WO2017018316A1 - 眼鏡レンズ製造システム - Google Patents

眼鏡レンズ製造システム Download PDF

Info

Publication number
WO2017018316A1
WO2017018316A1 PCT/JP2016/071407 JP2016071407W WO2017018316A1 WO 2017018316 A1 WO2017018316 A1 WO 2017018316A1 JP 2016071407 W JP2016071407 W JP 2016071407W WO 2017018316 A1 WO2017018316 A1 WO 2017018316A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
lens mold
spectacle
manufacturing system
mold
Prior art date
Application number
PCT/JP2016/071407
Other languages
English (en)
French (fr)
Inventor
広章 渡邊
淳司 長尾
寿 伊川
信吾 小野
紘史 上野
Original Assignee
東海光学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東海光学株式会社 filed Critical 東海光学株式会社
Priority to CN201680042262.1A priority Critical patent/CN107850795A/zh
Priority to KR1020187002110A priority patent/KR102503006B1/ko
Priority to JP2017530819A priority patent/JP6703226B2/ja
Priority to EP16830421.0A priority patent/EP3312663A4/en
Publication of WO2017018316A1 publication Critical patent/WO2017018316A1/ja
Priority to US15/856,645 priority patent/US10688739B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00432Auxiliary operations, e.g. machines for filling the moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/0048Moulds for lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00951Measuring, controlling or regulating
    • B29D11/00961Measuring, controlling or regulating using microprocessors or computers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C13/00Assembling; Repairing; Cleaning
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/06Lenses; Lens systems ; Methods of designing lenses bifocal; multifocal ; progressive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/112Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using individual droplets, e.g. from jetting heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/0048Moulds for lenses
    • B29D11/00528Consisting of two mould halves joined by an annular gasket

