WO2021167067A1 - Composite device and method for manufacturing coated fine particles - Google Patents

Composite device and method for manufacturing coated fine particles Download PDF

Info

Publication number
WO2021167067A1
WO2021167067A1 PCT/JP2021/006365 JP2021006365W WO2021167067A1 WO 2021167067 A1 WO2021167067 A1 WO 2021167067A1 JP 2021006365 W JP2021006365 W JP 2021006365W WO 2021167067 A1 WO2021167067 A1 WO 2021167067A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
fine particles
electrode
electronic component
sputtering target
Prior art date
Application number
PCT/JP2021/006365
Other languages
French (fr)
Japanese (ja)
Inventor
本多 祐二
Original Assignee
株式会社ユーパテンター
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ユーパテンター filed Critical 株式会社ユーパテンター
Priority to JP2022501076A priority Critical patent/JPWO2021167067A1/ja
Publication of WO2021167067A1 publication Critical patent/WO2021167067A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/42Silicides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes

Definitions

  • the present invention relates to a composite device and a method for producing coated fine particles.
  • Patent Document 1 discloses a polygonal barrel sputtering apparatus that coats the surface of fine particles with a sputtering film by sputtering. Further, Patent Document 2 discloses a plasma CVD apparatus that coats a CVD film on the surface of fine particles by a plasma CVD method.
  • a metal film such as Cu is formed on the surface of fine particles made of plastic and then an oxide film such as SiO 2 is formed on the metal film
  • the fine particles are subjected to the above-mentioned polygonal barrel sputtering apparatus.
  • a metal film is formed on the surface by sputtering, and the fine particles on which the metal film is formed are taken out from a polygonal barrel sputtering apparatus, the taken out fine particles are introduced into a plasma CVD apparatus, and an oxide film is formed on the metal film by a plasma CVD method. It is necessary to form a film.
  • the metal film is exposed to the atmosphere, and the metal film is oxidized.
  • the film quality of the metal film is deteriorated. Therefore, the performance of the finally obtained oxide film and the fine particles on which the metal film is formed is formed. May decrease.
  • One aspect of the present invention is a composite device or a composite device for preventing the fine particles or electronic components from being exposed to the atmosphere during the processing when both the sputtering treatment and the plasma CVD treatment are performed on the fine particles or electronic components.
  • An object of the present invention is to provide the coated fine particles.
  • another aspect of the present invention is a composite that prevents the fine particles or electronic parts from being exposed to the atmosphere during the treatment when both the surface modification treatment and the sputtering treatment are performed on the fine particles or electronic parts. The subject is to provide the device.
  • Chamber and An exhaust mechanism that evacuates the inside of the chamber and A container arranged in the chamber and containing fine particles or electronic parts and having an internal shape of a polygonal, circular or elliptical cross section.
  • An operating mechanism that rotates or pendulums the container about the direction perpendicular to the cross section as a rotation axis.
  • a first electrode located in the container and holding a first sputtering target,
  • a gas introduction unit that introduces at least one of an inert gas, an oxygen gas, a nitrogen gas, a fluorine gas, and a raw material gas into the container.
  • a first supply mechanism that supplies electric power or ground potential to the first electrode,
  • a second supply mechanism that supplies the earth potential or power to the container,
  • a complex device characterized by comprising.
  • the first supply mechanism is the plasma power source or ground that is electrically connected to the first electrode via a first switch.
  • the second supply mechanism is a composite device comprising being an earth or plasma power source electrically connected to the container via a second switch.
  • Has a control unit moves the first electrode by the moving mechanism so that the first sputtering target held by the first electrode is located below, and rotates the container using the operating mechanism.
  • the fine particles or ultrafine particles having a diameter smaller than that of the electronic component are attached to the fine particles or the electronic component.
  • the first electrode is moved by the moving mechanism so that the first sputtering target held by the first electrode is located above, and the container is rotated or pendulum-operated by using the moving mechanism.
  • the fine particles or ultrafine particles having a diameter smaller than that of the electronic component are attached to the fine particles or the electronic component or a thin film is formed.
  • the fine particles or ultrafine particles having a diameter smaller than that of the electronic component are attached to the fine particles or the electronic component or a thin film is formed.
  • Chamber and An exhaust mechanism that evacuates the inside of the chamber and A container arranged in the chamber and containing fine particles or electronic parts and having an internal shape of a polygonal, circular or elliptical cross section.
  • An operating mechanism that rotates or pendulums the container about the direction perpendicular to the cross section as a rotation axis.
  • a second electrode located in the container and holding a second sputtering target, The first and second electrodes are used to position the first sputtering target held by the first electrode and the second sputtering target held by the second electrode above or below, respectively.
  • a gas introduction unit that introduces at least one of an inert gas, an oxygen gas, a nitrogen gas, a fluorine gas, and a raw material gas into the container.
  • a first supply mechanism that supplies electric power or ground potential to the first electrode
  • a second supply mechanism that supplies electric power or ground potential to the second electrode
  • a third supply mechanism that supplies the earth potential or power to the container,
  • the moving mechanism is a composite device characterized in that the third electrode is rotated to move the position of the third sputtering target.
  • the moving mechanism is a composite device characterized in that the fourth electrode is rotated to move the position of the fourth sputtering target.
  • the first supply mechanism is the plasma power supply or ground that is electrically connected to the first electrode via a first switch and a third switch.
  • the second supply mechanism is the plasma power supply or ground that is electrically connected to the second electrode via a first switch and a third switch.
  • the third supply mechanism is a composite device comprising being an earth or plasma power source electrically connected to the container via a second switch.
  • a second particle having a diameter smaller than that of the fine particles or the electronic parts is placed on the first ultrafine particles or the first thin film.
  • the control unit attaches the first ultrafine particles or forms the first thin film, and before adhering the second ultrafine particles or forming the second thin film.
  • the fine particles or the electronic component in the container A composite device characterized in that the surface of the first ultrafine particles or the first thin film is controlled to be modified by generating plasma of the at least one gas while stirring or rotating the gas.
  • Plastic fine particles are contained in the container, and The first electrode is moved by the moving mechanism so that the first sputtering target held by the first electrode is located above.
  • a DLC film or Si a C bN c is applied to the plastic fine particles.
  • An HD film is formed to form an HD film.
  • the first electrode is moved by the moving mechanism so that the first sputtering target held by the first electrode is located below.
  • Plastic fine particles are contained in the container, and The first electrode is moved by the moving mechanism so that the first sputtering target held by the first electrode is located above.
  • a DLC film is formed on the plastic fine particles by performing a plasma CVD method while stirring or rotating the plastic fine particles in the container by rotating or pendulum the container using the operation mechanism.
  • the fine particle or the thin film is formed on the way. It is possible to provide a composite device for preventing electronic components from being exposed to the atmosphere or coated fine particles using the same.
  • the fine particles or electronic parts are subjected to surface modification treatment, and the fine particles or electronic parts are sputtered to adhere ultrafine particles having a diameter smaller than that of the fine particles or electronic parts or a thin film. It is possible to provide a composite device for preventing the fine particles or electronic components after the surface modification treatment from being exposed to the atmosphere when the film is formed.
  • FIG. 5 is a cross-sectional view taken along the line 10-10 shown in FIG. It is sectional drawing which shows typically the composite apparatus which concerns on one aspect of this invention. It is sectional drawing which follows the line 20-20 shown in FIG. It is a coated fine particle according to one aspect of the present invention.
  • FIG. 1 is a cross-sectional view schematically showing a composite device according to an aspect of the present invention.
  • FIG. 2 is a cross-sectional view taken along the line 10-10 shown in FIG.
  • the composite device 11 shown in FIGS. 1 and 2 is a device having a combined function of a sputtering device, a plasma CVD device, and a surface modification processing device.
  • the composite device 11 has a chamber 12 and an exhaust mechanism 13 that evacuates the inside of the chamber 12.
  • the exhaust mechanism 13 is composed of a vacuum pump or the like.
  • a container 15 for accommodating fine particles 14 or electronic components is arranged in the chamber 12.
  • the container 15 has a polygonal internal shape in cross section.
  • the container 15 can be pendulum-operated as shown by an arrow 17 by an operating mechanism 16 such as a motor with the direction perpendicular to the cross section shown in FIG. 2 as an axis.
  • the internal shape of the cross section of the container is polygonal, but the internal shape of the cross section of the container may be circular or elliptical.
  • the container may have a cylindrical shape or a conical shape.
  • the container 15 is pendulum-operated by the operating mechanism 16, but the container 15 may be rotated by the operating mechanism 16.
  • a first electrode 19a holding the first sputtering target 18a and a second electrode 19b holding the second sputtering target 18b are arranged in the container 15.
  • the state shown in FIGS. 1 and 2 is a state in which the first sputtering target 18a is positioned downward and the second sputtering target 18b is positioned upward.
  • each of the two sputtering targets is held by two electrodes, but three or more sputtering targets may be held by three or more electrodes.
  • positioning the sputtering target downward does not mean only the gravity direction (directly below) 30 shown in FIGS. 1 and 2, but is a position tilted to the left and right by less than 45 ° from directly below.
  • the meaning of "positioning the sputtering target above” does not mean only the opposite direction (directly above) of the gravity direction 30 shown in FIG. 1, but is tilted to the left and right by 45 ° or less from directly above. It means that the position is also included.
  • the composite device 11 has a moving mechanism 21 that rotates the first and second electrodes 19a and 19b to move the positions of the first and second sputtering targets 18a and 18b, respectively.
  • the moving mechanism 21 is composed of a motor or the like.
  • the first and second sputtering targets 18a and 18b held by the first and second electrodes 19a and 19b by the moving mechanism 21 can be positioned above or below, respectively.
  • the gas introduction unit 23 for introducing the gas 22 into the container 15 has a gas introduction port located above the first and second electrodes 19a and 19b and located in the container 15.
  • the gas introduced into the container 15 is preferably at least one gas of an inert gas, an oxygen gas, a nitrogen gas, a fluorine gas and a raw material gas.
  • the composite device 11 has a first supply mechanism for supplying electric power or a ground potential to the first electrode 19a, and the first supply mechanism has the first and third switches 25 to the first electrode 19a.
  • 28 is an electrically connected plasma power source 26 or ground.
  • the composite device 11 has a second supply mechanism for supplying electric power or a ground potential to the second electrode 19b, and the second supply mechanism has the first and third switches 25 to the second electrode 19b.
  • 28 is an electrically connected plasma power source 26 or ground.
  • the composite device 11 has a second supply mechanism for supplying the earth potential or electric power to the container 15, and the second supply mechanism is electrically connected to the container 15 via the second switch 27. Earth or plasma power supply 26.
  • the plasma power supply 26 can be any one of a high frequency power supply for supplying high frequency power (RF output), a microwave power supply, a DC discharge power supply, and a pulse-modulated high frequency power supply, a microwave power supply, and a DC discharge power supply, respectively. It would be nice to have one.
  • the plasma power supply by the first supply mechanism and the plasma power supply by the second supply mechanism are one plasma power supply 26, but the plasma power supply is provided to each of the first and second supply mechanisms. It may be arranged.
  • the composite device 11 shown in FIG. 1 has a control unit 31, and the control unit 31 controls the composite device 11 so as to perform the following sputtering process.
  • the first electrode 19a is moved by the moving mechanism 21 so that the first sputtering target 18a held by the first electrode 19a is located below, and the container 15 is rotated or pendulum-operated by using the moving mechanism 16.
  • the container 15 is rotated or pendulum-operated by using the moving mechanism 16.
  • the first electrode 19a holds the first sputtering target 18a.
  • various materials can be used, and for example, metals such as Zn and Au can be used.
  • the fine particles 14 or electronic parts are housed in the container 15.
  • Various materials can be used as the fine particles, and for example, plastic (for example, polyethylene, polystyrene, PMMA (acrylic), etc.) can be used.
  • the first electrode 19a is moved by the moving mechanism 21 so that the first sputtering target 18a is located below.
  • argon gas or nitrogen gas is introduced into the container 15 from the gas introduction port of the gas introduction unit 23 as shown by an arrow.
  • the inside of the chamber 12 is depressurized using the exhaust mechanism 13.
  • the pressure in the chamber 12 at this time is, for example, about 1 Pa.
  • the container 15 is rotated or pendulum-operated by using the operating mechanism 16, so that the fine particles 14 or the electronic components in the container 15 are stirred or rotated.
  • the plasma power supply 26 applies a high frequency voltage to the first electrode 19a via the first switch 25 and the third switch 28, and supplies the ground potential to the container 15 via the second switch 27. As a result, a high frequency is applied between the first sputtering target 18a and the container 15.
  • the fine particles 14 or the electronic component can be attached with ultrafine particles having a diameter smaller than that of the fine particle 14 or the electronic component, or a thin film can be formed. can. That is, since the fine particles 14 or the electronic components are rolled by moving the container 15 with a pendulum, it is possible to easily uniformly cover the entire surface of the fine particles 14 or the electronic components with the sputtering film.
  • ⁇ Plasma CVD process> A method of performing plasma CVD processing on the fine particles 14 or electronic components by the composite device 11 shown in FIGS. 3 and 4 will be described.
  • the composite device 11 shown in FIGS. 3 and 4 differs from the composite device 11 shown in FIGS. 1 and 2 in that the first sputtering target 18a is positioned upward, but other than that. The same is true.
  • the composite device 11 shown in FIG. 3 has a control unit 31, and the control unit 31 controls the composite device 11 so as to perform the following plasma CVD process.
  • the first electrode 19a is moved by a moving mechanism so that the first sputtering target 18a is located above, and the container 15 is rotated or pendulum-operated by using the operating mechanism 16, so that the fine particles 14 or electronic components in the container 15 are moved.
  • the plasma CVD method By performing the plasma CVD method while stirring or rotating the particles, the fine particles or ultrafine particles having a diameter smaller than that of the electronic parts are adhered to the fine particles 14 or the electronic component, or a thin film is formed.
  • a plurality of fine particles 14 or electronic components are housed in the container 15. Further, the first electrode 19a is moved by the moving mechanism 21 so that the first sputtering target 18a is located above (see FIGS. 3 and 4).
  • the raw material gas is introduced into the container 15 from the gas introduction port of the gas introduction unit 23 as shown by an arrow.
  • the raw material gas for example C 2 H 2, CH 4, C 7 H 8, CF 4, HMDS-N ( hexamethyldisilazane; C 6 H 19 NSi 2) , the use of HMDS (hexamethyldisilazane) Can be done.
  • the inside of the chamber 12 is depressurized using the exhaust mechanism 13.
  • the container 15 is rotated or pendulum-operated by using the operating mechanism 16, so that the fine particles 14 or the electronic components in the container 15 are stirred or rotated.
  • the raw material gas is sprayed onto the fine particles 14 that are rolling and moving in the container 15, and the pressure (for example, about 20 Pa) suitable for film formation by the plasma CVD method is maintained by the balance between the controlled gas flow rate and the exhaust capacity. Dripping. This pressure is higher than the pressure during sputtering.
  • the plasma power supply 26 applies a high frequency voltage to the container 15 via the second switch 27, and supplies the ground potential to the first electrode 19a via the first switch 25 and the third switch 28. As a result, the plasma is ignited between the first electrode 19a and the container 15.
  • the ground potential is supplied to the first electrode 19a via the first switch 25 and the third switch 28, so that the plasma is generated between the first electrode 19a and the container 15. Is ignited, but by supplying the ground potential to the second electrode 19b via the first switch 25 and the third switch 28, the plasma is ignited between the second electrode 19b and the container 15. May be good.
  • the second electrode 19 may not hold the second sputtering target 18b.
  • the first sputtering target 18a is held by the electrode, and the first sputtering target 18a is positioned above.
  • plasma may be ignited between the electrode and the container 15.
  • sputtering does not occur from the first sputtering target 18a. The reason is that the ground is supplied to the first electrode 19a and the pressure inside the container 15 is higher than the pressure during the sputtering process.
  • Pre-sputter processing (target correction processing, target cleaning)> A method of pre-sputtering the fine particles 14 or electronic components by the composite device 11 shown in FIGS. 3 and 4 will be described.
  • the pre-sputtering process when a CVD film adheres to the surface of the first sputtering target 18a by performing plasma CVD processing, the CVD film is removed from the surface of the first sputtering target 18a to bring it into a clean state. This is a correction process.
  • the composite device 11 shown in FIG. 3 has a control unit 31, and the control unit 31 controls the composite device 11 so as to perform the following pre-sputter processing.
  • the first sputtering target 19a is moved by the moving mechanism 21 so that the first sputtering target 18a is located above, and sputtering is performed between the first sputtering target 18a and the container 15. Clean 18a and correct it to a clean state.
  • the first electrode 19a is moved by the moving mechanism 21 so that the first sputtering target 18a is located above (see FIGS. 3 and 4).
  • argon gas or nitrogen gas is introduced into the container 15 from the gas introduction port of the gas introduction unit 23.
  • the inside of the chamber 12 is depressurized using the exhaust mechanism 13.
  • the pressure in the chamber at this time is, for example, about 1 Pa.
  • a high frequency voltage is applied to the first electrode 19a via the first switch 25 and the third switch 28 by the plasma power supply 26, and the ground potential is supplied to the container 15 via the second switch 27 (the first).
  • the first to third switches 25, 27, and 28 are in the state shown in FIG. 1).
  • the first sputtering target 18a is reverse-sputtered, and the CVD film can be removed from the surface of the first sputtering target 18a. It is also possible to remove oxides, contamination and the like on the surface of the first sputtering target 18a. Further, during the pre-sputtering process, since the first sputtering target 18a is located above, the sputter film is not formed on the fine particles 14 or the electronic components housed below the container 15.
  • the composite device 11 shown in FIG. 3 has a control unit 31, and the control unit 31 controls the composite device 11 so as to perform the following surface modification treatment.
  • the first electrode 19a is moved by the moving mechanism 21 so that the first sputtering target 18a is located above, and at least one gas of argon gas, oxygen gas, nitrogen gas, fluorine gas and inert gas is moved into the container 15.
  • at least one gas of argon gas, oxygen gas, nitrogen gas, fluorine gas and inert gas is moved into the container 15.
  • a plurality of fine particles 14 or electronic components are housed in the container 15. Further, the first electrode 19a is moved by the moving mechanism 21 so that the first sputtering target 18a is located above (see FIGS. 3 and 4). Next, at least one gas of argon gas, oxygen gas, nitrogen gas, fluorine gas and an inert gas is introduced into the container 15 from the gas introduction port of the gas introduction unit 23 as shown by an arrow. Next, the inside of the chamber 12 is depressurized using the exhaust mechanism 13. Then, the container 15 is rotated or pendulum-operated by using the operating mechanism 16, so that the fine particles 14 or the electronic components in the container 15 are stirred or rotated.
  • the inside of the container 15 is maintained at a pressure suitable for the surface modification treatment (for example, about 10 Pa) by the balance between the controlled gas flow rate and the exhaust capacity.
  • This pressure is about halfway between the pressure during the plasma CVD treatment and the pressure during the sputtering treatment.
  • the plasma power supply 26 applies a high frequency voltage to the container 15 via the second switch 27, and supplies the ground potential to the first electrode 19a via the first switch 25 and the third switch 28.
  • the plasma is ignited between the first electrode 19a and the container 15.
  • plasma is generated in the container 15 to modify the surface of the fine particles 14 or the electronic component.
  • Surface modification is, for example, oxidizing, nitriding or fluorinating the surface of fine particles 14 or electronic components. That is, since the fine particles 14 or the electronic components are rolled by moving the container 15 with a pendulum, the entire surface of the fine particles 14 or the electronic components can be easily modified.
  • the ground potential is supplied to the first electrode 19a via the first switch 25 and the third switch 28, so that the ground potential is between the first electrode 19a and the container 15.
  • the plasma is ignited, but by supplying the ground potential to the second electrode 19b via the first switch 25 and the third switch 28, the plasma is ignited between the second electrode 19b and the container 15. You may. In this case, the second electrode 19 may not hold the second sputtering target 18b.
  • the first sputtering target 18a is held by the electrode, and the first sputtering target 18a is positioned above.
  • plasma may be ignited between the electrode and the container 15.
  • sputtering does not occur from the first sputtering target 18a. The reason is that the ground is supplied to the first electrode 19a and the pressure inside the container 15 is higher than the pressure during the sputtering process.
  • Plasma CVD processing + sputtering processing and sputtering processing + plasma CVD processing> First, the plasma CVD process described above is performed. After that, the above-mentioned sputtering treatment is continuously performed without taking out the fine particles 14 or the electronic components from the container 15. Between the plasma CVD process and the sputtering process, the position of the first sputtering target 18a is moved, the gas is switched, the pressure in the chamber 12 is adjusted, and the like.
  • a DLC (Diamond Like Carbon) film is formed on Cu fine particles by performing a plasma CVD treatment, and a Pt film is formed by performing a sputtering treatment on the DLC film.
  • Oxidation of Cu fine particles can be suppressed or prevented by the DLC film.
  • the plasma CVD treatment not only the DLC film is formed on the Cu fine particles, but also the inner surface of the container 15 is formed. Since the container 15 is made of a metal such as SUS, Cu fine particles having a small particle size easily adhere to the inner surface of the container 15, but when the inner surface of the container 15 is coated with a DLC film, the Cu fine particles are generated during the pendulum operation. It becomes slippery, can be suppressed from adhering to the inner surface of the container 15, and can also suppress the aggregation of Cu fine particles. As a result, the Pt film can be formed with good uniformity.
  • the plasma CVD treatment may be continuously performed. In that case as well, it is advisable to move the position of the first sputtering target 18a, switch the gas, adjust the pressure in the chamber 12, and the like between the sputtering treatment and the plasma CVD treatment. Further, the above-mentioned pre-sputtering treatment may be performed before the above-mentioned sputtering treatment.
  • the difference from plasma CVD processing + sputtering processing and sputtering processing + plasma CVD processing> is that processing is performed without using a moving mechanism or by a device that eliminates the moving mechanism from the composite device. This will be described in detail below.
  • the first sputtering target 18a is held by the first electrode 19a so as to be located below. Further, the fine particles 14 or electronic parts are housed in the container 15. Next, argon gas or nitrogen gas is introduced into the container 15 from the gas introduction port of the gas introduction unit 23 as shown by an arrow. Next, the inside of the chamber 12 is depressurized using the exhaust mechanism 13. The pressure in the chamber 12 at this time is, for example, about 1 Pa. Then, the container 15 is rotated or pendulum-operated by using the operating mechanism 16 to stir or rotate the fine particles 14 or the electronic components in the container 15.
  • the plasma power supply 26 applies a high frequency voltage to the first electrode 19a via the first switch 25 and the third switch 28, and supplies the ground potential to the container 15 via the second switch 27.
  • a high frequency is applied between the first sputtering target 18a and the container 15 to perform sputtering, so that fine particles or ultrafine particles having a diameter smaller than that of the electronic component are adhered to the fine particles 14 or the electronic component or a thin film is formed. do.
  • the raw material gas is introduced into the container 15 from the gas introduction port of the gas introduction unit 23 as shown by an arrow.
  • the inside of the chamber 12 is depressurized using the exhaust mechanism 13.
  • the container 15 is rotated or pendulum-operated by using the operating mechanism 16, so that the fine particles 14 or the electronic components in the container 15 are stirred or rotated.
  • the raw material gas is sprayed onto the fine particles 14 that are rolling and moving in the container 15, and the pressure (for example, about 20 Pa) suitable for film formation by the plasma CVD method is maintained by the balance between the controlled gas flow rate and the exhaust capacity. Dripping. Since this pressure is higher than the pressure during sputtering, sputtering does not occur.
  • the plasma power supply 26 applies a high frequency voltage to the container 15 via the second switch 27, and supplies the ground potential to the first electrode 19a via the first switch 25 and the third switch 28.
  • the plasma is ignited between the first electrode 19a and the container 15.
  • plasma is generated in the container 15, and ultrafine particles adhere to the fine particles 14 or electronic components, or a thin film is formed.
  • Plasma CVD processing + sputtering processing> Above ⁇ 1.
  • the difference from plasma CVD processing + sputtering processing and sputtering processing + plasma CVD processing> is that processing is performed without using a moving mechanism or by a device that eliminates the moving mechanism from the composite device. This will be described in detail below.
  • the plasma CVD process is continuously performed after the sputtering process, but in the reverse order of this, the plasma CVD process is performed and then the sputtering process is continuously performed.
  • the plasma CVD process is continuously performed after the sputtering process, but in the reverse order of this, the plasma CVD process is performed and then the sputtering process is continuously performed.
  • the first sputtering target 18a is held by the first electrode 19a so as to be located below. Further, the fine particles 14 or electronic parts are housed in the container 15. Then, the above ⁇ 2.
  • the plasma CVD process of sputtering process + plasma CVD process> ultrafine particles adhere to the fine particles 14 or electronic components or a thin film is formed.
  • argon gas or nitrogen gas is introduced into the container 15 from the gas introduction port of the gas introduction unit 23 as shown by an arrow, and the above ⁇ 2.
  • sputtering treatment of sputtering treatment + plasma CVD treatment> fine particles or ultrafine particles having a diameter smaller than that of the electronic parts are adhered to the fine particles 14 or the electronic parts, or a thin film is formed.
  • ⁇ Surface modification treatment + sputtering treatment> First, the surface modification treatment described above is performed. After that, the above-mentioned sputtering treatment is continuously performed without taking out the fine particles 14 or the electronic components from the container 15. Between the surface modification treatment and the sputtering treatment, the position of the first sputtering target 18a is moved, the gas is switched, the pressure in the chamber 12 is adjusted, and the like.
  • the surface modification treatment may be continuously performed. In that case as well, it is advisable to move the position of the first sputtering target 18a, switch the gas, adjust the pressure in the chamber 12, and the like between the sputtering treatment and the surface modification processing.
  • the above-mentioned pre-sputtering treatment may be performed before the above-mentioned sputtering treatment.
  • the first electrode 19a holds the first sputtering target 18a
  • the second electrode 19b holds the second sputtering target 18b.
  • fine particles or electronic parts are housed in the container 15.
  • the first electrode 19a is moved by the moving mechanism 21 so that the first sputtering target 18a is located below.
  • argon gas or nitrogen gas is introduced into the container 15 from the gas introduction port of the gas introduction unit 23 as shown by an arrow.
  • the inside of the chamber 12 is depressurized using the exhaust mechanism 13.
  • the container 15 is rotated or pendulum-operated by using the operating mechanism 16, so that the fine particles 14 or the electronic components in the container 15 are stirred or rotated.
  • the plasma power supply 26 applies a high frequency voltage to the first electrode 19a via the first switch 25 and the third switch 28, and supplies the ground potential to the container 15 via the second switch 27.
  • a high frequency is applied between the first sputtering target 18a and the container 15.
  • the fine particles 14 or the electronic components are rolled by moving the container 15 with a pendulum, it is easy to uniformly cover the entire surface of the fine particles 14 or the electronic components with the first sputter film.
  • the fine particles 14 at this time are, for example, SiO 2 fine particles, and the first sputtered film is, for example, a Ti film.
  • the second electrode 19b is moved by the moving mechanism 21 so that the second sputtering target 18b is located below.
  • argon gas or nitrogen gas is introduced into the container 15 from the gas introduction port of the gas introduction unit 23 as shown by an arrow.
  • the inside of the chamber 12 is depressurized using the exhaust mechanism 13.
  • the container 15 is rotated or pendulum-operated by using the operating mechanism 16, so that the fine particles 14 or the electronic components in the container 15 are stirred or rotated.
  • the plasma power supply 26 applies a high frequency voltage to the second electrode 19b via the first switch 25 and the third switch 28, and supplies the ground potential to the container 15 via the second switch 27.
  • a high frequency is applied between the second sputtering target 18b and the container 15.
  • the fine particles 14 or the electronic component is attached with the second ultrafine particles having a diameter smaller than that of the fine particles 14 or the electronic component, or the second thin film.
  • the second sputtered film at this time is, for example, a Cu film.
  • ⁇ Sputtering + Surface modification + Sputtering> the surface modification treatment is performed after the first sputtering film is formed and before the second sputtering film is formed.
  • the details of the surface modification treatment are as follows. At least one gas of argon gas, oxygen gas, nitrogen gas, fluorine gas and an inert gas is introduced into the container 15 from the gas introduction port of the gas introduction unit 23 as shown by an arrow. Next, the inside of the chamber 12 is depressurized using the exhaust mechanism 13. Then, the container 15 is rotated or pendulum-operated by using the operating mechanism 16, so that the fine particles 14 or the electronic components in the container 15 are stirred or rotated.
  • the pressure inside the container 15 is maintained at a pressure suitable for the surface modification treatment by the balance between the controlled gas flow rate and the exhaust capacity.
  • the plasma power supply 26 applies a high frequency voltage to the container 15 via the second switch 27, and supplies the ground potential to the first electrode 19a via the first switch 25 and the third switch 28.
  • the plasma is ignited between the first electrode 19a and the container 15.
  • plasma is generated in the container 15 to modify the surface of the fine particles 14 or the electronic component.
  • Surface modification is, for example, oxidizing, nitriding or fluorinating the surface of fine particles 14 or electronic components. That is, since the fine particles 14 or the electronic components are rolled by moving the container 15 with a pendulum, the entire surface of the fine particles 14 or the electronic components can be easily modified.
  • the coated fine particles shown in FIG. 5 are produced by using the composite device 11 shown in FIGS. 3 and 4. First, the first sputtering target 18a made of a metal such as Zn or Au is held on the first electrode 19a. Further, the fine particles 14 or electronic parts made of a plurality of plastics (for example, polyethylene, polystyrene, PMMA (acrylic)) are housed in the container 15. Further, the first electrode 19a is moved by the moving mechanism 21 so that the first sputtering target 18a is located above. Next, the raw material gas is introduced into the container 15 from the gas introduction port of the gas introduction unit 23 as shown by an arrow. Next, the inside of the chamber 12 is depressurized using the exhaust mechanism 13.
  • a metal such as Zn or Au
  • PMMA acrylic
  • the DLC film 33 or Si a C b N c H is formed on the fine particles 14.
  • a film is formed.
  • Si a C b N c H d material gas when the film is deposited for example HMDS-N; using (hexamethyldisilazane C 6 H 19 NSi 2) or HMDS (hexamethyldisilazane).
  • the first electrode 19a is moved by the moving mechanism 21 so that the first sputtering target 18a held by the first electrode 19a is located below, and the argon gas is gas.
  • nitrogen gas is introduced into the container 15 from the gas introduction port of the gas introduction unit 23 as shown by an arrow.
  • the inside of the chamber 12 is depressurized using the exhaust mechanism 13. Then, by moving the container 15 with a pendulum using the operation mechanism 16 to perform sputtering while stirring or rotating the fine particles 14 in the container 15, the DLC film 33 or the Si a C b N c HD film is topped.
  • a metal film 34 such as a Zn film or an Au film is formed.
  • a, b, c, d may satisfy the following formulas 1 to 4.
  • Equation 1 0.2 ⁇ a ⁇ 0.6
  • Equation 2 0.1 ⁇ b ⁇ 0.3
  • Equation 3 0.1 ⁇ c ⁇ 0.3
  • Equation 4 0.03 ⁇ d ⁇ 0.2
  • the DLC film 33 by forming the DLC film 33 on the fine particles 14 made of plastic, aggregation of the fine particles 14 can be suppressed as compared with the case where the metal film 34 is directly formed on the fine particles 14. That is, since the fine particles 14 made of plastic are easily aggregated, the metal film 34 cannot be formed uniformly on the fine particles 14, but the metal film 34 is formed after the DLC film 33 is formed on the fine particles 14, so that the fine particles 14 are formed. It is possible to form a metal film 34 with good uniformity.
  • the DLC film 33 is formed on the fine particles 14, the DLC film is also formed on the inner wall surface of the container 15, so that the fine particles 14 can be prevented from adsorbing on the wall surface of the container 15. As a result, the metal film 34 can be uniformly formed on the surface of the fine particles 14.
  • a Si a C b N c HD film is formed on the fine particles 14 and a metal film 34 is formed on the Si a C b N c H d film
  • the metal film 34 and the fine particles 14 are in close contact with each other. You can improve your sex. That is, it is difficult to directly forming a metal film 14 on the particulate 14 made of plastic, but by forming a metal film 34 after forming the Si a C b N c H d membrane particulates 14, from plastic The metal film 34 can be easily formed on the fine particles 14.
  • the DLC film is formed microparticles 14 made of plastic, forming the Si a C b N c H d film on the DLC film.

