WO2017018350A1 - Powder coating apparatus and method for using same - Google Patents

Powder coating apparatus and method for using same Download PDF

Info

Publication number
WO2017018350A1
WO2017018350A1 PCT/JP2016/071584 JP2016071584W WO2017018350A1 WO 2017018350 A1 WO2017018350 A1 WO 2017018350A1 JP 2016071584 W JP2016071584 W JP 2016071584W WO 2017018350 A1 WO2017018350 A1 WO 2017018350A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
barrel
target
angle
coating apparatus
Prior art date
Application number
PCT/JP2016/071584
Other languages
French (fr)
Japanese (ja)
Inventor
丸子 智弘
地主 啓一郎
あみ子 伊藤
Original Assignee
株式会社フルヤ金属
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フルヤ金属 filed Critical 株式会社フルヤ金属
Publication of WO2017018350A1 publication Critical patent/WO2017018350A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering

Definitions

  • the present disclosure relates to a powder coating apparatus for coating the surface of each particle of powder with a thin film, and particularly to a mechanism for stirring and leveling the powder.
  • a thin film may be coated on the surface of the particle.
  • a sputtering method as a technique for coating by a dry method, and various types of coating apparatuses for powder using the sputtering method have been proposed (see, for example, Patent Documents 1 to 4).
  • a sputtering apparatus including a rotating barrel whose inside is maintained in a vacuum, a target unit disposed in the rotating barrel, and a DC sputtering power source connected to the target unit and capable of generating plasma.
  • a technique for sputtering platinum onto carbon powder using a tantalum is disclosed.
  • coating is performed by sputtering the target while rotating the rotating barrel.
  • the stirring blade is arrange
  • Patent Document 2 discloses a technique for coating various metals on the surface of a magnetic powder using a sputtering apparatus having a rotating barrel. Also in this document, the stirring blade is disposed in the barrel and swings within an angle range of ⁇ ⁇ around the rotation axis of the rotating barrel to prevent the aggregation of the magnetic powder.
  • Patent Document 3 discloses a powder coating apparatus that forms a uniform coating layer on the surface of powder particles while stirring the raw material powder charged in the rotating drum and scraping off the raw material powder adhering to the inner wall of the drum.
  • the powder particles in the upper layer portion and the lower layer portion forming the fluidized bed are mixed with each other by the stirring plate, and the individual powder particles are equally subjected to sputtering.
  • the scraper scrapes off the powder that adheres to the drum inner surface and tries to rotate around the drum body, and returns the powder particles to the fluidized bed. Further, the wiper returns the powder particles dropped and deposited on the upper surface of the casing to the fluidized bed.
  • Patent Document 4 discloses a powder coating apparatus in which a rotating cylindrical container is arranged in a vacuum container because the structure becomes complicated when the vacuum container itself is rotated.
  • the stirring bar arranged with a clearance between the drum and the drum is rotated or swung by an independent drive unit. Further, a stirring member that moves in conjunction with the stirring bar and abuts against the drum is provided.
  • JP 2012-182067 A Japanese Patent No. 4183098 JP-A-5-271922 JP 2014-159623 A
  • the substrate When forming a film on a substrate using a sputtering apparatus, the substrate is arranged in parallel to the target. According to this, in the powder coating apparatus, it is ideal that the surface of the powder, that is, the surface formed by the aggregate of fine particles is flat along the inner wall surface of the cylindrical drum.
  • the direction in which the sputtered particles vary depends on the type of target, so that the powder surface is required to be even.
  • the present disclosure is a powder coating apparatus that solves the problems that could not be avoided when using the powder coating apparatus described in Patent Documents 1 to 4, that is, the surface of the powder is leveled during film formation.
  • An object of the present invention is to provide a device having a mechanism.
  • the powder coating apparatus includes a barrel, an exhaust unit that evacuates the barrel, and a sputtering apparatus that is installed in the barrel and has at least one target.
  • the powder coating apparatus includes: Further, among the inner side walls of the barrel, disposed in contact with the side wall of the portion that moves upward due to the rotation of the barrel, a powder rise restraining part that defines an upper limit position where the powder creeps, and the powder rise restraint Positioned below the part, spaced from the inner side wall of the barrel, and swings about the main axis
  • the powder leveling component that moves, and the powder rise suppression component is connected to a portion of the sputtering apparatus that does not correspond to either the target itself or a portion that is electrically connected to the target. Or by being connected to a modularized part with the sputtering apparatus.
  • the sputtering apparatus is capable of adjusting the angle by rotating around the main axis.
  • the powder rise suppressing component moves in conjunction with the tilting movement of the sputtering apparatus, so that the relative positional relationship between the target and the powder rise suppressing component can be kept constant.
  • the powder rise restraining part, the smoothing part, and the target in a cross section that crosses the main axis vertically and passes through the powder rise restraining part, the smoothing part, and the target are expressed in polar coordinates, the position of the main axis is the origin O of the polar coordinates, the vertical downward line passing through the main axis is a start line with an angle of 0 °, and the rotation direction of the barrel is the start line Is a direction that takes a positive angle, ⁇ is an angle at which the powder rise suppressing component is fixed, and the number of targets on the cross section is 1, or a normal line of the target surface or an extension line thereof And the angle 1 of the line intersecting the main axis is ⁇ , or the normal of the target surface located in the center when the number of targets on the cross section is an odd number (excluding 1) Is an extension line thereof, and when the angle 2 of the line intersecting the main axis is ⁇ , or when the number of
  • the powder rise suppressing component is preferably a brush or a spatula.
  • a brush or spatula can efficiently scrape powder from the barrel.
  • the leveling part is preferably a bar or a plate.
  • the bar or plate can easily level the powder in a mountain shape.
  • the leveling part when the leveling part swings in a direction opposite to the rotation direction of the barrel, the lowest side position of the inner side wall of the barrel or the position beyond the position. It is preferable to wrap.
  • the leveling part can level the whole powder uniformly.
  • the powder coating apparatus it is preferable to have a first angle adjustment mechanism that can change the inclination ⁇ of the target and can fix the inclination at any angle in the angular range of Formula 3.
  • the position of the powder rise suppressing component can be moved in conjunction with the tilted angle by the same angle. it can.
  • the powder rise suppressing component when the number of targets on the cross section is 1, the powder rise suppressing component is above the intersection of the line extending the target surface and the inner side wall of the barrel.
  • the number of targets on the cross section is an odd number (excluding 1), a line extending the target surface located in the center and the inner side wall of the barrel
  • the number of targets on the cross section is an even number, the line connecting the opposite ends of the two target surfaces located at the center and the above It is preferable to be fixed in a state of being arranged above the intersection with the inner side wall of the barrel. It is possible to prevent the powder rise suppressing component from being contaminated by sputtering.
  • the powder coating apparatus includes a first angle adjustment mechanism that changes the inclination ⁇ of the target and can fix the inclination at any angle in the angle range of Formula 3,
  • the powder rise suppressing component can be fixed at a position above the intersection of the line extending the target surface and the inner side wall of the barrel with variable position.
  • the powder rise suppression component is a line extending the target surface located in the center;
  • a second angle adjusting mechanism capable of fixing the powder rising restraint component with a variable position at a position above the intersection of the inner side wall of the barrel and the line connecting the opposing ends of the two target surfaces located at the center. It is preferable to have. Independent of the inclination of the target, the fixing position of the powder rise suppressing component can be adjusted, and contamination of the powder rise suppressing component by sputtering can be suppressed.
  • the method of using the powder coating apparatus according to the present invention is a method of using the powder coating apparatus according to the present invention, wherein the amount of powder to be put into the barrel is such that the leveling part swings in the rotational direction of the barrel.
  • the amount of powder that is sometimes passed through the interior of the powder pile and smoothed when the peristaltic motion is opposite to the direction of rotation of the barrel.
  • the powder coating apparatus of the present disclosure can prevent the powder from rotating together with the barrel due to the rotation of the barrel. At this time, since the upper limit position of the powder rush is determined, the sputtered particles can be efficiently applied to the powder. Further, the powder tends to have a mountain shape due to the rotation of the barrel. By smoothing the mountain, the sputter particles can be easily applied to the entire powder.
  • FIG. 1 shows another example of the cross-sectional shape of a leveling part
  • (a) is an example when a leveling part is plate shape
  • (b) is the 1st when a leveling part is a cross-sectional semicircle shape.
  • (c) shows a second example when the leveling part has a semicircular cross section. It is the schematic for demonstrating the motion of the powder when a leveling part moves to the rotation direction R of a barrel. It is the schematic for demonstrating the motion of the powder when a leveling part moves to the direction opposite to the rotation direction R of a barrel.
  • the powder coating apparatus is a rotating barrel type sputtering apparatus that can coat a whole particle surface of a powder.
  • the apparatuses described in the cited documents 1 to 4 are unitary sputtering apparatuses.
  • a mechanism for leveling the surface of the powder can be installed in either a multi-element or single-unit sputtering apparatus.
  • FIG. 1 is an overall configuration diagram of a powder coating apparatus according to the present embodiment.
  • FIG. 2 is a schematic view of the AA cross section of the target unit, barrel, powder rise restraining part and leveling part.
  • FIG. 3 is a schematic perspective view of the target unit and the barrel.
  • a powder coating apparatus 100 according to this embodiment includes a barrel 3, an exhaust unit 4 that evacuates the inside of the barrel 3, and a sputtering apparatus that is installed in the barrel 3 and has at least one target 6.
  • the barrel 3 has the main axis C oriented in the horizontal direction and rotates around the main axis C, and the sputtering apparatus 2 applies a coating film on the surface of the powder 7 put in the barrel 3.
  • the sputtering apparatus 2 attaches two or more targets 6 (6a, 6b, 6c, three in FIG. 2), so that the fixing unit 10 (10a, 10b, 10c).
  • the sputtering apparatus 2 has the spindle 6a, 6b, 6c They are arranged in parallel with each other at the same level in the direction of C.
  • the powder coating apparatus 100 is a rotary barrel type multi-source sputtering apparatus that can coat a whole powder particle surface.
  • This apparatus can simultaneously sputter two or more targets, and each target is individually connected to a power source 1.
  • Each target is preferably connected to one power source. For example, if two or more types of targets are mounted, a plurality of materials can be sputtered simultaneously. Further, since the output of each target can be adjusted individually, it is possible to perform sputtering at an arbitrary ratio.
  • the barrel 3 is supported by a drive roll 5a and a driven roll 5b.
  • the drive roll 5a can receive power from the drive motor 5 and rotate the main shaft C of the barrel 3 as a horizontal axis.
  • the barrel 3 is provided with a barrel main body 3d having an open upper end of the cylinder and a lid 3e that closes the barrel main body 3d, and is sealed with an O-ring (not shown). Powder 7 is put into the barrel 3 from the opening of the barrel body 3d. Further, the barrel 3 may have a vertically or horizontally divided structure instead of having the barrel body 3d and the lid 3e. In this case, the powder 7 is charged at the time of division.
  • Barrel 3 also serves as a vacuum vessel.
  • the exhaust means 4 for evacuating exhausts the gas in the internal space of the barrel 3.
  • the exhaust means 4 is airtightly held by a vacuum seal type bearing 4a.
  • the sputtering apparatus 2 installed in the barrel 3 is connected to a sputtering power source 1 installed outside the barrel 3.
  • the sputtering power source 1 may be either a direct current power source or a high frequency power source.
  • the sputtering apparatus 2 is inserted into the barrel 3 by an arm 1b that is airtightly held by a vacuum seal type bearing 1a. In the airtightly held arm 1b, a target cooling water passage inlet 1c, a target cooling water passage outlet 1d, and an argon gas inlet 1e are incorporated.
  • Two or more sputtering apparatuses 2 are installed in the barrel 3 (in FIG. 2, three sputtering apparatuses 2a, 2b, and 2c are installed).
  • the above targets 6 can be installed (in FIG. 2, three targets 6a, 6b, 6c are installed).
  • the sputtering apparatus 2 has one fixing portion 10 (10a, 10b, 10c) per target. That is, in FIG. 2, the three sputtering apparatuses 2a, 2b, and 2c have the fixing portions 10a, 10b, and 10c, respectively.
  • the sputtering power sources 1 are separately connected to the sputtering apparatuses 2a, 2b, and 2c, and the outputs are controlled separately. Thereby, the sputtering apparatus 2 becomes a multi-source sputtering apparatus.
  • the heel fixing portion 10 is a backing plate that holds the target 6.
  • a target 6 is attached to the front side of the backing plate by a mounting bracket.
  • a shield cover serving as a counter electrode for generating plasma is attached at a predetermined distance from the backing plate.
  • a plurality of recesses for accommodating magnets are formed on the back side of the backing plate.
  • a cooling water passage connected to the target cooling water passage inlet 1c and the target cooling water passage outlet 1d is disposed on the back side of the backing plate.
  • the targets 6a, 6b, 6c are arranged in parallel with each other at the same level position with respect to the direction of the main axis C, as shown in FIG.
  • the positions of the centers of gravity of the targets 6a, 6b, and 6c in the direction of the main axis C are aligned with each other.
  • the sizes of the targets 6a, 6b, and 6c in the direction of the main axis C are the same, it is preferable that the positions of both ends of each target in the direction of the main axis C are aligned with each other.
  • each target 6a, 6b, 6c in the direction of the main axis C is preferably slightly shorter than the length of the barrel 3 in the axial direction in order to avoid interference.
  • the powder is difficult to mix in the direction of the main axis C, so that only the sputtered particles that have jumped out from one target hit the film.
  • the composition unevenness occurs. That is, since a plurality of types of sputtered particles jumping out from a plurality of targets do not reach the surface of the powder particles at the same time, a uniform alloy film, double oxide film, double nitride film, or double carbide film cannot be formed. If each target is arranged in order along the direction of the main axis C and the orientation of the target surface is adjusted so that the target particles protruding from each target gather in a predetermined area, the above problem can be solved. It is limited to a part of the barrel side wall in the C direction. As a result, the amount of powder that can be processed per volume of the barrel is small, and thus the productivity is poor. Even if the same type of target is used, productivity is similarly poor.
  • FIG. 4 is a schematic diagram for explaining the relationship between the direction of the target and the position of the powder.
  • each of the targets 6 a, 6 b, 6 c has a target surface parallel to the normal lines ha, hb, hc of the target surface to the inner side wall 3 a of the barrel 3.
  • the projections are directed in an overlapping direction before reaching the inner side wall 3a. Since the elements (sputtered particles) jumping out from the targets 6a, 6b, and 6c reach the powder 7 put in the barrel 3 in a more mixed state, the elements are uniformly taken in from the targets.
  • a thin film can be deposited on the surface of the powder particles.
  • the position before reaching the inner side wall 3a is preferably the surface of the powder 7.
  • the radius of the barrel 3 the distance between the main axis C and the inner side wall 3a
  • the inner side wall 3a is separated from the inner side wall 3a.
  • the range is from 0.05r to 0.15r toward the main axis C.
  • the targets 6a, 6b, and 6c are more preferably oriented so that the normal passing through the center of gravity of the target surface overlaps on the inner side wall 3a or the surface of the particles of the powder 7.
  • the targets 6a, 6b, and 6c have different compositions. Composition unevenness can be reduced when an alloy film, a double oxide film, a double nitride film, a double carbide film, or the like is formed.
  • an alloy film there is an example in which a Pt—Au alloy film is formed on the surface of a glass bead using a platinum target and a gold target.
  • the composition of each target 6a, 6b, 6c is made the same, the same effect as increasing the film-forming amount within a predetermined time can be obtained. That is, the film formation rate can be increased.
  • compositions of the targets 6a, 6b, and 6c can be selected as appropriate.
  • an oxide target such as SiO 2 or TiO 2
  • the deposition rate is slow, so two or three are sputtered simultaneously. As a result, the deposition rate can be increased.
  • each target (6a, 6b, 6c) a (SiO 2, SiO 2, SiO 2), to such (TiO 2, TiO 2, TiO 2).
  • a composite film is formed using a target with a high deposition rate (for example, metal) and a target with a low deposition rate (for example, an oxide), the target with a low deposition rate is relatively increased.
  • the number of targets with a low film speed is set to be larger than the number of targets with a high film formation speed. For example, when there are three targets, two targets with a low film formation rate are set, and one target with a high film formation rate is set. For example, each target (6a, 6b, 6c) is set to (Pt, SiO 2 , SiO 2 ).
  • FIG. 5 is a schematic diagram for explaining the movement of the target unit by the first angle adjustment mechanism.
  • each fixing portion 10 a, 10 b, 10 c is attached to the target unit 2 ⁇ / b> U in order to fix the relative orientation relationship of each attached target.
  • the target unit 2U is mounted so as to be rotatable about the main axis C, and the first angle adjusting mechanism 8 of the target unit 2U is further provided.
  • the barrel 3 is rotated, the powder 7 rises.
  • the angle of the target unit 2U can be adjusted in accordance with the degree of the rise.
  • the target unit 2U has, for example, a configuration in which the fixing units 10a, 10b, and 10c are fixed by fixing the sputtering devices 2a, 2b, and 2c to one housing, or each sputtering device 2a, There is a form in which the fixing portions 10a, 10b, and 10c are fixed by fixing the arms 2b and 2c with the arm 12.
  • the first angle adjusting mechanism 8 adjusts the angle of each target 6a, 6b, 6c attached to each fixing portion 10a, 10b, 10c while keeping the distance from the main axis C constant. Even if the powder 7 moves up with the rotation of the barrel 3 by the first angle adjusting mechanism 8, the relative positional relationship between the targets 6 a, 6 b, 6 c and the powder 7 can be kept constant.
  • FIG. 6 is a schematic diagram for explaining the movement of stirring and leveling the powder in the powder coating apparatus according to the present embodiment.
  • the leveling parts move in the order of (a), (b), (c), (d), and (e) in chronological order, and return to (a) again to be repeated.
  • the inner wall 3 a of the barrel 3 is disposed in contact with the side wall of the portion that moves upward by the rotation of the barrel 3.
  • the powder rise restraining part 13 for determining the upper limit position where the powder 7 approaches, and the lower side of the powder rise restraining part 13 are arranged at intervals on the inner side wall 3a of the barrel 3 and swings with the main shaft C as the center of rotation. And a leveling part 9 of the powder 7 that moves.
  • the side wall of the inner side wall 3a of the barrel 3 that moves upward by the rotation of the barrel 3 is the right half of the circle formed by the side wall of the barrel 3, as illustrated in FIG.
  • FIG. 6 shows a case where the leveling part 9 is a round bar type with a circular cross section.
  • the powder rise suppressing component 13 is preferably a brush or a spatula.
  • the brush or spatula can scrape off the powder 7 from the barrel 3 efficiently.
  • the powder rise suppression component 13 is fixed to, for example, a portion that supports the sputtering apparatus 2 of FIG. By adopting such a structure, it is possible to simplify the attachment structure of the powder rise suppressing component.
  • a part modularized with the sputtering apparatus (part fixed and integrated with the sputtering apparatus) can be a part supporting the sputtering apparatus 2.
  • the part which supports the sputtering apparatus 2 is a place where the grounding countermeasure is taken.
  • the component modularized with the sputtering apparatus is, for example, the arm 12 of the target unit 2U shown in FIG.
  • the sputtering apparatus and modularized parts are the housing.
  • the powder rise suppressing component 13 is a part that does not correspond to either the target itself or the part that is electrically connected to the target in the sputtering apparatus, For example, it may be fixed by being connected to a place where grounding measures are taken, such as a case of the sputtering apparatus main body.
  • the powder rise suppressing component 13 may be fixed by being connected to a portion that does not correspond to either the sputtering apparatus 2 c, particularly the target itself or a portion that is electrically connected to the target. By adopting such a structure, it is possible to simplify the attachment structure of the powder rise suppressing component.
  • the powder rise suppressing component 13 may include a support bar. When providing the support rod, one end of the support rod is connected to the main body of the powder rise restraining component 13, and the other end of the support rod does not correspond to either the target itself or the portion of the sputtering apparatus that is electrically connected to the target. It is connected to a part or a modularized part with a sputtering apparatus.
  • the length and shape of the support rod are determined so as not to pass through the space between the target surface and the inner wall surface of the barrel.
  • the powder rise restraint component 13 is fixed to a portion that does not move together with the barrel 3 rotating, so that the powder rise restraint component 13 causes the powder 7 to rotate in the same manner as the barrel 3 due to the rotation of the barrel 3. Can be prevented.
  • the position of the powder rise restraining component 13 is fixed at least during film formation, the position becomes the upper limit position for the powder 7 to rise.
  • the sputtered particles can be irradiated onto the powder 7 more efficiently. That is, since the sputtered particles can be applied in a state where the surge of the powder 7 is retained by the powder rise suppressing component 13, the irradiation efficiency of the sputtered particles can be increased.
  • the leveling part 9 is preferably a bar or a plate.
  • the cross-sectional shape may be a circle, a semi-circle, an ellipse, a semi-ellipse, or a polygon such as a triangle or a rectangle.
  • the leveling part 9 is a plate, there is a form in which the shape of the cross section is a rectangle having a long side and a short side.
  • the bar or plate can easily level the pile 7b of the powder 7.
  • the leveling component 9 is fixed to the rotating shaft of the agitating motor 9b that is airtightly held by the vacuum seal type bearing 9a shown in FIG. 1, and the angle ( ⁇ 1 ) shown in FIG.
  • the range of the angle ⁇ preferably includes the existence range of the powder 7 during the barrel rotation.
  • the rocking angle and rocking speed can be adjusted as appropriate according to the agglomeration state of the powder 7, but it is necessary to set the rocking speed and the rocking speed so that the powder does not fly due to the rocking speed being too fast.
  • the swing speed is set to 2 reciprocations / minute, but may be 1 to 10 reciprocations / minute.
  • the leveling component 9 may be intermittently swung.
  • the leveling part 9 When the leveling part 9 performs a peristaltic motion along the rotation direction R of the barrel 3 (see, for example, FIGS. 6 (a) to 6 (c)), the leveling part 9 may be folded back below the powder rise suppressing part 13. preferable. It is preferable to make the point between the peak of the peak 7a of the powder 7 and the powder rise suppressing component 13 a turning point. For example, it is more preferable that a place where the leveling part 9 is in contact with the powder rise suppressing part 13 is set as a turning point, or a place within 20 mm below the powder rising suppressing part 13 is set as a turning point.
  • the leveling part 9 When the leveling part 9 performs the peristaltic motion in the direction opposite to the rotation direction R of the barrel 3, the entire powder 7 can be leveled uniformly. Further, the leveling part 9 has higher stirring efficiency than the case where the powder rise suppressing part 13 simply scrapes off the powder adhering to the inner wall of the barrel.
  • the leveling part 9 When the leveling part 9 performs a peristaltic movement in a direction opposite to the rotation direction R of the barrel 3 (see, for example, FIGS. 6 (d) to 6 (e)), of the inner side wall 3a of the barrel 3, It is preferable to turn back at a position 3c beyond the lowest position 3b (see, for example, FIGS. 6 (e) to 6 (a)).
  • the entire powder 7 can be agitated.
  • the position 3c beyond the lowest position 3b is preferably a position beyond the boundary where the powder 7 exists.
  • the vertical direction may be 0 °, and a position of 1 to 45 ° in the direction opposite to the rotation direction R may be used as the turning point.
  • the powder 7 moves up in the rotation direction R by the rotation of the barrel 3.
  • the powder 7 moves up while creating a mountain 7a.
  • the leveling part 9 enters the pile 7a of the powder 7 when performing a peristaltic movement along the rotation direction R of the barrel 3 (see, for example, FIGS. 6 (a) to 6 (c)). (See FIG. 6B.)
  • the mountain 7a is removed (see FIG. 6C). As a result, the powder 7 is stirred including the inside.
  • the surface of the powder 7 is planarized means that the said surface is leveled along the shape of the inner surface of the side wall of a barrel.
  • the amount of powder to be put into the barrel 3 is that the leveling part 9 passes through the inside of the peak 7a of the powder 7 when the swinging movement 9 is performed in the rotation direction R of the barrel 3, and the rotation direction R of the barrel is The amount of powder pile 7b to be leveled when performing a peristaltic motion in the opposite direction.
  • FIG. 7 is a schematic view showing another example of the cross-sectional shape of the leveling part, where (a) shows an example when the leveling part has a plate shape, and (b) shows a leveling part with a semicircular cross section. (C) shows a second example when the leveling part has a semicircular cross section.
  • FIG. 8 is a schematic view for explaining the movement of the powder when the leveling part moves in the rotation direction R of the barrel.
  • FIG. 9 is a schematic view for explaining the movement of powder when the leveling part moves in the direction opposite to the rotation direction R of the barrel.
  • a solid-line arrow extending from the leveling part 9 as a starting point indicates the direction in which the leveling part 9 is moving (the direction opposite to the R direction).
  • the leveling part 9 has a first surface 9 c that faces the rotation direction R of the barrel 3.
  • the first surface 9c is preferably inclined in the direction opposite to the rotational direction R as it approaches the main axis C (not shown in FIG. 7, see FIG. 6).
  • the first surface 9c preferably has irregularities, and when the powder 7 is scooped up by the first surface 9c, the powder 7 is easily mixed.
  • the powder 7 hitting the leveling part 9 is divided into upper and lower parts to form a powder flow. Will be.
  • the leveling part 9 has a second surface 9 d oriented in the direction opposite to the rotation direction R of the barrel 3.
  • the second surface 9d is inclined with respect to the radial direction of the barrel. Specifically, as it approaches the main axis C (not shown in FIG. 7; see FIG. 6 for the position of the C axis), the rotation direction R It is preferable to be inclined in the opposite direction. That is, when moving away from the powder rise restraining part 13, it is preferable to incline so that the powder 7 is pressed. As shown in FIG. 9, when the leveling part 9 moves in the direction opposite to the rotation direction R, the powder 7 is pushed down by the second surface 9d.
  • the powder 7 below the upper end of the second surface 9d is moved in the direction opposite to the rotation direction R and easily passes under the leveling part 9, thereby forming a flow 7f4 of the powder 7.
  • the powder 7 above the upper end of the second surface 9d passes over the leveling part 9 and forms a flow 7f3 of the powder 7.
  • the flow 7f3 of the powder 7 is not seen.
  • the surface of the powder 7 after the leveling part 9 has passed is leveled.
  • the surface of the powder 7 can be leveled by the second surface 9d when the leveling component 9 moves in the direction opposite to the rotation direction R. .
  • the second surface 9d preferably has a smooth surface, and the powder 7 can be pushed down smoothly by the second surface 9d.
  • the powder 7 hitting the leveling part 9 is divided into upper and lower parts to form a powder flow.
  • the powder 7 can be leveled thicker.
  • the leveling part 9 when the leveling part 9 is in the shape of a square bar or a plate, if there is a corner, it may cause abnormal discharge, so it is preferable to round the corner.
  • the speed of the peristaltic movement of the leveling part 9 is preferably the same when moving along the rotational direction R of the barrel 3 and when moving in the opposite direction. Further, the speed of the peristaltic movement of the leveling part 9 may be different when moving along the rotation direction R and when moving in the opposite direction.
  • FIG. 10 is a schematic cross-sectional view for explaining the positional relationship among the powder rise suppressing component, the leveling component, and the target, and shows a form in which one target is provided.
  • the cross section which crosses the main axis C perpendicularly and passes through the powder rise restraining part 13, the smoothing part 9 and the target 6, the respective positions of the powder rise restraining part 13, the smoothing part 9 and the target 6 are polar coordinates. It shall be expressed above.
  • the position of the main axis C is the origin O of polar coordinates
  • the vertical downward line passing through the main axis C is the start line S at an angle of 0 °
  • the rotation direction of the barrel 3 is the direction that takes a positive angle with respect to the start line.
  • be the angle at which the powder rise suppression component 13 is fixed.
  • the radius of movement in the polar coordinates of the powder rise restraining part 13 is when the powder rise restraining part 13 is in contact with the side wall of the inner side wall of the barrel 3 that moves upward due to the rotation of the barrel 3. The distance from the origin O to the powder rise restraining part 13.
  • an angle 1 of a line h that is a normal line of the target surface or an extension line thereof and intersects the main axis C is defined as ⁇ .
  • a line h taking angle theta, and alpha 2 the maximum angle of swing width to the positive alpha 1 and the negative direction to the direction of rocking of the leveling part 9.
  • the angle ⁇ , the angle ⁇ , the angle ⁇ 1, and the angle ⁇ 2 satisfy the expressions 1, 2, 3, and 4.
  • Equation 1 0 ° ⁇ ( ⁇ + ⁇ 1 ) ⁇ 45 °
  • Equation 2 90 ° ⁇ ⁇ ⁇ 135 °
  • Equation 3 0 ° ⁇ ⁇ ⁇ 45 °
  • Equation 4 0 ° ⁇ 2 ⁇ 60 °
  • which is the angle 1 of the line h, satisfies Equation 3. That is, the target surface of the target 6 is directed vertically downward or inclined in the direction of the rotation direction R of the barrel 3.
  • powder (not shown) is pushed up in the rotation direction R side. Therefore, it is preferable to set ⁇ using the first angle adjustment mechanism so that the target surface faces the front with respect to the pushed-up powder. If ⁇ is less than 0 °, that is, a negative angle, there is a possibility that the sputtered particles do not efficiently hit the swelled powder.
  • is preferably 10 ° or more, and more preferably 15 ° or more. Further, ⁇ is preferably 35 ° or less, and more preferably 30 ° or less.
  • the angle ⁇ at which the powder rise restraining part 13 is fixed satisfies Equation 2. If ⁇ is less than 90 °, the sputtered particles are likely to hit the powder rise suppressing component 13 and impurities may easily enter the powder. If ⁇ is 135 ° or more, the powder may rise when the powder is separated from the barrel 3. ⁇ is preferably 92 ° or more, and more preferably 95 ° or more. ⁇ is preferably 110 ° or less, and more preferably 105 ° or less.
  • ⁇ 1 and ⁇ 2 are preferably set so that the whole of the powder pushed up by the swinging of the leveling part 9 is leveled.
  • ⁇ 2 may be equal to ⁇ 1 , but is not necessarily equal and is less than 60 ° so that the leveling part 9 is leveled to include the bottom end of the pressed-up powder or to near the bottom end.
  • Set. ⁇ 1 is determined so as to satisfy Equation 1 in consideration of the set angles of ⁇ and ⁇ . According to Equation 1, the upper limit in the R direction of the swing of the smoothing part 9 is set lower than the powder rise suppressing part 13 [ ⁇ ( ⁇ + ⁇ 1 ) ⁇ > 0 °].
  • ⁇ - ( ⁇ + ⁇ 1 ) ⁇ is preferably 5 ° or more, and more preferably 15 ° or more. Further, ⁇ ( ⁇ + ⁇ 1 ) ⁇ is preferably 40 ° or less, and more preferably 30 ° or less.
  • FIG. 11 is a schematic cross-sectional view for explaining the positional relationship among the powder rise suppressing component, the leveling component, and the target, and shows a mode in which an odd number (specifically three) targets are provided. Yes.
  • the said positional relationship it is the same as that of the case of FIG. 10 about expressing using a polar coordinate.
  • the number of targets on the cross section is an odd number (excluding 1), it is a normal hb of the target surface of the target 6b located at the center or an extension thereof and intersects with the main axis C.
  • the angle 2 of the line to be performed is ⁇ .
  • the target located in the center is the target 6b.
  • the angle ⁇ , the angle ⁇ , the angle ⁇ 1, and the angle ⁇ 2 satisfy the expressions 1, 2, 3, and 4.
  • the other targets 6a and 6c other than the target 6b located at the center are preferably arranged in a line symmetrical relationship with the line hb.
  • which is the angle 2 of the line hb, satisfies Equation 3. That is, the target surface of the target 6 b is directed vertically downward or inclined in the direction of the rotation direction R of the barrel 3. It is preferable that the target surface of the target 6a and the target surface of the target 6b face the direction approaching the line hb as the normal line approaches the inner wall surface of the barrel 3, respectively. Sputtered particles popping out from the target surfaces of the targets 6a, 6b and 6c are mixed and easily reach the powder (not shown).
  • the relationship between ⁇ , ⁇ 1 and ⁇ 2, ⁇ , and ⁇ ( ⁇ + ⁇ 1 ) ⁇ in FIG. 11 is preferably the same as ⁇ described in FIG.
  • FIG. 12 is a schematic cross-sectional view for explaining the positional relationship between the powder rise suppressing component, the leveling component, and the target, and shows an embodiment in which an even number (specifically, two) of targets are provided. Yes.
  • About the said positional relationship it is the same as that of the case of FIG. 10 about expressing using a polar coordinate.
  • the normal D ha and hc of the target surfaces of the two targets 6a and 6c located at the center or the extension D intersect with the principal axis C.
  • An angle 3 of a line connecting the two is ⁇ .
  • the two targets located in the center are the targets 6a and 6c.
  • the two targets sandwiched between the targets at both ends are the two targets located in the center.
  • the line j joining the C and D to take the angle theta, and alpha 2 the maximum angle of swing width to the positive alpha 1 and the negative direction to the direction of rocking of the leveling part 9.
  • the angle ⁇ , the angle ⁇ , the angle ⁇ 1, and the angle ⁇ 2 satisfy the expressions 1, 2, 3, and 4.
  • the targets 6a and 6c are preferably arranged in a line symmetrical relationship with the line j.
  • which is the angle 3 of the line j, satisfies Equation 3. That is, the target surfaces of the targets 6a and 6c are directed to the point D, but the point D is positioned vertically below the point C or arranged at a position shifted to the direction side of the rotation direction R of the barrel 3. Has been. Sputtered particles popping out from the target surfaces of the targets 6a and 6c are mixed and easily reach the powder (not shown).
  • the target surfaces face the direction approaching the line j as the normal line approaches the inner wall surface of the barrel 3.
  • the relationships among ⁇ , ⁇ 1 and ⁇ 2, ⁇ , and ⁇ ( ⁇ + ⁇ 1 ) ⁇ in FIG. 12 are preferably the same as those described with reference to FIG.
  • a form (referred to as form A) having one target will be described with reference to FIG.
  • a first angle adjustment mechanism (in FIGS. 1 and 5) that can change the inclination ⁇ of the target 6 and can fix the inclination at any angle in the angle range of Formula 3. It is preferably indicated by 8 and not shown in FIG.
  • the powder rise suppressing component 13 is connected to a portion that does not correspond to either the sputtering apparatus 2, in particular, the target itself or a portion that is electrically connected to the target, through the support rod 13 s.
  • the powder rise suppression component 13 is connected to the arm 12 via the support bar 13s. May be.
  • the position of the powder rise suppressing component 13 can be moved in conjunction with the tilted angle by the same angle.
  • the positional relationship between the target surface and the powder rise suppressing component 13 can be made constant regardless of the inclination of the target 6 by a simple mechanism.
  • the target 6a, 6b, 6c is tilted by the first angle adjusting mechanism 8 by connecting the support bar 13s to a portion of the nearest sputtering apparatus 2c that does not correspond to either the target itself or a portion conducting to the target.
  • the position of the powder rise suppressing component 13 can be moved in conjunction with the tilted angle by the same angle.
  • the support bar 13s may be connected to a portion of the sputtering apparatuses 2a and 2b that does not correspond to either the target itself or a portion conducting to the target.
  • the support bar 13s may be connected to the arm 12 shown in FIG.
  • the support bar 13s may be connected to a portion of the sputtering apparatus 2a that does not correspond to either the target itself or a portion that is electrically connected to the target.
  • the support bar 13s may be connected to the arm 12 shown in FIG.
  • the powder rise suppressing component 13 is preferably fixed in a state of being arranged above the intersecting portion e between the line E extending the target surface and the inner side wall of the barrel 3. .
  • the powder rise suppressing component 13 is disposed above the intersection eb between the line Eb extending the target surface of the target 6 b located at the center and the inner side wall of the barrel 3. It is preferably fixed in a state.
  • the powder rise suppressing component 13 is based on the intersection g between the line G connecting the opposite ends of the target surfaces of the two targets 6 a and 6 c located at the center and the inner side wall of the barrel 3. Also, it is preferable to be fixed in a state of being disposed on the upper side. Since the powder rise suppressing component 13 is disposed above the target surface, contamination due to deposition of sputtered particles can be suppressed.
  • the support rod 13s that supports the powder rise restraining component 13 is placed on either the target itself or the portion that is electrically connected to the target in the sputtering apparatus.
  • it is modularized with a part that does not correspond to either the target itself or a portion that is electrically connected to the target or a sputtering apparatus.
  • a movable stage is the second angle adjustment mechanism.
  • the powder rise suppressing component 13 can be fixed at the same position as the A form, the B form, and the C form by the second angle adjustment mechanism. Independent of the inclination of the target, the fixing position of the powder rise suppressing component 13 can be finely adjusted, and contamination of the powder rise suppressing component by sputtering can be suppressed.
  • the barrel 3 may be placed in a vacuum chamber (not shown). In this case, since it is not necessary to seal the barrel 3, the structure of the barrel can be simplified.
  • Example 1 A powder having a Pt—Au alloy thin film formed on the surface of a glass bead is produced using the powder coating apparatus shown in FIG. First, one Pt target (purity 99.9%, target surface 150 ⁇ 35 mm) was prepared and attached to the fixing portion 10a. Also, one Au target (purity 99.99%, target surface 150 ⁇ 35 mm) was prepared and attached to the fixing portion 10c. A blank was used without attaching a target to the fixed portion 10b.
  • the sputtering power source 1 was a high frequency power source (frequency 13.56 MHz).
  • the amount of powder (150 g) placed in the barrel is such that when the leveling part is peristaltic in the direction of rotation of the barrel, it passes through the inside of the pile of powder and perturbs in the direction opposite to the direction of rotation of the barrel. Sometimes it was the amount to level the powder pile.
  • the output of the high frequency power source was obtained by calculating from the sputtering rate confirmed above so that Pt-50 wt% Au.
  • the film formation time was 30 minutes.
  • Example 2 Using the powder coating apparatus shown in FIG. 1, a powder in which a two-layer film of a Ti thin film (lower layer) and an Au thin film (upper layer) is formed on the surface of glass beads is produced.
  • one Ti target (purity 99.9%, target surface 150 ⁇ 35 mm) was prepared and attached to the fixing portion 10b.
  • one Au target (purity 99.99%, target surface 150 ⁇ 35 mm) was prepared and attached to the fixing portion 10c.
  • a blank was used without attaching a target to the fixed portion 10a.
  • the sputtering power source 1 was a high frequency power source (frequency 13.56 MHz).
  • sputtering is performed with no powder in the barrel 3, and after evacuating to 3 ⁇ 10 ⁇ 3 Pa or less, argon gas is flowed to adjust the pressure to 0.4 Pa, and high frequency The rates of the Ti target and Au target according to the output of the power source were confirmed. Subsequently, 150 g of glass beads having a diameter of 1 mm were put into the barrel 3 and evacuated to 2.1 ⁇ 10 ⁇ 3 Pa, and then adjusted to maintain a pressure of 0.4 Pa by flowing argon gas.
  • the amount of powder (150 g) placed in the barrel is such that when the leveling part is peristaltic in the direction of rotation of the barrel, it passes through the inside of the pile of powder and perturbs in the direction opposite to the direction of rotation of the barrel. Sometimes it was the amount to level the powder pile.
  • the deposited thin film had good adhesion. If the Au film is directly formed on the glass beads, the adhesion is poor. Therefore, a Ti film was formed as an intermediate layer for improving adhesion.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

The purpose of the present invention is to provide a powder coating apparatus having a mechanism for leveling the surface of a powder when forming a film. The powder coating apparatus 100 according to the present invention comprises: a barrel 3; an air discharge means 4 for evacuating the barrel; and a sputtering device 2 provided in the barrel and having at least one target 6. The barrel has a main axis C oriented in the horizontal direction and rotates around the main axis C. The sputtering device forms a coating film on the surface of a powder 7 in the barrel. The powder coating apparatus 100 further comprises a component 13 for preventing upward movement of the powder and a powder leveling component 9. The component 13 for preventing upward movement of the powder is fixed to a part of the sputtering device which does not correspond to the target itself and a part electrically connected to the target or attached to a component modularized with the sputtering device so as to be secured.