Definitions

  • the present invention relates to a system for manufacturing a spectacle lens having an aspheric curved surface.
  • a manufacturing system of a progressive power eyeglass lens having an aspheric surface As a manufacturing system of a progressive power eyeglass lens having an aspheric surface, a system described in Patent Document 1 below is known.
  • a circular semi-finished blank (round lens) having a plurality of types of outer surface curves and lens diameters prepared for each predetermined frequency range is selected based on prescription values, and the inner surface and outer surface are processed by a processing machine.
  • the inner and outer surfaces of the aspherical surface of the spectacle lens are created ([0029]).
  • the outer shape of the round lens after the creation of the aspherical surface is processed into a lens shape such as a drop shape smaller than the round lens by a processing machine in order to attach to the spectacle frame (same paragraph).
  • spectacle lenses having various aspheric surfaces are ground using a round lens, so that even if a round lens that matches a prescription value is selected, many parts of the round lens need to be ground. This is troublesome and the part to be ground is wasted. Further, if the number of round lenses is increased in order to reduce the portion to be ground, management and selection of the round lenses becomes troublesome. Furthermore, since the entire outer edge portion of the round lens after the creation of the aspherical surface is processed into a target lens shape, it takes time and many parts are eliminated by processing.
  • the object of the present invention is to eliminate or reduce the portion that is wasted due to the creation of an aspherical surface or the like and the processing of the target lens shape, making it easy to manage and select the round lens or its type, and reduce the processing effort.
  • the object is to provide a spectacle lens manufacturing system.
  • the invention described in claim 1 is a spectacle lens manufacturing system having lens material filling means for filling a lens mold with a lens material, wherein the lens mold has a front surface on the rear surface of the spectacle lens.
  • a three-dimensional printer that includes a rear lens mold frame, the rear lens mold frame having a rear lens mold base, and adding a surface adding portion to a front surface of the rear lens mold base; The front surface of the rear lens mold is formed by the front surface of the rear lens mold base to which the surface addition portion is added.
  • a spectacle lens manufacturing system having lens material filling means for filling a lens mold with a lens material, wherein the rear surface of the lens mold is a front surface of the spectacle lens.
  • a three-dimensional printer that includes a front lens mold frame, the front lens mold frame having a front lens mold base, and adding a surface adding portion to a rear surface of the front lens mold base; The rear surface of the front lens mold frame is formed by the rear surface of the front lens mold base body provided with the surface addition portion.
  • a spectacle lens manufacturing system having lens material filling means for filling a lens mold with a lens material, wherein the lens mold has a front surface on the rear surface of the spectacle lens.
  • the front surface of the rear lens mold base is formed by the front surface of the rear lens mold base to which the portion is added, and the rear surface of the front lens mold base to which the surface addition portion is added is used to form the front lens mold base.
  • Rear surface is formed And it is characterized in and.
  • the lens mold further includes a side lens mold frame whose inner surface is formed in accordance with a side circumference of the spectacle lens, and at least the side. A portion including a part of the inner surface of the peripheral lens mold is formed by fluid resin ejection means for ejecting a curable fluid resin or the three-dimensional printer.
  • the invention according to claim 6 is the above invention, further comprising contour shape data obtaining means for obtaining contour shape data indicating a contour shape of the spectacle lens, wherein the fluid resin discharging means or the three-dimensional
  • the printer is characterized in that at least a part of the inner surface of the lateral lens mold is formed in a shape corresponding to the contour shape data.
  • the invention according to claim 7 is the above invention, wherein the contour shape data is transmitted from an orderer computer.
  • the invention according to claim 8 is the above invention, wherein the fluid resin discharge means or the three-dimensional printer has a shape indicated by the contour shape data at least a part of an inner surface of the lateral lens mold.
  • the invention according to claim 9 is the above invention, wherein edge shape data acquisition means for acquiring edge shape data indicating an edge shape of an eyeglass frame into which the eyeglass lens is inserted is provided, and the fluid resin discharge means Alternatively, the three-dimensional printer is characterized in that at least a part of the inner surface of the lateral lens mold is formed in a shape corresponding to the edge shape data.
  • the invention according to claim 10 is the above invention, wherein the edge shape data is transmitted from an orderer computer.
  • the fluid resin discharging means is a second three-dimensional printer.
  • the invention described in claim 12 is the above invention, wherein the fluid resin discharge means is a resin discharge dispenser.
  • the invention according to claim 13 is the above invention, further comprising curing means for curing the fluid resin, wherein the fluid resin is an ultraviolet curable resin, and the curing means is an ultraviolet irradiation means. It is characterized by being.
  • the invention according to claim 14 is the above invention, further comprising a curing means for curing the fluid resin, wherein the fluid resin is a thermosetting resin, and the curing means is a heating means. It is characterized by being.
  • a fifteenth aspect of the present invention is the above-described invention, wherein the flowable resin is a naturally cured resin that is cured by a change in a component after ejection.
  • the invention according to claim 16 is the above invention, wherein at least one of the front lens mold base and the rear lens mold base is made of glass.
  • the invention according to claim 17 is the above invention, wherein the lens material is a thermosetting resin material.
  • a spectacle lens manufacturing system in which the creation of an aspherical surface or the like and the use of the target lens shape eliminate or reduce unnecessary portions, and the round lens or its type can be easily managed and selected, and the processing effort is reduced. Is provided.
  • FIG. 10A is a schematic vertical end view of the viscous resin discharge means or front lens mold of FIG. 9, and FIG. 10B is a schematic vertical end view of the fixing means or lens mold of FIG.
  • the spectacle lens manufacturing system 1 manufactures a plastic spectacle lens having an aspheric surface or the like. As shown in FIG. are connected to the server 2 via the Internet or the like so as to be communicable, and each has a plurality of terminal computers (terminals) 4 installed on the orderer side. Prescription data 6 and the like are transmitted and received between the server 2 and each terminal 4. Each terminal 4 is an orderer side computer. One terminal 4 may be provided. Further, the terminal 4 may be omitted, and prescription data 6 or the like obtained by facsimile from the orderer may be input to the server 2 regardless of the number of terminals 4. When the terminal 4 is omitted, the server 2 or the like takes on the function of the terminal 4.
  • the server 2 includes a storage unit 10 in which various data including prescription data 6 and programs are stored, a communication unit 12 and a connection unit 13 in which various types of data are transmitted and received, and these are based on a program or the like.
  • Control means 14 for controlling is provided.
  • the server 2 is connected to a front / rear lens mold selection device 16, a three-dimensional printer 18, a lens curing device 19, and a finishing cutting device 20 so as to communicate with each other. At least one of these may be integrated with the server 2, or at least two of these may be integrated with each other. Also, the ratio of the number of these devices including the server 2 varies, such as providing at least one of the front and rear lens form selection device 16, the three-dimensional printer 18, the lens curing device 19, and the finish cutting device 20.
  • the server 2 is connected to the front and rear lens mold selection device 16, the front and rear lens mold selection device 16 is connected to the three-dimensional printer 18, the three-dimensional printer 18 is connected to the lens curing device 19, and the lens curing device 19 is connected. It may be another connection form in which data can be transmitted / received directly or indirectly to / from the server 2 such as being connected to the finish cutting device 20.
  • the front and rear lens mold selection device 16 includes a front lens mold stocker 22 in which various front lens molds 21 are stored, a rear lens mold base stocker 26 in which various rear lens mold bases 24 are stored, Front and rear lens mold selection means 28 for selecting the front lens mold 21 and the rear lens mold base 24 based on the lens mold selection data 27 and taking them out from the front lens mold stocker 22 and the rear lens mold base stocker 26; It has connection means 29, storage means 30 for storing various data and programs, and control means 31 for controlling them.
  • the front and rear lens mold selection means 28 is, for example, a robot hand.
  • the front lens mold 21 and the rear lens mold base 24 are both made of glass, but other materials may be used, and different materials may be used. For convenience of explanation, the side closer to the object is the front, and the side closer to the eyeball is the rear.
  • the three-dimensional printer 18 cures a liquid resin that is cured by ultraviolet rays (UV) by UV irradiation, and forms a lateral lens mold 33 (FIG. 2) having a shape based on the lateral lens mold shape data 32 or an aspherical surface.
  • the aspherical surface adding portion 35 (surface adding portion, see FIG. 3) having a shape based on the shape data 34 (surface shape data) is formed.
  • the three-dimensional printer 18 includes a liquid fixed quantity discharge unit 36, a UV irradiation unit 37 that is, for example, a UV light emitting LED, a connection unit 38, a storage unit 39 that stores various data and programs, and a control unit 40 that controls them. have.
  • the liquid resin quantified based on the side lens mold form shape data 32 is discharged while being irradiated with UV by the UV irradiation means 37, and the cured liquid resin deposit is the side lens mold form. It becomes a shape according to the shape data 32 to be a side lens mold frame 33. Further, in the liquid fixed quantity discharge means 36, the liquid resin quantified based on the aspheric surface shape data 34 is discharged to the front surface 24 a of the rear lens mold base 24 while being irradiated with UV by the UV irradiation means 37 and cured.
  • the liquid resin deposit (or the partially exposed front surface 24 a) has a shape according to the aspheric shape data 34 on the front surface 24 a of the rear lens mold base 24, and the aspheric surface addition portion 35 is provided on the rear lens mold base 24.
  • a rear lens mold 41 is formed.
  • the three-dimensional printer 18 may be one that discharges a resin liquid that is cured by heat.
  • liquid (ink) is sequentially discharged and deposited in a fixed amount by the liquid fixed discharge means 36 based on various shape data. And may be cured by curing means (UV irradiation means 37 or heating means).
  • the curing of the liquid by the curing means may be performed at the time of discharge, at the time of deposition (at the time of adhesion), or after a predetermined time has elapsed from the time of ejection (deposition).
  • the curing means of the three-dimensional printer 18 may be arranged in a separate device from the three-dimensional printer 18 or may be configured as a separate and independent device. Further, the three-dimensional printer 18 may be other than the one that laminates and hardens the liquid as long as it is a layered modeling (layered modeling means). For example, a metal powder (solid) spread in layers on a table.
  • a metal powder is laid in layers on the layer and irradiated with the laser in the same manner.
  • a three-dimensional metal additive manufacturing apparatus that obtains a metal structure (side circumferential lens form 33) by repeating these (for example, several thousand times) may be used.
  • the three-dimensional printer 18 may be a combination of a liquid that is laminated and cured and a three-dimensional metal additive manufacturing apparatus.
  • the liquid resin may be a highly viscous resin or the like.
  • a fluid resin that is a fluid resin may be used.
  • the three-dimensional printer that forms the side lens mold 33 and the three-dimensional printer that forms the aspherical surface adding portion 35 may be installed separately. In this case, they are the same three-dimensional printer. Alternatively, different three-dimensional printers may be used. As described above, when the lateral lens mold 33 is created by the second three-dimensional printer provided separately from the three-dimensional printer 18 that forms the front lens mold 21 and the rear lens mold 41, Similarly to the three-dimensional printer 18, the second three-dimensional printer discharges the liquid resin in a curable manner, and functions as a fluid resin discharging unit. A plurality of second three-dimensional printers may be provided.
  • a plurality of some components of the three-dimensional printer 18 are arranged such that only a plurality of liquid dispensing means 36 are arranged and others are used in common. It may be used in common.
  • the formation of the side lens mold 33 can be omitted.
  • a gasket that also serves as a spacer may be disposed on the outer edge of the front lens mold 21 and the rear lens mold 41.
  • the three-dimensional printer 18 may form the front lens mold 21 by forming an aspheric surface addition portion only on the rear surface of the front lens mold base, or the rear surface of the front lens mold base and the rear lens mold. You may form an aspherical surface addition part in both the front surfaces 24a of the base
  • the three-dimensional printer 18 may be provided with a spherical surface addition portion in which a spherical surface is formed as a surface addition portion instead of the aspheric surface addition portion or together with the aspheric surface addition portion.
  • a plane addition portion to be formed may be provided, a progressive surface addition portion in which a progressive surface is formed may be provided, or a surface addition portion in which another surface is formed may be provided.
  • the three-dimensional printer 18 can add a spherical surface addition portion so that a spherical surface having a different curvature radius is formed on the front surface 24a which is a spherical surface in the rear lens mold base 24, and the rear lens mold frame.
  • a spherical surface addition portion may be added to the front surface 24a which is an aspherical surface in the base 24 so that a spherical surface is formed.
  • the surface shape data may be similarly changed with respect to the aspheric surface shape data 34.
  • the side lens lens form shape data 32 preferably represents a three-dimensional shape, but may represent a two-dimensional shape.
  • the thickness perpendicular to may have a predetermined distribution such as a constant thickness.
  • the horizontal direction when the lens is set up as in normal wearing is the X-axis direction
  • the vertical direction is the Y-axis direction
  • the direction perpendicular to the XY plane is the Z-axis direction.
  • the right direction is a positive direction when standing in front of the lens, and the right direction is the negative direction of the X-axis for the wearer.
  • the upward direction standing in front of the lens is the positive direction (same for the wearer), and the rear direction is the positive direction in the Z-axis direction.
  • the various axes and how to take them in the positive direction may be changed as appropriate.
  • At least one of the front lens mold 21 and the rear lens mold base 24 taken out by the front and rear lens mold selection device 16 is formed with a side lens mold 33 by the three-dimensional printer 18 and the rear lens mold base.
  • An aspheric surface addition portion 35 is added to the front surface 24 a of 24, and the rear lens mold frame 41, which is the rear lens mold base 24 with the front lens mold frame 21 and the aspheric surface addition portion 35, comes into contact with the lateral lens mold frame 33.
  • a lens mold 42 (FIG. 3) is formed.
  • the aspheric surface adding portion 35 is formed only in a portion that is in the side lens mold frame 33, and is not formed in a portion that is in contact with the side lens lens frame 33 or a portion outside the lens lens frame 33.
  • the aspheric surface addition portion 35 may be formed in a portion other than the portion that is in the side lens mold frame 33.
  • a lens mold such as an adhesive tape that fixes at least two of the front lens mold 21, the rear lens mold 41, and the side lens mold 33 in the lens mold 42 so as not to be displaced, and an adhesive that can be easily peeled off.
  • Fixing means may be provided, and the lens mold fixing means is provided by the lens mold fixing means pasting device provided in the front / rear lens mold selecting device 16 or the three-dimensional printer 18 or independently. It may be affixed to 42 or may be affixed manually.
  • the side lens mold 33 is formed so as to have viscosity and adhesiveness (made of a material exhibiting viscosity and adhesiveness after curing) and fixed to the front lens mold 21 and the rear lens mold 41.
  • at least one of the front lens mold 21 and the rear lens mold 41 may be viscous or adhesive.
  • the lens curing device 19 is formed in a portion surrounded by the rear surface 21 a of the front lens mold 21 in the lens mold 42, the front surface 24 a with the aspheric surface addition portion 35 of the rear lens mold 41, and the inner surface of the side lens mold frame 33.
  • the resin material filling means 43 as the lens material filling means for filling the thermosetting resin material as the lens material and the lens mold frame 42 filled with the thermosetting resin material, the kind of the resin material, etc.
  • a mold release means 46 for separating the front spectacle lens 45 (FIG.
  • the lens curing means 44 is a chamber provided with a heater, for example, and the mold release means 46 is a robot hand, for example. It should be noted that another lens material such as a UV curable resin material may be used instead of the thermosetting resin material, and another plastic such as a UV curable resin may be used instead of the thermosetting resin.
  • the finish cutting device 20 includes contour shape data 51 (FIG. 5) of the eyeglass lens 50 (see FIG. 4) and edge type data representing the shape of the edge that is the side peripheral surface of the eyeglass lens 50.
  • a storage means 53 for storing various data and programs such as 52, a cutting means 54 for cutting the pre-finishing spectacle lens 45, a connection means 56, and a control means 58 for controlling them.
  • the cutting means 54 is, for example, a numerically controlled grindstone and chuck, and cuts the pre-finishing spectacle lens 45 so that the outer shape becomes a shape based on the contour shape data 51 to become the spectacle lens 50.
  • the pre-finishing spectacle lens 45 includes a portion to be the spectacle lens 50 and a rod-shaped handling portion 45a added to the portion.
  • the pre-finishing spectacle lens 45 can be held instead of the portion that becomes the spectacle lens 50 without touching the portion that becomes the spectacle lens 50 by grasping the handling portion 45a, and the handling portion 45a is held by the pre-finishing spectacle lens 45. It is provided for handling the pre-finishing spectacle lens 45 in a process after fabrication.
  • Each terminal 4 includes a storage unit 60 in which various data including prescription data 6 and programs are stored, a communication unit 62 and a connection unit 63 in which various types of data are transmitted and received, and these are based on a program or the like. And control means 64 for controlling.
  • Each terminal 4 has an input means 66 for inputting the prescription data 6 and edge type data 52 and an outline shape input means 68 for inputting the outline shape data 51, respectively, as with the three-dimensional printer 16 for the server 2. 69 and 70 are communicably connected.
  • the input means 66 is a pointing device such as a mouse, or a keyboard, a touch panel, or a combination thereof.
  • the input means 66 accepts input of the edge type data 52 and the prescription data 6 by its operation, and transmits it to the terminal 4 via the connection means 69. To do.
  • the prescription data 6 is, for example, spherical power (S power), astigmatic power (C power), astigmatic axis, addition power, prism, edge thickness, color, interpupillary distance, and aspheric surface level.
  • S power spherical power
  • C power astigmatic power
  • astigmatic axis addition power
  • prism prism
  • edge thickness color
  • interpupillary distance and aspheric surface level.
  • aspheric surface level is preferably left and right separately, but right and left common data or single data can be used as appropriate.
  • the prescription data 6 only a part of these can be adopted, or another can be added.
  • the radius of curvature may be included.
  • the aspheric level indicates the degree of difference from the closest spherical surface related to the aspherical surface of the spectacle lens 50, and is 0 when there is no difference from the spherical surface, 1 when the difference from the spherical surface is slight, If the difference is larger than the difference at the aspherical surface level 1, 2,.
  • the value of the aspheric surface level indicates the kind of set of values of each aspheric coefficient A 3 , A 4 , A 6 , A 8 according to the curvature radius R of the following aspheric expression (Equation 1). Has been.
  • D is the distance [mm] from the lens geometric center point
  • Z is the aspheric height [mm].
  • a database indicating the correspondence between the aspheric level and each aspheric coefficient corresponding to the radius of curvature R is stored in the storage means 10 of the server 2, and the aspheric expression (Equation 1) is also stored in the server 2. It is stored in the means 10 or the like.
  • an aspherical expression other than Equation 1 can be adopted.
  • a set of each aspherical coefficient is used instead of or together with the aspherical level, or every predetermined interval in the aspherical expression (Equation 1).
  • a set of Z values in the D value of the above is used, or a value obtained by subtracting the spherical surface height in the D value of the radius of curvature R from the Z value (when an aspherical surface is formed by adding an adherent to the spherical surface) (Aspheric addition amount, which is the addition amount of the adherent), or a pattern indicating the type of transmittance distribution (astigmatism distribution) may be used. Still further, the aspherical shape of the spectacle lens 50 is designated or calculated using prescription data 6 such as at least one of spherical power (S power), astigmatic power (C power), astigmatic axis, addition power, and the like. Can be.
  • edge type data 52 has a bevel shape T (FIG. 6A) in which the cross section of the edge of the spectacle lens 50 protrudes in a ⁇ shape (triangular shape), the protrusion height and the distance from the front peripheral edge of the apex. If it has a groove shape K having a U-shaped cross section (FIG. 6 (b)), the depth and the distance from the front peripheral edge of the deepest part K-1, K-2, etc. If the cross section is flat (flat), then H-1, H-2, etc.
  • the edge type data 52 represents a bevel shape having a projection height of 0.7 mm and having a vertex at a position having a horizontal distance of 1.0 mm from the front surface periphery.
  • 52 represents the shape of a groove having a predetermined width having a depth of 0.6 mm and a deepest portion at a position having a horizontal distance of 1.0 mm from the peripheral edge of the front surface.
  • the edge type data 52 may include other shapes such as a bevel shape having a trapezoidal cross section. In this case, for example, the trapezoidal bevel shape may be G-1, G-2, or the like.
  • the triangular bevel may be Ta-1 and the trapezoidal bevel may be Tb-1. Further, the edge type data 52 may be acquired separately for the left and right sides.
  • the contour shape input means 68 receives input of contour shape data 51 representing the contour of the target lens shape of the spectacle lens 50.
  • the contour shape data 51 is transmitted to the terminal 4 via the connection means 70 based on control by the control means (not shown) of the contour shape input means 68.
  • the contour shape input means 68 is, for example, a spectacle frame tracer that converts the inner peripheral shape of the left and right rims related to the spectacle frame F into data as the contour shape data 51 by scanning the probe. Since the spectacle lens 50 is attached to the rim of the spectacle frame F, it is formed into a target lens shape corresponding to the rim shape (rim inner peripheral shape).
  • the contour shape data 51 is a set of XY coordinate values of a predetermined number of coordinate acquisition points (for example, 100 points) with respect to a predetermined origin regarding the rim inner peripheral shape of the spectacle frame F. Adjacent coordinate acquisition points are selected to be equiangular with respect to the origin or any other point.
  • the contour shape data 51 includes the coordinate value of the eye point E.
  • the eye point E is a pupil position at the time of wearing projected on the XY plane, and is arranged so as to coincide with the optical center C of the spectacle lens 50 when there is no prism, and when there is a prism, a predetermined point corresponding to the prism is provided. Placed in position.
  • the contour shape data 51 is acquired as representing the contour of the apex of the bevel shape, the deepest portion of the groove shape, or the flat portion, but may be acquired as representing the contour of the front surface (or the rear surface) of the spectacle lens 50. good.
  • the lens shape of the spectacle lens 50 (the outer shape when the spectacle frame F is mounted) is represented by the contour shape indicated by the contour shape data 51 and the edge shape (side circumferential cross-sectional shape) indicated by the edge type data 52.
  • the contour shape data 51 is the desired spectacle lens 50.
  • the contour shape data 51 may be input from the input means 66 or a scanner that reads the shape described in the drawing, or input by selecting an existing one. Also good.
  • the contour shape data 51 may be obtained by performing a predetermined calculation on data representing the inner peripheral shape of the rim. That is, the contour shape data 51 may not completely match the rim shape of the spectacle frame F. Similarly, the edge type data 52 may not completely match the rim shape of the spectacle frame F.
  • the coordinate acquisition points may be selected so that adjacent points have the same distance or the same shape length.
  • the contour shape data 51 is left and right separately, but only one is acquired, and the other contour shape data 51 is calculated as a shape symmetric with respect to the Y axis using the acquired data.
  • the contour shape data 51 may be a set of three-dimensional coordinate values including the Z-axis coordinate values.
