WO2017195448A1 - Release agent, method for producing same, release agent product, release agent aerosol, and component provided with release agent - Google Patents

Release agent, method for producing same, release agent product, release agent aerosol, and component provided with release agent Download PDF

Info

Publication number
WO2017195448A1
WO2017195448A1 PCT/JP2017/009112 JP2017009112W WO2017195448A1 WO 2017195448 A1 WO2017195448 A1 WO 2017195448A1 JP 2017009112 W JP2017009112 W JP 2017009112W WO 2017195448 A1 WO2017195448 A1 WO 2017195448A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
release agent
particles
substance
less
Prior art date
Application number
PCT/JP2017/009112
Other languages
French (fr)
Japanese (ja)
Inventor
本多 祐二
由佳利 三上
Original Assignee
株式会社ユーテック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ユーテック filed Critical 株式会社ユーテック
Priority to JP2018516363A priority Critical patent/JPWO2017195448A1/en
Publication of WO2017195448A1 publication Critical patent/WO2017195448A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00

Definitions

  • the present invention relates to a release agent and a production method thereof, a release agent article, a release agent aerosol, and a member with a release agent.
  • a release agent having fine particles The fine particles have particles and a first film or substance that covers the particles, The mold release agent, wherein the first film or substance has a friction coefficient of 0.4 or less.
  • a release agent having fine particles, The fine particles include particles, a second film that covers the particles, and a first film or substance that covers the second film, The mold release agent, wherein the first film or substance has a friction coefficient of 0.4 or less.
  • the mold release agent, wherein the second film has a friction coefficient of 0.4 or less.
  • the first film or substance has a friction coefficient of 0.05 or more and 0.3 or less (preferably 0.05 or more and 0.2 or less).
  • the mold release agent, wherein the second film or substance has a friction coefficient of 0.05 to 0.3 (preferably 0.05 to 0.2).
  • a mold release agent, wherein a contact angle of water on the surface of the fine particles is 60 ° or more.
  • the release agent characterized in that the particles contain a substance having a friction coefficient of 0.4 or less (preferably 0.05 or more and 0.3 or less, more preferably 0.05 or more and 0.2 or less).
  • the particles include at least one selected from the group consisting of silver, indium, tin, tellurium, antimony, bismuth, graphite, mica, talc, clay, apatite, kaolin, and silica.
  • the first film or material is at least selected from the group consisting of silver, indium, tin, tellurium, antimony, bismuth, DLC, graphite, BN, BC, WBN, CrN, TiN, molybdenum disulfide and tungsten disulfide.
  • a mold release agent characterized by comprising one.
  • the second film is selected from the group consisting of silver, indium, tin, tellurium, antimony, bismuth, DLC, graphite, BN, BC, WBN, CrN, TiN, molybdenum disulfide, tungsten disulfide, and Si.
  • a mold release agent comprising at least one of the first film and a film different from the first film.
  • the mold release agent contains at least one of oil and a solvent.
  • a mold, A release agent attached to the surface of the mold; Comprising The release agent has fine particles, The fine particles have particles and a first film or substance that covers the particles, The first film or substance has a friction coefficient of 0.4 or less (preferably 0.05 or more and 0.3 or less, more preferably 0.05 or more and 0.2 or less). Attached member.
  • a mold, A release agent attached to the surface of the mold; Comprising The release agent has fine particles, The fine particles include particles, a second film that covers the particles, and a first film or substance that covers the second film, The first film or substance has a friction coefficient of 0.4 or less (preferably 0.05 or more and 0.3 or less, more preferably 0.05 or more and 0.2 or less). Attached member.
  • the second film has a friction coefficient of 0.4 or less (preferably 0.05 or more and 0.3 or less, more preferably 0.05 or more and 0.2 or less). .
  • a member with a release agent wherein a contact angle of water on the surface of the fine particles is 60 ° or more.
  • the particle includes a substance having a friction coefficient of 0.4 or less, and a member with a release agent.
  • the particles are accommodated in a chamber whose cross-sectional internal shape is circular or polygonal, A counter electrode facing the inner surface of the chamber is disposed in the chamber; Connect a ground to the chamber, The chamber is evacuated, The chamber is rotated or pendulum operated with a direction substantially perpendicular to the cross section as a rotation axis, Introducing a source gas into the chamber; Release to produce fine particles by coating the first film or substance on the surface of the particles by plasma CVD while stirring or rotating the particles in the chamber by supplying high frequency power to the counter electrode A method for producing the agent, Release agent characterized in that the first film or substance has a friction coefficient of 0.4 or less (preferably 0.05 or more and 0 or 3 or less, more preferably 0.05 or more and 0.2 or less).
  • the particles are accommodated in a chamber having a circular or polygonal cross-sectional shape, A counter electrode facing the inner surface of the chamber is disposed in the chamber; Connect a ground to the chamber, The chamber is evacuated, The chamber is rotated or pendulum operated with a direction substantially perpendicular to the cross section as a rotation axis, Introducing a first source gas into the chamber; By supplying high-frequency power to the counter electrode, the particles in the chamber are agitated or rotated, and the surface of the particles is coated with a second film by a plasma CVD method.
  • a method for producing a release agent for producing fine particles with The first film or substance has a friction coefficient of 0.4 or less (preferably 0.05 or more and 0.3 or less, more preferably 0.05 or more and 0.2 or less). Manufacturing method.
  • the particles are accommodated in a vacuum vessel having a polygonal internal shape of a cross section substantially parallel to the direction of gravity, By performing sputtering while stirring or rotating the particles in the vacuum container by rotating the vacuum container about a direction substantially perpendicular to the cross section, the first film or substance is applied to the surface of the particles. It is a method for producing a release agent that produces fine particles by coating,
  • the first film or substance has a friction coefficient of 0.4 or less (preferably 0.05 or more and 0.3 or less, more preferably 0.05 or more and 0.2 or less). Manufacturing method.
  • the particles are accommodated in a vacuum vessel having a polygonal internal shape of a cross section substantially parallel to the direction of gravity,
  • the surface of the particles is coated with the second film by performing sputtering while rotating or rotating the vacuum vessel about the direction perpendicular to the cross section as the rotation axis.
  • Sputtering is performed while stirring or rotating the particles in the vacuum container by rotating the vacuum container about a direction substantially perpendicular to the cross section as a rotation axis, so that a first surface is formed on the surface of the second film.
  • a method for producing a release agent for producing fine particles by coating a film or a substance The first film or substance has a friction coefficient of 0.4 or less (preferably 0.05 or more and 0.3 or less, more preferably 0.05 or more and 0.2 or less). Manufacturing method. [24] In the above [21] or [23], The second film has a friction coefficient of 0.4 or less (preferably 0.05 or more and 0.3 or less, more preferably 0.05 or more and 0.2 or less). Method. [25] In any one of [20] to [24] above, A method for producing a release agent, wherein the contact angle of water on the surface of the fine particles is 60 ° or more.
  • the particle contains a substance having a friction coefficient of 0.4 or less (preferably 0.05 or more and 0.3 or less, more preferably 0.05 or more and 0.2 or less).
  • grain contains at least 1 selected from the group which consists of a metal, ceramics, resin, and a mineral, The manufacturing method of the mold release agent characterized by the above-mentioned.
  • FIG. 1A is a cross-sectional view showing fine particles used in the release agent according to one embodiment of the present invention
  • FIG. 1B is a cross-section showing fine particles used in the release agent according to another embodiment of the present invention.
  • FIG. 2A to 2D are diagrams showing particles of various shapes.
  • FIG. 3 is a cross-sectional view illustrating a release agent aerosol according to one embodiment of the present invention.
  • 4A is a cross-sectional view illustrating a plasma CVD apparatus used when manufacturing a release agent according to one embodiment of the present invention, and FIG. 4B is along a line 200-200 illustrated in FIG. It is sectional drawing.
  • FIG. 5 is a configuration diagram showing an outline of a polygonal barrel sputtering apparatus used when a film is coated on particles.
  • FIG. 6A is a cross-sectional view illustrating a part of a member with a release agent according to one embodiment of the present invention
  • FIG. 6B illustrates a part of the member with a release agent according to another embodiment of the present invention. It is sectional drawing shown.
  • FIG. 7 is an SEM (Scanning Electron Microscope) image of the fine particles of Example 1.
  • FIG. 8 is an SEM image obtained by covering the fine particles shown in FIG. 7 with a processing protective film and imaging the cut surface of the fine particles.
  • FIG. 9 is a photograph of the sample of Example 4.
  • FIG. 10 is a photograph of the sample of Example 4.
  • FIGS. 11A to 11D are photographs of Example 5.
  • FIG. FIG. 12 is a photograph of Example 5.
  • FIG. 13A is a photograph in which a release agent is applied to a glass substrate according to Example 6, and FIG. 13B is a photograph showing a state in which the contact angle of water in Example 6 is measured.
  • FIG. 14A is a photograph showing a glass substrate, and FIG. 14B is a photograph showing a state in which the contact angle of water in the comparative example was measured.
  • FIG. 1A is a cross-sectional view illustrating fine particles used for a release agent according to one embodiment of the present invention.
  • 2A to 2D are diagrams showing particles of various shapes.
  • a fine particle 53 illustrated in FIG. 1A is obtained by covering a particle 51 with a first film 52 or a substance.
  • the first film 52 or the substance may have a friction coefficient of 0.4 or less (preferably 0.05 or more and 0.3 or less, more preferably 0.05 or more and 0.2 or less).
  • the fine particles 53 can have a function as a release agent.
  • the contact angle of water on the surface of the fine particles 53 is preferably 60 ° or more. Thereby, the function as a mold release agent of the microparticles
  • the particles may contain a substance having a friction coefficient of 0.4 or less (preferably 0.05 or more and 0.3 or less, more preferably 0.05 or more and 0.2 or less).
  • the particle size L1 of the fine particles 53 is preferably 100 ⁇ m or less, and may be 70 ⁇ m or less.
  • the “particle diameter” means the longest diameter among the outer diameters of the fine particles 53.
  • the particles 51 particles having various shapes can be used. For example, the particles having an indefinite shape shown in FIG. 2 (A), the particles having a spherical shape shown in FIG. 2 (B), and FIGS.
  • the film thickness of the first film 52 is preferably 1/20 or less of the particle diameter L1 of the fine particles 53. This is because if the thickness of the first film 52 is larger than 1/20 of the particle diameter of the fine particles 53, the first film 52 is easily peeled off from the fine particles 53.
  • the particles 51 may be particles containing at least one selected from the group consisting of metals, ceramics, resins, and minerals.
  • a material having heat resistance of 250 ° C. or higher preferably 500 ° C. or higher
  • the material of the molded product is a resin that melts at a high temperature
  • a material having heat resistance close to 400 ° C. may be used for the particles 51
  • a material having heat resistance close to 1000 ° C. may be used. Thereby, it becomes possible to use the release agent in a high temperature environment.
  • metals that can be used for the particles 51 include silver, indium, tin, tellurium, antimony, and bismuth.
  • a material having high heat resistance and heat insulation properties such as graphite, mica, talc, clay, and apatite is desirable.
  • kaolin, silica or the like may be used for the particles 51.
  • the first film 52 or material is at least selected from the group consisting of silver, indium, tin, tellurium, antimony, bismuth, DLC, graphite, BN, BC, WBN, CrN, TiN, molybdenum disulfide and tungsten disulfide. One should be included.
  • the first film 52 or the substance may be a material having heat resistance of 250 ° C. or higher (preferably 500 ° C. or higher). Note that the first film 52 or the substance may be made of a material different from that of the particles 51 or the same material. As described above, when any one of the particles 51, the first film 52, and the substance has a heat resistance of 250 ° C. or higher, it is possible to achieve releasability.
  • a DLC film having a friction coefficient of 0.1 to 0.4 may be used, and a DLC film having a friction coefficient of 0.1 or less may be used.
  • the surface of the DLC film has a low roughness and a low friction coefficient like a mirror surface.
  • a DLC film having a water contact angle of 65 ° to 98 ° may be used.
  • fluorine is contained in the DLC film
  • the friction coefficient can be lowered as compared with a DLC film not containing fluorine.
  • the DLC film containing fluorine has higher mold release properties than the DLC film containing no fluorine, and therefore it is desirable to select the material according to the raw material of the molded product.
  • DLC has a heat resistance of 550 ° C.
  • fine particles using silver for the particles 51 and DLC for the first film 52 have a heat resistance of 500 ° C. Such fine particles can be used as a release agent that requires high heat resistance.
  • the hydrogen content of the DLC film may be 30 atomic% or less (preferably 20 atomic% or less, more preferably 10 atomic% or less). Thus, by reducing the hydrogen content of the DLC film, the friction coefficient of the DLC film can be lowered. By setting the hydrogen content of the DLC film to 20 atomic% or less, the friction coefficient of the DLC film can be set to 0.15 or less.
  • FIG. 1B is a cross-sectional view showing fine particles used in the release agent according to another embodiment of the present invention. A fine particle 57 illustrated in FIG. 1B is obtained by covering a particle 54 with a second film 55 and covering the second film 55 with a third film 56 or a substance. The third film 56 or substance may be the same as the first film 52 or substance shown in FIG.
  • the second film 55 may have a friction coefficient of 0.4 or less (preferably 0.05 or more and 0.3 or less, more preferably 0.05 or more and 0.2 or less).
  • the particle diameter L2 of the fine particles 57 is preferably 100 ⁇ m or less, and may be 70 ⁇ m or less.
  • the same material as that of the particles 51 shown in FIG. 1A may be used.
  • silver, indium, tin, tellurium, antimony, bismuth, DLC, graphite, BN, BC, WBN , CrN, TiN, molybdenum disulfide, tungsten disulfide, and a material containing at least one selected from the group consisting of Si can be used.
  • the second film 55 is preferably a film using a material different from that of the third film 56 or the substance, but the second film 55 is made of the same material as the third film 56 or the substance.
  • the second film 55 may be a membrane.
  • a material having heat resistance of 250 ° C. or higher preferably 500 ° C. or higher
  • the second film 55 preferably has a function as an intermediate film for improving the adhesion between the third film 56 and the particles 54.
  • the third film 56 is a DLC film
  • the second film 55 is a second film.
  • the film may be a film containing Si. This film is a film formed by a CVD method using a source gas containing Si. By using a film containing Si as an intermediate film, adhesion between an organic material and an inorganic material can be improved by Si like a silane coupling agent.
  • the film thickness of each of the second film 55 and the third film 56 is preferably 1/20 or less of the particle diameter L2 of the fine particles 57. This is because if the thickness of each of the second film 55 and the third film 56 is larger than 1/20 of the particle diameter of the fine particles 57, the second film 55 and the third film 56 are easily peeled off from the fine particles 53. .
  • a resin having heat resistance of 250 ° C. or higher is used for the particles 54, the same material as the particles 51 shown in FIG. 1A is used for the second film 55, and the third film 56 is shown in FIG.
  • the material cost can be reduced as compared with the fine particles 53 shown in FIG.
  • the particles 54 may be particles containing at least one selected from the group consisting of metals, ceramics, and minerals.
  • the release agent may be composed of the fine particles 53 or the fine particles 57 described above, but the fine particles 53 or the fine particles 57 may contain at least one of oil and a solvent.
  • the oil may have a heat resistance of 250 ° C. or higher (preferably 500 ° C. or higher). This oil or the like should be easy to adhere the mold release agent to the mold, and even after the mold is heated to produce a molded product, the oil is difficult to evaporate from the mold surface. Good.
  • a solvent having heat resistance may be used to impart releasability, and a highly volatile organic solvent is used to apply or adhere the fine particles 53 or 57 to the mold. May be used.
  • Said oil is good to contain at least one selected from the group of polymer compounds, such as silicone oil, mineral oil, fats and oils, synthetic esters, and waxes.
  • the solvent is at least one selected from the group consisting of hydrogen carbonate, alcohol, ketone, ester, ether, glycol, glycol ester, glycoether, glyme, halogen, and special solvents. It is good to include.
  • said mold release agent is demonstrated as a mold release agent, it is not limited to a mold, You may use as a mold release agent of things other than a metal mold
  • ⁇ Release agent supplies and release agent aerosol> A mold release product can be produced by housing the mold release agent in a container.
  • the “container” is a concept including a syringe.
  • the release agent aerosol has the above release agent and an injection container filled with a propellant.
  • the release agent aerosol can be produced by filling the above-mentioned release agent together with the propellant in the injection container.
  • the particle size of the fine particles may be any size that can be sprayed without clogging when an aerosol product is used, and it is generally preferable that the average particle size is 20 ⁇ m or less.
  • the stirring can be performed more easily and easily.
  • the metering valve is a valve that is generally used for perfume, medicine, etc. with a small amount of use, and is designed to inject a certain volume for each operation.
  • FIG. 3 as an example, in the metering injection type container 1 having the metering valve 2, when the actuator 3 is pushed down, the metering chamber 2a and the dip tube 4 are first shut off, and further, When pressed down, the metering chamber 2a is opened and the contents are jetted from the nozzle port 5 into the atmosphere.
  • a release agent mainly composed of a solvent or oil having heat resistance of 250 ° C. or higher (preferably 500 ° C. or higher), a highly volatile organic solvent, and liquefied hydrocarbon gas
  • a liquid phase 6 containing a propellant such as dimethyl ether is contained.
  • a plurality of fine particles are dispersed in the liquid phase 6, and the fine particles 53 or 57 are settled in the liquid phase 6.
  • the container 1 also contains a gas phase 8 made of a propellant such as liquefied hydrocarbon gas, and a stirring ball 9 for increasing the stirring efficiency.
  • FIG. 4A is a cross-sectional view illustrating a plasma CVD apparatus used for manufacturing a release agent according to one embodiment of the present invention
  • FIG. 4B is a cross-sectional view of 200-200 illustrated in FIG. It is sectional drawing along a line.
  • This plasma CVD apparatus is an apparatus for coating the surface of the particles 51 with a DLC film.
  • a description will be given of a plasma CVD apparatus in which particles 51 are accommodated in a container having an internal cross-sectional shape that is a polygon, and the particles 51 are covered with a DLC film.
  • the internal cross-sectional shape of the container is not limited to a polygon.
  • the internal cross-sectional shape of the container can be circular or elliptical.
  • the difference between a container having a polygonal internal cross-sectional shape and a container having a circular or elliptical shape is that the polygonal container can coat the DLC film with a smaller particle diameter more uniformly than the circular or elliptical container. Is a point.
  • the plasma CVD apparatus has a cylindrical chamber 13. One end of the chamber 13 is closed by a chamber lid 21a, and the other end of the chamber 13 is closed by a chamber lid 21b. Each of the chamber 13 and the chamber lids 21a and 21b is connected to ground (ground potential). Inside the chamber 13, a conductive container that accommodates the particles 51 is disposed.
  • This container has a cylindrical first container member 29, a second container member 29a, a first ring-shaped member 29b, and a second ring-shaped member 29c.
  • Each of the first container member 29, the second container member 29a, and the first and second ring-shaped members 29b and 29c has conductivity.
  • One end of the first container member 29 is closed, and an extension portion 29 d extending to the outside of the chamber 13 is formed on one end side of the first container member 29.
  • the other end of the first container member 29 is opened.
  • the extending portion 29d is connected to the ground.
  • a second container member 29a is arranged inside the first container member 29, and the second container member 29a has a barrel shape with a hexagonal cross section as shown in FIG. The cross section shown in FIG.
  • substantially parallel means to include those that are shifted by ⁇ 3 ° with respect to perfect parallelism.
  • hexagonal barrel-shaped 2nd container member 29a is used, it is not limited to this, The polygonal 2nd container member other than a hexagon is used. It is also possible.
  • One end of the second container member 29a is attached to the inside of the first container member 29 by a first ring-shaped member 29b, and the other end of the second container member 29a is a first container by a second ring-shaped member 29c. It is attached inside the member 29.
  • first ring-shaped member 29b is located on one side of the second container member 29a
  • second ring-shaped member 29c is located on the other side of the second container member 29a.
  • the outer periphery of each of the first and second ring-shaped members 29b and 29c is connected to the inner surface of the first container member 29, and the inner periphery of each of the first and second ring-shaped members 29b and 29c is the second container member. It is located on the gas shower electrode (counter electrode) 21 side from the inner surface of 29a.
  • the distance between the first ring-shaped member 29b and the second ring-shaped member 29c (that is, the distance between one end and the other end of the second container member 29a) is the distance between the one end and the other end of the first container member 29. Small compared to distance.
  • Each of the first and second ring-shaped members 29 b and 29 c is disposed inside the first container member 29. And the powder (particle) 51 as a coating target object is accommodated in the space enclosed by the inner surface of the 2nd container member 29a and the 1st and 2nd ring-shaped members 29b and 29c.
  • the inner surface 129a constituting the polygon of the second container member 29a and the first and second ring-shaped members 29b and 29c surrounding the inner surface 129a are respectively the surfaces 129b and 129c (first and second ring-shaped members).
  • the particles 51 are positioned on the accommodation surface.
  • the surface of the container other than the housing surface composed of the inner surface 129a forming the polygon in the second container member 29a and the surfaces 129b and 129c of the first and second ring-shaped members surrounding the inner surface 129a is connected to the ground shielding member. (Not shown).
  • the first container member 29, the first and second ring-shaped members 29b and 29c, and the ground shielding member may have a distance of 5 mm or less (preferably 3 mm or less).
  • the earth shielding member is connected to a ground potential.
  • the plasma CVD apparatus includes a source gas introduction mechanism that introduces a source gas into the chamber 13.
  • This source gas introduction mechanism has a cylindrical gas shower electrode (counter electrode) 21.
  • the gas shower electrode 21 is disposed in the second container member 29a. That is, an opening is formed on the other side of the second container member 29a, and the gas shower electrode 21 is inserted from this opening.
  • the gas shower electrode 21 is electrically connected to a power source 23, and high frequency power is supplied to the gas shower electrode 21 by the power source 23.
  • the power source 23 is preferably a high frequency power source having a frequency of 10 kHz to 1 MHz, and more preferably a high frequency power source having a frequency of 50 kHz to 500 kHz.
  • a power source having a low frequency it is possible to suppress the dispersion of plasma outside the space between the gas shower electrode 21 and the second container member 29a as compared with the case where a power source having a frequency higher than 1 MHz is used. be able to. In other words, the plasma can be confined between the gas shower electrode 21 and the second container member 29a.
  • the ground shielding member 27a and the gas shower electrode 21 have an interval of 5 mm or less (preferably 3 mm or less).
  • the high-frequency output can be concentrated inside the second container member 29a, and as a result, concentrated on the particles 51 accommodated in the container.
  • High frequency power can be supplied.
  • a plurality of gas outlets for blowing out one or a plurality of source gases in a shower shape are formed on the facing surface on one side of the gas shower electrode 21. This gas outlet is disposed at the bottom (the facing surface) of the gas shower electrode 21 and is disposed so as to face the particles 51 accommodated in the second container member 29a.
  • the gas outlet is disposed so as to face the inner surface of the second container member 29a.
  • the gas shower electrode 21 has a surface opposite to the gravity direction 11 having a convex shape on the opposite side.
  • the cross-sectional shape of the gas shower electrode 21 is circular or elliptical except for the bottom.
  • the other side of the mass flow controller 22 is connected to the source gas generation source 20a via a vacuum valve 26b and a filter (not shown).
  • the other side of the gas shower electrode 21 is connected to one side of a mass flow controller (MFC) (not shown) via a vacuum valve (not shown).
  • MFC mass flow controller
  • the other side of the mass flow controller is connected to an argon gas cylinder (not shown).
  • the first container member 29 is provided with a rotation mechanism (not shown). By this rotation mechanism, the first container member 29 and the second container member 29a are shown in FIG.
  • the coating process is performed while stirring or rotating the particles 51 in the second container member 29a by rotating or pendulum-operating as shown by the arrows.
  • a rotation axis when rotating the first container member 29 and the second container member 29a by the rotation mechanism is an axis parallel to a substantially horizontal direction (a direction perpendicular to the gravity direction 11).
  • the “substantially horizontal direction” means including a deviation of ⁇ 3 ° from the complete horizontal direction.
  • the airtightness in the chamber 13 is maintained even when the first container member 29 is rotated.
  • the plasma CVD apparatus includes a vacuum exhaust mechanism that exhausts the inside of the chamber 13.
  • the chamber 13 is provided with a plurality of exhaust ports (not shown), and the exhaust ports are connected to a vacuum pump (not shown).
  • the inside of the chamber 13 is not shown so that the minimum diameter or the minimum gap in the path through which the gas is exhausted from the first container member 29 to the outside of the chamber 13 by the vacuum exhaust mechanism is 5 mm or less (preferably 3 mm or less).
  • a grounding member is arranged.
  • the source gas introduced into the second container member 29a from the gas shower electrode 21 is exhausted from the exhaust port through the minimum diameter or the minimum gap.
  • the minimum diameter or the minimum gap it is possible to prevent the plasma from being confined in the vicinity of the particles 51 accommodated in the second container member 29a. That is, if the minimum diameter or the minimum gap is larger than 5 mm, the plasma may be dispersed or abnormal discharge may occur.
  • the gas shower electrode 21 has a heater (not shown).
  • the plasma CVD apparatus may have a grounding rod (not shown) as a striking member for applying vibration to the particles 51 accommodated on the inner surface of the second container member 29a. That is, it is preferable that the tip of the grounding rod can be hit against the first container member 29 or the ground shielding member through an opening provided in the chamber 13 by a drive mechanism (not shown). By continuously hitting the grounding rod against the ground shielding member rotating together with the first container member 29, it is possible to apply vibration to the particles 51 accommodated in the second container member 29a.
  • the ground shielding member and the first container member 29 are connected by an insulating member (not shown), and vibration from the ground shielding member may be transmitted to the first container member 29 through the insulating member. .
  • the manufacturing method of a mold release agent is demonstrated in detail.
  • particles 51 are coated with a DLC film using the plasma CVD apparatus.
  • the plurality of particles 51 are accommodated in the second container member 29a.
  • the average particle diameter of the particles 51 is, for example, about 20 ⁇ m.
  • the particles 51 may contain a substance having a friction coefficient of 0.4 or less (preferably 0.05 or more and 0.3 or less, more preferably 0.05 or more and 0.2 or less).
  • a predetermined pressure for example, 5 ⁇ 10 5
  • the pressure is reduced to about Torr.
  • the first container member 29 and the second container member 29a are rotated by the rotating mechanism, whereby the particles 51 accommodated in the second container member 29a are stirred or rotated on the inner surface of the container.
  • the first container member 29 and the second container member 29a are rotated, the first container member 29 and the second container member 29a can be operated in a pendulum manner by a rotation mechanism.
  • a source gas is generated in the source gas generation source 20 a, the source gas is controlled to a predetermined flow rate by the mass flow controller 22, and the source gas whose flow rate is controlled is introduced inside the gas shower electrode 21. Then, the source gas is blown out from the gas outlet of the gas shower electrode 21. As a result, the source gas is sprayed onto the particles 51 moving while stirring or rotating in the second container member 29a, and the pressure suitable for film formation by the CVD method is maintained by the balance between the controlled gas flow rate and the exhaust capability. Be drunk. Further, the grounding rod is continuously driven by the driving mechanism to the ground shielding member 27 rotating together with the first container member 29.
  • the first container member 29, the first and second ring-shaped members 29b and 29c, the second container member 29a, and the particles 51 are connected to the ground.
  • plasma is ignited between the gas shower electrode 21 and the second container member 29 a, plasma is generated in the second container member 29 a, and the surface of the particle 51 is covered with the DLC film.
  • the particles 51 are stirred and rotated by rotating the second container member 29a, it is possible to easily produce fine particles in which the entire surface of the particles 51 is uniformly coated with the DLC film.
  • the entire surface of the particle 51 may be coated with a DLC film, but the surface of the particle 51 may be coated with DLC that does not become a film.
  • the DLC film coated in this way has a coefficient of friction of 0.4 or less.
  • the contact angle of water on the surface of the fine particles thus produced is preferably 60 ° or more.
  • a mold release agent is manufactured by mixing the fine particles produced as described above, at least one of a solvent and oil, and a highly volatile organic solvent.
  • Each of the fine particles, the solvent, and the oil may have heat resistance of 250 ° C. or higher (preferably 500 ° C. or higher).
  • a release agent is produced by mixing fine particles, at least one of a solvent and oil, and a highly volatile organic solvent. However, the fine particles and at least one of solvent and oil are mixed.
  • a mold release agent may be produced, or a mold release agent composed of fine particles may be produced.
  • the first film 52 or the substance covering the particles 51 has a friction coefficient of 0.4 or less (or 0.05 or more and 0.3 or less, or 0.05 or more and 0.2 or less). By having it, the fine particles 53 shown in FIG. 1A can function as a release agent.
  • fine-particles 53 can be improved because the contact angle of the water of the surface of the microparticles
  • the particles 51 contain a substance having a friction coefficient of 0.4 or less, even if the fine particles 53 after adhering to the surface of the mold are crushed, they can function as a release agent.
  • the third film 56 or the material covering the particles 54 has a friction coefficient of 0.4 or less (or 0.05 or more and 0.3 or less, or 0.05 or more and 0.2 or less).
  • the fine particles 57 shown in FIG. 1B can function as a release agent.
  • fine-particles 57 can be improved because the contact angle of the water of the surface of the microparticles
  • the second film 55 covering the particles 54 has a friction coefficient of 0.4 or less (or 0.05 or more and 0.3 or less, or 0.05 or more and 0.2 or less), the surface of the mold Even if the fine particles 57 adhered to the surface are crushed, they can function as a release agent.
  • a mold release agent can be easily apply
  • the release agent which does not contain oil can be manufactured by using the release agent which mixed the solvent with the fine particle instead of oil. As a result, it can be used in a clean room such as a semiconductor factory or a food factory.
  • grains 51 by applying a high frequency power to the gas shower electrode 21 a ground is connected to the gas shower electrode 21, and a high frequency power is connected to the container
  • the mechanical structure of the plasma CVD apparatus can be simplified, and the apparatus cost can be reduced. Further, since the mechanical structure of the plasma CVD apparatus can be simplified, the maintainability is improved.
  • the apparatus structure which applies high frequency power to the gas shower electrode 21 since it is set as the apparatus structure which applies high frequency power to the gas shower electrode 21, compared with the case where high frequency power is applied to a container, matching can be taken easily and it can make it difficult to remove
  • the reason for this is that, if the configuration is such that high-frequency power is applied to the container, the impedance always changes due to the rotational movement of the container, making it difficult to achieve matching and make it difficult to tune.
  • the particles 51 themselves can be rotated and stirred by rotating the hexagonal barrel-shaped second container member 29a itself, and the particles 51 are periodically formed by gravity by making the barrel hexagonal. Can be dropped.
  • the stirring efficiency can be dramatically improved, and aggregation of the powder due to moisture or electrostatic force, which is often a problem when handling powder (fine particles), can be prevented. That is, by rotation, stirring and pulverization of the aggregated particles 51 can be performed simultaneously and effectively. Therefore, the DLC film can be coated on the particles 51 having a very small particle diameter. Specifically, it becomes possible to coat the DLC film on particles having a particle size of 10 ⁇ m or less.
  • the surface of the gas shower electrode 21 other than the facing surface facing the particles 51 accommodated in the container is shielded by the ground shielding member 27a. For this reason, plasma can be generated between the inner surface of the second container member 29a and the gas shower electrode 21 opposed thereto.
  • the high frequency output can be concentrated inside the second container member 29a, and as a result, concentrated on the particles 51 accommodated on the inner surface of the second container member 29a (that is, the particles 51 positioned on the accommodation surface). Therefore, it is possible to supply high-frequency power to the particles 51 effectively. Therefore, the DLC film is formed on a portion other than the space for accommodating the particles 51 surrounded by the inner surface of the second container member 29a and the first and second ring-shaped members 29b and 29c (the surface of the container other than the accommodation surface). It can suppress adhering. In addition, the amount of high-frequency power can be reduced as compared with a conventional plasma CVD apparatus.
  • grains 51 accommodated in the 2nd container member 29a can be accelerated
  • the internal cross-sectional shape of a container circular in the said embodiment by changing into the apparatus which eliminated the 2nd container member 29a from the plasma CVD apparatus shown to FIG. 4 (A), (B), for example. It becomes possible to carry out.
  • the inner cross-sectional shape of the container is elliptical, for example, the second container member 29a is eliminated from the plasma CVD apparatus shown in FIGS.
  • the first container member is further removed.
  • This can be implemented by changing the internal cross-sectional shape of 29 to an ellipse.
  • the plasma power source 23 is connected to the first container member 29 and the ground potential is connected to the gas shower electrode 21.
  • the present invention is not limited to this, and the following changes are made. It is also possible to carry out.
  • the DLC film is coated on the particles 51 using the plasma CVD apparatus.
  • a second film such as silver is formed on the particles 54 shown in FIG. 1B using the plasma CVD apparatus.
  • the second film 55 is covered with a DLC film using the plasma CVD apparatus.
  • a second source material having a friction coefficient of 0.4 or less on the surface of the particles is introduced into the chamber 13 by plasma CVD while stirring or rotating the particles in the chamber 13.
  • the film 55 is coated, and then the introduction of the first source gas into the chamber 13 is stopped, the second source gas is introduced into the chamber 13, and plasma CVD is performed while stirring or rotating the particles in the chamber 13.
  • fine particles can be produced.
  • Each of the second film 55 and the DLC film thus coated has a friction coefficient of 0.4 or less.
  • the contact angle of water on the surface of the fine particles thus produced is preferably 60 ° or more.
  • the DLC film is coated on the particles 51 using the plasma CVD apparatus.
  • the particles 51 are coated with a film containing the above-described material as the first film 52 shown in FIG. It is also possible to do.
  • the plasma CVD apparatus is used to coat the particles 51 with a film.
  • the present invention is not limited to this, and other dry film forming apparatuses such as a sputtering apparatus can also be used. It is. Below, the example which coat
  • the polygonal barrel sputtering apparatus has a vacuum vessel 31 for coating particles 51 with ultrafine particles or a thin film.
  • the vacuum vessel 31 has a cylindrical portion 31a having a diameter of 200 mm and a hexagonal barrel ( Hexagonal barrel) 31b.
  • the cross section shown here is a cross section substantially parallel to the direction of gravity.
  • the hexagonal barrel 31b is used.
  • the present invention is not limited to this, and a polygonal barrel other than the hexagon (for example, 4 to 12 squares) can also be used.
  • the vacuum vessel 31 is provided with a rotation mechanism (not shown). By this rotation mechanism, the hexagonal barrel 31b is rotated or reversed as indicated by an arrow, or shaken like a pendulum.
  • the coating process is performed while stirring or rotating the inner particles 51.
  • a rotation axis when the hexagonal barrel is rotated by the rotation mechanism is an axis substantially parallel to the horizontal direction (perpendicular to the gravity direction).
  • a sputtering target 32 is disposed on the central axis of the cylinder in the vacuum vessel 31, and the target 32 is configured so that the angle can be freely changed. Accordingly, when the coating process is performed while rotating or reversing the hexagonal barrel 31b or shaking like a pendulum, the target 32 can be directed in the direction in which the particles 51 are located, thereby increasing the sputtering efficiency. It becomes possible.
  • the substance constituting the target 32 is a film substance covering the particles 51.
  • One end of a pipe 34 is connected to the vacuum vessel 31, and one side of the first valve 42 is connected to the other end of the pipe 34.
  • One end of the pipe 35 is connected to the other side of the first valve 42, and the other end of the pipe 35 is connected to the intake side of the turbo molecular pump (TMP) 40.
  • the exhaust side of the turbo molecular pump 40 is connected to one end of the pipe 36, and the other end of the pipe 36 is connected to one side of the second valve 43.
  • the other side of the second valve 43 is connected to one end of a pipe 37, and the other end of the pipe 37 is connected to a pump (RP) 41.
  • the pipe 34 is connected to one end of the pipe 38, and the other end of the pipe 38 is connected to one side of the third valve 44.
  • the other side of the third valve 44 is connected to one end of the pipe 39, and the other end of the pipe 39 is connected to the pipe 37.
  • This apparatus includes a heater 47a for directly heating the particles 51 in the vacuum vessel 31, and a heater 47b for indirectly heating.
  • the apparatus includes a vibrator 48 for applying vibration to the particles 51 in the vacuum container 31.
  • the apparatus includes a pressure gauge 49 that measures the internal pressure of the vacuum vessel 3.
  • the apparatus also includes a nitrogen gas introduction mechanism 45 that introduces nitrogen gas into the vacuum container 31 and an argon gas introduction mechanism 46 that introduces argon gas into the vacuum container 31.
  • the gas introduction mechanism 50 which can introduce
  • this apparatus includes a high frequency application mechanism (not shown) that applies a high frequency between the target 32 and the hexagonal barrel 31b.
  • a direct current can also be applied between the target 32 and the hexagonal barrel 31b.
  • the hexagonal barrel 31b is rotated by the rotation mechanism, whereby the particles 51 in the hexagonal barrel 31b are rotated and agitated.
  • the sputtering target 32 is directed in the direction in which the particles 51 are located.
  • sputtering is performed by applying a high frequency between the target 32 and the hexagonal barrel 31b by a high frequency application mechanism.
  • the surface of the particle 51 is coated with the first film or substance.
  • a mold release agent is manufactured by mixing the fine particles produced as described above, at least one of a solvent and oil, and a highly volatile organic solvent.
  • Each of the fine particles, the solvent, and the oil may have heat resistance of 250 ° C. or higher (preferably 500 ° C. or higher).
  • a release agent is produced by mixing fine particles, at least one of a solvent and oil, and a high-species organic solvent.
  • the fine particles and at least one of solvent and oil are mixed.
  • a mold release agent composed of fine particles may be manufactured.
  • the first film is coated on the particles 51 using the barrel sputtering apparatus.
  • the second film 55 is formed on the particles 54 shown in FIG. 1B using the barrel sputtering apparatus. It is also possible to coat the second film 55 with the third film 56 or the substance using the barrel sputtering apparatus.
  • FIG. 6A is a cross-sectional view illustrating part of a member with a release agent according to one embodiment of the present invention.
  • fine particles 53 have entered and adhered to the gaps of minute irregularities on the surface of the mold 58 by supplying the release agent described above to the surface of the mold 58.
  • the fine particle 53 includes a particle 51 and a first film 52 or a substance that covers the particle 51.
  • the first film 52 or the substance is 0.4 or less (preferably 0.05 or more and 0.3 or less, more
  • the friction coefficient is preferably 0.05 or more and 0.2 or less.
  • 6B is a cross-sectional view illustrating a part of a member with a release agent according to another embodiment of the present invention.
  • 6B supplies the release agent described above to the surface of the mold 59, and after the fine particles 53a adhere to the surface of the mold 59, the fine particles 53a are formed on the mold 59. It is crushed on the surface.
  • the fine particle 53a includes a particle 51a and a first film 52a or a substance covering the particle 51a, and the first film 52a or the substance is 0.4 or less (preferably 0.05 or more and 0.3 or less, more The friction coefficient is preferably 0.05 or more and 0.2 or less. Since the fine particles 53a are crushed, the particles 51a and the first film 52a or the substance are deformed as shown in FIG. 6B.
  • FIG. 6B shows a portion where the particles 51a are not exposed even if the fine particles 53a are deformed, the particles 51a may be partially exposed.
  • the wear on the surface of the mold 59 can be reduced.
  • the fine particles 53 shown in FIG. 1 (A) are attached to the surface of the mold, but the present invention is not limited to this, and FIG. 1 (B) shows.
  • the fine particles 57 may be attached to the surface of the mold.
  • FIG. 7 is an SEM (Scanning Electron Microscope) image of the fine particles of Example 1.
  • FIG. 8 is an SEM image obtained by covering the fine particles shown in FIG. 7 with a processing protective film and imaging the cut surface of the fine particles.
  • These fine particles have the structure shown in FIG. Specifically, in the fine particles, silver particles having a particle diameter of 5 ⁇ m (corresponding to the particles 54 in FIG. 1B) are covered with an adhesion film (corresponding to the second film 55), and the adhesion film is covered with a DLC film ( Equivalent to the third film 56).
  • the adhesion film is a film containing a substance containing Si, and is an intermediate film for improving adhesion between the silver particles and the DLC film.
  • the deposition conditions for the adhesion film are as follows.
  • Film forming apparatus plasma CVD apparatus shown in FIG. 4
  • Particle base material Ag particles ( ⁇ 5 ⁇ m)
  • Source gas Gas containing Si and C Film type: Carbon film containing Si Film thickness: 0.2 ⁇ m
  • the conditions for forming the DLC film are as follows.
  • Raw material gas and its ratio: C 7 H 8 / Ar 7/20 cc
  • Film type DLC Film thickness: 0.3 ⁇ m Since both the DLC film and the adhesion film are insulating materials, the DLC film and the adhesion film could not be observed separately in the SEM image shown in FIG. The total thickness of the DLC film and the adhesion film was about 240 nm.
  • the contact angle of water on the surface of fine particles in which the particles were coated with a DLC film was measured.
  • a DLC film is formed on the glass substrate, the water contact angle of the DLC film is measured, and the measured value is measured on the surface of the fine particles. It was set as the measured value of the contact angle of water.
  • the “contact angle of water on the surface of fine particles” means a value obtained by measuring a contact angle of water on a film formed on a glass substrate with a film coated on the surface of the fine particles. Shall.
  • the sample of this example was formed under the following film formation conditions.
  • Film forming apparatus Plasma CVD apparatus shown in FIG.
  • the contact angle measurement device is shown in Table 1, the sample is shown in Table 2, the measurement conditions are shown in Table 3, and the measurement results are shown in Table 4. According to the measurement results in Table 4, it was confirmed that the contact angle of water on the surface of the fine particles can be 60 ° or more.
  • the friction coefficient of the DLC film in the fine particles obtained by coating the particles with the DLC film was measured.
  • a DLC film is formed on the substrate of SUS304, the coefficient of friction of the DLC film is measured, and the measured value is measured on the fine DLC film.
  • the measured coefficient of friction was used.
  • “the friction coefficient of the film covering the particles” means a value obtained by forming a film coated with the particles on a SUS304 substrate and measuring the friction coefficient of the film. To do.
  • the sample of this example was formed under the following film formation conditions.
  • Film forming apparatus Plasma CVD apparatus shown in FIG.
  • the friction / wear characteristics of the DLC film formed on the SUS304 substrate were measured using a ball-on-disk type friction / wear tester with a measurement load of 5 N, a ball SUJ2, and no lubrication. As a result, the friction coefficients of the two samples were in the range of 0.17 to 0.2. In addition, the friction coefficient of the other material described in the following literature is described below as a comparative example.
  • FIG. 11 (A) is a photograph showing a spray sample of a release agent containing fine particles in which mica particles are coated with a DLC film.
  • the conditions for forming the DLC film are as follows.
  • Film forming apparatus plasma CVD apparatus shown in FIG. 4
  • Particle base material Mica particles ( ⁇ 4.0 ⁇ m)
  • DLC 0.1 ⁇ m
  • Source gas and its ratio: C 7 H 8 / Ar 7/20 cc
  • Deposition time 1 hour
  • Deposition pressure 10 Pa
  • This release agent is prepared by mixing volatile organic solvent as a main component and mixing the above fine particles by 10 wt% or less.
  • FIG. 11B is a photograph showing a state where the release agent shown in FIG. 11A is about to be applied to a copy sheet
  • FIG. 11C is an enlarged view of the copy sheet shown in FIG. 11B
  • FIG. 11D is a photograph showing the state after the release agent is applied to the copy paper by spraying from the state shown in FIG. 11B
  • FIG. 12 is a photograph showing a state in which a release agent containing fine particles in which a DLC film is coated on apatite particles having a particle size of 3.0 ⁇ m is applied to copy paper by spraying.
  • the film formation conditions for the DLC film are the same as the film formation conditions for the mica particles.
  • FIG. 13 (A) is a photograph showing the release agent (DLC-coated mica fine particles) of Example 4 shown in FIG. 11 (A) after being applied to the glass substrate shown in FIG. 14 (A) by spraying.
  • FIG. 13B is a photograph showing a state in which the contact angle of water on the surface of the release agent applied to the glass substrate shown in FIG.
  • the method for measuring the contact angle is the same as in Example 2.
  • FIG. 14A is a photograph showing a glass substrate
  • FIG. 14B is a photograph showing a state in which the contact angle of water on the surface of the glass substrate of FIG. 14A is measured as a comparative example.
  • the method for measuring the contact angle is the same as in Example 2.
  • the measurement results of the contact angle are as shown in Table 5.
  • Vacuum Container 31a Cylindrical part 31b ... Hexagonal barrel 32 ... Target 34-39 ... Piping 40 ... Turbo molecular pump (TMP) 41 ... Pump (RP) 42 to 44 ... 1st to 3rd valve 45 ... Nitrogen gas introduction mechanism 46 ... Argon gas introduction mechanism 47a, 47b ... Heater 48 ... Vibrator 49 ... Pressure gauge 50 ... Gas introduction mechanism 51, 51a ... Particles 52, 52a ... First Films 53, 53a ... Fine particles 54 ... Particles 55 ... Second film 56 ... Third film 57 ... Fine particles 58, 59 ... Mold 129a ... Inner surface 129b constituting the polygon in the second container member ... First ring Surface 129c ... surface of the second ring-shaped member

Abstract

Provided is a release agent that can adhere easily to the surface of a component. An aspect of the invention is a release agent comprising particles 53, and an oil and/or a solvent, wherein: the particles, the oil, and the solvent each have a heat resistance of 250°C or higher; each particle includes a grain 51, and a first film 52 or a substance covering the grain; and the first film or the substance has a friction coefficient of 0.4 or less (preferably 0.3 or less, more preferably 0.2 or less).