Abstract

[Problem] To provide a composite device capable of preventing fine particles or electronic components from being exposed to the atmosphere during treatment when both plasma CVD treatment and sputtering treatment are performed. [Solution] The present invention provides a composite device comprising: an exhaust mechanism 13 that vacuum exhausts the inside of a chamber 12; a container 15 that accommodates fine particles 14 and has an internal shape of a polygonal, circular or elliptical cross section; an operation mechanism 16 that rotates or oscillates the container about a rotation axis perpendicular to the cross section; a first electrode 19 that holds a first sputtering target 18a; a moving mechanism that rotates the first electrode to move the position of the first sputtering target; a gas introduction part that introduces at least one gas of an inert gas, an oxygen gas, a fluorine gas, and a raw material gas into the container; a first supply mechanism that supplies power or a ground potential to the first electrode; and a second supply mechanism that supplies a ground potential or power to the container.

Description

複合装置及び被覆微粒子の製造方法Method for manufacturing composite device and coated fine particles
 本発明は、複合装置及び被覆微粒子の製造方法に関する。 The present invention relates to a composite device and a method for producing coated fine particles.
 特許文献1には、微粒子の表面にスパッタリングによりスパッタ膜を被覆する多角バレルスパッタ装置が開示されている。また、特許文献2には、微粒子の表面にプラズマCVD法によりCVD膜を被覆するプラズマCVD装置が開示されている。 Patent Document 1 discloses a polygonal barrel sputtering apparatus that coats the surface of fine particles with a sputtering film by sputtering. Further, Patent Document 2 discloses a plasma CVD apparatus that coats a CVD film on the surface of fine particles by a plasma CVD method.
 例えばプラスチックからなる微粒子の表面にCu等の金属膜を成膜した後に、その金属膜上にSiO等の酸化膜を成膜する場合は、まず、上記の多角バレルスパッタ装置を用いて微粒子の表面にスパッタリングにより金属膜を成膜し、その金属膜を成膜した微粒子を多角バレルスパッタ装置から取り出し、その取り出した微粒子をプラズマCVD装置に導入し、金属膜上にプラズマCVD法により酸化膜を成膜する必要がある。このように金属膜を成膜した微粒子を多角バレルスパッタ装置から取り出すと、その金属膜が大気に曝されるため、その金属膜が酸化してしまう。その結果、その金属膜上にプラズマCVD法により酸化膜を成膜しても、金属膜の膜質が劣化しているため、最終的に得られる酸化膜と金属膜が成膜された微粒子の性能が低下することがある。 For example, when a metal film such as Cu is formed on the surface of fine particles made of plastic and then an oxide film such as SiO 2 is formed on the metal film, first, the fine particles are subjected to the above-mentioned polygonal barrel sputtering apparatus. A metal film is formed on the surface by sputtering, and the fine particles on which the metal film is formed are taken out from a polygonal barrel sputtering apparatus, the taken out fine particles are introduced into a plasma CVD apparatus, and an oxide film is formed on the metal film by a plasma CVD method. It is necessary to form a film. When the fine particles having the metal film formed in this way are taken out from the polygonal barrel sputtering apparatus, the metal film is exposed to the atmosphere, and the metal film is oxidized. As a result, even if an oxide film is formed on the metal film by the plasma CVD method, the film quality of the metal film is deteriorated. Therefore, the performance of the finally obtained oxide film and the fine particles on which the metal film is formed is formed. May decrease.
特開2004-250771号公報Japanese Unexamined Patent Publication No. 2004-250771 特開2006-16661号公報Japanese Unexamined Patent Publication No. 2006-16661
 本発明の一態様は、微粒子又は電子部品に、スパッタ処理とプラズマCVD処理の両方を行う場合に、処理の途中で微粒子又は電子部品が大気に曝されることを防止する複合装置又はそれを用いた被覆微粒子を提供することを課題とする。
 また、本発明の他の一態様は、微粒子又は電子部品に、表面改質処理とスパッタ処理の両方を行う場合に、処理の途中で微粒子又は電子部品が大気に曝されることを防止する複合装置を提供することを課題とする。
One aspect of the present invention is a composite device or a composite device for preventing the fine particles or electronic components from being exposed to the atmosphere during the processing when both the sputtering treatment and the plasma CVD treatment are performed on the fine particles or electronic components. An object of the present invention is to provide the coated fine particles.
In addition, another aspect of the present invention is a composite that prevents the fine particles or electronic parts from being exposed to the atmosphere during the treatment when both the surface modification treatment and the sputtering treatment are performed on the fine particles or electronic parts. The subject is to provide the device.
 以下に、本発明の種々の態様について説明する。
[1]チャンバーと、
 前記チャンバー内を真空排気する排気機構と、
 前記チャンバー内に配置され、微粒子又は電子部品を収容する容器であって断面の内部形状が多角形、円形又は楕円形である容器と、
 前記断面に対して垂直方向を回転軸として前記容器を回転又は振り子動作させる動作機構と、
 前記容器内に配置され、第1のスパッタリングターゲットを保持する第1の電極と、
 前記容器内に不活性ガス、酸素ガス、窒素ガス、フッ素ガス及び原料ガスの少なくとも一つのガスを導入するガス導入部と、
 前記第1の電極に電力又はアース電位を供給する第1の供給機構と、
 前記容器にアース電位又は電力を供給する第2の供給機構と、
を具備することを特徴とする複合装置。
Hereinafter, various aspects of the present invention will be described.
[1] Chamber and
An exhaust mechanism that evacuates the inside of the chamber and
A container arranged in the chamber and containing fine particles or electronic parts and having an internal shape of a polygonal, circular or elliptical cross section.
An operating mechanism that rotates or pendulums the container about the direction perpendicular to the cross section as a rotation axis.
A first electrode located in the container and holding a first sputtering target,
A gas introduction unit that introduces at least one of an inert gas, an oxygen gas, a nitrogen gas, a fluorine gas, and a raw material gas into the container.
A first supply mechanism that supplies electric power or ground potential to the first electrode,
A second supply mechanism that supplies the earth potential or power to the container,
A complex device characterized by comprising.
[2]上記[1]において、
 前記第1の供給機構は、前記第1の電極に第1のスイッチを介して電気的に接続された前記プラズマ電源又はアースであり、
 前記第2の供給機構は、前記容器に第2のスイッチを介して電気的に接続されたアース又はプラズマ電源であることを具備することを特徴とする複合装置。
[2] In the above [1],
The first supply mechanism is the plasma power source or ground that is electrically connected to the first electrode via a first switch.
The second supply mechanism is a composite device comprising being an earth or plasma power source electrically connected to the container via a second switch.
[3]上記[1]又は[2]において、
 前記第1の電極に保持された前記第1のスパッタリングターゲットを上方又は下方に位置させるために、前記第1の電極を回転させて前記第1のスパッタリングターゲットの位置を移動させる移動機構を有することを特徴とする複合装置。
[3] In the above [1] or [2],
Having a moving mechanism for rotating the first electrode to move the position of the first sputtering target in order to position the first sputtering target held by the first electrode upward or downward. A complex device characterized by.
[4]上記[1]又は[2]において、
 制御部を有し、
 前記制御部は、前記動作機構を用いて前記容器を回転又は振り子動作させることにより前記容器内の前記微粒子又は前記電子部品を攪拌あるいは回転させながらスパッタリングを行うことで、前記微粒子又は前記電子部品に前記微粒子又は前記電子部品より径の小さい超微粒子を付着又は薄膜を成膜した後に、
 前記動作機構を用いて前記容器を回転又は振り子動作させることにより前記容器内の前記微粒子又は前記電子部品を攪拌あるいは回転させながらプラズマCVD法を行うことで、前記微粒子又は前記電子部品に前記微粒子又は前記電子部品より径の小さい超微粒子を付着又は薄膜を成膜するように制御することを特徴とする複合装置。
[4] In the above [1] or [2],
Has a control unit
The control unit rotates or pendulums the container using the operation mechanism to perform sputtering while stirring or rotating the fine particles or the electronic component in the container, thereby producing the fine particles or the electronic component. After adhering the fine particles or ultrafine particles having a diameter smaller than that of the electronic component or forming a thin film,
By rotating or pendulum the container using the operating mechanism to perform the plasma CVD method while stirring or rotating the fine particles or the electronic component in the container, the fine particles or the electronic component can be subjected to the fine particles or the electronic component. A composite device characterized in that ultrafine particles having a diameter smaller than that of the electronic component are adhered or controlled so as to form a thin film.
[5]上記[1]又は[2]において、
 制御部を有し、
 前記制御部は、前記動作機構を用いて前記容器を回転又は振り子動作させることにより前記容器内の前記微粒子又は前記電子部品を攪拌あるいは回転させながらプラズマCVD法を行うことで、前記微粒子又は前記電子部品に前記微粒子又は前記電子部品より径の小さい超微粒子を付着又は薄膜を成膜した後に、
 前記動作機構を用いて前記容器を回転又は振り子動作させることにより前記容器内の前記微粒子又は前記電子部品を攪拌あるいは回転させながらスパッタリングを行うことで、前記微粒子又は前記電子部品に前記微粒子又は前記電子部品より径の小さい超微粒子を付着又は薄膜を成膜するように制御することを特徴とする複合装置。
[5] In the above [1] or [2],
Has a control unit
The control unit performs a plasma CVD method while stirring or rotating the fine particles or electronic components in the container by rotating or pendulum the container using the operation mechanism, thereby causing the fine particles or the electrons. After adhering the fine particles or ultrafine particles having a diameter smaller than that of the electronic component to the component or forming a thin film,
Sputtering is performed while stirring or rotating the fine particles or the electronic component in the container by rotating or pendulum the container using the operation mechanism, so that the fine particles or the electronic component are subjected to the fine particles or the electrons. A composite device characterized in that ultrafine particles having a diameter smaller than that of a component are adhered or controlled so as to form a thin film.
[6]上記[3]において、
 制御部を有し、
 前記制御部は、前記第1の電極に保持された前記第1のスパッタリングターゲットが下方に位置するように前記第1の電極を前記移動機構により移動させ、前記動作機構を用いて前記容器を回転又は振り子動作させることにより前記容器内の前記微粒子又は前記電子部品を攪拌あるいは回転させながらスパッタリングを行うことで、前記微粒子又は前記電子部品に前記微粒子又は前記電子部品より径の小さい超微粒子を付着又は薄膜を成膜するように制御することを特徴とする複合装置。
[6] In the above [3],
Has a control unit
The control unit moves the first electrode by the moving mechanism so that the first sputtering target held by the first electrode is located below, and rotates the container using the operating mechanism. Alternatively, by performing sputtering while stirring or rotating the fine particles or the electronic component in the container by operating a pendulum, the fine particles or ultrafine particles having a diameter smaller than that of the electronic component are attached to the fine particles or the electronic component. A composite device characterized by controlling to form a thin film.
[7]上記[3]において、
 制御部を有し、
 前記制御部は、前記第1の電極に保持された前記第1のスパッタリングターゲットが上方に位置するように前記第1の電極を前記移動機構により移動させ、前記動作機構を用いて前記容器を回転又は振り子動作させることにより前記容器内の前記微粒子又は前記電子部品を攪拌あるいは回転させながらプラズマCVD法を行うことで、前記微粒子又は前記電子部品に前記微粒子又は前記電子部品より径の小さい超微粒子を付着又は薄膜を成膜するように制御することを特徴とする複合装置。
[7] In the above [3],
Has a control unit
The control unit moves the first electrode by the moving mechanism so that the first sputtering target held by the first electrode is located above, and rotates the container using the operating mechanism. Alternatively, by performing a plasma CVD method while stirring or rotating the fine particles or the electronic component in the container by operating a pendulum, the fine particles or the electronic component are provided with ultrafine particles having a diameter smaller than that of the fine particles or the electronic component. A composite device characterized in that it is controlled so as to adhere or form a thin film.
[8]上記[3]において、
 制御部を有し、
 前記制御部は、前記第1の電極に保持された前記第1のスパッタリングターゲットが上方に位置するように前記第1の電極を前記移動機構により移動させ、前記第1のスパッタリングターゲットと前記容器との間でスパッタリングを行うことで、前記第1のスパッタリングターゲットを補正するように制御することを特徴とする複合装置。
[8] In the above [3],
Has a control unit
The control unit moves the first electrode by the moving mechanism so that the first sputtering target held by the first electrode is located above, and the first sputtering target and the container A composite device characterized in that the first sputtering target is controlled to be corrected by performing sputtering between the two.
[9]上記[3]において、
 制御部を有し、
 前記制御部は、前記第1の電極に保持された前記第1のスパッタリングターゲットが上方に位置するように前記第1の電極を前記移動機構により移動させ、前記容器内に不活性ガス、酸素ガス、窒素ガス及びフッ素ガスの少なくとも一つのガスを導入し、前記動作機構を用いて前記容器を回転又は振り子動作させることにより前記容器内の前記微粒子又は前記電子部品を攪拌あるいは回転させながら前記少なくとも一つのガスのプラズマを生成することで、前記微粒子又は前記電子部品の表面を改質するように制御することを特徴とする複合装置。
[9] In the above [3],
Has a control unit
The control unit moves the first electrode by the moving mechanism so that the first sputtering target held by the first electrode is located above, and the inert gas and oxygen gas are contained in the container. , Nitrogen gas and fluorine gas are introduced, and the container is rotated or pendulum-operated by using the operating mechanism to stir or rotate the fine particles or the electronic parts in the container, and at least one of the above. A composite device characterized in that the surface of the fine particles or the electronic component is controlled to be modified by generating a plasma of one gas.
[10]上記[3]において、
 制御部を有し、
 前記制御部は、前記第1の電極に保持された前記第1のスパッタリングターゲットが下方に位置するように前記第1の電極を前記移動機構により移動させ、前記動作機構を用いて前記容器を回転又は振り子動作させることにより前記容器内の前記微粒子又は前記電子部品を攪拌あるいは回転させながらスパッタリングを行うことで、前記微粒子又は前記電子部品に前記微粒子又は前記電子部品より径の小さい超微粒子を付着又は薄膜を成膜した後に、
 前記第1の電極に保持された前記第1のスパッタリングターゲットが上方に位置するように前記第1の電極を前記移動機構により移動させ、前記動作機構を用いて前記容器を回転又は振り子動作させることにより前記容器内の前記微粒子又は前記電子部品を攪拌あるいは回転させながらプラズマCVD法を行うことで、前記微粒子又は前記電子部品に前記微粒子又は前記電子部品より径の小さい超微粒子を付着又は薄膜を成膜するように制御することを特徴とする複合装置。
[10] In the above [3],
Has a control unit
The control unit moves the first electrode by the moving mechanism so that the first sputtering target held by the first electrode is located below, and rotates the container using the operating mechanism. Alternatively, by performing sputtering while stirring or rotating the fine particles or the electronic component in the container by operating a pendulum, the fine particles or ultrafine particles having a diameter smaller than that of the electronic component are attached to the fine particles or the electronic component. After forming a thin film,
The first electrode is moved by the moving mechanism so that the first sputtering target held by the first electrode is located above, and the container is rotated or pendulum-operated by using the moving mechanism. By performing the plasma CVD method while stirring or rotating the fine particles or the electronic component in the container, the fine particles or ultrafine particles having a diameter smaller than that of the electronic component are attached to the fine particles or the electronic component or a thin film is formed. A composite device characterized in that it is controlled to form a film.
[11]上記[3]において、
 制御部を有し、
 前記制御部は、前記第1の電極に保持された前記第1のスパッタリングターゲットが上方に位置するように前記第1の電極を前記移動機構により移動させ、前記動作機構を用いて前記容器を回転又は振り子動作させることにより前記容器内の前記微粒子又は前記電子部品を攪拌あるいは回転させながらプラズマCVD法を行うことで、前記微粒子又は前記電子部品に前記微粒子又は前記電子部品より径の小さい超微粒子を付着又は薄膜を成膜した後に、
 前記第1の電極に保持された前記第1のスパッタリングターゲットが下方に位置するように前記第1の電極を前記移動機構により移動させ、前記動作機構を用いて前記容器を回転又は振り子動作させることにより前記容器内の前記微粒子又は前記電子部品を攪拌あるいは回転させながらスパッタリングを行うことで、前記微粒子又は前記電子部品に前記微粒子又は前記電子部品より径の小さい超微粒子を付着又は薄膜を成膜するように制御することを特徴とする複合装置。
[11] In the above [3],
Has a control unit
The control unit moves the first electrode by the moving mechanism so that the first sputtering target held by the first electrode is located above, and rotates the container using the operating mechanism. Alternatively, by performing a plasma CVD method while stirring or rotating the fine particles or the electronic component in the container by operating a pendulum, the fine particles or the electronic component are provided with ultrafine particles having a diameter smaller than that of the fine particles or the electronic component. After adhesion or thin film formation
The first electrode is moved by the moving mechanism so that the first sputtering target held by the first electrode is located below, and the container is rotated or pendulum-operated by using the moving mechanism. By performing sputtering while stirring or rotating the fine particles or the electronic component in the container, the fine particles or ultrafine particles having a diameter smaller than that of the electronic component are attached to the fine particles or the electronic component or a thin film is formed. A complex device characterized in that it is controlled in such a manner.
[12]上記[3]において、
 制御部を有し、
 前記制御部は、前記第1の電極に保持された前記第1のスパッタリングターゲットが上方に位置するように前記第1の電極を前記移動機構により移動させ、前記容器内に不活性ガス、酸素ガス、窒素ガス及びフッ素ガスの少なくとも一つのガスを導入し、前記動作機構を用いて前記容器を回転又は振り子動作させることにより前記容器内の前記微粒子又は前記電子部品を攪拌あるいは回転させながら前記少なくとも一つのガスのプラズマを生成することで、前記微粒子又は前記電子部品の表面を改質した後に、