  • the edge shape data 52 may be detected by the contour shape input means 68, or instead of or along with the edge type data 52, the rim shape of the eyeglass frame F corresponding to the edge by the eyeglass frame tracer.
  • the edge shape data may be used by converting the shape of the groove corresponding to the bevel and the shape of the protrusion corresponding to the groove into data.
  • the contour shape data 51 and the edge type data 52 may be used in common as the shape data representing the shape of the eyeglass lens 50.
  • the edge type data 52 may be omitted, and the edge of the already determined cross-sectional shape may be finished.
  • the eye point E may be handled not as the contour shape data 51 but as the prescription data 6 or the like.
  • the processing may be performed assuming that the eye point E is an origin such as a coordinate acquisition point. Part or all of the calculation related to the contour shape data 51 and the like may be performed in the terminal 4.
  • the spectacle frame tracer is connected to the server 2 (in the manufacturer), the spectacle frame F is sent to the server 2 side (manufacturer) and set in the spectacle frame tracer, and the contour shape data 51 is input to the server 2. May be.
  • FIG. 7 is a flowchart according to an operation example of the eyeglass lens manufacturing system 1.
  • the operation of the control means will be described as the operation of the device as appropriate.
  • the operation of the control unit 14 of the server 2 is appropriately described as the operation of the server 2.
  • the process step is described as S as appropriate.
  • the steps may be appropriately changed to one or more other steps for performing equivalent processing, and the order may be appropriately changed.
  • the terminal 4 arranged on the orderer side including the spectacle store receives the prescription data 6 and the edge type data 52 from the input means 66 (S1).
  • S power ⁇ 2.00 D (diopter) and lens center thickness 1.0 mm are input as prescription data 6, and T ⁇ 1 is input as edge type data 52.
  • the spectacle frame F or the like is set in the contour shape input means 68 to acquire the contour shape data 51, and the terminal 4 receives the contour shape data 51 (S2).
  • data representing a shape as shown in FIG. 5 is input as the right contour shape data 51.
  • the terminal 4 stores the set of the prescription data 6, the contour shape data 51, and the edge type data 52 with an identification symbol for distinguishing from the other set.
  • the terminal 4 transmits these data and an identification symbol to the server 2 (S3).
  • At least one of the terminal 4 and the contour shape input unit 68 that acquires the contour shape data 51 and the server 2 constitutes a contour shape data acquisition unit, and at least one of the terminal 4 and the input unit 66 that acquires the edge type data 52 and the server 2. Either of them constitutes edge shape data acquisition means.
  • the server 2 When the server 2 receives the set of the prescription data 6, the contour shape data 51, and the edge type data 52, the server 2 stores it for each identification symbol (S4). Then, the server 2 calculates the front and rear lens mold selection data 27 from the prescription data 6 and transmits it to the front and rear lens mold selection device 16 (S5). For example, assuming that the refractive index of the spectacle lens 50 is 1.60 due to the S power of -2.00 D and the lens center thickness of 1.0 mm, the radius of curvature of the rear surface 21a (FIG. 3) is 190.06 mm. Data indicating that the rear lens mold base 24 having the radius of curvature of the lens mold 21 and the front surface 24a (FIG. 3) of 519.01 mm is selected is generated.
  • the rear surface 21 a of the front lens mold 21 defines the front surface of the spectacle lens 50
  • the front surface 24 a of the rear lens mold base 24 defines the basis of the rear surface of the spectacle lens 50.
  • the server 2 stores, as a database, a set of the radius of curvature of the rear surface 21a of the front lens mold 21 and the curvature radius of the front surface 24a of the rear lens mold base 24 (type of front and rear lens molds) for each S power. Then, the front and rear lens form selection data 27 is obtained by accessing the database based on the S frequency of the prescription data 6. Part or all of the calculation of the front and rear lens mold selection data 27 may be performed by the front and rear lens mold selection device 16.
  • the prescription data 6 may include material data relating to the material of the spectacle lens 50, and the server 2 takes into account the refractive index when the spectacle lens 50 is produced from the material indicated by the material data, and the front and rear lens molds are taken into account.
  • the selection data 27 may be obtained.
  • the material data may indicate material properties such as refractive index and transmittance.
  • the material data may be calculated from the prescription data 6 (S frequency etc.).
  • the server 2 calculates the side lens lens form data 32 from the prescription data 6, the contour shape data 51, and the edge type data 52, and transmits it to the three-dimensional printer 18 (S6). Note that a part or all of the calculation of the side lens mold shape data 32 may be performed by the three-dimensional printer 18.
  • the server 2 has an inner surface corresponding to the contour shape data 51 as shown in FIG. 5 as the base shape data of the lateral lens mold shape data 32, and is offset radially outward by a predetermined amount with respect to the inner surface.
  • the ring shape data having the outer surface and having a thickness corresponding to the edge thickness of the prescription data 6 is calculated.
  • the base shape data includes an eye point E.
  • the server 2 replaces the edge thickness of the prescription data 6 with the S power or the radius of curvature of the rear surface 21a of the front lens mold 21 indicated by the front and rear lens mold selection data 27 and the front surface 24a of the rear lens mold base 24.
  • the thickness (distribution) of the base shape data of the side lens formwork shape data 32 may be calculated with reference to the radius of curvature, or more accurate thickness with reference to both the S frequency and the edge thickness. (Distribution) data may be calculated.
  • the server 2 refers to the result of pre-calculation of the two belt-like portions along the X axis that are spaced apart from each other as the handling portion shape data of the side lens mold shape data 32, and The thickness is calculated in the same manner as the base shape data.
  • the server 2 adds handling part shape data so that it may connect to the predetermined position of base shape data. Further, the server 2 changes the inner surface of the base shape data of the side lens formwork shape data 32 to a surface shape corresponding to the edge shape indicated by the edge type data 52. If the edge type data 52 is T-1, a concave portion matching the bevel shape is calculated. That is, the server 2 changes the data on the original inner surface to the data that takes into account the shape data of the bevel groove having the deepest portion of 0.7 mm at the position having a horizontal distance of 1.0 mm from the peripheral edge of the front surface. In addition, the server 2 transmits the contour shape data 51 and the edge type data 52 to the finish cutting device 53 (S7). Note that some or all of the calculations performed by the server 2 may be performed by another device such as the terminal 4.
  • the server 2 appropriately calculates the aspheric shape data 34 from the prescription data 6 and the contour shape data 51, and transmits it to the three-dimensional printer 18 and the finishing cutting device 20 (S8).
  • a part or all of the calculation of the aspheric shape data 34 may be performed by the three-dimensional printer 18 or the finishing cutting device 20.
  • the server 2 refers to the storage means 10 when the curvature radius R of the rear surface of the spectacle lens 50 calculated based on the S frequency in the prescription data 6 is 519.01 mm and the aspheric surface level is 1.
  • the server 2 indicates that the aspherical surface shape data 34 is not calculated and an aspherical surface is not formed (the front and rear surfaces are formed as spherical surfaces). And The server 2 may not transmit the aspheric shape data 34 when the aspheric level is 0.
  • the front / rear lens mold selection device 16 that has received the front / rear lens mold selection data 27 stores and refers to this, and the front lens of the type indicated by the front / rear lens mold selection data 27 by the front / rear lens mold selection means 28.
  • the mold 21 and the rear lens mold base 24 are selected from the front lens mold stocker 22 and the rear lens mold base stocker 26, and are transported to the three-dimensional printer 18 by transport means (not shown) (S9).
  • the front lens mold 21 having a curvature radius of the rear surface 21a of 190.06 mm and the rear lens mold base 24 having a curvature radius of the front surface 24a of 519.01 mm. Selected.
  • the three-dimensional printer 18 that has received the side lens mold shape data 32 and the aspherical shape data 34 and has received the front lens mold 21 and the rear lens mold base 24 corresponding thereto receives the aspherical shape data 34. Based on this, an aspheric surface adding portion 35 is applied to the front surface 24a of the rear lens mold base 24 to form the rear lens mold 41 (S10).
  • the three-dimensional printer 18 refers to the aspherical shape data 34, controls the scanning by the liquid fixed amount discharge means 36 and the discharge amount of the liquid resin, and controls the UV irradiation to the liquid resin by the UV irradiation means 37 to cure.
  • the aspherical surface adding portion 35 is formed.
  • the liquid resin curable with UV for example, at least one of a resin mainly containing acrylate (acrylate UV curable resin) and a resin mainly containing epoxy resin (epoxy UV curable resin) is used.
  • a resin mainly containing acrylate acrylate UV curable resin
  • a resin mainly containing epoxy resin epoxy UV curable resin
  • Such multiple types of UV curable resins are selected and used according to the required accuracy and curing speed (efficiency) of the lens mold (aspheric surface addition portion 35), or as appropriate according to the accuracy and efficiency. Mix and use.
  • the three-dimensional printer 18 does not add the aspheric surface adding portion 35 to the front surface 24a of the rear lens mold base 24.
  • the rear lens mold base 24 becomes the rear lens mold 41 as it is, and the front surface 24a of the rear lens mold base 24, that is, the front surface of the rear lens mold 41 in this case is a spherical surface.
  • a lens 50 is produced.
  • the front surface 24a of the rear lens mold base 24 is aspherical, and the three-dimensional printer 18 adds a spherical surface addition portion so that it becomes a spherical surface when the aspherical surface level is 0 (forms a spherical surface). You may do it.
  • the three-dimensional printer 18 has a side lens mold frame 33 on at least one of the rear surface 21 a of the front lens mold 21 and the front surface of the rear lens mold 41 based on the side lens mold shape data 32.
  • Form (S11) When there is no prism, the three-dimensional printer 18 has a lateral lens type in an arrangement in which the eye point E of the lateral lens mold shape data 32 and the optical center C of the front lens mold 21 (rear lens mold 41) coincide.
  • the side lens mold frame 33 is formed in such an arrangement that the eye point E is at a predetermined position with respect to the optical center C.
  • the three-dimensional printer 18 sequentially refers to the side lens formwork shape data 32 to control the scanning and liquid resin discharge amount in the liquid fixed amount discharge means 36 and the UV irradiation to the liquid resin by the UV irradiation means 37. Then, a cured side lens mold frame 33 is formed.
  • the liquid resin used to form the side lens mold 33 is the same as that of the aspherical surface adding portion 35, but the blending ratio (weight ratio or volume ratio) of the acrylate UV curable resin and the epoxy UV curable resin is the same. It may be different from that of the aspherical surface adding portion 35, such as being different.
  • control of the three-dimensional printer 18 at the time of forming the lateral lens mold 33 is different from the control at the time of forming the aspherical surface adding portion 35 in that the scanning density and the minimum discharge amount in the liquid fixed amount discharge means 36 are different.
  • the contents may be different, for example, the UV irradiation amount and irradiation pattern by the UV irradiation means 37 may be different.
  • the three-dimensional printer 18 may create at least a part of the side lens mold frame 33 before the aspheric surface adding portion 35 is formed, or the side lens lens frame 33 and the aspheric surface adding portion 35 may be simultaneously formed. It may be formed.
  • the front lens mold 21 and the rear lens mold 41 are combined with each other through the side lens mold 33 after the formation of the aspheric surface addition portion 35 or the side lens mold 33. These are arranged to assemble the lens mold 42 and are conveyed to the lens curing device 19 by a conveying means (not shown). It should be noted that the front lens mold 21, the rear lens mold 41, and the side lens mold 33 may be combined, that is, the lens mold 42 may be assembled in the lens curing device 19.
  • the three-dimensional printer 18 or another three-dimensional printer may form part or all of the front lens mold 21 based on the front and rear lens mold selection data 27, the prescription data 6, and the like.
  • a part or all of the lens mold 41 other than the aspheric surface addition portion 35 may be formed, or a part or all of both may be formed.
  • a base of the front lens mold 21 is prepared, and an additional portion made of a UV curable resin having a rear surface 21a matching the S frequency may be formed on the rear surface of the base, or after a difference from the desired S frequency.
  • An additional portion in which the aspherical surface adding portion 35 is added to the front surface matching the S power may be formed on the front surface 24a of the lens mold base 24.
  • the surface including the additional portion made of UV curable resin may be finished by polishing means or the like.
  • the side lens formwork 33 made of glass or the like may be selected from the stocker. Further, by depositing UV curable resin on at least a part of the inner surface of the base of the peripheral lens mold 33 with the three-dimensional printer 18 or another three-dimensional printer, the peripheral lens mold 33 is formed. Also good.
  • the inner surface of the base body of the side lens mold frame 33 has a shape that can include, for example, the entire pre-finishing spectacle lens 45, and the inner surface corresponding to the side lens lens mold shape data 32 is formed on a part or all of the inner surface.
  • a UV curable resin may be added.
  • the substrate of the side lens mold frame 33 may be of one type or a plurality of types.
  • the substrate is selected from the substrate stocker based on the side lens lens frame shape data 32 or the like. You may do it.
  • the base of the side lens mold frame 33 may be made of glass or may be oval.
  • the three-dimensional printer 18 and other three-dimensional printers may add only an additional portion corresponding to the bevel shape or the groove shape related to the edge type data 52 to the inner surface of the base of the side lens mold frame 33.
  • the lens curing device 19 When the lens curing device 19 receives the lens mold 42, the lens curing device 19 flows the thermosetting resin material into the lens mold 42 and cures it, thereby producing the pre-finishing spectacle lens 45 made of thermosetting resin (S ⁇ b> 12). That is, first, the resin material filling means 43 of the lens curing device 19 has a thermosetting property on the lens mold 42 (a portion surrounded by the front lens mold 21, the rear lens mold 41, and the side lens mold 33). The resin material is filled. The resin material filling means 43 fills the resin material from the filling port J (FIG. 3) of the lens mold 42. By providing the pre-finishing spectacle lens 45 (FIG. 4) with the handling part 45 a, the filling port J communicating with the inside of the lens mold 42 is formed.
  • the resin material filling means 43 may finish filling by grasping that the resin material overflows from the lens mold 42 by the sensor, or calculates the filling amount by itself or another device such as the server 2, When the filling amount is reached, the filling may be finished.
  • the lens curing device 19 receives the lens mold 42 in a state where at least one of the front lens mold 21, the rear lens mold 41, and the side lens mold 33 is separated, and in that state is filled with a resin material. After that, all of the front lens mold 21, the rear lens mold 41, and the side lens mold 33 may be combined.
  • the lens curing device 19 individually receives the front lens mold 21 and the rear lens mold 41 in which the side lens mold 33 is coupled to the rear surface 21 a and receives the front lens mold 21 and the side lens mold 33. After pouring the resin material into the portion surrounded by, the rear lens mold 41 may be covered with the side lens mold 33. Thus, by completing the assembly of the lens mold 42 after filling the resin material, the resin can be filled into the lens mold 42 even if the filling port J is not exposed on the side periphery.
  • the lens curing device 19 receives the prescription data 6 (material data) from the server 2 or the like, and the resin material filling unit 43 selects and fills the resin material indicated by the material data related to the spectacle lens 50. You may make it do.
  • the conventional round lens is equivalent to being formed by filling a resin material between the round front lens mold frame 21 and the rear lens mold frame 41, so that the amount of resin material used in the spectacle lens manufacturing system 1 is greatly reduced. Is done. Further, the resin material does not need to be usable with the three-dimensional printer 18 as in the case where the eyeglass lens 50 itself is directly produced by the three-dimensional printer 18, and the resin material has a low cost to a high performance (high refractive after curing). Can be used widely, and a spectacle lens 50 having sufficient performance can be used.
  • the lens curing means 44 heats the lens mold 42 containing the resin material to cure the resin material, thereby forming a pre-finishing spectacle lens 45 made of a thermosetting resin.
  • the front lens mold 21 can be made of a glass having a sufficiently smooth surface, such as glass, and the optically important spectacle lens 50 can be used.
  • the front surface is formed to have sufficient performance as a spectacle lens.
  • the front surface of the rear lens mold 41 is made of glass or the like and has a smooth front surface 24a.
  • the rear surface of the spectacle lens 50 is formed as a desired aspherical surface even if there are few types of the rear lens mold base 24.
  • the release means 46 takes out the pre-finishing spectacle lens 45 from the lens mold 42.
  • the release means 46 separates at least one of the front lens mold 21, the rear lens mold 41, and the lateral lens mold 33 with the robot hand, and takes out the pre-finishing spectacle lens 45.
  • the release means 46 puts the lens mold 42 containing the pre-finishing spectacle lens 45 into a liquid tank for cleaning or the like, and finishes away from the lens mold 42 by the action of liquid in the liquid tank (in liquid).
  • the front spectacle lens 45 is taken out.
  • the front surface of the portion that becomes the spectacle lens 50 in the pre-finishing spectacle lens 45 is formed with a curvature radius of 190.06 mm according to the rear surface 21a of the front lens mold 21, and the rear surface of the portion that becomes the spectacle lens 50 is According to the front surface 24a with the aspheric surface addition part 35 in the rear lens mold 41, it is formed as an aspheric surface corresponding to the aspheric expression (Expression 1) relating to a predetermined set of aspheric coefficients.
  • the front lens mold 21 and the rear lens mold base 24 with the aspheric surface addition portion 35 are collected, and after appropriate cleaning, returned to the respective stockers (front lens mold stocker 22 and rear lens mold base stocker 26). It is.
  • the lens curing device 19 conveys the taken-out pre-finishing spectacle lens 45 to the finishing cutting device 20 by a conveying means (not shown).
  • the conveying means of the lens curing device 19 can handle the pre-finishing spectacle lens 45 without touching the portion that becomes the spectacle lens 50 by grasping the handling part 45a of the pre-finishing spectacle lens 45.
  • the finishing cutting device 20 receives the contour shape data 51 and edge type data 52 transmitted from the server 2 in S7 and the aspherical shape data 34 transmitted from the server 2 in S8, these data are stored.
  • the pre-finishing spectacle lens 45 corresponding to (having the same identification code as that associated with these data) is received, the pre-finishing spectacle lens 45 is cut or polished based on these data to finish the spectacle lens 50 ( S13). That is, the finish cutting apparatus 20 fixes the pre-finishing spectacle lens 45 with a soft touch chuck, and polishes at least the rear surface of the spectacle lens 50 by the cutting means 54 (abrasive material) so as to follow the aspherical shape data 34. . By this polishing, the optical performance of the created aspheric surface becomes even better.
  • the finishing cutting device 20 can omit the polishing. Further, the finishing cutting device 20 cuts the handling portion 45a by the cutting means 54, and follows the prescription data 6 (S frequency, aspheric surface level, etc.), the contour shape data 51 (including the eye point E), and the edge type data 52. A spectacle lens 50 is produced. The finishing cutting device 20 selects a grinding wheel having a grinding wheel surface corresponding to the edge shape according to the edge type data 52 as a grinding wheel of the cutting means 54, and the cutting means 54 so that the line to be cut matches the contour shape data 51. The grindstone is moved.
  • prescription data 6 S frequency, aspheric surface level, etc.
  • the contour shape data 51 including the eye point E
  • the edge type data 52 including the eye point E
  • a spectacle lens 50 is produced.
  • the finishing cutting device 20 selects a grinding wheel having a grinding wheel surface corresponding to the edge shape according to the edge type data 52 as a grinding wheel of the cutting means 54, and the cutting means 54 so that the line to be cut matches the contour shape data
  • the finishing cutting device 20 may form the edge by three-dimensional numerical control cutting based on the edge shape data calculated in advance without cutting the edge with the shape of the grindstone surface, or cut larger than the contour shape data 51.
  • the edge may be formed after cutting or roughing. Further, the finishing cutting device 20 may cut or polish the edge of the spectacle lens 50 other than the handling part 45a connection part.
  • the finishing cutting device 20 completes the cutting of the target lens shape only by detaching the handling part 45a, the cutting time is short and the efficiency is good. Further, only the handling portion 45a is wasted by the resin in the lens processing. Further, the finishing cutting device 20 includes the spectacle lens 50 cured along the front surface of the rear lens mold 41 formed by adding the aspheric surface adding portion 35 to the front surface 24a of the rear lens mold base 24. Since the aspherical surface is polished later, the cutting time is shorter, the efficiency is good, and the resin is not used compared with the case where the aspherical surface is formed by cutting the rear surface of the semifinished blank with sufficient thickness. Is extremely low. As shown in FIG.
  • the server 2 calculates, as the side lens shape frame shape data 32, the one having the smallest elliptical cylinder surface on the inner surface that is a predetermined distance or more away from the contour shape data 51.
  • the elliptical ring-shaped side lens formwork 33 is formed, the lens curing device 19 cures the pre-finishing spectacle lens 45 whose side circumference is elliptical, and the finishing cutting device 20 includes contour shape data 51, edge type data 52, and
  • the spectacle lens 50 may be manufactured by cutting and polishing the pre-finishing spectacle lens 45 according to the aspherical shape data 35.
  • the portion of the pre-finishing spectacle lens 45 excluding the spectacle lens 50 is the handling portion 45a, which is easy to handle, reduces the amount of resin material used, and cuts compared to cutting a round lens. The efficiency of is good. Further, since the side lens mold 33 is elliptical, the amount of calculation is relatively small. Furthermore, the shape of the pre-finishing spectacle lens 45 is unified into an ellipse, and the handling part 45a extends over the entire side periphery. In the process after the pre-finishing spectacle lens 45 is manufactured, including conveyance to the finishing cutting device 20. Is easy to handle.
  • the server 2 selects the minimum type of side lens form data 32 that can include the entire shape related to the contour shape data 51. Good.
  • the spectacle lens is generated so that the side lens formwork shape data 32 is generated so as to represent the inner surface shape corresponding to the side periphery of the spectacle lens 50 represented by the contour shape data 51 (and edge type data 52).
  • 50 may be hardened with a contour shape or a target shape, and most or all of the finish cutting may be omitted.
  • the finish cutting device 20 may be installed on the orderer side or may be omitted.
  • One or more films may be formed.
  • an optical multilayer film in which low refractive index layers and high refractive index layers such as inorganic oxide are alternately laminated, hard coat film, waterproof film, antifouling film, polarizing film, light shielding film, or Combinations of these may be formed.
  • the eyeglass lens 50 and the pre-finishing spectacle lens 45 may be colored after the spectacle lens 50 is manufactured by the finish cutting device 20 or the like or after the pre-finishing spectacle lens 45 is manufactured (before the finish cutting).
  • the eyeglass lens 50 and the pre-finishing eyeglass lens 45 can be colored by pigmenting, dyeing with a dye, coloring a lens material, adding a colored film, or a combination thereof.
  • the spectacle lens 50 thus manufactured is appropriately inspected and sent to a place on the ordering side or a place designated by the ordering side. Data indicating these locations may be received from the terminal 4 and stored in the server 2. Further, payment information regarding the spectacle lens 50 may be similarly received and stored, and the payment information may be used as needed to access the payment side server computer or the like to perform payment on the spectacle lens 50.
  • the spectacle lens 50 is placed in the corresponding spectacle frame F to complete the spectacles.
  • the eyeglass lens manufacturing system 1 appropriately repeats such an operation for each identification symbol.
  • the spectacle lens manufacturing system 1 may manufacture these without obtaining the identification symbol, the contour shape data 51, etc. in the case of securing the stock of the predetermined pre-finishing spectacle lens 45 and spectacle lens 50, etc.
  • a part or all of the lens mold 42 may be reused after being appropriately cleaned.
  • the spectacle lens manufacturing system 1 includes the resin material filling means 43 that fills the lens mold 42 with a lens material (thermosetting resin material).
  • the front side of the lens mold 42 is the rear surface of the spectacle lens 50.
