外に接することなく、分離素子へと流通することが可能である。
流路構造体は複数の板状基材の貼合体からなってもよい。このような構成を有することにより、様々な部分構造を有する流路構造体を効率的に得ることができる。
前記圧力伝達部は、前記貯液部内から前記流路構造体外に連通する管状体であり、前記流路構造体外から前記管状体内に供給される流体の圧力により前記貯液部内の圧力は増加可能であってもよい。このような構成を有することにより、流路構造体が組み込まれる装置が気体供給システムを有していれば、貯液部内の液体を分離素子内に供給することができる。
前記圧力伝達部は、直動構造を有し、前記流路構造体外から前記直動構造に加えられる力により前記貯液部内の圧力は増加可能であってもよい。このような構成を有することにより、流路構造体が組み込まれる装置が直動機構を動かすための駆動システムを有していれば、貯液部内の液体を分離素子内に供給することができる。
前記分離素子の具体的な構成は限定されない。分離素子は、分離カラムであってもよいし、電気泳動素子であってもよい。
前記貯液部の液収容部内に液体を供給することを容易にする観点から、前記液収容部内に液体を注入可能な注入部を有していてもよい。
前記貯液部の液収容部内に液体を供給したり、液収容部からの液体の流出を容易にしたりする観点から、前記貯液部の前記液収容部内の気体を排出可能なベント部を有していてもよい。
インジェクション部から供給される測定対象液体と貯液部からの液体との混合をより適切に行う観点から、前記インジェクション部には、前記測定対象液体と前記貯液部からの液体との混合を促進する多孔質体が配置されることが好ましい。このインジェクション部に配置される多孔質体は、前記分離素子と連携して前記測定対象液体の分離を促進する機能を有していてもよい。
分離素子における分離性能を高める観点から、前記貯液部側流路に配置され、前記インジェクション部内を流れる液体の流量変動を抑制する整流部を備えることが好ましい。
前記貯液部およびこれに接続する前記貯液側流路を複数備え、前記供給流路は、前記複数の貯液部の流出部と前記分離素子側流路との間に配置され、前記貯液部側流路の複数を収斂させて前記複数の貯液部を前記分離素子側流路に連通させる収斂部を備えてもよい。このような構成を有することにより、分離素子に供給する液体の組成を複数種類とすることが可能となる。
複数の貯液部からの液体の混合をより適切に行う観点から、前記収斂部には、前記複数の貯液部からの液体の混合を促進する多孔質体が配置されることが好ましい。この収斂部に配置される多孔質体は、前記分離素子と連携して前記測定対象液体の分離を促進する機能を有することがより好ましい。
複数の貯液部からの液体の混合をより適切に行う観点、分離素子における分離性能を高める観点などから、前記流出部と前記収斂部との間に配置され、前記収斂部内を流れる液体の流量変動を抑制する個別整流部を備えることが好ましい。
構造の簡素化を実現できるため、前記インジェクション部は前記収斂部と一体に設けられることが好ましい。
前記排出流路の前記分離素子収容部に接続される開放端とは反対側の開放端に接続され、前記分離素子を通過した液体を収容する廃液貯留部を備えてもよい。この場合には、流路構造体が組み込まれる測定装置は、分析に要した液体との接触が不要となり、測定装置のドライ化を実現することが可能である。前記廃液貯留部は、内部の気体を排出するベント部を有することが好ましい。
本発明に係る流路構造体が複数の板状基材の貼合体からなる場合において、前記貼合体を構成する複数の板状基材の少なくとも1枚は、前記測定対象液体を測定するために照射される測定光の波長域について透過性を有し、前記排出流路は、前記貼合体の厚さ方向に沿った流路部を備えることが好ましい。このような構成を有することにより、流路の断面積が小さい場合であっても、測定感度を高めることが可能となる。
前記貯液部の前記液収容部における前記貼合体の一方の主面に最近位な部分と前記貼合体の一方の主面との離間距離は、前記分離素子収容部における前記貼合体の一方の主面に最近位な部分と前記貼合体の一方の主面との離間距離よりも小さいことが好ましい。このような構成を有することにより、流路構造体の使用時に分離素子内に気泡が残留しにくくなり、分離性能が低下しにくくなる。
前記板状基材が3枚以上であることが好ましい。このような構成を有することにより、流路構造体における設計自由度を高めることが可能である。
板状基材は3枚以上である場合において、前記貯液部は少なくとも2枚の前記板状基材の除去加工された部分により構成され、前記分離素子収容部は少なくとも2枚の前記板状基材の除去加工された部分により構成され、前記貯液部を構成する前記少なくとも2枚の板状部材は、前記分離素子収容部を構成する前記少なくとも2枚の板状部材と相違することが好ましい。このような構成を有することにより、流路構造体の使用時に分離素子内に気泡が残留しにくくなり、分離性能が低下しにくくなる。
本発明の他の一態様は、上記の本発明に係る流路構造体と、前記流路構造体の前記液収容部内に収容された液体とを備えることを特徴とする測定ユニットである。本発明に係る測定ユニットは、測定に必要な液体をあらかじめ有しているため、流路構造体が組み込まれた測定装置は、測定に必要な液体を流路構造体に供給する必要がない。
本発明の別の一態様は、上記の本発明に係る測定ユニットの前記インジェクション部に測定対象液体を注入し、前記圧力伝達部に外力を加えて、前記液収容部内の液体を前記供給流路内に供給して、前記測定対象液体を含む液体について前記分離素子内を通過させ、前記分離素子を通過した前記測定対象液体を含む液体を測定して、前記測定対象液体の組成に関する情報を得ることを特徴とする測定対象液体の測定方法である。
上記の測定方法において、前記貼合体を構成する複数の板状基材の少なくとも1枚は、前記測定対象液体を測定するために照射される測定光の波長域について透過性を有し、前記分離素子を通過して前記排出流路内に位置する前記測定対象液体を含む液体に対して前記測定光を照射して、前記測定対象液体の組成に関する情報を得てもよい。
上記の測定方法において、前記分離素子は分離カラムであって、前記分離カラムに供給される液体の圧力は1MPa以下であってもよい。本発明に係る流路構造体は小型であっても分析能力を高めることができるため、分離カラムに供給される液体の圧力を低くすることが可能である。
本発明の別の一態様は、上記の本発明に係る測定ユニットを備えることを特徴とする測定対象液体の測定装置である。かかる測定装置は小型化に対応しやすい。
本発明によれば、流路構造体が組み込まれた測定装置に対応しやすい流路構造体が提供される。また、本発明によれば、上記の流路構造体を備える測定ユニット、上記の測定ユニットを用いる測定対象液体の測定方法、および上記の測定ユニットを備える測定対象液体の測定装置も提供される。
以下、本発明の実施形態に係る、流路構造体、測定ユニット、測定対象液体の測定方法、および測定対象液体の測定装置について、図面に基づいて説明する。なお、以下の説明では、同一の部材には同一の符号を付し、一度説明した部材については適宜その説明を省略する。