 前記第1の電極に保持された前記第1のスパッタリングターゲットが下方に位置するように前記第1の電極を前記移動機構により移動させ、前記動作機構を用いて前記容器を回転又は振り子動作させることにより前記容器内の前記微粒子又は前記電子部品を攪拌あるいは回転させながらスパッタリングを行うことで、前記微粒子又は前記電子部品に前記微粒子又は前記電子部品より径の小さい超微粒子を付着又は薄膜を成膜するように制御することを特徴とする複合装置。
[12] In the above [3],
Has a control unit
The control unit moves the first electrode by the moving mechanism so that the first sputtering target held by the first electrode is located above, and the inert gas and oxygen gas are contained in the container. , Nitrogen gas and fluorine gas are introduced, and the container is rotated or pendulum-operated by using the operating mechanism to stir or rotate the fine particles or the electronic parts in the container, and at least one of the above. After modifying the surface of the fine particles or the electronic components by generating a plasma of one gas,
The first electrode is moved by the moving mechanism so that the first sputtering target held by the first electrode is located below, and the container is rotated or pendulum-operated by using the moving mechanism. By performing sputtering while stirring or rotating the fine particles or the electronic component in the container, the fine particles or ultrafine particles having a diameter smaller than that of the electronic component are attached to the fine particles or the electronic component or a thin film is formed. A complex device characterized in that it is controlled in such a manner.
[13]チャンバーと、
 前記チャンバー内を真空排気する排気機構と、
 前記チャンバー内に配置され、微粒子又は電子部品を収容する容器であって断面の内部形状が多角形、円形又は楕円形である容器と、
 前記断面に対して垂直方向を回転軸として前記容器を回転又は振り子動作させる動作機構と、
 前記容器内に配置され、第1のスパッタリングターゲットを保持する第1の電極と、
 前記容器内に配置され、第2のスパッタリングターゲットを保持する第2の電極と、
 前記第1の電極に保持された前記第1のスパッタリングターゲット及び前記第2の電極に保持された前記第2のスパッタリングターゲットそれぞれを上方又は下方に位置させるために、前記第1及び第2の電極を回転させて前記第1のスパッタリングターゲット及び前記第2のスパッタリングターゲットそれぞれの位置を移動させる移動機構と、
 前記容器内に不活性ガス、酸素ガス、窒素ガス、フッ素ガス及び原料ガスの少なくとも一つのガスを導入するガス導入部と、
 前記第1の電極に電力又はアース電位を供給する第1の供給機構と、
 前記第2の電極に電力又はアース電位を供給する第2の供給機構と、
 前記容器にアース電位又は電力を供給する第3の供給機構と、
を具備することを特徴とする複合装置。
[13] Chamber and
An exhaust mechanism that evacuates the inside of the chamber and
A container arranged in the chamber and containing fine particles or electronic parts and having an internal shape of a polygonal, circular or elliptical cross section.
An operating mechanism that rotates or pendulums the container about the direction perpendicular to the cross section as a rotation axis.
A first electrode located in the container and holding a first sputtering target,
A second electrode located in the container and holding a second sputtering target,
The first and second electrodes are used to position the first sputtering target held by the first electrode and the second sputtering target held by the second electrode above or below, respectively. To move the positions of the first sputtering target and the second sputtering target by rotating the moving mechanism, and
A gas introduction unit that introduces at least one of an inert gas, an oxygen gas, a nitrogen gas, a fluorine gas, and a raw material gas into the container.
A first supply mechanism that supplies electric power or ground potential to the first electrode,
A second supply mechanism that supplies electric power or ground potential to the second electrode,
A third supply mechanism that supplies the earth potential or power to the container,
A complex device characterized by comprising.
[13-1]上記[13]において、
 前記容器内に配置され、第3のスパッタリングターゲットを保持する第3の電極と、
 前記第3の電極に電力又はアース電位を供給する第3の供給機構と、
を有し、
 前記移動機構は、前記第3の電極を回転させて前記第3のスパッタリングターゲットの位置を移動させるものであることを特徴とする複合装置。
[13-1] In the above [13],
A third electrode located in the container and holding a third sputtering target,
A third supply mechanism that supplies electric power or ground potential to the third electrode, and
Have,
The moving mechanism is a composite device characterized in that the third electrode is rotated to move the position of the third sputtering target.
[13-2]上記[13―1]において、
 前記容器内に配置され、第4のスパッタリングターゲットを保持する第4電極と、
 前記第4の電極に電力又はアース電位を供給する第4の供給機構と、
を有し、
 前記移動機構は、前記第4の電極を回転させて前記第4のスパッタリングターゲットの位置を移動させるものであることを特徴とする複合装置。
[13-2] In the above [13-1],
A fourth electrode arranged in the container and holding a fourth sputtering target,
A fourth supply mechanism that supplies electric power or ground potential to the fourth electrode, and
Have,
The moving mechanism is a composite device characterized in that the fourth electrode is rotated to move the position of the fourth sputtering target.
[14]上記[13]において、
 前記第1の供給機構は、前記第1の電極に第1のスイッチ及び第3のスイッチを介して電気的に接続された前記プラズマ電源又はアースであり、
 前記第2の供給機構は、前記第2の電極に第1のスイッチ及び第3のスイッチを介して電気的に接続された前記プラズマ電源又はアースであり、
 前記第3の供給機構は、前記容器に第2のスイッチを介して電気的に接続されたアース又はプラズマ電源であることを具備することを特徴とする複合装置。
[14] In the above [13],
The first supply mechanism is the plasma power supply or ground that is electrically connected to the first electrode via a first switch and a third switch.
The second supply mechanism is the plasma power supply or ground that is electrically connected to the second electrode via a first switch and a third switch.
The third supply mechanism is a composite device comprising being an earth or plasma power source electrically connected to the container via a second switch.
[15]上記[13]又は[14]において、
 制御部を有し、
 前記制御部は、前記第1の電極に保持された前記第1のスパッタリングターゲットが下方に位置するように前記第1の電極を前記移動機構により移動させ、前記動作機構を用いて前記容器を回転又は振り子動作させることにより前記容器内の前記微粒子又は前記電子部品を攪拌あるいは回転させながらスパッタリングを行うことで、前記微粒子又は前記電子部品に前記微粒子又は前記電子部品より径の小さい第1の超微粒子を付着又は第1の薄膜を成膜した後に、
 前記第2の電極に保持された前記第2のスパッタリングターゲットが下方に位置するように前記第2の電極を前記移動機構により移動させ、前記動作機構を用いて前記容器を回転又は振り子動作させることにより前記容器内の前記微粒子又は前記電子部品を攪拌あるいは回転させながらスパッタリングを行うことで、前記第1の超微粒子又は前記第1の薄膜上に前記微粒子又は前記電子部品より径の小さい第2の超微粒子を付着又は第2の薄膜を成膜するように制御することを特徴とする複合装置。
[15] In the above [13] or [14],
Has a control unit
The control unit moves the first electrode by the moving mechanism so that the first sputtering target held by the first electrode is located below, and rotates the container using the operating mechanism. Alternatively, by performing sputtering while stirring or rotating the fine particles or the electronic component in the container by operating a pendulum, the fine particles or the electronic component is subjected to sputtering, so that the fine particles or the electronic component has a smaller diameter than the fine particles or the electronic component. After adhering or forming the first thin film
The second electrode is moved by the moving mechanism so that the second sputtering target held by the second electrode is located below, and the container is rotated or pendulum-operated by using the moving mechanism. By performing sputtering while stirring or rotating the fine particles or the electronic parts in the container, a second particle having a diameter smaller than that of the fine particles or the electronic parts is placed on the first ultrafine particles or the first thin film. A composite device characterized in that ultrafine particles are adhered or controlled so as to form a second thin film.
[16]上記[15]において、
 前記制御部は、前記第1の超微粒子を付着又は前記第1の薄膜を成膜した後で、且つ、前記第2の超微粒子を付着又は前記第2の薄膜を成膜する前に、前記容器内に不活性ガス、酸素ガス、窒素ガス及びフッ素ガスの少なくとも一つのガスを導入し、前記動作機構を用いて前記容器を回転又は振り子動作させることにより前記容器内の前記微粒子又は前記電子部品を攪拌あるいは回転させながら前記少なくとも一つのガスのプラズマを生成することで、前記第1の超微粒子又は前記第1の薄膜の表面を改質するように制御することを特徴とする複合装置。
[16] In the above [15],
The control unit attaches the first ultrafine particles or forms the first thin film, and before adhering the second ultrafine particles or forming the second thin film. By introducing at least one gas of inert gas, oxygen gas, nitrogen gas and fluorine gas into the container and rotating or penduluming the container using the operation mechanism, the fine particles or the electronic component in the container A composite device characterized in that the surface of the first ultrafine particles or the first thin film is controlled to be modified by generating plasma of the at least one gas while stirring or rotating the gas.
[17]上記[11]に記載の複合装置を用いて被覆微粒子を製造する方法において、
 前記容器内にプラスチック微粒子を収容し、
 前記第1の電極に保持された前記第1のスパッタリングターゲットが上方に位置するように前記第1の電極を前記移動機構により移動させ、
 前記動作機構を用いて前記容器を回転又は振り子動作させることにより前記容器内の前記プラスチック微粒子を攪拌あるいは回転させながらプラズマCVD法を行うことで、前記プラスチック微粒子にDLC膜又はSi膜を成膜し、
 前記第1の電極に保持された前記第1のスパッタリングターゲットが下方に位置するように前記第1の電極を前記移動機構により移動させ、
 前記動作機構を用いて前記容器を回転又は振り子動作させることにより前記容器内の前記プラスチック微粒子を攪拌あるいは回転させながらスパッタリングを行うことで、前記DLC膜又は前記Si膜の上に金属膜を成膜し、
 前記a、b、c、dは、下記式1~式4を満たすことを特徴とする被覆微粒子の製造方法。
 (式1)0.2≦a≦0.6
 (式2)0.1≦b≦0.3
 (式3)0.1≦c≦0.3
 (式4)0.03≦d≦0.2
[17] In the method for producing coated fine particles using the composite device according to the above [11],
Plastic fine particles are contained in the container, and
The first electrode is moved by the moving mechanism so that the first sputtering target held by the first electrode is located above.
By rotating or pendulum the container using the operation mechanism to perform the plasma CVD method while stirring or rotating the plastic fine particles in the container, a DLC film or Si a C bN c is applied to the plastic fine particles. An HD film is formed to form an HD film.
The first electrode is moved by the moving mechanism so that the first sputtering target held by the first electrode is located below.
By rotating or pendulum the container using the operation mechanism to perform sputtering while stirring or rotating the plastic fine particles in the container, the DLC film or the Si a C b N c HD film can be obtained. A metal film is formed on top,
The a, b, c, and d are methods for producing coated fine particles, which satisfy the following formulas 1 to 4.
(Equation 1) 0.2 ≤ a ≤ 0.6
(Equation 2) 0.1 ≤ b ≤ 0.3
(Equation 3) 0.1 ≤ c ≤ 0.3
(Equation 4) 0.03 ≤ d ≤ 0.2
[18]上記[11]に記載の複合装置を用いて被覆微粒子を製造する方法において、
 前記容器内にプラスチック微粒子を収容し、
 前記第1の電極に保持された前記第1のスパッタリングターゲットが上方に位置するように前記第1の電極を前記移動機構により移動させ、
 前記動作機構を用いて前記容器を回転又は振り子動作させることにより前記容器内の前記プラスチック微粒子を攪拌あるいは回転させながらプラズマCVD法を行うことで、前記プラスチック微粒子にDLC膜を成膜し、
 前記動作機構を用いて前記容器を回転又は振り子動作させることにより前記容器内の前記プラスチック微粒子を攪拌あるいは回転させながらプラズマCVD法を行うことで、前記DLC膜上にSi膜を成膜し、
 前記第1の電極に保持された前記第1のスパッタリングターゲットが下方に位置するように前記第1の電極を前記移動機構により移動させ、
 前記動作機構を用いて前記容器を回転又は振り子動作させることにより前記容器内の前記プラスチック微粒子を攪拌あるいは回転させながらスパッタリングを行うことで、前記Si膜の上に金属膜を成膜し、
 前記a、b、c、dは、下記式1~式4を満たすことを特徴とする被覆微粒子の製造方法。
 (式1)0.2≦a≦0.6
 (式2)0.1≦b≦0.3
 (式3)0.1≦c≦0.3
 (式4)0.03≦d≦0.2
[18] In the method for producing coated fine particles using the composite device according to the above [11],
Plastic fine particles are contained in the container, and
The first electrode is moved by the moving mechanism so that the first sputtering target held by the first electrode is located above.
A DLC film is formed on the plastic fine particles by performing a plasma CVD method while stirring or rotating the plastic fine particles in the container by rotating or pendulum the container using the operation mechanism.
By performing the plasma CVD method while stirring or rolling the plastic particles in the container by rotating or pendulum operation the container using the operating mechanism, on the DLC film Si a C b N c H d A film is formed,
The first electrode is moved by the moving mechanism so that the first sputtering target held by the first electrode is located below.
By performing sputtering while stirring or rolling the plastic particles in the container by rotating or pendulum operation the container using the operating mechanism, metal film on the Si a C b N c H d film Filmed,
The a, b, c, and d are methods for producing coated fine particles, which satisfy the following formulas 1 to 4.
(Equation 1) 0.2 ≤ a ≤ 0.6
(Equation 2) 0.1 ≤ b ≤ 0.3
(Equation 3) 0.1 ≤ c ≤ 0.3
(Equation 4) 0.03 ≤ d ≤ 0.2
 本発明の一態様によれば、プラズマCVD法及びスパッタリングの両方で、微粒子又は電子部品に、その微粒子又は電子部品より径の小さい超微粒子を付着又は薄膜を成膜する場合に、途中で微粒子又は電子部品が大気に曝されることを防止する複合装置又はそれを用いた被覆微粒子を提供することができる。 According to one aspect of the present invention, when an ultrafine particle having a diameter smaller than that of the fine particle or the electronic component is attached to the fine particle or the electronic component or a thin film is formed by both the plasma CVD method and the sputtering method, the fine particle or the thin film is formed on the way. It is possible to provide a composite device for preventing electronic components from being exposed to the atmosphere or coated fine particles using the same.
 また、本発明の他の一態様によれば、微粒子又は電子部品に表面改質処理を行い、その微粒子又は電子部品に、スパッタリングにより、その微粒子又は電子部品より径の小さい超微粒子を付着又は薄膜を成膜する場合に、表面改質処理後の微粒子又は電子部品が大気に曝されることを防止する複合装置を提供することができる。 Further, according to another aspect of the present invention, the fine particles or electronic parts are subjected to surface modification treatment, and the fine particles or electronic parts are sputtered to adhere ultrafine particles having a diameter smaller than that of the fine particles or electronic parts or a thin film. It is possible to provide a composite device for preventing the fine particles or electronic components after the surface modification treatment from being exposed to the atmosphere when the film is formed.
本発明の一態様に係る複合装置を模式的に示す断面図である。It is sectional drawing which shows typically the composite apparatus which concerns on one aspect of this invention. 図1に示す10-10線に沿った断面図である。FIG. 5 is a cross-sectional view taken along the line 10-10 shown in FIG. 本発明の一態様に係る複合装置を模式的に示す断面図である。It is sectional drawing which shows typically the composite apparatus which concerns on one aspect of this invention. 図3に示す20-20線に沿った断面図である。It is sectional drawing which follows the line 20-20 shown in FIG. 本発明の一態様に係る被覆微粒子である。It is a coated fine particle according to one aspect of the present invention.
 以下では、本発明の実施の形態について図面を用いて詳細に説明する。ただし、本発明は以下の説明に限定されず、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは、当業者であれば容易に理解される。従って、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. However, the present invention is not limited to the following description, and it is easily understood by those skilled in the art that the form and details of the present invention can be variously changed without departing from the spirit and scope of the present invention. Therefore, the present invention is not construed as being limited to the description of the embodiments shown below.
  <複合装置>
 図1は、本発明の一態様に係る複合装置を模式的に示す断面図である。図2は、図1に示す10-10線に沿った断面図である。
<Composite device>
FIG. 1 is a cross-sectional view schematically showing a composite device according to an aspect of the present invention. FIG. 2 is a cross-sectional view taken along the line 10-10 shown in FIG.
 図1及び図2に示す複合装置11は、スパッタリング装置、プラズマCVD装置及び表面改質処理装置の機能を複合的に有する装置である。 The composite device 11 shown in FIGS. 1 and 2 is a device having a combined function of a sputtering device, a plasma CVD device, and a surface modification processing device.
 この複合装置11は、チャンバー12と、このチャンバー12内を真空排気する排気機構13を有している。この排気機構13は真空ポンプなどで構成されている。また、チャンバー12内には、微粒子14又は電子部品を収容する容器15が配置されている。この容器15は、図2に示すように断面の内部形状が多角形である。この容器15は、図2に示す断面に対して垂直方向を軸としてモーターなどの動作機構16により容器15自身を矢印17のように振り子動作させることができるようになっている。
 なお、本実施形態では、容器の断面の内部形状を多角形としているが、容器の断面の内部形状を円形又は楕円形としてもよい。また、容器を円筒形状又は円錐形状としてもよい。
 また、本実施形態では、動作機構16により容器15を振り子動作させるが、動作機構16により容器15を回転させてもよい。
The composite device 11 has a chamber 12 and an exhaust mechanism 13 that evacuates the inside of the chamber 12. The exhaust mechanism 13 is composed of a vacuum pump or the like. In addition, a container 15 for accommodating fine particles 14 or electronic components is arranged in the chamber 12. As shown in FIG. 2, the container 15 has a polygonal internal shape in cross section. The container 15 can be pendulum-operated as shown by an arrow 17 by an operating mechanism 16 such as a motor with the direction perpendicular to the cross section shown in FIG. 2 as an axis.
In the present embodiment, the internal shape of the cross section of the container is polygonal, but the internal shape of the cross section of the container may be circular or elliptical. Further, the container may have a cylindrical shape or a conical shape.
Further, in the present embodiment, the container 15 is pendulum-operated by the operating mechanism 16, but the container 15 may be rotated by the operating mechanism 16.