  • the rear lens mold 41 includes a rear lens mold base 24, and an aspheric surface addition portion 35 is provided on the front surface 24a of the rear lens mold base 24.
  • the additional three-dimensional printer 18 is provided, and the front surface of the rear lens mold 41 is formed by the front surface 24a of the rear lens mold base 24 to which the aspherical surface adding portion 35 is added.
  • the rear surface of the spectacle lens 50 is formed into an arbitrary aspheric surface by the front surface 24a of the rear lens mold base 24 to which the optional aspheric surface addition portion 35 is added, and the semifinished blank is cut to be an aspheric surface.
  • efficiency can be improved and generation of useless materials can be suppressed.
  • the spectacle lens 50 having an arbitrary aspherical surface is directly manufactured by a three-dimensional printer, there is no restriction that a lens material that can be used by the three-dimensional printer 18 is used, so that optical performance and physical performance are improved. It is formed in a better state.
  • a spectacle lens of an arbitrary shape formed from a lens material that can be used at a realistic cost in the three-dimensional printer 18 has sufficient optical performance and physical performance (equal or better than the current general spectacle lens). I can't let you.
  • the three-dimensional printer 18 is used for forming the lens mold 42, and a portion formed by the three-dimensional printer 18 is appropriately finished so as to have an aspheric surface having an arbitrary shape.
  • the spectacle lens 50 is manufactured in a state having sufficient optical performance and physical performance.
  • the aspherical surface is formed in the rear lens mold 41 by adding the aspherical surface adding portion 35 to the rear lens mold base 24, so that the lens mold including the rear lens mold 41 is included.
  • the lens mold 42 for the spectacle lens 50 having a desired aspherical surface can be made custom, and the rear lens mold base 24 Even if many types are not prepared, the spectacle lens 50 having a desired aspherical surface is manufactured.
  • the front lens mold base is prepared in place of the rear lens mold base 24, and an aspheric surface addition portion is added to the rear surface of the front lens mold base, so that the front surface of the spectacle lens 50 is formed into an aspheric surface.
  • a front lens mold base is prepared together with the rear lens mold base 24, and an aspheric surface corresponding to the front surface 24a of the rear lens mold base 24 and the rear surface of the front lens mold base is provided.
  • the front and rear surfaces of the spectacle lens 50 are formed as aspherical surfaces by adding a portion. Further, the above-described effects are the same when the surface addition portion other than the aspherical surface addition portion is added and the front surface or the rear surface of the spectacle lens is formed into a spherical surface or the like.
  • the lens mold 42 has a side lens mold 33 whose inner surface is formed according to the side circumference of the spectacle lens 50, and the side lens mold 33 is formed by the three-dimensional printer 18. Yes. Therefore, the pre-finishing spectacle lens 45 is manufactured in a shape close to the target lens shape of the spectacle lens 50, or the spectacle lens 50 having a desired target lens shape (contour shape or a combination of the contour shape and the edge shape) is directly manufactured. This means that the amount of lens material used and the amount of processing of the pre-finishing spectacle lens 45 are reduced.
  • contour shape input means 68 (or the communication means 12 of the server 2) for acquiring the contour shape data 51 indicating the contour shape of the spectacle lens 50 is provided, and the three-dimensional printer 18 is provided with the lateral lens mold 33.
  • the outer shape of the spectacle lens 50 is formed in a desired shape according to the rim shape of the spectacle frame F, and the amount of lens material used and the processing amount of the pre-finishing spectacle lens 45 are reduced.
  • the aspherical surface adding portion 35 is formed limitedly in the contour shape data 51 which is a minimum necessary portion for the production of the spectacle lens 50 or a part of the front surface 24a of the rear lens mold base 24 including the portion.
  • the amount of material used for the aspherical surface adding portion 35 is reduced, and the formation time of the aspherical surface adding portion 35 and the processing time when finishing is shortened.
  • the contour shape data 51 is transmitted from the terminal 4 which is the orderer computer. Therefore, the spectacle lens 50 having a shape corresponding to the rim shape or the like is manufactured without receiving the spectacle frame F itself from the orderer.
  • the three-dimensional printer 18 is a shape obtained by adding the shape of the handling portion 45 a for holding the inner surface of the side lens mold frame 33 to the shape indicated by the contour shape data 51 instead of the portion that becomes the spectacle lens 50.
  • a handling portion 45a that is a portion other than the internal portion of the contour shape data 51 that becomes the spectacle lens 50 is formed, and the handling portion 45a is held in the process after the pre-finishing spectacle lens 45 is manufactured.
  • the front spectacle lens 45 is easy to handle, and the portion that becomes the spectacle lens 50 is protected.
  • the shape of the handling portion 45a is fixed or within a predetermined range, the jigs in the process after the pre-finishing spectacle lens 45 is not required to be provided for each shape of the pre-finishing spectacle lens 45, and the number of types is small. Therefore, it is not necessary to form the eyeglass lens 45 so as to be compatible with various shapes of the pre-finishing spectacle lens 45, so that it is not complicated.
  • a filling port J for filling the lens material into the lens mold 42 is provided.
  • input means 66 (or communication means 12 of the server 2) for acquiring edge type data 52 indicating the edge shape of the eyeglass frame F into which the eyeglass lens 50 is inserted is provided, and the three-dimensional printer 18
  • the inner surface of the lens mold 33 (the portion other than the handling portion 45a connection portion) is formed in a shape corresponding to the edge type data 52. Therefore, the spectacle lens 50 (the pre-finishing spectacle lens 45) is formed by the lens mold 42 in a state having an edge shape such as a bevel shape or a groove shape.
  • the edge type data 52 is transmitted from the terminal 4 which is the orderer computer. Therefore, the spectacle lens 50 having the edge shape corresponding to the desired edge type is produced without receiving the eyeglass frame F itself from the orderer.
  • the rear lens mold base 24 is made of glass. Therefore, although the aspheric surface addition portion 35 is added to the front surface 24a of the rear lens mold base 24, the front surface 24a is exposed without adding the aspheric surface addition portion 35 in a part corresponding to the spectacle lens 50. When there is (a portion of the distance D where the aspheric addition amount Z2 becomes 0), the spectacle lens 50 is formed sufficiently smoothly at least in the exposed portion. Further, it is suitable as a foundation on which the aspheric surface addition portion 35 adheres due to its rigidity and the like, and the aspheric surface of the spectacle lens 50 is finished better. Further, the rear lens mold base 24 can be used repeatedly, and the cost is reduced.
  • the lens material is a thermosetting resin material, it is excellent in optical performance and physical performance and easy to handle, and can be easily poured into the lens mold 42 and cured in the lens mold 42.
  • a spectacle lens 50 made of a thermosetting resin that is easy to manufacture and manage is manufactured.
  • the three-dimensional printer 18 has a UV irradiation unit 37 that cures the liquid resin, and the liquid resin is a UV curable resin, and the UV irradiation unit 37 cures the UV curable resin.
  • the lens mold 42 (a part thereof) can be easily formed. In particular, when the lens curing device 19 puts the lens material into the lens mold 42 and cures it by heating to produce the pre-finishing spectacle lens 45, the lens mold 42 can be cured without being heated. It is possible to prevent adverse effects such as the case where curing starts during filling of the lens material, which is assumed when the mold 42 is heated.
  • the liquid resin is a thermosetting resin
  • the lens mold 42 is produced by curing by heating (the curing means is a heating means), and the lens curing device 19 puts the lens material in the lens mold 42 and heats it.
  • the pre-finishing spectacle lens 45 is made by curing (the lens curing means is also a heating means)
  • the lens curing means is also a heating means
  • the curing temperature of the lens material is higher than the curing temperature of the lens mold 42, the lens mold 42
  • the lens mold 42 In the state where the above-described adverse effects are avoided, the lens is preheated by manufacturing, and the efficiency of curing the lens material using the lens mold 42 is improved.
  • the liquid resin may be a naturally cured resin that is cured by a change in components after ejection.
  • the self-curing resin may be a resin such as an instantaneous adhesive or a caulking agent that cures by reacting with components in the air (moisture, oxygen, etc.) after ejection, or a solvent (moisture or carbonization) after ejection. It may be a dry-curing type resin in which some components such as hydrogen) are naturally separated (evaporated, etc.) and the remaining part such as solute is cured. In this case, the UV irradiation means 37 and the heating means can be omitted, and the configuration becomes simpler.
  • the liquid resin may be a mixed curable resin that is cured by introducing a specific component (water, a curing resin, or the like) after mixing and mixing or adhering the specific component.
  • the curing means is a curing component introduction means for introducing (mixing or adhering) a specific component.
  • the liquid resin (flowable resin) may be cured only on the surface and not inside.
  • the spectacle lens manufacturing system 101 according to the second embodiment of the present invention is the same as the spectacle lens manufacturing system 1 of the first embodiment, including modifications.
  • the side lens mold frame 33 is formed by the three-dimensional printer 18 that adds the aspheric surface adding portion 35 to the front surface 24a of the rear lens mold base 24 as in the first embodiment.
  • a resin discharge dispenser 118 that is provided separately from the three-dimensional printer 18.
  • the same reference numerals as those in the first embodiment are assigned to the same means and portions as those in the first embodiment of the eyeglass lens manufacturing system 1, and description thereof will be omitted as appropriate.
  • the three-dimensional printer can deposit a fluid resin, whereas the dispenser discharges the fluid resin without depositing it.
  • FIG. 9 is a block diagram of the eyeglass lens manufacturing system 101 according to the second embodiment, and FIG. 10 shows the lens mold 42 or viscous resin discharge when the viscous resin V is discharged to the rear surface 21a of the front lens mold 21. It is a vertical end schematic view of means 136.
  • the plurality of terminal computers 4, input means 66, and contour shape input means 68 are omitted.
  • the terminal computer 4, the input means 66, and the contour shape input means 68 are the same as in the first form.
  • the dispenser 118 serving as a fluid resin discharging means cures the viscous resin V, which is a highly viscous fluid resin that is cured by UV, by UV irradiation, and forms a lateral lens having a shape based on the lateral lens mold shape data 32. Forms the mold 33 and is juxtaposed with the three-dimensional printer 18.
  • the dispenser 118 fixes the rear lens mold 41 to the front lens mold 21 and the viscous resin discharge means 136, the UV irradiation means 137, the connection means 138, the storage means 139 for storing various data and programs.
  • the fixing means 140 for controlling and the control means 141 for controlling them are provided.
  • the UV irradiation means 137 is the same as the UV irradiation means 37 of the three-dimensional printer 18, the connection means 138 is the same as the connection means 38 of the three-dimensional printer 18, and the storage means 139 is a storage means of the three-dimensional printer 18.
  • the control unit 141 is the same as the control unit 40 of the three-dimensional printer 18.
  • the storage unit 139 does not store the aspheric surface shape data 34. Since the dispenser 118 also refers to the aspherical shape data 34, the storage unit 139 may store the aspherical shape data 34, and the storage unit 39 of the three-dimensional printer 18 stores the side lens shape data. 32 need not be stored.
  • the viscous resin discharging means 136 is located on the side of the rear surface 21a of the front lens mold 21 received from the front / rear lens mold selection device 16 or the three-dimensional printer 18 or the front surface 24a with the aspheric surface addition portion 35 of the rear lens mold 41.
  • a curable viscous resin V is discharged along the shape of the side lens mold frame 33 based on the peripheral lens mold shape data 32.
  • the viscous resin discharging means 136 does not place the viscous resin V on the viscous resin V and does not deposit the viscous resin V.
  • the viscous resin discharging means 136 discharges the viscous resin V in a state having a height equal to or larger than the largest thickness in the side lens formwork shape data 32.
  • the viscous resin V can be discharged by the viscous resin discharging means 136, and has a viscosity such that the shape change after the discharge hardly occurs when there is no external force other than gravity. It should be noted that the viscous resin discharge means 136 responds (to a certain extent) to the thickness (height) of the lateral lens mold shape data 32 by controlling the discharge amount (discharge speed) and the movement speed of the viscous resin discharge means 136. Alternatively, the viscous resin V may be discharged. Further, as the viscous resin V, a viscous naturally cured resin such as a caulking agent such as a silicon caulking agent may be used as in the first embodiment.
  • a viscous naturally cured resin such as a caulking agent such as a silicon caulking agent may be used as in the first embodiment.
  • the dispenser 118 fixes the rear lens mold 41 to the front lens mold 21 by the fixing means 140 referring to the side lens mold form data 32, and the side lens indicated by the side lens mold form data 32. It fixes in the state which has the predetermined distance according to the thickness of the formwork 33.
  • position adjusting means (not shown) for adjusting the relative position of the rear lens mold 41 with respect to the front lens mold 21 (a combination of an arm and a lifting platform, a robot arm, etc.), the front lens mold 21 or the like. Examples include a combination of supporting means (such as a gasket and the polymer tape P shown in FIG. 10B) that are attached to and support the rear lens mold 41.
  • the support means may be one that supports by other than pasting, or may support either the front lens mold 21 or the rear lens mold 41.
  • the fixing means 140 includes a sensor (a non-contact sensor, a camera, or a combination thereof) for grasping the distance between the front lens mold 21 and the rear lens mold 41, and the distance grasp sensor The fixing at a predetermined distance may be executed according to the current distance between the lens mold 21 and the rear lens mold 41.
  • the UV irradiation means 137 includes the viscous resin V placed in a shape according to the side lens mold form shape data 32, and the front lens form 21 fixed at a predetermined distance with the viscous resin V interposed therebetween.
  • the rear lens mold 41 is irradiated with UV to cure the viscous resin V to form the lateral lens mold 33, and at the same time, the front lens mold 21, the rear lens mold 41, and the lateral lens mold.
  • the formation of the lens mold 42 in which 33 is combined is completed.
  • the dispenser 118 conveys the lens mold 42 thus formed to the lens curing device 19.
  • the viscosity of the viscous resin V is preferable from the viewpoint of easily maintaining the shape on the rear surface 21a of the front lens mold 21 or the front surface 24a (or the aspheric surface addition portion 35) of the rear lens mold 41 even before curing. Is 500,000 mPa ⁇ s (millipascal second) or more, more preferably 1 million mPa ⁇ s or more. However, the viscosity of the viscous resin V is based on the premise that it can be discharged, and is preferably determined based on the balance between the ease of discharge and the ease of shape retention.
  • the viscous resin V may be cured by heat or may be cured by heat and UV irradiation.
  • the side lens mold shape data 32 may be two-dimensional data other than the thickness, and attached to the two-dimensional side lens shape data 32 or the side lens shape data 32.
  • distance data that is data on the distance between the front lens mold 21 and the rear lens mold 41 according to the thickness of the pre-finishing spectacle lens 45 or the spectacle lens 50 obtained from the prescription data 6 may be provided.
  • the distance data relates to the distance between the center of the front lens mold 21 and the center of the rear lens mold 41 according to the planned center thickness of the pre-finishing spectacle lens 45 or the spectacle lens 50.
  • it may be related to the distance inside the viscous resin V (side lens form frame 33) according to the edge thickness of the pre-finishing spectacle lens 45 or spectacle lens 50.
  • the distance between the edge of the front lens mold 21 and the edge of the rear lens mold 41 that occurs when the thickness of the pre-finishing spectacle lens 45 or the spectacle lens 50 is secured may be used. A combination of these may also be used.
  • the distance data may be received by the server 2 or may be calculated by the dispenser 118.
  • the front / rear lens mold selection device 16 provides a predetermined distance to the front lens mold 21 and the rear lens mold 41 in addition to the supporting means prepared for each predetermined distance (the front lens mold 21 placed on the table).
  • a ring-shaped support body having a protrusion and a leg for supporting the rear lens mold 41 is selected in the placed state, or a support means that can be adjusted to an arbitrary distance is adjusted to a predetermined distance and sent to the dispenser 118.
  • the dispenser 118 may support the front lens mold 21 and the rear lens mold 41 at a predetermined distance by using the received support means.
  • the side lens mold shape data 32 is two-dimensional. May be good.
  • the front lens mold 21 and the rear lens mold 41 may be combined after the viscous resin V is cured (after the side lens mold 33 is formed).
  • the fixing by the fixing means 140 may be released, that is, the support means may be removed. good.
  • the three-dimensional printer 18 sends the added aspherical surface adding portion 35 to the dispenser 118 without curing, and the dispenser 118 discharges the viscous resin V (side circumferential lens mold 33) as it is, and the front lens mold 21.
  • UV irradiation may be performed to simultaneously cure the aspherical surface adding portion 35 and the viscous resin V.
  • An operation example 101 of the eyeglass lens manufacturing system according to the second embodiment is the same as the operation example of the eyeglass lens manufacturing system 1 of the first embodiment except for the operations of the three-dimensional printer 18 and the dispenser 118. Description of operations and the like similar to those of the first embodiment of the eyeglass lens manufacturing system 1 (mainly other than S11 in FIG. 7) will be omitted as appropriate.
  • the front lens mold 21 according to the selection (S9) of the front and rear lens mold selecting device 16 is introduced into the dispenser 118 with the rear surface 21a facing up, and the rear surface 21a.
  • the nozzle of the viscous resin discharge means 136 is disposed above the nozzle.
  • the front lens mold 21 may be conveyed from the front / rear lens mold selection device 16 or may be conveyed from the three-dimensional printer 18.
  • the control means 141 moves the nozzle of the viscous resin discharge means 136 relative to the front lens mold 21 based on the side lens mold shape data 32 while discharging the viscous resin V, and the viscous resin
  • the discharge means 136 places the viscous resin V on the rear surface 21a of the front lens mold 21 in a shape according to the side lens mold form data 32 (S11, but dispenser 118 instead of the three-dimensional printer 18). Executed by).
  • the viscous resin discharging means 136 puts the viscous resin V in a shape that matches the shape of the side lens mold frame 33 in FIG.
  • the dispenser 118 is fixed by the fixing means 140 (the robot arm and the polymerization tape P).
  • the rear lens mold 41 with the front surface 24a facing down is introduced from the three-dimensional printer 18 that has performed the application of the aspheric surface adding portion 35 (S10), and a predetermined distance from the front lens mold 21 is set. Fix in the state you have. Since the viscous resin discharging means 136 places the viscous resin V so as to have a height equal to or greater than the maximum thickness in the side lens lens form shape data 32, the viscous resin V is disposed on the rear lens mold 41 as a whole.
  • the server 2 may generate the side lens lens form data 32 in consideration of deformation (particularly inward deformation) (enlarged inward deformation), or the server 2 may perform the deformation.
  • the side lens lens form data 32 generated without consideration may be converted into data that the dispenser 118 considers deformation.
  • the viscous resin V is placed in accordance with the enlarged side lens lens frame shape data 32 with a margin for the inward deformation of the viscous resin V, and the margin is cut by the finishing cutting device 20. You may make it do.
  • the dispenser 118 operates the UV irradiation means 137 for the viscous resin V in the state of FIG. 10B, and the UV is applied to the entire viscous resin V (at once, a plurality of times, or divided into parts).
  • the lens mold is a combination of the front lens mold frame 21, the rear lens mold frame 41, and the side lens mold frame 33.
  • the formation of the frame 42 is completed (S11).
  • the dispenser 118 forms a lens mold 42 as shown in FIG.
  • the dispenser 118 sends the formed lens mold 42 to the lens curing device 19, and the lens curing device 19 fills the lens material 42 with the lens material before curing, and cures the lens material by the lens curing means 44,
  • the pre-finishing spectacle lens 45 is formed (S12, FIG. 4).
  • the mold release means 46 removes the superposition tape P when taking out the pre-finishing spectacle lens 45 from the lens mold 42.
  • the three-dimensional printer 18 that adds the aspheric surface adding portion 35 to the front surface 24a of the rear lens mold base 24 is provided, and the aspheric surface adding portion 35 is added. Further, since the front surface of the rear lens mold 41 is formed by the front surface 24a of the rear lens mold base 24, the spectacle lens 50 relating to an aspherical surface of an arbitrary shape having sufficient optical performance and physical performance is reduced. Made at cost.
  • a dispenser 118 provided separately from the three-dimensional printer 18 that adds the aspheric surface adding portion 35 to the front surface 24a of the rear lens mold base 24 is a side lens. Form frame 33 is formed. Therefore, the amount of lens material used and the amount of processing of the pre-finishing spectacle lens 45 are further reduced.
  • the lateral lens mold 33 is not formed by the dispenser 118, and is not optically important compared to the rear surface, and the side lens form frame 33 that defines the edge that facilitates post-processing and ensuring required accuracy is more variable in shape. It is possible to place the right material at the right place, such as forming with the dispenser 118 with more emphasis. Further, in the plurality of spectacle lenses 50 having the same rear surface shape but different target lens shapes, the side lens lens frame 33 is formed in a shape corresponding to each target lens shape while reusing the rear lens lens frame 41. These spectacle lenses 50 are reasonably manufactured.
  • the spectacle lens manufacturing system 101 according to the second embodiment is different from the spectacle lens manufacturing system 1 according to the first embodiment in that the three-dimensional printer 18 capable of depositing (stacking) liquid resin is not used. Although the accuracy of 33 is relatively low, the manufacturing time is relatively short because the lower layer curing step for depositing and the laminating step for depositing liquid resin on the lower layer are omitted. Here, the accuracy will be described in detail.
  • a fixing means 140 for fixing the rear lens mold 41 relative to the front lens mold 21 at a predetermined distance is provided.
  • the accuracy of the shape in the optically most important height direction (Z-axis direction) can be ensured, but the deformation of the viscous resin V in the X-axis direction and the Y-axis direction due to the pressing of the rear lens mold 41 or the like.
  • the accuracy in the X-axis direction and the Y-axis direction becomes relatively low due to the possibility of occurrence.
  • the relatively low accuracy in the spectacle lens manufacturing system 101 of the second embodiment can be covered by finish cutting.
  • finish cutting In particular, when a spectacle lens having a deep curve is manufactured, there is a difference in height between the front lens mold 21 and the rear lens mold 41 where the side lens mold 33 is to be made.
  • the nozzles basically move in parallel, it is relatively difficult to control a large difference in height, and control and manufacturing are relatively troublesome. Therefore, even if there is a difference in height, control and manufacturing are relatively easy.
  • the fixing means 140 for fixing the rear lens mold 41 at a predetermined distance relative to the front lens mold 21 since the fixing means 140 for fixing the rear lens mold 41 at a predetermined distance relative to the front lens mold 21 is provided, the eyeglass lens is discharged from the dispenser 118. Even if the height of the viscous resin V on the front lens mold 21 is somewhat different from the original height (the height that should be used as the side lens mold 33), the rear lens mold by the fixing means 140 is used.
  • the lens form for the spectacle lens 50 can be adjusted to the original height of the viscous resin V when the 41 is disposed, and the thickness of the spectacle lens 50 important for achieving the desired optical performance is ensured. 42 can be formed more easily.
  • the front lens mold base is prepared in place of the rear lens mold base 24, and an aspheric surface addition portion is added to the rear surface of the front lens mold base, so that the front surface of the spectacle lens 50 is formed into an aspheric surface.
  • a front lens mold base is prepared together with the rear lens mold base 24, and an aspheric surface corresponding to the front surface 24a of the rear lens mold base 24 and the rear surface of the front lens mold base is provided.
  • the front and rear surfaces of the spectacle lens 50 are formed as aspherical surfaces by adding a portion.
  • the above-described effects are the same when the surface addition portion other than the aspherical surface addition portion is added and the front surface or the rear surface of the spectacle lens is formed into a spherical surface or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Ophthalmology & Optometry (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Eyeglasses (AREA)