(第1実施形態)
図1は、本発明の第1実施形態に係る流路構造体の斜視図である。図2は、本発明の第1実施形態に係る流路構造体を構成する2枚の板状部材を分離させた状態の斜視図である。図3は、本発明の第1実施形態に係る流路構造体の流路部分のみを示す斜視図である。
図1は、本発明の第1実施形態に係る流路構造体の斜視図である。図2は、本発明の第1実施形態に係る流路構造体を構成する2枚の板状部材を分離させた状態の斜視図である。図3は、本発明の第1実施形態に係る流路構造体の流路部分のみを示す斜視図である。
図1から図3に示される第1実施形態に係る流路構造体1は、いずれも透明材料からなる2枚の板状部材P1,P2の貼合体である。透明材料として、ガラス、アクリル系樹脂材料、シクロオレフィン系樹脂材料、ポリエステル系樹脂材料などが挙げられる。製造しやすさと透明な波長範囲の広さの観点から、2枚の板状部材P1,P2の少なくとも一方はシクロオレフィン系材料からなることが好ましく、2枚の板状部材P1,P2ともにシクロオレフィン系材料からなることがより好ましい。
第1実施形態に係る流路構造体1は、液体を収容可能な液収容部11と流出部12とを有する貯液部10を備える。流路構造体1は、2つの開放端21,22の間に分離素子(本実施形態では分離カラムCL)を内包する分離素子収容部20を備える。流路構造体1は、貯液部10の流出部12と分離素子収容部20の一方の開放端21とに接続して、貯液部10と分離素子収容部20とを連通させる供給流路30を備える。流路構造体1は、分離素子収容部20の他方の開放端22に接続される排出流路40を備える。
供給流路30は、貯液部10の流出部12に接続する貯液部側流路31と、分離素子収容部20に接続する分離素子側流路32と、貯液部側流路31と分離素子側流路32との間に位置して、測定対象液体を供給流路30内に導入可能なインジェクション部33とを備える。本発明の一実施形態に係る流路構造体1では、貯液部側流路31と分離素子側流路32とインジェクション部33との接続部はT字分岐路により構成されている。
貯液部10は、流路構造体1に加えられた外力を貯液部10内の圧力変動として伝達可能な圧力伝達部13を備える。圧力伝達部13により、貯液部10内に収容された液体を貯液部10内の圧力変動に基づいて流出部12から供給経路30へと流出可能とされる。流路構造体1が組み込まれた測定装置(図示せず)は、圧力伝達部13に外力を加えることにより、貯液部10内に収容された液体を供給経路30へと流出させ、さらにこの液体を、分離素子(分離カラムCL)内に供給することができる。したがって、測定装置は、流路構造体1の内部に収容された液体に接することなく、分離素子(分離カラムCL)を機能させることが可能である。
本実施形態に係る流路構造体1では、圧力伝達部13は、貯液部10内から流路構造体1外に連通する管状体である。そして、圧力伝達部13を構成する管状体内に流路構造体1外から供給される流体の圧力により貯液部10内の圧力は増加可能である。このような構成を有することにより、流路構造体1が組み込まれた測定装置が気体供給システム(例えば圧空システム)を有していれば、分離素子収容部20の内部に配置された分離素子(分離カラムCL)内に、貯液部10の液収容部11内の液体を供給することができる。
本実施形態に係る流路構造体1の使用時において、流路構造体1の液収容部11には展開液が収容され、流路構造体1とこの展開液とを備える測定ユニットとして測定装置に組み込まれる。展開液を液収容部11に供給することを容易にする観点から、液収容部11内に液体を注入可能な注入部(図示せず)を有していてもよい。注入部は、例えば液収容部11に一方の開放端が接続され、他方の開放端が図1において下側の板状部材P2の主面に設けられた貫通孔から構成されていてもよい。本実施形態に係る流路構造体1を使用する際には、何らかの方法により、注入部が封じられて、図1における下側の板状部材P2の主面には開放端を有しないようにすればよい。
貯液部10の液収容部11内に液体を供給したり、液収容部11からの液体の流出を容易にしたりする観点から、貯液部10の前記液収容部11内の気体を排出可能なベント部(図示せず)を有していてもよい。ベント部は、例えば液収容部11に一方の開放端が接続され、他方の開放端が図1において上側の板状部材P1の主面に設けられた貫通孔から構成されていてもよい。本実施形態に係る流路構造体1を使用する際には、何らかの方法により、ベント部が封じられて、図1における上側の板状部材P1の主面には開放端を有しないようにしてもよい。
インジェクション部33から供給される測定対象液体と貯液部10からの液体との混合をより適切に行う観点から、インジェクション部33、具体的には、インジェクション部33における貯液部側流路31と分離素子側流路32との接合部には、測定対象液体と貯液部10からの液体との混合を促進する多孔質体が配置されることが好ましい。
このインジェクション部33に配置される多孔質体はシリカモノリスからなることがより好ましい。シリカモノリスは、その内部に供給された液体を適切に混合することが可能である。シリカモノリスの形状を適切に設定すれば、分離素子側流路32へと流出する液体は、貯液部側流路31側から流入した液体と、インジェクション部33に供給された液体との完全混合液体とすることが可能である。
インジェクション部33に配置される多孔質体は、分離素子収容部20に収容される分離素子(本実施形態では分離カラムCL)と連携して測定対象液体の分離を促進する機能を有することがより好ましい。インジェクション部33に配置される多孔質体は、分離素子収容部20に収容される分離素子との関係で前処理に位置づけられる機能を有していてもよいし、インジェクション部33に配置される多孔質体が分離素子の機能を有し、分離素子収容部20に収容される分離素子(分離カラムCL)と連携して、一の機能を有する分離素子を構成してもよい。この点については第3実施形態においてさらに説明する。
通常、展開液を用いる分離素子(分離カラムCL)は、展開液の流速が適切に制御されていることが分離性能を高める観点から重要である。そこで、分離素子(分離カラムCL)の分離性能を高めることができるように、貯液部側流路31に配置され、インジェクション部33内を流れる液体の流量変動を抑制する整流部311を備えることが好ましい。整流部311の具体的な形状は、用途に応じて適宜設定される。本実施形態に係る流路構造体1では、整流部311は蛇行流路によって構成されている。
流路構造体1の排出流路40は、一方の開放端42が、分離素子収容部20の他方の開放端22に接続され、他方の開放端43は、板状部材P1の露出する主面の開口となっている。したがって、貯液部10から供給された液体は、排出流路40の他方の開放端43から、流路構造体1外に排出されることができる。