Description

離型剤及びその製造方法、離型剤用品、離型剤エアゾール及び離型剤付き部材Release agent and manufacturing method thereof, release agent article, release agent aerosol, and member with release agent
 本発明は、離型剤及びその製造方法、離型剤用品、離型剤エアゾール及び離型剤付き部材に関する。 The present invention relates to a release agent and a production method thereof, a release agent article, a release agent aerosol, and a member with a release agent.
 金型の表面にDLC膜を成膜することで、金型を長期間使用可能にしたり、成形品の離型性を高めたりする技術がある。
 上記の金型の表面にDLC膜を成膜するには、プラズマCVD装置の真空チャンバー内に金型を導入し、その真空チャンバー内で金型にDLC膜を成膜する処理を行う方法がある(例えば特許文献1参照)。
 しかし、被成膜物である金型が非常に大きい場合(非常に大きい金型にDLC膜を成膜する場合)、プラズマCVD装置の真空チャンバーに金型を導入することができないため、その金型の表面にDLC膜を成膜することができないことがある。
 また、被成膜物が小さくても、プラズマCVD装置を用いてDLC膜を成膜するより簡易な方法で、金型の表面に離型剤を付着させることも産業界から求められている。
 また、金型の表面に付着させる離型剤に油が含まれていると、油がミストとなって飛んでしまうので、半導体工場や食品工場などのクリーンルームでは使用することができない。他にも、銅や真鍮等で電極用の部品や導電性が必要な部品を成型する際は、油を有する離型剤を使用すると導電性が低下してしまうため、成形品に付着した油を脱脂する工程が必要となっている。そのため、様々な分野で油を含まない離型剤が求められている。
There is a technique for forming a DLC film on the surface of a mold so that the mold can be used for a long period of time or improving the releasability of a molded product.
In order to form a DLC film on the surface of the mold, there is a method of introducing a mold into a vacuum chamber of a plasma CVD apparatus and performing a process of forming the DLC film on the mold in the vacuum chamber. (For example, refer to Patent Document 1).
However, when the mold as the film formation object is very large (when a DLC film is formed on a very large mold), the mold cannot be introduced into the vacuum chamber of the plasma CVD apparatus. A DLC film may not be formed on the surface of the mold.
In addition, even if the deposition target is small, the industry also demands that a release agent be attached to the surface of the mold by a simpler method of forming a DLC film using a plasma CVD apparatus.
Moreover, if oil is contained in the mold release agent to be attached to the surface of the mold, the oil will fly as a mist, so that it cannot be used in a clean room such as a semiconductor factory or a food factory. In addition, when molding parts for electrodes or parts that require electrical conductivity with copper, brass, etc., if a mold release agent containing oil is used, the electrical conductivity will decrease, so the oil attached to the molded product The process of degreasing is required. Therefore, there is a demand for a release agent that does not contain oil in various fields.
特開2008−38217号公報JP 2008-38217 A
 本発明の一態様は、部材の表面に簡易に付着させることができる離型剤及びその製造方法、離型剤用品、離型剤エアゾールのいずれかを提供することを課題とする。
 また、本発明の一態様は、表面に離型剤を付着させた離型剤付き部材を提供することを課題とする。
An object of one embodiment of the present invention is to provide a release agent that can be easily attached to the surface of a member, a manufacturing method thereof, a release agent article, and a release agent aerosol.
Another object of one embodiment of the present invention is to provide a member with a release agent in which a release agent is attached to the surface.
 以下に、本発明の種々の態様について説明する。
[1]微粒子を有する離型剤であり、
 前記微粒子は、粒子と、前記粒子を被覆する第1の膜または物質を有し、
 前記第1の膜または物質は、0.4以下の摩擦係数を有することを特徴とする離型剤。
[2]微粒子を有する離型剤であり、
 前記微粒子は、粒子と、前記粒子を被覆する第2の膜と、前記第2の膜を被覆する第1の膜または物質を有し、
 前記第1の膜または物質は、0.4以下の摩擦係数を有することを特徴とする離型剤。
[3]上記[2]において、
 前記第2の膜は、0.4以下の摩擦係数を有することを特徴とする離型剤。
[4]上記[1]乃至[3]のいずれか一項において、
 前記第1の膜または物質は、0.05以上0.3以下(好ましくは0.05以上0.2以下)の摩擦係数を有することを特徴とする離型剤。
[4−1]上記[3]において、
 前記第2の膜または物質は、0.05以上0.3以下(好ましくは0.05以上0.2以下)の摩擦係数を有することを特徴とする離型剤。
[5]上記[1]乃至[4]、[4−1]のいずれか一項において、
 前記微粒子の表面の水の接触角は60°以上であることを特徴とする離型剤。
[6]上記[1]乃至[4]、[4−1]、[5]のいずれか一項において、
 前記粒子は、金属、セラミックス、樹脂及び鉱物からなる群から選択された少なくとも一つを含むことを特徴とする離型剤。
[7]上記[1]乃至[4]、[4−1]、[5]、[6]のいずれか一項において、
 前記粒子及び前記第1の膜の少なくとも一方が250℃以上の耐熱性を有することを特徴とする離型剤。
[8]上記[2]または[3]において、
 前記粒子、前記第1の膜及び前記第2の膜のうち少なくとも一つが250℃以上の耐熱性を有することを特徴とする離型剤。
[9]上記[1]乃至[4]、[4−1]、[5]乃至[8]のいずれか一項において、
 前記粒子は、0.4以下(好ましくは0.05以上0.3以下、より好ましくは0.05以上0.2以下)の摩擦係数を有する物質を含むことを特徴とする離型剤。
[10]上記[1]乃至[4]、[4−1]、[5]乃至[8]のいずれか一項において、
 前記粒子は、銀、インジウム、スズ、テルル、アンチモン、ビスマス、黒鉛、マイカ、タルク、クレイ、アパタイト、カオリン、シリカからなる群から選択された少なくとも一つを含むことを特徴とする離型剤。
[11]上記[1]乃至[4]、[4−1]、[5]乃至[10]のいずれか一項において、
 前記第1の膜または物質は、銀、インジウム、スズ、テルル、アンチモン、ビスマス、DLC、グラファイト、BN、BC、WBN、CrN、TiN、二硫化モリブデン及び二硫化タングステンからなる群から選択された少なくとも一つを含むことを特徴とする離型剤。
[12]上記[2]、[3]及び[8]のいずれか一項において、
 前記第2の膜は、銀、インジウム、スズ、テルル、アンチモン、ビスマス、DLC、グラファイト、BN、BC、WBN、CrN、TiN、二硫化モリブデン、二硫化タングステン及びSiを含む物質からなる群から選択された少なくとも一つを含み、前記第1の膜とは異なる膜であることを特徴とする離型剤。
[13]上記[1]乃至[4]、[4−1]、[5]乃至[12]のいずれか一項において、
 前記微粒子の粒径は100μm以下であることを特徴とする離型剤。
[14]上記[1]乃至[4]、[4−1]、[5]乃至[13]のいずれか一項において、
 前記離型剤は油及び溶剤の少なくとも一方を含むことを特徴とする離型剤。
[15]上記[1]乃至[4]、[4−1]、[5]乃至[14]のいずれか一項に記載の離型剤と、
 前記離型剤を収容する容器と、
を具備することを特徴とする離型剤用品。
[16]上記[1]乃至[4]、[4−1]、[5]乃至[14]のいずれか一項に記載の離型剤と、噴射剤を充填した噴射容器を有することを特徴とする離型剤エアゾール。
[17]金型と、
 前記金型の表面に付着した離型剤と、
を具備し、
 前記離型剤は、微粒子を有し、
 前記微粒子は、粒子と、前記粒子を被覆する第1の膜または物質を有し、
 前記第1の膜または物質は、0.4以下(好ましくは0.05以上0.3以下、より好ましくは0.05以上0.2以下)の摩擦係数を有することを特徴とする離型剤付き部材。
[18]金型と、
 前記金型の表面に付着した離型剤と、
を具備し、
 前記離型剤は、微粒子を有し、
 前記微粒子は、粒子と、前記粒子を被覆する第2の膜と、前記第2の膜を被覆する第1の膜または物質を有し、
 前記第1の膜または物質は、0.4以下(好ましくは0.05以上0.3以下、より好ましくは0.05以上0.2以下)の摩擦係数を有することを特徴とする離型剤付き部材。
[19]上記[18]において、
 前記第2の膜は、0.4以下(好ましくは0.05以上0.3以下、より好ましくは0.05以上0.2以下)の摩擦係数を有することを特徴とする離型剤付き部材。
[19−1]
 上記[17]乃至[19]のいずれか一項において、
 前記微粒子の表面の水の接触角は60°以上であることを特徴とする離型剤付き部材。
[19−2]
 上記[17]乃至[19]、[19−1]のいずれか一項において、
 前記粒子は、0.4以下の摩擦係数を有する物質を含むことを特徴とする離型剤付き部材。
[19−3]
 上記[17]乃至[19]、[19−1]、[19−2]のいずれか一項において、
 前記金型の表面に付着した前記微粒子が潰されていることを特徴とする離型剤付き部材。
[20]断面の内部形状が円形または多角形であるチャンバー内に粒子を収容し、
 前記チャンバーの内面に対向させた対向電極を前記チャンバー内に配置し、
 前記チャンバーにアースを接続し、
 前記チャンバー内を真空排気し、
 前記断面に対して略垂直方向を回転軸として前記チャンバーを回転又は振り子動作させ、
 前記チャンバー内に原料ガスを導入し、
 前記対向電極に高周波電力を供給することにより、前記チャンバー内の粒子を攪拌あるいは回転させながらプラズマCVD法により、該粒子の表面に第1の膜または物質を被覆することで微粒子を作製する離型剤の製造方法であり、
 前記第1の膜または物質は、0.4以下(好ましくは0.05以上0、3以下、より好ましくは0.05以上0.2以下)の摩擦係数を有することを特徴とする離型剤の製造方法。
[21]断面の内部形状が円形または多角形であるチャンバー内に粒子を収容し、
 前記チャンバーの内面に対向させた対向電極を前記チャンバー内に配置し、
 前記チャンバーにアースを接続し、
 前記チャンバー内を真空排気し、
 前記断面に対して略垂直方向を回転軸として前記チャンバーを回転又は振り子動作させ、
 前記チャンバー内に第1の原料ガスを導入し、
 前記対向電極に高周波電力を供給することにより、前記チャンバー内の粒子を攪拌あるいは回転させながらプラズマCVD法により、該粒子の表面に第2の膜を被覆し、
 前記第1の原料ガスの前記チャンバー内への導入を停止し、
 前記チャンバー内に第2の原料ガスを導入し、
 前記対向電極に高周波電力を供給することにより、前記チャンバー内の前記粒子を攪拌あるいは回転させながらプラズマCVD法により、該粒子の前記第2の膜の表面に第1の膜または物質を被覆することで微粒子を作製する離型剤の製造方法であり、
 前記第1の膜または物質は、0.4以下(好ましくは0.05以上0.3以下、より好ましくは0.05以上0.2以下)の摩擦係数を有することを特徴とする離型剤の製造方法。
[22]重力方向に対してほぼ平行な断面の内部形状が多角形である真空容器内に粒子を収容し、
 前記断面に対してほぼ垂直方向を回転軸として前記真空容器を回転させることにより該真空容器内の粒子を攪拌あるいは回転させながらスパッタリングを行うことで、該粒子の表面に第1の膜または物質を被覆することで微粒子を作製する離型剤の製造方法であり、
 前記第1の膜または物質は、0.4以下(好ましくは0.05以上0.3以下、より好ましくは0.05以上0.2以下)の摩擦係数を有することを特徴とする離型剤の製造方法。
[23]重力方向に対してほぼ平行な断面の内部形状が多角形である真空容器内に粒子を収容し、
 前記断面に対してほぼ垂直方向を回転軸として前記真空容器を回転させることにより該真空容器内の粒子を攪拌あるいは回転させながらスパッタリングを行うことで、該粒子の表面に第2の膜を被覆し、
 前記断面に対してほぼ垂直方向を回転軸として前記真空容器を回転させることにより該真空容器内の前記粒子を攪拌あるいは回転させながらスパッタリングを行うことで、前記第2の膜の表面に第1の膜または物質を被覆することで微粒子を作製する離型剤の製造方法であり、
 前記第1の膜または物質は、0.4以下(好ましくは0.05以上0.3以下、より好ましくは0.05以上0.2以下)の摩擦係数を有することを特徴とする離型剤の製造方法。
[24]上記[21]または[23]において、
 前記第2の膜は、0.4以下(好ましくは0.05以上0.3以下、より好ましくは0.05以上0.2以下)の摩擦係数を有することを特徴とする離型剤の製造方法。
[25]上記[20]乃至[24]のいずれか一項において、
 前記微粒子の表面の水の接触角は60°以上であることを特徴とする離型剤の製造方法。
[26]上記[20]乃至[25]のいずれか一項において、
 前記粒子は、0.4以下(好ましくは0.05以上0.3以下、より好ましくは0.05以上0.2以下)の摩擦係数を有する物質を含むことを特徴とする離型剤の製造方法。
[27]上記[20]乃至[26]のいずれか一項において、
 前記粒子は、金属、セラミックス、樹脂及び鉱物からなる群から選択された少なくとも一つを含むことを特徴とする離型剤の製造方法。
[28]上記[20]乃至[27]のいずれか一項において、
 前記粒子及び前記第1の膜の少なくとも一方が250℃以上の耐熱性を有することを特徴とする離型剤の製造方法。
[29]上記[21]、[23]及び[24]のいずれか一項において、
 前記粒子、前記第1の膜及び前記第2の膜のうち少なくとも一つが250℃以上の耐熱性を有することを特徴とする離型剤の製造方法。
[30]上記[20]乃至[29]のいずれか一項において、
 前記微粒子を作製した後に、前記微粒子と、油及び溶剤の少なくとも一方を混合することを特徴とする離型剤の製造方法。
 本発明の一態様によれば、部材の表面に簡易に付着させることができる離型剤及びその製造方法、離型剤用品、離型剤エアゾールのいずれかを提供することができる。
 また、本発明の一態様によれば、表面に離型剤を付着させた離型剤付き部材を提供することができる。
Hereinafter, various aspects of the present invention will be described.
[1] A release agent having fine particles,
The fine particles have particles and a first film or substance that covers the particles,
The mold release agent, wherein the first film or substance has a friction coefficient of 0.4 or less.
[2] A release agent having fine particles,
The fine particles include particles, a second film that covers the particles, and a first film or substance that covers the second film,
The mold release agent, wherein the first film or substance has a friction coefficient of 0.4 or less.
[3] In the above [2],
The mold release agent, wherein the second film has a friction coefficient of 0.4 or less.
[4] In any one of [1] to [3] above,
The first film or substance has a friction coefficient of 0.05 or more and 0.3 or less (preferably 0.05 or more and 0.2 or less).
[4-1] In the above [3],
The mold release agent, wherein the second film or substance has a friction coefficient of 0.05 to 0.3 (preferably 0.05 to 0.2).
[5] In any one of [1] to [4] and [4-1] above,
A mold release agent, wherein a contact angle of water on the surface of the fine particles is 60 ° or more.
[6] In any one of the above [1] to [4], [4-1], and [5]
The mold release agent, wherein the particles include at least one selected from the group consisting of metals, ceramics, resins, and minerals.
[7] In any one of the above [1] to [4], [4-1], [5], and [6]
A mold release agent, wherein at least one of the particles and the first film has a heat resistance of 250 ° C. or higher.
[8] In the above [2] or [3],
A release agent, wherein at least one of the particles, the first film, and the second film has a heat resistance of 250 ° C. or higher.
[9] In any one of the above [1] to [4], [4-1], [5] to [8]
The release agent characterized in that the particles contain a substance having a friction coefficient of 0.4 or less (preferably 0.05 or more and 0.3 or less, more preferably 0.05 or more and 0.2 or less).
[10] In any one of the above [1] to [4], [4-1], [5] to [8]
The mold release agent, wherein the particles include at least one selected from the group consisting of silver, indium, tin, tellurium, antimony, bismuth, graphite, mica, talc, clay, apatite, kaolin, and silica.
[11] In any one of the above [1] to [4], [4-1], [5] to [10]
The first film or material is at least selected from the group consisting of silver, indium, tin, tellurium, antimony, bismuth, DLC, graphite, BN, BC, WBN, CrN, TiN, molybdenum disulfide and tungsten disulfide. A mold release agent characterized by comprising one.
[12] In any one of the above [2], [3] and [8],
The second film is selected from the group consisting of silver, indium, tin, tellurium, antimony, bismuth, DLC, graphite, BN, BC, WBN, CrN, TiN, molybdenum disulfide, tungsten disulfide, and Si. A mold release agent comprising at least one of the first film and a film different from the first film.
[13] In any one of the above [1] to [4], [4-1], [5] to [12],
A mold release agent, wherein the fine particles have a particle size of 100 μm or less.
[14] In any one of the above [1] to [4], [4-1], [5] to [13],
The mold release agent contains at least one of oil and a solvent.
[15] The mold release agent according to any one of [1] to [4], [4-1], [5] to [14],
A container containing the release agent;
A release agent product characterized by comprising:
[16] A release agent according to any one of [1] to [4], [4-1], [5] to [14], and a spray container filled with a propellant. Release agent aerosol.
[17] A mold,
A release agent attached to the surface of the mold;
Comprising
The release agent has fine particles,
The fine particles have particles and a first film or substance that covers the particles,
The first film or substance has a friction coefficient of 0.4 or less (preferably 0.05 or more and 0.3 or less, more preferably 0.05 or more and 0.2 or less). Attached member.
[18] A mold,
A release agent attached to the surface of the mold;
Comprising
The release agent has fine particles,
The fine particles include particles, a second film that covers the particles, and a first film or substance that covers the second film,
The first film or substance has a friction coefficient of 0.4 or less (preferably 0.05 or more and 0.3 or less, more preferably 0.05 or more and 0.2 or less). Attached member.
[19] In the above [18],
The second film has a friction coefficient of 0.4 or less (preferably 0.05 or more and 0.3 or less, more preferably 0.05 or more and 0.2 or less). .
[19-1]
In any one of the above [17] to [19],
A member with a release agent, wherein a contact angle of water on the surface of the fine particles is 60 ° or more.
[19-2]
In any one of [17] to [19] and [19-1] above,
The particle includes a substance having a friction coefficient of 0.4 or less, and a member with a release agent.
[19-3]
In any one of the above [17] to [19], [19-1], [19-2]
A member with a release agent, wherein the fine particles adhering to the surface of the mold are crushed.
[20] The particles are accommodated in a chamber whose cross-sectional internal shape is circular or polygonal,
A counter electrode facing the inner surface of the chamber is disposed in the chamber;
Connect a ground to the chamber,
The chamber is evacuated,
The chamber is rotated or pendulum operated with a direction substantially perpendicular to the cross section as a rotation axis,
Introducing a source gas into the chamber;
Release to produce fine particles by coating the first film or substance on the surface of the particles by plasma CVD while stirring or rotating the particles in the chamber by supplying high frequency power to the counter electrode A method for producing the agent,
Release agent characterized in that the first film or substance has a friction coefficient of 0.4 or less (preferably 0.05 or more and 0 or 3 or less, more preferably 0.05 or more and 0.2 or less). Manufacturing method.
[21] The particles are accommodated in a chamber having a circular or polygonal cross-sectional shape,
A counter electrode facing the inner surface of the chamber is disposed in the chamber;
Connect a ground to the chamber,
The chamber is evacuated,
The chamber is rotated or pendulum operated with a direction substantially perpendicular to the cross section as a rotation axis,
Introducing a first source gas into the chamber;
By supplying high-frequency power to the counter electrode, the particles in the chamber are agitated or rotated, and the surface of the particles is coated with a second film by a plasma CVD method.
Stopping the introduction of the first source gas into the chamber;
Introducing a second source gas into the chamber;
By supplying high frequency power to the counter electrode, the surface of the second film of the particles is coated with the first film or substance by the plasma CVD method while stirring or rotating the particles in the chamber. A method for producing a release agent for producing fine particles with
The first film or substance has a friction coefficient of 0.4 or less (preferably 0.05 or more and 0.3 or less, more preferably 0.05 or more and 0.2 or less). Manufacturing method.
[22] The particles are accommodated in a vacuum vessel having a polygonal internal shape of a cross section substantially parallel to the direction of gravity,
By performing sputtering while stirring or rotating the particles in the vacuum container by rotating the vacuum container about a direction substantially perpendicular to the cross section, the first film or substance is applied to the surface of the particles. It is a method for producing a release agent that produces fine particles by coating,
The first film or substance has a friction coefficient of 0.4 or less (preferably 0.05 or more and 0.3 or less, more preferably 0.05 or more and 0.2 or less). Manufacturing method.
[23] The particles are accommodated in a vacuum vessel having a polygonal internal shape of a cross section substantially parallel to the direction of gravity,
The surface of the particles is coated with the second film by performing sputtering while rotating or rotating the vacuum vessel about the direction perpendicular to the cross section as the rotation axis. ,
Sputtering is performed while stirring or rotating the particles in the vacuum container by rotating the vacuum container about a direction substantially perpendicular to the cross section as a rotation axis, so that a first surface is formed on the surface of the second film. A method for producing a release agent for producing fine particles by coating a film or a substance,
The first film or substance has a friction coefficient of 0.4 or less (preferably 0.05 or more and 0.3 or less, more preferably 0.05 or more and 0.2 or less). Manufacturing method.
[24] In the above [21] or [23],
The second film has a friction coefficient of 0.4 or less (preferably 0.05 or more and 0.3 or less, more preferably 0.05 or more and 0.2 or less). Method.
[25] In any one of [20] to [24] above,
A method for producing a release agent, wherein the contact angle of water on the surface of the fine particles is 60 ° or more.
[26] In any one of [20] to [25] above,
The particle contains a substance having a friction coefficient of 0.4 or less (preferably 0.05 or more and 0.3 or less, more preferably 0.05 or more and 0.2 or less). Method.
[27] In any one of [20] to [26] above,
The said particle | grain contains at least 1 selected from the group which consists of a metal, ceramics, resin, and a mineral, The manufacturing method of the mold release agent characterized by the above-mentioned.
[28] In any one of [20] to [27] above,
A method for producing a release agent, wherein at least one of the particles and the first film has a heat resistance of 250 ° C. or higher.
[29] In any one of the above [21], [23] and [24]
A method for producing a release agent, wherein at least one of the particles, the first film, and the second film has a heat resistance of 250 ° C. or higher.
[30] In any one of [20] to [29] above,
After producing the said microparticles | fine-particles, the said microparticles | fine-particles and at least one of oil and a solvent are mixed, The manufacturing method of the mold release agent characterized by the above-mentioned.
According to one embodiment of the present invention, it is possible to provide a release agent that can be easily attached to the surface of a member, a manufacturing method thereof, a release agent article, or a release agent aerosol.
In addition, according to one embodiment of the present invention, a member with a release agent in which a release agent is attached to the surface can be provided.
 図1(A)は本発明の一態様に係る離型剤に用いられる微粒子を示す断面図、図1(B)は本発明の他の一態様に係る離型剤に用いられる微粒子を示す断面図である。
 図2(A)~(D)は、種々の形状の粒子を示す図である。
 図3は、本発明の一態様に係る離型剤エアゾールを示す断面図である。
 図4(A)は本発明の一態様に係る離型剤を製造する際に用いるプラズマCVD装置を示す断面図、図4(B)は図4(A)に示す200−200線に沿った断面図である。
 図5は、粒子に膜を被覆する際に用いる多角バレルスパッタ装置の概略を示す構成図である。
 図6(A)は本発明の一態様に係る離型剤付き部材の一部を示す断面図、図6(B)は本発明の他の一態様に係る離型剤付き部材の一部を示す断面図である。
 図7は、実施例1の微粒子のSEM(Scanning Electron Microscope)画像である。
 図8は、図7に示す微粒子に加工用保護膜を被覆し、その微粒子の切断面を撮像したSEM画像である。
 図9は、実施例4のサンプルの写真である。
 図10は、実施例4のサンプルの写真である。
 図11(A)~(D)は実施例5の写真である。
 図12は、実施例5の写真である。
 図13(A)は実施例6によるガラス基板に離型剤を塗布した写真、図13(B)は実施例6の水の接触角を測定した様子を示す写真である。
 図14(A)はガラス基板を示す写真、図14(B)は比較例の水の接触角を測定した様子を示す写真である。
1A is a cross-sectional view showing fine particles used in the release agent according to one embodiment of the present invention, and FIG. 1B is a cross-section showing fine particles used in the release agent according to another embodiment of the present invention. FIG.