Description

粉末コーティング装置及びその使用方法Powder coating apparatus and method of using the same
 本開示は、粉末の各粒子の表面に薄膜をコーティングするための粉末コーティング装置に関し、特に粉末の攪拌及び均しの機構に関する。 The present disclosure relates to a powder coating apparatus for coating the surface of each particle of powder with a thin film, and particularly to a mechanism for stirring and leveling the powder.
 粉末に機能を与えるために、粒子の表面に薄膜をコーティングする場合がある。乾式法でコーティングする技術としてスパッタリング法があり、スパッタリング法を用いた粉末へのコーティング装置が各種提案されている(例えば、特許文献1~4を参照。)。 In order to give a function to the powder, a thin film may be coated on the surface of the particle. There is a sputtering method as a technique for coating by a dry method, and various types of coating apparatuses for powder using the sputtering method have been proposed (see, for example, Patent Documents 1 to 4).
 特許文献1では、内部が真空に保持された回転バレルと、前記回転バレル内に配置したターゲットユニットと、前記ターゲットユニットに接続されプラズマを発生可能な直流式のスパッタリング電源と、を備えたスパッタリング装置を用いて、カーボン粉末に白金をスパッタリングする技術が開示されている。ここで、回転バレルを回転させながらターゲットをスパッタリングしてコーティングを行う。そして、攪拌翼がバレル内に配置されており、回転バレルの回転軸を中心に±αの角度の範囲内を搖動し、カーボン粉末の凝集を防止する。 In Patent Document 1, a sputtering apparatus including a rotating barrel whose inside is maintained in a vacuum, a target unit disposed in the rotating barrel, and a DC sputtering power source connected to the target unit and capable of generating plasma. A technique for sputtering platinum onto carbon powder using a tantalum is disclosed. Here, coating is performed by sputtering the target while rotating the rotating barrel. And the stirring blade is arrange | positioned in the barrel, and it rocks within the range of the angle of (alpha) centering on the rotating shaft of a rotation barrel, and prevents aggregation of carbon powder.
 特許文献2では、回転バレルを有するスパッタリング装置を用いて、磁性を有する粉末の表面に各種金属をコーティングする技術が開示されている。本文献においても、攪拌翼がバレル内に配置されており、回転バレルの回転軸を中心に±αの角度の範囲内を搖動し、磁性粉末の凝集を防止する。 Patent Document 2 discloses a technique for coating various metals on the surface of a magnetic powder using a sputtering apparatus having a rotating barrel. Also in this document, the stirring blade is disposed in the barrel and swings within an angle range of ± α around the rotation axis of the rotating barrel to prevent the aggregation of the magnetic powder.
 特許文献3では、回転ドラムに装入された原料粉末を攪拌すると共にドラム内壁に付着した原料粉末を掻き落としながら、粉末粒子表面に均一なコーティング層を形成する粉末コーティング装置が開示されている。ここで、攪拌板によって、流動層を形成する上層部及び下層部の粉末粒子が互いに混ざり合い、個々の粉末粒子が等しくスパッタリングにさらされる。また、スクレーバは、ドラム内面に付着しドラム本体を共回りしようとする粉末をそぎ落とし、粉末粒子を流動層に戻す。さらにワイパーはケーシングの上面に落下・堆積した粉末粒子を流動層に戻す。 Patent Document 3 discloses a powder coating apparatus that forms a uniform coating layer on the surface of powder particles while stirring the raw material powder charged in the rotating drum and scraping off the raw material powder adhering to the inner wall of the drum. Here, the powder particles in the upper layer portion and the lower layer portion forming the fluidized bed are mixed with each other by the stirring plate, and the individual powder particles are equally subjected to sputtering. The scraper scrapes off the powder that adheres to the drum inner surface and tries to rotate around the drum body, and returns the powder particles to the fluidized bed. Further, the wiper returns the powder particles dropped and deposited on the upper surface of the casing to the fluidized bed.
 特許文献4では、真空容器自体を回転させると構造が複雑になることから、真空容器の中に回転する筒状の容器を配置した粉末コーティング装置が開示されている。ここで、ドラムとの間にクリアランスを設けて配置した攪拌バーを、独立した駆動ユニットにより回転または搖動させる。また、攪拌バーと連動して動き、かつ、ドラムと当たる攪拌部材を設けている。 Patent Document 4 discloses a powder coating apparatus in which a rotating cylindrical container is arranged in a vacuum container because the structure becomes complicated when the vacuum container itself is rotated. Here, the stirring bar arranged with a clearance between the drum and the drum is rotated or swung by an independent drive unit. Further, a stirring member that moves in conjunction with the stirring bar and abuts against the drum is provided.
特開2012-182067号公報JP 2012-182067 A 特許第4183098号公報Japanese Patent No. 4183098 特開平5‐271922号公報JP-A-5-271922 特開2014-159623号公報JP 2014-159623 A
 スパッタリング装置を用いて基板に成膜するとき、ターゲットに対して基板は平行に配置される。これに準ずれば、粉末コーティング装置では、粉末の表面、すなわち微粒子の集合体が形成する表面が、円筒形のドラムの内壁面に沿って平らになっていることが理想的である。 When forming a film on a substrate using a sputtering apparatus, the substrate is arranged in parallel to the target. According to this, in the powder coating apparatus, it is ideal that the surface of the powder, that is, the surface formed by the aggregate of fine particles is flat along the inner wall surface of the cylindrical drum.
 しかし、特許文献1~4に記載された粉末コーティング装置ではいずれも粉末が回転するドラム内に入れられる。したがって、粉末の表面、すなわち微粒子の集合体が形成する表面が、成膜途中で山形状を形成するとともに絶えず変形する。これらの装置の粉末攪拌機構は、粉末の表面を均すように整える働きはしない。 However, in any of the powder coating apparatuses described in Patent Documents 1 to 4, powder is put in a rotating drum. Therefore, the surface of the powder, that is, the surface formed by the aggregate of fine particles forms a mountain shape during film formation and constantly deforms. The powder agitation mechanism of these devices does not work to level the powder surface.
 粉末の表面に山形状があると、例えば、斜めから粉末に向かってくるスパッタ粒子が山に遮られて当たらない部分が生じ、或いは、特定の部分だけ当たりやすい状況が生まれる。したがって、成膜するときに粉末の表面が均されていることが求められる。 If there is a mountain shape on the surface of the powder, for example, a spatter particle coming from the diagonal toward the powder will be blocked by the mountain, or a situation where only a specific part will be hit is created. Therefore, it is required that the surface of the powder is leveled when the film is formed.
 さらに複数種類のターゲットを同時にスパッタする多元スパッタリング装置では、スパッタ粒子の進む方向がターゲットの種類によって異なるため、粉末の表面が均されていることがより一層求められる。 Furthermore, in a multi-source sputtering apparatus that simultaneously sputters a plurality of types of targets, the direction in which the sputtered particles vary depends on the type of target, so that the powder surface is required to be even.
 そこで本開示は、特許文献1~4に記載された粉末コーティング装置を用いた場合に回避することができなかった問題点を解決した粉末コーティング装置、すなわち、成膜するときに粉末の表面を均す機構を有する装置を提供することを目的とする。 Therefore, the present disclosure is a powder coating apparatus that solves the problems that could not be avoided when using the powder coating apparatus described in Patent Documents 1 to 4, that is, the surface of the powder is leveled during film formation. An object of the present invention is to provide a device having a mechanism.
 本発明者らは、鋭意検討した結果、(1)バレルに付着した粉末を掻き落とす部品をバレルの回転に依存しないように固定し、かつ、当該部品が粉末の迫り上がりの上限位置を定めることとし、(2)バレルの主軸を回転中心として搖動運動をする粉末の均し部品を設けることによって、上記課題を解決できることを見出し、本発明を完成させた。すなわち、本発明に係る粉末コーティング装置は、バレルと、該バレル内を真空引きする排気手段と、前記バレル内に設置され、少なくとも1つのターゲットを有するスパッタリング装置と、を有し、前記バレルは、主軸が水平方向を向いており、かつ、該主軸を中心に回転し、前記スパッタリング装置は、前記バレルに入れられた粉末の表面にコーティング膜を形成する粉末コーティング装置において、該粉末コーティング装置は、さらに、前記バレルの内側側壁のうち、前記バレルの回転によって上方向に移動する部分の側壁に接した状態で配置され、前記粉末が迫り上がる上限位置を定める粉末上昇抑制部品と、該粉末上昇抑制部品よりも下方の位置で、前記バレルの内側側壁に間隔をあけて配置され、前記主軸を回転中心として搖動運動をする前記粉末の均し部品と、を有し、前記粉末上昇抑制部品は、前記スパッタリング装置のうち前記ターゲット自体及び該ターゲットと導通している部分のどちらにも該当しない箇所に連結されることによって、又は、該スパッタリング装置とモジュール化された部品に連結されることによって固定されていることを特徴とする。 As a result of intensive studies, the present inventors have determined that (1) the part that scrapes off the powder adhering to the barrel is fixed so as not to depend on the rotation of the barrel, and the part determines the upper limit position of the powder rising And (2) the present invention has been completed by finding that the above-mentioned problems can be solved by providing a powder leveling part that performs a peristaltic motion about the main axis of the barrel. That is, the powder coating apparatus according to the present invention includes a barrel, an exhaust unit that evacuates the barrel, and a sputtering apparatus that is installed in the barrel and has at least one target. In the powder coating apparatus in which the main axis is oriented in the horizontal direction and rotates about the main axis, and the sputtering apparatus forms a coating film on the surface of the powder put in the barrel, the powder coating apparatus includes: Further, among the inner side walls of the barrel, disposed in contact with the side wall of the portion that moves upward due to the rotation of the barrel, a powder rise restraining part that defines an upper limit position where the powder creeps, and the powder rise restraint Positioned below the part, spaced from the inner side wall of the barrel, and swings about the main axis The powder leveling component that moves, and the powder rise suppression component is connected to a portion of the sputtering apparatus that does not correspond to either the target itself or a portion that is electrically connected to the target. Or by being connected to a modularized part with the sputtering apparatus.
 本発明に係る粉末コーティング装置では、前記スパッタリング装置は、前記主軸を中心に回転して角度調整が可能であることが好ましい。スパッタリング装置の傾きを可変としたときに、粉末上昇抑制部品がスパッタリング装置の傾く動きに連動して動くため、ターゲットと粉末上昇抑制部品の相対的な位置関係を一定に保つことができる。 In the powder coating apparatus according to the present invention, it is preferable that the sputtering apparatus is capable of adjusting the angle by rotating around the main axis. When the tilt of the sputtering apparatus is variable, the powder rise suppressing component moves in conjunction with the tilting movement of the sputtering apparatus, so that the relative positional relationship between the target and the powder rise suppressing component can be kept constant.
 本発明に係る粉末コーティング装置では、前記主軸を垂直に横断し、前記粉末上昇抑制部品、前記均し部品及び前記ターゲットを通過する横断面において、前記粉末上昇抑制部品、前記均し部品及び前記ターゲットのそれぞれの位置を極座標上で表すとき、前記主軸の位置が前記極座標の原点Oであり、前記主軸を通る垂直下方線が角度0°の始線であり、前記バレルの回転方向が前記始線に対して正の角度をとる方向であり、前記粉末上昇抑制部品が固定されている角度をβとし、前記横断面上のターゲットの個数が1であるとき、ターゲット面の法線又はその延長線であるとともに前記主軸と交差する線の角度1をθとし、又は、前記横断面上のターゲットの個数が奇数(但し、1を除く)であるとき、中央に位置するターゲット面の法線又はその延長線であるとともに前記主軸と交差する線の角度2をθとし、又は、前記横断面上のターゲットの個数が偶数であるとき、中央に位置する2つのターゲット面の法線又はその延長線が交差する点と前記主軸とを結ぶ線の角度3をθとし、角度θをとる線を中心として、前記均し部品の搖動の振り幅の最大角度を正の方向へα及び負の方向へαとしたとき、角度β、角度θ、角度α及び角度αが数1、数2、数3及び数4を満たすことを特徴とする。
(数1)0°<β-(θ+α)<45°
(数2)90°≦β<135°
(数3)0°≦θ≦45°
(数4)0°<α<60°
In the powder coating apparatus according to the present invention, the powder rise restraining part, the smoothing part, and the target in a cross section that crosses the main axis vertically and passes through the powder rise restraining part, the smoothing part, and the target. Are expressed in polar coordinates, the position of the main axis is the origin O of the polar coordinates, the vertical downward line passing through the main axis is a start line with an angle of 0 °, and the rotation direction of the barrel is the start line Is a direction that takes a positive angle, β is an angle at which the powder rise suppressing component is fixed, and the number of targets on the cross section is 1, or a normal line of the target surface or an extension line thereof And the angle 1 of the line intersecting the main axis is θ, or the normal of the target surface located in the center when the number of targets on the cross section is an odd number (excluding 1) Is an extension line thereof, and when the angle 2 of the line intersecting the main axis is θ, or when the number of targets on the cross section is an even number, the normal lines of the two target surfaces located in the center or the extension thereof The angle 3 of the line connecting the point where the lines intersect with the main axis is θ, and the maximum angle of the swinging motion of the smoothing part is set to the positive direction with α 1 and negative with the line taking the angle θ as the center. When the direction is α 2 , the angle β, the angle θ, the angle α 1, and the angle α 2 satisfy the expressions 1, 2, 3, and 4.
(Equation 1) 0 ° <β− (θ + α 1 ) <45 °
(Equation 2) 90 ° ≦ β <135 °
(Equation 3) 0 ° ≦ θ ≦ 45 °
(Equation 4) 0 ° <α 2 <60 °
 本発明に係る粉末コーティング装置では、前記粉末上昇抑制部品は、ブラシ又はヘラであることが好ましい。ブラシ又はヘラは、粉末をバレルから効率よく掻き落とすことができる。 In the powder coating apparatus according to the present invention, the powder rise suppressing component is preferably a brush or a spatula. A brush or spatula can efficiently scrape powder from the barrel.
 本発明に係る粉末コーティング装置では、前記均し部品は、棒又は板であることが好ましい。棒又は板は、山形状となった粉末を容易に均一にならすことができる。 In the powder coating apparatus according to the present invention, the leveling part is preferably a bar or a plate. The bar or plate can easily level the powder in a mountain shape.
 本発明に係る粉末コーティング装置では、前記均し部品は、前記バレルの回転方向とは反対方向に搖動運動をするときに、前記バレルの内側側壁のうち、最も低い位置又は該位置を越えたところで折り返すことが好ましい。均し部品が、粉末全体を均一に均すことができる。 In the powder coating apparatus according to the present invention, when the leveling part swings in a direction opposite to the rotation direction of the barrel, the lowest side position of the inner side wall of the barrel or the position beyond the position. It is preferable to wrap. The leveling part can level the whole powder uniformly.
 本発明に係る粉末コーティング装置では、前記ターゲットの傾きθを変更し、かつ、数3の角度範囲のいずれかの角度において傾きの固定が可能な第一角度調整機構を有することが好ましい。第一角度調整機構によって、数3の角度範囲のいずれかの角度において、ターゲットを傾けて固定すると、その傾けた角度と同じ角度分だけ、粉末上昇抑制部品の位置を連動して移動させることができる。 In the powder coating apparatus according to the present invention, it is preferable to have a first angle adjustment mechanism that can change the inclination θ of the target and can fix the inclination at any angle in the angular range of Formula 3. When the target is tilted and fixed at any angle in the angle range of Equation 3 by the first angle adjustment mechanism, the position of the powder rise suppressing component can be moved in conjunction with the tilted angle by the same angle. it can.
 本発明に係る粉末コーティング装置では、前記粉末上昇抑制部品は、前記横断面上のターゲットの個数が1であるとき、前記ターゲット面を延長する線と前記バレルの内側側壁との交差部分よりも上側に配置された状態で固定されているか、又は、前記横断面上のターゲットの個数が奇数(但し、1を除く)であるとき、中央に位置するターゲット面を延長する線と前記バレルの内側側壁との交差部分よりも上側に配置された状態で固定されているか、又は、前記横断面上のターゲットの個数が偶数であるとき、中央に位置する2つのターゲット面の向かい合う両端を結ぶ線と前記バレルの内側側壁との交差部分よりも上側に配置された状態で固定されていることが好ましい。粉末上昇抑制部品がスパッタリングによって汚染されることを抑制することができる。 In the powder coating apparatus according to the present invention, when the number of targets on the cross section is 1, the powder rise suppressing component is above the intersection of the line extending the target surface and the inner side wall of the barrel. When the number of targets on the cross section is an odd number (excluding 1), a line extending the target surface located in the center and the inner side wall of the barrel When the number of targets on the cross section is an even number, the line connecting the opposite ends of the two target surfaces located at the center and the above It is preferable to be fixed in a state of being arranged above the intersection with the inner side wall of the barrel. It is possible to prevent the powder rise suppressing component from being contaminated by sputtering.
 本発明に係る粉末コーティング装置では、前記ターゲットの傾きθを変更し、かつ、数3の角度範囲のいずれかの角度において傾きの固定が可能な第一角度調整機構を有し、さらに、前記横断面上のターゲットの個数が1であるとき、前記粉末上昇抑制部品を、前記ターゲット面を延長する線と前記バレルの内側側壁との交差部分よりも上側となる位置に、位置可変で固定可能な第二角度調整機構を有するか、又は、前記横断面上のターゲットの個数が奇数(但し、1を除く)であるとき、前記粉末上昇抑制部品を、中央に位置するターゲット面を延長する線と前記バレルの内側側壁との交差部分よりも上側となる位置に、位置可変で固定可能な第二角度調整機構を有するか、又は、前記横断面上のターゲットの個数が偶数であるとき、前記粉末上昇抑制部品を、中央に位置する2つのターゲット面の向かい合う両端を結ぶ線と前記バレルの内側側壁との交差部分よりも上側となる位置に、位置可変で固定可能な第二角度調整機構を有することが好ましい。ターゲットの傾きと独立して、粉末上昇抑制部品の固定位置を調整することができ、粉末上昇抑制部品がスパッタリングによって汚染されることを抑制することができる。 The powder coating apparatus according to the present invention includes a first angle adjustment mechanism that changes the inclination θ of the target and can fix the inclination at any angle in the angle range of Formula 3, When the number of targets on the surface is 1, the powder rise suppressing component can be fixed at a position above the intersection of the line extending the target surface and the inner side wall of the barrel with variable position. When the second angle adjusting mechanism is provided, or when the number of targets on the cross section is an odd number (excluding 1), the powder rise suppression component is a line extending the target surface located in the center; When there is a second angle adjustment mechanism that can be fixed in a variable position at a position above the intersection with the inner side wall of the barrel, or when the number of targets on the cross section is an even number, A second angle adjusting mechanism capable of fixing the powder rising restraint component with a variable position at a position above the intersection of the inner side wall of the barrel and the line connecting the opposing ends of the two target surfaces located at the center. It is preferable to have. Independent of the inclination of the target, the fixing position of the powder rise suppressing component can be adjusted, and contamination of the powder rise suppressing component by sputtering can be suppressed.
 本発明に係る粉末コーティング装置の使用方法は、本発明に係る粉末コーティング装置の使用方法であって、前記バレルに入れる粉末量は、前記均し部品が、前記バレルの回転方向に搖動運動をするときに前記粉末の山の内部を通過し、かつ、前記バレルの回転方向とは反対方向に搖動運動をするときに前記粉末の山をならす量であることを特徴とする。 The method of using the powder coating apparatus according to the present invention is a method of using the powder coating apparatus according to the present invention, wherein the amount of powder to be put into the barrel is such that the leveling part swings in the rotational direction of the barrel. The amount of powder that is sometimes passed through the interior of the powder pile and smoothed when the peristaltic motion is opposite to the direction of rotation of the barrel.