流路構造体1を構成する複数の板状基材(本実施形態に係る流路構造体1では2枚の板状基材P1,P2)の少なくとも1枚は、測定対象液体を測定するために照射される測定光の波長域(例えば400nmが挙げられる。)について透過性を有し、排出流路40は、貼合体からなる流路構造体1の厚さ方向に沿った流路部(測定用流路部)41を備えることが好ましい。このような構成を有することにより、流路の断面積が小さい場合であっても、測定感度を高めることが可能となる。
本実施形態に係る流路構造体1は、限定されない例示として、板状部材P1,P2の平面視形状(厚さ方向から見たときの形状)が数cm×数cmの矩形であり、流路の断面積が0.01mm2またはそれ以下である。このため、排出流路40の流れ方向に沿っていない方向(典型的には直交する方向)から測定光を照射しても、測定光が照射される測定測定感度を高めることは容易でない。そこで、本実施形態に係る流路構造体1の排出流路40は測定用流路部41を有している。流路構造体1の厚さは、限定されない例示として数mmである。流路構造体1の厚さ方向に測定光を照射すると、測定光は、測定用流路部41の流路の流れ方向に沿った方向に照射されるため、測定領域の体積を増やし、測定感度を高めることができる。
図3には、第1実施形態に係る流路構造体1の流路部分1’が示されている。
(第1実施形態の変形例)
図4は、本発明の第1実施形態の変形例の一つに係る流路構造体を構成する2枚の板状部材を分離させた状態の斜視図である。本変形例に係る流路構造体1Aは、第1実施形態に係る流路構造体1と対比して、分離素子収容部20の構造が異なっている。流路構造体1Aの分離素子収容部20は、独立した2つの分離素子(本例では第1分離カラムCL1,第2分離カラムCL2)を受容可能とされている。このように、分離素子収容部20は、測定の目的において、様々な形状とすることができる。
図4は、本発明の第1実施形態の変形例の一つに係る流路構造体を構成する2枚の板状部材を分離させた状態の斜視図である。本変形例に係る流路構造体1Aは、第1実施形態に係る流路構造体1と対比して、分離素子収容部20の構造が異なっている。流路構造体1Aの分離素子収容部20は、独立した2つの分離素子(本例では第1分離カラムCL1,第2分離カラムCL2)を受容可能とされている。このように、分離素子収容部20は、測定の目的において、様々な形状とすることができる。
2種類の分離カラムを用いる具体例として、測定対象液体が血液であって、HbA1cを具体的な分析対象とする場合が挙げられる。この場合には、第1分離カラムCL1として陰イオン修飾型のシリカモノリスを用い、第2分離カラムCL2として陽イオン修飾型のシリカモノリスを用いることができる。
(第2実施形態)
図5は、本発明の第2実施形態に係る流路構造体の斜視図である。図6は、本発明の第2実施形態に係る流路構造体を構成する4枚の板状部材が分離した状態の斜視図である。図7は、図5に示すA-A線の断面図である。図8は、図5に示すB-B線の断面図である。
図5は、本発明の第2実施形態に係る流路構造体の斜視図である。図6は、本発明の第2実施形態に係る流路構造体を構成する4枚の板状部材が分離した状態の斜視図である。図7は、図5に示すA-A線の断面図である。図8は、図5に示すB-B線の断面図である。
図5から図8に示される第2実施形態に係る流路構造体2は、第1実施形態に係る流路構造体1と対比して、流路構造体を構成する板状部材の枚数が異なっている。すなわち、第1実施形態に係る流路構造体1は2枚の板状部材P1,P2の貼合体からなり、第2実施形態に係る流路構造体2は4枚の板状部材P1,P2,P3,P4の貼合体からなる。
貯液部10は、2枚の板状部材P1,P2に設けられた溝により画成される。分離素子収容部20は、2枚の板状部材P3,P4に設けられた溝により画成される。したがって、断面図7および8に示されるように、貯液部10は、その全体が分離素子収容部20よりも上側(板状部材P1側)に位置する。したがって、流路構造体2に適切に液体が注入されてなる測定ユニットの状態では、分離素子収容部20内の分離素子(本実施形態ではカラムCL)内に気体が入り込みにくい。このため、気泡に由来する測定精度の低下が生じにくい。
また、断面図7および8から明らかなように、貯液部10の液収容部11は、平面視で分離素子収容部20と重複する領域を有する。このような構造は、2枚の板状部材P1,P2の貼合体からなる第1実施形態に係る流路構造体1で実現することは容易でない。したがって、第2実施形態に係る流路構造体2は、第1実施形態に係る流路構造体1よりも、液収容部11の体積を大きくしたり、平面視の面積を小さくしたりすることが容易である。
なお、第2実施形態に係る流路構造体2は供給流路30が3枚の板状部材P2,P3,P4に設けられた溝および貫通孔により画成されるため、貯液部10の液収容部11が、平面視で供給流路30と重複する領域をも有する。したがって、第2実施形態に係る流路構造体2は、第1実施形態に係る流路構造体1よりも、供給経路30の構造を複雑化することが容易である。供給経路30の構造が複雑化されることは、供給経路30が多機能化されることを意味する場合が多い。
(第3実施形態)
図9は、本発明の第3実施形態に係る流路構造体を構成する4枚の板状部材が分離した状態の斜視図である。図10は、図9に示すC-C線の断面図である。図11は、図9に示すD-D線の断面図である。
図9は、本発明の第3実施形態に係る流路構造体を構成する4枚の板状部材が分離した状態の斜視図である。図10は、図9に示すC-C線の断面図である。図11は、図9に示すD-D線の断面図である。
第3実施形態に係る流路構造体3は、第1実施形態に係る流路構造体1と対比して、流路構造体を構成する板状部材の枚数が異なり、廃液貯留部60を有している点、およびインジェクション部31が多孔質体MNを受容可能な中空部331を有している点でも相違する。
第3実施形態に係る流路構造体3は4枚の板状部材P1,P2,P3,P4の貼合体からなる。流路構造体3の排出流路40における分離素子収容部20の他方の開放端22に接続される開放端42の反対側の開放端43は、廃液貯留部60の流入部62に接続されている。
廃液貯留部60は、中空の廃液収容部61内に、流入部62から流入した液体を貯留することができる。廃液貯留部60は廃液収容部61内と外部とを連通する廃液ベント部63を備え、廃液収容部61内に液体が流入することを容易にしている。廃液ベント部63は貫通孔であってもよい。この場合において、板状部材P1の露出する主面側の開口は、全くの開放状態であってもよいし、気体は通過させるが液体は通過させにくい膜状体が設けられていてもよい。このような構成を備えることにより、廃液収容部61内の液体が流路構造体3に漏れ出す可能性を低減させることができる。廃液ベント部63は逆止弁を有して、流路構造体3内での液体の逆流が抑制されていてもよい。