2A to 2D are diagrams showing particles of various shapes.
FIG. 3 is a cross-sectional view illustrating a release agent aerosol according to one embodiment of the present invention.
4A is a cross-sectional view illustrating a plasma CVD apparatus used when manufacturing a release agent according to one embodiment of the present invention, and FIG. 4B is along a line 200-200 illustrated in FIG. It is sectional drawing.
FIG. 5 is a configuration diagram showing an outline of a polygonal barrel sputtering apparatus used when a film is coated on particles.
6A is a cross-sectional view illustrating a part of a member with a release agent according to one embodiment of the present invention, and FIG. 6B illustrates a part of the member with a release agent according to another embodiment of the present invention. It is sectional drawing shown.
FIG. 7 is an SEM (Scanning Electron Microscope) image of the fine particles of Example 1.
FIG. 8 is an SEM image obtained by covering the fine particles shown in FIG. 7 with a processing protective film and imaging the cut surface of the fine particles.
FIG. 9 is a photograph of the sample of Example 4.
FIG. 10 is a photograph of the sample of Example 4.
FIGS. 11A to 11D are photographs of Example 5. FIG.
FIG. 12 is a photograph of Example 5.
FIG. 13A is a photograph in which a release agent is applied to a glass substrate according to Example 6, and FIG. 13B is a photograph showing a state in which the contact angle of water in Example 6 is measured.
FIG. 14A is a photograph showing a glass substrate, and FIG. 14B is a photograph showing a state in which the contact angle of water in the comparative example was measured.
 以下では、本発明の実施の形態について図面を用いて詳細に説明する。ただし、本発明は以下の説明に限定されず、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは、当業者であれば容易に理解される。従って、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。
 <離型剤>
 図1(A)は、本発明の一態様に係る離型剤に用いられる微粒子を示す断面図である。図2(A)~(D)は、種々の形状の粒子を示す図である。
 図1(A)に示す微粒子53は、粒子51に第1の膜52または物質が被覆されたものである。第1の膜52または物質は、0.4以下(好ましくは0.05以上0.3以下、より好ましくは0.05以上0.2以下)の摩擦係数を有するとよい。これにより、微粒子53に離型剤としての機能を持たせることができる。第1の膜52または物質の摩擦係数は低いほど離型剤としての機能を高めることができる。また、微粒子53の表面の水の接触角は60°以上であるとよい。これにより、微粒子53の離型剤としての機能を高めることができる。また、粒子は、0.4以下(好ましくは0.05以上0.3以下、より好ましくは0.05以上0.2以下)の摩擦係数を有する物質を含むとよい。また、微粒子53の粒径L1は、100μm以下であるとよく、70μm以下であってもよい。なお、本明細書において「粒径」とは、微粒子53の外径のなかで最も長い径を意味する。
 粒子51は、種々の形状の粒子を用いることができ、例えば、図2(A)に示す不定形状の粒子、図2(B)に示す球形状の粒子、図2(C),(D)に示す突起形状の粒子などを用いることができる。
 第1の膜52の膜厚は微粒子53の粒径L1の1/20以下であるとよい。第1の膜52の膜厚が微粒子53の粒径の1/20より厚いと第1の膜52が微粒子53から剥がれやすくなるからである。
 粒子51には、金属、セラミックス、樹脂及び鉱物からなる群から選択された少なくとも一つを含む粒子を用いるとよい。一般的に樹脂や、金属の成形品を金型で製造する場合、粒子51には、250℃以上(好ましくは500℃以上)の耐熱性を有する材料を用いるとよい。成形品の材料が高温で溶融する樹脂である場合、粒子51には、400℃近い耐熱性を有する材料を用いるとよく、金属である場合は1000℃近い耐熱性を有する材料を用いるとよい。これにより、離型剤を高温の環境で使用することも可能となる。また、粒子51に用いることができる金属の例としては、銀、インジウム、スズ、テルル、アンチモン及びビスマスなどが挙げられる。金属以外の例としては、黒鉛、マイカ、タルク、クレイ、アパタイト等、耐熱性及び断熱性の高い材料が望ましい。また、カオリン、シリカ等を粒子51に用いてもよい。
 第1の膜52または物質は、銀、インジウム、スズ、テルル、アンチモン、ビスマス、DLC、グラファイト、BN、BC、WBN、CrN、TiN、二硫化モリブデン及び二硫化タングステンからなる群から選択された少なくとも一つを含むとよい。また、第1の膜52または物質は、250℃以上(好ましくは500℃以上)の耐熱性を有する材料であるとよい。なお、第1の膜52または物質は、粒子51と異なる材質であってもよいし、同じ材質であってもよい。上述したように粒子51、第1の膜52または物質のうちいずれか一つが250℃以上の耐熱性を有していることにより、離形性の付与が達成できる。
 DLC膜は0.1~0.4の摩擦係数を有するものを用いるとよく、0.1以下の摩擦係数を有するものでもよい。DLC膜の表面は、鏡面のようにラフネスが低く、摩擦係数が低い。またDLC膜は65°~98°の水の接触角を有するものを用いるとよい。DLC膜にフッ素を含有させると、フッ素を含有しないDLC膜に比べて摩擦係数を下げることができる。また、金型に離型剤を塗布した際に、フッ素を含有するDLC膜の方がフッ素を含有しないDLC膜に比べて離型性が高いため、成形品の原材料によって選定することが望ましい。また、DLCが550℃の耐熱性を有するため、粒子51に銀を用い、第1の膜52にDLCを用いた微粒子は500℃の耐熱性を有する。このような微粒子は、高い耐熱性が要求される離型剤に使用可能である。
 DLC膜の水素含有量は30原子%以下(好ましくは20原子%以下、より好ましくは10原子%以下)であるとよい。このようにDLC膜の水素含有量を低くすることにより、DLC膜の摩擦係数を低くすることができる。DLC膜の水素含有量を20原子%以下とすることで、DLC膜の摩擦係数を0.15以下とすることができる。
 図1(B)は、本発明の他の一態様に係る離型剤に用いられる微粒子を示す断面図である。
 図1(B)に示す微粒子57は、粒子54に第2の膜55が被覆され、第2の膜55に第3の膜56または物質が被覆されたものである。第3の膜56または物質は、図1(A)に示す第1の膜52または物質と同じものであってもよく、0.4以下(好ましくは0.05以上0.3以下、より好ましくは0.05以上0.2以下)の摩擦係数を有するとよい。これにより、微粒子57に離型剤としての機能を持たせることができる。第3の膜56または物質の摩擦係数は低いほど離型剤としての機能を高めることができる。また、微粒子57の表面の水の接触角は60°以上であるとよい。これにより、微粒子53の離型剤としての機能を高めることができる。また、第2の膜55は、0.4以下(好ましくは0.05以上0.3以下、より好ましくは0.05以上0.2以下)の摩擦係数を有するとよい。また、微粒子57の粒径L2は、100μm以下であるとよく、70μm以下であってもよい。
 第2の膜55には、図1(A)に示す粒子51と同様の材料を用いてもよいが、例えば銀、インジウム、スズ、テルル、アンチモン、ビスマス、DLC、グラファイト、BN、BC、WBN、CrN、TiN、二硫化モリブデン、二硫化タングステン及びSiを含む物質からなる群から選択された少なくとも一つを含む材料を用いることができる。但し、第2の膜55は第3の膜56または物質とは異なる材料を用いた膜であることが好ましいが、第2の膜55が第3の膜56または物質と同一の材料を用いた膜であってもよい。また、第2の膜55には、250℃以上(好ましくは500℃以上)の耐熱性を有する材料を用いるとよい。
 また、第2の膜55は、第3の膜56と粒子54との密着性を高めるための中間膜としての機能を有するとよく、例えば、第3の膜56がDLC膜の場合は第2の膜がSiを含む膜であるとよい。この膜はSiを含む原料ガスを用いてCVD法により成膜した膜である。Siを含む膜を中間膜とすることで、シランカップリング剤のように、Siによって有機材料と無機材料の密着性を向上させることができる。
 第2の膜55及び第3の膜56それぞれの膜厚は微粒子57の粒径L2の1/20以下であるとよい。第2の膜55及び第3の膜56それぞれの膜厚が微粒子57の粒径の1/20より厚いと第2の膜55及び第3の膜56それぞれが微粒子53から剥がれやすくなるからである。
 粒子54に250℃以上の耐熱性を有する樹脂を用い、第2の膜55に図1(A)に示す粒子51と同様の材料を用い、第3の膜56に図1(A)に示す第1の膜52と同様の材料を用いることで、図1(A)に示す微粒子53に近い離型性能を発揮しつつ、図1(A)に示す微粒子53に比べて材料コストを低減することができる。
 また、粒子54には、金属、セラミックス及び鉱物からなる群から選択された少なくとも一つを含む粒子を用いてもよい。
 離型剤は、上記の微粒子53または微粒子57により構成されていてもよいが、上記の微粒子53または微粒子57に、油及び溶剤の少なくとも一方を含むものであってもよい。この油は250℃以上(好ましくは500℃以上)の耐熱性を有するとよい。この油等は、金型に離型剤を付着しやすくするものであるとよく、その金型を加熱して成形品を作製した後も、油が金型表面から蒸発して無くなりにくいものがよい。そのようなものとすることで、金型から成形品を離型しやすくでき、且つ金型から離型剤が無くなりにくくすることができる。油の他にも離形性付与の為、耐熱性を有する溶剤を使用してもよく、また、微粒子53または微粒子57を金型に塗布したり、付着させるために揮発性の高い有機溶剤を使用しても良い。
 上記の油は、シリコーン油、鉱物油、油脂、合成エステル、ワックスなどの高分子化合物等の群から選択された少なくとも一つを含むと良い。
 上記の溶剤は、炭酸水素系、アルコール系、ケトン系、エステル系、エーテル系、グリコール系、グリコールエステル系、グリコエーテル系、グライム系、ハロゲン系、特殊溶剤等の群から選択された少なくとも一つを含むとよい。
 上記の離型剤は、金型の離型剤として説明しているが、金型に限定されるものではなく、金型以外のものの離型剤として用いてもよい。
 <離型剤用品及び離型剤エアゾール>
 上記の離型剤を容器に収容することで離型剤用品を作製することができる。なお、本明細書において「容器」とは、注射器を含む概念である。
 離型剤エアゾールは、上記の離型剤と、噴射剤を充填した噴射容器を有している。詳細には、上記の離型剤を噴射剤と共に噴射容器に充填することにより、離型剤エアゾールを製造することができる。
 また、微粒子の粒径は、エアゾール製品としたとき目詰まりなく噴霧することができる大きさであれば良く、一般的には平均粒径が20μm以下であることが好ましい。
 離型剤エアゾールは、使用時に容器を振って微粒子を均一な分散状態にするとよい。尚、容器を振ったときの攪拌効率を高めるために、容器内に攪拌ボールを入れておけば、一層簡単且つ容易に攪拌することができる。
 特に、一定量の噴射が行える定量バルブを備えたエアゾール容器を用いることによって、必要量だけを噴射して塗布することができ、微粒子の無駄な消費を防ぐことが可能となる。なお、定量バルブは、一般に使用量の少ない香水や医薬品等に使用され、1回の作動ごとに一定容量を噴射するように設計されているバルブである。
 例えば、一例として図3に概略を示すように、定量バルブ2を備えた定量噴射型の容器1では、アクチュエーター3が押し下げられると、まず定量室2aとディップチューブ4との間が遮断され、更に押し下げると定量室2aが開いて内容物がノズル口5から大気中に噴射される。その後、アクチュエーター3を開放すると、最初に定量室2aから大気中への経路が遮断され、続いてディップチューブ4を通して内容物が定量室2aに供給されるようになっている。
 また、容器1内には、溶剤または250℃以上(好ましくは500℃以上)の耐熱性を有する油、揮発性の高い有機溶剤を主成分とした離型剤と、これに液化炭化水素ガスやジメチルエーテルのような噴射剤が含まれた液相6が収容されている。液相6には複数の微粒子が分散しており、液相6中には微粒子53または微粒子57が沈降している。また、容器1内には、液化炭化水素ガスのような噴射剤からなる気相8と、撹拌効率を高めるための撹拌ボール9が収容されている。
 <離型剤の製造方法>
 図4(A)は、本発明の一態様に係る離型剤を製造する際に用いるプラズマCVD装置を示す断面図であり、図4(B)は、図4(A)に示す200−200線に沿った断面図である。このプラズマCVD装置は、粒子51の表面にDLC膜を被覆させるための装置である。
 本実施の形態では、内部断面形状が多角形である容器に粒子51を収容し、この粒子51にDLC膜を被覆させるプラズマCVD装置について説明するが、容器の内部断面形状は多角形に限られず、容器の内部断面形状を円形又は楕円形にすることも可能である。内部断面形状が多角形の容器と円形又は楕円形の容器との違いは、円形又は楕円形の容器に比べて多角形の容器の方が粒径の小さい粒子にDLC膜を均一性よく被覆できる点である。
 図4(A),(B)に示すように、プラズマCVD装置は円筒形状のチャンバー13を有している。このチャンバー13の一方端はチャンバー蓋21aによって閉じられており、チャンバー13の他方端はチャンバー蓋21bによって閉じられている。チャンバー13及びチャンバー蓋21a,21bそれぞれはアース(接地電位)に接続されている。
 チャンバー13の内部には粒子51を収容する導電性の容器が配置されている。この容器は、円筒形状の第1容器部材29と、第2容器部材29aと、第1のリング状部材29bと、第2のリング状部材29cとを有している。第1容器部材29、第2容器部材29a、第1及び第2のリング状部材29b,29cそれぞれは導電性を有している。
 第1容器部材29の一方端は閉じられており、第1容器部材29の一方端側にはチャンバー13の外側に延出した延出部29dが形成されている。第1容器部材29の他方端は開口されている。前記延出部29dはアースに接続されている。
 第1容器部材29の内部には第2容器部材29aが配置されており、第2容器部材29aは、図4(B)に示すようにその断面が六角形のバレル形状を有しており、図4(B)で示す断面は重力方向11に対して略平行な断面である。なお、本明細書において「略平行」とは、完全な平行に対して±3°ずれているものも含む意味である。また、本実施の形態では、六角形のバレル形状の第2容器部材29aを用いているが、これに限定されるものではなく、六角形以外の多角形のバレル形状の第2容器部材を用いることも可能である。
 第2容器部材29aの一方端は第1のリング状部材29bによって第1容器部材29の内部に取り付けられており、第2容器部材29aの他方端は第2のリング状部材29cによって第1容器部材29の内部に取り付けられている。言い換えると、第1のリング状部材29bは第2容器部材29aの一方側に位置しており、第2のリング状部材29cは第2容器部材29aの他方側に位置している。第1及び第2のリング状部材29b,29cそれぞれの外周は第1容器部材29の内面に繋げられており、第1及び第2のリング状部材29b,29cそれぞれの内周は第2容器部材29aの内面よりガスシャワー電極(対向電極)21側に位置されている。
 第1のリング状部材29bと第2のリング状部材29cとの距離(即ち第2容器部材29aの一方端と他方端との距離)は、第1容器部材29の一方端と他方端との距離に比べて小さい。また、第1及び第2のリング状部材29b,29cそれぞれは第1容器部材29の内側に配置されている。そして、第2容器部材29aの内面と第1及び第2のリング状部材29b,29cによって囲まれたスペースにはコーティング対象物としての粉体(粒子)51が収容されるようになっている。言い換えると、第2容器部材29aにおける多角形を構成する内面129aとこの内面129aを囲む第1及び第2のリング状部材29b,29cそれぞれの面129b,129c(第1及び第2のリング状部材が互いに対向する面)とによって収容面が構成され、この収容面上に粒子51が位置されている。
 なお、第2容器部材29aにおける多角形を構成する内面129aとこの内面129aを囲む第1及び第2のリング状部材それぞれの面129b,129cからなる収容面以外の容器の表面を、アース遮蔽部材(図示せず)によって覆ってもよい。第1容器部材29、第1及び第2のリング状部材29b,29cそれぞれと前記アース遮蔽部材とは5mm以下(好ましくは3mm以下)の間隔を有しているとよい。前記アース遮蔽部材は接地電位に接続されている。
 また、プラズマCVD装置は、チャンバー13内に原料ガスを導入する原料ガス導入機構を備えている。この原料ガス導入機構は筒状のガスシャワー電極(対向電極)21を有している。このガスシャワー電極21は第2容器部材29a内に配置されている。即ち、第2容器部材29aの他方側には開口が形成されており、この開口からガスシャワー電極21が挿入されている。
 ガスシャワー電極21は電源23に電気的に接続されており、電源23によって高周波電力がガスシャワー電極21に供給されるようになっている。電源23は、周波数が10kHz~1MHzの高周波電源を用いることが好ましく、より好ましくは周波数が50kHz~500kHzの高周波電源を用いることである。このように周波数の低い電源を用いることにより、1MHzより高い周波数の電源を用いた場合に比べて、ガスシャワー電極21と第2容器部材29aとの間より外側にプラズマが分散するのを抑制することができる。言い換えると、ガスシャワー電極21と第2容器部材29aとの間にプラズマを閉じ込めることができる。10kHz~1MHzのRFプラズマを用いると、このような閉じられたプラズマ空間内、すなわちバレル(第2容器部材29a)内で誘導加熱が起こりづらく、かつ成膜時に十分なVDCが粒子51にかかるので、摩擦係数の低いDLC膜が容易に形成しやすい。逆に13.56MHzのようなRFプラズマを用いると、閉じられたプラズマ空間では、粒子51にVDCがかかりづらいので摩擦係数の低いDLC膜が形成しにくい。
 容器内に収容されている粒子51と対向する対向面以外のガスシャワー電極(対向電極)21の表面はアース遮蔽部材27aによって遮蔽されている。このアース遮蔽部材27aとガスシャワー電極21とは5mm以下(好ましくは3mm以下)の間隔を有している。
 高周波電力が供給されるガスシャワー電極21をアース遮蔽部材27aで覆うことにより、第2容器部材29aの内側に高周波出力を集中させることができ、その結果、容器内に収容された粒子51に集中的に高周波電力を供給することができる。
 ガスシャワー電極21の一方側の前記対向面には、単数又は複数の原料ガスをシャワー状に吹き出すガス吹き出し口が複数形成されている。このガス吹き出し口は、ガスシャワー電極21の底部(前記対向面)に配置され、第2容器部材29aに収容された粒子51と対向するように配置されている。即ち、ガス吹き出し口は第2容器部材29aの内面に対向するように配置されている。
 また、図4(B)に示すように、ガスシャワー電極21は、重力方向11に対して逆側の表面が前記逆側に凸の形状を有している。言い換えると、ガスシャワー電極21の断面形状は、底部以外が円形又は楕円形となっている。これにより、第2容器部材29aを回転させているときに円形又は楕円形とされた部分(凸形状の部分)に微粒子が乗っても、その微粒子をガスシャワー電極21から落下させることができる。
 ガスシャワー電極21の他方側は真空バルブ26aを介してマスフローコントローラ(MFC)22の一方側に接続されている。マスフローコントローラ22の他方側は真空バルブ26b及び図示せぬフィルターなどを介して原料ガス発生源20aに接続されている。
 また、ガスシャワー電極21の他方側は真空バルブ(図示せず)を介して図示せぬマスフローコントローラ(MFC)の一方側に接続されている。このマスフローコントローラの他方側はアルゴンガスボンベ(図示せず)に接続されている。
 第1容器部材29には回転機構(図示せず)が設けられており、この回転機構によりガスシャワー電極21を回転中心として第1容器部材29及び第2容器部材29aを図4(B)に示す矢印のように回転又は振り子動作させることで第2容器部材29a内の粒子51を攪拌あるいは回転させながら被覆処理を行うものである。前記回転機構により第1容器部材29及び第2容器部材29aを回転させる際の回転軸は、略水平方向(重力方向11に対して垂直方向)に平行な軸である。なお、本明細書において「略水平方向」とは、完全な水平方向に対して±3°ずれているものも含む意味である。また、チャンバー13内の気密性は、第1容器部材29の回転時においても保持されている。
 また、プラズマCVD装置は、チャンバー13内を真空排気する真空排気機構を備えている。例えば、チャンバー13には排気口(図示せず)が複数設けられており、排気口は真空ポンプ(図示せず)に接続されている。
 また、真空排気機構によって第1容器部材29内からチャンバー13外へガスが排気される経路における最小径又は最小隙間が5mm以下(好ましくは3mm以下)となるように、チャンバー13内には図示せぬアース部材が配置されている。ガスシャワー電極21から第2容器部材29a内に導入された原料ガスは、前記最小径又は最小隙間を通って排気口から排気されるようになっている。このとき、前記最小径又は最小隙間を5mm以下とすることにより、第2容器部材29a内に収容された粒子51の近傍にプラズマを閉じ込めることを妨げないようにすることができる。つまり、前記最小径又は最小隙間を5mmより大きくすると、プラズマが分散してしまったり、異常放電を起こすおそれがある。言い換えると、前記最小径又は最小隙間を5mm以下とすることにより、排気口側にDLC膜が成膜されてしまうことを抑制できる。
 また、ガスシャワー電極21はヒーター(図示せず)を有している。また、プラズマCVD装置は、第2容器部材29aの内面に収容された粒子51に振動を加えるための打ち付け部材としてのアース棒(図示せず)を有していてもよい。つまり、アース棒は、その先端を、駆動機構(図示せず)によってチャンバー13に設けられた開口を通して第1容器部材29又はアース遮蔽部材に打ち付けることができるようになっているとよい。第1容器部材29とともに回転しているアース遮蔽部材にアース棒を連続的に打ち付けることにより、第2容器部材29a内に収容された粒子51に振動を加えることが可能となる。これにより、粒子51が凝集するのを防ぎ、粒子51の攪拌及び混合を促進することができる。尚、アース遮蔽部材と第1容器部材29とは図示せぬ絶縁部材によって繋げられており、アース遮蔽部材からの振動が前記絶縁部材を通して第1容器部材29に伝えられるようになっているとよい。
 次に、離型剤の製造方法について詳細に説明する。
 この離型剤の製造方法は、上記プラズマCVD装置を用いて粒子51にDLC膜を被覆するものである。
 まず、複数の粒子51を第2容器部材29a内に収容する。粒子51の平均粒径は例えば20μm程度である。また、粒子51は、0.4以下(好ましくは0.05以上0.3以下、より好ましくは0.05以上0.2以下)の摩擦係数を有する物質を含むとよい。
 この後、真空ポンプを作動させることによりチャンバー13内を所定の圧力(例えば5×10−5Torr程度)まで減圧する。これと共に、回転機構により第1容器部材29及び第2容器部材29aを回転させることで、第2容器部材29aの内部に収容された粒子51が容器内面において攪拌又は回転される。なお、ここでは、第1容器部材29及び第2容器部材29aを回転させているが、第1容器部材29及び第2容器部材29aを回転機構によって振り子動作させることも可能である。
 次いで、原料ガス発生源20aにおいて原料ガスを発生させ、マスフローコントローラ22によって原料ガスを所定の流量に制御し、流量制御された原料ガスをガスシャワー電極21の内側に導入する。そして、ガスシャワー電極21のガス吹き出し口から原料ガスを吹き出させる。これにより、第2容器部材29a内を攪拌又は回転しながら動いている粒子51に原料ガスが吹き付けられ、制御されたガス流量と排気能力のバランスによって、CVD法による成膜に適した圧力に保たれる。
 また、第1容器部材29とともに回転しているアース遮蔽部材27に駆動機構によってアース棒を連続的に打ち付ける。これにより、第2容器部材29a内に収容された粒子51に振動を加え、粒子51が凝集するのを防ぎ、粒子51の攪拌及び混合を促進させることができる。
 この後、ガスシャワー電極21に電源23から例えば150Wで250kHzのRF出力が供給される。この際、第1容器部材29、第1、第2のリング状部材29b,29c及び第2容器部材29aと粒子51はアースに接続されている。これにより、ガスシャワー電極21と第2容器部材29aとの間にプラズマが着火され、第2容器部材29a内にプラズマが発生され、DLC膜が粒子51の表面に被覆される。つまり、第2容器部材29aを回転させることによって粒子51を攪拌し、回転させているため、粒子51の表面全体にDLC膜を均一に被覆した微粒子を作製することが容易にできる。なお、上記のように粒子51の表面全体にDLC膜を被覆してもよいが、粒子51の表面に膜とならない程度のDLCを被覆させてもよい。このようにして被覆されたDLC膜は0.4以下の摩擦係数を有する。また、このようにして作製された微粒子の表面の水の接触角は60°以上であるとよい。
 次に、上記のようにして作製した微粒子と、溶剤及び油の少なくとも一方と、高揮発性の有機溶剤を混合することで離型剤を製造する。微粒子、溶剤及び油それぞれは、250℃以上の(好ましくは500℃以上)耐熱性を有しているとよい。
 なお、本実施の形態では、微粒子と、溶剤及び油の少なくとも一方と、高揮発性の有機溶剤を混合した離型剤を製造しているが、微粒子と、溶剤及び油の少なくとも一方を混合した離型剤を製造してもよいし、微粒子により構成された離型剤を製造してもよい。
 上記実施の形態によれば、粒子51を被覆する第1の膜52または物質が0.4以下(または0.05以上0.3以下、もしくは0.05以上0.2以下)の摩擦係数を有することで、図1(A)に示す微粒子53を離型剤として機能させることができる。また、微粒子53の表面の水の接触角を60°以上とすることで、微粒子53の離型剤としての機能を高めることができる。また、粒子51が0.4以下の摩擦係数を有する物質を含むことで、金型の表面に付着した後の微粒子53が潰されても、離型剤として機能させることができる。
 また、本実施形態では、粒子54を被覆する第3の膜56または物質が0.4以下(または0.05以上0.3以下、もしくは0.05以上0.2以下)の摩擦係数を有することで、図1(B)に示す微粒子57を離型剤として機能させることができる。また、微粒子57の表面の水の接触角を60°以上とすることで、微粒子57の離型剤としての機能を高めることができる。また、粒子54に被覆する第2の膜55が0.4以下(または0.05以上0.3以下、もしくは0.05以上0.2以下)の摩擦係数を有することで、金型の表面に付着した後の微粒子57が潰されても、離型剤として機能させることができる。
 また、本実施の形態では、離型剤を塗布する対象の金型の大きさに関係なく、当該金型に離型剤を容易に塗布することができる。
 また、油ではなく溶剤を微粒子と混合した離型剤を用いることで、油を含まない離型剤を製造することができる。これにより、半導体工場や食品工場などのクリーンルームで使用することが可能となる。
 また、本実施の形態では、ガスシャワー電極21に高周波電力を印加し、粒子51を収容する容器にアースを接続する装置構成とするため、ガスシャワー電極21にアースを接続し、容器に高周波電力を印加する場合に比べて、プラズマCVD装置の機械構造を簡素化でき、装置コストを低減できる。また、プラズマCVD装置の機械構造を簡素化できるため、メンテナンス性が良くなる。
 また、本実施の形態では、ガスシャワー電極21に高周波電力を印加する装置構成とするため、容器に高周波電力を印加する場合に比べて、マッチングを取りやすく、チューニングを外れにくくすることができる。その理由は、容器に高周波電力を印加する構成とすると、容器の回転運動によりインピーダンスが常時変化するため、マッチングが取りにくく、チューニングが外れやすくなるからである。
 また、本実施の形態では、六角形のバレル形状の第2容器部材29a自体を回転させることで粒子51自体を回転させ攪拌でき、更にバレルを六角形とすることにより、粒子51を重力により定期的に落下させることができる。このため、攪拌効率を飛躍的に向上させることができ、粉体(微粒子)を扱う時にしばしば問題となる水分や静電気力による粉体の凝集を防ぐことができる。つまり回転により、攪拌と、凝集した粒子51の粉砕を同時かつ効果的に行うことができる。したがって、粒径の非常に小さい粒子51にDLC膜を被覆することが可能となる。具体的には、粒径が10μm以下の粒子にDLC膜を被覆することが可能となる。
 また、本実施の形態では、容器内に収容されている粒子51と対向する対向面以外のガスシャワー電極21の表面をアース遮蔽部材27aによって遮蔽している。このため、第2容器部材29aの内面とそれに対向するガスシャワー電極21との間にプラズマを発生させることができる。つまり、第2容器部材29aの内側に高周波出力を集中させることができ、その結果、第2容器部材29aの内面に収容された粒子51(即ち前記収容面上に位置された粒子51)に集中的に高周波電力を供給することができ、高周波電力を効果的に粒子51に供給することができる。したがって、第2容器部材29aの内面と第1、第2のリング状部材29b,29cとで囲まれた粒子51を収容するスペース以外の部分(前記収容面以外の容器の表面)にDLC膜が付着するのを抑制することができる。また、高周波電力量を従来のプラズマCVD装置に比べて小さくすることができる。
 また、本実施の形態では、容器またはアース遮蔽部材にアース棒を連続的に打ち付けることにより、第2容器部材29a内に収容された粒子51の攪拌及び混合を促進させることができる。したがって、より小さい粒径を有する粒子51に対しても均一性良くDLC膜を被覆することが可能となる。
 また、上記実施の形態において容器の内部断面形状を円形にする場合は、例えば、図4(A),(B)に示すプラズマCVD装置から第2容器部材29aを無くした装置に変更することにより実施することが可能となる。
 また、上記実施の形態において容器の内部断面形状を楕円形にする場合は、例えば、図4(A),(B)に示すプラズマCVD装置から第2容器部材29aを無くし、さらに第1容器部材29の内部断面形状を楕円形にした装置に変更することにより実施することが可能となる。
 また、上記実施の形態では、第1容器部材29にプラズマ電源23を接続し、ガスシャワー電極21に接地電位を接続する構成としているが、これに限定されるものではなく、次のように変更して実施することも可能である。例えば、第1容器部材29にプラズマ電源23を接続し、ガスシャワー電極21に第2のプラズマ電源を接続する構成とすることも可能である。
 なお、本実施形態では、上記プラズマCVD装置を用いて粒子51にDLC膜を被覆しているが、上記プラズマCVD装置を用いて図1(B)に示す粒子54に銀等の第2の膜55を被覆し、その後、第2の膜55にDLC膜を上記プラズマCVD装置を用いて被覆することも可能である。詳細には、チャンバー13内に第1の原料ガスを導入し、チャンバー13内の粒子を攪拌あるいは回転させながらプラズマCVD法により、該粒子の表面に0.4以下の摩擦係数を有する第2の膜55を被覆し、その後、第1の原料ガスのチャンバー13内への導入を停止し、チャンバー13内に第2の原料ガスを導入し、チャンバー13内の粒子を攪拌あるいは回転させながらプラズマCVD法により、該粒子の第2の膜55の表面にDLC膜を被覆することで微粒子を作製することができる。このようにして被覆された第2の膜55及びDLC膜それぞれは0.4以下の摩擦係数を有する。また、このようにして作製された微粒子の表面の水の接触角は60°以上であるとよい。
 また、本実施形態では、上記プラズマCVD装置を用いて粒子51にDLC膜を被覆しているが、粒子51に図1(A)に示す第1の膜52として前述した材料を含む膜を被覆することも可能である。
 また、本実施形態では、粒子51に膜を被覆する際にプラズマCVD装置を用いているが、これに限定されるものではなく、他の乾式の成膜装置、例えばスパッタリング装置を用いることも可能である。
 以下に、図5に示す多角バレルスパッタ装置を用いて粒子51に膜を被覆する例について説明する。
 まず、多角バレルスパッタ装置について説明する。
 多角バレルスパッタ装置は、粒子51に超微粒子又は薄膜を被覆させる真空容器31を有しており、この真空容器31は直径200mmの円筒部31aとその内部に設置された断面が六角形のバレル(六角型バレル)31bとを備えている。ここで示す断面は、重力方向に対してほぼ平行な断面である。なお、本実施の形態では、六角形のバレル31bを用いているが、これに限定されるものではなく、六角形以外の多角形のバレル(例えば4~12角形)を用いることも可能である。
 真空容器31には回転機構(図示せず)が設けられており、この回転機構により六角型バレル31bを矢印のように回転または反転させたり、或いは振り子のように揺することで該六角型バレル31b内の粒子51を攪拌あるいは回転させながら被覆処理を行うものである。前記回転機構により六角型バレルを回転させる際の回転軸は、ほぼ水平方向(重力方向に対して垂直方向)に平行な軸である。また、真空容器31内には円筒の中心軸上にスパッタリングターゲット32が配置されており、このターゲット32は角度を自由に変えられるように構成されている。これにより、六角型バレル31bを回転または反転させたり、或いは振り子のように揺すりながら被覆処理を行う時、ターゲット32を粒子51の位置する方向に向けることができ、それによってスパッタ効率を上げることが可能となる。なお、ターゲット32を構成する物質は粒子51を被覆する膜の物質である。
 真空容器31には配管34の一端が接続されており、この配管34の他端には第1バルブ42の一方側が接続されている。第1バルブ42の他方側は配管35の一端が接続されており、配管35の他端はターボ分子ポンプ(TMP)40の吸気側に接続されている。ターボ分子ポンプ40の排気側は配管36の一端に接続されており、配管36の他端は第2バルブ43の一方側に接続されている。第2バルブ43の他方側は配管37の一端に接続されており、配管37の他端はポンプ(RP)41に接続されている。また、配管34は配管38の一端に接続されており、配管38の他端は第3バルブ44の一方側に接続されている。第3バルブ44の他方側は配管39の一端に接続されており、配管39の他端は配管37に接続されている。
 本装置は、真空容器31内の粒子51を直接加熱するためのヒータ47aと、間接的に加熱するためのヒータ47bを備えている。また、本装置は、真空容器31内の粒子51に振動を加えるためのバイブレータ48を備えている。また、本装置は、真空容器3の内部圧力を測定する圧力計49を備えている。また、本装置は、真空容器31内に窒素ガスを導入する窒素ガス導入機構45を備えていると共に真空容器31内にアルゴンガスを導入するアルゴンガス導入機構46を備えている。また反応性スパッタリングを行えるように、酸素等を導入できるガス導入機構50も備えている。また、本装置は、ターゲット32と六角型バレル31bとの間に高周波を印加する高周波印加機構(図示せず)を備えている。尚、ターゲット32と六角型バレル31bとの間には直流も印加できるようになっている。
 次に、上記多角バレルスパッタ装置を用いて、粒子51の表面に第1の膜または物質を被覆する方法について説明する。
 まず、六角型バレル31b内に粒子51を導入する。次いで、ターボ分子ポンプ40を用いて六角型バレル31b内に高真空状態を作り、六角型バレル内を減圧する。その後、アルゴンガス導入機構46又は窒素ガス導入機構45によりアルゴン又は窒素などの不活性ガスを六角型バレル31b内に導入する。そして、回転機構により六角型バレル31bを回転させることで、六角型バレル31b内の粒子51を回転させ、攪拌させる。その際、スパッタリングターゲット32は粒子51の位置する方向に向けられる。
 その後、高周波印加機構によりターゲット32と六角型バレル31bとの間に高周波を印加することでスパッタリングする。これにより、粒子51の表面に第1の膜または物質を被覆する。
 次に、上記のようにして作製した微粒子と、溶剤及び油の少なくとも一方と、高揮発性の有機溶剤を混合することで離型剤を製造する。微粒子、溶剤及び油それぞれは、250℃以上(好ましくは500℃以上)の耐熱性を有しているとよい。
 なお、本実施の形態では、微粒子と、溶剤及び油の少なくとも一方と、高種発性の有機溶剤を混合した離型剤を製造しているが、微粒子と、溶剤及び油の少なくとも一方を混合した離型剤を製造してもよいし、微粒子により構成された離型剤を製造してもよい。
 また、上記の例では、上記バレルスパッタ装置を用いて粒子51に第1の膜を被覆しているが、上記バレルスパッタ装置を用いて図1(B)に示す粒子54に第2の膜55を被覆し、その後、第2の膜55に第3の膜56または物質を上記バレルスパッタ装置を用いて被覆することも可能である。
 <離型剤付き部材>
 図6(A)は本発明の一態様に係る離型剤付き部材の一部を示す断面図である。図6(A)に示す離型剤付き部材は、金型58の表面に前述した離型剤を供給することで、金型58の表面の微小な凹凸の隙間に微粒子53が入り込んで付着したものである。微粒子53は、粒子51と、粒子51を被覆する第1の膜52または物質を有し、第1の膜52または物質は、0.4以下(好ましくは0.05以上0.3以下、より好ましくは0.05以上0.2以下)の摩擦係数を有するとよい。
 上記離型剤付き部材によれば、表面に微粒子53を付着させることで、金型58の表面の摩耗を低減することができる。
 図6(B)は、本発明の他の一態様に係る離型剤付き部材の一部を示す断面図である。図6(B)に示す離型剤付き部材は、金型59の表面に前述した離型剤を供給し、金型59の表面に微粒子53aが付着した後に、その微粒子53aが金型59の表面で潰されたものである。微粒子53aは、粒子51aと、粒子51aを被覆する第1の膜52aまたは物質を有し、第1の膜52aまたは物質は、0.4以下(好ましくは0.05以上0.3以下、より好ましくは0.05以上0.2以下)の摩擦係数を有するとよい。微粒子53aが潰されているため、図6(B)に示すように、粒子51a及び第1の膜52aまたは物質が変形している。
 図6(B)では、微粒子53aが変形しても粒子51aが露出していない部分を示しているが、粒子51aが部分的に露出してもよい。
 上記離型剤付き部材では、表面に微粒子53aを付着させた後に、その微粒子53aが潰されても、金型59の表面の摩耗を低減することができる。つまり、金型59を使用して成形品を作製することで、金型59の表面の微粒子53aが潰されることがある。その場合でも、金型59の表面の摩耗を低減することができる。
 なお、図6(A),(B)では、金型の表面に図1(A)に示す微粒子53を付着させているが、これに限定されるものではなく、図1(B)に示す微粒子57を金型の表面に付着させてもよい。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. However, the present invention is not limited to the following description, and it will be easily understood by those skilled in the art that modes and details can be variously changed without departing from the spirit and scope of the present invention. Therefore, the present invention should not be construed as being limited to the description of the embodiments below.
<Release agent>
FIG. 1A is a cross-sectional view illustrating fine particles used for a release agent according to one embodiment of the present invention. 2A to 2D are diagrams showing particles of various shapes.