 容器15内には、第1のスパッタリングターゲット18aを保持する第1の電極19a及び第2のスパッタリングターゲット18bを保持する第2の電極19bが配置されている。なお、図1及び図2に示す状態は、第1のスパッタリングターゲット18aを下方に位置させ、第2のスパッタリングターゲット18bを上方に位置させた状態である。また、本実施形態では、2つのスパッタリングターゲットそれぞれを2つの電極に保持させているが、3つ以上のスパッタリングターゲットを3つ以上の電極に保持させてもよい。 A first electrode 19a holding the first sputtering target 18a and a second electrode 19b holding the second sputtering target 18b are arranged in the container 15. The state shown in FIGS. 1 and 2 is a state in which the first sputtering target 18a is positioned downward and the second sputtering target 18b is positioned upward. Further, in the present embodiment, each of the two sputtering targets is held by two electrodes, but three or more sputtering targets may be held by three or more electrodes.
 また、本明細書において、「スパッタリングターゲットを下方に位置させる」とは、図1及び図2に示す重力方向(真下)30のみを意味するのではなく、真下から左右に45°未満傾けた位置も含む意味であり、「スパッタリングターゲットを上方に位置させる」とは、図1に示す重力方向30の反対方向(真上)のみを意味するのではなく、真上から左右に45°以下傾けた位置も含む意味である。 Further, in the present specification, "positioning the sputtering target downward" does not mean only the gravity direction (directly below) 30 shown in FIGS. 1 and 2, but is a position tilted to the left and right by less than 45 ° from directly below. The meaning of "positioning the sputtering target above" does not mean only the opposite direction (directly above) of the gravity direction 30 shown in FIG. 1, but is tilted to the left and right by 45 ° or less from directly above. It means that the position is also included.
 また、複合装置11は、第1及び第2の電極19a,19bそれぞれを回転させて第1及び第2のスパッタリングターゲット18a,18bそれぞれの位置を移動させる移動機構21を有している。この移動機構21はモーターなどで構成されている。移動機構21によって第1及び第2の電極19a,19bに保持された第1及び第2のスパッタリングターゲット18a,18bそれぞれを上方又は下方に位置させることができる。 Further, the composite device 11 has a moving mechanism 21 that rotates the first and second electrodes 19a and 19b to move the positions of the first and second sputtering targets 18a and 18b, respectively. The moving mechanism 21 is composed of a motor or the like. The first and second sputtering targets 18a and 18b held by the first and second electrodes 19a and 19b by the moving mechanism 21 can be positioned above or below, respectively.
 容器15内にガス22を導入するためのガス導入部23は、第1及び第2の電極19a,19bの上側に位置し、且つ、容器15内に位置するガス導入口を有している。容器15内に導入するガスは、不活性ガス、酸素ガス、窒素ガス、フッ素ガス及び原料ガスの少なくとも一つのガスであるとよい。 The gas introduction unit 23 for introducing the gas 22 into the container 15 has a gas introduction port located above the first and second electrodes 19a and 19b and located in the container 15. The gas introduced into the container 15 is preferably at least one gas of an inert gas, an oxygen gas, a nitrogen gas, a fluorine gas and a raw material gas.
 また、複合装置11は第1の電極19aに電力又はアース電位を供給する第1の供給機構を有しており、第1の供給機構は第1の電極19aに第1及び第3のスイッチ25,28を介して電気的に接続されたプラズマ電源26又はアースである。また、複合装置11は第2の電極19bに電力又はアース電位を供給する第2の供給機構を有しており、第2の供給機構は第2の電極19bに第1及び第3のスイッチ25,28を介して電気的に接続されたプラズマ電源26又はアースである。また、複合装置11は容器15にアース電位又は電力を供給する第2の供給機構を有しており、第2の供給機構は容器15に第2のスイッチ27を介して電気的に接続されたアース又はプラズマ電源26である。このプラズマ電源26は、高周波電力(RF出力)を供給する高周波電源、マイクロ波用電源、DC放電用電源、及びそれぞれパルス変調された高周波電源、マイクロ波用電源 、DC放電用電源のいずれかであるとよい。 Further, the composite device 11 has a first supply mechanism for supplying electric power or a ground potential to the first electrode 19a, and the first supply mechanism has the first and third switches 25 to the first electrode 19a. , 28 is an electrically connected plasma power source 26 or ground. Further, the composite device 11 has a second supply mechanism for supplying electric power or a ground potential to the second electrode 19b, and the second supply mechanism has the first and third switches 25 to the second electrode 19b. , 28 is an electrically connected plasma power source 26 or ground. Further, the composite device 11 has a second supply mechanism for supplying the earth potential or electric power to the container 15, and the second supply mechanism is electrically connected to the container 15 via the second switch 27. Earth or plasma power supply 26. The plasma power supply 26 can be any one of a high frequency power supply for supplying high frequency power (RF output), a microwave power supply, a DC discharge power supply, and a pulse-modulated high frequency power supply, a microwave power supply, and a DC discharge power supply, respectively. It would be nice to have one.
 なお、図1に示す複合装置では、第1の供給機構によるプラズマ電源と第2の供給機構によるプラズマ電源を一つのプラズマ電源26としているが、第1及び第2の供給機構それぞれにプラズマ電源を配置してもよい。 In the composite device shown in FIG. 1, the plasma power supply by the first supply mechanism and the plasma power supply by the second supply mechanism are one plasma power supply 26, but the plasma power supply is provided to each of the first and second supply mechanisms. It may be arranged.
  <スパッタ処理>
 図1及び図2に示す複合装置11により微粒子14又は電子部品にスパッタリング処理を行う方法について説明する。
<Sputtering>
A method of performing a sputtering process on the fine particles 14 or electronic components by the composite device 11 shown in FIGS. 1 and 2 will be described.
 図1に示す複合装置11は制御部31を有し、この制御部31は以下のスパッタリング処理を行うように複合装置11を制御する。 The composite device 11 shown in FIG. 1 has a control unit 31, and the control unit 31 controls the composite device 11 so as to perform the following sputtering process.
 第1の電極19aに保持された第1のスパッタリングターゲット18aが下方に位置するように第1の電極19aを移動機構21により移動させ、動作機構16を用いて容器15を回転又は振り子動作させることにより、容器15内の微粒子14又は電子部品を攪拌あるいは回転させながらスパッタリングを行うことで、微粒子14又は電子部品にその微粒子14又は電子部品より径の小さい超微粒子を付着又は薄膜を成膜する。 The first electrode 19a is moved by the moving mechanism 21 so that the first sputtering target 18a held by the first electrode 19a is located below, and the container 15 is rotated or pendulum-operated by using the moving mechanism 16. By performing sputtering while stirring or rotating the fine particles 14 or the electronic component in the container 15, ultrafine particles having a diameter smaller than that of the fine particle 14 or the electronic component are attached to the fine particle 14 or the electronic component or a thin film is formed.
 以下に詳細に説明する。
 第1の電極19aに第1のスパッタリングターゲット18aを保持させる。第1のスパッタリングターゲット18aとしては、種々の材質を用いることができ、例えばZn、Au等の金属を用いることができる。また、容器15内に微粒子14又は電子部品を収容する。この微粒子としては、種々の材質を用いることができ、例えばプラスチック(例えばポリエチレン、ポリスチレン、PMMA(アクリル)等)を用いることができる。次いで、第1のスパッタリングターゲット18aが下方に位置するように第1の電極19aを移動機構21により移動させる。次いで、アルゴンガス又は窒素ガスをガス導入部23のガス導入口から矢印のように容器15内に導入する。次いで、排気機構13を用いてチャンバー12内を減圧する。この際のチャンバー12内の圧力は例えば1Pa程度である。そして、動作機構16を用いて容器15を回転又は振り子動作させることで、容器15内の微粒子14又は電子部品を攪拌あるいは回転させる。その後、プラズマ電源26により第1のスイッチ25及び第3のスイッチ28を介して高周波電圧を第1の電極19aに印加し、アース電位を第2のスイッチ27を介して容器15に供給する。これにより、第1のスパッタリングターゲット18aと容器15との間に高周波が印加される。このようにして容器15内の微粒子14又は電子部品にスパッタリング処理が行われることで、微粒子14又は電子部品にその微粒子14又は電子部品より径の小さい超微粒子を付着又は薄膜を成膜することができる。つまり、容器15を振り子動作させることによって微粒子14又は電子部品を転がしているため、微粒子14又は電子部品の表面全体にスパッタ膜を均一に被覆することが容易にできる。
This will be described in detail below.
The first electrode 19a holds the first sputtering target 18a. As the first sputtering target 18a, various materials can be used, and for example, metals such as Zn and Au can be used. Further, the fine particles 14 or electronic parts are housed in the container 15. Various materials can be used as the fine particles, and for example, plastic (for example, polyethylene, polystyrene, PMMA (acrylic), etc.) can be used. Next, the first electrode 19a is moved by the moving mechanism 21 so that the first sputtering target 18a is located below. Next, argon gas or nitrogen gas is introduced into the container 15 from the gas introduction port of the gas introduction unit 23 as shown by an arrow. Next, the inside of the chamber 12 is depressurized using the exhaust mechanism 13. The pressure in the chamber 12 at this time is, for example, about 1 Pa. Then, the container 15 is rotated or pendulum-operated by using the operating mechanism 16, so that the fine particles 14 or the electronic components in the container 15 are stirred or rotated. Then, the plasma power supply 26 applies a high frequency voltage to the first electrode 19a via the first switch 25 and the third switch 28, and supplies the ground potential to the container 15 via the second switch 27. As a result, a high frequency is applied between the first sputtering target 18a and the container 15. By performing the sputtering treatment on the fine particles 14 or the electronic component in the container 15 in this way, the fine particles 14 or the electronic component can be attached with ultrafine particles having a diameter smaller than that of the fine particle 14 or the electronic component, or a thin film can be formed. can. That is, since the fine particles 14 or the electronic components are rolled by moving the container 15 with a pendulum, it is possible to easily uniformly cover the entire surface of the fine particles 14 or the electronic components with the sputtering film.
  <プラズマCVD処理>
 図3及び図4に示す複合装置11により微粒子14又は電子部品にプラズマCVD処理を行う方法について説明する。なお、図3及び図4に示す複合装置11は、第1のスパッタリングターゲット18aを上方に位置させた状態となっている点が図1及び図2に示す複合装置11と異なるが、それ以外は同様である。
<Plasma CVD process>
A method of performing plasma CVD processing on the fine particles 14 or electronic components by the composite device 11 shown in FIGS. 3 and 4 will be described. The composite device 11 shown in FIGS. 3 and 4 differs from the composite device 11 shown in FIGS. 1 and 2 in that the first sputtering target 18a is positioned upward, but other than that. The same is true.
 図3に示す複合装置11は制御部31を有し、この制御部31は以下のプラズマCVD処理を行うように複合装置11を制御する。 The composite device 11 shown in FIG. 3 has a control unit 31, and the control unit 31 controls the composite device 11 so as to perform the following plasma CVD process.
 第1のスパッタリングターゲット18aが上方に位置するように第1の電極19aを移動機構により移動させ、動作機構16を用いて容器15を回転又は振り子動作させることにより容器15内の微粒子14又は電子部品を攪拌あるいは回転させながらプラズマCVD法を行うことで、微粒子14又は電子部品に微粒子又は電子部品より径の小さい超微粒子を付着又は薄膜を成膜する。 The first electrode 19a is moved by a moving mechanism so that the first sputtering target 18a is located above, and the container 15 is rotated or pendulum-operated by using the operating mechanism 16, so that the fine particles 14 or electronic components in the container 15 are moved. By performing the plasma CVD method while stirring or rotating the particles, the fine particles or ultrafine particles having a diameter smaller than that of the electronic parts are adhered to the fine particles 14 or the electronic component, or a thin film is formed.
 以下に詳細に説明する。
 複数の微粒子14又は電子部品を容器15内に収容する。また、第1のスパッタリングターゲット18aが上方に位置するように第1の電極19aを移動機構21により移動させる(図3及び図4参照)。次いで、原料ガスをガス導入部23のガス導入口から矢印のように容器15内に導入する。この原料ガスとしては、例えばC、CH、C、CF、HMDS-N(ヘキサメチルジシラザン;C19NSi)、HMDS(ヘキサメチルジシラザン)を用いることができる。次いで、排気機構13を用いてチャンバー12内を減圧する。そして、動作機構16を用いて容器15を回転又は振り子動作させることで、容器15内の微粒子14又は電子部品を攪拌あるいは回転させる。これにより、容器15内を転がりながら動いている微粒子14に原料ガスが吹き付けられ、制御されたガス流量と排気能力のバランスによって、プラズマCVD法による成膜に適した圧力(例えば20Pa程度)に保たれる。この圧力は、スパッタリング時の圧力より高い。その後、プラズマ電源26により第2のスイッチ27を介して高周波電圧を容器15に印加し、アース電位を第1のスイッチ25及び第3のスイッチ28を介して第1の電極19aに供給する。これにより、第1の電極19aと容器15との間にプラズマを着火する。これによって、容器15内にプラズマが発生し、微粒子14又は電子部品に超微粒子が付着又は薄膜が成膜される。つまり、容器15を振り子動作させることによって微粒子14又は電子部品を転がしているため、微粒子14又は電子部品の表面全体にCVD膜(例えばSiO膜)を均一に被覆することが容易にできる。
 なお、上記のプラズマCVD処理では、第1の電極19aにアース電位を第1のスイッチ25及び第3のスイッチ28を介して供給することで、第1の電極19aと容器15との間にプラズマを着火するが、第2の電極19bにアース電位を第1のスイッチ25及び第3のスイッチ28を介して供給することで、第2の電極19bと容器15との間にプラズマを着火してもよい。この場合、第2の電極19に第2のスパッタリングターゲット18bを保持させない状態としてもよい。もしくは、第1の電極19aと第2の電極19bを一体化した電極とし、その電極に第1のスパッタリングターゲット18aを保持させ、且つ、その第1のスパッタリングターゲット18aを上方に位置させた状態で、その電極にアース電位をスイッチを介して供給することで、その電極と容器15との間にプラズマを着火してもよい。
 また、上記のプラズマCVD処理を行う際に第1のスパッタリングターゲット18aからスパッタリングは起こらない。その理由は、第1の電極19aにアースを供給していること、容器15内の圧力がスパッタ処理時の圧力より高いことによる。
This will be described in detail below.
A plurality of fine particles 14 or electronic components are housed in the container 15. Further, the first electrode 19a is moved by the moving mechanism 21 so that the first sputtering target 18a is located above (see FIGS. 3 and 4). Next, the raw material gas is introduced into the container 15 from the gas introduction port of the gas introduction unit 23 as shown by an arrow. As the raw material gas, for example C 2 H 2, CH 4, C 7 H 8, CF 4, HMDS-N ( hexamethyldisilazane; C 6 H 19 NSi 2) , the use of HMDS (hexamethyldisilazane) Can be done. Next, the inside of the chamber 12 is depressurized using the exhaust mechanism 13. Then, the container 15 is rotated or pendulum-operated by using the operating mechanism 16, so that the fine particles 14 or the electronic components in the container 15 are stirred or rotated. As a result, the raw material gas is sprayed onto the fine particles 14 that are rolling and moving in the container 15, and the pressure (for example, about 20 Pa) suitable for film formation by the plasma CVD method is maintained by the balance between the controlled gas flow rate and the exhaust capacity. Dripping. This pressure is higher than the pressure during sputtering. Then, the plasma power supply 26 applies a high frequency voltage to the container 15 via the second switch 27, and supplies the ground potential to the first electrode 19a via the first switch 25 and the third switch 28. As a result, the plasma is ignited between the first electrode 19a and the container 15. As a result, plasma is generated in the container 15, and ultrafine particles adhere to the fine particles 14 or electronic components, or a thin film is formed. That is, since the fine particles 14 or the electronic components are rolled by moving the container 15 with a pendulum, it is easy to uniformly coat the entire surface of the fine particles 14 or the electronic components with a CVD film (for example, a SiO 2 film).
In the above plasma CVD process, the ground potential is supplied to the first electrode 19a via the first switch 25 and the third switch 28, so that the plasma is generated between the first electrode 19a and the container 15. Is ignited, but by supplying the ground potential to the second electrode 19b via the first switch 25 and the third switch 28, the plasma is ignited between the second electrode 19b and the container 15. May be good. In this case, the second electrode 19 may not hold the second sputtering target 18b. Alternatively, in a state where the first electrode 19a and the second electrode 19b are integrated into an electrode, the first sputtering target 18a is held by the electrode, and the first sputtering target 18a is positioned above. By supplying an earth potential to the electrode via a switch, plasma may be ignited between the electrode and the container 15.
Further, when the plasma CVD process is performed, sputtering does not occur from the first sputtering target 18a. The reason is that the ground is supplied to the first electrode 19a and the pressure inside the container 15 is higher than the pressure during the sputtering process.
  <プレスパッタ処理(ターゲット補正処理、ターゲットクリーニング)>
 図3及び図4に示す複合装置11により微粒子14又は電子部品にプレスパッタ処理を行う方法について説明する。プレスパッタ処理は、プラズマCVD処理を行うことで第1のスパッタリングターゲット18aの表面にCVD膜が付着した場合に、そのCVD膜を第1のスパッタリングターゲット18aの表面から除去することで清浄な状態に補正する処理である。
<Pre-sputter processing (target correction processing, target cleaning)>
A method of pre-sputtering the fine particles 14 or electronic components by the composite device 11 shown in FIGS. 3 and 4 will be described. In the pre-sputtering process, when a CVD film adheres to the surface of the first sputtering target 18a by performing plasma CVD processing, the CVD film is removed from the surface of the first sputtering target 18a to bring it into a clean state. This is a correction process.
 図3に示す複合装置11は制御部31を有し、この制御部31は以下のプレスパッタ処理を行うように複合装置11を制御する。 The composite device 11 shown in FIG. 3 has a control unit 31, and the control unit 31 controls the composite device 11 so as to perform the following pre-sputter processing.
 第1のスパッタリングターゲット18aが上方に位置するように第1の電極19aを移動機構21により移動させ、第1のスパッタリングターゲット18aと容器15との間でスパッタリングを行うことで、第1のスパッタリングターゲット18aをクリーニングして清浄な状態に補正する。 The first sputtering target 19a is moved by the moving mechanism 21 so that the first sputtering target 18a is located above, and sputtering is performed between the first sputtering target 18a and the container 15. Clean 18a and correct it to a clean state.
 以下に詳細に説明する。