第3実施形態に係る流路構造体3のインジェクション部31は、貯液部側流路31と分離素子側流路32との接合部に、多孔質体MNを受容可能な中空部331を有する。流路構造体3では、中空部331は、2枚の板状部材P3,P4の溝部により画成されている。板状部材P4の露出する主面に位置するインジェクション部31の開口部332から注入された測定対象液体は、中空部331内に配置された多孔質体MN内に拡散する。そして、貯液部側流路31から流入して多孔質体MN内にある液体と混合され、得られた混合液は、分離素子側流路32へと流出する。
多孔質体MNを構成する材料は限定されない。前述のように、好ましい一例としてシリカモノリスを挙げることができる。多孔質体MNは、分離素子収容部20に収容される分離素子と連携して測定対象液体の分離を促進する機能を有してもよい。かかる構成の一例として、インジェクション部33に配置される多孔質体MNが、分離素子との関係で前処理に位置づけられる機能を有している場合が挙げられる。
他の一例として、インジェクション部33に配置される多孔質体MNが分離素子の機能を有し、分離素子収容部20に収容される分離素子と連携して、一の機能を有する分離素子を構成する場合が挙げられる。この場合の具体例として、図9から図11に示されるように、中空部331内には第1分離カラムCL1が配置され、分離素子収容部20には第2分離カラムCL2が配置されてもよい。この構成において、測定対象液体が血液であって、HbA1cを具体的な分析対象とする場合には、インジェクション部33に配置される第1分離カラムCL1として陰イオン修飾型のシリカモノリスを用い、分離素子収容部20に収容される第2分離カラムCL2として陽イオン修飾型のシリカモノリスを用いることができる。
(第4実施形態)
図12は、本発明の第4実施形態に係る流路構造体の斜視図である。図13は、本発明の第4実施形態に係る流路構造体を構成する2枚の板状部材が分離した状態の斜視図である。図14は、本発明の第4実施形態に係る流路構造体の流路部分のみを示す斜視図である。
図12は、本発明の第4実施形態に係る流路構造体の斜視図である。図13は、本発明の第4実施形態に係る流路構造体を構成する2枚の板状部材が分離した状態の斜視図である。図14は、本発明の第4実施形態に係る流路構造体の流路部分のみを示す斜視図である。
図12から図14に示される第4実施形態に係る流路構造体4は、第1実施形態に係る流路構造体1と対比して、貯液部を複数備える点で相違し、これに伴い、供給流路の構成も相違する。
具体的には、第4実施形態に係る流路構造体4は、貯液部10(本実施形態では「第1貯液部10」という。)および貯液側流路31(本実施形態では「第1貯液側流路31」という。)に加えて、第2貯液部50および第2貯液側流路31’を備える。第2貯液部50は、第1貯液部10と同様に、液収容部51、流出部52および圧力伝達部53を備える。流路構造体2の供給流路31は、複数の貯液部(第1貯液部10、第2貯液部50)の流出部12,52と分離素子側流路32との間に配置され、貯液部側流路の複数(第1貯液側流路31、第2貯液側流路31’)を収斂させて複数の貯液部(第1貯液部10、第2貯液部50)を分離素子側流路32に連通させる収斂部34を備える。
第4実施形態に係る流路構造体4は上記のような構成を有するため、分離素子(本実施形態においても分離カラムCLである。)に供給する液体の組成を複数種類とすることが可能となる。具体的には、測定当初は第1貯液部10に収容されている液体(第1液体)を分離素子(分離カラムCL)に供給し、その後、所定時間経過後に、第2貯液部50に収容されている液体(第2液体)を分離素子(分離カラムCL)に供給することができる。
また、第1液体と第2液体とを、収斂部34で混合して混合液を分離素子(分離カラムCL)に供給することができる。このように収斂部34で混合液を形成する場合には、収斂部34に供給される第1液体の量と第2液体の量とを調整することにより、貯液部を2つ有するだけで、様々な組成の液体を分離素子(分離カラムCL)に供給することができ、好ましい。さらに、収斂部34に供給される第1液体の量と第2液体の量とを経時的に調整することにより、濃度が経時的に連続的に変化する液体を分離素子(分離カラムCL)に供給することも可能である。
収斂部34において複数の貯液部からの液体の混合をより適切に行う観点から、第4実施形態に係る流路構造体4では、収斂部34には多孔質体MNが配置されている。収斂部34に配置される多孔質体MNはシリカモノリスからなることが好ましい。
第3実施形態に係る流路構造体3においてインジェクション部33の中空部331に配置される多孔質体MNと同様に、収斂部34に配置される多孔質体MNは、分離素子収容部20に配置される分離素子(分離カラムCL)と連携して測定対象液体の分離を促進する機能を有していてもよい。
複数の貯液部(第1貯液部10、第2貯液部50)からの液体の混合をより適切に行う観点、分離素子(分離カラムC)における分離性能を高める観点などから、第2貯液部50の流出部52と収斂部34との間には、収斂部34内を流れる液体の流量変動を抑制する個別整流部311’を配置することが好ましい。個別整流部311’は、第1貯液部10の流出部12と収斂部34との間に配置されている整流部311と機能的に等価である。すなわち、整流部311は、収斂部34において第1貯液部10からの液体と第2貯液部50からの液体とが適切に混合することを容易にしている。
図14には、第4実施形態に係る流路構造体4の流路部分4’が示されている。
(第4実施形態の変形例)
図15は、本発明の第4実施形態の変形例の一つ(第1変形例)に係る流路構造体の流路部分のみを示す斜視図である。図16は、本発明の第4実施形態の変形例の他の一つ(第2変形例)に係る流路構造体の流路部分のみを示す斜視図である。図17は、本発明の第4実施形態の第2変形例に係る流路構造体を構成する2枚の板状部材を分離させた状態の斜視図である。図18は、本発明の第4実施形態の変形例の別の一つ(第3変形例)に係る流路構造体の流路部分のみを示す斜視図である。図19は、本発明の第4実施形態の変形例のまた別の一つ(第4変形例)に係る流路構造体を構成する2枚の板状部材が分離した状態の斜視図である。図20は、本発明の第4実施形態の変形例のさらに別の一つ(第5変形例)に係る流路構造体の斜視図である。図21は、本発明の第4実施形態の第5変形例に係る流路構造体を構成する3枚の板状部材を分離させた状態の斜視図である。図22は、本発明の第4実施形態の第5変形例に係る流路構造体の流路部分のみを示す斜視図である。
図15は、本発明の第4実施形態の変形例の一つ(第1変形例)に係る流路構造体の流路部分のみを示す斜視図である。図16は、本発明の第4実施形態の変形例の他の一つ(第2変形例)に係る流路構造体の流路部分のみを示す斜視図である。図17は、本発明の第4実施形態の第2変形例に係る流路構造体を構成する2枚の板状部材を分離させた状態の斜視図である。図18は、本発明の第4実施形態の変形例の別の一つ(第3変形例)に係る流路構造体の流路部分のみを示す斜視図である。図19は、本発明の第4実施形態の変形例のまた別の一つ(第4変形例)に係る流路構造体を構成する2枚の板状部材が分離した状態の斜視図である。図20は、本発明の第4実施形態の変形例のさらに別の一つ(第5変形例)に係る流路構造体の斜視図である。図21は、本発明の第4実施形態の第5変形例に係る流路構造体を構成する3枚の板状部材を分離させた状態の斜視図である。図22は、本発明の第4実施形態の第5変形例に係る流路構造体の流路部分のみを示す斜視図である。