A fine particle 53 illustrated in FIG. 1A is obtained by covering a particle 51 with a first film 52 or a substance. The first film 52 or the substance may have a friction coefficient of 0.4 or less (preferably 0.05 or more and 0.3 or less, more preferably 0.05 or more and 0.2 or less). Thereby, the fine particles 53 can have a function as a release agent. The lower the coefficient of friction of the first film 52 or substance, the higher the function as a release agent. The contact angle of water on the surface of the fine particles 53 is preferably 60 ° or more. Thereby, the function as a mold release agent of the microparticles | fine-particles 53 can be improved. The particles may contain a substance having a friction coefficient of 0.4 or less (preferably 0.05 or more and 0.3 or less, more preferably 0.05 or more and 0.2 or less). The particle size L1 of the fine particles 53 is preferably 100 μm or less, and may be 70 μm or less. In the present specification, the “particle diameter” means the longest diameter among the outer diameters of the fine particles 53.
As the particles 51, particles having various shapes can be used. For example, the particles having an indefinite shape shown in FIG. 2 (A), the particles having a spherical shape shown in FIG. 2 (B), and FIGS. The projection-shaped particles shown in FIG.
The film thickness of the first film 52 is preferably 1/20 or less of the particle diameter L1 of the fine particles 53. This is because if the thickness of the first film 52 is larger than 1/20 of the particle diameter of the fine particles 53, the first film 52 is easily peeled off from the fine particles 53.
The particles 51 may be particles containing at least one selected from the group consisting of metals, ceramics, resins, and minerals. In general, when a resin or metal molded product is manufactured using a mold, a material having heat resistance of 250 ° C. or higher (preferably 500 ° C. or higher) may be used for the particles 51. When the material of the molded product is a resin that melts at a high temperature, a material having heat resistance close to 400 ° C. may be used for the particles 51, and when the material is a metal, a material having heat resistance close to 1000 ° C. may be used. Thereby, it becomes possible to use the release agent in a high temperature environment. Examples of metals that can be used for the particles 51 include silver, indium, tin, tellurium, antimony, and bismuth. As an example other than metal, a material having high heat resistance and heat insulation properties such as graphite, mica, talc, clay, and apatite is desirable. Further, kaolin, silica or the like may be used for the particles 51.
The first film 52 or material is at least selected from the group consisting of silver, indium, tin, tellurium, antimony, bismuth, DLC, graphite, BN, BC, WBN, CrN, TiN, molybdenum disulfide and tungsten disulfide. One should be included. The first film 52 or the substance may be a material having heat resistance of 250 ° C. or higher (preferably 500 ° C. or higher). Note that the first film 52 or the substance may be made of a material different from that of the particles 51 or the same material. As described above, when any one of the particles 51, the first film 52, and the substance has a heat resistance of 250 ° C. or higher, it is possible to achieve releasability.
A DLC film having a friction coefficient of 0.1 to 0.4 may be used, and a DLC film having a friction coefficient of 0.1 or less may be used. The surface of the DLC film has a low roughness and a low friction coefficient like a mirror surface. A DLC film having a water contact angle of 65 ° to 98 ° may be used. When fluorine is contained in the DLC film, the friction coefficient can be lowered as compared with a DLC film not containing fluorine. In addition, when a mold release agent is applied to the mold, the DLC film containing fluorine has higher mold release properties than the DLC film containing no fluorine, and therefore it is desirable to select the material according to the raw material of the molded product. Further, since DLC has a heat resistance of 550 ° C., fine particles using silver for the particles 51 and DLC for the first film 52 have a heat resistance of 500 ° C. Such fine particles can be used as a release agent that requires high heat resistance.
The hydrogen content of the DLC film may be 30 atomic% or less (preferably 20 atomic% or less, more preferably 10 atomic% or less). Thus, by reducing the hydrogen content of the DLC film, the friction coefficient of the DLC film can be lowered. By setting the hydrogen content of the DLC film to 20 atomic% or less, the friction coefficient of the DLC film can be set to 0.15 or less.
FIG. 1B is a cross-sectional view showing fine particles used in the release agent according to another embodiment of the present invention.
A fine particle 57 illustrated in FIG. 1B is obtained by covering a particle 54 with a second film 55 and covering the second film 55 with a third film 56 or a substance. The third film 56 or substance may be the same as the first film 52 or substance shown in FIG. 1A, and is 0.4 or less (preferably 0.05 or more and 0.3 or less, more preferably Preferably has a friction coefficient of 0.05 or more and 0.2 or less. Thereby, the fine particles 57 can have a function as a release agent. The lower the coefficient of friction of the third film 56 or substance, the higher the function as a release agent. The contact angle of water on the surface of the fine particles 57 is preferably 60 ° or more. Thereby, the function as a mold release agent of the microparticles | fine-particles 53 can be improved. The second film 55 may have a friction coefficient of 0.4 or less (preferably 0.05 or more and 0.3 or less, more preferably 0.05 or more and 0.2 or less). The particle diameter L2 of the fine particles 57 is preferably 100 μm or less, and may be 70 μm or less.
For the second film 55, the same material as that of the particles 51 shown in FIG. 1A may be used. For example, silver, indium, tin, tellurium, antimony, bismuth, DLC, graphite, BN, BC, WBN , CrN, TiN, molybdenum disulfide, tungsten disulfide, and a material containing at least one selected from the group consisting of Si can be used. However, the second film 55 is preferably a film using a material different from that of the third film 56 or the substance, but the second film 55 is made of the same material as the third film 56 or the substance. It may be a membrane. For the second film 55, a material having heat resistance of 250 ° C. or higher (preferably 500 ° C. or higher) may be used.
The second film 55 preferably has a function as an intermediate film for improving the adhesion between the third film 56 and the particles 54. For example, when the third film 56 is a DLC film, the second film 55 is a second film. The film may be a film containing Si. This film is a film formed by a CVD method using a source gas containing Si. By using a film containing Si as an intermediate film, adhesion between an organic material and an inorganic material can be improved by Si like a silane coupling agent.
The film thickness of each of the second film 55 and the third film 56 is preferably 1/20 or less of the particle diameter L2 of the fine particles 57. This is because if the thickness of each of the second film 55 and the third film 56 is larger than 1/20 of the particle diameter of the fine particles 57, the second film 55 and the third film 56 are easily peeled off from the fine particles 53. .
A resin having heat resistance of 250 ° C. or higher is used for the particles 54, the same material as the particles 51 shown in FIG. 1A is used for the second film 55, and the third film 56 is shown in FIG. By using the same material as that of the first film 52, the material cost can be reduced as compared with the fine particles 53 shown in FIG. 1A while exhibiting the release performance close to the fine particles 53 shown in FIG. be able to.
Further, the particles 54 may be particles containing at least one selected from the group consisting of metals, ceramics, and minerals.
The release agent may be composed of the fine particles 53 or the fine particles 57 described above, but the fine particles 53 or the fine particles 57 may contain at least one of oil and a solvent. The oil may have a heat resistance of 250 ° C. or higher (preferably 500 ° C. or higher). This oil or the like should be easy to adhere the mold release agent to the mold, and even after the mold is heated to produce a molded product, the oil is difficult to evaporate from the mold surface. Good. By setting it as such, it can make it easy to release a molded article from a metal mold | die, and can make it hard to lose | release a mold release agent from a metal mold | die. In addition to oil, a solvent having heat resistance may be used to impart releasability, and a highly volatile organic solvent is used to apply or adhere the fine particles 53 or 57 to the mold. May be used.
Said oil is good to contain at least one selected from the group of polymer compounds, such as silicone oil, mineral oil, fats and oils, synthetic esters, and waxes.
The solvent is at least one selected from the group consisting of hydrogen carbonate, alcohol, ketone, ester, ether, glycol, glycol ester, glycoether, glyme, halogen, and special solvents. It is good to include.
Although said mold release agent is demonstrated as a mold release agent, it is not limited to a mold, You may use as a mold release agent of things other than a metal mold | die.
<Release agent supplies and release agent aerosol>
A mold release product can be produced by housing the mold release agent in a container. In the present specification, the “container” is a concept including a syringe.
The release agent aerosol has the above release agent and an injection container filled with a propellant. Specifically, the release agent aerosol can be produced by filling the above-mentioned release agent together with the propellant in the injection container.
The particle size of the fine particles may be any size that can be sprayed without clogging when an aerosol product is used, and it is generally preferable that the average particle size is 20 μm or less.
For the release agent aerosol, it is preferable to shake the container to make the fine particles uniformly dispersed during use. In addition, in order to increase the stirring efficiency when the container is shaken, if a stirring ball is placed in the container, the stirring can be performed more easily and easily.
In particular, by using an aerosol container equipped with a metering valve that can inject a certain amount, it is possible to inject and apply only a necessary amount, and to prevent wasteful consumption of fine particles. The metering valve is a valve that is generally used for perfume, medicine, etc. with a small amount of use, and is designed to inject a certain volume for each operation.
For example, as schematically shown in FIG. 3, as an example, in the metering injection type container 1 having the metering valve 2, when the actuator 3 is pushed down, the metering chamber 2a and the dip tube 4 are first shut off, and further, When pressed down, the metering chamber 2a is opened and the contents are jetted from the nozzle port 5 into the atmosphere. Thereafter, when the actuator 3 is opened, the path from the metering chamber 2a to the atmosphere is first blocked, and then the contents are supplied to the metering chamber 2a through the dip tube 4.
Further, in the container 1, a release agent mainly composed of a solvent or oil having heat resistance of 250 ° C. or higher (preferably 500 ° C. or higher), a highly volatile organic solvent, and liquefied hydrocarbon gas, A liquid phase 6 containing a propellant such as dimethyl ether is contained. A plurality of fine particles are dispersed in the liquid phase 6, and the fine particles 53 or 57 are settled in the liquid phase 6. The container 1 also contains a gas phase 8 made of a propellant such as liquefied hydrocarbon gas, and a stirring ball 9 for increasing the stirring efficiency.
<Manufacturing method of release agent>
4A is a cross-sectional view illustrating a plasma CVD apparatus used for manufacturing a release agent according to one embodiment of the present invention, and FIG. 4B is a cross-sectional view of 200-200 illustrated in FIG. It is sectional drawing along a line. This plasma CVD apparatus is an apparatus for coating the surface of the particles 51 with a DLC film.
In the present embodiment, a description will be given of a plasma CVD apparatus in which particles 51 are accommodated in a container having an internal cross-sectional shape that is a polygon, and the particles 51 are covered with a DLC film. However, the internal cross-sectional shape of the container is not limited to a polygon. The internal cross-sectional shape of the container can be circular or elliptical. The difference between a container having a polygonal internal cross-sectional shape and a container having a circular or elliptical shape is that the polygonal container can coat the DLC film with a smaller particle diameter more uniformly than the circular or elliptical container. Is a point.
As shown in FIGS. 4A and 4B, the plasma CVD apparatus has a cylindrical chamber 13. One end of the chamber 13 is closed by a chamber lid 21a, and the other end of the chamber 13 is closed by a chamber lid 21b. Each of the chamber 13 and the chamber lids 21a and 21b is connected to ground (ground potential).
Inside the chamber 13, a conductive container that accommodates the particles 51 is disposed. This container has a cylindrical first container member 29, a second container member 29a, a first ring-shaped member 29b, and a second ring-shaped member 29c. Each of the first container member 29, the second container member 29a, and the first and second ring-shaped members 29b and 29c has conductivity.
One end of the first container member 29 is closed, and an extension portion 29 d extending to the outside of the chamber 13 is formed on one end side of the first container member 29. The other end of the first container member 29 is opened. The extending portion 29d is connected to the ground.
A second container member 29a is arranged inside the first container member 29, and the second container member 29a has a barrel shape with a hexagonal cross section as shown in FIG. The cross section shown in FIG. 4B is a cross section substantially parallel to the gravity direction 11. In addition, in this specification, “substantially parallel” means to include those that are shifted by ± 3 ° with respect to perfect parallelism. Moreover, in this Embodiment, although the hexagonal barrel-shaped 2nd container member 29a is used, it is not limited to this, The polygonal 2nd container member other than a hexagon is used. It is also possible.
One end of the second container member 29a is attached to the inside of the first container member 29 by a first ring-shaped member 29b, and the other end of the second container member 29a is a first container by a second ring-shaped member 29c. It is attached inside the member 29. In other words, the first ring-shaped member 29b is located on one side of the second container member 29a, and the second ring-shaped member 29c is located on the other side of the second container member 29a. The outer periphery of each of the first and second ring-shaped members 29b and 29c is connected to the inner surface of the first container member 29, and the inner periphery of each of the first and second ring-shaped members 29b and 29c is the second container member. It is located on the gas shower electrode (counter electrode) 21 side from the inner surface of 29a.
The distance between the first ring-shaped member 29b and the second ring-shaped member 29c (that is, the distance between one end and the other end of the second container member 29a) is the distance between the one end and the other end of the first container member 29. Small compared to distance. Each of the first and second ring-shaped members 29 b and 29 c is disposed inside the first container member 29. And the powder (particle) 51 as a coating target object is accommodated in the space enclosed by the inner surface of the 2nd container member 29a and the 1st and 2nd ring-shaped members 29b and 29c. In other words, the inner surface 129a constituting the polygon of the second container member 29a and the first and second ring-shaped members 29b and 29c surrounding the inner surface 129a are respectively the surfaces 129b and 129c (first and second ring-shaped members). , And the particles 51 are positioned on the accommodation surface.
In addition, the surface of the container other than the housing surface composed of the inner surface 129a forming the polygon in the second container member 29a and the surfaces 129b and 129c of the first and second ring-shaped members surrounding the inner surface 129a is connected to the ground shielding member. (Not shown). The first container member 29, the first and second ring-shaped members 29b and 29c, and the ground shielding member may have a distance of 5 mm or less (preferably 3 mm or less). The earth shielding member is connected to a ground potential.
Further, the plasma CVD apparatus includes a source gas introduction mechanism that introduces a source gas into the chamber 13. This source gas introduction mechanism has a cylindrical gas shower electrode (counter electrode) 21. The gas shower electrode 21 is disposed in the second container member 29a. That is, an opening is formed on the other side of the second container member 29a, and the gas shower electrode 21 is inserted from this opening.
The gas shower electrode 21 is electrically connected to a power source 23, and high frequency power is supplied to the gas shower electrode 21 by the power source 23. The power source 23 is preferably a high frequency power source having a frequency of 10 kHz to 1 MHz, and more preferably a high frequency power source having a frequency of 50 kHz to 500 kHz. By using a power source having a low frequency in this way, it is possible to suppress the dispersion of plasma outside the space between the gas shower electrode 21 and the second container member 29a as compared with the case where a power source having a frequency higher than 1 MHz is used. be able to. In other words, the plasma can be confined between the gas shower electrode 21 and the second container member 29a. When RF plasma of 10 kHz to 1 MHz is used, induction heating is difficult to occur in such a closed plasma space, that is, in the barrel (second container member 29a), and a sufficient V at the time of film formation. DC Therefore, it is easy to form a DLC film having a low coefficient of friction. On the other hand, when RF plasma such as 13.56 MHz is used, in a closed plasma space, V is applied to the particles 51. DC Therefore, it is difficult to form a DLC film having a low friction coefficient.
The surface of the gas shower electrode (counter electrode) 21 other than the facing surface facing the particles 51 accommodated in the container is shielded by a ground shielding member 27a. The ground shielding member 27a and the gas shower electrode 21 have an interval of 5 mm or less (preferably 3 mm or less).