 本開示の粉末コーティング装置は、バレルの回転によって、粉末がバレルと一緒に回転してしまうことを阻止できる。このとき粉末の迫上がりの上限位置を決めているため、粉末にスパッタ粒子を効率的に当てることができる。さらに、バレルの回転によって粉末が山形状となりやすいところ、この山を均すことによって、スパッタ粒子を粉末全体に均一に当てやすくできる。 The powder coating apparatus of the present disclosure can prevent the powder from rotating together with the barrel due to the rotation of the barrel. At this time, since the upper limit position of the powder rush is determined, the sputtered particles can be efficiently applied to the powder. Further, the powder tends to have a mountain shape due to the rotation of the barrel. By smoothing the mountain, the sputter particles can be easily applied to the entire powder.
本実施形態に係る粉末コーティング装置の全体構成図である。It is a whole block diagram of the powder coating apparatus which concerns on this embodiment. ターゲットユニット、バレル、粉末上昇抑制部品及び均し部品についてのA-A断面の概略図である。It is the schematic of the AA cross section about a target unit, a barrel, a powder rise suppression component, and a leveling component. ターゲットユニットとバレルについての斜視概略図である。It is a perspective schematic diagram about a target unit and a barrel. ターゲットの向きと粉末の位置との関係を説明するための概略図である。It is the schematic for demonstrating the relationship between the direction of a target, and the position of powder. ターゲットユニットの第1角度調整機構による動きを説明するための概略図である。It is the schematic for demonstrating the motion by the 1st angle adjustment mechanism of a target unit. 本実施形態に係る粉末コーティング装置において、粉末を攪拌し、均す動きを説明する概略図である。均し部品は、時系列順に(a)(b)(c)(d)(e)の順に動き、再び(a)に戻って繰り返される。In the powder coating apparatus which concerns on this embodiment, it is the schematic explaining the motion which stirs and equalizes powder. The leveling parts move in the order of (a), (b), (c), (d), and (e) in chronological order, and return to (a) again to be repeated. 均し部品の断面形状の別例を示す概略図であり、(a)は、均し部品が板形状であるときの例、(b)は均し部品が断面半円形状であるときの第1例、(c)は均し部品が断面半円形状であるときの第2例を示した。It is the schematic which shows another example of the cross-sectional shape of a leveling part, (a) is an example when a leveling part is plate shape, (b) is the 1st when a leveling part is a cross-sectional semicircle shape. One example, (c), shows a second example when the leveling part has a semicircular cross section. 均し部品がバレルの回転方向Rに動くときの粉末の動きを説明するための概略図である。It is the schematic for demonstrating the motion of the powder when a leveling part moves to the rotation direction R of a barrel. 均し部品がバレルの回転方向Rとは反対方向に動くときの粉末の動きを説明するための概略図である。It is the schematic for demonstrating the motion of the powder when a leveling part moves to the direction opposite to the rotation direction R of a barrel. 粉末上昇抑制部品、均し部品及びターゲットのそれぞれの位置関係を説明するための概略断面図であり、ターゲットが1つ設けられている形態を示している。It is a schematic sectional drawing for demonstrating each positional relationship of a powder raise suppression component, a leveling component, and a target, and has shown the form with which one target is provided. 粉末上昇抑制部品、均し部品及びターゲットのそれぞれの位置関係を説明するための概略断面図であり、ターゲットが奇数個(具体的には3つ)設けられている形態を示している。It is a schematic sectional drawing for demonstrating each positional relationship of a powder raise suppression component, leveling components, and a target, and has shown the form with which the odd number (specifically three) target is provided. 粉末上昇抑制部品、均し部品及びターゲットのそれぞれの位置関係を説明するための概略断面図であり、ターゲットが偶数個(具体的には2つ)設けられている形態を示している。It is a schematic sectional drawing for demonstrating each positional relationship of a powder raise suppression component, a leveling component, and a target, and has shown the form by which the even number (specifically two) target is provided.
 以降、本発明について実施形態を示して詳細に説明するが本発明はこれらの記載に限定して解釈されない。本発明の効果を奏する限り、実施形態は種々の変形をしてもよい。 Hereinafter, the present invention will be described in detail with reference to embodiments, but the present invention is not construed as being limited to these descriptions. As long as the effect of the present invention is exhibited, the embodiment may be variously modified.
 粉末の表面を均す機構を説明するに先立って成膜機構を先に説明する。本実施形態に係る粉末コーティング装置は、粉末の粒子表面全体に被膜を施すことができる回転バレル式スパッタリング装置である。ここでは多元スパッタリング装置を例示しながら説明をする。なお、引用文献1~4に記載の装置は、単元スパッタリング装置である。本実施形態では、多元又は単元のどちらのスパッタリング装置でも粉末の表面を均す機構を装着することができる。 Prior to explaining the mechanism for leveling the powder surface, the film forming mechanism will be explained first. The powder coating apparatus according to the present embodiment is a rotating barrel type sputtering apparatus that can coat a whole particle surface of a powder. Here, explanation will be given while illustrating a multi-source sputtering apparatus. The apparatuses described in the cited documents 1 to 4 are unitary sputtering apparatuses. In this embodiment, a mechanism for leveling the surface of the powder can be installed in either a multi-element or single-unit sputtering apparatus.
 まず、図1~図3を参照する。図1は、本実施形態に係る粉末コーティング装置の全体構成図である。図2は、ターゲットユニット、バレル、粉末上昇抑制部品及び均し部品についてのA-A断面の概略図である。図3は、ターゲットユニットとバレルについての斜視概略図である。図1に示すように、本実施形態に係る粉末コーティング装置100は、バレル3と、バレル3内を真空引きする排気手段4と、バレル3内に設置され、少なくとも1つのターゲット6を有するスパッタリング装置2と、を有し、バレル3は、主軸Cが水平方向を向いており、かつ、主軸Cを中心に回転し、スパッタリング装置2は、バレル3に入れられた粉末7の表面にコーティング膜を形成する。ここで、図2に示すようにスパッタリング装置2は2つ以上のターゲット6(6a,6b,6c、図2では3つ)を取り付けるために、ターゲット一つに付き固定部10(10a,10b,10c)を1つ有する。また、図3に示すように、スパッタリング装置2は、固定部10(10a,10b,10c)にターゲット6(6a,6b,6c)を取り付けたときに、各ターゲット6a,6b,6cは、主軸Cの方向に対して同一水準位置に互いに並列に配置されている。 First, refer to FIG. 1 to FIG. FIG. 1 is an overall configuration diagram of a powder coating apparatus according to the present embodiment. FIG. 2 is a schematic view of the AA cross section of the target unit, barrel, powder rise restraining part and leveling part. FIG. 3 is a schematic perspective view of the target unit and the barrel. As shown in FIG. 1, a powder coating apparatus 100 according to this embodiment includes a barrel 3, an exhaust unit 4 that evacuates the inside of the barrel 3, and a sputtering apparatus that is installed in the barrel 3 and has at least one target 6. The barrel 3 has the main axis C oriented in the horizontal direction and rotates around the main axis C, and the sputtering apparatus 2 applies a coating film on the surface of the powder 7 put in the barrel 3. Form. Here, as shown in FIG. 2, the sputtering apparatus 2 attaches two or more targets 6 (6a, 6b, 6c, three in FIG. 2), so that the fixing unit 10 (10a, 10b, 10c). As shown in FIG. 3, when the target 6 (6a, 6b, 6c) is attached to the fixed portion 10 (10a, 10b, 10c), the sputtering apparatus 2 has the spindle 6a, 6b, 6c They are arranged in parallel with each other at the same level in the direction of C.
 本実施形態に係る粉末コーティング装置100は、粉末の粒子表面全体に被膜を施すことができる回転バレル式多元スパッタリング装置である。この装置は、2つ以上のターゲットを同時にスパッタでき、各ターゲットは個別に電源1と接続されている。ターゲット1つにつき、1つの電源に接続されることが好ましい。例えば、2種類以上のターゲットを装着すれば、複数の物質を同時にスパッタすることが可能である。また、各ターゲットは出力を個別に調整できるので、任意の割合でスパッタすることが可能である。 The powder coating apparatus 100 according to the present embodiment is a rotary barrel type multi-source sputtering apparatus that can coat a whole powder particle surface. This apparatus can simultaneously sputter two or more targets, and each target is individually connected to a power source 1. Each target is preferably connected to one power source. For example, if two or more types of targets are mounted, a plurality of materials can be sputtered simultaneously. Further, since the output of each target can be adjusted individually, it is possible to perform sputtering at an arbitrary ratio.
 バレル3は、駆動ロール5a及び従動ロール5bで支持されている。駆動ロール5aは、駆動モーター5からの動力を受けて、バレル3の主軸Cを水平軸として回転させることができる。バレル3には、円筒上端が開口したバレル本体3d及びそれをふさぐ蓋体3eが設けられており、O‐リング(不図示)でシールされている。バレル本体3dの開口部からバレル3内に粉末7を投入する。また、バレル3はバレル本体3d及び蓋体3eを有する代わりに縦割り又は横割りの分割構造を有していてもよく、この場合は分割時に粉末7を投入する。 The barrel 3 is supported by a drive roll 5a and a driven roll 5b. The drive roll 5a can receive power from the drive motor 5 and rotate the main shaft C of the barrel 3 as a horizontal axis. The barrel 3 is provided with a barrel main body 3d having an open upper end of the cylinder and a lid 3e that closes the barrel main body 3d, and is sealed with an O-ring (not shown). Powder 7 is put into the barrel 3 from the opening of the barrel body 3d. Further, the barrel 3 may have a vertically or horizontally divided structure instead of having the barrel body 3d and the lid 3e. In this case, the powder 7 is charged at the time of division.
 バレル3は真空容器を兼ねている。真空引きする排気手段4は、バレル3の内部空間のガスを排気する。排気手段4は、真空シール型軸受け4aによって気密保持されている。 Barrel 3 also serves as a vacuum vessel. The exhaust means 4 for evacuating exhausts the gas in the internal space of the barrel 3. The exhaust means 4 is airtightly held by a vacuum seal type bearing 4a.
 バレル3の中に設置されたスパッタリング装置2は、バレル3の外に設置されたスパッタリング電源1に接続されている。スパッタリング電源1は、直流電源又は高周波電源のいずれでもよい。スパッタリング装置2は、真空シール型軸受け1aで気密保持されたアーム1bによってバレル3の中に装入されている。この気密保持されたアーム1bの中には、ターゲット冷却水通路入口1c、ターゲット冷却水通路出口1d及びアルゴンガス入口1eが内蔵されている。 The sputtering apparatus 2 installed in the barrel 3 is connected to a sputtering power source 1 installed outside the barrel 3. The sputtering power source 1 may be either a direct current power source or a high frequency power source. The sputtering apparatus 2 is inserted into the barrel 3 by an arm 1b that is airtightly held by a vacuum seal type bearing 1a. In the airtightly held arm 1b, a target cooling water passage inlet 1c, a target cooling water passage outlet 1d, and an argon gas inlet 1e are incorporated.
 スパッタリング装置2は、バレル3の中に2つ以上設置されており(図2においては、3つのスパッタリング装置2a,2b,2cが設置されている)、これによって、バレル3の中には2つ以上のターゲット6が設置できる(図2においては、3つのターゲット6a,6b,6cが設置されている。)。スパッタリング装置2は、ターゲット一つに付き固定部10(10a,10b,10c)を1つ有している。すなわち、図2では、3つのスパッタリング装置2a,2b,2cがそれぞれ固定部10a,10b,10cを有している。また、スパッタリング装置2a,2b,2cには、それぞれ別々にスパッタリング電源1が接続され、別々に出力が制御される。これによって、スパッタリング装置2は、多元スパッタリング装置となる。 Two or more sputtering apparatuses 2 are installed in the barrel 3 (in FIG. 2, three sputtering apparatuses 2a, 2b, and 2c are installed). The above targets 6 can be installed (in FIG. 2, three targets 6a, 6b, 6c are installed). The sputtering apparatus 2 has one fixing portion 10 (10a, 10b, 10c) per target. That is, in FIG. 2, the three sputtering apparatuses 2a, 2b, and 2c have the fixing portions 10a, 10b, and 10c, respectively. Moreover, the sputtering power sources 1 are separately connected to the sputtering apparatuses 2a, 2b, and 2c, and the outputs are controlled separately. Thereby, the sputtering apparatus 2 becomes a multi-source sputtering apparatus.
  固定部10は、ターゲット6を保持するバッキングプレートである。バッキングプレートの表側には、取付け金具によってターゲット6が取り付けられている。バッキングプレートの表側には、プラズマを発生させるときの対極になるシールドカバーがバッキングプレートと所定の距離を保って取り付けられている。一方、バッキングプレートの裏側には、マグネットを収容する複数の凹部が形成されている。また、バッキングプレートの裏側には、ターゲット冷却水通路入口1c及びターゲット冷却水通路出口1dとつながっている冷却水通路が配置されている。 The heel fixing portion 10 is a backing plate that holds the target 6. A target 6 is attached to the front side of the backing plate by a mounting bracket. On the front side of the backing plate, a shield cover serving as a counter electrode for generating plasma is attached at a predetermined distance from the backing plate. On the other hand, a plurality of recesses for accommodating magnets are formed on the back side of the backing plate. A cooling water passage connected to the target cooling water passage inlet 1c and the target cooling water passage outlet 1d is disposed on the back side of the backing plate.
 固定部10にターゲット6を取り付けたときに、図3に示すように、各ターゲット6a,6b,6cは、主軸Cの方向に対して同一水準位置に互いに並列に配置されている。例えば、ターゲット6a,6b,6cの主軸Cの方向における重心位置が互いに揃っていることが好ましい。また、ターゲット6a,6b,6cの主軸Cの方向における大きさが同じ場合には、主軸Cの方向における各ターゲットの両端の位置が互いに揃っていることが好ましい。バレル3は、主軸Cを中心に回転するため、各ターゲット6a,6b,6cを、主軸Cの方向に対して同一水準位置に互いに並列に配置すれば、各ターゲット6a,6b,6cから飛び出したスパッタ粒子は、回転するバレル3に入れられた粉末に、万遍なく当たるため、組成ムラが生じにくい。また、各ターゲット6a,6b,6cの主軸Cの方向の長さは、干渉を避けるため、バレル3の軸方向長さより若干短いことが好ましい。 When the target 6 is attached to the fixed portion 10, the targets 6a, 6b, 6c are arranged in parallel with each other at the same level position with respect to the direction of the main axis C, as shown in FIG. For example, it is preferable that the positions of the centers of gravity of the targets 6a, 6b, and 6c in the direction of the main axis C are aligned with each other. Further, when the sizes of the targets 6a, 6b, and 6c in the direction of the main axis C are the same, it is preferable that the positions of both ends of each target in the direction of the main axis C are aligned with each other. Since the barrel 3 rotates around the main axis C, if the targets 6a, 6b, 6c are arranged in parallel to each other at the same level position with respect to the direction of the main axis C, they jump out of the targets 6a, 6b, 6c. Since the sputtered particles uniformly hit the powder put in the rotating barrel 3, composition unevenness hardly occurs. In addition, the length of each target 6a, 6b, 6c in the direction of the main axis C is preferably slightly shorter than the length of the barrel 3 in the axial direction in order to avoid interference.
 図3に示したターゲットの配置とせずに、各ターゲットを主軸Cの方向に沿って順に配置すると、粉末が主軸Cの方向に混ざりにくいため、1つのターゲットから飛び出したスパッタ粒子しか当たらず、膜に組成ムラが生じてしまう。すなわち、複数のターゲットから飛び出した複数種類のスパッタ粒子が同時に粉末粒子の表面に到達しないため、均一な合金膜、複酸化物膜、複窒化物膜、又は、複炭化物膜を作ることができない。仮に各ターゲットを主軸Cの方向に沿って順に配置し、各ターゲットから飛び出したターゲット粒子が所定の領域に集まるようにターゲット面の向きを調整すれば、上記問題は解決するが、その領域は主軸C方向においてバレル側壁の一部分に限られてしまう。そうすると、バレルの容積当たり処理可能な粉末量が少量となってしまうため、生産性が劣る。同じ種類のターゲットを用いたとしても同様に生産性が劣る。 If the targets are arranged in order along the direction of the main axis C without arranging the targets shown in FIG. 3, the powder is difficult to mix in the direction of the main axis C, so that only the sputtered particles that have jumped out from one target hit the film. The composition unevenness occurs. That is, since a plurality of types of sputtered particles jumping out from a plurality of targets do not reach the surface of the powder particles at the same time, a uniform alloy film, double oxide film, double nitride film, or double carbide film cannot be formed. If each target is arranged in order along the direction of the main axis C and the orientation of the target surface is adjusted so that the target particles protruding from each target gather in a predetermined area, the above problem can be solved. It is limited to a part of the barrel side wall in the C direction. As a result, the amount of powder that can be processed per volume of the barrel is small, and thus the productivity is poor. Even if the same type of target is used, productivity is similarly poor.
 次に図4を参照する。図4は、ターゲットの向きと粉末の位置との関係を説明するための概略図である。本実施形態に係る粉末コーティング装置100では、図4に示すように、各ターゲット6a,6b,6cは、ターゲット面の法線ha,hb,hcと平行にターゲット面をバレル3の内側側壁3aに向かって投影したときに、内側側壁3aに到達する手前で投影図が重なり合う向きに向けられていることが好ましい。各ターゲット6a,6b,6cから飛び出した元素(スパッタ粒子)が、バレル3に入れられた粉末7に対してより混ざり合った状態で到達するため、各ターゲットから万遍なくそれぞれの元素を取り込んだ薄膜を粉末の粒子の表面に成膜することができる。内側側壁3aに到達する手前とは、具体的には、粉末7の表面であることが好ましく、例えばバレル3の半径(主軸Cと内側側壁3aとの距離)をrとすると、内側側壁3aから主軸Cに向かって0.05r~0.15rの範囲である。また、各ターゲット6a,6b,6cは、ターゲット面の重心を通る法線が内側側壁3a上又は粉末7の粒子の表面上で重なり合う向きに向けられていることがより好ましい。図3では、ターゲット面の重心を通る法線(ha,hb,hc)が粉末の粒子の表面上で重なり合う向きに向けられている形態を図示した。各ターゲット6a,6b,6cの大きさが揃っていない場合であっても、各ターゲット6a,6b,6cから飛び出した元素がより混ざり合って粉末に到達することが可能となる。さらに内側側壁3a上又は粉末の粒子の表面上で投影図が完全に重なり合うように、ターゲットの大きさ又はシールドカバーの開口部、及び、ターゲットの向きを設定することが好ましく、この場合、膜の組成ムラが一層抑制される。 Next, refer to FIG. FIG. 4 is a schematic diagram for explaining the relationship between the direction of the target and the position of the powder. In the powder coating apparatus 100 according to the present embodiment, as shown in FIG. 4, each of the targets 6 a, 6 b, 6 c has a target surface parallel to the normal lines ha, hb, hc of the target surface to the inner side wall 3 a of the barrel 3. When projected toward the front, it is preferable that the projections are directed in an overlapping direction before reaching the inner side wall 3a. Since the elements (sputtered particles) jumping out from the targets 6a, 6b, and 6c reach the powder 7 put in the barrel 3 in a more mixed state, the elements are uniformly taken in from the targets. A thin film can be deposited on the surface of the powder particles. Specifically, the position before reaching the inner side wall 3a is preferably the surface of the powder 7. For example, when the radius of the barrel 3 (the distance between the main axis C and the inner side wall 3a) is r, the inner side wall 3a is separated from the inner side wall 3a. The range is from 0.05r to 0.15r toward the main axis C. The targets 6a, 6b, and 6c are more preferably oriented so that the normal passing through the center of gravity of the target surface overlaps on the inner side wall 3a or the surface of the particles of the powder 7. FIG. 3 illustrates a form in which normals (ha, hb, hc) passing through the center of gravity of the target surface are directed in an overlapping direction on the surface of the powder particles. Even when the sizes of the targets 6a, 6b, and 6c are not uniform, the elements jumping out from the targets 6a, 6b, and 6c can be mixed more and reach the powder. Furthermore, it is preferable to set the size of the target or the opening of the shield cover and the orientation of the target so that the projections completely overlap on the inner side wall 3a or on the surface of the powder particles. The composition unevenness is further suppressed.