図15に示される第4実施形態の第1変形例に係る流路構造体の流路部分4A’から明らかなように、第4実施形態の第1変形例に係る流路構造体は、インジェクション部33が、多孔質体MNを収容可能な中空部331を備える。したがって、第4実施形態の第1変形例に係る流路構造体では、収斂部34およびインジェクション部33のそれぞれに多孔質体MNが配置されている。このような構成を有することにより、分離素子側流路32を流れ分離素子に供給される液体の混合の程度を高めることが可能となる。また、2つの多孔質体MNおよび分離カラムCLとを連携させて、一つの分離素子として機能させてもよい。
図16に示される第4実施形態の第2変形例に係る流路構造体の流路部分4B’から明らかなように、第4実施形態の第2変形例に係る流路構造体4Bは、インジェクション部33と収斂部34とが一体されている。このような構成を有するため、図17に示される流路構造体4Bは、構造が簡素でありながら、第1液体および第2液体ならびに測定対象液体を適切に混合させることができる。この場合においても、収斂部34に配置される多孔質体MNと分離素子収容部20に配置される分離素子(分離カラムCL)とは、連携して一つの分離素子(具体例が、図17に示した第1分離カラムCL1+第2分離カラムCL2の構成である。)として機能してもよい。
図18に示される第4実施形態の第3変形例に係る流路構造体の流路部分4C’から明らかなように、第4実施形態の第3変形例に係る流路構造体は、収斂部34はT字分岐構造を有する流路からなり、収斂部34には多孔質体MNが配置されていない。このため、第4実施形態の第3変形例に係る流路構造体は簡素化された構造を有する。
図19に示される第4実施形態の第4変形例に係る流路構造体4Dは、分離素子収容部20に2つの分離素子(第1分離カラムCL1、第2分離カラムCL2)が配置されている。分離素子収容部20に配置される2つの分離素子(第1分離カラムCL1、第2分離カラムCL2)と収斂部34に配置される多孔質体MNとを連携させて、一つの分離素子として機能させてもよい。
図20に示される第4実施形態の第5変形例に係る流路構造体4Eは、3枚の板状部材P1,P2,P3の貼合体からなる。図21に示されるように、第4実施形態の第5変形例に係る流路構造体4Eの板状部材P2は、第1貯液部10の液収容部を画成する部分が貫通孔101からなり、第2貯液部50の液収容部を画成する部分が貫通孔501からなる。このため、流路構造体4Eは、第4実施形態に係る流路構造体4よりも、第1貯液部10の液収容部および第2貯液部50の液収容部の体積が大きい。このため、図22に示される流路構造体の流路部分4E’から明らかなように、流路構造体4Eは、流路構造体4よりも第1液体および第2液体を多く収容することができる。
以上説明した本発明の一実施形態に係る流路構造体の貯液部の液収容部内に液体(具体例として展開液や洗浄液が挙げられる。)を収容することにより、測定ユニットが得られる。この測定ユニットは、装置にセットするだけで、測定対象液体の測定を開始することができる。
上記の測定ユニットの具体例として、本発明の一実施形態に係る流路構造体の貯液部の液収容部内に液体(具体例として展開液が挙げられる。)を収容してなる測定ユニットを用いた測定対象液体の測定方法の一例を以下に示す。
まず、圧力伝達部に外力を加えて、測定ユニットの液収容部内の液体を供給流路に供給して、排出経路に至るまで液体で満たす。測定ユニットがかかる構成(液収容部内の液体が供給流路から排出流路に至るまで満たされた状態にあること)をあらかじめ備えていてもよい。次に、測定ユニットのインジェクション部に測定対象液体を注入する。その結果、インジェクション部では、液収容部内から供給された液体と測定対象液体との混合液が形成される。続いて、圧力伝達部に外力を加えて、液収容部内の展開液を供給流路内に供給して、インジェクション部内に形成された混合液を、分離素子内に供給し、測定対象素子の分離を行う。そして、分離素子を通過した液体を測定して、測定対象液体の組成に関する情報を得る。
測定ユニットにおける流路構造体は複数の板状部材の貼合体である。この複数の板状基材の少なくとも1枚は、測定対象液体を測定するために照射される測定光の波長域について透過性を有していることが好ましい。この場合には、分離素子を通過して排出流路内に位置する測定対象液体を含む液体に対して測定光を照射することにより、測定対象液体の組成に関する情報を得ることができる。
分離素子は分離カラムであってもよい。この場合において、分離カラムに供給される液体の圧力(供給圧力)は1MPa以下であることが、測定ユニットが組み込まれる装置(測定装置)の構成を容易にする観点、測定装置の小型化を促進する観点などから好ましい。分離カラムがシリカモノリスからなる場合には、供給圧力を1MPa以下とすることは容易である。分離カラムが樹脂粒子(ポリマービーズ)の集合体からなる場合には、供給圧力を1MPa以下とすることは容易でない。
上記の測定装置の具体的な構成は、測定ユニットの構成、測定対象液体の種類などに応じて適宜設定される。
以上説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。
例えば、圧力伝達部は、直動構造を有し、流路構造体外から直動構造に加えられる力により貯液部内の圧力は増加可能であってもよい。このような構成を有することにより、流路構造体が組み込まれる装置が直動機構を動かすための駆動システムを有していれば、分離素子内に液体を流通させることができる。
分離素子は電気泳動素子であってもよい。この場合には、流路構造体は流路内に電極部を有し、この電極部は測定装置と電気的に接続可能とされる。
第4実施形態に係る流路構造体4は、第1貯液部10、第2貯液部50を備え、使用回数の単位に合わせて、これら複数の貯液部(第1貯液部10、第2貯液部50)が必要な液体(例えば、100回分)をそれぞれ保持しているが、その他に、1回分の液体を貯蔵する別タンクを同じ構造体に備えた構造であっても良い。液体を送る負荷を減少させることで、より微量な混合の制御が可能となる。
本発明に係る流路構造体は、HbA1cなどを具体的な測定対象とするPOCTを実現する測定装置に組み込まれる流路構造体として好適である。本発明に係る流路構造体を備える測定ユニットは、測定対象液体以外には、外部から液体を供給されることなく測定を実施することができるため、測定装置を小型化することが可能である。
1,1A,2,3,4,4B,4D,4E・・・流路構造体
1’,4’,4A’,4B’,4C’,4E’・・・流路構造体の流路部分
P1,P2,P3,P4・・・板状部材
10・・・貯液部(第1貯液部)
11・・・液収容部
12・・・流出部
13・・・圧力伝達部
20・・・分離素子収容部