Abstract

【課題】非球面等の創成や玉型加工により無駄になる部分がなくなりあるいは少なくなり、丸レンズないしその型の管理や選択等が容易であり、加工の手間が低減された眼鏡レンズ製造システムを提供する。 【解決手段】眼鏡レンズ製造システム1は、レンズ型枠42にレンズ材料(熱硬化性樹脂材料)を充填する樹脂材料充填手段43を有しており、レンズ型枠42は、前面が眼鏡レンズ50の後面を規定する後レンズ型枠41を備えており、後レンズ型枠41は、後レンズ型枠基体24を有しており、後レンズ型枠基体24の前面24aに対して非球面付加部35を付加する3次元プリンタ18が設けられており、非球面付加部35が付加された後レンズ型枠基体24の前面24aによって、後レンズ型枠41の前面が形成される。

Description

眼鏡レンズ製造システム
 本発明は、非球面の曲面等を有する眼鏡レンズを製造するシステムに関する。
 非球面を有する累進屈折力眼鏡レンズの製造システムとして、下記特許文献1に記載されたものが知られている。
 このシステムでは、所定の度数範囲毎に複数種類用意された外面カーブ形状とレンズ径を有する円形状のセミフィニッシュトブランク(丸レンズ)が処方値に基づき選択され、その内面や外面が加工機によりレンズ設計データに従って研削・研磨されることで、眼鏡レンズの非球面の内面や外面が創成される([0029])。又、非球面創成後の丸レンズの外形は、眼鏡枠に取り付けるため、加工機により丸レンズより小さい滴形等の玉型に加工される(同段落)。
特開2013-50556号公報
 特許文献1のシステムでは、丸レンズを用いて様々な非球面を有する眼鏡レンズが研削されるため、処方値に合う丸レンズが選ばれたとしても、丸レンズの多くの部分が研削される必要があり、手間がかかるし、研削される部分が無駄となる。又、研削される部分を少なくするため、丸レンズの種類を多くすると、丸レンズの管理や選択等が煩わしくなる。
 更に、非球面創成後の丸レンズにおける外縁部全体が加工されて玉型となるため、手間がかかるし、加工により排除される部分が多く発生してしまう。
 そこで、本発明の目的は、非球面等の創成や玉型加工により無駄になる部分がなくなりあるいは少なくなり、丸レンズないしその型の管理や選択等が容易であり、加工の手間が低減された眼鏡レンズ製造システムを提供することにある。
 上記目的を達成するため、請求項1に記載の発明は、レンズ型枠にレンズ材料を充填するレンズ材料充填手段を有する眼鏡レンズ製造システムにおいて、前記レンズ型枠は、前面が眼鏡レンズの後面を規定する後レンズ型枠を備えており、前記後レンズ型枠は、後レンズ型枠基体を有しており、前記後レンズ型枠基体の前面に対して面付加部を付加する3次元プリンタが設けられており、前記面付加部が付加された前記後レンズ型枠基体の前面によって、前記後レンズ型枠の前面が形成されることを特徴とするものである。
 上記目的を達成するため、請求項2に記載の発明は、レンズ型枠にレンズ材料を充填するレンズ材料充填手段を有する眼鏡レンズ製造システムにおいて、前記レンズ型枠は、後面が眼鏡レンズの前面を規定する前レンズ型枠を備えており、前記前レンズ型枠は、前レンズ型枠基体を有しており、前記前レンズ型枠基体の後面に対して面付加部を付加する3次元プリンタが設けられており、前記面付加部が付加された前記前レンズ型枠基体の後面によって、前記前レンズ型枠の後面が形成されることを特徴とするものである。
 上記目的を達成するため、請求項3に記載の発明は、レンズ型枠にレンズ材料を充填するレンズ材料充填手段を有する眼鏡レンズ製造システムにおいて、前記レンズ型枠は、前面が眼鏡レンズの後面を規定する後レンズ型枠、及び後面が眼鏡レンズの前面を規定する前レンズ型枠を備えており、前記後レンズ型枠は、後レンズ型枠基体を有しており、前記前レンズ型枠は、前レンズ型枠基体を有しており、前記後レンズ型枠基体の前面及び前記前レンズ型枠基体の後面に対して面付加部を付加する3次元プリンタが設けられており、前記面付加部が付加された前記後レンズ型枠基体の前面によって、前記後レンズ型枠の前面が形成され、前記面付加部が付加された前記前レンズ型枠基体の後面によって、前記前レンズ型枠の後面が形成されることを特徴とするものである。
 請求項4に記載の発明は、上記発明にあって、前記面付加部が付加された面は、非球面の曲面であることを特徴とする。
 請求項5に記載の発明は、上記発明にあって、更に、前記レンズ型枠は、内面が眼鏡レンズの側周に応じて形成される側周レンズ型枠を有しており、少なくとも前記側周レンズ型枠の内面の一部を含む部分が、硬化可能な流動性樹脂を吐出する流動性樹脂吐出手段又は前記3次元プリンタにより形成されていることを特徴とする。
 請求項6に記載の発明は、上記発明にあって、前記眼鏡レンズの輪郭形状を示す輪郭形状データを取得する輪郭形状データ取得手段が設けられており、前記流動性樹脂吐出手段又は前記3次元プリンタは、前記側周レンズ型枠の内面の少なくとも一部を、前記輪郭形状データに応じた形状に形成することを特徴とする。
 請求項7に記載の発明は、上記発明にあって、前記輪郭形状データは、発注者側コンピュータから送信されることを特徴とする。
 請求項8に記載の発明は、上記発明にあって、前記流動性樹脂吐出手段又は前記3次元プリンタは、前記側周レンズ型枠の内面の少なくとも一部を、前記輪郭形状データが示す形状に対し、眼鏡レンズとなる部分の代わりに保持するためのハンドリング部の形状を付加した形状に形成することを特徴とする。
 請求項9に記載の発明は、上記発明にあって、前記眼鏡レンズを入れる眼鏡枠のコバ形状を示すコバ形状データを取得するコバ形状データ取得手段が設けられており、前記流動性樹脂吐出手段又は前記3次元プリンタは、前記側周レンズ型枠の内面の少なくとも一部を、前記コバ形状データに応じた形状に形成することを特徴とする。
 請求項10に記載の発明は、上記発明にあって、前記コバ形状データは、発注者側コンピュータから送信されることを特徴とする。
 請求項11に記載の発明は、上記発明にあって、前記流動性樹脂吐出手段は、第2の3次元プリンタであることを特徴とする。
 請求項12に記載の発明は、上記発明にあって、前記流動性樹脂吐出手段は、樹脂吐出ディスペンサーであることを特徴とする。
 請求項13に記載の発明は、上記発明にあって、前記流動性樹脂を硬化させる硬化手段を有しており、前記流動性樹脂は、紫外線硬化樹脂であり、前記硬化手段は、紫外線照射手段であることを特徴とする。
 請求項14に記載の発明は、上記発明にあって、前記流動性樹脂を硬化させる硬化手段を有しており、前記流動性樹脂は、熱硬化樹脂であり、前記硬化手段は、加熱手段であることを特徴とする。
 請求項15に記載の発明は、上記発明にあって、前記流動性樹脂は、吐出後における成分の変化により硬化する自然硬化樹脂であることを特徴とする。
 請求項16に記載の発明は、上記発明にあって、前記前レンズ型枠基体及び前記後レンズ型枠基体の内の少なくとも一方は、ガラス製であることを特徴とする。
 請求項17に記載の発明は、上記発明にあって、前記レンズ材料は、熱硬化性樹脂材料であることを特徴とする。
 本発明では、非球面等の創成や玉型加工により無駄になる部分がなくなりあるいは少なくなり、丸レンズないしその型の管理や選択等が容易であり、加工の手間が低減された眼鏡レンズ製造システムが提供される。
本発明の第1形態に係る眼鏡レンズ製造システムのブロック図である。 側周レンズ型枠の前面図である。 レンズ型枠の側面図である。 仕上げ前眼鏡レンズの前面図である。 輪郭形状データの模式図である。 眼鏡レンズのコバ形状であって(a)ヤゲン形状,(b)溝形状を示す断面図である。 図1の眼鏡レンズ製造システムの動作例に係るフローチャートである。 側周レンズ型枠の変更例に係る前面図である。 本発明の第2形態に係る眼鏡レンズ製造システムのブロック図である。 (a)は図9の粘性樹脂吐出手段ないし前レンズ型枠の縦端面模式図であり、(b)は図9の固定手段ないしレンズ型枠の縦端面模式図である。
 以下、本発明に係る実施の形態の例が、適宜図面に基づいて説明される。尚、本発明の実施形態は、これらの例に限定されない。
[第1形態]
≪構成等≫
 本発明の実施の第1形態に係る眼鏡レンズ製造システム1は、非球面等を有するプラスチック製の眼鏡レンズを製造するものであり、図1に示されるように、眼鏡レンズメーカー(受注者側)に設置されるサーバコンピュータ(サーバ)2と、サーバ2とインターネット等を介して通信可能に接続されており、それぞれ発注者側に設置される複数の端末コンピュータ(端末)4を有している。サーバ2と各端末4の間では、処方データ6等が送受信される。各端末4は、発注者側コンピュータである。
 尚、端末4は、1台であっても良い。又、端末4が省略されても良く、端末4の台数にかかわらずサーバ2に対して発注者側からファクシミリ等により得た処方データ6等が入力されるようにしても良い。端末4が省略された場合、サーバ2等が端末4の機能を担う。
 サーバ2は、処方データ6を始めとする各種のデータ、及びプログラムが記憶される記憶手段10と、各種のデータの送受信が行われる通信手段12及び接続手段13と、これらをプログラム等に基づいて制御する制御手段14を有している。
 サーバ2には、前後レンズ型枠選定装置16と、3次元プリンタ18と、レンズ硬化装置19と、仕上げ切削装置20が、互いに通信可能に接続されている。尚、これらの内の少なくとも何れかは、サーバ2と一体にされても良いし、これらの内の少なくとも2つは、互いに一体にされても良い。又、前後レンズ型枠選定装置16、3次元プリンタ18、レンズ硬化装置19、及び仕上げ切削装置20の少なくとも1つが複数設けられるようにする等、サーバ2を含めたこれら装置の個数の比率が様々に変更されて良い。更に、サーバ2が前後レンズ型枠選定装置16と接続され、前後レンズ型枠選定装置16が3次元プリンタ18と接続され、3次元プリンタ18がレンズ硬化装置19と接続され、レンズ硬化装置19が仕上げ切削装置20と接続されるようにする等、サーバ2と直接又は間接にデータの送受信ができる他の接続形態とされても良い。
 前後レンズ型枠選定装置16は、各種の前レンズ型枠21が格納される前レンズ型枠ストッカ22と、各種の後レンズ型枠基体24が格納される後レンズ型枠基体ストッカ26と、前後レンズ型枠選定データ27に基づいて前レンズ型枠21及び後レンズ型枠基体24を選定して前レンズ型枠ストッカ22や後レンズ型枠基体ストッカ26から取り出す前後レンズ型枠選定手段28と、接続手段29と、各種のデータやプログラムを記憶する記憶手段30と、これらを制御する制御手段31を有している。前後レンズ型枠選定手段28は、例えばロボットハンドである。又、前レンズ型枠21及び後レンズ型枠基体24は、何れもガラス製であるが、他の材質のものが用いられても良いし、互いに異なる材質のものが用いられても良い。尚、説明の便宜のため、物体に近い側が前であり、眼球に近い側が後であるものとしている。
 3次元プリンタ18は、紫外線(UV)で硬化する液体樹脂をUVの照射により硬化させて、側周レンズ型枠形状データ32に基づく形状の側周レンズ型枠33(図2)や、非球面形状データ34(面形状データ)に基づく形状の非球面付加部35(面付加部,図3参照)を形成するものである。3次元プリンタ18は、液体定量吐出手段36と、例えばUV発光LEDであるUV照射手段37と、接続手段38と、各種のデータやプログラムを記憶する記憶手段39と、これらを制御する制御手段40を有している。液体定量吐出手段36では、側周レンズ型枠形状データ32に基づいて定量された液体樹脂がUV照射手段37によりUVを照射されつつ吐出され、硬化した液体樹脂の堆積物が側周レンズ型枠形状データ32に従った形状となって側周レンズ型枠33となる。又、液体定量吐出手段36では、非球面形状データ34に基づいて定量された液体樹脂がUV照射手段37によりUVを照射されつつ後レンズ型枠基体24の前面24aに対して吐出され、硬化した液体樹脂の堆積物(ないし一部露出した前面24a)が後レンズ型枠基体24の前面24a上で非球面形状データ34に従った形状となり、後レンズ型枠基体24に非球面付加部35が付加されて後レンズ型枠41が形成される。
 尚、3次元プリンタ18は、熱により硬化する樹脂液体を吐出するもの等を用いて良く、要するに液体定量吐出手段36により各種の形状データに基づいて液体(インク)が順次定量で吐出され堆積されると共に硬化手段(UV照射手段37や加熱手段)により硬化されるものであって良い。硬化手段による液体の硬化は、吐出時でも良いし、堆積時(付着時)でも良いし、吐出(堆積)時から所定時間経過後であっても良い。3次元プリンタ18の硬化手段は、3次元プリンタ18とは別の装置に配置されても良いし、別個の独立した装置として構成されても良い。又、3次元プリンタ18は、積層造形を行うもの(積層造形手段)であれば、液体を積層し硬化させるもの以外のものであっても良く、例えばテーブル上に層状に敷き詰めた金属粉末(固体)に対し形状データに基づいてレーザーを照射して照射部分のみを(例えば数十ミクロン程度の厚みで)溶融凝固させ、更にその上に金属粉末を層状に敷き詰めて同様にレーザーを照射し、適宜これらを(例えば数千回)繰り返すことで金属の構造物(側周レンズ型枠33)を得る3次元金属積層造形装置であっても良い。更に、3次元プリンタ18は、液体を積層し硬化させるものと3次元金属積層造形装置を組み合わせたものであっても良い。加えて、液体樹脂は、粘性の高い樹脂等であっても良く、要するに流動性の有る樹脂である流動性樹脂が用いられれば良い。
 加えて、側周レンズ型枠33を形成する3次元プリンタと、非球面付加部35を形成する3次元プリンタは、別々に設置されても良く、この場合、互いに同一の3次元プリンタとされても良いし、互いに異なる3次元プリンタとされても良い。かように、側周レンズ型枠33が、前レンズ型枠21や後レンズ型枠41を形成する3次元プリンタ18とは別個に設けられた第2の3次元プリンタによって作成される場合、第2の3次元プリンタは、3次元プリンタ18と同様に、液体樹脂を硬化可能に吐出するものであり、流動性樹脂吐出手段としての機能を果たす。第2の3次元プリンタは、複数設けられても良い。又、液体定量吐出手段36のみが複数配置されるようにして他は共通に用いられるようにする等、3次元プリンタ18の一部の構成要素が複数配置されるようにし、他の構成要素が共通に用いられるようにしても良い。加えて、側周レンズ型枠33の形成は省略することができ、この場合、前レンズ型枠21及び後レンズ型枠41の外縁部にスペーサを兼ねたガスケットが配置されて良い。更に、3次元プリンタ18は、前レンズ型枠基体の後面のみに非球面付加部を形成して前レンズ型枠21を形成しても良いし、前レンズ型枠基体の後面と後レンズ型枠基体24の前面24aの双方に非球面付加部を形成しても良い。又更に、3次元プリンタ18は、面付加部として、非球面付加部に代えて、あるいは非球面付加部と共に、その付加により球面が形成される球面付加部を付与しても良いし、平面が形成される平面付加部を付与しても良いし、累進面が形成される累進面付加部を付与しても良いし、他の面が形成される面付加部を付与しても良い。例えば、3次元プリンタ18は、後レンズ型枠基体24において球面とされた前面24aに対し、異なる曲率半径の球面が形成されるように球面付加部を付加することができるし、後レンズ型枠基体24において非球面とされた前面24aに対し、球面が形成されるように球面付加部を付加することもできる。そして、面形状データについても、非球面形状データ34に対して同様に変更されて良い。
 又、側周レンズ型枠形状データ32は、3次元形状を表すものであることが好ましいが、2次元形状を表すものであっても良く、後者の場合、縦横の形状を表すものとして、縦横に垂直な厚みについては一定肉厚等予め定められた分布を有するものとされて良い。以下、説明の便宜のため、レンズを通常装用時のように立てた場合における横方向がX軸方向とされており、縦方向がY軸方向とされており、XY平面に垂直な方向(レンズの肉厚方向)がZ軸方向とされている。又、X軸方向において、レンズの前方に立って向かって右方向が正の方向とされ、装用者にとって右方向はX軸の負の方向となる。更に、Y軸方向において、レンズの前方に立って向かって上方向が正の方向とされ(装用者にとっても同様)、Z軸方向において、後方向が正の方向とされている。各種軸やその正方向の取り方は、適宜変更されて良い。
 前後レンズ型枠選定装置16により取り出された前レンズ型枠21及び後レンズ型枠基体24の少なくとも一方に対し、3次元プリンタ18で側周レンズ型枠33が形成されると共に後レンズ型枠基体24の前面24aに非球面付加部35が付加され、前レンズ型枠21及び非球面付加部35付きの後レンズ型枠基体24である後レンズ型枠41が側周レンズ型枠33に接触したレンズ型枠42(図3)が形成される。
 非球面付加部35は、側周レンズ型枠33内となる部分のみに形成され、側周レンズ型枠33と接触する部分や、側周レンズ型枠33より外方の部分には形成されない。
 尚、側周レンズ型枠33内となる部分以外において非球面付加部35が形成されても良い。更に、レンズ型枠42における前レンズ型枠21、後レンズ型枠41及び側周レンズ型枠33の少なくとも2つをずれないように固定する粘着テープや容易に剥がせる接着剤等のレンズ型枠固定手段が設けられても良く、そのレンズ型枠固定手段は、前後レンズ型枠選定装置16や3次元プリンタ18に設けられあるいは独立して設けられたレンズ型枠固定手段貼付装置によってレンズ型枠42に貼付されても良いし、手動で貼付されても良い。又、側周レンズ型枠33が粘性や接着性を有するように(硬化後粘性や接着性を呈する材料で)形成され、前レンズ型枠21や後レンズ型枠41に対し固定されるようにしても良く、前レンズ型枠21及び後レンズ型枠41の少なくとも一方が粘性や接着性を有するようにしても良い。
 レンズ硬化装置19は、レンズ型枠42における前レンズ型枠21の後面21a及び後レンズ型枠41の非球面付加部35付きの前面24a並びに側周レンズ型枠33の内面に囲まれた部分に対してレンズ材料としての熱硬化性樹脂材料を充填するレンズ材料充填手段としての樹脂材料充填手段43と、熱硬化性樹脂材料の充填されたレンズ型枠42に対して、樹脂材料の種類等に応じた所定の態様(温度・時間等)で熱を加えて熱硬化性樹脂材料を硬化させるレンズ硬化手段44と、熱硬化性樹脂材料がレンズ型枠42内で硬化することにより形成された仕上げ前眼鏡レンズ45(図4)をレンズ型枠42から離す離型手段46と、接続手段47と、各種のデータやプログラムを記憶する記憶手段48と、これらを制御する制御手段49を有している。レンズ硬化手段44は例えばヒータを備えたチャンバであり、離型手段46は例えばロボットハンドである。尚、熱硬化性樹脂材料に代えて例えばUV硬化樹脂材料といった他のレンズ材料を用いても良く、熱硬化性樹脂に代えて例えばUV硬化樹脂といった他のプラスチックを用いても良い。
 仕上げ切削装置20は、玉型の眼鏡レンズ50(図4参照)の輪郭形状データ51(図5)や、玉型の眼鏡レンズ50の側周面であるコバの形状の種類を表すコバ種類データ52等の各種のデータやプログラムを記憶する記憶手段53と、仕上げ前眼鏡レンズ45を切削する切削手段54と、接続手段56と、これらを制御する制御手段58を有している。切削手段54は、例えば数値制御される砥石及びチャックであり、仕上げ前眼鏡レンズ45を、外形が輪郭形状データ51に基づく形状になるように切削して、眼鏡レンズ50となるようにする。仕上げ前眼鏡レンズ45は、眼鏡レンズ50となる部分と、その部分に付加された棒状のハンドリング部45aを有する。仕上げ前眼鏡レンズ45は、ハンドリング部45aを掴むことで、眼鏡レンズ50となる部分に触れることなく眼鏡レンズ50となる部分の代わりに保持することができ、ハンドリング部45aは、仕上げ前眼鏡レンズ45作製後の工程における仕上げ前眼鏡レンズ45の取り扱い用として設けられる。
 各端末4は、処方データ6を始めとする各種のデータ、及びプログラムが記憶される記憶手段60と、各種のデータの送受信が行われる通信手段62及び接続手段63と、これらをプログラム等に基づいて制御する制御手段64を有している。
 各端末4には、処方データ6やコバ種類データ52を入力する入力手段66、及び輪郭形状データ51を入力する輪郭形状入力手段68が、サーバ2に対する3次元プリンタ16等と同様、それぞれ接続手段69,70を介して通信可能に接続されている。
 入力手段66は、マウス等のポインティングデバイス、あるいはキーボード、タッチパネル、又はこれらの組合せであり、コバ種類データ52や処方データ6の入力をその操作により受け付けて、接続手段69を介して端末4に送信する。
 処方データ6は、例えば球面度数(S度数)、乱視度数(C度数)、乱視軸、加入度、プリズム、コバ厚、カラー、瞳孔間距離、非球面レベルである。尚、処方データ6は左右個別となっていることが好ましいが、適宜左右共通のものや単一のものを用いることができる。又、処方データ6は、これらの一部のみを採用したり、他のものを追加したりすることができる。処方データ6等において、曲率半径が含まれるようにしても良い。
 非球面レベルは、眼鏡レンズ50の非球面に係る最も近い球面からの差の程度を示すもので、球面との差がない場合は0、球面との差が僅かであれば1、球面との差が非球面レベル1における差より大きければ2、・・・等とする。そして、非球面レベルの値は、次の非球面式(数1)の曲率半径Rに応じ、各非球面係数A,A,A,Aの値の集合の種類を示すものとされている。非球面式において、Dはレンズ幾何中心点からの距離[mm]であり、Zは非球面高さ[mm]である。非球面レベルと、曲率半径Rに応じた各非球面係数との対応関係を示すデータベースは、サーバ2の記憶手段10等に記憶されており、非球面式(数1)も、サーバ2の記憶手段10等に記憶されている。
 例えば、曲率半径R=519.01ミリメートル(mm)の場合において、非球面レベルが1であれば(A,A,A,A)=(3.06E-07,5.06E-07,-2.41E-10,5.11E-14)であり、非球面レベル2であれば(A,A,A,A)=(4.11E-07,8.08E-07,-1.82E-10,6.11E-14)である。ここで、3.06E-07は、3.06×10-7を示すものであり、他も同様である。
 尚、非球面レベルは、処方データ6ではなく、輪郭形状データ51として取り扱われても良いし、独立したデータとして取り扱われても良い。又、眼鏡レンズ50の非球面の形状を示すものとして、数1以外の非球面式を採用することができる。更に、眼鏡レンズ50の非球面の形状を示すものとして、非球面レベルに代えて、あるいは非球面レベルと共に、各非球面係数の集合が用いられたり、非球面式(数1)における所定間隔毎のD値におけるZ値の集合が用いられたり、当該Z値から曲率半径RのD値における球面高さを減じた値(球面に対して付着体を付加することで非球面が形成される場合における付着体の付加量である非球面付加量)が用いられたり、あるいは透過度数分布(非点収差分布)のパターンの種類を示すものが用いられたりして良い。又更に、球面度数(S度数)、乱視度数(C度数)、乱視軸、加入度の少なくとも何れか等といった処方データ6を用いて、眼鏡レンズ50の非球面の形状が指定され若しくは算出されるようにすることができる。
Figure JPOXMLDOC01-appb-M000001
 コバ種類データ52は、眼鏡レンズ50のコバの断面がΛ字状(三角形状)に突出したヤゲン形状T(図6(a))を有するのであればその突出高さや頂点の前面周縁からの距離に応じてT-1,T-2等とし、断面がU字状に凹んだ溝形状K(図6(b))を有するのであればその深さや最深部の前面周縁からの距離に応じてK-1,K-2等とし、断面が平ら(平摺り)であればH-1,H-2等とする。例えば、コバ種類データ52は、T-1であれば、0.7mmの突出高さを有し、前面周縁から1.0mmの水平距離を有する位置に頂点を有するヤゲン形状を表し、コバ種類データ52は、K-1であれば、0.6mmの深さを有し、前面周縁から1.0mmの水平距離を有する位置に最深部を有する所定幅の溝の形状を表す。尚、コバ種類データ52は、コバ断面が台形状であるヤゲン形状等他の形状を示すものを含んでも良く、この場合、例えば台形状のヤゲン形状についてG-1,G-2等としても良いし、三角形状のヤゲンをT-a-1として台形状のヤゲン形状をT-b-1等としても良い。又、コバ種類データ52は、左右個別に取得されても良い。
 輪郭形状入力手段68は、眼鏡レンズ50の玉型の輪郭を表す輪郭形状データ51の入力を受け付ける。輪郭形状データ51は、輪郭形状入力手段68の図示しない制御手段による制御に基づき、接続手段70を介して端末4に送信される。輪郭形状入力手段68は、例えば、眼鏡枠Fに係る左右のリム内周形状をプローブの走査により輪郭形状データ51としてデータ化する眼鏡枠トレーサである。眼鏡レンズ50は、眼鏡枠Fのリムに取り付けるため、リム形状(リム内周形状)に対応する玉型に形成される。輪郭形状データ51は、眼鏡枠Fのリム内周形状に関する、所定の原点に対する所定数の座標取得点(例えば100点)のXY座標値の集合である。隣接する座標取得点は、原点あるいはその他の任意の点に対してそれぞれ等角度となるように選択される。
 又、輪郭形状データ51には、アイポイントEの座標値が含まれる。アイポイントEは、XY平面上に投影した装用時の瞳孔位置であり、プリズムのない場合に眼鏡レンズ50の光学中心Cに合致するように配置され、プリズムのある場合にプリズムに応じた所定の位置に配置される。