 本実施形態に係る粉末コーティング装置100では、各ターゲット6a,6b,6cは、組成が互いに異なることが好ましい。合金膜、複酸化物膜、複窒化物膜、又は、複炭化物膜などを成膜する際に組成ムラを少なくすることができる。合金膜としては、白金ターゲットと金ターゲットを用いてPt‐Au合金膜をガラスビーズの表面に成膜する例がある。なお、各ターゲット6a,6b,6cの組成を同じとすれば、所定時間内での成膜量を増やしたことと同じ効果が得られる。すなわち、成膜速度を上げることができる。各ターゲット6a,6b,6cの組成の組み合わせは、適宜選択することができるが、例えばSiO,TiOなど酸化物ターゲットを用いる場合、成膜速度が遅いため,2枚又は3枚同時スパッタすることによって、成膜速度を上げることが出来る。例えば、ターゲットが3枚のとき、各ターゲット(6a,6b,6c)を(SiO,SiO,SiO)、(TiO,TiO,TiO)などにする。また,成膜速度の速いターゲット(例えば金属)と成膜速度の遅いターゲット(例えば酸化物)を用いて複合膜を形成したい場合、成膜速度の遅いターゲットの速度を相対的に上げるため、成膜速度の遅いターゲットの枚数を成膜速度の速いターゲットの枚数よりも多くセットする。例えば、ターゲットが3枚のとき、成膜速度の遅いターゲットを2枚セットし、成膜速度の速いターゲットを1枚セットする。一例をあげれば、各ターゲット(6a,6b,6c)を(Pt,SiO,SiO)にする。 In the powder coating apparatus 100 according to this embodiment, it is preferable that the targets 6a, 6b, and 6c have different compositions. Composition unevenness can be reduced when an alloy film, a double oxide film, a double nitride film, a double carbide film, or the like is formed. As an alloy film, there is an example in which a Pt—Au alloy film is formed on the surface of a glass bead using a platinum target and a gold target. In addition, if the composition of each target 6a, 6b, 6c is made the same, the same effect as increasing the film-forming amount within a predetermined time can be obtained. That is, the film formation rate can be increased. The combination of the compositions of the targets 6a, 6b, and 6c can be selected as appropriate. For example, when an oxide target such as SiO 2 or TiO 2 is used, the deposition rate is slow, so two or three are sputtered simultaneously. As a result, the deposition rate can be increased. For example, when the target is a three, each target (6a, 6b, 6c) a (SiO 2, SiO 2, SiO 2), to such (TiO 2, TiO 2, TiO 2). In addition, when a composite film is formed using a target with a high deposition rate (for example, metal) and a target with a low deposition rate (for example, an oxide), the target with a low deposition rate is relatively increased. The number of targets with a low film speed is set to be larger than the number of targets with a high film formation speed. For example, when there are three targets, two targets with a low film formation rate are set, and one target with a high film formation rate is set. For example, each target (6a, 6b, 6c) is set to (Pt, SiO 2 , SiO 2 ).
 次に図5を参照する。図5は、ターゲットユニットの第1角度調整機構による動きを説明するための概略図である。本実施形態に係る粉末コーティング装置100では、図5に示すように、各固定部10a,10b,10cは、取り付けられた各ターゲットの相対的な向き関係を固定化するために、ターゲットユニット2Uに組み込まれており、ターゲットユニット2Uは、主軸Cを中心に回転可能に取り付けられており、ターゲットユニット2Uの第1角度調整機構8がさらに設けられていることが好ましい。バレル3を回転させると粉末7が迫上がるが、この迫上がりの程度に対応して、ターゲットユニット2Uの角度を調整することができる。ターゲットユニット2Uは、例えば、1つの筐体に各スパッタリング装置2a,2b,2cを固定することによって各固定部10a,10b,10cを固定する形態、又は、図5のように各スパッタリング装置2a,2b,2cをアーム12で固定することによって各固定部10a,10b,10cを固定する形態がある。第1角度調整機構8は、各固定部10a,10b,10cに取り付けられた各ターゲット6a,6b,6cについて、それぞれ主軸Cとの距離を一定に保ちながら、角度の調整を行う。第1角度調整機構8によって、粉体7がバレル3の回転に伴って迫上がったとしても、各ターゲット6a,6b,6cと粉体7との相対的位置関係を一定に保つことができる。 Next, refer to FIG. FIG. 5 is a schematic diagram for explaining the movement of the target unit by the first angle adjustment mechanism. In the powder coating apparatus 100 according to the present embodiment, as shown in FIG. 5, each fixing portion 10 a, 10 b, 10 c is attached to the target unit 2 </ b> U in order to fix the relative orientation relationship of each attached target. It is preferable that the target unit 2U is mounted so as to be rotatable about the main axis C, and the first angle adjusting mechanism 8 of the target unit 2U is further provided. When the barrel 3 is rotated, the powder 7 rises. The angle of the target unit 2U can be adjusted in accordance with the degree of the rise. The target unit 2U has, for example, a configuration in which the fixing units 10a, 10b, and 10c are fixed by fixing the sputtering devices 2a, 2b, and 2c to one housing, or each sputtering device 2a, There is a form in which the fixing portions 10a, 10b, and 10c are fixed by fixing the arms 2b and 2c with the arm 12. The first angle adjusting mechanism 8 adjusts the angle of each target 6a, 6b, 6c attached to each fixing portion 10a, 10b, 10c while keeping the distance from the main axis C constant. Even if the powder 7 moves up with the rotation of the barrel 3 by the first angle adjusting mechanism 8, the relative positional relationship between the targets 6 a, 6 b, 6 c and the powder 7 can be kept constant.
 次に粉末の表面を均す機構を、図1及び図6を参照しながら説明する。図6は、本実施形態に係る粉末コーティング装置において、粉末を攪拌し、均す動きを説明する概略図である。均し部品は、時系列順に(a)(b)(c)(d)(e)の順に動き、再び(a)に戻って繰り返される。本実施形態に係る粉末コーティング装置100では、図1及び図6に示すように、バレル3の内側側壁3aのうち、バレル3の回転によって上方向に移動する部分の側壁に接した状態で配置され、粉末7が迫り上がる上限位置を定める粉末上昇抑制部品13と、粉末上昇抑制部品13よりも下方の位置で、バレル3の内側側壁3aに間隔をあけて配置され、主軸Cを回転中心として搖動運動をする粉末7の均し部品9と、を有する。バレル3の内側側壁3aのうち、バレル3の回転によって上方向に移動する部分の側壁とは、図6(a)で説明すると、バレル3の側壁が作る円の右半分の部分である。図6では、均し部品9が断面円形の丸棒型である場合を示した。 Next, the mechanism for leveling the powder surface will be described with reference to FIGS. FIG. 6 is a schematic diagram for explaining the movement of stirring and leveling the powder in the powder coating apparatus according to the present embodiment. The leveling parts move in the order of (a), (b), (c), (d), and (e) in chronological order, and return to (a) again to be repeated. In the powder coating apparatus 100 according to the present embodiment, as shown in FIGS. 1 and 6, the inner wall 3 a of the barrel 3 is disposed in contact with the side wall of the portion that moves upward by the rotation of the barrel 3. The powder rise restraining part 13 for determining the upper limit position where the powder 7 approaches, and the lower side of the powder rise restraining part 13 are arranged at intervals on the inner side wall 3a of the barrel 3 and swings with the main shaft C as the center of rotation. And a leveling part 9 of the powder 7 that moves. The side wall of the inner side wall 3a of the barrel 3 that moves upward by the rotation of the barrel 3 is the right half of the circle formed by the side wall of the barrel 3, as illustrated in FIG. FIG. 6 shows a case where the leveling part 9 is a round bar type with a circular cross section.
 粉末上昇抑制部品13は、ブラシ又はヘラであることが好ましい。ブラシ又はヘラは、粉末7をバレル3から効率よく掻き落とすことができる。粉末上昇抑制部品13は、例えば、図1のスパッタリング装置2を支持している部分に固定されている。このような構造とすることで粉末上昇抑制部品の取り付け構造を単純にすることができる。スパッタリング装置とモジュール化された部品(スパッタリング装置に固定されて一体化させられた部品)が、スパッタリング装置2を支持している部分になりえる。なお、スパッタリング装置2を支持している部分はアース対策が行われている箇所であることが好ましい。スパッタリング装置とモジュール化された部品は、例えば、図5に示したターゲットユニット2Uのアーム12である。1つの筐体に各スパッタリング装置2a,2b,2cを固定する場合には、スパッタリング装置とモジュール化された部品はその筐体である。また、粉末上昇抑制部品13は、スパッタリング装置2を支持している部分に固定される代わりに、スパッタリング装置のうちターゲット自体及びターゲットと電気的に導通している部分のどちらにも該当しない箇所、例えば、スパッタリング装置本体の筐体などアース対策が行われている箇所に連結されることによって固定されてもよい。図2において、粉末上昇抑制部品13はスパッタリング装置2c、特にターゲット自体及びターゲットと導通している部分のどちらにも該当しない箇所に連結されることによって固定されてもよい。このような構造とすることで粉末上昇抑制部品の取り付け構造を単純にすることができる。なお、粉末上昇抑制部品13は、支持棒を含んでいてもよい。支持棒を設けるときは、支持棒の一端が粉末上昇抑制部品13の本体部に接続され、支持棒の他端がスパッタリング装置のうちターゲット自体及びターゲットと導通している部分のどちらにも該当しない箇所、又は、スパッタリング装置とモジュール化された部品に連結される。このとき、支持棒はターゲット面とバレルの内壁面との間の空間を通らないように、長さと形状が決められていることが好ましい。粉末上昇抑制部品13は、バレル3が回転してもそれと一緒に動かない部分に固定されることで、粉末上昇抑制部品13は、バレル3の回転によって粉末7がバレル3と同様に回転してしまうことを阻止できる。また、少なくとも成膜中は、粉末上昇抑制部品13の位置は固定されているため、その位置が粉末7の迫上がりの上限位置となる。粉末上昇抑制部品13の位置と、スパッタ粒子の照射領域の境界位置と一致させることで、スパッタ粒子をより効率的に粉末7に照射できる。すなわち、粉末7の迫上がりを粉末上昇抑制部品13によって滞留させた状態でスパッタ粒子を当てることができるため、スパッタ粒子の照射効率を高めることができる。 The powder rise suppressing component 13 is preferably a brush or a spatula. The brush or spatula can scrape off the powder 7 from the barrel 3 efficiently. The powder rise suppression component 13 is fixed to, for example, a portion that supports the sputtering apparatus 2 of FIG. By adopting such a structure, it is possible to simplify the attachment structure of the powder rise suppressing component. A part modularized with the sputtering apparatus (part fixed and integrated with the sputtering apparatus) can be a part supporting the sputtering apparatus 2. In addition, it is preferable that the part which supports the sputtering apparatus 2 is a place where the grounding countermeasure is taken. The component modularized with the sputtering apparatus is, for example, the arm 12 of the target unit 2U shown in FIG. When each sputtering apparatus 2a, 2b, 2c is fixed to one housing, the sputtering apparatus and modularized parts are the housing. In addition, instead of being fixed to the part supporting the sputtering apparatus 2, the powder rise suppressing component 13 is a part that does not correspond to either the target itself or the part that is electrically connected to the target in the sputtering apparatus, For example, it may be fixed by being connected to a place where grounding measures are taken, such as a case of the sputtering apparatus main body. In FIG. 2, the powder rise suppressing component 13 may be fixed by being connected to a portion that does not correspond to either the sputtering apparatus 2 c, particularly the target itself or a portion that is electrically connected to the target. By adopting such a structure, it is possible to simplify the attachment structure of the powder rise suppressing component. Note that the powder rise suppressing component 13 may include a support bar. When providing the support rod, one end of the support rod is connected to the main body of the powder rise restraining component 13, and the other end of the support rod does not correspond to either the target itself or the portion of the sputtering apparatus that is electrically connected to the target. It is connected to a part or a modularized part with a sputtering apparatus. At this time, it is preferable that the length and shape of the support rod are determined so as not to pass through the space between the target surface and the inner wall surface of the barrel. The powder rise restraint component 13 is fixed to a portion that does not move together with the barrel 3 rotating, so that the powder rise restraint component 13 causes the powder 7 to rotate in the same manner as the barrel 3 due to the rotation of the barrel 3. Can be prevented. In addition, since the position of the powder rise restraining component 13 is fixed at least during film formation, the position becomes the upper limit position for the powder 7 to rise. By matching the position of the powder rise suppressing component 13 and the boundary position of the irradiation region of the sputtered particles, the sputtered particles can be irradiated onto the powder 7 more efficiently. That is, since the sputtered particles can be applied in a state where the surge of the powder 7 is retained by the powder rise suppressing component 13, the irradiation efficiency of the sputtered particles can be increased.
 均し部品9は、棒又は板であることが好ましい。均し部品9が棒であるとき、断面の形状が円形、半円形、楕円形、半楕円形又は、三角形・四角形などの多角形である形態がある。また、均し部品9が板であるとき、断面の形状が長辺と短辺をもつ矩形である形態がある。棒又は板は、粉末7の山7bを容易に均一にならすことができる。均し部品9は、図1に示した真空シール型軸受け9aによって気密保持された撹拌モーター9bの回転軸に固定されており、この回転軸を中心に図6(b)に示す角度(α+α)の範囲内を揺動する。この回転軸は、バレル3の回転軸である主軸Cと同軸関係にある。また、本実施形態では、角度θの範囲は、バレル回転時における粉末7の存在範囲を包含していることが好ましい。揺動角度および揺動速度は、粉末7の凝集状態に応じて適宜調節可能であるが、揺動速度が速すぎて粉末が舞ってしまうことが無い様な速度に設定する必要がある。例えば揺動速度は、2往復/分間に設定するが、1~10往復/分間であればよい。均し部品9を間欠的に揺動させてもよい。 The leveling part 9 is preferably a bar or a plate. When the leveling part 9 is a bar, the cross-sectional shape may be a circle, a semi-circle, an ellipse, a semi-ellipse, or a polygon such as a triangle or a rectangle. Further, when the leveling part 9 is a plate, there is a form in which the shape of the cross section is a rectangle having a long side and a short side. The bar or plate can easily level the pile 7b of the powder 7. The leveling component 9 is fixed to the rotating shaft of the agitating motor 9b that is airtightly held by the vacuum seal type bearing 9a shown in FIG. 1, and the angle (α 1 ) shown in FIG. Swing within the range of + α 2 ). This rotation axis is coaxial with the main axis C which is the rotation axis of the barrel 3. In the present embodiment, the range of the angle θ preferably includes the existence range of the powder 7 during the barrel rotation. The rocking angle and rocking speed can be adjusted as appropriate according to the agglomeration state of the powder 7, but it is necessary to set the rocking speed and the rocking speed so that the powder does not fly due to the rocking speed being too fast. For example, the swing speed is set to 2 reciprocations / minute, but may be 1 to 10 reciprocations / minute. The leveling component 9 may be intermittently swung.
 均し部品9は、バレル3の回転方向Rに沿って搖動運動をするときに(例えば図6(a)~図6(c)を参照。)、粉末上昇抑制部品13の下方で折り返すことが好ましい。粉末7の山7aの山頂と粉末上昇抑制部品13との間の箇所を折り返し地点とすることが好ましい。例えば、均し部品9が粉末上昇抑制部品13に接触する箇所を折り返し地点とするか、又は、粉末上昇抑制部品13よりも下方20mm以内の箇所を折り返し地点とすることがより好ましい。均し部品9が、バレル3の回転方向Rとは反対方向に搖動運動をするときに、粉末7の全体を均一に均すことができる。また、均し部品9は、粉末上昇抑制部品13が単にバレルの内壁に付着した粉末を掻き落とす場合よりも、攪拌効率は高くなる。 When the leveling part 9 performs a peristaltic motion along the rotation direction R of the barrel 3 (see, for example, FIGS. 6 (a) to 6 (c)), the leveling part 9 may be folded back below the powder rise suppressing part 13. preferable. It is preferable to make the point between the peak of the peak 7a of the powder 7 and the powder rise suppressing component 13 a turning point. For example, it is more preferable that a place where the leveling part 9 is in contact with the powder rise suppressing part 13 is set as a turning point, or a place within 20 mm below the powder rising suppressing part 13 is set as a turning point. When the leveling part 9 performs the peristaltic motion in the direction opposite to the rotation direction R of the barrel 3, the entire powder 7 can be leveled uniformly. Further, the leveling part 9 has higher stirring efficiency than the case where the powder rise suppressing part 13 simply scrapes off the powder adhering to the inner wall of the barrel.
 均し部品9は、バレル3の回転方向Rとは反対方向に搖動運動をするときに(例えば図6(d)~図6(e)を参照。)、バレル3の内側側壁3aのうち、最も低い位置3bを越えた位置3cで折り返すことが好ましい(例えば図6(e)~図6(a)を参照。)。均し部品9が、バレル3の回転方向に搖動運動をするときに、粉末7の全体を攪拌することができる。最も低い位置3bを越えた位置3cは、粉末7が存在する境界部分を越えた位置であることが好ましい。例えば、鉛直方向を0°として、回転方向Rとは反対方向に1~45°の位置を折り返し地点とする場合がある。 When the leveling part 9 performs a peristaltic movement in a direction opposite to the rotation direction R of the barrel 3 (see, for example, FIGS. 6 (d) to 6 (e)), of the inner side wall 3a of the barrel 3, It is preferable to turn back at a position 3c beyond the lowest position 3b (see, for example, FIGS. 6 (e) to 6 (a)). When the leveling part 9 performs a peristaltic motion in the rotation direction of the barrel 3, the entire powder 7 can be agitated. The position 3c beyond the lowest position 3b is preferably a position beyond the boundary where the powder 7 exists. For example, the vertical direction may be 0 °, and a position of 1 to 45 ° in the direction opposite to the rotation direction R may be used as the turning point.
 均し部品9の搖動運動と、粉体7の動きとの関係について説明する。まず、粉体7は、バレル3の回転によって、回転方向Rに迫上がる動きをする。このとき、粉体7は、山7aを作りながら迫上がる。ここで均し部品9は、バレル3の回転方向Rに沿って搖動運動をするときに(例えば図6(a)~図6(c)を参照。)、粉末7の山7aの中に入り込み(図6(b)を参照。)、さらに粉末上昇抑制部品13の手前まで動くときに、山7aを抜ける(図6(c)を参照。)。この結果、粉末7は、内部も含めて攪拌される。次に均し部品9が反転し、バレル3の回転方向Rとは反対方向に搖動運動をするときに(例えば図6(d)~図6(e)を参照。)、粉末7の山7bを均しながら移動する(図6(d)を参照。)。均し部品9の折り返し地点に到達すると(図6(e)を参照。)、粉末7の表面は平坦に均されている。この結果、スパッタ粒子が粉末7の全体に均一に当たりやすくなり、特に多元スパッタリングの場合には膜の組成ムラを抑制できる。なお、粉末7の表面が平坦化されるとは、当該表面がバレルの側壁の内面の形状に沿って均されることを意味する。ここで、バレル3に入れる粉末量は、均し部品9が、バレル3の回転方向Rに搖動運動をするときに粉末7の山7aの内部を通過し、かつ、バレルの回転方向Rとは反対方向に搖動運動をするときに粉末の山7bをならす量とする。 The relationship between the peristaltic motion of the leveling part 9 and the motion of the powder 7 will be described. First, the powder 7 moves up in the rotation direction R by the rotation of the barrel 3. At this time, the powder 7 moves up while creating a mountain 7a. Here, the leveling part 9 enters the pile 7a of the powder 7 when performing a peristaltic movement along the rotation direction R of the barrel 3 (see, for example, FIGS. 6 (a) to 6 (c)). (See FIG. 6B.) Further, when moving to the front of the powder rise restraining part 13, the mountain 7a is removed (see FIG. 6C). As a result, the powder 7 is stirred including the inside. Next, when the leveling part 9 is reversed and performs a peristaltic movement in a direction opposite to the rotation direction R of the barrel 3 (see, for example, FIGS. 6 (d) to 6 (e)), a peak 7b of the powder 7 is used. (See FIG. 6D). When the turn-up point of the leveling part 9 is reached (see FIG. 6E), the surface of the powder 7 is leveled flat. As a result, the sputtered particles are likely to hit the entire powder 7 uniformly, and in particular, in the case of multi-source sputtering, it is possible to suppress film composition unevenness. In addition, that the surface of the powder 7 is planarized means that the said surface is leveled along the shape of the inner surface of the side wall of a barrel. Here, the amount of powder to be put into the barrel 3 is that the leveling part 9 passes through the inside of the peak 7a of the powder 7 when the swinging movement 9 is performed in the rotation direction R of the barrel 3, and the rotation direction R of the barrel is The amount of powder pile 7b to be leveled when performing a peristaltic motion in the opposite direction.