By covering the gas shower electrode 21 to which high-frequency power is supplied with the ground shielding member 27a, the high-frequency output can be concentrated inside the second container member 29a, and as a result, concentrated on the particles 51 accommodated in the container. High frequency power can be supplied.
A plurality of gas outlets for blowing out one or a plurality of source gases in a shower shape are formed on the facing surface on one side of the gas shower electrode 21. This gas outlet is disposed at the bottom (the facing surface) of the gas shower electrode 21 and is disposed so as to face the particles 51 accommodated in the second container member 29a. That is, the gas outlet is disposed so as to face the inner surface of the second container member 29a.
Further, as shown in FIG. 4B, the gas shower electrode 21 has a surface opposite to the gravity direction 11 having a convex shape on the opposite side. In other words, the cross-sectional shape of the gas shower electrode 21 is circular or elliptical except for the bottom. Thereby, even when the fine particles are placed on a circular or elliptical portion (convex shape portion) when the second container member 29a is rotated, the fine particles can be dropped from the gas shower electrode 21.
The other side of the gas shower electrode 21 is connected to one side of a mass flow controller (MFC) 22 via a vacuum valve 26a. The other side of the mass flow controller 22 is connected to the source gas generation source 20a via a vacuum valve 26b and a filter (not shown).
The other side of the gas shower electrode 21 is connected to one side of a mass flow controller (MFC) (not shown) via a vacuum valve (not shown). The other side of the mass flow controller is connected to an argon gas cylinder (not shown).
The first container member 29 is provided with a rotation mechanism (not shown). By this rotation mechanism, the first container member 29 and the second container member 29a are shown in FIG. The coating process is performed while stirring or rotating the particles 51 in the second container member 29a by rotating or pendulum-operating as shown by the arrows. A rotation axis when rotating the first container member 29 and the second container member 29a by the rotation mechanism is an axis parallel to a substantially horizontal direction (a direction perpendicular to the gravity direction 11). In the present specification, the “substantially horizontal direction” means including a deviation of ± 3 ° from the complete horizontal direction. Further, the airtightness in the chamber 13 is maintained even when the first container member 29 is rotated.
In addition, the plasma CVD apparatus includes a vacuum exhaust mechanism that exhausts the inside of the chamber 13. For example, the chamber 13 is provided with a plurality of exhaust ports (not shown), and the exhaust ports are connected to a vacuum pump (not shown).
Further, the inside of the chamber 13 is not shown so that the minimum diameter or the minimum gap in the path through which the gas is exhausted from the first container member 29 to the outside of the chamber 13 by the vacuum exhaust mechanism is 5 mm or less (preferably 3 mm or less). A grounding member is arranged. The source gas introduced into the second container member 29a from the gas shower electrode 21 is exhausted from the exhaust port through the minimum diameter or the minimum gap. At this time, by setting the minimum diameter or the minimum gap to 5 mm or less, it is possible to prevent the plasma from being confined in the vicinity of the particles 51 accommodated in the second container member 29a. That is, if the minimum diameter or the minimum gap is larger than 5 mm, the plasma may be dispersed or abnormal discharge may occur. In other words, by setting the minimum diameter or the minimum gap to 5 mm or less, it is possible to suppress the DLC film from being formed on the exhaust port side.
The gas shower electrode 21 has a heater (not shown). Further, the plasma CVD apparatus may have a grounding rod (not shown) as a striking member for applying vibration to the particles 51 accommodated on the inner surface of the second container member 29a. That is, it is preferable that the tip of the grounding rod can be hit against the first container member 29 or the ground shielding member through an opening provided in the chamber 13 by a drive mechanism (not shown). By continuously hitting the grounding rod against the ground shielding member rotating together with the first container member 29, it is possible to apply vibration to the particles 51 accommodated in the second container member 29a. Thereby, aggregation of the particles 51 can be prevented, and stirring and mixing of the particles 51 can be promoted. The ground shielding member and the first container member 29 are connected by an insulating member (not shown), and vibration from the ground shielding member may be transmitted to the first container member 29 through the insulating member. .
Next, the manufacturing method of a mold release agent is demonstrated in detail.
In this release agent manufacturing method, particles 51 are coated with a DLC film using the plasma CVD apparatus.
First, the plurality of particles 51 are accommodated in the second container member 29a. The average particle diameter of the particles 51 is, for example, about 20 μm. The particles 51 may contain a substance having a friction coefficient of 0.4 or less (preferably 0.05 or more and 0.3 or less, more preferably 0.05 or more and 0.2 or less).
Thereafter, a predetermined pressure (for example, 5 × 10 5) is generated in the chamber 13 by operating the vacuum pump. -5 The pressure is reduced to about Torr). At the same time, the first container member 29 and the second container member 29a are rotated by the rotating mechanism, whereby the particles 51 accommodated in the second container member 29a are stirred or rotated on the inner surface of the container. Here, although the first container member 29 and the second container member 29a are rotated, the first container member 29 and the second container member 29a can be operated in a pendulum manner by a rotation mechanism.
Next, a source gas is generated in the source gas generation source 20 a, the source gas is controlled to a predetermined flow rate by the mass flow controller 22, and the source gas whose flow rate is controlled is introduced inside the gas shower electrode 21. Then, the source gas is blown out from the gas outlet of the gas shower electrode 21. As a result, the source gas is sprayed onto the particles 51 moving while stirring or rotating in the second container member 29a, and the pressure suitable for film formation by the CVD method is maintained by the balance between the controlled gas flow rate and the exhaust capability. Be drunk.
Further, the grounding rod is continuously driven by the driving mechanism to the ground shielding member 27 rotating together with the first container member 29. Thereby, it is possible to vibrate the particles 51 accommodated in the second container member 29a, prevent the particles 51 from aggregating, and promote the stirring and mixing of the particles 51.
Thereafter, an RF output of 250 kHz at 150 W, for example, is supplied to the gas shower electrode 21 from the power source 23. At this time, the first container member 29, the first and second ring-shaped members 29b and 29c, the second container member 29a, and the particles 51 are connected to the ground. Thereby, plasma is ignited between the gas shower electrode 21 and the second container member 29 a, plasma is generated in the second container member 29 a, and the surface of the particle 51 is covered with the DLC film. That is, since the particles 51 are stirred and rotated by rotating the second container member 29a, it is possible to easily produce fine particles in which the entire surface of the particles 51 is uniformly coated with the DLC film. As described above, the entire surface of the particle 51 may be coated with a DLC film, but the surface of the particle 51 may be coated with DLC that does not become a film. The DLC film coated in this way has a coefficient of friction of 0.4 or less. Further, the contact angle of water on the surface of the fine particles thus produced is preferably 60 ° or more.
Next, a mold release agent is manufactured by mixing the fine particles produced as described above, at least one of a solvent and oil, and a highly volatile organic solvent. Each of the fine particles, the solvent, and the oil may have heat resistance of 250 ° C. or higher (preferably 500 ° C. or higher).
In this embodiment, a release agent is produced by mixing fine particles, at least one of a solvent and oil, and a highly volatile organic solvent. However, the fine particles and at least one of solvent and oil are mixed. A mold release agent may be produced, or a mold release agent composed of fine particles may be produced.
According to the above embodiment, the first film 52 or the substance covering the particles 51 has a friction coefficient of 0.4 or less (or 0.05 or more and 0.3 or less, or 0.05 or more and 0.2 or less). By having it, the fine particles 53 shown in FIG. 1A can function as a release agent. Moreover, the function as a mold release agent of the microparticles | fine-particles 53 can be improved because the contact angle of the water of the surface of the microparticles | fine-particles 53 shall be 60 degrees or more. Further, when the particles 51 contain a substance having a friction coefficient of 0.4 or less, even if the fine particles 53 after adhering to the surface of the mold are crushed, they can function as a release agent.
In the present embodiment, the third film 56 or the material covering the particles 54 has a friction coefficient of 0.4 or less (or 0.05 or more and 0.3 or less, or 0.05 or more and 0.2 or less). Thus, the fine particles 57 shown in FIG. 1B can function as a release agent. Moreover, the function as a mold release agent of the microparticles | fine-particles 57 can be improved because the contact angle of the water of the surface of the microparticles | fine-particles 57 shall be 60 degrees or more. In addition, since the second film 55 covering the particles 54 has a friction coefficient of 0.4 or less (or 0.05 or more and 0.3 or less, or 0.05 or more and 0.2 or less), the surface of the mold Even if the fine particles 57 adhered to the surface are crushed, they can function as a release agent.
Moreover, in this Embodiment, a mold release agent can be easily apply | coated to the said metal mold | die irrespective of the magnitude | size of the object mold | die which applies a mold release agent.
Moreover, the release agent which does not contain oil can be manufactured by using the release agent which mixed the solvent with the fine particle instead of oil. As a result, it can be used in a clean room such as a semiconductor factory or a food factory.
Moreover, in this Embodiment, since it is set as the apparatus structure which connects a ground to the container which accommodates the particle | grains 51 by applying a high frequency power to the gas shower electrode 21, a ground is connected to the gas shower electrode 21, and a high frequency power is connected to the container Compared with the case of applying, the mechanical structure of the plasma CVD apparatus can be simplified, and the apparatus cost can be reduced. Further, since the mechanical structure of the plasma CVD apparatus can be simplified, the maintainability is improved.
Moreover, in this Embodiment, since it is set as the apparatus structure which applies high frequency power to the gas shower electrode 21, compared with the case where high frequency power is applied to a container, matching can be taken easily and it can make it difficult to remove | tune. The reason for this is that, if the configuration is such that high-frequency power is applied to the container, the impedance always changes due to the rotational movement of the container, making it difficult to achieve matching and make it difficult to tune.
In the present embodiment, the particles 51 themselves can be rotated and stirred by rotating the hexagonal barrel-shaped second container member 29a itself, and the particles 51 are periodically formed by gravity by making the barrel hexagonal. Can be dropped. For this reason, the stirring efficiency can be dramatically improved, and aggregation of the powder due to moisture or electrostatic force, which is often a problem when handling powder (fine particles), can be prevented. That is, by rotation, stirring and pulverization of the aggregated particles 51 can be performed simultaneously and effectively. Therefore, the DLC film can be coated on the particles 51 having a very small particle diameter. Specifically, it becomes possible to coat the DLC film on particles having a particle size of 10 μm or less.
In the present embodiment, the surface of the gas shower electrode 21 other than the facing surface facing the particles 51 accommodated in the container is shielded by the ground shielding member 27a. For this reason, plasma can be generated between the inner surface of the second container member 29a and the gas shower electrode 21 opposed thereto. That is, the high frequency output can be concentrated inside the second container member 29a, and as a result, concentrated on the particles 51 accommodated on the inner surface of the second container member 29a (that is, the particles 51 positioned on the accommodation surface). Therefore, it is possible to supply high-frequency power to the particles 51 effectively. Therefore, the DLC film is formed on a portion other than the space for accommodating the particles 51 surrounded by the inner surface of the second container member 29a and the first and second ring-shaped members 29b and 29c (the surface of the container other than the accommodation surface). It can suppress adhering. In addition, the amount of high-frequency power can be reduced as compared with a conventional plasma CVD apparatus.
Moreover, in this Embodiment, stirring and mixing of the particle | grains 51 accommodated in the 2nd container member 29a can be accelerated | stimulated by hit | damaging an earth | ground stick | rod continuously to a container or an earth shielding member. Therefore, the DLC film can be coated evenly on the particles 51 having a smaller particle diameter.
Moreover, when making the internal cross-sectional shape of a container circular in the said embodiment, by changing into the apparatus which eliminated the 2nd container member 29a from the plasma CVD apparatus shown to FIG. 4 (A), (B), for example. It becomes possible to carry out.
In the above embodiment, when the inner cross-sectional shape of the container is elliptical, for example, the second container member 29a is eliminated from the plasma CVD apparatus shown in FIGS. 4A and 4B, and the first container member is further removed. This can be implemented by changing the internal cross-sectional shape of 29 to an ellipse.
In the above embodiment, the plasma power source 23 is connected to the first container member 29 and the ground potential is connected to the gas shower electrode 21. However, the present invention is not limited to this, and the following changes are made. It is also possible to carry out. For example, it is possible to connect the plasma power source 23 to the first container member 29 and connect the second plasma power source to the gas shower electrode 21.
In this embodiment, the DLC film is coated on the particles 51 using the plasma CVD apparatus. However, a second film such as silver is formed on the particles 54 shown in FIG. 1B using the plasma CVD apparatus. It is also possible to cover the second film 55 with a DLC film using the plasma CVD apparatus. Specifically, a second source material having a friction coefficient of 0.4 or less on the surface of the particles is introduced into the chamber 13 by plasma CVD while stirring or rotating the particles in the chamber 13. The film 55 is coated, and then the introduction of the first source gas into the chamber 13 is stopped, the second source gas is introduced into the chamber 13, and plasma CVD is performed while stirring or rotating the particles in the chamber 13. By coating the surface of the second film 55 of the particles with a DLC film, fine particles can be produced. Each of the second film 55 and the DLC film thus coated has a friction coefficient of 0.4 or less. Further, the contact angle of water on the surface of the fine particles thus produced is preferably 60 ° or more.
In this embodiment, the DLC film is coated on the particles 51 using the plasma CVD apparatus. However, the particles 51 are coated with a film containing the above-described material as the first film 52 shown in FIG. It is also possible to do.
In this embodiment, the plasma CVD apparatus is used to coat the particles 51 with a film. However, the present invention is not limited to this, and other dry film forming apparatuses such as a sputtering apparatus can also be used. It is.
Below, the example which coat | covers the film | membrane on the particle | grains 51 using the polygon barrel sputtering apparatus shown in FIG. 5 is demonstrated.
First, a polygon barrel sputtering apparatus will be described.
The polygonal barrel sputtering apparatus has a vacuum vessel 31 for coating particles 51 with ultrafine particles or a thin film. The vacuum vessel 31 has a cylindrical portion 31a having a diameter of 200 mm and a hexagonal barrel ( Hexagonal barrel) 31b. The cross section shown here is a cross section substantially parallel to the direction of gravity. In the present embodiment, the hexagonal barrel 31b is used. However, the present invention is not limited to this, and a polygonal barrel other than the hexagon (for example, 4 to 12 squares) can also be used. .
The vacuum vessel 31 is provided with a rotation mechanism (not shown). By this rotation mechanism, the hexagonal barrel 31b is rotated or reversed as indicated by an arrow, or shaken like a pendulum. The coating process is performed while stirring or rotating the inner particles 51. A rotation axis when the hexagonal barrel is rotated by the rotation mechanism is an axis substantially parallel to the horizontal direction (perpendicular to the gravity direction). Further, a sputtering target 32 is disposed on the central axis of the cylinder in the vacuum vessel 31, and the target 32 is configured so that the angle can be freely changed. Accordingly, when the coating process is performed while rotating or reversing the hexagonal barrel 31b or shaking like a pendulum, the target 32 can be directed in the direction in which the particles 51 are located, thereby increasing the sputtering efficiency. It becomes possible. The substance constituting the target 32 is a film substance covering the particles 51.