 第1のスパッタリングターゲット18aが上方に位置するように第1の電極19aを移動機構21により移動させる(図3及び図4参照)。次いで、アルゴンガス又は窒素ガスをガス導入部23のガス導入口から容器15内に導入する。次いで、排気機構13を用いてチャンバー12内を減圧する。この際のチャンバー内の圧力は例えば1Pa程度である。その後、プラズマ電源26により第1のスイッチ25及び第3のスイッチ28を介して高周波電圧を第1の電極19aに印加し、アース電位を第2のスイッチ27を介して容器15に供給する(第1乃至第3のスイッチ25,27,28は図1に示す状態とする)。これにより、第1のスパッタリングターゲット18aと容器15との間に高周波が印加される。このようにして第1のスパッタリングターゲット18aに逆スパッタが施され、第1のスパッタリングターゲット18aの表面からCVD膜を除去することができる。また、第1のスパッタリングターゲット18a表面の酸化物やコンタミ等を除去することもできる。
 また、プレスパッタ処理時には、第1のスパッタリングターゲット18aが上方に位置しているため、容器15の下方に収容されている微粒子14又は電子部品にスパッタ膜が成膜されることがない。
This will be described in detail below.
The first electrode 19a is moved by the moving mechanism 21 so that the first sputtering target 18a is located above (see FIGS. 3 and 4). Next, argon gas or nitrogen gas is introduced into the container 15 from the gas introduction port of the gas introduction unit 23. Next, the inside of the chamber 12 is depressurized using the exhaust mechanism 13. The pressure in the chamber at this time is, for example, about 1 Pa. After that, a high frequency voltage is applied to the first electrode 19a via the first switch 25 and the third switch 28 by the plasma power supply 26, and the ground potential is supplied to the container 15 via the second switch 27 (the first). The first to third switches 25, 27, and 28 are in the state shown in FIG. 1). As a result, a high frequency is applied between the first sputtering target 18a and the container 15. In this way, the first sputtering target 18a is reverse-sputtered, and the CVD film can be removed from the surface of the first sputtering target 18a. It is also possible to remove oxides, contamination and the like on the surface of the first sputtering target 18a.
Further, during the pre-sputtering process, since the first sputtering target 18a is located above, the sputter film is not formed on the fine particles 14 or the electronic components housed below the container 15.
  <表面改質処理>
 図3及び図4に示す複合装置11により微粒子14又は電子部品に表面改質処理を行う方法について説明する。
<Surface modification treatment>
A method of surface-modifying the fine particles 14 or electronic components by the composite device 11 shown in FIGS. 3 and 4 will be described.
 図3に示す複合装置11は制御部31を有し、この制御部31は以下の表面改質処理を行うように複合装置11を制御する。 The composite device 11 shown in FIG. 3 has a control unit 31, and the control unit 31 controls the composite device 11 so as to perform the following surface modification treatment.
 第1のスパッタリングターゲット18aが上方に位置するように第1の電極19aを移動機構21により移動させ、容器15内にアルゴンガス、酸素ガス、窒素ガス、フッ素ガス及び不活性ガスの少なくとも一つのガスを導入し、動作機構16を用いて容器15を回転又は振り子動作させることにより容器15内の微粒子14又は電子部品を攪拌あるいは回転させながら前記少なくとも一つのガスのプラズマを生成することで、微粒子14又は電子部品の表面を改質する。 The first electrode 19a is moved by the moving mechanism 21 so that the first sputtering target 18a is located above, and at least one gas of argon gas, oxygen gas, nitrogen gas, fluorine gas and inert gas is moved into the container 15. By rotating or penduluming the container 15 using the operating mechanism 16 to generate the plasma of at least one gas while stirring or rotating the fine particles 14 or the electronic parts in the container 15, the fine particles 14 Alternatively, the surface of the electronic component is modified.
 以下に詳細に説明する。
 複数の微粒子14又は電子部品を容器15内に収容する。また、第1のスパッタリングターゲット18aが上方に位置するように第1の電極19aを移動機構21により移動させる(図3及び図4参照)。次いで、アルゴンガス、酸素ガス、窒素ガス、フッ素ガス及び不活性ガスの少なくとも一つのガスをガス導入部23のガス導入口から矢印のように容器15内に導入する。次いで、排気機構13を用いてチャンバー12内を減圧する。そして、動作機構16を用いて容器15を回転又は振り子動作させることで、容器15内の微粒子14又は電子部品を攪拌あるいは回転させる。これにより、容器15内は、制御されたガス流量と排気能力のバランスによって、表面改質処理に適した圧力(例えば10Pa程度)に保たれる。この圧力は、プラズマCVD処理時とスパッタ処理時の圧力の中間程度である。その後、プラズマ電源26により第2のスイッチ27を介して高周波電圧を容器15に印加し、アース電位を第1のスイッチ25及び第3のスイッチ28を介して第1の電極19aに供給する。これにより、第1の電極19aと容器15との間にプラズマを着火する。これによって、容器15内にプラズマが発生し、微粒子14又は電子部品の表面を改質する。表面改質は、例えば微粒子14又は電子部品の表面を酸化、窒化又はフッ化させることである。つまり、容器15を振り子動作させることによって微粒子14又は電子部品を転がしているため、微粒子14又は電子部品の表面全体に改質処理を施すことが容易にできる。
 なお、上記の表面改質処理では、第1の電極19aにアース電位を第1のスイッチ25及び第3のスイッチ28を介して供給することで、第1の電極19aと容器15との間にプラズマを着火するが、第2の電極19bにアース電位を第1のスイッチ25及び第3のスイッチ28を介して供給することで、第2の電極19bと容器15との間にプラズマを着火してもよい。この場合、第2の電極19に第2のスパッタリングターゲット18bを保持させない状態としてもよい。もしくは、第1の電極19aと第2の電極19bを一体化した電極とし、その電極に第1のスパッタリングターゲット18aを保持させ、且つ、その第1のスパッタリングターゲット18aを上方に位置させた状態で、その電極にアース電位をスイッチを介して供給することで、その電極と容器15との間にプラズマを着火してもよい。
 また、上記の表面改質処理を行う際に第1のスパッタリングターゲット18aからスパッタリングは起こらない。その理由は、第1の電極19aにアースを供給していること、容器15内の圧力がスパッタ処理時の圧力より高いことによる。
This will be described in detail below.
A plurality of fine particles 14 or electronic components are housed in the container 15. Further, the first electrode 19a is moved by the moving mechanism 21 so that the first sputtering target 18a is located above (see FIGS. 3 and 4). Next, at least one gas of argon gas, oxygen gas, nitrogen gas, fluorine gas and an inert gas is introduced into the container 15 from the gas introduction port of the gas introduction unit 23 as shown by an arrow. Next, the inside of the chamber 12 is depressurized using the exhaust mechanism 13. Then, the container 15 is rotated or pendulum-operated by using the operating mechanism 16, so that the fine particles 14 or the electronic components in the container 15 are stirred or rotated. As a result, the inside of the container 15 is maintained at a pressure suitable for the surface modification treatment (for example, about 10 Pa) by the balance between the controlled gas flow rate and the exhaust capacity. This pressure is about halfway between the pressure during the plasma CVD treatment and the pressure during the sputtering treatment. Then, the plasma power supply 26 applies a high frequency voltage to the container 15 via the second switch 27, and supplies the ground potential to the first electrode 19a via the first switch 25 and the third switch 28. As a result, the plasma is ignited between the first electrode 19a and the container 15. As a result, plasma is generated in the container 15 to modify the surface of the fine particles 14 or the electronic component. Surface modification is, for example, oxidizing, nitriding or fluorinating the surface of fine particles 14 or electronic components. That is, since the fine particles 14 or the electronic components are rolled by moving the container 15 with a pendulum, the entire surface of the fine particles 14 or the electronic components can be easily modified.
In the above surface modification treatment, the ground potential is supplied to the first electrode 19a via the first switch 25 and the third switch 28, so that the ground potential is between the first electrode 19a and the container 15. The plasma is ignited, but by supplying the ground potential to the second electrode 19b via the first switch 25 and the third switch 28, the plasma is ignited between the second electrode 19b and the container 15. You may. In this case, the second electrode 19 may not hold the second sputtering target 18b. Alternatively, in a state where the first electrode 19a and the second electrode 19b are integrated into an electrode, the first sputtering target 18a is held by the electrode, and the first sputtering target 18a is positioned above. By supplying an earth potential to the electrode via a switch, plasma may be ignited between the electrode and the container 15.
Further, when the above surface modification treatment is performed, sputtering does not occur from the first sputtering target 18a. The reason is that the ground is supplied to the first electrode 19a and the pressure inside the container 15 is higher than the pressure during the sputtering process.
  <1.プラズマCVD処理+スパッタ処理、及びスパッタ処理+プラズマCVD処理>
 まず、前述したプラズマCVD処理を行う。その後、微粒子14又は電子部品を容器15内から取り出すことなく、連続して前述したスパッタ処理を行う。プラズマCVD処理とスパッタ処理との間には、第1のスパッタリングターゲット18aの位置の移動、ガスの切り替え、チャンバー12内の圧力の調整等を行う。
<1. Plasma CVD processing + sputtering processing and sputtering processing + plasma CVD processing>
First, the plasma CVD process described above is performed. After that, the above-mentioned sputtering treatment is continuously performed without taking out the fine particles 14 or the electronic components from the container 15. Between the plasma CVD process and the sputtering process, the position of the first sputtering target 18a is moved, the gas is switched, the pressure in the chamber 12 is adjusted, and the like.
 具体例としては、プラズマCVD処理を行うことで、Cu微粒子にDLC(Diamond Like Carbon)膜を成膜し、そのDLC膜上にスパッタ処理を行うことでPt膜を成膜する。この際に以下の効果が得られる。
(1)DLC膜によってCu微粒子の酸化を抑制又は防止できる。
(2)プラズマCVD処理を行うことで、DLC膜がCu微粒子に成膜されるだけではなく、容器15の内面にも成膜される。容器15はSUS等の金属で作製されているため、粒径の小さいCu微粒子は容器15の内面に付着しやすいが、容器15の内面にDLC膜がコーティングされると、振り子動作時にCu微粒子が滑りやすくなり、容器15の内面に付着するのを抑制できるとともに、Cu微粒子の凝集を抑制することもできる。その結果、Pt膜を均一性良く成膜することができる。
As a specific example, a DLC (Diamond Like Carbon) film is formed on Cu fine particles by performing a plasma CVD treatment, and a Pt film is formed by performing a sputtering treatment on the DLC film. At this time, the following effects can be obtained.
(1) Oxidation of Cu fine particles can be suppressed or prevented by the DLC film.
(2) By performing the plasma CVD treatment, not only the DLC film is formed on the Cu fine particles, but also the inner surface of the container 15 is formed. Since the container 15 is made of a metal such as SUS, Cu fine particles having a small particle size easily adhere to the inner surface of the container 15, but when the inner surface of the container 15 is coated with a DLC film, the Cu fine particles are generated during the pendulum operation. It becomes slippery, can be suppressed from adhering to the inner surface of the container 15, and can also suppress the aggregation of Cu fine particles. As a result, the Pt film can be formed with good uniformity.
 また、スパッタ処理を行った後に、連続してプラズマCVD処理を行っても良い。その場合も、スパッタ処理とプラズマCVD処理との間に、第1のスパッタリングターゲット18aの位置の移動、ガスの切り替え、チャンバー12内の圧力の調整等を行うとよい。
 また、上記のスパッタ処理の前に、前述したプレスパッタ処理を行ってもよい。
Further, after the sputtering treatment, the plasma CVD treatment may be continuously performed. In that case as well, it is advisable to move the position of the first sputtering target 18a, switch the gas, adjust the pressure in the chamber 12, and the like between the sputtering treatment and the plasma CVD treatment.
Further, the above-mentioned pre-sputtering treatment may be performed before the above-mentioned sputtering treatment.
 上記のプラズマCVD処理とスパッタ処理の両方を行う場合に、処理の途中で微粒子14又は電子部品が大気に曝されることを防止することができる。 When both the plasma CVD treatment and the sputtering treatment are performed, it is possible to prevent the fine particles 14 or the electronic components from being exposed to the atmosphere during the treatment.
  <2.スパッタ処理+プラズマCVD処理>
 上記の<1.プラズマCVD処理+スパッタ処理、及びスパッタ処理+プラズマCVD処理>と異なる点は、移動機構を使用せずに、又は複合装置から移動機構を無くした装置により、処理する点である。以下に詳細に説明する。
<2. Sputtering + Plasma CVD processing>
Above <1. The difference from plasma CVD processing + sputtering processing and sputtering processing + plasma CVD processing> is that processing is performed without using a moving mechanism or by a device that eliminates the moving mechanism from the composite device. This will be described in detail below.
 図1及び図2に示すように、第1のスパッタリングターゲット18aを下方に位置するように第1の電極19aに保持させる。また、容器15内に微粒子14又は電子部品を収容する。次いで、アルゴンガス又は窒素ガスをガス導入部23のガス導入口から矢印のように容器15内に導入する。次いで、排気機構13を用いてチャンバー12内を減圧する。この際のチャンバー12内の圧力は例えば1Pa程度である。そして、動作機構16を用いて容器15を回転又は振り子動作させることにより容器15内の微粒子14又は電子部品を攪拌あるいは回転させる。その後、プラズマ電源26により第1のスイッチ25及び第3のスイッチ28を介して高周波電圧を第1の電極19aに印加し、アース電位を第2のスイッチ27を介して容器15に供給する。これにより、第1のスパッタリングターゲット18aと容器15との間に高周波が印加されてスパッタリングを行うことで、微粒子14又は電子部品に微粒子又は電子部品より径の小さい超微粒子を付着又は薄膜を成膜する。 As shown in FIGS. 1 and 2, the first sputtering target 18a is held by the first electrode 19a so as to be located below. Further, the fine particles 14 or electronic parts are housed in the container 15. Next, argon gas or nitrogen gas is introduced into the container 15 from the gas introduction port of the gas introduction unit 23 as shown by an arrow. Next, the inside of the chamber 12 is depressurized using the exhaust mechanism 13. The pressure in the chamber 12 at this time is, for example, about 1 Pa. Then, the container 15 is rotated or pendulum-operated by using the operating mechanism 16 to stir or rotate the fine particles 14 or the electronic components in the container 15. Then, the plasma power supply 26 applies a high frequency voltage to the first electrode 19a via the first switch 25 and the third switch 28, and supplies the ground potential to the container 15 via the second switch 27. As a result, a high frequency is applied between the first sputtering target 18a and the container 15 to perform sputtering, so that fine particles or ultrafine particles having a diameter smaller than that of the electronic component are adhered to the fine particles 14 or the electronic component or a thin film is formed. do.
 その後、原料ガスをガス導入部23のガス導入口から矢印のように容器15内に導入する。次いで、排気機構13を用いてチャンバー12内を減圧する。そして、動作機構16を用いて容器15を回転又は振り子動作させることで、容器15内の微粒子14又は電子部品を攪拌あるいは回転させる。これにより、容器15内を転がりながら動いている微粒子14に原料ガスが吹き付けられ、制御されたガス流量と排気能力のバランスによって、プラズマCVD法による成膜に適した圧力(例えば20Pa程度)に保たれる。この圧力は、スパッタリング時の圧力より高いので、スパッタリングは起こらない。その後、プラズマ電源26により第2のスイッチ27を介して高周波電圧を容器15に印加し、アース電位を第1のスイッチ25及び第3のスイッチ28を介して第1の電極19aに供給する。これにより、第1の電極19aと容器15との間にプラズマを着火する。これによって、容器15内にプラズマが発生し、微粒子14又は電子部品に超微粒子が付着又は薄膜が成膜される。 After that, the raw material gas is introduced into the container 15 from the gas introduction port of the gas introduction unit 23 as shown by an arrow. Next, the inside of the chamber 12 is depressurized using the exhaust mechanism 13. Then, the container 15 is rotated or pendulum-operated by using the operating mechanism 16, so that the fine particles 14 or the electronic components in the container 15 are stirred or rotated. As a result, the raw material gas is sprayed onto the fine particles 14 that are rolling and moving in the container 15, and the pressure (for example, about 20 Pa) suitable for film formation by the plasma CVD method is maintained by the balance between the controlled gas flow rate and the exhaust capacity. Dripping. Since this pressure is higher than the pressure during sputtering, sputtering does not occur. Then, the plasma power supply 26 applies a high frequency voltage to the container 15 via the second switch 27, and supplies the ground potential to the first electrode 19a via the first switch 25 and the third switch 28. As a result, the plasma is ignited between the first electrode 19a and the container 15. As a result, plasma is generated in the container 15, and ultrafine particles adhere to the fine particles 14 or electronic components, or a thin film is formed.
  <2.プラズマCVD処理+スパッタ処理>
 上記の<1.プラズマCVD処理+スパッタ処理、及びスパッタ処理+プラズマCVD処理>と異なる点は、移動機構を使用せずに、又は複合装置から移動機構を無くした装置により、処理する点である。以下に詳細に説明する。
<2. Plasma CVD processing + sputtering processing>
Above <1. The difference from plasma CVD processing + sputtering processing and sputtering processing + plasma CVD processing> is that processing is performed without using a moving mechanism or by a device that eliminates the moving mechanism from the composite device. This will be described in detail below.
 上記の<2.スパッタ処理+プラズマCVD処理>では、スパッタ処理を行った後に連続してプラズマCVD処理を行っているが、これとは順序を逆にしてプラズマCVD処理を行った後に連続してスパッタ処理を行う。以下、詳細に説明する。 <2. In the sputtering process + plasma CVD process>, the plasma CVD process is continuously performed after the sputtering process, but in the reverse order of this, the plasma CVD process is performed and then the sputtering process is continuously performed. Hereinafter, a detailed description will be given.
 図1及び図2に示すように、第1のスパッタリングターゲット18aを下方に位置するように第1の電極19aに保持させる。また、容器15内に微粒子14又は電子部品を収容する。次いで、上記の<2.スパッタ処理+プラズマCVD処理>のプラズマCVD処理を行うことで、微粒子14又は電子部品に超微粒子が付着又は薄膜が成膜される。 As shown in FIGS. 1 and 2, the first sputtering target 18a is held by the first electrode 19a so as to be located below. Further, the fine particles 14 or electronic parts are housed in the container 15. Then, the above <2. By performing the plasma CVD process of sputtering process + plasma CVD process>, ultrafine particles adhere to the fine particles 14 or electronic components or a thin film is formed.