 さらに図7~図9を用いて、均し部品9によって粉体7を攪拌する形態及び粉体7を均す形態についてより詳細に説明する。図7は、均し部品の断面形状の別例を示す概略図であり、(a)は均し部品が板形状であるときの例、(b)は均し部品が断面半円形状であるときの第1例、(c)は均し部品が断面半円形状であるときの第2例を示した。図8は、均し部品がバレルの回転方向Rに動くときの粉末の動きを説明するための概略図である。図8中、均し部品9を起点として延びる実線の矢印は、均し部品9の動いている方向(R方向と同じ方向)を示す。図9は、均し部品がバレルの回転方向Rとは反対方向に動くときの粉末の動きを説明するための概略図である。図9中、均し部品9を起点として延びる実線の矢印は、均し部品9の動いている方向(R方向とは逆方向)を示す。図7(a)及び図7(c)に示すように、均し部品9は、バレル3の回転方向Rに向いた第1面9cを有する。第1面9cは、主軸C(図7では不図示。図6を参照。)に近づくにつれて、回転方向Rとは逆方向に傾いていることが好ましい。すなわち、粉末上昇抑制部品13に近づくときは粉末7をすくい上げるように傾いていることが好ましい。図8に示すように、均し部品9が回転方向Rに動くときに、粉末7は第1面9cですくい上げられる。すなわち、第1面9cの下端から上方にある粉末7は、均し部品9の上方を通り、粉末7の流れ7f1を形成する。一方、第1面9cの下端よりも下方にある粉末7は、均し部品9の下方を通り、粉末7の流れ7f2を形成する。このように、均し部品9が第1面9cを有することによって、粉末7の攪拌の効率をより高めることができる。第1面9cは凹凸を有することが好ましく、粉末7を第1面9cですくい上げるときに、粉末7が混ざり合いやすくなる。なお、図7(b)に示す均し部品9が回転方向Rに動くときに、均し部品9に当たった粉末7は、上下に分かれて粉末の流れを形成するため、粉末の攪拌は行われることとなる。 7 to 9, the form in which the powder 7 is stirred by the leveling part 9 and the form in which the powder 7 is leveled will be described in more detail. FIG. 7 is a schematic view showing another example of the cross-sectional shape of the leveling part, where (a) shows an example when the leveling part has a plate shape, and (b) shows a leveling part with a semicircular cross section. (C) shows a second example when the leveling part has a semicircular cross section. FIG. 8 is a schematic view for explaining the movement of the powder when the leveling part moves in the rotation direction R of the barrel. In FIG. 8, a solid arrow extending from the smoothing part 9 as a starting point indicates a moving direction of the smoothing part 9 (the same direction as the R direction). FIG. 9 is a schematic view for explaining the movement of powder when the leveling part moves in the direction opposite to the rotation direction R of the barrel. In FIG. 9, a solid-line arrow extending from the leveling part 9 as a starting point indicates the direction in which the leveling part 9 is moving (the direction opposite to the R direction). As shown in FIGS. 7A and 7C, the leveling part 9 has a first surface 9 c that faces the rotation direction R of the barrel 3. The first surface 9c is preferably inclined in the direction opposite to the rotational direction R as it approaches the main axis C (not shown in FIG. 7, see FIG. 6). That is, when approaching the powder rise restraining part 13, it is preferable to incline so as to scoop up the powder 7. As shown in FIG. 8, when the leveling part 9 moves in the rotation direction R, the powder 7 is scooped up on the first surface 9c. That is, the powder 7 that is above the lower end of the first surface 9 c passes over the leveling part 9 and forms a flow 7 f 1 of the powder 7. On the other hand, the powder 7 below the lower end of the first surface 9 c passes below the leveling part 9 and forms a flow 7 f 2 of the powder 7. Thus, since the leveling part 9 has the 1st surface 9c, the efficiency of stirring of the powder 7 can be improved more. The first surface 9c preferably has irregularities, and when the powder 7 is scooped up by the first surface 9c, the powder 7 is easily mixed. When the leveling part 9 shown in FIG. 7B moves in the rotation direction R, the powder 7 hitting the leveling part 9 is divided into upper and lower parts to form a powder flow. Will be.
 次に、図7(a)及び図7(b)に示すように、均し部品9は、バレル3の回転方向Rとは逆方向に向いた第2面9dを有する。第2面9dは、バレルの半径方向を基準に傾いている、具体的には、主軸C(図7では不図示。C軸の位置に関しては図6を参照。)に近づくにつれて、回転方向Rとは逆方向に傾いていることが好ましい。すなわち、粉末上昇抑制部品13から遠ざかるときは粉末7を押し均すように傾いていることが好ましい。図9に示すように、均し部品9が回転方向Rとは逆方向に動くときに、粉末7は第2面9dで押し下げられる。すなわち、第2面9dの上端から下方にある粉末7は、回転方向Rとは逆方向に動かされるとともに、均し部品9の下方を通りやすくなり、粉末7の流れ7f4を形成する。一方、第2面9dの上端よりも上方にある粉末7は、均し部品9の上方を通り、粉末7の流れ7f3を形成する。なお、粉末7の量を少なくした場合には、粉末7の流れ7f3は見られない。そして均し部品9が通過した後の粉末7は、その表面が均されていることとなる。このように、均し部品9が第2面9dを有することによって、均し部品9が回転方向Rとは逆方向に動くときに、粉末7の表面を第2面9dで均すことができる。第2面9dは平滑面を有することが好ましく、粉末7を第2面9dでスムーズに押し下げることができる。なお、図7(c)に示す均し部品9が回転方向Rとは逆方向に動くときに、均し部品9に当たった粉末7は、上下に分かれて粉末の流れを形成するため、図7(a)及び図7(b)に示す均し部品9を用いた場合と比較して粉末7を厚めに均すことができる。 Next, as shown in FIGS. 7 (a) and 7 (b), the leveling part 9 has a second surface 9 d oriented in the direction opposite to the rotation direction R of the barrel 3. The second surface 9d is inclined with respect to the radial direction of the barrel. Specifically, as it approaches the main axis C (not shown in FIG. 7; see FIG. 6 for the position of the C axis), the rotation direction R It is preferable to be inclined in the opposite direction. That is, when moving away from the powder rise restraining part 13, it is preferable to incline so that the powder 7 is pressed. As shown in FIG. 9, when the leveling part 9 moves in the direction opposite to the rotation direction R, the powder 7 is pushed down by the second surface 9d. That is, the powder 7 below the upper end of the second surface 9d is moved in the direction opposite to the rotation direction R and easily passes under the leveling part 9, thereby forming a flow 7f4 of the powder 7. On the other hand, the powder 7 above the upper end of the second surface 9d passes over the leveling part 9 and forms a flow 7f3 of the powder 7. When the amount of the powder 7 is decreased, the flow 7f3 of the powder 7 is not seen. And the surface of the powder 7 after the leveling part 9 has passed is leveled. Thus, when the leveling component 9 has the second surface 9d, the surface of the powder 7 can be leveled by the second surface 9d when the leveling component 9 moves in the direction opposite to the rotation direction R. . The second surface 9d preferably has a smooth surface, and the powder 7 can be pushed down smoothly by the second surface 9d. When the leveling part 9 shown in FIG. 7C moves in the direction opposite to the rotation direction R, the powder 7 hitting the leveling part 9 is divided into upper and lower parts to form a powder flow. Compared with the case where the leveling part 9 shown in FIG. 7 (a) and FIG. 7 (b) is used, the powder 7 can be leveled thicker.
 なお、均し部品9は、角棒又は板の形状としたとき、角があると異常放電の原因となる場合があるため、角を丸ませておくことが好ましい。 In addition, when the leveling part 9 is in the shape of a square bar or a plate, if there is a corner, it may cause abnormal discharge, so it is preferable to round the corner.
 均し部品9の搖動運動の速度は、バレル3の回転方向Rに沿って動かすときと、その反対方向に動かすときとで、同じであることが好ましい。また、均し部品9の搖動運動の速度を、回転方向Rに沿って動かすときと、その反対方向に動かすときとで、異なることとしてもよい。 The speed of the peristaltic movement of the leveling part 9 is preferably the same when moving along the rotational direction R of the barrel 3 and when moving in the opposite direction. Further, the speed of the peristaltic movement of the leveling part 9 may be different when moving along the rotation direction R and when moving in the opposite direction.
 次に図10を参照して、粉末上昇抑制部品、均し部品及びターゲットのそれぞれの位置関係をさらに詳細に説明する。図10は、粉末上昇抑制部品、均し部品及びターゲットのそれぞれの位置関係を説明するための概略断面図であり、ターゲットが1つ設けられている形態を示している。ここで、主軸Cを垂直に横断し、粉末上昇抑制部品13、均し部品9及びターゲット6を通過する横断面において、粉末上昇抑制部品13、均し部品9及びターゲット6のそれぞれの位置を極座標上で表すこととする。主軸Cの位置を極座標の原点Oとし、主軸Cを通る垂直下方線を角度0°の始線Sとし、バレル3の回転方向が始線に対して正の角度をとる方向とする。粉末上昇抑制部品13が固定されている角度をβとする。なお、粉末上昇抑制部品13の極座標における動径は、バレル3の内側側壁のうち、バレル3の回転によって上方向に移動する部分の側壁に粉末上昇抑制部品13が接した状態で配置されたときの原点Oから粉末上昇抑制部品13までの距離である。 Next, with reference to FIG. 10, the positional relationship among the powder rise suppression component, the leveling component, and the target will be described in more detail. FIG. 10 is a schematic cross-sectional view for explaining the positional relationship among the powder rise suppressing component, the leveling component, and the target, and shows a form in which one target is provided. Here, in the cross section which crosses the main axis C perpendicularly and passes through the powder rise restraining part 13, the smoothing part 9 and the target 6, the respective positions of the powder rise restraining part 13, the smoothing part 9 and the target 6 are polar coordinates. It shall be expressed above. The position of the main axis C is the origin O of polar coordinates, the vertical downward line passing through the main axis C is the start line S at an angle of 0 °, and the rotation direction of the barrel 3 is the direction that takes a positive angle with respect to the start line. Let β be the angle at which the powder rise suppression component 13 is fixed. In addition, the radius of movement in the polar coordinates of the powder rise restraining part 13 is when the powder rise restraining part 13 is in contact with the side wall of the inner side wall of the barrel 3 that moves upward due to the rotation of the barrel 3. The distance from the origin O to the powder rise restraining part 13.
 図10に示すように横断面上のターゲット6の個数が1であるとき、ターゲット面の法線又はその延長線であるとともに主軸Cと交差する線hの角度1をθとする。角度θをとる線hを中心として、均し部品9の搖動の振り幅の最大角度を正の方向へα及び負の方向へαとする。このとき、角度β、角度θ、角度α及び角度αが数1、数2、数3及び数4を満たすことが好ましい。
(数1)0°<β-(θ+α)<45°
(数2)90°≦β<135°
(数3)0°≦θ≦45°
(数4)0°<α<60°
As shown in FIG. 10, when the number of targets 6 on the cross section is 1, an angle 1 of a line h that is a normal line of the target surface or an extension line thereof and intersects the main axis C is defined as θ. Around a line h taking angle theta, and alpha 2 the maximum angle of swing width to the positive alpha 1 and the negative direction to the direction of rocking of the leveling part 9. At this time, it is preferable that the angle β, the angle θ, the angle α 1, and the angle α 2 satisfy the expressions 1, 2, 3, and 4.
(Equation 1) 0 ° <β− (θ + α 1 ) <45 °
(Equation 2) 90 ° ≦ β <135 °
(Equation 3) 0 ° ≦ θ ≦ 45 °
(Equation 4) 0 ° <α 2 <60 °
 図10で示した形態の場合、線hの角度1であるθは、数3を満たす。すなわち、ターゲット6のターゲット面は、垂直下方に向けられているか、バレル3の回転方向Rの方向に傾けられている。バレル3が回転すると、粉末(不図示)が回転方向R側に迫り上げられる。そこで、ターゲット面が迫り上げられた粉末に対して正面に向くように、第1角度調整機構を用いてθを設定することが好ましい。θが0°未満、即ち、負の角度であると、迫上がった粉末に対してスパッタ粒子が効率よく当たらない恐れがある。θが45°を超えると、粉末の迫上がりに対して、過剰に傾けているおそれがあり、粉末に対してスパッタ粒子が効率よく当たらない恐れがある。θは10°以上とすることか好ましく、15°以上とすることがより好ましい。また、θは35°以下とすることか好ましく、30°以下とすることがより好ましい。 In the case of the form shown in FIG. 10, θ, which is the angle 1 of the line h, satisfies Equation 3. That is, the target surface of the target 6 is directed vertically downward or inclined in the direction of the rotation direction R of the barrel 3. When the barrel 3 rotates, powder (not shown) is pushed up in the rotation direction R side. Therefore, it is preferable to set θ using the first angle adjustment mechanism so that the target surface faces the front with respect to the pushed-up powder. If θ is less than 0 °, that is, a negative angle, there is a possibility that the sputtered particles do not efficiently hit the swelled powder. If θ exceeds 45 °, there is a possibility that the powder will be excessively inclined with respect to the surge of the powder, and there is a possibility that the sputtered particles do not efficiently hit the powder. θ is preferably 10 ° or more, and more preferably 15 ° or more. Further, θ is preferably 35 ° or less, and more preferably 30 ° or less.
 粉末上昇抑制部品13が固定されている角度βは、数2を満たす。βが90°未満であると、粉末上昇抑制部品13に対してスパッタ粒子が当たりやすくなり、粉末に不純物が入りやすくなる恐れがある。βが135°以上であると、粉末がバレル3から離されたときに、粉末が舞い上がってしまう恐れがある。βは92°以上とすることか好ましく、95°以上とすることがより好ましい。また、βは110°以下とすることか好ましく、105°以下とすることがより好ましい。 The angle β at which the powder rise restraining part 13 is fixed satisfies Equation 2. If β is less than 90 °, the sputtered particles are likely to hit the powder rise suppressing component 13 and impurities may easily enter the powder. If β is 135 ° or more, the powder may rise when the powder is separated from the barrel 3. β is preferably 92 ° or more, and more preferably 95 ° or more. Β is preferably 110 ° or less, and more preferably 105 ° or less.
 αとαは、均し部品9の搖動によって迫り上げられた粉末の全体が均されるようにそれぞれ設定されることが好ましい。αは、αと等しくしてもよいが、必ずしも等しくする必要はなく、均し部品9が迫り上げられた粉末の最下端を含めて又は最下端近傍まで均すために60°未満で設定する。αは、θとβの設定角度を考慮した上で数1を満たすように決められる。数1によれば、均し部品9の搖動のR方向の上限は、粉末上昇抑制部品13よりも下方とする[{β-(θ+α)}>0°]。なお、均し部品9が粉末上昇抑制部品13に接するまで搖動したとき、{β-(θ+α)}=0°となる。一方、数1によれば、均し部品9の搖動のR方向の下限は、粉末上昇抑制部品13よりも下方であって{β-(θ+α)}が45°よりも小さい位置とする。{β-(θ+α)}が45°以上であると、粉末上昇抑制部品13が均し部品9によって粉末が均される領域から離れた上方に位置することになるため、粉末上昇抑制部品13は単にバレル3に付着した粉末を掻き落とす役割しかしない。さらに、粉末上昇抑制部品13が均し部品9によって粉末が均される領域から離れるため、バレル3の内壁面が露出する場合があり、このとき、バレル3の内壁面にスパッタ粒子が到達し、成膜される恐れがある。{β-(θ+α)}は5°以上とすることか好ましく、15°以上とすることがより好ましい。また、{β-(θ+α)}は40°以下とすることか好ましく、30°以下とすることがより好ましい。 α 1 and α 2 are preferably set so that the whole of the powder pushed up by the swinging of the leveling part 9 is leveled. α 2 may be equal to α 1 , but is not necessarily equal and is less than 60 ° so that the leveling part 9 is leveled to include the bottom end of the pressed-up powder or to near the bottom end. Set. α 1 is determined so as to satisfy Equation 1 in consideration of the set angles of θ and β. According to Equation 1, the upper limit in the R direction of the swing of the smoothing part 9 is set lower than the powder rise suppressing part 13 [{β− (θ + α 1 )}> 0 °]. When the leveling part 9 is swung until it comes into contact with the powder rise suppressing part 13, {β− (θ + α 1 )} = 0 °. On the other hand, according to Equation 1, the lower limit in the R direction of the swing of the smoothing part 9 is lower than the powder rise suppressing part 13 and {β− (θ + α 1 )} is smaller than 45 °. If {β− (θ + α 1 )} is 45 ° or more, the powder rise restraining part 13 is positioned above the area where the powder is smoothed by the smoothing part 9, so the powder rise restraining part 13 Merely serves to scrape off the powder adhering to the barrel 3. Furthermore, since the powder rise suppression component 13 is away from the region where the powder is leveled by the leveling component 9, the inner wall surface of the barrel 3 may be exposed. At this time, sputter particles reach the inner wall surface of the barrel 3, There is a risk of film formation. {Β- (θ + α 1 )} is preferably 5 ° or more, and more preferably 15 ° or more. Further, {β− (θ + α 1 )} is preferably 40 ° or less, and more preferably 30 ° or less.
 次に図11を参照して、粉末上昇抑制部品、均し部品及びターゲットのそれぞれの位置関係について別形態を説明する。図11は、粉末上昇抑制部品、均し部品及びターゲットのそれぞれの位置関係を説明するための概略断面図であり、ターゲットが奇数個(具体的には3つ)設けられている形態を示している。上記位置関係について、極座標を用いて表すことについては図10の場合と同様とする。 Next, with reference to FIG. 11, another embodiment of the positional relationship between the powder rise suppressing component, the leveling component, and the target will be described. FIG. 11 is a schematic cross-sectional view for explaining the positional relationship among the powder rise suppressing component, the leveling component, and the target, and shows a mode in which an odd number (specifically three) targets are provided. Yes. About the said positional relationship, it is the same as that of the case of FIG. 10 about expressing using a polar coordinate.
 図11に示すように横断面上のターゲットの個数が奇数(但し、1を除く)であるとき、中央に位置するターゲット6bのターゲット面の法線hb又はその延長線であるとともに主軸Cと交差する線の角度2をθとする。中央に位置するターゲットは、図11の場合、ターゲット6bである。角度θをとる線hbを中心として、均し部品9の搖動の振り幅の最大角度を正の方向へα及び負の方向へαとする。このとき、角度β、角度θ、角度α及び角度αが数1、数2、数3及び数4を満たすことが好ましい。中央に位置するターゲット6b以外の他のターゲット6a,6cは、線hbの線対称の関係で配置されていることが好ましい。 As shown in FIG. 11, when the number of targets on the cross section is an odd number (excluding 1), it is a normal hb of the target surface of the target 6b located at the center or an extension thereof and intersects with the main axis C. The angle 2 of the line to be performed is θ. In the case of FIG. 11, the target located in the center is the target 6b. About a line hb taking angle theta, and alpha 2 the maximum angle of swing width to the positive alpha 1 and the negative direction to the direction of rocking of the leveling part 9. At this time, it is preferable that the angle β, the angle θ, the angle α 1, and the angle α 2 satisfy the expressions 1, 2, 3, and 4. The other targets 6a and 6c other than the target 6b located at the center are preferably arranged in a line symmetrical relationship with the line hb.
 図11で示した形態の場合、線hbの角度2であるθは、数3を満たす。すなわち、ターゲット6bのターゲット面は、垂直下方に向けられているか、バレル3の回転方向Rの方向に傾けられている。ターゲット6aのターゲット面とターゲット6bのターゲット面は、その法線がバレル3の内壁面に近づくにつれてそれぞれ線hbに近づく方向を向いていることが好ましい。ターゲット6a,6b,6cのターゲット面から飛び出すスパッタ粒子が混ざって粉末(不図示)に到達しやすくなる。図11におけるθ、αとα2、β及び{β-(θ+α)}の関係は、図10で説明したθと同様とすることが好ましい。 In the case of the form shown in FIG. 11, θ, which is the angle 2 of the line hb, satisfies Equation 3. That is, the target surface of the target 6 b is directed vertically downward or inclined in the direction of the rotation direction R of the barrel 3. It is preferable that the target surface of the target 6a and the target surface of the target 6b face the direction approaching the line hb as the normal line approaches the inner wall surface of the barrel 3, respectively. Sputtered particles popping out from the target surfaces of the targets 6a, 6b and 6c are mixed and easily reach the powder (not shown). The relationship between θ, α 1 and α 2, β, and {β− (θ + α 1 )} in FIG. 11 is preferably the same as θ described in FIG.
 次に図12を参照して、粉末上昇抑制部品、均し部品及びターゲットのそれぞれの位置関係について別形態を説明する。図12は、粉末上昇抑制部品、均し部品及びターゲットのそれぞれの位置関係を説明するための概略断面図であり、ターゲットが偶数個(具体的には2つ)設けられている形態を示している。上記位置関係について、極座標を用いて表すことについては図10の場合と同様とする。 Next, with reference to FIG. 12, another embodiment of the positional relationship between the powder rise suppressing part, the leveling part and the target will be described. FIG. 12 is a schematic cross-sectional view for explaining the positional relationship between the powder rise suppressing component, the leveling component, and the target, and shows an embodiment in which an even number (specifically, two) of targets are provided. Yes. About the said positional relationship, it is the same as that of the case of FIG. 10 about expressing using a polar coordinate.
 図12に示すように横断面上のターゲットの個数が偶数であるとき、中央に位置する2つのターゲット6a,6cのターゲット面の法線ha,hc又はその延長線が交差する点Dと主軸Cとを結ぶ線の角度3をθとする。中央に位置する2つのターゲットは、図12の場合、ターゲット6a,6cである。ターゲットの個数が例えば4個であるとき(不図示)、両端のターゲットに挟まれた2つのターゲットが中央に位置する2つのターゲットである。角度θをとるCとDを結ぶ線jを中心として、均し部品9の搖動の振り幅の最大角度を正の方向へα及び負の方向へαとする。このとき、角度β、角度θ、角度α及び角度αが数1、数2、数3及び数4を満たすことが好ましい。ターゲット6a,6cは、線jの線対称の関係で配置されていることが好ましい。 As shown in FIG. 12, when the number of targets on the cross section is an even number, the normal D ha and hc of the target surfaces of the two targets 6a and 6c located at the center or the extension D intersect with the principal axis C. An angle 3 of a line connecting the two is θ. In the case of FIG. 12, the two targets located in the center are the targets 6a and 6c. For example, when the number of targets is four (not shown), the two targets sandwiched between the targets at both ends are the two targets located in the center. Around the line j joining the C and D to take the angle theta, and alpha 2 the maximum angle of swing width to the positive alpha 1 and the negative direction to the direction of rocking of the leveling part 9. At this time, it is preferable that the angle β, the angle θ, the angle α 1, and the angle α 2 satisfy the expressions 1, 2, 3, and 4. The targets 6a and 6c are preferably arranged in a line symmetrical relationship with the line j.