One end of a pipe 34 is connected to the vacuum vessel 31, and one side of the first valve 42 is connected to the other end of the pipe 34. One end of the pipe 35 is connected to the other side of the first valve 42, and the other end of the pipe 35 is connected to the intake side of the turbo molecular pump (TMP) 40. The exhaust side of the turbo molecular pump 40 is connected to one end of the pipe 36, and the other end of the pipe 36 is connected to one side of the second valve 43. The other side of the second valve 43 is connected to one end of a pipe 37, and the other end of the pipe 37 is connected to a pump (RP) 41. The pipe 34 is connected to one end of the pipe 38, and the other end of the pipe 38 is connected to one side of the third valve 44. The other side of the third valve 44 is connected to one end of the pipe 39, and the other end of the pipe 39 is connected to the pipe 37.
This apparatus includes a heater 47a for directly heating the particles 51 in the vacuum vessel 31, and a heater 47b for indirectly heating. In addition, the apparatus includes a vibrator 48 for applying vibration to the particles 51 in the vacuum container 31. In addition, the apparatus includes a pressure gauge 49 that measures the internal pressure of the vacuum vessel 3. The apparatus also includes a nitrogen gas introduction mechanism 45 that introduces nitrogen gas into the vacuum container 31 and an argon gas introduction mechanism 46 that introduces argon gas into the vacuum container 31. Moreover, the gas introduction mechanism 50 which can introduce | transduce oxygen etc. is also provided so that reactive sputtering can be performed. In addition, this apparatus includes a high frequency application mechanism (not shown) that applies a high frequency between the target 32 and the hexagonal barrel 31b. A direct current can also be applied between the target 32 and the hexagonal barrel 31b.
Next, a method for coating the surface of the particles 51 with the first film or substance using the polygon barrel sputtering apparatus will be described.
First, the particles 51 are introduced into the hexagonal barrel 31b. Next, a high vacuum state is created in the hexagonal barrel 31b using the turbo molecular pump 40, and the pressure in the hexagonal barrel is reduced. Thereafter, an inert gas such as argon or nitrogen is introduced into the hexagonal barrel 31b by the argon gas introduction mechanism 46 or the nitrogen gas introduction mechanism 45. Then, the hexagonal barrel 31b is rotated by the rotation mechanism, whereby the particles 51 in the hexagonal barrel 31b are rotated and agitated. At that time, the sputtering target 32 is directed in the direction in which the particles 51 are located.
Thereafter, sputtering is performed by applying a high frequency between the target 32 and the hexagonal barrel 31b by a high frequency application mechanism. Thereby, the surface of the particle 51 is coated with the first film or substance.
Next, a mold release agent is manufactured by mixing the fine particles produced as described above, at least one of a solvent and oil, and a highly volatile organic solvent. Each of the fine particles, the solvent, and the oil may have heat resistance of 250 ° C. or higher (preferably 500 ° C. or higher).
In this embodiment, a release agent is produced by mixing fine particles, at least one of a solvent and oil, and a high-species organic solvent. However, the fine particles and at least one of solvent and oil are mixed. A mold release agent composed of fine particles may be manufactured.
In the above example, the first film is coated on the particles 51 using the barrel sputtering apparatus. However, the second film 55 is formed on the particles 54 shown in FIG. 1B using the barrel sputtering apparatus. It is also possible to coat the second film 55 with the third film 56 or the substance using the barrel sputtering apparatus.
<Member with release agent>
FIG. 6A is a cross-sectional view illustrating part of a member with a release agent according to one embodiment of the present invention. In the member with a release agent shown in FIG. 6 (A), fine particles 53 have entered and adhered to the gaps of minute irregularities on the surface of the mold 58 by supplying the release agent described above to the surface of the mold 58. Is. The fine particle 53 includes a particle 51 and a first film 52 or a substance that covers the particle 51. The first film 52 or the substance is 0.4 or less (preferably 0.05 or more and 0.3 or less, more The friction coefficient is preferably 0.05 or more and 0.2 or less.
According to the member with the release agent, the wear of the surface of the mold 58 can be reduced by attaching the fine particles 53 to the surface.
FIG. 6B is a cross-sectional view illustrating a part of a member with a release agent according to another embodiment of the present invention. 6B supplies the release agent described above to the surface of the mold 59, and after the fine particles 53a adhere to the surface of the mold 59, the fine particles 53a are formed on the mold 59. It is crushed on the surface. The fine particle 53a includes a particle 51a and a first film 52a or a substance covering the particle 51a, and the first film 52a or the substance is 0.4 or less (preferably 0.05 or more and 0.3 or less, more The friction coefficient is preferably 0.05 or more and 0.2 or less. Since the fine particles 53a are crushed, the particles 51a and the first film 52a or the substance are deformed as shown in FIG. 6B.
Although FIG. 6B shows a portion where the particles 51a are not exposed even if the fine particles 53a are deformed, the particles 51a may be partially exposed.
In the member with a release agent, even if the fine particles 53a are adhered to the surface and then the fine particles 53a are crushed, the wear on the surface of the mold 59 can be reduced. In other words, by producing a molded product using the mold 59, the fine particles 53a on the surface of the mold 59 may be crushed. Even in that case, the wear of the surface of the mold 59 can be reduced.
6 (A) and 6 (B), the fine particles 53 shown in FIG. 1 (A) are attached to the surface of the mold, but the present invention is not limited to this, and FIG. 1 (B) shows. The fine particles 57 may be attached to the surface of the mold.
 図7は、実施例1の微粒子のSEM(Scanning Electron Microscope)画像である。図8は、図7に示す微粒子に加工用保護膜を被覆し、その微粒子の切断面を撮像したSEM画像である。
 この微粒子は図1(B)に示す構造のものである。詳細には、この微粒子は、粒径が5μmの銀粒子(図1(B)の粒子54に相当)に密着膜(第2の膜55に相当)が被覆され、その密着膜にDLC膜(第3の膜56に相当)が被覆されたものである。密着膜は、Siを含む物質を含む膜であって、銀粒子とDLC膜との密着性を高めるための中間膜である。
 密着膜の成膜条件は以下のとおりである。
 成膜装置:図4に示すプラズマCVD装置
 粒子基材:Ag粒子(φ5μm)
 原料ガス:SiとCを含むガス
 膜種:Siを含むカーボン膜
 膜厚:0.2μm
 DLC膜の成膜条件は以下のとおりである。
 成膜装置:図4に示すプラズマCVD装置
 粒子基材:Ag粒子(φ5μm)に密着膜を被覆した微粒子
 原料ガスとその比率:C/Ar=7/20cc
 膜種:DLC
 膜厚:0.3μm
 DLC膜と密着膜は共に絶縁性材料のため、図8に示すSEM画像ではDLC膜と密着膜を分離して観察できなかった。DLC膜と密着膜を合わせた膜厚は240nm程度であった。
FIG. 7 is an SEM (Scanning Electron Microscope) image of the fine particles of Example 1. FIG. 8 is an SEM image obtained by covering the fine particles shown in FIG. 7 with a processing protective film and imaging the cut surface of the fine particles.
These fine particles have the structure shown in FIG. Specifically, in the fine particles, silver particles having a particle diameter of 5 μm (corresponding to the particles 54 in FIG. 1B) are covered with an adhesion film (corresponding to the second film 55), and the adhesion film is covered with a DLC film ( Equivalent to the third film 56). The adhesion film is a film containing a substance containing Si, and is an intermediate film for improving adhesion between the silver particles and the DLC film.
The deposition conditions for the adhesion film are as follows.
Film forming apparatus: plasma CVD apparatus shown in FIG. 4 Particle base material: Ag particles (φ5 μm)
Source gas: Gas containing Si and C Film type: Carbon film containing Si Film thickness: 0.2 μm
The conditions for forming the DLC film are as follows.
Film forming apparatus: plasma CVD apparatus shown in FIG. 4 Particle base material: Fine particles obtained by coating an Ag particle (φ5 μm) with an adhesion film Raw material gas and its ratio: C 7 H 8 / Ar = 7/20 cc
Film type: DLC
Film thickness: 0.3 μm
Since both the DLC film and the adhesion film are insulating materials, the DLC film and the adhesion film could not be observed separately in the SEM image shown in FIG. The total thickness of the DLC film and the adhesion film was about 240 nm.
 本実施例では、粒子にDLC膜を被覆した微粒子の表面の水の接触角を測定した。但し、微粒子の表面の水の接触角を直接測定することができないため、ガラス基板上にDLC膜を成膜し、そのDLC膜の水の接触角を測定し、その測定値を微粒子の表面の水の接触角の測定値とした。
 なお、本明細書において「微粒子の表面の水の接触角」とは、微粒子表面に被覆されている膜をガラス基板上に成膜し、その膜の水の接触角を測定した値を意味するものとする。
 本実施例のサンプルは、以下の成膜条件で成膜されたものである。
 成膜装置 : 図4に示すプラズマCVD装置
 基材 : ガラス基板
 膜種 : DLC=2.4μm
 成膜時間 : 30分
 攪拌条件 : 攪拌なし
 高周波電源の周波数:250kHz
 原料ガスとその比率:C/Ar=7/20cc
 成膜圧力:10Pa
 高周波出力:250W
 なお、基材が粒子である場合とガラス基板である場合とでは、適した成膜時間と攪拌条件が異なるため、上記の成膜時間と攪拌条件は基材が粒子である場合と異なるが、成膜時間と攪拌条件以外の成膜条件は基材が微粒子である場合と同様の条件を用いる。
 次に、上記のサンプルの接触角を以下の方法で測定した。比較のためにガラス基板の接触角も同様の方法で測定した。接触角の測定装置を表1に示し、試料を表2に示し、測定条件を表3に示し、測定結果を表4に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表4の測定結果によれば、微粒子の表面の水の接触角を60°以上とすることが可能であることが確認された。
In this example, the contact angle of water on the surface of fine particles in which the particles were coated with a DLC film was measured. However, since the water contact angle on the surface of the fine particles cannot be directly measured, a DLC film is formed on the glass substrate, the water contact angle of the DLC film is measured, and the measured value is measured on the surface of the fine particles. It was set as the measured value of the contact angle of water.
In the present specification, the “contact angle of water on the surface of fine particles” means a value obtained by measuring a contact angle of water on a film formed on a glass substrate with a film coated on the surface of the fine particles. Shall.
The sample of this example was formed under the following film formation conditions.
Film forming apparatus: Plasma CVD apparatus shown in FIG. 4 Base material: Glass substrate Film type: DLC = 2.4 μm
Deposition time: 30 minutes Stirring condition: No stirring Frequency of high frequency power supply: 250 kHz
Source gas and its ratio: C 7 H 8 / Ar = 7/20 cc
Deposition pressure: 10Pa
High frequency output: 250W
In addition, since the suitable film formation time and stirring conditions are different between the case where the substrate is a particle and the glass substrate, the film formation time and the stirring condition described above are different from the case where the substrate is a particle, Film formation conditions other than the film formation time and stirring conditions are the same as those used when the substrate is fine particles.
Next, the contact angle of the sample was measured by the following method. For comparison, the contact angle of the glass substrate was also measured by the same method. The contact angle measurement device is shown in Table 1, the sample is shown in Table 2, the measurement conditions are shown in Table 3, and the measurement results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
According to the measurement results in Table 4, it was confirmed that the contact angle of water on the surface of the fine particles can be 60 ° or more.
 本実施例では、粒子にDLC膜を被覆した微粒子における当該DLC膜の摩擦係数を測定した。但し、微粒子のDLC膜の摩擦係数を直接測定することができないため、SUS304の基材上にDLC膜を成膜し、そのDLC膜の摩擦係数を測定し、その測定値を微粒子のDLC膜の摩擦係数の測定値とした。
 なお、本明細書において「粒子を被覆する膜の摩擦係数」とは、粒子に被覆される膜をSUS304の基材上に成膜し、その膜の摩擦係数を測定した値を意味するものとする。
 本実施例のサンプルは、以下の成膜条件で成膜されたものである。
 成膜装置 : 図4に示すプラズマCVD装置
 基材 : SUS304
 膜種 : DLC=2.0μm
 成膜時間 : 30min
 攪拌条件 : 攪拌なし
 高周波電源の周波数:250kHz
 高周波出力:300W
 なお、基材が粒子である場合とSUS304である場合とでは、適した成膜時間と攪拌条件が異なるため、上記の成膜時間と攪拌条件は基材が粒子である場合と異なるが、成膜時間と攪拌条件以外の成膜条件は基材が微粒子である場合と同様の条件を用いる。
 上記の成膜条件で成膜された2つのサンプルを図9及び図10に示す。
 次に、上記の2つのサンプルの摩擦係数を以下の方法で測定した。
 SUS304の基材上に成膜されたDLC膜の摩擦・摩耗特性を、ボールオンディスク型摩擦・摩耗試験機を用いて、測定荷重5N、ボール SUJ2、無潤滑にて測定した。その結果、2つのサンプルの摩擦係数は、0.17~0.2の範囲内であった。
 なお、以下の文献に記載された他の材料の摩擦係数を比較例として以下に記載する。
 文献:(社)日本潤滑学会 (1987) 『改訂版 潤滑ハンドブック』 養賢堂 P28
 シリコン(ケイ素):0.58
 アルミニウム   :0.82
 チタン      :0.58
In this example, the friction coefficient of the DLC film in the fine particles obtained by coating the particles with the DLC film was measured. However, since the coefficient of friction of the fine DLC film cannot be directly measured, a DLC film is formed on the substrate of SUS304, the coefficient of friction of the DLC film is measured, and the measured value is measured on the fine DLC film. The measured coefficient of friction was used.
In this specification, “the friction coefficient of the film covering the particles” means a value obtained by forming a film coated with the particles on a SUS304 substrate and measuring the friction coefficient of the film. To do.
The sample of this example was formed under the following film formation conditions.
Film forming apparatus: Plasma CVD apparatus shown in FIG. 4 Base material: SUS304
Film type: DLC = 2.0 μm
Deposition time: 30 min
Stirring conditions: No stirring Frequency of high frequency power supply: 250 kHz
High frequency output: 300W
In addition, since the suitable film formation time and stirring conditions differ between the case where the substrate is particles and SUS304, the above film formation time and stirring conditions are different from the case where the substrate is particles, Film formation conditions other than the film formation time and stirring conditions are the same as those used when the substrate is fine particles.
Two samples formed under the above film forming conditions are shown in FIGS.
Next, the friction coefficient of the above two samples was measured by the following method.
The friction / wear characteristics of the DLC film formed on the SUS304 substrate were measured using a ball-on-disk type friction / wear tester with a measurement load of 5 N, a ball SUJ2, and no lubrication. As a result, the friction coefficients of the two samples were in the range of 0.17 to 0.2.
In addition, the friction coefficient of the other material described in the following literature is described below as a comparative example.
Reference: The Lubrication Society of Japan (1987) “Revised Lubrication Handbook” Yokendo P28
Silicon (silicon): 0.58
Aluminum: 0.82
Titanium: 0.58
 図11(A)は、マイカ粒子にDLC膜を被覆した微粒子を含む離型剤のスプレーサンプルを示す写真である。
 DLC膜の成膜条件は以下のとおりである。
 成膜装置:図4に示すプラズマCVD装置
 粒子基材:マイカ粒子(φ4.0μm)
 膜種:DLC=0.1μm
 高周波電源の周波数:250kHz
 原料ガスとその比率:C/Ar=7/20cc
 成膜時間:1時間
 成膜圧力:10Pa
 高周波出力:250W
 バレル揺動:±75°、3rpm
 この離型剤は、揮発性有機溶媒を主成分とし、上記の微粒子を10wt%以下混合して作製したものである。
 図11(B)は、図11(A)の離型剤でコピー用紙に塗布しようとしている状態を示す写真であり、図11(C)は、図11(B)に示すコピー用紙を拡大した写真であり、図11(D)は、図11(B)に示す状態から離型剤をコピー用紙にスプレーにより塗布した後を示す写真である。
 図12は、粒径3.0μmのアパタイト粒子にDLC膜を被覆した微粒子を含む離型剤をコピー用紙にスプレーにより塗布した後を示す写真である。DLC膜の成膜条件は上記のマイカ粒子の成膜条件と同様である。
FIG. 11 (A) is a photograph showing a spray sample of a release agent containing fine particles in which mica particles are coated with a DLC film.
The conditions for forming the DLC film are as follows.
Film forming apparatus: plasma CVD apparatus shown in FIG. 4 Particle base material: Mica particles (φ4.0 μm)
Film type: DLC = 0.1 μm
Frequency of high frequency power supply: 250 kHz
Source gas and its ratio: C 7 H 8 / Ar = 7/20 cc
Deposition time: 1 hour Deposition pressure: 10 Pa
High frequency output: 250W
Barrel swing: ± 75 °, 3rpm
This release agent is prepared by mixing volatile organic solvent as a main component and mixing the above fine particles by 10 wt% or less.
FIG. 11B is a photograph showing a state where the release agent shown in FIG. 11A is about to be applied to a copy sheet, and FIG. 11C is an enlarged view of the copy sheet shown in FIG. 11B. FIG. 11D is a photograph showing the state after the release agent is applied to the copy paper by spraying from the state shown in FIG. 11B.
FIG. 12 is a photograph showing a state in which a release agent containing fine particles in which a DLC film is coated on apatite particles having a particle size of 3.0 μm is applied to copy paper by spraying. The film formation conditions for the DLC film are the same as the film formation conditions for the mica particles.
 図13(A)は、図11(A)に示す実施例4の離型剤(DLC被覆マイカ微粒子)を図14(A)に示すガラス基板にスプレーにより塗布した後を示す写真である。図13(B)は、図13(A)に示すガラス基板に塗布した離型剤の表面の水の接触角を測定した様子を示す写真である。この接触角の測定方法は実施例2と同様である。
 図14(A)は、ガラス基板を示す写真であり、図14(B)は、比較例として図14(A)のガラス基板の表面の水の接触角を測定した様子を示す写真である。この接触角の測定方法は実施例2と同様である。
 上記の接触角の測定結果は表5に示すとおりである。
Figure JPOXMLDOC01-appb-T000005
FIG. 13 (A) is a photograph showing the release agent (DLC-coated mica fine particles) of Example 4 shown in FIG. 11 (A) after being applied to the glass substrate shown in FIG. 14 (A) by spraying. FIG. 13B is a photograph showing a state in which the contact angle of water on the surface of the release agent applied to the glass substrate shown in FIG. The method for measuring the contact angle is the same as in Example 2.
FIG. 14A is a photograph showing a glass substrate, and FIG. 14B is a photograph showing a state in which the contact angle of water on the surface of the glass substrate of FIG. 14A is measured as a comparative example. The method for measuring the contact angle is the same as in Example 2.
The measurement results of the contact angle are as shown in Table 5.
Figure JPOXMLDOC01-appb-T000005
  1…容器
  2…定量バルブ
  2a…定量室
  3…アクチュエーター
  4…ディップチューブ
  5…ノズル口
  6…液相
  8…気相
  9…撹拌ボール
 11…重力方向
 13…チャンバー
 20a…原料ガス発生源
 21…ガスシャワー電極
 21a,21b…チャンバー蓋
 22…マスフローコントローラ(MFC)
 23…電源
 26a,26b…真空バルブ
 27a…アース遮蔽部材
 29…第1容器部材
 29a…第2容器部材
 29b…第1のリング状部材
 29c…第2のリング状部材
 29d…延出部
 31…真空容器
 31a…円筒部
 31b…六角型バレル
 32…ターゲット
 34~39…配管
 40…ターボ分子ポンプ(TMP)
 41…ポンプ(RP)
 42~44…第1~第3バルブ
 45…窒素ガス導入機構
 46…アルゴンガス導入機構
 47a,47b…ヒータ
 48…バイブレータ
 49…圧力計
 50…ガス導入機構
 51,51a…粒子
 52,52a…第1の膜
 53,53a…微粒子
 54…粒子
 55…第2の膜
 56…第3の膜
 57…微粒子
 58,59…金型
129a…第2容器部材における多角形を構成する内面
129b…第1のリング状部材の面
129c…第2のリング状部材の面
DESCRIPTION OF SYMBOLS 1 ... Container 2 ... Metering valve 2a ... Metering chamber 3 ... Actuator 4 ... Dip tube 5 ... Nozzle port 6 ... Liquid phase 8 ... Gas phase 9 ... Stirring ball 11 ... Gravity direction 13 ... Chamber 20a ... Source gas generation source 21 ... Gas Shower electrodes 21a, 21b ... Chamber lid 22 ... Mass flow controller (MFC)
DESCRIPTION OF SYMBOLS 23 ... Power supply 26a, 26b ... Vacuum valve 27a ... Ground shielding member 29 ... 1st container member 29a ... 2nd container member 29b ... 1st ring-shaped member 29c ... 2nd ring-shaped member 29d ... Extension part 31 ... Vacuum Container 31a ... Cylindrical part 31b ... Hexagonal barrel 32 ... Target 34-39 ... Piping 40 ... Turbo molecular pump (TMP)
41 ... Pump (RP)
42 to 44 ... 1st to 3rd valve 45 ... Nitrogen gas introduction mechanism 46 ... Argon gas introduction mechanism 47a, 47b ... Heater 48 ... Vibrator 49 ... Pressure gauge 50 ... Gas introduction mechanism 51, 51a ... Particles 52, 52a ... First Films 53, 53a ... Fine particles 54 ... Particles 55 ... Second film 56 ... Third film 57 ... Fine particles 58, 59 ... Mold 129a ... Inner surface 129b constituting the polygon in the second container member ... First ring Surface 129c ... surface of the second ring-shaped member