21,22・・・分離素子収容部20の開放端
CL・・・分離カラム
CL1・・・第1分離カラム
CL2・・・第2分離カラム
30・・・供給流路
31・・・貯液部側流路(第1貯液側流路)
31’ ・・・第2貯液側流路
311・・・整流部
311’ ・・・個別整流部
32・・・分離素子側流路
33・・・インジェクション部
MN・・・多孔質体
331・・・中空部
332・・・開口部
34・・・収斂部
40・・・排出流路
41・・・測定用流路部
42,43・・・開放端
50・・・第2貯液部
51・・・液収容部
52・・・流出部
53・・・圧力伝達部
60・・・廃液貯留部
61・・・廃液収容部
62・・・流入部
63・・・廃液ベント部
101,501・・・貫通孔
1’,4’,4A’,4B’,4C’,4E’・・・流路構造体の流路部分
P1,P2,P3,P4・・・板状部材
10・・・貯液部(第1貯液部)
11・・・液収容部
12・・・流出部
13・・・圧力伝達部
20・・・分離素子収容部
21,22・・・分離素子収容部20の開放端
CL・・・分離カラム
CL1・・・第1分離カラム
CL2・・・第2分離カラム
30・・・供給流路
31・・・貯液部側流路(第1貯液側流路)
31’ ・・・第2貯液側流路
311・・・整流部
311’ ・・・個別整流部
32・・・分離素子側流路
33・・・インジェクション部
MN・・・多孔質体
331・・・中空部
332・・・開口部
34・・・収斂部
40・・・排出流路
41・・・測定用流路部
42,43・・・開放端
50・・・第2貯液部
51・・・液収容部
52・・・流出部
53・・・圧力伝達部
60・・・廃液貯留部
61・・・廃液収容部
62・・・流入部
63・・・廃液ベント部
101,501・・・貫通孔
Claims (27)
- 液体を収容可能な液収容部と流出部とを有する貯液部、2つの開放端の間に分離素子を内包する分離素子収容部、前記貯液部の前記流出部と前記分離素子収容部の一方の開放端とに接続して前記貯液部と前記分離素子収容部とを連通させる供給流路、および前記分離素子収容部の他方の開放端に接続される排出流路を備える流路構造体であって、
前記供給流路は、前記貯液部の前記流出部に接続する貯液部側流路と、前記分離素子収容部に接続する分離素子側流路と、前記貯液部側流路と前記分離素子側流路との間に位置して測定対象液体を前記供給流路内に導入可能なインジェクション部とを備え、
前記貯液部は前記流路構造体に加えられた外力を前記貯液部内の圧力変動として伝達可能な圧力伝達部を備え、前記貯液部内に収容された液体を前記貯液部内の圧力変動に基づいて前記流出部から前記供給経路へと流出可能とされること
を特徴とする流路構造体。 - 複数の板状基材の貼合体からなる、請求項1に記載の流路構造体。
- 前記圧力伝達部は、前記貯液部内から前記流路構造体外に連通する管状体であり、前記流路構造体外から前記管状体内に供給される流体の圧力により前記貯液部内の圧力は増加可能である、請求項1または2に記載の流路構造体。
- 前記圧力伝達部は、直動構造を有し、前記流路構造体外から前記直動構造に加えられる力により前記貯液部内の圧力は増加可能である、請求項1から3のいずれか一項に記載の流路構造体。
- 前記分離素子は、分離カラムである、請求項1から4のいずれか一項に記載の流路構造体。
- 前記分離素子は、電気泳動素子である、請求項1から4のいずれか一項に記載の流路構造体。
- 前記貯液部の前記液収容部内に液体を注入可能な注入部を有する、請求項1から6のいずれか一項に記載の流路構造体。
- 前記貯液部の前記液収容部内の気体を排出可能なベント部を有する、請求項1から7のいずれか一項に記載の流路構造体。
- 前記インジェクション部には、前記測定対象液体と前記貯液部からの液体との混合を促進する多孔質体が配置される、請求項1から8のいずれか一項に記載の流路構造体。
- 前記インジェクション部に配置される多孔質体は、前記分離素子と連携して前記測定対象液体の分離を促進する機能を有する、請求項9に記載の流路構造体。
- 前記貯液部側流路に配置され、前記インジェクション部内を流れる液体の流量変動を抑制する整流部を備える、請求項1から10のいずれか一項に記載の流路構造体。
- 前記貯液部およびこれに接続する前記貯液側流路を複数備え、前記供給流路は、前記複数の貯液部の流出部と前記分離素子側流路との間に配置され、前記貯液部側流路の複数を収斂させて前記複数の貯液部を前記分離素子側流路に連通させる収斂部を備える、請求項1から11のいずれか一項に記載の流路構造体。
- 前記収斂部には、前記複数の貯液部からの液体の混合を促進する多孔質体が配置される、請求項12に記載の流路構造体。
- 前記収斂部に配置される多孔質体は、前記分離素子と連携して前記測定対象液体の分離を促進する機能を有する、請求項13に記載の流路構造体。
- 前記流出部と前記収斂部との間に配置され、前記収斂部内を流れる液体の流量変動を抑制する個別整流部を備える、請求項12から14のいずれか一項に記載の流路構造体。
- 前記インジェクション部は前記収斂部と一体に設けられる、請求項12から15のいずれか一項に記載の流路構造体。
- 前記排出流路の前記分離素子収容部に接続される開放端とは反対側の開放端に接続され、前記分離素子を通過した液体を収容する廃液貯留部を備える、請求項1から16のいずれか一項に記載の流路構造体。
- 前記廃液貯留部は、内部の気体を排出するベント部を有する、請求項17に記載の流路構造体。
- 前記貼合体を構成する複数の板状基材の少なくとも1枚は、前記測定対象液体を測定するために照射される測定光の波長域について透過性を有し、
前記排出流路は、前記貼合体の厚さ方向に沿った流路部を備える、請求項2から18のいずれか一項に記載の流路構造体。 - 前記貯液部の前記液収容部における前記貼合体の一方の主面に最近位な部分と前記貼合体の一方の主面との離間距離は、前記分離素子収容部における前記貼合体の一方の主面に最近位な部分と前記貼合体の一方の主面との離間距離よりも小さい、請求項2から19のいずれか一項に記載の流路構造体。
- 前記板状基材は3枚以上である、請求項2から20のいずれか一項に記載の流路構造体。
- 前記貯液部は少なくとも2枚の前記板状基材の除去加工された部分により構成され、前記分離素子収容部は少なくとも2枚の前記板状基材の除去加工された部分により構成され、
前記貯液部を構成する前記少なくとも2枚の板状部材は、前記分離素子収容部を構成する前記少なくとも2枚の板状部材と相違する、請求項21に記載の流路構造体。 - 請求項2から22に記載される流路構造体と、前記流路構造体の前記液収容部内に収容された液体とを備えること
を特徴とする測定ユニット。 - 請求項23に記載される測定ユニットの前記インジェクション部に測定対象液体を注入し、
前記圧力伝達部に外力を加えて、前記液収容部内の展開液を前記供給流路内に供給して、前記測定対象液体を含む液体について前記分離素子内を通過させ、