 図12で示した形態の場合、線jの角度3であるθは、数3を満たす。すなわち、ターゲット6a,6cのターゲット面は、点Dに向けられているが、点Dは、点Cの垂直下方に位置するか、又はバレル3の回転方向Rの方向側にずれた位置に配置されている。ターゲット6a,6cのターゲット面から飛び出すスパッタ粒子が混ざって粉末(不図示)に到達しやすくなる。ターゲットが4個以上の偶数個である場合、それらのターゲット面は、その法線がバレル3の内壁面に近づくにつれてそれぞれ線jに近づく方向を向いていることが好ましい。図12におけるθ、αとα2、β及び{β-(θ+α)}の関係は、図10で説明したそれらの関係と同様とすることが好ましい。 In the case of the form shown in FIG. 12, θ, which is the angle 3 of the line j, satisfies Equation 3. That is, the target surfaces of the targets 6a and 6c are directed to the point D, but the point D is positioned vertically below the point C or arranged at a position shifted to the direction side of the rotation direction R of the barrel 3. Has been. Sputtered particles popping out from the target surfaces of the targets 6a and 6c are mixed and easily reach the powder (not shown). In the case where the number of targets is an even number of four or more, it is preferable that the target surfaces face the direction approaching the line j as the normal line approaches the inner wall surface of the barrel 3. The relationships among θ, α 1 and α 2, β, and {β− (θ + α 1 )} in FIG. 12 are preferably the same as those described with reference to FIG.
 次に第一角度調整機構8を有する形態についてさらに詳細に説明する。まず図10を参照してターゲットが一つある形態(A形態という。)について説明する。本実施形態に係る粉末コーティング装置では、ターゲット6の傾きθを変更し、かつ、数3の角度範囲のいずれかの角度において傾きの固定が可能な第一角度調整機構(図1及び図5の符号8で示され、図10では不図示である。)を有することが好ましい。図10では、粉末上昇抑制部品13は、支持棒13sを介してスパッタリング装置2、特にスパッタリング装置のうちターゲット自体及びターゲットと導通している部分のどちらにも該当しない箇所に連結される。スパッタリング装置2が図5に示すようにアーム12に固定されて、スパッタリング装置2cに対してアーム12がモジュール化されている場合、粉末上昇抑制部品13は、支持棒13sを介してアーム12に連結されていてもよい。第一角度調整機構8によってターゲット6を傾けて固定すると、その傾けた角度と同じ角度分だけ、粉末上昇抑制部品13の位置を連動して移動させることができる。このように簡易な機構によって、ターゲット面と粉末上昇抑制部品13の位置関係がターゲット6の傾きによらず一定とすることができる。 Next, the embodiment having the first angle adjusting mechanism 8 will be described in more detail. First, a form (referred to as form A) having one target will be described with reference to FIG. In the powder coating apparatus according to the present embodiment, a first angle adjustment mechanism (in FIGS. 1 and 5) that can change the inclination θ of the target 6 and can fix the inclination at any angle in the angle range of Formula 3. It is preferably indicated by 8 and not shown in FIG. In FIG. 10, the powder rise suppressing component 13 is connected to a portion that does not correspond to either the sputtering apparatus 2, in particular, the target itself or a portion that is electrically connected to the target, through the support rod 13 s. When the sputtering apparatus 2 is fixed to the arm 12 as shown in FIG. 5 and the arm 12 is modularized with respect to the sputtering apparatus 2c, the powder rise suppression component 13 is connected to the arm 12 via the support bar 13s. May be. When the target 6 is tilted and fixed by the first angle adjusting mechanism 8, the position of the powder rise suppressing component 13 can be moved in conjunction with the tilted angle by the same angle. Thus, the positional relationship between the target surface and the powder rise suppressing component 13 can be made constant regardless of the inclination of the target 6 by a simple mechanism.
 図11を参照してターゲットが奇数(具体的には3つ)ある形態(B形態という。)においては、バレル3の内側側壁のうち、バレル3の回転によって上方向に移動する部分の側壁に最も近いスパッタリング装置2cのうちターゲット自体及びターゲットと導通している部分のどちらにも該当しない箇所に支持棒13sを連結することによって、第一角度調整機構8によってターゲット6a,6b,6cを傾けて固定すると、その傾けた角度と同じ角度分だけ、粉末上昇抑制部品13の位置を連動して移動させることができる。また、スパッタリング装置2a,2bのうちターゲット自体及びターゲットと導通している部分のどちらにも該当しない箇所に支持棒13sを連結してもよい。支持棒13sは図5に示したアーム12に連結されていてもよい。 Referring to FIG. 11, in the form with an odd number (specifically, three) of targets (referred to as form B), on the side wall of the portion of the inner side wall of barrel 3 that moves upward due to the rotation of barrel 3. The target 6a, 6b, 6c is tilted by the first angle adjusting mechanism 8 by connecting the support bar 13s to a portion of the nearest sputtering apparatus 2c that does not correspond to either the target itself or a portion conducting to the target. When fixed, the position of the powder rise suppressing component 13 can be moved in conjunction with the tilted angle by the same angle. Further, the support bar 13s may be connected to a portion of the sputtering apparatuses 2a and 2b that does not correspond to either the target itself or a portion conducting to the target. The support bar 13s may be connected to the arm 12 shown in FIG.
 図12を参照してターゲットが偶数(具体的には2つ)ある形態(C形態という。)においては、バレル3の内側側壁のうち、バレル3の回転によって上方向に移動する部分の側壁に最も近いスパッタリング装置2cのうちターゲット自体及びターゲットと導通している部分のどちらにも該当しない箇所に支持棒13sを連結することによって、第一角度調整機構8によってターゲット6a,6cを傾けて固定すると、その傾けた角度と同じ角度分だけ、粉末上昇抑制部品13の位置を連動して移動させることができる。また、スパッタリング装置2aのうちターゲット自体及びターゲットと導通している部分のどちらにも該当しない箇所に支持棒13sを連結してもよい。支持棒13sは図5に示したアーム12に連結されていてもよい。 Referring to FIG. 12, in the form with an even number (specifically, two) of targets (referred to as “C form”), on the side wall of the portion of the inner side wall of barrel 3 that moves upward by the rotation of barrel 3. When the target 6a, 6c is tilted and fixed by the first angle adjusting mechanism 8 by connecting the support bar 13s to a portion of the nearest sputtering apparatus 2c that does not correspond to either the target itself or a portion conducting to the target. The position of the powder rise suppressing component 13 can be moved in conjunction with the tilted angle by the same angle. Further, the support bar 13s may be connected to a portion of the sputtering apparatus 2a that does not correspond to either the target itself or a portion that is electrically connected to the target. The support bar 13s may be connected to the arm 12 shown in FIG.
 次にA形態、B形態及びC形態において、ターゲット面と粉末上昇抑制部品の好ましい位置関係について説明する。図10に示すA形態においては、粉末上昇抑制部品13は、ターゲット面を延長する線Eとバレル3の内側側壁との交差部分eよりも上側に配置された状態で固定されていることが好ましい。また、図11に示すB形態においては、粉末上昇抑制部品13は、中央に位置するターゲット6bのターゲット面を延長する線Ebとバレル3の内側側壁との交差部分ebよりも上側に配置された状態で固定されていることが好ましい。さらに、図12に示すC形態においては、粉末上昇抑制部品13は、中央に位置する2つのターゲット6a,6cのターゲット面の向かい合う両端を結ぶ線Gとバレル3の内側側壁との交差部分gよりも上側に配置された状態で固定されていることが好ましい。粉末上昇抑制部品13が、ターゲット面よりも上側に配置されているため、スパッタ粒子の堆積による汚染を抑制することができる。 Next, in the A form, the B form, and the C form, a preferable positional relationship between the target surface and the powder rise suppressing component will be described. In the A form shown in FIG. 10, the powder rise suppressing component 13 is preferably fixed in a state of being arranged above the intersecting portion e between the line E extending the target surface and the inner side wall of the barrel 3. . Moreover, in the B form shown in FIG. 11, the powder rise suppressing component 13 is disposed above the intersection eb between the line Eb extending the target surface of the target 6 b located at the center and the inner side wall of the barrel 3. It is preferably fixed in a state. Furthermore, in the C form shown in FIG. 12, the powder rise suppressing component 13 is based on the intersection g between the line G connecting the opposite ends of the target surfaces of the two targets 6 a and 6 c located at the center and the inner side wall of the barrel 3. Also, it is preferable to be fixed in a state of being disposed on the upper side. Since the powder rise suppressing component 13 is disposed above the target surface, contamination due to deposition of sputtered particles can be suppressed.
 次に、第一角度調整機構8に加えて、さらに、粉末上昇抑制部品13を位置可変で固定可能な第二角度調整機構を備えた形態について説明する。図10、図11及び図12で示したA形態、B形態及びC形態では、粉末上昇抑制部品13を支持する支持棒13sをスパッタリング装置のうちターゲット自体及びターゲットと導通している部分のどちらにも該当しない箇所に直接連結する形態としていたが、そのような形態とする代わりに、スパッタリング装置のうちターゲット自体及びターゲットと導通している部分のどちらにも該当しない箇所又はスパッタリング装置とモジュール化された部品に可動式の台を設け、その台に粉末上昇抑制部品13を支持する支持棒13sを連結する変形形態としてもよい(不図示)。可動式の台が第二角度調整機構である。粉末上昇抑制部品13は、第二角度調整機構によって、A形態、B形態及びC形態と同様の位置に固定することができる。ターゲットの傾きと独立して、粉末上昇抑制部品13の固定位置をきめ細やかに調整することができ、粉末上昇抑制部品がスパッタリングによって汚染されることを抑制することができる。 Next, in addition to the first angle adjustment mechanism 8, a mode provided with a second angle adjustment mechanism capable of fixing the powder rise suppression component 13 with a variable position will be described. In the A form, B form, and C form shown in FIG. 10, FIG. 11 and FIG. 12, the support rod 13s that supports the powder rise restraining component 13 is placed on either the target itself or the portion that is electrically connected to the target in the sputtering apparatus. However, instead of adopting such a form, it is modularized with a part that does not correspond to either the target itself or a portion that is electrically connected to the target or a sputtering apparatus. It is good also as a deformation | transformation form which provides a movable base to the components and connects the support bar 13s which supports the powder raise suppression component 13 to the stand (not shown). A movable stage is the second angle adjustment mechanism. The powder rise suppressing component 13 can be fixed at the same position as the A form, the B form, and the C form by the second angle adjustment mechanism. Independent of the inclination of the target, the fixing position of the powder rise suppressing component 13 can be finely adjusted, and contamination of the powder rise suppressing component by sputtering can be suppressed.
(変形例形態1)
 バレル3を不図示の真空室に入れてもよい。この場合、バレル3にはシールを施す必要がなくなるため、バレルの構造を簡易にすることができる。
(Modification 1)
The barrel 3 may be placed in a vacuum chamber (not shown). In this case, since it is not necessary to seal the barrel 3, the structure of the barrel can be simplified.
 以下、実施例を示しながら本発明についてさらに詳細に説明するが、本発明は実施例に限定して解釈されない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not construed as being limited to the examples.
(実施例1)
 図1に示した粉末コーティング装置を用いて、ガラスビーズの表面にPt‐Au合金薄膜を成膜した粉末を作製する。まず初めに、Ptターゲット(純度99.9%、ターゲット面は150×35mm)を1枚準備し、固定部10aに取り付けた。またAuターゲット(純度99.99%、ターゲット面は150×35mm)を1枚準備し、固定部10cに取り付けた。固定部10bにはターゲットを取り付けずにブランクとした。スパッタリング電源1は高周波電源(周波数13.56MHz)とした。次に、バレル3内に粉末を入れない状態で3×10-3Pa以下まで真空に引いた後、アルゴンガスを流して、0.4Paの圧力を保つように調整し、スパッタを行い、高周波電源の出力に応じたPtターゲットとAuターゲットそれぞれのレートを確認した。続いて、バレル3に直径1mmのガラスビーズ150gを投入し,1.3×10-3Paまで真空引きを行いった後、アルゴンガスを流して,0.4Paの圧力を保つように調整した。その後、Ptターゲットに200W、Auターゲットに100Wの出力をかけ、バレル3を回転させ、均し部品9(丸棒型)を搖動させながら、ガラスビーズ表面に成膜を行った。バレルに入れる粉末量(150g)は、均し部品が、バレルの回転方向に搖動運動をするときに粉末の山の内部を通過し、かつ、バレルの回転方向とは反対方向に搖動運動をするときに粉末の山をならす量であった。なお、上記の高周波電源の出力は、前述で確認したスパッタレートから、Pt-50wt%Auになるように計算して求めた。成膜時間は30分間とした。成膜後取り出したガラスビーズを分析したところ、Pt-48wt%Au合金薄膜が表面に成膜されていることが確認された。薄膜の組成は、ICP発光分光分析装置(リガク製SPECTRO‐CIROS)を用いて求めた。
Example 1
A powder having a Pt—Au alloy thin film formed on the surface of a glass bead is produced using the powder coating apparatus shown in FIG. First, one Pt target (purity 99.9%, target surface 150 × 35 mm) was prepared and attached to the fixing portion 10a. Also, one Au target (purity 99.99%, target surface 150 × 35 mm) was prepared and attached to the fixing portion 10c. A blank was used without attaching a target to the fixed portion 10b. The sputtering power source 1 was a high frequency power source (frequency 13.56 MHz). Next, after evacuating to 3 × 10 −3 Pa or less with no powder in the barrel 3, argon gas is flowed and adjusted to maintain a pressure of 0.4 Pa, sputtering is performed, The rates of the Pt target and Au target according to the output of the power source were confirmed. Subsequently, 150 g of glass beads having a diameter of 1 mm were put into the barrel 3 and evacuated to 1.3 × 10 −3 Pa, and then adjusted to maintain a pressure of 0.4 Pa by flowing argon gas. . Then, 200 W was applied to the Pt target and 100 W was applied to the Au target, and the barrel 3 was rotated to form a film on the glass bead surface while the leveling part 9 (round bar type) was being swung. The amount of powder (150 g) placed in the barrel is such that when the leveling part is peristaltic in the direction of rotation of the barrel, it passes through the inside of the pile of powder and perturbs in the direction opposite to the direction of rotation of the barrel. Sometimes it was the amount to level the powder pile. The output of the high frequency power source was obtained by calculating from the sputtering rate confirmed above so that Pt-50 wt% Au. The film formation time was 30 minutes. Analysis of the glass beads taken out after the film formation confirmed that a Pt-48 wt% Au alloy thin film was formed on the surface. The composition of the thin film was determined using an ICP emission spectroscopic analyzer (SPECTRO-CIROS manufactured by Rigaku).
(実施例2)
 図1に示した粉末コーティング装置を用いて、ガラスビーズの表面にTi薄膜(下層)、Au薄膜(上層)の2層膜を成膜した粉末を作製する。まず初めに、Tiターゲット(純度99.9%、ターゲット面は150×35mm)を1枚準備し、固定部10bに取り付けた。またAuターゲット(純度99.99%、ターゲット面は150×35mm)を1枚準備し、固定部10cに取り付けた。固定部10aにはターゲットを取り付けずにブランクとした。スパッタリング電源1は高周波電源(周波数13.56MHz)とした。次に、バレル3内に粉末を入れない状態でスパッタを行い、3×10-3Pa以下まで真空に引いた後,アルゴンガスを流して、0.4Paの圧力を保つように調整し、高周波電源の出力に応じたTiターゲットとAuターゲットそれぞれのレートを確認した。続いて、バレル3に直径1mmのガラスビーズ150gを投入し,2.1×10-3Paまで真空引きを行った後、アルゴンガスを流して、0.4Paの圧力を保つように調整した。その後、まずTiターゲットのみに200Wを印可し、バレル3を回転させ、均し部品9(丸棒型)を搖動させながら、30分間スパッタを行い、ガラスビーズ表面にTi膜を成膜した。続いて、Auターゲットのみに200Wを印可し、バレル3を回転させ、均し部品9(丸棒型)を搖動させながら、1時間スパッタを行い、Ti膜の表面にさらにAu膜を成膜した。その結果、途中でバレル3を大気開放することなく、Ti(下層)/Au(上層)の2層が成膜されたガラスビーズを得られた。バレルに入れる粉末量(150g)は、均し部品が、バレルの回転方向に搖動運動をするときに粉末の山の内部を通過し、かつ、バレルの回転方向とは反対方向に搖動運動をするときに粉末の山をならす量であった。成膜した薄膜は密着性が良好であった。なお、Au膜をガラスビーズに直接成膜すると密着性が悪い。そこでTi膜を密着性向上のための中間層として成膜した。
(Example 2)
Using the powder coating apparatus shown in FIG. 1, a powder in which a two-layer film of a Ti thin film (lower layer) and an Au thin film (upper layer) is formed on the surface of glass beads is produced. First, one Ti target (purity 99.9%, target surface 150 × 35 mm) was prepared and attached to the fixing portion 10b. Also, one Au target (purity 99.99%, target surface 150 × 35 mm) was prepared and attached to the fixing portion 10c. A blank was used without attaching a target to the fixed portion 10a. The sputtering power source 1 was a high frequency power source (frequency 13.56 MHz). Next, sputtering is performed with no powder in the barrel 3, and after evacuating to 3 × 10 −3 Pa or less, argon gas is flowed to adjust the pressure to 0.4 Pa, and high frequency The rates of the Ti target and Au target according to the output of the power source were confirmed. Subsequently, 150 g of glass beads having a diameter of 1 mm were put into the barrel 3 and evacuated to 2.1 × 10 −3 Pa, and then adjusted to maintain a pressure of 0.4 Pa by flowing argon gas. Thereafter, 200 W was applied only to the Ti target, the barrel 3 was rotated, and sputtering was performed for 30 minutes while the leveling part 9 (round bar type) was swung to form a Ti film on the glass bead surface. Subsequently, 200 W was applied only to the Au target, the barrel 3 was rotated, and the leveling part 9 (round bar type) was swung to perform sputtering for 1 hour, and an Au film was further formed on the surface of the Ti film. . As a result, glass beads on which two layers of Ti (lower layer) / Au (upper layer) were formed were obtained without opening the barrel 3 to the atmosphere on the way. The amount of powder (150 g) placed in the barrel is such that when the leveling part is peristaltic in the direction of rotation of the barrel, it passes through the inside of the pile of powder and perturbs in the direction opposite to the direction of rotation of the barrel. Sometimes it was the amount to level the powder pile. The deposited thin film had good adhesion. If the Au film is directly formed on the glass beads, the adhesion is poor. Therefore, a Ti film was formed as an intermediate layer for improving adhesion.
1 スパッタリング電源
1a 真空シール型軸受け
1b アーム
1c ターゲット冷却水通路入口
1d ターゲット冷却水通路出口
1e アルゴンガス入口
2 スパッタリング装置
3 バレル
3a バレルの内側側壁
3b バレルの最も低い位置
3c バレルの最も低い位置を越えた位置
3d バレル本体
3e 蓋体
4 排気手段
4a 真空シール型軸受け
5 駆動モーター
5a 駆動ロール
5b 従動ロール
6,6a,6b,6c ターゲット
7 粉末
7a,7b 粉末の山
7f1,7f2,7f3,7f4 粉末の流れ
8 第1角度調整機構
9 均し部品
9a 真空シール型軸受け
9b 撹拌モーター
9c 第1面
9d 第2面
10,10a,10b,10c 固定部
12 アーム
13 粉末上昇抑制部品
13s 支持棒
ha,hb,hc ターゲット面の法線
2U ターゲットユニット
100 粉末コーティング装置
R バレルの回転方向
C 主軸
D ターゲット面の法線が交差する点
G 中央に位置する2つのターゲット面の向かい合う両端を結ぶ線
S 始線
g 線Gとバレルの内側側壁との交差部分
j DとCとを結ぶ線
E,Eb ターゲット面を延長する線
e 線Eとバレルの内側側壁との交差部分
eb 線Ebとバレルの内側側壁との交差部分
DESCRIPTION OF SYMBOLS 1 Sputtering power supply 1a Vacuum seal type bearing 1b Arm 1c Target cooling water path inlet 1d Target cooling water path outlet 1e Argon gas inlet 2 Sputtering device 3 Barrel 3a Barrel inner side wall 3b Barrel lowest position 3c Barrel lower position 3d Barrel body 3e Lid 4 Exhaust means 4a Vacuum seal bearing 5 Drive motor 5a Drive roll 5b Drive roll 6, 6a, 6b, 6c Target 7 Powder 7a, 7b Powder piles 7f1, 7f2, 7f3, 7f4 Flow 8 First angle adjusting mechanism 9 Leveling part 9a Vacuum seal type bearing 9b Stirring motor 9c First surface 9d Second surface 10, 10a, 10b, 10c Fixed part 12 Arm 13 Powder rise suppressing part 13s Support rods ha, hb, hc Target surface normal 2U Target unit 100 Powder coating apparatus R Rotating direction of barrel C Main axis D Point G where normal of target surface intersects Line S connecting two opposite ends of two target surfaces located at the center S Start line g Intersection of line G and inner side wall of barrel Line j connecting lines D and C, Eb Line e extending the target surface e Intersection of line E and inner side wall of barrel eb Intersection of line Eb and inner side wall of barrel