 その後、アルゴンガス又は窒素ガスをガス導入部23のガス導入口から矢印のように容器15内に導入し、上記の<2.スパッタ処理+プラズマCVD処理>のスパッタ処理を行うことで、微粒子14又は電子部品に微粒子又は電子部品より径の小さい超微粒子を付着又は薄膜を成膜する。 After that, argon gas or nitrogen gas is introduced into the container 15 from the gas introduction port of the gas introduction unit 23 as shown by an arrow, and the above <2. By performing the sputtering treatment of sputtering treatment + plasma CVD treatment>, fine particles or ultrafine particles having a diameter smaller than that of the electronic parts are adhered to the fine particles 14 or the electronic parts, or a thin film is formed.
  <表面改質処理+スパッタ処理>
 まず、前述した表面改質処理を行う。その後、微粒子14又は電子部品を容器15内から取り出すことなく、連続して前述したスパッタ処理を行う。表面改質処理とスパッタ処理との間には、第1のスパッタリングターゲット18aの位置の移動、ガスの切り替え、チャンバー12内の圧力の調整等を行う。
<Surface modification treatment + sputtering treatment>
First, the surface modification treatment described above is performed. After that, the above-mentioned sputtering treatment is continuously performed without taking out the fine particles 14 or the electronic components from the container 15. Between the surface modification treatment and the sputtering treatment, the position of the first sputtering target 18a is moved, the gas is switched, the pressure in the chamber 12 is adjusted, and the like.
 また、スパッタ処理を行った後に、連続して表面改質処理を行っても良い。その場合も、スパッタ処理と表面改質プ処理との間に、第1のスパッタリングターゲット18aの位置の移動、ガスの切り替え、チャンバー12内の圧力の調整等を行うとよい。 Further, after the sputtering treatment, the surface modification treatment may be continuously performed. In that case as well, it is advisable to move the position of the first sputtering target 18a, switch the gas, adjust the pressure in the chamber 12, and the like between the sputtering treatment and the surface modification processing.
 また、上記のスパッタ処理の前に、前述したプレスパッタ処理を行ってもよい。 Further, the above-mentioned pre-sputtering treatment may be performed before the above-mentioned sputtering treatment.
 上記の表面改質処理とスパッタ処理の両方を行う場合に、処理の途中で微粒子14又は電子部品が大気に曝されることを防止することができる。その結果、処理後に得られる微粒子又は電子部品の質を向上させることができる。 When both the surface modification treatment and the sputtering treatment are performed, it is possible to prevent the fine particles 14 or the electronic components from being exposed to the atmosphere during the treatment. As a result, the quality of the fine particles or electronic components obtained after the treatment can be improved.
  <スパッタ処理+スパッタ処理>
 図1及び図2に示すように、第1の電極19aに第1のスパッタリングターゲット18aを保持させ、第2の電極19bに第2のスパッタリングターゲット18bを保持させる。また、容器15内に微粒子又は電子部品を収容する。次いで、第1のスパッタリングターゲット18aが下方に位置するように第1の電極19aを移動機構21により移動させる。次いで、アルゴンガス又は窒素ガスをガス導入部23のガス導入口から矢印のように容器15内に導入する。次いで、排気機構13を用いてチャンバー12内を減圧する。そして、動作機構16を用いて容器15を回転又は振り子動作させることで、容器15内の微粒子14又は電子部品を攪拌あるいは回転させる。その後、プラズマ電源26により第1のスイッチ25及び第3のスイッチ28を介して高周波電圧を第1の電極19aに印加し、アース電位を第2のスイッチ27を介して容器15に供給する。これにより、第1のスパッタリングターゲット18aと容器15との間に高周波が印加される。このようにして容器15内の微粒子14又は電子部品にスパッタリング処理が行われることで、微粒子14又は電子部品にその微粒子14又は電子部品より径の小さい第1の超微粒子を付着又は第1の薄膜を成膜することができる。つまり、容器15を振り子動作させることによって微粒子14又は電子部品を転がしているため、微粒子14又は電子部品の表面全体に第1のスパッタ膜を均一に被覆することが容易にできる。この際の微粒子14は例えばSiO微粒子であり、第1のスパッタ膜は例えばTi膜である。
<Sputtering + Sputtering>
As shown in FIGS. 1 and 2, the first electrode 19a holds the first sputtering target 18a, and the second electrode 19b holds the second sputtering target 18b. In addition, fine particles or electronic parts are housed in the container 15. Next, the first electrode 19a is moved by the moving mechanism 21 so that the first sputtering target 18a is located below. Next, argon gas or nitrogen gas is introduced into the container 15 from the gas introduction port of the gas introduction unit 23 as shown by an arrow. Next, the inside of the chamber 12 is depressurized using the exhaust mechanism 13. Then, the container 15 is rotated or pendulum-operated by using the operating mechanism 16, so that the fine particles 14 or the electronic components in the container 15 are stirred or rotated. Then, the plasma power supply 26 applies a high frequency voltage to the first electrode 19a via the first switch 25 and the third switch 28, and supplies the ground potential to the container 15 via the second switch 27. As a result, a high frequency is applied between the first sputtering target 18a and the container 15. By performing the sputtering treatment on the fine particles 14 or the electronic component in the container 15 in this way, the fine particles 14 or the electronic component is attached with the first ultrafine particles having a diameter smaller than that of the fine particles 14 or the electronic component, or the first thin film. Can be formed. That is, since the fine particles 14 or the electronic components are rolled by moving the container 15 with a pendulum, it is easy to uniformly cover the entire surface of the fine particles 14 or the electronic components with the first sputter film. The fine particles 14 at this time are, for example, SiO 2 fine particles, and the first sputtered film is, for example, a Ti film.
 次に、図3及び図4に示すように、第2のスパッタリングターゲット18bが下方に位置するように第2の電極19bを移動機構21により移動させる。次いで、アルゴンガス又は窒素ガスをガス導入部23のガス導入口から矢印のように容器15内に導入する。次いで、排気機構13を用いてチャンバー12内を減圧する。そして、動作機構16を用いて容器15を回転又は振り子動作させることで、容器15内の微粒子14又は電子部品を攪拌あるいは回転させる。その後、プラズマ電源26により第1のスイッチ25及び第3のスイッチ28を介して高周波電圧を第2の電極19bに印加し、アース電位を第2のスイッチ27を介して容器15に供給する。これにより、第2のスパッタリングターゲット18bと容器15との間に高周波が印加される。このようにして容器15内の微粒子14又は電子部品にスパッタリング処理が行われることで、微粒子14又は電子部品にその微粒子14又は電子部品より径の小さい第2の超微粒子を付着又は第2の薄膜を成膜することができる。つまり、容器15を振り子動作させることによって微粒子14又は電子部品を転がしているため、微粒子14又は電子部品の表面全体に第2のスパッタ膜を均一に被覆することが容易にできる。この際の第2のスパッタ膜は例えばCu膜である。 Next, as shown in FIGS. 3 and 4, the second electrode 19b is moved by the moving mechanism 21 so that the second sputtering target 18b is located below. Next, argon gas or nitrogen gas is introduced into the container 15 from the gas introduction port of the gas introduction unit 23 as shown by an arrow. Next, the inside of the chamber 12 is depressurized using the exhaust mechanism 13. Then, the container 15 is rotated or pendulum-operated by using the operating mechanism 16, so that the fine particles 14 or the electronic components in the container 15 are stirred or rotated. Then, the plasma power supply 26 applies a high frequency voltage to the second electrode 19b via the first switch 25 and the third switch 28, and supplies the ground potential to the container 15 via the second switch 27. As a result, a high frequency is applied between the second sputtering target 18b and the container 15. By performing the sputtering treatment on the fine particles 14 or the electronic component in the container 15 in this way, the fine particles 14 or the electronic component is attached with the second ultrafine particles having a diameter smaller than that of the fine particles 14 or the electronic component, or the second thin film. Can be formed. That is, since the fine particles 14 or the electronic components are rolled by moving the container 15 with a pendulum, it is easy to uniformly cover the entire surface of the fine particles 14 or the electronic components with the second sputter film. The second sputtered film at this time is, for example, a Cu film.
  <スパッタ処理+表面改質処理+スパッタ処理>
 上記の<スパッタ処理+スパッタ処理>において第1のスパッタ膜を成膜した後で、且つ、第2のスパッタ膜を成膜する前に、表面改質処理を行う。表面改質処理の詳細は次のとおりである。アルゴンガス、酸素ガス、窒素ガス、フッ素ガス及び不活性ガスの少なくとも一つのガスをガス導入部23のガス導入口から矢印のように容器15内に導入する。次いで、排気機構13を用いてチャンバー12内を減圧する。そして、動作機構16を用いて容器15を回転又は振り子動作させることで、容器15内の微粒子14又は電子部品を攪拌あるいは回転させる。これにより、容器15内は、制御されたガス流量と排気能力のバランスによって、表面改質処理に適した圧力に保たれる。その後、プラズマ電源26により第2のスイッチ27を介して高周波電圧を容器15に印加し、アース電位を第1のスイッチ25及び第3のスイッチ28を介して第1の電極19aに供給する。これにより、第1の電極19aと容器15との間にプラズマを着火する。これによって、容器15内にプラズマが発生し、微粒子14又は電子部品の表面を改質する。表面改質は、例えば微粒子14又は電子部品の表面を酸化、窒化又はフッ化させることである。つまり、容器15を振り子動作させることによって微粒子14又は電子部品を転がしているため、微粒子14又は電子部品の表面全体に改質処理を施すことが容易にできる。
<Sputtering + Surface modification + Sputtering>
In the above <sputtering treatment + sputtering treatment>, the surface modification treatment is performed after the first sputtering film is formed and before the second sputtering film is formed. The details of the surface modification treatment are as follows. At least one gas of argon gas, oxygen gas, nitrogen gas, fluorine gas and an inert gas is introduced into the container 15 from the gas introduction port of the gas introduction unit 23 as shown by an arrow. Next, the inside of the chamber 12 is depressurized using the exhaust mechanism 13. Then, the container 15 is rotated or pendulum-operated by using the operating mechanism 16, so that the fine particles 14 or the electronic components in the container 15 are stirred or rotated. As a result, the pressure inside the container 15 is maintained at a pressure suitable for the surface modification treatment by the balance between the controlled gas flow rate and the exhaust capacity. Then, the plasma power supply 26 applies a high frequency voltage to the container 15 via the second switch 27, and supplies the ground potential to the first electrode 19a via the first switch 25 and the third switch 28. As a result, the plasma is ignited between the first electrode 19a and the container 15. As a result, plasma is generated in the container 15 to modify the surface of the fine particles 14 or the electronic component. Surface modification is, for example, oxidizing, nitriding or fluorinating the surface of fine particles 14 or electronic components. That is, since the fine particles 14 or the electronic components are rolled by moving the container 15 with a pendulum, the entire surface of the fine particles 14 or the electronic components can be easily modified.
  <1.被覆微粒子の製造方法>
 図3及び図4に示す複合装置11を用いて図5に示す被覆微粒子を製造する。
 まず、第1の電極19aにZn、Au等の金属からなる第1のスパッタリングターゲット18aを保持する。また、複数のプラスチック(例えばポリエチレン、ポリスチレン、PMMA(アクリル))からなる微粒子14又は電子部品を容器15内に収容する。また、第1のスパッタリングターゲット18aが上方に位置するように第1の電極19aを移動機構21により移動させる。次いで、原料ガスをガス導入部23のガス導入口から矢印のように容器15内に導入する。次いで、排気機構13を用いてチャンバー12内を減圧する。そして、動作機構16を用いて容器15を振り子動作させることにより容器15内の微粒子14を攪拌あるいは回転させながらプラズマCVD法を行うことで、微粒子14にDLC膜33又はSi膜を成膜する。Si膜を成膜する場合の原料ガスは例えばHMDS-N(ヘキサメチルジシラザン;C19NSi)又はHMDS(ヘキサメチルジシラザン)を用いる。
<1. Manufacturing method of coated fine particles>
The coated fine particles shown in FIG. 5 are produced by using the composite device 11 shown in FIGS. 3 and 4.
First, the first sputtering target 18a made of a metal such as Zn or Au is held on the first electrode 19a. Further, the fine particles 14 or electronic parts made of a plurality of plastics (for example, polyethylene, polystyrene, PMMA (acrylic)) are housed in the container 15. Further, the first electrode 19a is moved by the moving mechanism 21 so that the first sputtering target 18a is located above. Next, the raw material gas is introduced into the container 15 from the gas introduction port of the gas introduction unit 23 as shown by an arrow. Next, the inside of the chamber 12 is depressurized using the exhaust mechanism 13. Then, by performing a plasma CVD method while stirring or rotating the fine particles 14 in the container 15 by pendulum-moving the container 15 using the operation mechanism 16, the DLC film 33 or Si a C b N c H is formed on the fine particles 14. A film is formed. Si a C b N c H d material gas when the film is deposited, for example HMDS-N; using (hexamethyldisilazane C 6 H 19 NSi 2) or HMDS (hexamethyldisilazane).
 次に、図1及び図2に示すように、第1の電極19aに保持された第1のスパッタリングターゲット18aが下方に位置するように第1の電極19aを移動機構21により移動させ、アルゴンガス又は窒素ガスをガス導入部23のガス導入口から矢印のように容器15内に導入する。次いで、排気機構13を用いてチャンバー12内を減圧する。そして、動作機構16を用いて容器15を振り子動作させることにより容器15内の微粒子14を攪拌あるいは回転させながらスパッタリングを行うことで、DLC膜33又はSi膜の上にZn膜、Au膜等の金属膜34を成膜する。なお、a、b、c、dは、下記式1~式4を満たすとよい。
 (式1)0.2≦a≦0.6
 (式2)0.1≦b≦0.3
 (式3)0.1≦c≦0.3
 (式4)0.03≦d≦0.2
Next, as shown in FIGS. 1 and 2, the first electrode 19a is moved by the moving mechanism 21 so that the first sputtering target 18a held by the first electrode 19a is located below, and the argon gas is gas. Alternatively, nitrogen gas is introduced into the container 15 from the gas introduction port of the gas introduction unit 23 as shown by an arrow. Next, the inside of the chamber 12 is depressurized using the exhaust mechanism 13. Then, by moving the container 15 with a pendulum using the operation mechanism 16 to perform sputtering while stirring or rotating the fine particles 14 in the container 15, the DLC film 33 or the Si a C b N c HD film is topped. A metal film 34 such as a Zn film or an Au film is formed. In addition, a, b, c, d may satisfy the following formulas 1 to 4.
(Equation 1) 0.2 ≤ a ≤ 0.6
(Equation 2) 0.1 ≤ b ≤ 0.3
(Equation 3) 0.1 ≤ c ≤ 0.3
(Equation 4) 0.03 ≤ d ≤ 0.2
 上記の被覆微粒子の製造方法によれば、プラスチックからなる微粒子14にDLC膜33を成膜することで、微粒子14に金属膜34を直接成膜する場合に比べて微粒子14の凝集を抑制できる。つまり、プラスチックからなる微粒子14は凝集しやすいため、微粒子14に均一性良く金属膜34を成膜できないが、微粒子14にDLC膜33を成膜した後に金属膜34を成膜するため、微粒子14に均一性良く金属膜34を成膜することが可能となる。 According to the above method for producing coated fine particles, by forming the DLC film 33 on the fine particles 14 made of plastic, aggregation of the fine particles 14 can be suppressed as compared with the case where the metal film 34 is directly formed on the fine particles 14. That is, since the fine particles 14 made of plastic are easily aggregated, the metal film 34 cannot be formed uniformly on the fine particles 14, but the metal film 34 is formed after the DLC film 33 is formed on the fine particles 14, so that the fine particles 14 are formed. It is possible to form a metal film 34 with good uniformity.
 また、微粒子14にDLC膜33を成膜する際に、容器15の内壁面にもDLC膜が成膜されるため、微粒子14が容器15の壁面吸着することを抑制できる。その結果、微粒子14の表面に金属膜34を均一性良く成膜することが可能となる。 Further, when the DLC film 33 is formed on the fine particles 14, the DLC film is also formed on the inner wall surface of the container 15, so that the fine particles 14 can be prevented from adsorbing on the wall surface of the container 15. As a result, the metal film 34 can be uniformly formed on the surface of the fine particles 14.
 また、微粒子14にSi膜を成膜し、そのSi膜上に金属膜34を成膜する場合は、金属膜34と微粒子14との密着性を良くすることができる。つまり、プラスチックからなる微粒子14に金属膜14を直接成膜するのは難しいが、微粒子14にSi膜を成膜した後に金属膜34を成膜することで、プラスチックからなる微粒子14に容易に金属膜34を成膜することが可能となる。 Further, when a Si a C b N c HD film is formed on the fine particles 14 and a metal film 34 is formed on the Si a C b N c H d film, the metal film 34 and the fine particles 14 are in close contact with each other. You can improve your sex. That is, it is difficult to directly forming a metal film 14 on the particulate 14 made of plastic, but by forming a metal film 34 after forming the Si a C b N c H d membrane particulates 14, from plastic The metal film 34 can be easily formed on the fine particles 14.
  <2.被覆微粒子の製造方法>
 まず、上記の<1.被覆微粒子の製造方法>と同様の方法で、プラスチックからなる微粒子14にDLC膜を成膜し、このDLC膜上にSi膜を成膜する。
<2. Manufacturing method of coated fine particles>
First, the above <1. In the production method> In the same manner as the coated microparticles, the DLC film is formed microparticles 14 made of plastic, forming the Si a C b N c H d film on the DLC film.
 次に、上記の<1.被覆微粒子の製造方法>と同様の方法で、Si膜上にZn膜、Au膜等の金属膜を成膜する。 Next, the above <1. In the production method> In the same manner as for coating fine particles, Si a C b N c H d film on the Zn film, a metal film Au film.
 上記の被覆微粒子の製造方法においても上記の<1.被覆微粒子の製造方法>と同様の効果を得ることができる。 Also in the above method for producing coated fine particles, the above <1. The same effect as that of the method for producing coated fine particles> can be obtained.
 また、DLC膜と金属膜との間にSi膜を配置することで、DLC膜と金属膜との密着性を良くすることができる。 Further, by arranging the Si a C b N c H d film between the DLC film and the metal film, it is possible to improve the adhesion between the DLC film and the metal film.
 11…複合装置
 12…チャンバー
 13…排気機構
 14…微粒子
 15…容器
 16…動作機構
 17…矢印
 18a…第1のスパッタリングターゲット
 18b…第2のスパッタリングターゲット
 19…電極
 21…移動機構
 22…ガス
 23…ガス導入部
 25…第1のスイッチ
 26…プラズマ電源
 27…第2のスイッチ
 28…第3のスイッチ
 30…重力方向(真下)
 31…制御部
 33…DLC膜
 34…金属膜
11 ... Composite device 12 ... Chamber 13 ... Exhaust mechanism 14 ... Fine particles 15 ... Container 16 ... Operating mechanism 17 ... Arrow 18a ... First sputtering target 18b ... Second sputtering target 19 ... Electrode 21 ... Moving mechanism 22 ... Gas 23 ... Gas inlet 25 ... 1st switch 26 ... Plasma power supply 27 ... 2nd switch 28 ... 3rd switch 30 ... Gravity direction (directly below)
31 ... Control unit 33 ... DLC film 34 ... Metal film