Claims (29)

  1.  微粒子を有する離型剤であり、
     前記微粒子は、粒子と、前記粒子を被覆する第1の膜または物質を有し、
     前記第1の膜または物質は、0.4以下の摩擦係数を有することを特徴とする離型剤。
    A release agent having fine particles,
    The fine particles have particles and a first film or substance that covers the particles,
    The mold release agent, wherein the first film or substance has a friction coefficient of 0.4 or less.
  2.  微粒子を有する離型剤であり、
     前記微粒子は、粒子と、前記粒子を被覆する第2の膜と、前記第2の膜を被覆する第1の膜または物質を有し、
     前記第1の膜または物質は、0.4以下の摩擦係数を有することを特徴とする離型剤。
    A release agent having fine particles,
    The fine particles include particles, a second film that covers the particles, and a first film or substance that covers the second film,
    The mold release agent, wherein the first film or substance has a friction coefficient of 0.4 or less.
  3.  請求項2において、
     前記第2の膜は、0.4以下の摩擦係数を有することを特徴とする離型剤。
    In claim 2,
    The mold release agent, wherein the second film has a friction coefficient of 0.4 or less.
  4.  請求項1乃至3のいずれか一項において、
     前記第1の膜または物質は、0.05以上0.3以下の摩擦係数を有することを特徴とする離型剤。
    In any one of Claims 1 thru | or 3,
    The mold release agent, wherein the first film or substance has a friction coefficient of 0.05 or more and 0.3 or less.
  5.  請求項1乃至4のいずれか一項において、
     前記微粒子の表面の水の接触角は60°以上であることを特徴とする離型剤。
    In any one of Claims 1 thru | or 4,
    A mold release agent, wherein a contact angle of water on the surface of the fine particles is 60 ° or more.
  6.  請求項1乃至5のいずれか一項において、
     前記粒子は、金属、セラミックス、樹脂及び鉱物からなる群から選択された少なくとも一つを含むことを特徴とする離型剤。
    In any one of Claims 1 thru | or 5,
    The mold release agent, wherein the particles include at least one selected from the group consisting of metals, ceramics, resins, and minerals.
  7.  請求項1乃至6のいずれか一項において、
     前記粒子及び前記第1の膜の少なくとも一方が250℃以上の耐熱性を有することを特徴とする離型剤。
    In any one of Claims 1 thru | or 6,
    A mold release agent, wherein at least one of the particles and the first film has a heat resistance of 250 ° C. or higher.
  8.  請求項2または3において、
     前記粒子、前記第1の膜及び前記第2の膜のうち少なくとも一つが250℃以上の耐熱性を有することを特徴とする離型剤。
    In claim 2 or 3,
    A release agent, wherein at least one of the particles, the first film, and the second film has a heat resistance of 250 ° C. or higher.
  9.  請求項1乃至8のいずれか一項において、
     前記粒子は、0.4以下の摩擦係数を有する物質を含むことを特徴とする離型剤。
    In any one of Claims 1 thru | or 8,
    The release agent, wherein the particles include a substance having a friction coefficient of 0.4 or less.
  10.  請求項1乃至8のいずれか一項において、
     前記粒子は、銀、インジウム、スズ、テルル、アンチモン、ビスマス、黒鉛、マイカ、タルク、クレイ、アパタイト、カオリン、シリカからなる群から選択された少なくとも一つを含むことを特徴とする離型剤。
    In any one of Claims 1 thru | or 8,
    The mold release agent, wherein the particles include at least one selected from the group consisting of silver, indium, tin, tellurium, antimony, bismuth, graphite, mica, talc, clay, apatite, kaolin, and silica.
  11.  請求項1乃至10のいずれか一項において、
     前記第1の膜または物質は、銀、インジウム、スズ、テルル、アンチモン、ビスマス、DLC、グラファイト、BN、BC、WBN、CrN、TiN、二硫化モリブデン及び二硫化タングステンからなる群から選択された少なくとも一つを含むことを特徴とする離型剤。
    In any one of Claims 1 thru | or 10,
    The first film or material is at least selected from the group consisting of silver, indium, tin, tellurium, antimony, bismuth, DLC, graphite, BN, BC, WBN, CrN, TiN, molybdenum disulfide and tungsten disulfide. A mold release agent characterized by comprising one.
  12.  請求項2、3及び8のいずれか一項において、
     前記第2の膜は、銀、インジウム、スズ、テルル、アンチモン、ビスマス、DLC、グラファイト、BN、BC、WBN、CrN、TiN、二硫化モリブデン、二硫化タングステン及びSiを含む物質からなる群から選択された少なくとも一つを含み、前記第1の膜とは異なる膜であることを特徴とする離型剤。
    In any one of claims 2, 3 and 8,
    The second film is selected from the group consisting of silver, indium, tin, tellurium, antimony, bismuth, DLC, graphite, BN, BC, WBN, CrN, TiN, molybdenum disulfide, tungsten disulfide, and Si. A mold release agent comprising at least one of the first film and a film different from the first film.
  13.  請求項1乃至12のいずれか一項において、
     前記微粒子の粒径は100μm以下であることを特徴とする離型剤。
    In any one of Claims 1 thru | or 12,
    A mold release agent, wherein the fine particles have a particle size of 100 μm or less.
  14.  請求項1乃至13のいずれか一項において、
     前記離型剤は油及び溶剤の少なくとも一方を含むことを特徴とする離型剤。
    In any one of Claims 1 thru | or 13,
    The mold release agent contains at least one of oil and a solvent.
  15.  請求項1乃至14のいずれか一項に記載の離型剤と、
     前記離型剤を収容する容器と、
    を具備することを特徴とする離型剤用品。
    A mold release agent according to any one of claims 1 to 14,
    A container containing the release agent;
    A release agent product characterized by comprising:
  16.  請求項1乃至14のいずれか一項に記載の離型剤と、噴射剤を充填した噴射容器を有することを特徴とする離型剤エアゾール。 A release agent aerosol comprising the release agent according to any one of claims 1 to 14 and an injection container filled with a propellant.
  17.  金型と、
     前記金型の表面に付着した離型剤と、
    を具備し、
     前記離型剤は、微粒子を有し、
     前記微粒子は、粒子と、前記粒子を被覆する第1の膜または物質を有し、
     前記第1の膜または物質は、0.4以下の摩擦係数を有することを特徴とする離型剤付き部材。
    Mold,
    A release agent attached to the surface of the mold;
    Comprising
    The release agent has fine particles,
    The fine particles have particles and a first film or substance that covers the particles,
    The member with a release agent, wherein the first film or substance has a friction coefficient of 0.4 or less.
  18.  金型と、
     前記金型の表面に付着した離型剤と、
    を具備し、
     前記離型剤は、微粒子を有し、
     前記微粒子は、粒子と、前記粒子を被覆する第2の膜と、前記第2の膜を被覆する第1の膜または物質を有し、
     前記第1の膜または物質は、0.4以下の摩擦係数を有することを特徴とする離型剤付き部材。
    Mold,
    A release agent attached to the surface of the mold;
    Comprising
    The release agent has fine particles,
    The fine particles include particles, a second film that covers the particles, and a first film or substance that covers the second film,
    The member with a release agent, wherein the first film or substance has a friction coefficient of 0.4 or less.
  19.  請求項18において、
     前記第2の膜は、0.4以下の摩擦係数を有することを特徴とする離型剤付き部材。
    In claim 18,
    The member with a release agent, wherein the second film has a friction coefficient of 0.4 or less.
  20.  断面の内部形状が円形または多角形であるチャンバー内に粒子を収容し、
     前記チャンバーの内面に対向させた対向電極を前記チャンバー内に配置し、
     前記チャンバーにアースを接続し、
     前記チャンバー内を真空排気し、
     前記断面に対して略垂直方向を回転軸として前記チャンバーを回転又は振り子動作させ、
     前記チャンバー内に原料ガスを導入し、
     前記対向電極に高周波電力を供給することにより、前記チャンバー内の粒子を攪拌あるいは回転させながらプラズマCVD法により、該粒子の表面に第1の膜または物質を被覆することで微粒子を作製する離型剤の製造方法であり、
     前記第1の膜または物質は、0.4以下の摩擦係数を有することを特徴とする離型剤の製造方法。
    Contain particles in a chamber whose cross-section is circular or polygonal,
    A counter electrode facing the inner surface of the chamber is disposed in the chamber;
    Connect a ground to the chamber,
    The chamber is evacuated,
    The chamber is rotated or pendulum operated with a direction substantially perpendicular to the cross section as a rotation axis,
    Introducing a source gas into the chamber;
    Release to produce fine particles by coating the first film or substance on the surface of the particles by plasma CVD while stirring or rotating the particles in the chamber by supplying high frequency power to the counter electrode A method for producing the agent,
    The method for manufacturing a release agent, wherein the first film or substance has a friction coefficient of 0.4 or less.
  21.  断面の内部形状が円形または多角形であるチャンバー内に粒子を収容し、
     前記チャンバーの内面に対向させた対向電極を前記チャンバー内に配置し、
     前記チャンバーにアースを接続し、
     前記チャンバー内を真空排気し、
     前記断面に対して略垂直方向を回転軸として前記チャンバーを回転又は振り子動作させ、
     前記チャンバー内に第1の原料ガスを導入し、
     前記対向電極に高周波電力を供給することにより、前記チャンバー内の粒子を攪拌あるいは回転させながらプラズマCVD法により、該粒子の表面に第2の膜を被覆し、
     前記第1の原料ガスの前記チャンバー内への導入を停止し、
     前記チャンバー内に第2の原料ガスを導入し、
     前記対向電極に高周波電力を供給することにより、前記チャンバー内の前記粒子を攪拌あるいは回転させながらプラズマCVD法により、該粒子の前記第2の膜の表面に第1の膜または物質を被覆することで微粒子を作製する離型剤の製造方法であり、
     前記第1の膜または物質は、0.4以下の摩擦係数を有することを特徴とする離型剤の製造方法。
    Contain particles in a chamber whose cross-section is circular or polygonal,
    A counter electrode facing the inner surface of the chamber is disposed in the chamber;
    Connect a ground to the chamber,
    The chamber is evacuated,
    The chamber is rotated or pendulum operated with a direction substantially perpendicular to the cross section as a rotation axis,
    Introducing a first source gas into the chamber;
    By supplying high-frequency power to the counter electrode, the particles in the chamber are agitated or rotated, and the surface of the particles is coated with a second film by a plasma CVD method.
    Stopping the introduction of the first source gas into the chamber;
    Introducing a second source gas into the chamber;
    By supplying high frequency power to the counter electrode, the surface of the second film of the particles is coated with the first film or substance by the plasma CVD method while stirring or rotating the particles in the chamber. A method for producing a release agent for producing fine particles with
    The method for manufacturing a release agent, wherein the first film or substance has a friction coefficient of 0.4 or less.
  22.  重力方向に対してほぼ平行な断面の内部形状が多角形である真空容器内に粒子を収容し、
     前記断面に対してほぼ垂直方向を回転軸として前記真空容器を回転させることにより該真空容器内の粒子を攪拌あるいは回転させながらスパッタリングを行うことで、該粒子の表面に第1の膜または物質を被覆することで微粒子を作製する離型剤の製造方法であり、
     前記第1の膜または物質は、0.4以下の摩擦係数を有することを特徴とする離型剤の製造方法。
    The particles are housed in a vacuum vessel whose internal shape of the cross section substantially parallel to the direction of gravity is a polygon,
    By performing sputtering while stirring or rotating the particles in the vacuum container by rotating the vacuum container about a direction substantially perpendicular to the cross section, the first film or substance is applied to the surface of the particles. It is a method for producing a release agent that produces fine particles by coating,
    The method for manufacturing a release agent, wherein the first film or substance has a friction coefficient of 0.4 or less.
  23.  重力方向に対してほぼ平行な断面の内部形状が多角形である真空容器内に粒子を収容し、
     前記断面に対してほぼ垂直方向を回転軸として前記真空容器を回転させることにより該真空容器内の粒子を攪拌あるいは回転させながらスパッタリングを行うことで、該粒子の表面に第2の膜を被覆し、
     前記断面に対してほぼ垂直方向を回転軸として前記真空容器を回転させることにより該真空容器内の前記粒子を攪拌あるいは回転させながらスパッタリングを行うことで、前記第2の膜の表面に第1の膜または物質を被覆することで微粒子を作製する離型剤の製造方法であり、
     前記第1の膜または物質は、0.4以下の摩擦係数を有することを特徴とする離型剤の製造方法。
    The particles are housed in a vacuum vessel whose internal shape of the cross section substantially parallel to the direction of gravity is a polygon,
    The surface of the particles is coated with the second film by performing sputtering while rotating or rotating the vacuum vessel about the direction perpendicular to the cross section as the rotation axis. ,
    Sputtering is performed while stirring or rotating the particles in the vacuum container by rotating the vacuum container about a direction substantially perpendicular to the cross section as a rotation axis, so that a first surface is formed on the surface of the second film. A method for producing a release agent for producing fine particles by coating a film or a substance,
    The method for manufacturing a release agent, wherein the first film or substance has a friction coefficient of 0.4 or less.
  24.  請求項21または23において、
     前記第2の膜は、0.4以下の摩擦係数を有することを特徴とする離型剤の製造方法。
    In claim 21 or 23,
    The method for manufacturing a release agent, wherein the second film has a friction coefficient of 0.4 or less.
  25.  請求項20乃至24のいずれか一項において、
     前記微粒子の表面の水の接触角は60°以上であることを特徴とする離型剤の製造方法。
    In any one of claims 20 to 24,
    A method for producing a release agent, wherein the contact angle of water on the surface of the fine particles is 60 ° or more.
  26.  請求項20乃至25のいずれか一項において、
     前記粒子は、0.4以下の摩擦係数を有する物質を含むことを特徴とする離型剤の製造方法。
    In any one of claims 20 to 25,
    The said particle | grain contains the substance which has a friction coefficient of 0.4 or less, The manufacturing method of the mold release agent characterized by the above-mentioned.
  27.  請求項20乃至26のいずれか一項において、
     前記粒子は、金属、セラミックス、樹脂及び鉱物からなる群から選択された少なくとも一つを含むことを特徴とする離型剤の製造方法。
    In any one of claims 20 to 26,
    The said particle | grain contains at least 1 selected from the group which consists of a metal, ceramics, resin, and a mineral, The manufacturing method of the mold release agent characterized by the above-mentioned.
  28.  請求項20乃至27のいずれか一項において、
     前記粒子及び前記第1の膜の少なくとも一方が250℃以上の耐熱性を有することを特徴とする離型剤の製造方法。
    In any one of claims 20 to 27,
    A method for producing a release agent, wherein at least one of the particles and the first film has a heat resistance of 250 ° C. or higher.
  29.  請求項21、23及び24のいずれか一項において、
     前記粒子、前記第1の膜及び前記第2の膜のうち少なくとも一つが250℃以上の耐熱性を有することを特徴とする離型剤の製造方法。
    25. In any one of claims 21, 23 and 24.
    A method for producing a release agent, wherein at least one of the particles, the first film, and the second film has a heat resistance of 250 ° C. or higher.
PCT/JP2017/009112 2016-05-12 2017-03-01 Release agent, method for producing same, release agent product, release agent aerosol, and component provided with release agent WO2017195448A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018516363A JPWO2017195448A1 (en) 2016-05-12 2017-03-01 Release agent and manufacturing method thereof, release agent article, release agent aerosol, and member with release agent