 輪郭形状データ51は、ヤゲン形状の頂点や溝形状の最深部や平摺り部の輪郭を表すものとして取得されるが、眼鏡レンズ50の前面(あるいは後面)の輪郭を表すものとして取得されても良い。眼鏡レンズ50の玉型(眼鏡枠F装着時の外形)は、輪郭形状データ51で示される輪郭形状と、コバ種類データ52で示されるコバ形状(側周断面形状)により表される。リムレス(ツーポイント)のように輪状のリムのない眼鏡枠Fや、ナイロールのように眼鏡レンズ50取り付け前において輪状のリムのない眼鏡枠Fの場合、輪郭形状データ51は、所望の眼鏡レンズ50の玉型を呈するダミーのリム(あるいはダミーの玉型レンズ)を眼鏡枠トレーサに走査させることで得て良い。又、輪状のリムの有無にかかわらず、輪郭形状データ51は、入力手段66や、図面に記載された形状を読み取るスキャナから入力されても良いし、既存のものを選択することで入力されても良い。輪郭形状データ51は、リム内周形状を表すデータに対し所定の演算を施すことで得ても良い。即ち、輪郭形状データ51は、眼鏡枠Fのリム形状に完全に合致しなくても良い。コバ種類データ52も、同様に眼鏡枠Fのリム形状に完全に合致しなくても良い。
 尚、座標取得点は、隣接するものがそれぞれ等距離あるいは同じ形状長さとなるように選択されても良い。又、輪郭形状データ51は左右個別となっていることが好ましいが、一方のみが取得され、その取得されたデータを用いて他方の輪郭形状データ51がY軸に対称な形状として演算されるようにしても良い。更に、輪郭形状データ51はZ軸座標値も含む3次元の座標値の集合とされても良い。又更に、輪郭形状入力手段68でコバ種類データ52が検知されるようにしても良いし、コバ種類データ52に代えて、あるいはこれと共に、眼鏡枠トレーサでコバに対応する眼鏡枠Fのリム形状(ヤゲンに対応する溝や溝に対応する突起等の形状)をデータ化して当該コバ形状データを用いても良い。輪郭形状データ51とコバ種類データ52(あるいはコバ形状データ)とを共通化して、眼鏡レンズ50の玉型を表す玉型データとしても良い。コバ種類データ52を省略し、既に決定された断面形状のコバに仕上げるようにしても良い。加えて、アイポイントEは、輪郭形状データ51ではなく、処方データ6等として取り扱われても良い。又、アイポイントEが座標取得点等の原点であるものとして処理されても良い。輪郭形状データ51等に係る演算の一部又は全部は、端末4において行われても良い。更に、眼鏡枠トレーサが(メーカーにおいて)サーバ2に接続され、眼鏡枠Fがサーバ2側(メーカー)に送られて眼鏡枠トレーサにセットされ、輪郭形状データ51がサーバ2に入力されるようにしても良い。
≪動作等≫
 図7は、眼鏡レンズ製造システム1の動作例に係るフローチャートである。各装置の動作に関し、その制御手段の動作が、適宜その装置の動作として説明される。例えば、サーバ2の制御手段14の動作が、サーバ2の動作として適宜説明される。又以下では、処理のステップが適宜Sと記載される。ステップは、適宜同等の処理を行う他の1以上のステップに変更されて良いし、適宜順序が入れ替えられても良い。
 眼鏡店を始めとする発注者側に配置された端末4は、入力手段66から処方データ6やコバ種類データ52を受信する(S1)。例えば、処方データ6としてS度数-2.00D(ディオプター)及びレンズ中心厚1.0mmが入力され、コバ種類データ52としてT-1が入力される。
 又、輪郭形状入力手段68に眼鏡枠F等がセットされて輪郭形状データ51が取得され、端末4は輪郭形状データ51を受信する(S2)。例えば、右の輪郭形状データ51として図5に示されるような形状を表すデータが入力される。
 端末4は、処方データ6、輪郭形状データ51、及びコバ種類データ52の組を、他の組と区別するための識別記号を付したうえで記憶する。そして、端末4は、発注了承の入力を受けると、これらのデータや識別記号を、サーバ2に送信する(S3)。輪郭形状データ51を取得する端末4及び輪郭形状入力手段68並びにサーバ2の少なくとも何れかは輪郭形状データ取得手段を構成し、コバ種類データ52を取得する端末4及び入力手段66並びにサーバ2の少なくとも何れかはコバ形状データ取得手段を構成する。
 サーバ2は、処方データ6、輪郭形状データ51、及びコバ種類データ52の組を受信すると、識別記号毎に記憶する(S4)。
 そして、サーバ2は、処方データ6から、前後レンズ型枠選定データ27を演算し、前後レンズ型枠選定装置16へ送信する(S5)。例えば、S度数-2.00D及びレンズ中心厚1.0mmにより、眼鏡レンズ50の屈折率が1.60であることを前提として、後面21a(図3)の曲率半径が190.06mmである前レンズ型枠21と、前面24a(図3)の曲率半径が519.01mmである後レンズ型枠基体24が選定される旨を示すデータを生成する。前レンズ型枠21の後面21aは、眼鏡レンズ50の前面を規定し、後レンズ型枠基体24の前面24aは、眼鏡レンズ50の後面の基礎を規定する。サーバ2は、S度数毎に、前レンズ型枠21の後面21aの曲率半径と後レンズ型枠基体24の前面24aの曲率半径の組(前後レンズ型枠の種類)をデータベースとして記憶しており、処方データ6のS度数に基づいてデータベースにアクセスして、前後レンズ型枠選定データ27を得る。尚、前後レンズ型枠選定データ27の演算の一部又は全部は、前後レンズ型枠選定装置16で行われても良い。又、処方データ6は眼鏡レンズ50の材料に関する材質データを含んでも良く、サーバ2は、その材質データで示される材料により眼鏡レンズ50を作製した場合の屈折率を加味して、前後レンズ型枠選定データ27を得ても良い。材質データは、屈折率や透過率等の材料の性質を示すものとされても良い。又、材質データは、処方データ6(S度数等)から演算されても良い。
 又、サーバ2は、処方データ6、輪郭形状データ51、及びコバ種類データ52から、側周レンズ型枠形状データ32を演算し、3次元プリンタ18に送信する(S6)。尚、側周レンズ型枠形状データ32の演算の一部又は全部は、3次元プリンタ18で行われても良い。
 例えば、サーバ2は、側周レンズ型枠形状データ32のベース形状データとして、図5のような輪郭形状データ51に対応する内面を持ち、この内面に対して所定量だけ径方向外方にオフセットした外面を持ち、処方データ6のコバ厚に対応した肉厚を持つリング形状データを演算する。当該ベース形状データには、アイポイントEも含まれる。尚、サーバ2は、処方データ6のコバ厚に代えて、S度数あるいは前後レンズ型枠選定データ27が示す前レンズ型枠21の後面21aの曲率半径と後レンズ型枠基体24の前面24aの曲率半径を参照して、側周レンズ型枠形状データ32のベース形状データの肉厚(分布)を算出しても良いし、S度数等とコバ厚の双方を参照して一層正確な肉厚(分布)のデータを演算しても良い。
 又、サーバ2は、側周レンズ型枠形状データ32のハンドリング部形状データとして、互いに所定間隔を置いたX軸に沿う2本の帯状部分の予め演算しておいた結果を参照すると共に、肉厚についてベース形状データと同様に演算する。そして、サーバ2は、ハンドリング部形状データをベース形状データの所定位置に接続するように付加する。
 更に、サーバ2は、側周レンズ型枠形状データ32のベース形状データの内面について、コバ種類データ52が示すコバ形状に対応する面形状に変える。コバ種類データ52がT-1であれば、そのヤゲン形状に合う凹部を演算する。即ち、サーバ2は、元の内面のデータを、前面周縁から1.0mmの水平距離を有する位置に0.7mmの最深部を有するヤゲン溝の形状データを加味したものに変更する。
 加えて、サーバ2は、輪郭形状データ51とコバ種類データ52を、仕上げ切削装置53に送信する(S7)。尚、サーバ2で行われる演算の一部又は全部は、端末4を始めとする他の装置で行われても良い。
 又、サーバ2は、処方データ6及び輪郭形状データ51から、非球面形状データ34を適宜演算し、3次元プリンタ18や仕上げ切削装置20に送信する(S8)。尚、非球面形状データ34の演算の一部又は全部は、3次元プリンタ18や仕上げ切削装置20で行われても良い。
 例えば、サーバ2は、処方データ6中のS度数等により算出される眼鏡レンズ50の後面の曲率半径Rが519.01mmであり、又非球面レベルが1であると、記憶手段10を参照し、非球面レベル1に対応する非球面係数の値が(A,A,A,A)=(3.06E-07,5.06E-07,-2.41E-10,5.11E-14)であることを把握する。一方、眼鏡レンズ50の後面の曲率半径Rが519.01mmであり、又非球面レベルが2であると、非球面係数の値が(A,A,A,A)=(4.11E-07,8.08E-07,-1.82E-10,6.11E-14)であることを把握する。加えて、サーバ2は、処方データ6中の非球面レベルが0であると、非球面形状データ34は演算されず、非球面が形成されない(前後面とも球面で形成される)旨を示す内容とする。尚、サーバ2は、非球面レベルが0である場合、非球面形状データ34を送信しないようにして良い。
 そして、次の表1(非球面レベル1の場合)や表2(非球面レベル2の場合)に示すように、サーバ2は、得られた各非球面係数の値を非球面式(数1)に当てはめ、レンズ幾何中心点からのXY平面に係る距離Dにおける非球面高さZ(Z軸方向におけるレンズ幾何中心点からの高さ)を求める。一方、サーバ2は、曲率半径R=519.01に係る、レンズ幾何中心点からの距離Dにおける球面高さZ1を求める。そして、所定のD毎にZからZ1を減算する(Z-Z1)ことで、非球面付加量Z2を求める。
 サーバ2は、かようにして算出したDの所定間隔毎の非球面付加量Z2の集合について、輪郭形状データ51内のみに限定し、非球面形状データ34とする。尚、当該限定は省略されても良い。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 前後レンズ型枠選定データ27を受信した前後レンズ型枠選定装置16は、これを記憶して参照し、前後レンズ型枠選定手段28によって、前後レンズ型枠選定データ27により示される種類の前レンズ型枠21,後レンズ型枠基体24を前レンズ型枠ストッカ22,後レンズ型枠基体ストッカ26から選定して、図示しない搬送手段により3次元プリンタ18に搬送する(S9)。上記例示の前後レンズ型枠選定データ27であれば、後面21aの曲率半径が190.06mmである前レンズ型枠21と、前面24aの曲率半径が519.01mmである後レンズ型枠基体24が選定される。
 側周レンズ型枠形状データ32や非球面形状データ34を受信すると共に、これに対応する前レンズ型枠21,後レンズ型枠基体24を受け取った3次元プリンタ18は、非球面形状データ34に基づいて、後レンズ型枠基体24の前面24aに、非球面付加部35を付与して、後レンズ型枠41を形成する(S10)。
 3次元プリンタ18は、非球面形状データ34を参照し、液体定量吐出手段36における走査と液体樹脂の吐出量を制御すると共に、UV照射手段37による液体樹脂に対するUVの照射を制御して、硬化した非球面付加部35を形成する。UVで硬化する液体樹脂として、例えばアクリレートを主成分とするもの(アクリレート系UV硬化樹脂)及びエポキシ樹脂を主成分とするもの(エポキシ系UV硬化樹脂)の内の少なくとも一方が用いられる。前者は、UV照射を停止すると直ちに硬化反応が停止するが、硬化前後における体積変化が比較的に大きく、硬化前の体積に比べて硬化後の体積が比較的に大きく収縮する。後者は、UV照射停止後においても硬化反応が継続するが、硬化前後における体積変化が比較的に小さく、硬化前の体積に比べ硬化後の体積はさほど収縮しない。かような複数種類のUV硬化樹脂は、レンズ型枠(非球面付加部35)として要求される精度や硬化速度(効率)等に応じたものを選び出して使用したり、精度や効率に応じ適宜混合して使用したりする。
 但し、処方データ6の非球面レベルが0である場合、3次元プリンタ18は後レンズ型枠基体24の前面24aに対して非球面付加部35を付加しない。この場合、後レンズ型枠基体24はそのまま後レンズ型枠41となり、後レンズ型枠基体24の前面24a即ちこの場合の後レンズ型枠41の前面は球面であるから、後面が球面である眼鏡レンズ50が作製される。尚、後レンズ型枠基体24の前面24aが非球面であるようにして、3次元プリンタ18は非球面レベルが0である(球面を形成する)場合に球面となるように球面付加部を付加しても良い。
 又、3次元プリンタ18は、側周レンズ型枠形状データ32に基づいて、前レンズ型枠21の後面21aと後レンズ型枠41の前面の内の少なくとも一方に、側周レンズ型枠33を形成する(S11)。3次元プリンタ18は、プリズムのない場合、側周レンズ型枠形状データ32のアイポイントEと前レンズ型枠21(後レンズ型枠41)の光学中心Cとが一致する配置において側周レンズ型枠33を形成し、プリズムのある場合、アイポイントEが光学中心Cに対して所定位置となるような配置において側周レンズ型枠33を形成する。
 3次元プリンタ18は、側周レンズ型枠形状データ32を順次参照し、液体定量吐出手段36における走査と液体樹脂の吐出量を制御すると共に、UV照射手段37による液体樹脂に対するUVの照射を制御して、硬化した側周レンズ型枠33を形成する。側周レンズ型枠33の形成に用いられる液体樹脂は、非球面付加部35と同様のものであるが、アクリレート系UV硬化樹脂とエポキシ系UV硬化樹脂の配合比率(重量比や体積比)が異なるものとされる等、非球面付加部35のものと異なるものとされても良い。又、側周レンズ型枠33形成時における3次元プリンタ18の制御は、非球面付加部35形成時の制御に対し、液体定量吐出手段36における走査密度や最小吐出量が異なるものとされたり、UV照射手段37によるUVの照射量や照射パターンが異なるものとされる等、内容の異なるものとされて良い。
 尚、3次元プリンタ18は、非球面付加部35を作成する前に側周レンズ型枠33の少なくとも一部を作成しても良いし、側周レンズ型枠33と非球面付加部35を同時に形成しても良い。
 3次元プリンタ18は、非球面付加部35ないしは側周レンズ型枠33の形成後、側周レンズ型枠33を介して前レンズ型枠21及び後レンズ型枠41が合わさった状態となるようにこれらを配置してレンズ型枠42を組み立て、図示しない搬送手段によりレンズ硬化装置19へ搬送する。
 尚、前レンズ型枠21、後レンズ型枠41、及び側周レンズ型枠33の結合、即ちレンズ型枠42の組み立ては、レンズ硬化装置19において行われても良い。又、3次元プリンタ18あるいは他の3次元プリンタは、前後レンズ型枠選定データ27や処方データ6等に基づいて前レンズ型枠21の一部又は全部を形成しても良いし、同様に後レンズ型枠41の非球面付加部35以外の一部又は全部を形成しても良いし、双方の一部又は全部を形成しても良い。例えば、前レンズ型枠21の基体が用意され、その基体の後面に対し、S度数に合う後面21aを有するUV硬化樹脂製の付加部分が形成されても良いし、所望のS度数と異なる後レンズ型枠基体24の前面24aに対し、当該S度数に合う前面に非球面付加部35を加味した付加部分が形成されても良い。これらの場合や上述の非球面付加部35の付与の場合、UV硬化樹脂製の付加部分を含む面は、研磨手段等によって仕上げ加工されても良い。
 あるいは、ガラス製等の側周レンズ型枠33が、そのストッカから選定されるようにしても良い。又、側周レンズ型枠33の基体における内面の少なくとも一部に対して、3次元プリンタ18や他の3次元プリンタでUV硬化樹脂を堆積することで、側周レンズ型枠33が形成されても良い。側周レンズ型枠33の基体の内面は例えば仕上げ前眼鏡レンズ45の全体を包含可能な形状であり、その内面の一部又は全部に対し、側周レンズ型枠形状データ32に応じた内面を有するUV硬化樹脂が付加されて良い。側周レンズ型枠33の基体は、1種類であっても良いし、複数種類存在しても良く、後者の場合に、側周レンズ型枠形状データ32等に基づいて基体ストッカから選定されるようにしても良い。側周レンズ型枠33の基体は、ガラス製であって良く、楕円形であっても良い。3次元プリンタ18や他の3次元プリンタは、側周レンズ型枠33の基体の内面に、コバ種類データ52に係るヤゲン形状や溝形状に対応する付加部分のみを付与するようにしても良い。
 レンズ硬化装置19は、レンズ型枠42を受け取ると、熱硬化性樹脂材料をレンズ型枠42に流し込んで硬化させ、熱硬化性樹脂製の仕上げ前眼鏡レンズ45を作製する(S12)。
 即ち、まずレンズ硬化装置19の樹脂材料充填手段43が、レンズ型枠42(前レンズ型枠21、後レンズ型枠41、及び側周レンズ型枠33で囲まれた部分)に、熱硬化性の樹脂材料を充填する。樹脂材料充填手段43は、樹脂材料を、レンズ型枠42の充填口J(図3)から充填する。仕上げ前眼鏡レンズ45(図4)がハンドリング部45aを備えるようにすることで、レンズ型枠42の内部に通じる充填口Jが形成される。樹脂材料充填手段43は、センサによりレンズ型枠42から樹脂材料が溢れることを把握して充填を終えても良いし、自身あるいはサーバ2等の他の装置で充填量を演算しておき、その充填量に達したら充填を終えても良い。又、レンズ硬化装置19は、前レンズ型枠21、後レンズ型枠41、及び側周レンズ型枠33の少なくとも何れかが離れた状態でレンズ型枠42を受け取り、その状態で樹脂材料を充填した後、前レンズ型枠21、後レンズ型枠41、及び側周レンズ型枠33を全て組み合わせるようにしても良い。例えば、レンズ硬化装置19は、後面21aに側周レンズ型枠33が結合された前レンズ型枠21と、後レンズ型枠41を個別に受け取り、前レンズ型枠21と側周レンズ型枠33で囲まれた部分に樹脂材料を流し込んだ後、側周レンズ型枠33に後レンズ型枠41をかぶせても良い。かように樹脂材料の充填後にレンズ型枠42の組み立てを完成させることで、側周に充填口Jが露出していなくてもレンズ型枠42内に樹脂を充填することができる。加えて、レンズ硬化装置19は、処方データ6(材質データ)をサーバ2等から受信して、樹脂材料充填手段43が眼鏡レンズ50に係る材質データで示される材質の樹脂材料を選択して充填するようにしても良い。
 従来の丸レンズは、丸い前レンズ型枠21と後レンズ型枠41の間全体に樹脂材料を充填して形成されるに等しく、よって眼鏡レンズ製造システム1における樹脂材料の使用量は大幅に低減される。又、樹脂材料は、3次元プリンタ18で直接眼鏡レンズ50自体を作製する場合のように3次元プリンタ18で使用可能である必要はなく、低コストのものから高性能のもの(硬化後に高屈折率を呈するもの等)まで幅広く使用することができ、眼鏡レンズ50として十分な性能を有するものを使用することができる。
 次に、レンズ硬化手段44が樹脂材料入りのレンズ型枠42を加熱し、樹脂材料を硬化させて熱硬化性樹脂製の仕上げ前眼鏡レンズ45を形成する。樹脂材料のレンズ型枠42内での硬化に際し、前レンズ型枠21は、ガラス製のもの等、後面21aについて十分に平滑なものを使用することができ、光学的に重要な眼鏡レンズ50の前面は、眼鏡レンズとして十分な性能を有するものに形成される。又、後レンズ型枠41の前面は、ガラス製等であって平滑な前面24aを有する後レンズ型枠基体24に対し、3次元プリンタ18によって非球面付加部35を付加することで所望の非球面とされており、眼鏡レンズ50の後面は、後レンズ型枠基体24の種類が少なかったとしても所望の非球面にて形成される。
 続いて、離型手段46が、レンズ型枠42から仕上げ前眼鏡レンズ45を取り出す。例えば、離型手段46は、ロボットハンドにより、前レンズ型枠21、後レンズ型枠41、及び側周レンズ型枠33の少なくとも何れかを分離し、仕上げ前眼鏡レンズ45を取り出す。あるいは、離型手段46は、仕上げ前眼鏡レンズ45入りのレンズ型枠42を洗浄用等の液槽に投入し、液槽(液中)内において液の作用でレンズ型枠42から離れた仕上げ前眼鏡レンズ45を取り出す。仕上げ前眼鏡レンズ45中の眼鏡レンズ50となる部分の前面は、前レンズ型枠21の後面21aに従い、曲率半径が190.06mmであるものとして形成され、眼鏡レンズ50となる部分の後面は、後レンズ型枠41における非球面付加部35付きの前面24aに従い、所定の非球面係数の組に係る非球面式(数1)に応じた非球面として形成される。前レンズ型枠21や非球面付加部35付きの後レンズ型枠基体24は回収され、適宜洗浄のうえで、それぞれのストッカ(前レンズ型枠ストッカ22,後レンズ型枠基体ストッカ26)に戻される。
 そして、レンズ硬化装置19は、取り出した仕上げ前眼鏡レンズ45を、図示しない搬送手段により仕上げ切削装置20に搬送する。レンズ硬化装置19の搬送手段は、仕上げ前眼鏡レンズ45のハンドリング部45aを掴むことで、眼鏡レンズ50となる部分に接触することなく仕上げ前眼鏡レンズ45を取り扱うことができる。
 仕上げ切削装置20は、S7でサーバ2から送信された輪郭形状データ51及びコバ種類データ52やS8でサーバ2から送信された非球面形状データ34を受信するとこれらデータを記憶しており、これらデータに対応した(これらデータに係る識別記号と同一の識別記号を有する)仕上げ前眼鏡レンズ45を受け取ると、これらデータに基づいて仕上げ前眼鏡レンズ45を切削しあるいは研磨し、眼鏡レンズ50を仕上げる(S13)。
 即ち、仕上げ切削装置20は、仕上げ前眼鏡レンズ45をソフトタッチチャックで固定し、切削手段54(研磨材)によって少なくとも眼鏡レンズ50となる部分の後面を、非球面形状データ34に従うように研磨する。当該研磨により、創成される非球面の光学性能がより一層良好になる。尚、仕上げ切削装置20は、当該研磨を省略することができる。
 又、仕上げ切削装置20は、切削手段54によってハンドリング部45aを切り離して、処方データ6(S度数や非球面レベル等)や輪郭形状データ51(アイポイントEを含む)、コバ種類データ52に従った眼鏡レンズ50を作製する。仕上げ切削装置20は、切削手段54の砥石としてコバ種類データ52に係るコバ形状に対応する砥石面を有するものを選択し、切り離すラインが輪郭形状データ51に合致したものとなるように切削手段54の砥石が移動される。尚、仕上げ切削装置20は、砥石面の形状でコバを形成せず、予め演算したコバ形状データに基づく3次元数値制御切削によってコバを形成しても良いし、輪郭形状データ51より大きめにカットをし若しくは荒削りをしてからコバを形成しても良い。又、仕上げ切削装置20は、眼鏡レンズ50のハンドリング部45a接続部以外のコバを切削しあるいは研磨しても良い。
 仕上げ切削装置20は、ハンドリング部45aの切り離しのみによって玉型の切削が完了するので、切削時間が短くて済み、効率が良好である。又、玉型加工において樹脂で無駄になる部分は、ハンドリング部45aのみである。
 又、仕上げ切削装置20は、後レンズ型枠基体24の前面24aに対して非球面付加部35を付加することで形成された後レンズ型枠41の前面に沿って硬化された眼鏡レンズ50の後の非球面を研磨するので、厚みに余裕を持ったセミフィニッシュトブランクの後面を切削して非球面を形成する場合に比べ、切削時間が短くて済み、効率が良好であるし、使用されない樹脂が極めて少なくなる。
 尚、図8に示すように、サーバ2は側周レンズ型枠形状データ32として輪郭形状データ51から所定距離以上離れた最小の楕円筒面を内面に持つものを演算し、3次元プリンタ18は楕円リング状の側周レンズ型枠33を形成し、レンズ硬化装置19は側周が楕円形である仕上げ前眼鏡レンズ45を硬化し、仕上げ切削装置20は輪郭形状データ51及びコバ種類データ52並びに非球面形状データ35に従い仕上げ前眼鏡レンズ45を切削研磨して眼鏡レンズ50を製造しても良い。この場合も、仕上げ前眼鏡レンズ45から眼鏡レンズ50を除いた部分がハンドリング部45aとなって取り扱い易いし、樹脂材料の使用量が低減されるし、丸レンズを切削する場合に比較して切削の効率が良好である。又、側周レンズ型枠33が楕円形となるので、演算量が比較的に少なくて済む。更に、仕上げ前眼鏡レンズ45の形状が楕円形に統一され、又ハンドリング部45aが側周全体に亘ることとなり、仕上げ切削装置20への搬送を始めとする仕上げ前眼鏡レンズ45作製後の工程での取り扱いが容易になる。側周レンズ型枠形状データ32は所定種類のみ用意されるものとし、サーバ2は輪郭形状データ51に係る形状の全体を含み得る最小の種類の側周レンズ型枠形状データ32を選択するようにして良い。
 又、側周レンズ型枠形状データ32が輪郭形状データ51(及びコバ種類データ52)で表される眼鏡レンズ50の側周に一致する内面形状を表すように生成されるようにして、眼鏡レンズ50が輪郭形状又は玉型で硬化するようにし、仕上げ切削の大部分あるいは全部を省略するようにして良く、仕上げ切削装置20が発注者側に設置されても良いし省略されても良い。
 あるいは、仕上げ切削装置20等による眼鏡レンズ50の作製後に、又は仕上げ前眼鏡レンズ45の作製後(仕上げ切削前)に、眼鏡レンズ50や仕上げ前眼鏡レンズ45の前面及び後面並びに側周面(コバ)の少なくとも何れかに対し1種以上の膜が形成されても良い。例えば、無機酸化物等の低屈折率層と高屈折率層を交互に積層した光学多層膜(反射防止膜等)や、ハードコート膜、防水膜、若しくは防汚膜、偏光膜、遮光膜又はこれらの組合せが形成されて良い。レンズ硬化装置19による仕上げ前眼鏡レンズ45作製後の工程(仕上げ切削装置20との間)において、仕上げ前眼鏡レンズ45の同様箇所に対して同様の膜が形成されても良い。
 又、仕上げ切削装置20等による眼鏡レンズ50の作製後や仕上げ前眼鏡レンズ45の作製後(仕上げ切削前)において、眼鏡レンズ50や仕上げ前眼鏡レンズ45に対し着色が施されても良い。眼鏡レンズ50の着色や仕上げ前眼鏡レンズ45の着色は、顔料による着色や、染料による染色、レンズ材料に対する着色、着色膜の付加、あるいはこれらの組合せ等により行うことができる。
 かように製造された眼鏡レンズ50は、適宜検品を経て、発注側の場所あるいは発注側の指定する場所に送付される。これらの場所を示すデータは、サーバ2において端末4から受信して記憶しておいて良い。又、眼鏡レンズ50についての決済情報も、同様に受信して記憶しておき、適宜この決済情報を用いて決済側サーバコンピュータ等にアクセスし、眼鏡レンズ50の決済を行っても良い。
 発注側等においては、対応する眼鏡枠Fに眼鏡レンズ50を入れ、眼鏡を完成させる。