Claims (18)

  1.  チャンバーと、
     前記チャンバー内を真空排気する排気機構と、
     前記チャンバー内に配置され、微粒子又は電子部品を収容する容器であって断面の内部形状が多角形、円形又は楕円形である容器と、
     前記断面に対して垂直方向を回転軸として前記容器を回転又は振り子動作させる動作機構と、
     前記容器内に配置され、第1のスパッタリングターゲットを保持する第1の電極と、
     前記容器内に不活性ガス、酸素ガス、窒素ガス、フッ素ガス及び原料ガスの少なくとも一つのガスを導入するガス導入部と、
     前記第1の電極に電力又はアース電位を供給する第1の供給機構と、
     前記容器にアース電位又は電力を供給する第2の供給機構と、
    を具備することを特徴とする複合装置。
    With the chamber
    An exhaust mechanism that evacuates the inside of the chamber and
    A container arranged in the chamber and containing fine particles or electronic parts and having an internal shape of a polygonal, circular or elliptical cross section.
    An operating mechanism that rotates or pendulums the container about the direction perpendicular to the cross section as a rotation axis.
    A first electrode located in the container and holding a first sputtering target,
    A gas introduction unit that introduces at least one of an inert gas, an oxygen gas, a nitrogen gas, a fluorine gas, and a raw material gas into the container.
    A first supply mechanism that supplies electric power or ground potential to the first electrode,
    A second supply mechanism that supplies the earth potential or power to the container,
    A complex device characterized by comprising.
  2.  請求項1において、
     前記第1の供給機構は、前記第1の電極に第1のスイッチを介して電気的に接続された前記プラズマ電源又はアースであり、
     前記第2の供給機構は、前記容器に第2のスイッチを介して電気的に接続されたアース又はプラズマ電源であることを具備することを特徴とする複合装置。
    In claim 1,
    The first supply mechanism is the plasma power source or ground that is electrically connected to the first electrode via a first switch.
    The second supply mechanism is a composite device comprising being an earth or plasma power source electrically connected to the container via a second switch.
  3.  請求項1又は2において、
     前記第1の電極に保持された前記第1のスパッタリングターゲットを上方又は下方に位置させるために、前記第1の電極を回転させて前記第1のスパッタリングターゲットの位置を移動させる移動機構を有することを特徴とする複合装置。
    In claim 1 or 2,
    Having a moving mechanism for rotating the first electrode to move the position of the first sputtering target in order to position the first sputtering target held by the first electrode upward or downward. A complex device characterized by.
  4.  請求項1又は2において、
     制御部を有し、
     前記制御部は、前記動作機構を用いて前記容器を回転又は振り子動作させることにより前記容器内の前記微粒子又は前記電子部品を攪拌あるいは回転させながらスパッタリングを行うことで、前記微粒子又は前記電子部品に前記微粒子又は前記電子部品より径の小さい超微粒子を付着又は薄膜を成膜した後に、
     前記動作機構を用いて前記容器を回転又は振り子動作させることにより前記容器内の前記微粒子又は前記電子部品を攪拌あるいは回転させながらプラズマCVD法を行うことで、前記微粒子又は前記電子部品に前記微粒子又は前記電子部品より径の小さい超微粒子を付着又は薄膜を成膜するように制御することを特徴とする複合装置。
    In claim 1 or 2,
    Has a control unit
    The control unit rotates or pendulums the container using the operation mechanism to perform sputtering while stirring or rotating the fine particles or the electronic component in the container, thereby producing the fine particles or the electronic component. After adhering the fine particles or ultrafine particles having a diameter smaller than that of the electronic component or forming a thin film,
    By rotating or pendulum the container using the operating mechanism to perform the plasma CVD method while stirring or rotating the fine particles or the electronic component in the container, the fine particles or the electronic component can be subjected to the fine particles or the electronic component. A composite device characterized in that ultrafine particles having a diameter smaller than that of the electronic component are adhered or controlled so as to form a thin film.
  5.  請求項1又は2において、
     制御部を有し、
     前記制御部は、前記動作機構を用いて前記容器を回転又は振り子動作させることにより前記容器内の前記微粒子又は前記電子部品を攪拌あるいは回転させながらプラズマCVD法を行うことで、前記微粒子又は前記電子部品に前記微粒子又は前記電子部品より径の小さい超微粒子を付着又は薄膜を成膜した後に、
     前記動作機構を用いて前記容器を回転又は振り子動作させることにより前記容器内の前記微粒子又は前記電子部品を攪拌あるいは回転させながらスパッタリングを行うことで、前記微粒子又は前記電子部品に前記微粒子又は前記電子部品より径の小さい超微粒子を付着又は薄膜を成膜するように制御することを特徴とする複合装置。
    In claim 1 or 2,
    Has a control unit
    The control unit performs a plasma CVD method while stirring or rotating the fine particles or electronic components in the container by rotating or pendulum the container using the operation mechanism, thereby causing the fine particles or the electrons. After adhering the fine particles or ultrafine particles having a diameter smaller than that of the electronic component to the component or forming a thin film,
    Sputtering is performed while stirring or rotating the fine particles or the electronic component in the container by rotating or pendulum the container using the operation mechanism, so that the fine particles or the electronic component are subjected to the fine particles or the electrons. A composite device characterized in that ultrafine particles having a diameter smaller than that of a component are adhered or controlled so as to form a thin film.
  6.  請求項3において、
     制御部を有し、
     前記制御部は、前記第1の電極に保持された前記第1のスパッタリングターゲットが下方に位置するように前記第1の電極を前記移動機構により移動させ、前記動作機構を用いて前記容器を回転又は振り子動作させることにより前記容器内の前記微粒子又は前記電子部品を攪拌あるいは回転させながらスパッタリングを行うことで、前記微粒子又は前記電子部品に前記微粒子又は前記電子部品より径の小さい超微粒子を付着又は薄膜を成膜するように制御することを特徴とする複合装置。
    In claim 3,
    Has a control unit
    The control unit moves the first electrode by the moving mechanism so that the first sputtering target held by the first electrode is located below, and rotates the container using the operating mechanism. Alternatively, by performing sputtering while stirring or rotating the fine particles or the electronic component in the container by operating a pendulum, the fine particles or ultrafine particles having a diameter smaller than that of the electronic component are attached to the fine particles or the electronic component. A composite device characterized by controlling to form a thin film.
  7.  請求項3において、
     制御部を有し、
     前記制御部は、前記第1の電極に保持された前記第1のスパッタリングターゲットが上方に位置するように前記第1の電極を前記移動機構により移動させ、前記動作機構を用いて前記容器を回転又は振り子動作させることにより前記容器内の前記微粒子又は前記電子部品を攪拌あるいは回転させながらプラズマCVD法を行うことで、前記微粒子又は前記電子部品に前記微粒子又は前記電子部品より径の小さい超微粒子を付着又は薄膜を成膜するように制御することを特徴とする複合装置。
    In claim 3,
    Has a control unit
    The control unit moves the first electrode by the moving mechanism so that the first sputtering target held by the first electrode is located above, and rotates the container using the operating mechanism. Alternatively, by performing a plasma CVD method while stirring or rotating the fine particles or the electronic component in the container by operating a pendulum, the fine particles or the electronic component are provided with ultrafine particles having a diameter smaller than that of the fine particles or the electronic component. A composite device characterized in that it is controlled so as to adhere or form a thin film.
  8.  請求項3において、
     制御部を有し、
     前記制御部は、前記第1の電極に保持された前記第1のスパッタリングターゲットが上方に位置するように前記第1の電極を前記移動機構により移動させ、前記第1のスパッタリングターゲットと前記容器との間でスパッタリングを行うことで、前記第1のスパッタリングターゲットを補正するように制御することを特徴とする複合装置。
    In claim 3,
    Has a control unit
    The control unit moves the first electrode by the moving mechanism so that the first sputtering target held by the first electrode is located above, and the first sputtering target and the container A composite device characterized in that the first sputtering target is controlled to be corrected by performing sputtering between the two.
  9.  請求項3において、
     制御部を有し、
     前記制御部は、前記第1の電極に保持された前記第1のスパッタリングターゲットが上方に位置するように前記第1の電極を前記移動機構により移動させ、前記容器内に不活性ガス、酸素ガス、窒素ガス及びフッ素ガスの少なくとも一つのガスを導入し、前記動作機構を用いて前記容器を回転又は振り子動作させることにより前記容器内の前記微粒子又は前記電子部品を攪拌あるいは回転させながら前記少なくとも一つのガスのプラズマを生成することで、前記微粒子又は前記電子部品の表面を改質するように制御することを特徴とする複合装置。
    In claim 3,
    Has a control unit
    The control unit moves the first electrode by the moving mechanism so that the first sputtering target held by the first electrode is located above, and the inert gas and oxygen gas are contained in the container. , Nitrogen gas and fluorine gas are introduced, and the container is rotated or pendulum-operated by using the operating mechanism to stir or rotate the fine particles or the electronic parts in the container, and at least one of the above. A composite device characterized in that the surface of the fine particles or the electronic component is controlled to be modified by generating a plasma of one gas.
  10.  請求項3において、
     制御部を有し、
     前記制御部は、前記第1の電極に保持された前記第1のスパッタリングターゲットが下方に位置するように前記第1の電極を前記移動機構により移動させ、前記動作機構を用いて前記容器を回転又は振り子動作させることにより前記容器内の前記微粒子又は前記電子部品を攪拌あるいは回転させながらスパッタリングを行うことで、前記微粒子又は前記電子部品に前記微粒子又は前記電子部品より径の小さい超微粒子を付着又は薄膜を成膜した後に、
     前記第1の電極に保持された前記第1のスパッタリングターゲットが上方に位置するように前記第1の電極を前記移動機構により移動させ、前記動作機構を用いて前記容器を回転又は振り子動作させることにより前記容器内の前記微粒子又は前記電子部品を攪拌あるいは回転させながらプラズマCVD法を行うことで、前記微粒子又は前記電子部品に前記微粒子又は前記電子部品より径の小さい超微粒子を付着又は薄膜を成膜するように制御することを特徴とする複合装置。
    In claim 3,
    Has a control unit
    The control unit moves the first electrode by the moving mechanism so that the first sputtering target held by the first electrode is located below, and rotates the container using the operating mechanism. Alternatively, by performing sputtering while stirring or rotating the fine particles or the electronic component in the container by operating a pendulum, the fine particles or ultrafine particles having a diameter smaller than that of the electronic component are attached to the fine particles or the electronic component. After forming a thin film,
    The first electrode is moved by the moving mechanism so that the first sputtering target held by the first electrode is located above, and the container is rotated or pendulum-operated by using the moving mechanism. By performing the plasma CVD method while stirring or rotating the fine particles or the electronic component in the container, the fine particles or ultrafine particles having a diameter smaller than that of the electronic component are attached to the fine particles or the electronic component or a thin film is formed. A composite device characterized in that it is controlled to form a film.
  11.  請求項3において、
     制御部を有し、
     前記制御部は、前記第1の電極に保持された前記第1のスパッタリングターゲットが上方に位置するように前記第1の電極を前記移動機構により移動させ、前記動作機構を用いて前記容器を回転又は振り子動作させることにより前記容器内の前記微粒子又は前記電子部品を攪拌あるいは回転させながらプラズマCVD法を行うことで、前記微粒子又は前記電子部品に前記微粒子又は前記電子部品より径の小さい超微粒子を付着又は薄膜を成膜した後に、
     前記第1の電極に保持された前記第1のスパッタリングターゲットが下方に位置するように前記第1の電極を前記移動機構により移動させ、前記動作機構を用いて前記容器を回転又は振り子動作させることにより前記容器内の前記微粒子又は前記電子部品を攪拌あるいは回転させながらスパッタリングを行うことで、前記微粒子又は前記電子部品に前記微粒子又は前記電子部品より径の小さい超微粒子を付着又は薄膜を成膜するように制御することを特徴とする複合装置。
    In claim 3,
    Has a control unit
    The control unit moves the first electrode by the moving mechanism so that the first sputtering target held by the first electrode is located above, and rotates the container using the operating mechanism. Alternatively, by performing a plasma CVD method while stirring or rotating the fine particles or the electronic component in the container by operating a pendulum, the fine particles or the electronic component are provided with ultrafine particles having a diameter smaller than that of the fine particles or the electronic component. After adhesion or thin film formation
    The first electrode is moved by the moving mechanism so that the first sputtering target held by the first electrode is located below, and the container is rotated or pendulum-operated by using the moving mechanism. By performing sputtering while stirring or rotating the fine particles or the electronic component in the container, the fine particles or ultrafine particles having a diameter smaller than that of the electronic component are attached to the fine particles or the electronic component or a thin film is formed. A complex device characterized in that it is controlled in such a manner.
  12.  請求項3において、
     制御部を有し、
     前記制御部は、前記第1の電極に保持された前記第1のスパッタリングターゲットが上方に位置するように前記第1の電極を前記移動機構により移動させ、前記容器内に不活性ガス、酸素ガス、窒素ガス及びフッ素ガスの少なくとも一つのガスを導入し、前記動作機構を用いて前記容器を回転又は振り子動作させることにより前記容器内の前記微粒子又は前記電子部品を攪拌あるいは回転させながら前記少なくとも一つのガスのプラズマを生成することで、前記微粒子又は前記電子部品の表面を改質した後に、
     前記第1の電極に保持された前記第1のスパッタリングターゲットが下方に位置するように前記第1の電極を前記移動機構により移動させ、前記動作機構を用いて前記容器を回転又は振り子動作させることにより前記容器内の前記微粒子又は前記電子部品を攪拌あるいは回転させながらスパッタリングを行うことで、前記微粒子又は前記電子部品に前記微粒子又は前記電子部品より径の小さい超微粒子を付着又は薄膜を成膜するように制御することを特徴とする複合装置。
    In claim 3,
    Has a control unit
    The control unit moves the first electrode by the moving mechanism so that the first sputtering target held by the first electrode is located above, and the inert gas and oxygen gas are contained in the container. , Nitrogen gas and fluorine gas are introduced, and the container is rotated or pendulum-operated by using the operating mechanism to stir or rotate the fine particles or the electronic parts in the container, and at least one of the above. After modifying the surface of the fine particles or the electronic components by generating a plasma of one gas,
    The first electrode is moved by the moving mechanism so that the first sputtering target held by the first electrode is located below, and the container is rotated or pendulum-operated by using the moving mechanism. By performing sputtering while stirring or rotating the fine particles or the electronic component in the container, the fine particles or ultrafine particles having a diameter smaller than that of the electronic component are attached to the fine particles or the electronic component or a thin film is formed. A complex device characterized in that it is controlled in such a manner.
  13.  チャンバーと、
     前記チャンバー内を真空排気する排気機構と、
     前記チャンバー内に配置され、微粒子又は電子部品を収容する容器であって断面の内部形状が多角形、円形又は楕円形である容器と、
     前記断面に対して垂直方向を回転軸として前記容器を回転又は振り子動作させる動作機構と、
     前記容器内に配置され、第1のスパッタリングターゲットを保持する第1の電極と、
     前記容器内に配置され、第2のスパッタリングターゲットを保持する第2の電極と、
     前記第1の電極に保持された前記第1のスパッタリングターゲット及び前記第2の電極に保持された前記第2のスパッタリングターゲットそれぞれを上方又は下方に位置させるために、前記第1及び第2の電極を回転させて前記第1のスパッタリングターゲット及び前記第2のスパッタリングターゲットそれぞれの位置を移動させる移動機構と、
     前記容器内に不活性ガス、酸素ガス、窒素ガス、フッ素ガス及び原料ガスの少なくとも一つのガスを導入するガス導入部と、
     前記第1の電極に電力又はアース電位を供給する第1の供給機構と、
     前記第2の電極に電力又はアース電位を供給する第2の供給機構と、
     前記容器にアース電位又は電力を供給する第3の供給機構と、
    を具備することを特徴とする複合装置。
    With the chamber
    An exhaust mechanism that evacuates the inside of the chamber and
    A container arranged in the chamber and containing fine particles or electronic parts and having an internal shape of a polygonal, circular or elliptical cross section.
    An operating mechanism that rotates or pendulums the container about the direction perpendicular to the cross section as a rotation axis.
    A first electrode located in the container and holding a first sputtering target,
    A second electrode located in the container and holding a second sputtering target,
    The first and second electrodes are used to position the first sputtering target held by the first electrode and the second sputtering target held by the second electrode above or below, respectively. To move the positions of the first sputtering target and the second sputtering target by rotating the moving mechanism, and
    A gas introduction unit that introduces at least one of an inert gas, an oxygen gas, a nitrogen gas, a fluorine gas, and a raw material gas into the container.
    A first supply mechanism that supplies electric power or ground potential to the first electrode,
    A second supply mechanism that supplies electric power or ground potential to the second electrode,
    A third supply mechanism that supplies the earth potential or power to the container,
    A complex device characterized by comprising.
  14.  請求項13において、
     前記第1の供給機構は、前記第1の電極に第1のスイッチ及び第3のスイッチを介して電気的に接続された前記プラズマ電源又はアースであり、
     前記第2の供給機構は、前記第2の電極に第1のスイッチ及び第3のスイッチを介して電気的に接続された前記プラズマ電源又はアースであり、
     前記第3の供給機構は、前記容器に第2のスイッチを介して電気的に接続されたアース又はプラズマ電源であることを具備することを特徴とする複合装置。
    In claim 13,
    The first supply mechanism is the plasma power supply or ground that is electrically connected to the first electrode via a first switch and a third switch.
    The second supply mechanism is the plasma power supply or ground that is electrically connected to the second electrode via a first switch and a third switch.
    The third supply mechanism is a composite device comprising being an earth or plasma power source electrically connected to the container via a second switch.
  15.  請求項13又は14において、
     制御部を有し、
     前記制御部は、前記第1の電極に保持された前記第1のスパッタリングターゲットが下方に位置するように前記第1の電極を前記移動機構により移動させ、前記動作機構を用いて前記容器を回転又は振り子動作させることにより前記容器内の前記微粒子又は前記電子部品を攪拌あるいは回転させながらスパッタリングを行うことで、前記微粒子又は前記電子部品に前記微粒子又は前記電子部品より径の小さい第1の超微粒子を付着又は第1の薄膜を成膜した後に、
     前記第2の電極に保持された前記第2のスパッタリングターゲットが下方に位置するように前記第2の電極を前記移動機構により移動させ、前記動作機構を用いて前記容器を回転又は振り子動作させることにより前記容器内の前記微粒子又は前記電子部品を攪拌あるいは回転させながらスパッタリングを行うことで、前記第1の超微粒子又は前記第1の薄膜上に前記微粒子又は前記電子部品より径の小さい第2の超微粒子を付着又は第2の薄膜を成膜するように制御することを特徴とする複合装置。
    In claim 13 or 14,
    Has a control unit
    The control unit moves the first electrode by the moving mechanism so that the first sputtering target held by the first electrode is located below, and rotates the container using the operating mechanism. Alternatively, by performing sputtering while stirring or rotating the fine particles or the electronic component in the container by operating a pendulum, the fine particles or the electronic component is subjected to sputtering, so that the fine particles or the electronic component has a smaller diameter than the fine particles or the electronic component. After adhering or forming the first thin film
    The second electrode is moved by the moving mechanism so that the second sputtering target held by the second electrode is located below, and the container is rotated or pendulum-operated by using the moving mechanism. By performing sputtering while stirring or rotating the fine particles or the electronic parts in the container, a second particle having a diameter smaller than that of the fine particles or the electronic parts is placed on the first ultrafine particles or the first thin film. A composite device characterized in that ultrafine particles are adhered or controlled so as to form a second thin film.
  16.  請求項15において、
     前記制御部は、前記第1の超微粒子を付着又は前記第1の薄膜を成膜した後で、且つ、前記第2の超微粒子を付着又は前記第2の薄膜を成膜する前に、前記容器内に不活性ガス、酸素ガス、窒素ガス及びフッ素ガスの少なくとも一つのガスを導入し、前記動作機構を用いて前記容器を回転又は振り子動作させることにより前記容器内の前記微粒子又は前記電子部品を攪拌あるいは回転させながら前記少なくとも一つのガスのプラズマを生成することで、前記第1の超微粒子又は前記第1の薄膜の表面を改質するように制御することを特徴とする複合装置。
    15.
    The control unit attaches the first ultrafine particles or forms the first thin film, and before adhering the second ultrafine particles or forming the second thin film. By introducing at least one gas of inert gas, oxygen gas, nitrogen gas and fluorine gas into the container and rotating or penduluming the container using the operation mechanism, the fine particles or the electronic component in the container A composite device characterized in that the surface of the first ultrafine particles or the first thin film is controlled to be modified by generating plasma of the at least one gas while stirring or rotating the gas.
  17.  請求項11に記載の複合装置を用いて被覆微粒子を製造する方法において、
     前記容器内にプラスチック微粒子を収容し、
     前記第1の電極に保持された前記第1のスパッタリングターゲットが上方に位置するように前記第1の電極を前記移動機構により移動させ、
     前記動作機構を用いて前記容器を回転又は振り子動作させることにより前記容器内の前記プラスチック微粒子を攪拌あるいは回転させながらプラズマCVD法を行うことで、前記プラスチック微粒子にDLC膜又はSi膜を成膜し、
     前記第1の電極に保持された前記第1のスパッタリングターゲットが下方に位置するように前記第1の電極を前記移動機構により移動させ、
     前記動作機構を用いて前記容器を回転又は振り子動作させることにより前記容器内の前記プラスチック微粒子を攪拌あるいは回転させながらスパッタリングを行うことで、前記DLC膜又は前記Si膜の上に金属膜を成膜し、
     前記a、b、c、dは、下記式1~式4を満たすことを特徴とする被覆微粒子の製造方法。
     (式1)0.2≦a≦0.6
     (式2)0.1≦b≦0.3
     (式3)0.1≦c≦0.3
     (式4)0.03≦d≦0.2
    In the method for producing coated fine particles using the composite device according to claim 11.
    Plastic fine particles are contained in the container, and
    The first electrode is moved by the moving mechanism so that the first sputtering target held by the first electrode is located above.
    By rotating or pendulum the container using the operating mechanism to perform the plasma CVD method while stirring or rotating the plastic fine particles in the container, a DLC film or Si a C bN c is applied to the plastic fine particles. An HD film is formed to form an HD film.
    The first electrode is moved by the moving mechanism so that the first sputtering target held by the first electrode is located below.
    By rotating or pendulum the container using the operation mechanism to perform sputtering while stirring or rotating the plastic fine particles in the container, the DLC film or the Si a C b N c HD film can be obtained. A metal film is formed on top,
    The a, b, c, and d are methods for producing coated fine particles, which satisfy the following formulas 1 to 4.
    (Equation 1) 0.2 ≤ a ≤ 0.6
    (Equation 2) 0.1 ≤ b ≤ 0.3
    (Equation 3) 0.1 ≤ c ≤ 0.3
    (Equation 4) 0.03 ≤ d ≤ 0.2
  18.  請求項11に記載の複合装置を用いて被覆微粒子を製造する方法において、
     前記容器内にプラスチック微粒子を収容し、
     前記第1の電極に保持された前記第1のスパッタリングターゲットが上方に位置するように前記第1の電極を前記移動機構により移動させ、
     前記動作機構を用いて前記容器を回転又は振り子動作させることにより前記容器内の前記プラスチック微粒子を攪拌あるいは回転させながらプラズマCVD法を行うことで、前記プラスチック微粒子にDLC膜を成膜し、
     前記動作機構を用いて前記容器を回転又は振り子動作させることにより前記容器内の前記プラスチック微粒子を攪拌あるいは回転させながらプラズマCVD法を行うことで、前記DLC膜上にSi膜を成膜し、
     前記第1の電極に保持された前記第1のスパッタリングターゲットが下方に位置するように前記第1の電極を前記移動機構により移動させ、
     前記動作機構を用いて前記容器を回転又は振り子動作させることにより前記容器内の前記プラスチック微粒子を攪拌あるいは回転させながらスパッタリングを行うことで、前記Si膜の上に金属膜を成膜し、
     前記a、b、c、dは、下記式1~式4を満たすことを特徴とする被覆微粒子の製造方法。
     (式1)0.2≦a≦0.6
     (式2)0.1≦b≦0.3
     (式3)0.1≦c≦0.3
     (式4)0.03≦d≦0.2
    In the method for producing coated fine particles using the composite device according to claim 11.
    Plastic fine particles are contained in the container, and
    The first electrode is moved by the moving mechanism so that the first sputtering target held by the first electrode is located above.
    A DLC film is formed on the plastic fine particles by performing a plasma CVD method while stirring or rotating the plastic fine particles in the container by rotating or pendulum the container using the operation mechanism.
    By performing the plasma CVD method while stirring or rolling the plastic particles in the container by rotating or pendulum operation the container using the operating mechanism, on the DLC film Si a C b N c H d A film is formed,
    The first electrode is moved by the moving mechanism so that the first sputtering target held by the first electrode is located below.
    By performing sputtering while stirring or rolling the plastic particles in the container by rotating or pendulum operation the container using the operating mechanism, metal film on the Si a C b N c H d film Filmed,
    The a, b, c, and d are methods for producing coated fine particles, which satisfy the following formulas 1 to 4.
    (Equation 1) 0.2 ≤ a ≤ 0.6
    (Equation 2) 0.1 ≤ b ≤ 0.3
    (Equation 3) 0.1 ≤ c ≤ 0.3
    (Equation 4) 0.03 ≤ d ≤ 0.2
PCT/JP2021/006365 2020-02-21 2021-02-19 Composite device and method for manufacturing coated fine particles WO2021167067A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022501076A JPWO2021167067A1 (en) 2020-02-21 2021-02-19