前記分離素子を通過した前記測定対象液体を含む液体を測定して、前記測定対象液体の組成に関する情報を得ることを特徴とする測定対象液体の測定方法。 - 前記貼合体を構成する複数の板状基材の少なくとも1枚は、前記測定対象液体を測定するために照射される測定光の波長域について透過性を有し、
前記分離素子を通過して前記排出流路内に位置する前記測定対象液体を含む液体に対して前記測定光を照射して、前記測定対象液体の組成に関する情報を得る、請求項24に記載の測定対象液体の測定方法。 - 前記分離素子は分離カラムであって、前記分離カラムに供給される液体の圧力は1MPa以下である、請求項24または25に記載の測定対象液体の測定方法。
- 請求項23に記載される測定ユニットを備えることを特徴とする測定対象液体の測定装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201680045773.9A CN107923926A (zh) | 2015-08-05 | 2016-05-27 | 流路结构体、测量单元、测量对象液体的测量方法以及测量对象液体的测量装置 |
EP16832584.3A EP3336556A4 (en) | 2015-08-05 | 2016-05-27 | Flow path structure, measurement unit, method for measuring liquid to be measured, and device for measuring liquid to be measured |
US15/884,499 US20180149582A1 (en) | 2015-08-05 | 2018-01-31 | Channel structure, measurement unit, method of measuring liquid to be measured, and measurement device for liquid to be measured |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015155537A JP6619577B2 (ja) | 2015-08-05 | 2015-08-05 | 流路構造体、測定ユニット、測定対象液体の測定方法、および測定対象液体の測定装置 |
JP2015-155537 | 2015-08-05 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/884,499 Continuation US20180149582A1 (en) | 2015-08-05 | 2018-01-31 | Channel structure, measurement unit, method of measuring liquid to be measured, and measurement device for liquid to be measured |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017022305A1 true WO2017022305A1 (ja) | 2017-02-09 |
Family
ID=57942777
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/065669 WO2017022305A1 (ja) | 2015-08-05 | 2016-05-27 | 流路構造体、測定ユニット、測定対象液体の測定方法、および測定対象液体の測定装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20180149582A1 (ja) |
EP (1) | EP3336556A4 (ja) |
JP (1) | JP6619577B2 (ja) |
CN (1) | CN107923926A (ja) |
WO (1) | WO2017022305A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114270287A (zh) * | 2019-08-30 | 2022-04-01 | 京瓷株式会社 | 循环装置 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220146400A1 (en) * | 2019-02-27 | 2022-05-12 | Kyocera Corporation | Particle separating and measuring device and particle separating and measuring apparatus |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11337520A (ja) * | 1998-05-22 | 1999-12-10 | Yokogawa Electric Corp | 電気泳動装置 |
JP2006189401A (ja) * | 2005-01-07 | 2006-07-20 | Sekisui Chem Co Ltd | 測定用デバイス、ヘモグロビン類の測定用デバイス及びヘモグロビン類の測定方法 |
WO2006080186A1 (ja) * | 2005-01-07 | 2006-08-03 | Sekisui Chemical Co., Ltd. | カートリッジを使用する検出装置 |
JP2007083191A (ja) * | 2005-09-22 | 2007-04-05 | Konica Minolta Medical & Graphic Inc | マイクロリアクタ |
JP2007255912A (ja) * | 2006-03-20 | 2007-10-04 | Nokodai Tlo Kk | 糖化タンパク質分離・検出用デバイス |
JP2008043843A (ja) * | 2006-08-11 | 2008-02-28 | Yokogawa Electric Corp | 化学処理用カートリッジおよびその使用方法 |
WO2009035061A1 (ja) * | 2007-09-10 | 2009-03-19 | Nec Corporation | マイクロチップの試料処理装置 |
JP2014038018A (ja) * | 2012-08-14 | 2014-02-27 | Alps Electric Co Ltd | 流路チップ |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA3006347A1 (en) * | 2007-07-23 | 2009-01-29 | Clondiag Gmbh | Methods and devices for determining values indicative of the presence and/or amount of nucleic acids |