 眼鏡レンズ製造システム1は、かような動作を識別記号毎に適宜繰り返す。尚、眼鏡レンズ製造システム1は、所定の仕上げ前眼鏡レンズ45や眼鏡レンズ50の在庫を確保する等の場合において、識別記号や輪郭形状データ51等を得ずにこれらを製造して良く、この場合において、レンズ型枠42の一部や全部(適宜非球面付加部35や側周レンズ型枠33を含む)は、適宜洗浄のうえで再利用されても良い。
≪作用効果等≫
 以上の眼鏡レンズ製造システム1は、レンズ型枠42にレンズ材料(熱硬化性樹脂材料)を充填する樹脂材料充填手段43を有しており、レンズ型枠42は、前面が眼鏡レンズ50の後面を規定する後レンズ型枠41を備えており、後レンズ型枠41は、後レンズ型枠基体24を有しており、後レンズ型枠基体24の前面24aに対して非球面付加部35を付加する3次元プリンタ18が設けられており、非球面付加部35が付加された後レンズ型枠基体24の前面24aによって、後レンズ型枠41の前面が形成される。
 よって、眼鏡レンズ50の後面は、任意の非球面付加部35が付加された後レンズ型枠基体24の前面24aによって任意の非球面に形成されることとなり、セミフィニッシュトブランクが切削されて非球面が創成される場合に比べ、効率をより良好にし、無駄な材料の発生を抑制することができる。又、任意の非球面を有する眼鏡レンズ50が3次元プリンタにより直接作製される場合に比べ、3次元プリンタ18で使用可能なレンズ材料を用いるという制約がないために光学的性能や物理的性能がより良好な状態で形成される。現状、3次元プリンタ18において現実的コストで使用可能なレンズ材料から形成された任意形状の眼鏡レンズでは、十分な(現状の一般的眼鏡レンズと同等以上の)光学的性能や物理的性能を具備させることができない。これに対し、眼鏡レンズ製造システム1では、3次元プリンタ18がレンズ型枠42の形成に用いられ、適宜3次元プリンタ18により形成した部分に仕上げ加工を施すことで、任意形状の非球面を有する眼鏡レンズ50が、十分な光学的性能や物理的性能を具備する状態で作製される。
 そして、眼鏡レンズ製造システム1では、後レンズ型枠基体24に非球面付加部35を付加することで後レンズ型枠41に非球面が形成されるので、あたかも後レンズ型枠41を含むレンズ型枠42が可変の型であるかのようになり、所望の非球面を有する眼鏡レンズ50のためのレンズ型枠42がオーダーメードであるようにすることができて、後レンズ型枠基体24の種類を多く用意しなくても所望の非球面を有する眼鏡レンズ50が製造されることとなる。
 以上の作用効果は、後レンズ型枠基体24に代えて前レンズ型枠基体が用意され、前レンズ型枠基体の後面に非球面付加部が付加されて眼鏡レンズ50の前面が非球面に形成される場合においても同様であるし、後レンズ型枠基体24と共に前レンズ型枠基体が用意され、後レンズ型枠基体24の前面24aと前レンズ型枠基体の後面にそれぞれ対応する非球面付加部が付加されて眼鏡レンズ50の前面及び後面が非球面に形成される場合においても同様である。更に、以上の作用効果は、非球面付加部以外の面付加部が付加されて眼鏡レンズの前面又は後面が球面等に形成される場合においても同様である。
 又、レンズ型枠42は、内面が眼鏡レンズ50の側周に応じて形成される側周レンズ型枠33を有しており、側周レンズ型枠33が、3次元プリンタ18により形成されている。
 よって、仕上げ前眼鏡レンズ45が眼鏡レンズ50の玉型に近い形状に作製されたり、所望の玉型(輪郭形状、あるいは輪郭形状及びコバ形状の組合せ)を有する眼鏡レンズ50が直接作製されたりすることとなり、レンズ材料の使用量や仕上げ前眼鏡レンズ45の加工量が減少する。
 更に、眼鏡レンズ50の輪郭形状を示す輪郭形状データ51を取得する輪郭形状入力手段68(あるいはサーバ2の通信手段12等)が設けられており、3次元プリンタ18は、側周レンズ型枠33の内面を、輪郭形状データ51に応じた形状に形成する。
 よって、眼鏡レンズ50の外形が眼鏡枠Fのリム形状等に応じた所望の形状に形成され、レンズ材料の使用量や仕上げ前眼鏡レンズ45の加工量が低減する。又、非球面付加部35が、眼鏡レンズ50の作製に最小限必要な部分である輪郭形状データ51内、あるいは当該部分を含む後レンズ型枠基体24の前面24aの一部に限定して形成されるようにすることができ、非球面付加部35の材料使用量が低減され、非球面付加部35の形成時間や仕上げ加工を行う場合の加工時間が短縮される。
 又、輪郭形状データ51は、発注者側コンピュータである端末4から送信される。
 よって、発注者から眼鏡枠Fそのものを受領することなく、リム形状等に応じた形状の眼鏡レンズ50が作製される。
 更に、3次元プリンタ18は、側周レンズ型枠33の内面を、輪郭形状データ51が示す形状に対し、眼鏡レンズ50となる部分の代わりに保持するためのハンドリング部45aの形状を付加した形状に形成する。
 よって、仕上げ前眼鏡レンズ45において眼鏡レンズ50となる輪郭形状データ51内部部分以外の部分であるハンドリング部45aが形成され、仕上げ前眼鏡レンズ45作製後の工程においてハンドリング部45aを保持することで仕上げ前眼鏡レンズ45が取り扱い易くなり、眼鏡レンズ50となる部分が保護される。特に、ハンドリング部45aの形状が一定あるいは所定範囲内に収まるようにすれば、仕上げ前眼鏡レンズ45作製後の工程における治具は、仕上げ前眼鏡レンズ45の形状別に設ける必要がなく種類数が少なくて済み、あるいは仕上げ前眼鏡レンズ45の様々な形状に対応可能に形成する必要がなく複雑化しない。又、前レンズ型枠21や後レンズ型枠41の側周に達するハンドリング部45aが形成されることで、レンズ材料をレンズ型枠42内に充填するための充填口Jが設けられる。
 又更に、眼鏡レンズ50を入れる眼鏡枠Fのコバ形状を示すコバ種類データ52を取得する入力手段66(あるいはサーバ2の通信手段12等)が設けられており、3次元プリンタ18は、側周レンズ型枠33の内面(ハンドリング部45a接続部以外の部分)を、コバ種類データ52に応じた形状に形成する。
 よって、眼鏡レンズ50(仕上げ前眼鏡レンズ45)が、ヤゲン形状や溝形状等のコバ形状を有する状態で、レンズ型枠42によって形成される。
 又、コバ種類データ52は、発注者側コンピュータである端末4から送信される。
 よって、発注者から眼鏡枠Fそのものを受領することなく、所望のコバ種類に応じたコバ形状を有する眼鏡レンズ50が作製される。
 加えて、後レンズ型枠基体24は、ガラス製である。
 よって、後レンズ型枠基体24の前面24aにおいて非球面付加部35が付加されるものの、眼鏡レンズ50に対応する部分の一部において非球面付加部35が付加されずに前面24aが露出することがあるところ(非球面付加量Z2が0となる距離Dの部分等)、少なくともその露出部分において眼鏡レンズ50が十分に平滑に形成される。又、その剛性等により非球面付加部35が付着する基礎として適しており、眼鏡レンズ50の非球面がより良好に仕上がる。更に、後レンズ型枠基体24が繰り返し使用可能であり、コストが低減される。
 又、眼鏡レンズ製造システム1において、レンズ材料が熱硬化性樹脂材料であるから、光学的性能や物理的性能に優れ取り扱い易く、又レンズ型枠42に流し込み易くレンズ型枠42内で硬化させ易い等製造管理の容易な熱硬化性樹脂製の眼鏡レンズ50が製造される。
 更に、眼鏡レンズ製造システム1において、3次元プリンタ18は液体樹脂を硬化させるUV照射手段37を有しており、液体樹脂はUV硬化樹脂であり、UV照射手段37によってUV硬化樹脂を硬化させるから、レンズ型枠42(の一部)を容易に形成することができる。特に、レンズ硬化装置19がレンズ材料をレンズ型枠42に入れて加熱により硬化させて仕上げ前眼鏡レンズ45を作製する場合、レンズ型枠42を加熱せずに硬化可能とすることができ、レンズ型枠42が加熱された場合に想定される、レンズ材料充填中に硬化が開始してしまう等の悪影響が防止される。
 尚、液体樹脂が熱硬化樹脂であって加熱による硬化(硬化手段は加熱手段である)によりレンズ型枠42が作製され、更にレンズ硬化装置19がレンズ材料をレンズ型枠42に入れて加熱により硬化させて仕上げ前眼鏡レンズ45を作製する(レンズ硬化手段も加熱手段である)場合であっても、レンズ型枠42の硬化温度よりレンズ材料の硬化温度が高ければ、レンズ型枠42は、上述の悪影響を回避した状態で、作製により予熱されることになり、レンズ型枠42を用いたレンズ材料の硬化の効率が良好になる。
 又、液体樹脂は、吐出後における成分の変化により硬化する自然硬化樹脂であっても良い。例えば、自然硬化樹脂は、吐出後において空気中の成分(水分や酸素等)と反応して硬化する瞬間接着剤やコーキング剤等の樹脂であっても良いし、吐出後において溶媒(水分や炭化水素等)等の一部の成分が自然に離脱(蒸発等)して溶質等の残余部分が硬化する乾燥硬化型の樹脂であっても良い。この場合、UV照射手段37や加熱手段が省略可能であり、構成がよりシンプルになる。
 あるいは、液体樹脂は、吐出後において特定成分(水や硬化用樹脂等)を導入してその特定成分を混合させあるいは付着させることにより硬化する混合硬化型の樹脂であっても良い。この場合、硬化手段は、特定成分を導入する(混合させあるいは付着させる)硬化用成分導入手段である。
 液体樹脂(流動性樹脂)の硬化は、表面のみ硬化し、内部が硬化しないものであっても良い。
[第2形態]
≪構成等≫
 本発明の実施の第2形態に係る眼鏡レンズ製造システム101は、第1形態の眼鏡レンズ製造システム1と、変更例も含め同様に成る。但し、第2形態では、側周レンズ型枠33は、第1形態のように後レンズ型枠基体24の前面24aに対して非球面付加部35を付加する3次元プリンタ18で合わせて形成されるのではなく、その3次元プリンタ18とは別個に設けられた樹脂吐出ディスペンサー(ディスペンサー)118で形成される。以下、第2形態に係る眼鏡レンズ製造システム101における、第1形態の眼鏡レンズ製造システム1と同様に成る手段や部分等については、第1形態と同じ符号が付されて適宜説明が省略される。
 尚、3次元プリンタは、流動性樹脂を堆積可能なものであるのに対し、ディスペンサーは、流動性樹脂を堆積させずに吐出するものである。
 図9は第2形態に係る眼鏡レンズ製造システム101のブロック図であり、図10は前レンズ型枠21の後面21aに対して粘性樹脂Vが吐出される場合のレンズ型枠42ないし粘性樹脂吐出手段136の縦端面模式図である。尚、図9において、複数の端末コンピュータ4や入力手段66、輪郭形状入力手段68は省略されている。第2形態の眼鏡レンズ製造システム101における、端末コンピュータ4や入力手段66、輪郭形状入力手段68は、第1形態と同様に成る。
 流動性樹脂吐出手段としてのディスペンサー118は、UVで硬化する粘性の高い流動性樹脂である粘性樹脂VをUVの照射により硬化させて、側周レンズ型枠形状データ32に基づく形状の側周レンズ型枠33を形成するものであり、3次元プリンタ18と併置されている。
 ディスペンサー118は、粘性樹脂吐出手段136と、UV照射手段137と、接続手段138と、各種のデータやプログラムを記憶する記憶手段139と、前レンズ型枠21に対して後レンズ型枠41を固定する固定手段140と、これらを制御する制御手段141を有している。
 UV照射手段137は、3次元プリンタ18のUV照射手段37と同様に成り、接続手段138は、3次元プリンタ18の接続手段38と同様に成り、記憶手段139は、3次元プリンタ18の記憶手段39と同様に成り、制御手段141は、3次元プリンタ18の制御手段40と同様に成る。但し、記憶手段139は、非球面形状データ34を記憶しない。尚、ディスペンサー118においても非球面形状データ34を参照するため、記憶手段139は非球面形状データ34を記憶しても良いし、3次元プリンタ18の記憶手段39は、側周レンズ型枠形状データ32を記憶しなくても良い。
 粘性樹脂吐出手段136は、前後レンズ型枠選定装置16あるいは3次元プリンタ18から受け取った前レンズ型枠21の後面21a又は後レンズ型枠41の非球面付加部35付きの前面24aに対し、側周レンズ型枠形状データ32に基づいて側周レンズ型枠33の形状に沿って、硬化可能な粘性樹脂Vを吐出する。粘性樹脂吐出手段136は、粘性樹脂Vの上に粘性樹脂Vを載せることはせず、粘性樹脂Vを堆積させない。粘性樹脂吐出手段136は、粘性樹脂Vを、側周レンズ型枠形状データ32における最も大きい厚み以上の高さを有する状態で吐出する。粘性樹脂Vは、粘性樹脂吐出手段136により吐出可能であり、又吐出後の形状変化が重力以外の外力のない場合にほぼ起こらない程度の粘性を有している。
 尚、粘性樹脂吐出手段136における吐出量(吐出速度)の制御や移動速度の制御により、粘性樹脂吐出手段136は、側周レンズ型枠形状データ32の厚み(高さ)に(ある程度)応じるように粘性樹脂Vを吐出しても良い。又、粘性樹脂Vとして、第1形態と同様に、シリコンコーキング剤を始めとするコーキング剤等の粘性のある自然硬化樹脂が用いられても良い。
 その後、ディスペンサー118は、側周レンズ型枠形状データ32を参照した固定手段140により、前レンズ型枠21に対して後レンズ型枠41を、側周レンズ型枠形状データ32が示す側周レンズ型枠33の厚みに即した所定の距離を有する状態で固定する。固定手段140としては、前レンズ型枠21に対する後レンズ型枠41の相対的な位置を調整する図示されない位置調整手段(アームと昇降台の組合せやロボットアーム等)と、前レンズ型枠21ないし後レンズ型枠41に亘り貼り付けられてこれらを支持する支持手段(ガスケットや図10(b)に図示された重合テープP等)の組合せが例示される。尚、支持手段は、貼り付け以外によって支持するものであっても良く、前レンズ型枠21又は後レンズ型枠41の何れか一方を支持するものであっても良い。又、固定手段140は、前レンズ型枠21と後レンズ型枠41の間隔を把握するセンサ(非接触センサやカメラあるいはこれらの組合せ等)を備えるようにし、その間隔把握センサ(により把握した前レンズ型枠21と後レンズ型枠41の現状の間隔)によって所定距離における固定を実行しても良い。
 そして、UV照射手段137は、側周レンズ型枠形状データ32に従った形状に置かれた粘性樹脂Vや、その粘性樹脂Vを挟んだ状態で所定の距離で固定された前レンズ型枠21ないし後レンズ型枠41に対し、UVを照射して、粘性樹脂Vを硬化させて側周レンズ型枠33を形成すると同時に、前レンズ型枠21,後レンズ型枠41,側周レンズ型枠33が組み合わせられたレンズ型枠42の形成を完了する。ディスペンサー118は、かように形成されたレンズ型枠42を、レンズ硬化装置19へ搬送する。
 尚、粘性樹脂Vの粘度は、硬化前においても前レンズ型枠21の後面21a又は後レンズ型枠41の前面24a(あるいは非球面付加部35)上で形状を保持し易くする観点から、好ましくは50万mPa・s(ミリパスカル秒)以上とされ、より好ましくは100万mPa・s以上とされる。但し、粘性樹脂Vの粘度は、吐出可能であるものであることが前提となっており、好ましくは吐出の容易性と前述の形状保持容易性との兼ね合いで決定されるものである。又、粘性樹脂Vは、熱により硬化するものであっても良いし、熱及びUV照射により硬化するものであっても良い。
 更に、側周レンズ型枠形状データ32は、厚み以外の2次元のものとされても良く、2次元の側周レンズ型枠形状データ32に付属して、あるいは側周レンズ型枠形状データ32とは別に、処方データ6から得られる仕上げ前眼鏡レンズ45あるいは眼鏡レンズ50の厚みに応じた前レンズ型枠21と後レンズ型枠41の距離のデータである距離データが設けられても良い。この場合、距離データは、予定される仕上げ前眼鏡レンズ45あるいは眼鏡レンズ50の中心厚に応じた、前レンズ型枠21の中心と後レンズ型枠41の中心の間の距離に係るものであっても良いし、予定される仕上げ前眼鏡レンズ45あるいは眼鏡レンズ50の縁(コバ)厚に応じた、粘性樹脂V(側周レンズ型枠33)内側における距離に係るものであっても良いし、予定される仕上げ前眼鏡レンズ45あるいは眼鏡レンズ50の厚みを確保した際に発生する前レンズ型枠21の縁と後レンズ型枠41の縁の間の距離に係るものであっても良いし、これらの組合せであっても良い。距離データは、サーバ2で演算されたものを受信しても良いし、ディスペンサー118において算出しても良い。
 あるいは、前後レンズ型枠選定装置16が前レンズ型枠21及び後レンズ型枠41に加えて所定距離毎に用意された支持手段(台に置かれた前レンズ型枠21に対して所定距離を置いた状態で後レンズ型枠41を支持する突起と脚を有するリング状の支持体等)を選定し又は任意の距離に調節可能な支持手段を所定距離に調節してディスペンサー118に送るようにし、ディスペンサー118は受け取った支持手段を用いて所定距離で前レンズ型枠21や後レンズ型枠41を支持するようにしても良く、このとき側周レンズ型枠形状データ32は2次元のものとされて良い。
 又更に、前レンズ型枠21や後レンズ型枠41は、粘性樹脂Vの硬化後(側周レンズ型枠33の形成後)に組み合わせられても良い。加えて、粘性樹脂Vの硬化後、レンズ硬化装置19へ搬送する前やレンズ硬化装置19へ搬送された後において、固定手段140による固定は解除されても良く、即ち支持手段は取り外されても良い。
 又、3次元プリンタ18は、付加した非球面付加部35を硬化させずにディスペンサー118に送り、ディスペンサー118は、そのまま粘性樹脂V(側周レンズ型枠33)を吐出し、前レンズ型枠21ないし後レンズ型枠41と組み合わせた後でUVを照射して、非球面付加部35と粘性樹脂Vを同時に硬化させても良い。
≪動作等≫
 第2形態に係る眼鏡レンズ製造システムの動作例101は、3次元プリンタ18及びディスペンサー118の動作を除き、第1形態の眼鏡レンズ製造システム1の動作例と同様である。第1形態の眼鏡レンズ製造システム1と同様の動作等(主に図7のS11以外)については、適宜説明が省略される。
 図10(a)に示されるように、ディスペンサー118には、前後レンズ型枠選定装置16の選定(S9)に係る前レンズ型枠21が、後面21aを上にした状態で導入され、後面21aの上方に粘性樹脂吐出手段136のノズルが配置される。尚、前レンズ型枠21は、前後レンズ型枠選定装置16から搬送されても良いし、3次元プリンタ18から搬送されても良い。
 そして、制御手段141により、粘性樹脂吐出手段136のノズルが、粘性樹脂Vを吐出しながら側周レンズ型枠形状データ32に基づいて前レンズ型枠21に対して相対的に移動され、粘性樹脂吐出手段136は、前レンズ型枠21の後面21aに対し、粘性樹脂Vを、側周レンズ型枠形状データ32に従った形状で置いて行く(S11,但し3次元プリンタ18に代えてディスペンサー118により実行される)。例えば、粘性樹脂吐出手段136は、図2における側周レンズ型枠33の形状に即した形状で、粘性樹脂Vを置いて行く。
 側周レンズ型枠形状データ32に係る形状の全体に亘り粘性樹脂Vが置かれると、図10(b)に示されるように、ディスペンサー118は、固定手段140(ロボットアームと重合テープP)により、前面24aを下にした状態の後レンズ型枠41を、非球面付加部35の付与(S10)を実行した3次元プリンタ18から導入し、前レンズ型枠21に対して、所定の距離を有する状態で固定する。粘性樹脂吐出手段136は、粘性樹脂Vを、側周レンズ型枠形状データ32における最大厚み以上の高さを有するように置いているから、粘性樹脂Vは、全体として、後レンズ型枠41の前面24aないし非球面付加部35に接触する。尚、側周レンズ型枠形状データ32における厚みを超えた高さで置かれた粘性樹脂Vの部分は、所定距離で固定された後レンズ型枠41によって押し潰されて変形されるところ、その変形(特に内方への変形)が考慮された(内方への変形分拡大された)側周レンズ型枠形状データ32をサーバ2が生成するようにしても良いし、サーバ2が変形を考慮せず生成した側周レンズ型枠形状データ32を、ディスペンサー118が変形を考慮したものに変換するようにしても良い。又、粘性樹脂Vに係る内方への見込みの変形分に対し余裕をとって拡大された側周レンズ型枠形状データ32に従って粘性樹脂Vを置いて行き、仕上げ切削装置20で余裕分を切削するようにしても良い。
 そして、ディスペンサー118は、図10(b)の状態における粘性樹脂Vに対してUV照射手段137を作動させ、粘性樹脂V全体に対し(一度に又は複数回に亘り若しくは各部分に分けて)UVを照射して、粘性樹脂Vを硬化させ、側周レンズ型枠33の形成を完了し、同時に、前レンズ型枠21,後レンズ型枠41,側周レンズ型枠33の組合せであるレンズ型枠42の形成を完了する(S11)。例えば、ディスペンサー118は、図3に示されるようなレンズ型枠42を形成する。
 ディスペンサー118は、形成したレンズ型枠42をレンズ硬化装置19に送り、レンズ硬化装置19は、硬化前のレンズ材料をレンズ型枠42に充填して、レンズ硬化手段44によりレンズ材料を硬化させ、仕上げ前眼鏡レンズ45を形成する(S12,図4)。離型手段46は、レンズ型枠42から仕上げ前眼鏡レンズ45を取り出す際、重合テープPを外す。
≪作用効果等≫
 第2形態の眼鏡レンズ製造システム101においても、後レンズ型枠基体24の前面24aに対して非球面付加部35を付加する3次元プリンタ18が設けられており、非球面付加部35が付加された後レンズ型枠基体24の前面24aによって、後レンズ型枠41の前面が形成されるから、十分な光学的性能や物理的性能を具備する任意形状の非球面に係る眼鏡レンズ50が、低コストで作製される。
 又、第2形態の眼鏡レンズ製造システム101において、後レンズ型枠基体24の前面24aに対して非球面付加部35を付加する3次元プリンタ18とは別に設けられたディスペンサー118が、側周レンズ型枠33を形成する。よって、レンズ材料の使用量や仕上げ前眼鏡レンズ45の加工量がより減少する。又、レンズ型枠42における、光学的により重要で後加工や必要な精度の確保がより大変である眼鏡レンズ50の後面を規定する非球面付加部35(後レンズ型枠41)については、精度をより重視してディスペンサー118で形成せず、後面に比べて光学的には重要ではなく後加工や必要な精度の確保がより行い易いコバを規定する側周レンズ型枠33は形状可変性をより重視してディスペンサー118で形成する、というような適材適所が可能となる。又、後面は同一形状であるが玉型が相違する複数の眼鏡レンズ50において、後レンズ型枠41を再利用しながら、側周レンズ型枠33を各玉型に応じた形状に形成することができ、これらの眼鏡レンズ50が合理的に作製される。
 尚、第2形態の眼鏡レンズ製造システム101は、第1形態の眼鏡レンズ製造システム1に比べ、液体樹脂を堆積(積層)可能である3次元プリンタ18を用いていない点で側周レンズ型枠33の精度が比較的に低くなるものの、堆積させる場合の下層の硬化工程やその下層へ液体樹脂を盛る積層工程が省略されるために製造時間が比較的に短い。ここで精度について詳述すると、第2形態の眼鏡レンズ製造システム101において、前レンズ型枠21に対して後レンズ型枠41を所定の距離で相対的に固定する固定手段140が設けられること等により、光学的に最も重要な高さ方向(Z軸方向)の形状の精度は担保可能であるものの、後レンズ型枠41の押し付け等によって粘性樹脂VのX軸方向やY軸方向における変形が発生し得ること等により、X軸方向やY軸方向の精度が比較的に低くなるものである。尚、第2形態の眼鏡レンズ製造システム101における比較的に低い精度は、仕上げ切削によりカバーすることが可能である。
 又、特にカーブの深い眼鏡レンズを製造する場合、前レンズ型枠21や後レンズ型枠41における側周レンズ型枠33を作ろうとする部分に高低差があることになるが、一般に第1形態の3次元プリンタ18ではノズルが基本的に平行移動するために大きな高低差の制御が比較的に難しく、制御や製造に比較的に手間がかかるところ、第2形態のディスペンサー118では一般に樹脂の堆積のための平行移動の制約がなく、必要量の液体樹脂を一周吐出すれば良いので、高低差がある場合であっても制御や製造が比較的に容易である。
 更に、第2形態の眼鏡レンズ製造システム101において、前レンズ型枠21に対し相対的に後レンズ型枠41を所定の距離で固定する固定手段140が設けられているため、ディスペンサー118から吐出された粘性樹脂Vにおける前レンズ型枠21上での高さが本来の高さ(側周レンズ型枠33として有すべき高さ)からある程度離れていたとしても、固定手段140による後レンズ型枠41の配置時に粘性樹脂Vを本来の高さに合わせることができ、所望する光学性能を発揮させるために重要な眼鏡レンズ50の厚みが確実に適切なものとなる眼鏡レンズ50用のレンズ型枠42を、より容易に形成することができる。
 以上の作用効果は、後レンズ型枠基体24に代えて前レンズ型枠基体が用意され、前レンズ型枠基体の後面に非球面付加部が付加されて眼鏡レンズ50の前面が非球面に形成される場合においても同様であるし、後レンズ型枠基体24と共に前レンズ型枠基体が用意され、後レンズ型枠基体24の前面24aと前レンズ型枠基体の後面にそれぞれ対応する非球面付加部が付加されて眼鏡レンズ50の前面及び後面が非球面に形成される場合においても同様である。更に、以上の作用効果は、非球面付加部以外の面付加部が付加されて眼鏡レンズの前面又は後面が球面等に形成される場合においても同様である。
 1,101・・眼鏡レンズ製造システム、2・・サーバコンピュータ(サーバ)、4・・端末コンピュータ(端末)、18・・3次元プリンタ、21・・前レンズ型枠、21a・・(眼鏡レンズの前面を規定する前レンズ型枠の)後面、24・・後レンズ型枠基体、24a・・(眼鏡レンズの後面の基礎となる後レンズ型枠基体の)前面、33・・側周レンズ型枠、35・・非球面付加部(面付加部)、37,137・・UV照射手段(硬化手段)、41・・後レンズ型枠、42・・レンズ型枠、43・・樹脂材料充填手段(レンズ材料充填手段)、45・・仕上げ前眼鏡レンズ、45a・・ハンドリング部、50・・眼鏡レンズ、51・・輪郭形状データ、52・・コバ種類データ、66・・入力手段、68・・輪郭形状入力手段、118・・樹脂吐出ディスペンサー(流動性樹脂吐出手段)、F・・眼鏡枠、V・・粘性樹脂(流動性樹脂,液体樹脂)。