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016096358 2016-05-12
JP2016-096358 2016-05-12

Publications (1)

Publication Number Publication Date
WO2017195448A1 true WO2017195448A1 (en) 2017-11-16

Family

ID=60266447

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/009112 WO2017195448A1 (en) 2016-05-12 2017-03-01 Release agent, method for producing same, release agent product, release agent aerosol, and component provided with release agent

Country Status (2)

Country Link
JP (1) JPWO2017195448A1 (en)
WO (1) WO2017195448A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112248707A (en) * 2020-09-30 2021-01-22 中钢集团新型材料(浙江)有限公司 Production process of graphite-organic compound combined artware
WO2021167067A1 (en) * 2020-02-21 2021-08-26 株式会社ユーパテンター Composite device and method for manufacturing coated fine particles

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000178738A (en) * 1998-12-15 2000-06-27 Tdk Corp Member coated with diamond-like carbon film
JP2001509841A (en) * 1997-02-04 2001-07-24 ナムローゼ・フェンノートシャップ・ベーカート・ソシエテ・アノニム Coating having a layer of diamond-like carbon and diamond-like nanocomposite composition
JP2006519919A (en) * 2003-03-07 2006-08-31 ヘンケル コーポレイション Curable coating composition
JP2008214154A (en) * 2007-03-06 2008-09-18 Kobe Steel Ltd Forming mold
WO2011007653A1 (en) * 2009-07-13 2011-01-20 日本碍子株式会社 Method for producing diamond-like carbon film body.
JP2014129517A (en) * 2012-11-29 2014-07-10 Daikin Ind Ltd Mold release agent, mold release agent composition and manufacturing method of mold release agent

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06346075A (en) * 1993-06-04 1994-12-20 Hanano Shoji Kk Powdery releasing agent for molten metal forging
JP3155210B2 (en) * 1996-09-25 2001-04-09 リョービ株式会社 Water soluble release agent for die casting and its film structure
JP4025671B2 (en) * 2003-03-27 2007-12-26 京セラ株式会社 Manufacturing method of mold for silicon casting
JP4192070B2 (en) * 2003-10-24 2008-12-03 京セラ株式会社 Silicon casting mold and manufacturing method thereof
JP5218942B2 (en) * 2008-02-06 2013-06-26 株式会社ユーテック Plasma CVD apparatus, plasma CVD method and stirring apparatus
JP2015086238A (en) * 2013-10-28 2015-05-07 株式会社ユーテック Polishing agent, polishing article, polishing agent aerosol, polishing member and method for producing polishing agent

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001509841A (en) * 1997-02-04 2001-07-24 ナムローゼ・フェンノートシャップ・ベーカート・ソシエテ・アノニム Coating having a layer of diamond-like carbon and diamond-like nanocomposite composition
JP2000178738A (en) * 1998-12-15 2000-06-27 Tdk Corp Member coated with diamond-like carbon film
JP2006519919A (en) * 2003-03-07 2006-08-31 ヘンケル コーポレイション Curable coating composition
JP2008214154A (en) * 2007-03-06 2008-09-18 Kobe Steel Ltd Forming mold
WO2011007653A1 (en) * 2009-07-13 2011-01-20 日本碍子株式会社 Method for producing diamond-like carbon film body.
JP2014129517A (en) * 2012-11-29 2014-07-10 Daikin Ind Ltd Mold release agent, mold release agent composition and manufacturing method of mold release agent

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021167067A1 (en) * 2020-02-21 2021-08-26 株式会社ユーパテンター Composite device and method for manufacturing coated fine particles
CN112248707A (en) * 2020-09-30 2021-01-22 中钢集团新型材料(浙江)有限公司 Production process of graphite-organic compound combined artware
CN112248707B (en) * 2020-09-30 2021-10-08 中钢新型材料股份有限公司 Production process of graphite-organic compound combined artware

Also Published As

Publication number Publication date
JPWO2017195448A1 (en) 2019-04-11

Similar Documents

Publication Publication Date Title
US20190032205A1 (en) Plasma cvd apparatus, plasma cvd method, and agitating device
US20120216955A1 (en) Plasma processing apparatus
JP5782293B2 (en) Plasma generating electrode and plasma processing apparatus
CN1737188A (en) Anode for sputter coating
WO2017195448A1 (en) Release agent, method for producing same, release agent product, release agent aerosol, and component provided with release agent
JP6496898B2 (en) Manufacturing method of electronic parts
JP4777790B2 (en) Structure for plasma processing chamber, plasma processing chamber, and plasma processing apparatus
CN109256326A (en) Plasma processing apparatus component and its method of spray plating
JP6069098B2 (en) Surface fluorinated fine particles, surface fluorination apparatus, and method for producing surface fluorinated fine particles
KR20200049901A (en) Powder coating apparatus
US10266938B2 (en) Deposition method, deposition apparatus, and structure
WO2017195449A1 (en) Lubricant, method for producing same, lubricant product, lubricant aerosol, component provided with lubricant, and method for producing movable component provided with lubricant
JP2015086238A (en) Polishing agent, polishing article, polishing agent aerosol, polishing member and method for producing polishing agent
JP2018100413A (en) Polishing agent, polishing article, polishing agent aerosol, and method for producing polishing agent
Hussin et al. Ultrasonic atomization of graphene derivatives for heat spreader thin film deposition on silicon substrate
JP2010037565A (en) Film-depositing apparatus and film-forming method
WO2021167067A1 (en) Composite device and method for manufacturing coated fine particles
WO2007015380A1 (en) Transparent conductive fine particles, method for producing same, and electrooptical device
JP7246759B2 (en) Conductive material and manufacturing method thereof, conductive material aerosol and manufacturing method thereof, contact and manufacturing method thereof
JP5277442B2 (en) Fine particles
JP2646582B2 (en) Plasma CVD equipment
Schitov The silicon breakdown-proof coatings deposition in RF discharge plasma
JP2021116437A (en) Target vessel, film deposition method, method for manufacturing target vessel, and pressure sensor
JP2002069629A (en) High-frequency sputtering equipment
JPH1150259A (en) Production of thin film and device therefor

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018516363

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17795809

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17795809

Country of ref document: EP

Kind code of ref document: A1