US10207269B2 (en) * | 2013-09-18 | 2019-02-19 | California Institute Of Technology | System and method for movement and timing control |
-
2015
- 2015-08-05 JP JP2015155537A patent/JP6619577B2/ja active Active
-
2016
- 2016-05-27 WO PCT/JP2016/065669 patent/WO2017022305A1/ja active Application Filing
- 2016-05-27 CN CN201680045773.9A patent/CN107923926A/zh active Pending
- 2016-05-27 EP EP16832584.3A patent/EP3336556A4/en not_active Withdrawn
-
2018
- 2018-01-31 US US15/884,499 patent/US20180149582A1/en not_active Abandoned
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11337520A (ja) * | 1998-05-22 | 1999-12-10 | Yokogawa Electric Corp | 電気泳動装置 |
JP2006189401A (ja) * | 2005-01-07 | 2006-07-20 | Sekisui Chem Co Ltd | 測定用デバイス、ヘモグロビン類の測定用デバイス及びヘモグロビン類の測定方法 |
WO2006080186A1 (ja) * | 2005-01-07 | 2006-08-03 | Sekisui Chemical Co., Ltd. | カートリッジを使用する検出装置 |
JP2007083191A (ja) * | 2005-09-22 | 2007-04-05 | Konica Minolta Medical & Graphic Inc | マイクロリアクタ |
JP2007255912A (ja) * | 2006-03-20 | 2007-10-04 | Nokodai Tlo Kk | 糖化タンパク質分離・検出用デバイス |
JP2008043843A (ja) * | 2006-08-11 | 2008-02-28 | Yokogawa Electric Corp | 化学処理用カートリッジおよびその使用方法 |
WO2009035061A1 (ja) * | 2007-09-10 | 2009-03-19 | Nec Corporation | マイクロチップの試料処理装置 |
JP2014038018A (ja) * | 2012-08-14 | 2014-02-27 | Alps Electric Co Ltd | 流路チップ |
Non-Patent Citations (1)
Title |
---|
See also references of EP3336556A4 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114270287A (zh) * | 2019-08-30 | 2022-04-01 | 京瓷株式会社 | 循环装置 |
Also Published As
Publication number | Publication date |
---|---|
EP3336556A4 (en) | 2019-01-02 |
EP3336556A1 (en) | 2018-06-20 |
CN107923926A (zh) | 2018-04-17 |
JP2017032513A (ja) | 2017-02-09 |
JP6619577B2 (ja) | 2019-12-11 |
US20180149582A1 (en) | 2018-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4632300B2 (ja) | 送液装置 | |
US8124026B2 (en) | Lateral flow diagnostic devices with instrument controlled fluidics | |
US7470403B2 (en) | Microfluidic platform and method of generating a gradient therein | |
Rhee et al. | Microfluidic assembly blocks | |
JP4963282B2 (ja) | マイクロチップおよびマイクロチップの使用方法 | |
JP5902426B2 (ja) | 送液装置及び送液方法 | |
CN102782115A (zh) | 微流控分析平台 | |
JP2007285792A (ja) | マイクロチップ | |
JP2003222633A (ja) | マイクロチップ | |
JP2007101240A (ja) | 秤量チップ及びそれを用いた検査方法 | |
WO2017022305A1 (ja) | 流路構造体、測定ユニット、測定対象液体の測定方法、および測定対象液体の測定装置 | |
JP2007327931A (ja) | マイクロリアクター及びマイクロリアクターシステム、並びにその送液方法 | |
JP4228003B2 (ja) | 交差チャンネルを利用した流体混合装置 | |
JP7164505B2 (ja) | マイクロ流路チップ | |
EP2847597B1 (en) | Functionalized microfluidic device and method | |
JP7036126B2 (ja) | 流体デバイスおよび流路供給システム | |
JP2019203811A (ja) | 検査用具及び試薬の混合方法。 | |
KR20110128658A (ko) | 세포칩 | |
WO2019116422A1 (ja) | 流体デバイス | |
JP4344859B2 (ja) | 液体供給モジュール及びこれを用いた分析装置 | |
TWM598730U (zh) | 混合晶片 | |
KR101750041B1 (ko) | 마이크로플루이딕스칩 | |
JP2007047149A (ja) | 流体取扱装置 | |
TW581857B (en) | System for detection of a component in a liquid | |
JP2005106740A (ja) | 試料注入方法及びマイクロデバイス |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16832584 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2016832584 Country of ref document: EP |