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-028531 2020-02-21
JP2020028531 2020-02-21

Publications (1)

Publication Number Publication Date
WO2021167067A1 true WO2021167067A1 (en) 2021-08-26

Family

ID=77390840

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/006365 WO2021167067A1 (en) 2020-02-21 2021-02-19 Composite device and method for manufacturing coated fine particles

Country Status (2)

Country Link
JP (1) JPWO2021167067A1 (en)
WO (1) WO2021167067A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61166966A (en) * 1985-11-26 1986-07-28 Murata Mfg Co Ltd Coaxial parallel magnetron sputtering device
JPH02153068A (en) * 1988-06-09 1990-06-12 Nisshin Steel Co Ltd Method and apparatus for coating fine powder
JPH05109655A (en) * 1991-10-15 1993-04-30 Applied Materials Japan Kk Cvd-sputtering system
JPH0665738A (en) * 1992-08-25 1994-03-08 Matsushita Electric Works Ltd Device for film formation and method therefor
JPH1060658A (en) * 1996-05-23 1998-03-03 Applied Materials Inc Chemical vapor deposition, sputtering apparatus and method therefor
JP2000506226A (en) * 1996-03-13 2000-05-23 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Vacuum deposition system for bulk materials
JP2003013229A (en) * 2001-06-27 2003-01-15 Utec:Kk Apparatus and method for forming cvd film
JP2004068091A (en) * 2002-08-07 2004-03-04 Matsushita Electric Ind Co Ltd Apparatus and method for film-forming treatment
WO2005090630A1 (en) * 2004-03-22 2005-09-29 Youtec Co., Ltd Fine particle
WO2017195448A1 (en) * 2016-05-12 2017-11-16 株式会社ユーテック Release agent, method for producing same, release agent product, release agent aerosol, and component provided with release agent
JP2018035384A (en) * 2016-08-29 2018-03-08 株式会社フルヤ金属 Powder coating device and method of using the same

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61166966A (en) * 1985-11-26 1986-07-28 Murata Mfg Co Ltd Coaxial parallel magnetron sputtering device
JPH02153068A (en) * 1988-06-09 1990-06-12 Nisshin Steel Co Ltd Method and apparatus for coating fine powder
JPH05109655A (en) * 1991-10-15 1993-04-30 Applied Materials Japan Kk Cvd-sputtering system
JPH0665738A (en) * 1992-08-25 1994-03-08 Matsushita Electric Works Ltd Device for film formation and method therefor
JP2000506226A (en) * 1996-03-13 2000-05-23 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Vacuum deposition system for bulk materials
JPH1060658A (en) * 1996-05-23 1998-03-03 Applied Materials Inc Chemical vapor deposition, sputtering apparatus and method therefor
JP2003013229A (en) * 2001-06-27 2003-01-15 Utec:Kk Apparatus and method for forming cvd film
JP2004068091A (en) * 2002-08-07 2004-03-04 Matsushita Electric Ind Co Ltd Apparatus and method for film-forming treatment
WO2005090630A1 (en) * 2004-03-22 2005-09-29 Youtec Co., Ltd Fine particle
WO2017195448A1 (en) * 2016-05-12 2017-11-16 株式会社ユーテック Release agent, method for producing same, release agent product, release agent aerosol, and component provided with release agent
JP2018035384A (en) * 2016-08-29 2018-03-08 株式会社フルヤ金属 Powder coating device and method of using the same

Also Published As

Publication number Publication date
JPWO2021167067A1 (en) 2021-08-26

Similar Documents

Publication Publication Date Title
TWI682049B (en) Magnetron sputtering device
JP4516199B2 (en) Sputtering apparatus and electronic device manufacturing method
JP2008223140A (en) Method and sputter-deposition system for depositing layer composed of mixture of material and having predetermined refractive index
TW201402851A (en) Method for sputtering for processes with a pre-stabilized plasma
JPH03100162A (en) Apparatus for forming substrate membrane
WO2017014304A1 (en) Powder coating apparatus
JP2004169172A (en) Magnetron sputtering system, and magnetron sputtering method
JP3989553B2 (en) Bulk material vacuum deposition system
JP2014515060A (en) Improved method of controlling lithium uniformity
JP2007231303A (en) Thin film deposition apparatus
JPH08176821A (en) Formation of thin film and device therefor
US9994950B2 (en) Method for depositing a piezoelectric film containing AIN, and a piezoelectric film containing AIN
WO2021167067A1 (en) Composite device and method for manufacturing coated fine particles
JP5689984B2 (en) Method for continuously forming noble metal film and method for continuously manufacturing electronic parts
US10407767B2 (en) Method for depositing a layer using a magnetron sputtering device
WO2017195448A1 (en) Release agent, method for producing same, release agent product, release agent aerosol, and component provided with release agent
US20050150457A1 (en) Plasma-Assisted Sputter Deposition System
JP2005232554A (en) Sputtering system
JP3787430B2 (en) Sputtering apparatus and thin film forming method using the same
JP2005298894A (en) Method for cleaning target, and physical deposition apparatus
US20230234160A1 (en) Diffusion bonding of pure metal bodies
JP7390997B2 (en) Film forming equipment
JP2009299191A (en) Plasma-assisted sputter film-forming apparatus
JPH11229135A (en) Sputtering device and formation of film
JP3031219B2 (en) Article surface treatment method and apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21756556

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022501076

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21756556

Country of ref document: EP

Kind code of ref document: A1