Claims (10)

  1.  バレルと、該バレル内を真空引きする排気手段と、前記バレル内に設置され、少なくとも1つのターゲットを有するスパッタリング装置と、を有し、前記バレルは、主軸が水平方向を向いており、かつ、該主軸を中心に回転し、前記スパッタリング装置は、前記バレルに入れられた粉末の表面にコーティング膜を形成する粉末コーティング装置において、
     該粉末コーティング装置は、さらに、
     前記バレルの内側側壁のうち、前記バレルの回転によって上方向に移動する部分の側壁に接した状態で配置され、前記粉末が迫り上がる上限位置を定める粉末上昇抑制部品と、
     該粉末上昇抑制部品よりも下方の位置で、前記バレルの内側側壁に間隔をあけて配置され、前記主軸を回転中心として搖動運動をする前記粉末の均し部品と、を有し、
     前記粉末上昇抑制部品は、前記スパッタリング装置のうち前記ターゲット自体及び該ターゲットと導通している部分のどちらにも該当しない箇所に連結されることによって、又は、該スパッタリング装置とモジュール化された部品に連結されることによって固定されていることを特徴とする粉末コーティング装置。
    A barrel, an exhaust means for evacuating the barrel, and a sputtering apparatus installed in the barrel and having at least one target, the barrel having a main axis oriented in a horizontal direction, and In the powder coating apparatus that rotates about the main axis, the sputtering apparatus forms a coating film on the surface of the powder put in the barrel,
    The powder coating apparatus further comprises:
    Of the inner side wall of the barrel, disposed in contact with the side wall of the portion that moves upward by the rotation of the barrel, a powder rise suppression component that defines an upper limit position where the powder rushes, and
    The powder leveling part which is arranged at a position lower than the powder rise restraining part and spaced from the inner side wall of the barrel and performs a peristaltic motion with the main shaft as a rotation center;
    The powder rise suppression component is connected to a portion of the sputtering apparatus that does not correspond to either the target itself or a portion that is electrically connected to the target, or a component modularized with the sputtering apparatus. A powder coating apparatus characterized by being fixed by being connected.
  2.  前記スパッタリング装置は、前記主軸を中心に回転して角度調整が可能であることを特徴とする請求項1に記載の粉末コーティング装置。 2. The powder coating apparatus according to claim 1, wherein the sputtering apparatus is capable of adjusting an angle by rotating about the main axis.
  3.  前記主軸を垂直に横断し、前記粉末上昇抑制部品、前記均し部品及び前記ターゲットを通過する横断面において、前記粉末上昇抑制部品、前記均し部品及び前記ターゲットのそれぞれの位置を極座標上で表すとき、前記主軸の位置が前記極座標の原点Oであり、前記主軸を通る垂直下方線が角度0°の始線であり、前記バレルの回転方向が前記始線に対して正の角度をとる方向であり、
     前記粉末上昇抑制部品が固定されている角度をβとし、
     前記横断面上のターゲットの個数が1であるとき、ターゲット面の法線又はその延長線であるとともに前記主軸と交差する線の角度1をθとし、又は、前記横断面上のターゲットの個数が奇数(但し、1を除く)であるとき、中央に位置するターゲット面の法線又はその延長線であるとともに前記主軸と交差する線の角度2をθとし、又は、前記横断面上のターゲットの個数が偶数であるとき、中央に位置する2つのターゲット面の法線又はその延長線が交差する点と前記主軸とを結ぶ線の角度3をθとし、
     角度θをとる線を中心として、前記均し部品の搖動の振り幅の最大角度を正の方向へα及び負の方向へαとしたとき、
     角度β、角度θ、角度α及び角度αが数1、数2、数3及び数4を満たすことを特徴とする請求項1又は2に記載の粉末コーティング装置。
    (数1)0°<β-(θ+α)<45°
    (数2)90°≦β<135°
    (数3)0°≦θ≦45°
    (数4)0°<α<60°
    The positions of the powder rise restraining part, the leveling part, and the target are represented by polar coordinates in a cross section that vertically crosses the main axis and passes through the powder rise restraining part, the leveling part, and the target. The position of the main axis is the origin O of the polar coordinates, the vertical downward line passing through the main axis is a start line with an angle of 0 °, and the direction of rotation of the barrel takes a positive angle with respect to the start line And
    The angle at which the powder rise suppression component is fixed is β,
    When the number of targets on the cross section is 1, the angle 1 of the line that is the normal line of the target surface or its extension and intersects the main axis is θ, or the number of targets on the cross section is When the number is an odd number (except 1), the angle 2 of the normal line of the target surface located in the center or its extension line and intersecting the main axis is θ, or the target on the cross section When the number is an even number, θ is an angle 3 of the line connecting the normal line of the two target surfaces located at the center or a point where the extension line intersects the main axis,
    Centering on the line taking the angle θ, when the maximum swing angle of the smoothing part is α 1 in the positive direction and α 2 in the negative direction,
    3. The powder coating apparatus according to claim 1, wherein the angle β, the angle θ, the angle α 1, and the angle α 2 satisfy the expressions 1, 2, 3, and 4.
    (Equation 1) 0 ° <β− (θ + α 1 ) <45 °
    (Equation 2) 90 ° ≦ β <135 °
    (Equation 3) 0 ° ≦ θ ≦ 45 °
    (Equation 4) 0 ° <α 2 <60 °
  4.  前記粉末上昇抑制部品は、ブラシ又はヘラであることを特徴とする請求項1~3のいずれか一つに記載の粉末コーティング装置。 The powder coating apparatus according to any one of claims 1 to 3, wherein the powder rise suppressing part is a brush or a spatula.
  5.  前記均し部品は、棒又は板であることを特徴とする請求項1~4のいずれか一つに記載の粉末コーティング装置。 5. The powder coating apparatus according to claim 1, wherein the leveling part is a bar or a plate.
  6.  前記均し部品は、前記バレルの回転方向とは反対方向に搖動運動をするときに、前記バレルの内側側壁のうち、最も低い位置又は該位置を越えたところで折り返すことを特徴とする請求項1~5のいずれか一つに記載の粉末コーティング装置。 2. The leveling part is folded back at the lowest position or beyond the inner side wall of the barrel when performing a peristaltic motion in a direction opposite to the rotation direction of the barrel. The powder coating apparatus according to any one of 1 to 5.
  7.  前記ターゲットの傾きθを変更し、かつ、数3の角度範囲のいずれかの角度において傾きの固定が可能な第一角度調整機構を有することを特徴とする請求項3~6のいずれか一つに記載の粉末コーティング装置。 7. A first angle adjustment mechanism that changes the inclination θ of the target and that can fix the inclination at any angle in the angular range of Formula 3. The powder coating apparatus described in 1.
  8.  前記粉末上昇抑制部品は、
     前記横断面上のターゲットの個数が1であるとき、前記ターゲット面を延長する線と前記バレルの内側側壁との交差部分よりも上側に配置された状態で固定されているか、又は、
     前記横断面上のターゲットの個数が奇数(但し、1を除く)であるとき、中央に位置するターゲット面を延長する線と前記バレルの内側側壁との交差部分よりも上側に配置された状態で固定されているか、又は、
     前記横断面上のターゲットの個数が偶数であるとき、中央に位置する2つのターゲット面の向かい合う両端を結ぶ線と前記バレルの内側側壁との交差部分よりも上側に配置された状態で固定されていることを特徴とする請求項7に記載の粉末コーティング装置。
    The powder rise suppression component is
    When the number of targets on the cross section is 1, it is fixed in a state of being arranged above the intersection of the line extending the target surface and the inner side wall of the barrel, or
    When the number of targets on the cross section is an odd number (excluding 1), the target is located above the intersection of the line extending the target surface located in the center and the inner side wall of the barrel. Is fixed, or
    When the number of targets on the cross section is an even number, it is fixed in a state of being arranged above the intersection of the line connecting the opposite ends of the two target surfaces located in the center and the inner side wall of the barrel. The powder coating apparatus according to claim 7, wherein the apparatus is a powder coating apparatus.
  9.  前記ターゲットの傾きθを変更し、かつ、数3の角度範囲のいずれかの角度において傾きの固定が可能な第一角度調整機構を有し、さらに、
     前記横断面上のターゲットの個数が1であるとき、前記粉末上昇抑制部品を、前記ターゲット面を延長する線と前記バレルの内側側壁との交差部分よりも上側となる位置に、位置可変で固定可能な第二角度調整機構を有するか、又は、
     前記横断面上のターゲットの個数が奇数(但し、1を除く)であるとき、前記粉末上昇抑制部品を、中央に位置するターゲット面を延長する線と前記バレルの内側側壁との交差部分よりも上側となる位置に、位置可変で固定可能な第二角度調整機構を有するか、又は、
     前記横断面上のターゲットの個数が偶数であるとき、前記粉末上昇抑制部品を、中央に位置する2つのターゲット面の向かい合う両端を結ぶ線と前記バレルの内側側壁との交差部分よりも上側となる位置に、位置可変で固定可能な第二角度調整機構を有することを特徴とする請求項3~6のいずれか一つに記載の粉末コーティング装置。
    A first angle adjusting mechanism capable of changing the inclination θ of the target and fixing the inclination at any angle in the angle range of Formula 3,
    When the number of targets on the cross section is 1, the powder rise suppression component is fixed at a position that is above the intersection of the line extending the target surface and the inner side wall of the barrel, with variable position. Has a possible second angle adjustment mechanism, or
    When the number of targets on the cross section is an odd number (excluding 1), the powder rise restraining component is arranged more than the intersection of the line extending the target surface located at the center and the inner side wall of the barrel. It has a second angle adjustment mechanism that can be fixed in a variable position at the upper position, or
    When the number of targets on the cross section is an even number, the powder rise suppression component is located above the intersection of the line connecting the opposite ends of the two target surfaces located in the center and the inner side wall of the barrel. The powder coating apparatus according to any one of claims 3 to 6, further comprising a second angle adjusting mechanism that can be fixed at a position.
  10.  請求項1~9のいずれか一つに記載の粉末コーティング装置の使用方法であって、
     前記バレルに入れる粉末量は、前記均し部品が、前記バレルの回転方向に搖動運動をするときに前記粉末の山の内部を通過し、かつ、前記バレルの回転方向とは反対方向に搖動運動をするときに前記粉末の山をならす量であることを特徴とする粉末コーティング装置の使用方法。
     
    A method of using the powder coating apparatus according to any one of claims 1 to 9,
    The amount of powder put into the barrel is such that when the leveling part performs a peristaltic motion in the direction of rotation of the barrel, the peristaltic motion passes in the direction opposite to the direction of rotation of the barrel. A method of using a powder coating apparatus, characterized in that the amount of powder is leveled when the powder is applied.
PCT/JP2016/071584 2015-07-30 2016-07-22 Powder coating apparatus and method for using same WO2017018350A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015150349A JP6039766B1 (en) 2015-07-30 2015-07-30 Powder coating apparatus and method of using the same
JP2015-150349 2015-07-30

Publications (1)

Publication Number Publication Date
WO2017018350A1 true WO2017018350A1 (en) 2017-02-02

Family

ID=57483144

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/071584 WO2017018350A1 (en) 2015-07-30 2016-07-22 Powder coating apparatus and method for using same

Country Status (2)

Country Link
JP (1) JP6039766B1 (en)
WO (1) WO2017018350A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07228973A (en) * 1994-02-16 1995-08-29 Futaba Corp Agitator for powder
JPH08325723A (en) * 1995-05-26 1996-12-10 Hitachi Ltd Powder stirring device
JP2001207261A (en) * 2000-01-25 2001-07-31 Matsushita Electric Works Ltd Barrel for vapor deposition coating device
JP2009280879A (en) * 2008-05-23 2009-12-03 Takeshima:Kk Sputtering apparatus for magnetic powder coating
JP2011058071A (en) * 2009-09-11 2011-03-24 Sony Corp Composite particulate preparing apparatus and method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3068947B2 (en) * 1992-03-25 2000-07-24 日新製鋼株式会社 Powder coating equipment
DE19609804C1 (en) * 1996-03-13 1997-07-31 Bosch Gmbh Robert Device, its use and its operation for vacuum coating of bulk goods
JPH11116842A (en) * 1997-10-13 1999-04-27 Nisshin Steel Co Ltd Producing apparatus for organic pigment-coated powder
JP5478539B2 (en) * 2011-03-02 2014-04-23 トヨタ自動車株式会社 Electrocatalyst production method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07228973A (en) * 1994-02-16 1995-08-29 Futaba Corp Agitator for powder
JPH08325723A (en) * 1995-05-26 1996-12-10 Hitachi Ltd Powder stirring device
JP2001207261A (en) * 2000-01-25 2001-07-31 Matsushita Electric Works Ltd Barrel for vapor deposition coating device
JP2009280879A (en) * 2008-05-23 2009-12-03 Takeshima:Kk Sputtering apparatus for magnetic powder coating
JP2011058071A (en) * 2009-09-11 2011-03-24 Sony Corp Composite particulate preparing apparatus and method

Also Published As

Publication number Publication date
JP2017031450A (en) 2017-02-09
JP6039766B1 (en) 2016-12-07

Similar Documents

Publication Publication Date Title
JP6938078B2 (en) Powder coating equipment
JPWO2009098784A1 (en) Plasma CVD apparatus, plasma CVD method and stirring apparatus
TWI612165B (en) Film forming device and film forming workpiece manufacturing method
JP5039487B2 (en) Metal vapor deposition device and powder carrier stirring method in the same
JP6975991B2 (en) Suspension manufacturing equipment
JP2018035384A (en) Powder coating device and method of using the same
WO2018190268A1 (en) Film formation device
WO2017018350A1 (en) Powder coating apparatus and method for using same
JP6612198B2 (en) Powder coating apparatus and method of using the same
JP7136540B2 (en) Powder stirring method and powder coating apparatus
JP6865071B2 (en) Powder coating equipment and how to use it
KR102197984B1 (en) Drum sputtering device
JP2000282234A (en) Sputtering device
JP6655289B2 (en) Dry media stirring type pulverizer and method of operating the same
JP2018188699A (en) Powder coating device, and application method thereof
JP5599476B2 (en) Sputtering equipment
JP6265534B2 (en) Sputtering cathode
KR102517262B1 (en) Reactor having an inclined surface and powder ALD apparatus including the same
JP2013000699A (en) Intermittent oscillating type particle surface treatment apparatus and method
JP2012007230A (en) Method for forming coating on fine particle and device for the same
JP6715003B2 (en) Powder coating equipment
WO2021167067A1 (en) Composite device and method for manufacturing coated fine particles
JP2012007230A5 (en)
JP5762922B2 (en) Coating equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16830455

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16830455

Country of ref document: EP

Kind code of ref document: A1