Claims (17)

  1.  レンズ型枠にレンズ材料を充填するレンズ材料充填手段を有する眼鏡レンズ製造システムにおいて、
     前記レンズ型枠は、前面が眼鏡レンズの後面を規定する後レンズ型枠を備えており、
     前記後レンズ型枠は、後レンズ型枠基体を有しており、
     前記後レンズ型枠基体の前面に対して面付加部を付加する3次元プリンタが設けられており、
     前記面付加部が付加された前記後レンズ型枠基体の前面によって、前記後レンズ型枠の前面が形成される
    ことを特徴とする眼鏡レンズ製造システム。
  2.  レンズ型枠にレンズ材料を充填するレンズ材料充填手段を有する眼鏡レンズ製造システムにおいて、
     前記レンズ型枠は、後面が眼鏡レンズの前面を規定する前レンズ型枠を備えており、
     前記前レンズ型枠は、前レンズ型枠基体を有しており、
     前記前レンズ型枠基体の後面に対して面付加部を付加する3次元プリンタが設けられており、
     前記面付加部が付加された前記前レンズ型枠基体の後面によって、前記前レンズ型枠の後面が形成される
    ことを特徴とする眼鏡レンズ製造システム。
  3.  レンズ型枠にレンズ材料を充填するレンズ材料充填手段を有する眼鏡レンズ製造システムにおいて、
     前記レンズ型枠は、前面が眼鏡レンズの後面を規定する後レンズ型枠、及び後面が眼鏡レンズの前面を規定する前レンズ型枠を備えており、
     前記後レンズ型枠は、後レンズ型枠基体を有しており、
     前記前レンズ型枠は、前レンズ型枠基体を有しており、
     前記後レンズ型枠基体の前面及び前記前レンズ型枠基体の後面に対して面付加部を付加する3次元プリンタが設けられており、
     前記面付加部が付加された前記後レンズ型枠基体の前面によって、前記後レンズ型枠の前面が形成され、前記面付加部が付加された前記前レンズ型枠基体の後面によって、前記前レンズ型枠の後面が形成される
    ことを特徴とする眼鏡レンズ製造システム。
  4.  前記面付加部が付加された面は、非球面の曲面である
    ことを特徴とする請求項1ないし請求項3の何れかに記載の眼鏡レンズ製造システム。
  5.  更に、前記レンズ型枠は、内面が眼鏡レンズの側周に応じて形成される側周レンズ型枠を有しており、
     少なくとも前記側周レンズ型枠の内面の一部を含む部分が、硬化可能な流動性樹脂を吐出する流動性樹脂吐出手段又は前記3次元プリンタにより形成されている
    ことを特徴とする請求項1ないし請求項4の何れかに記載の眼鏡レンズ製造システム。
  6.  前記眼鏡レンズの輪郭形状を示す輪郭形状データを取得する輪郭形状データ取得手段が設けられており、
     前記流動性樹脂吐出手段又は前記3次元プリンタは、前記側周レンズ型枠の内面の少なくとも一部を、前記輪郭形状データに応じた形状に形成する
    ことを特徴とする請求項5に記載の眼鏡レンズ製造システム。
  7.  前記輪郭形状データは、発注者側コンピュータから送信される
    ことを特徴とする請求項6に記載の眼鏡レンズ製造システム。
  8.  前記3次元プリンタは、前記側周レンズ型枠の内面の少なくとも一部を、前記輪郭形状データが示す形状に対し、眼鏡レンズとなる部分の代わりに保持するためのハンドリング部の形状を付加した形状に形成する
    ことを特徴とする請求項5ないし請求項7の何れかに記載の眼鏡レンズ製造システム。
  9.  前記眼鏡レンズを入れる眼鏡枠のコバ形状を示すコバ形状データを取得するコバ形状データ取得手段が設けられており、
     前記流動性樹脂吐出手段又は前記3次元プリンタは、前記側周レンズ型枠の内面の少なくとも一部を、前記コバ形状データに応じた形状に形成する
    ことを特徴とする請求項5ないし請求項8の何れかに記載の眼鏡レンズ製造システム。
  10.  前記コバ形状データは、発注者側コンピュータから送信される
    ことを特徴とする請求項9に記載の眼鏡レンズ製造システム。
  11.  前記流動性樹脂吐出手段は、第2の3次元プリンタである
    ことを特徴とする請求項5ないし請求項10の何れかに記載の眼鏡レンズ製造システム。
  12.  前記流動性樹脂吐出手段は、樹脂吐出ディスペンサーである
    ことを特徴とする請求項5ないし請求項10の何れかに記載の眼鏡レンズ製造システム。
  13.  前記流動性樹脂を硬化させる硬化手段を有しており、
     前記流動性樹脂は、紫外線硬化樹脂であり、
     前記硬化手段は、紫外線照射手段である
    ことを特徴とする請求項5ないし請求項12の何れかに記載の眼鏡レンズ製造システム。
  14.  前記流動性樹脂を硬化させる硬化手段を有しており、
     前記流動性樹脂は、熱硬化樹脂であり、
     前記硬化手段は、加熱手段である
    ことを特徴とする請求項5ないし請求項12の何れかに記載の眼鏡レンズ製造システム。
  15.  前記流動性樹脂は、吐出後における成分の変化により硬化する自然硬化樹脂である
    ことを特徴とする請求項5ないし請求項12の何れかに記載の眼鏡レンズ製造システム。
  16.  前記前レンズ型枠基体及び前記後レンズ型枠基体の内の少なくとも一方は、ガラス製である
    ことを特徴とする請求項1ないし請求項15の何れかに記載の眼鏡レンズ製造システム。
  17.  前記レンズ材料は、熱硬化性樹脂材料である
    ことを特徴とする請求項1ないし請求項16の何れかに記載の眼鏡レンズ製造システム。
PCT/JP2016/071407 2015-07-24 2016-07-21 眼鏡レンズ製造システム WO2017018316A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201680042262.1A CN107850795A (zh) 2015-07-24 2016-07-21 眼镜镜片制造系统
KR1020187002110A KR102503006B1 (ko) 2015-07-24 2016-07-21 안경 렌즈 제조 시스템
JP2017530819A JP6703226B2 (ja) 2015-07-24 2016-07-21 眼鏡レンズ製造システム
EP16830421.0A EP3312663A4 (en) 2015-07-24 2016-07-21 SYSTEM FOR MANUFACTURING GLASSES OF EYEWEAR
US15/856,645 US10688739B2 (en) 2015-07-24 2017-12-28 Spectacle lens manufacturing system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015147115 2015-07-24
JP2015-147115 2015-07-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/856,645 Continuation US10688739B2 (en) 2015-07-24 2017-12-28 Spectacle lens manufacturing system

Publications (1)

Publication Number Publication Date
WO2017018316A1 true WO2017018316A1 (ja) 2017-02-02

Family

ID=57884688

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/071407 WO2017018316A1 (ja) 2015-07-24 2016-07-21 眼鏡レンズ製造システム

Country Status (6)

Country Link
US (1) US10688739B2 (ja)
EP (1) EP3312663A4 (ja)
JP (1) JP6703226B2 (ja)
KR (1) KR102503006B1 (ja)
CN (1) CN107850795A (ja)
WO (1) WO2017018316A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018128509A (ja) * 2017-02-06 2018-08-16 伊藤光学工業株式会社 眼鏡用レンズの設計方法及び眼鏡用レンズ

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109031694B (zh) * 2017-06-08 2022-04-29 依视路国际公司 待机加工以形成待安装在眼镜架上的眼科镜片的半成品镜片、组合及与其相关的方法
US20190070807A1 (en) * 2017-09-01 2019-03-07 Thalmic Labs Inc. Systems, devices, and methods for manufacturing an eyeglass lens
EP3690520B1 (en) 2019-01-30 2024-06-12 Carl Zeiss Vision International GmbH Finished uncut spectacle lens, semi-finished lens blank and method of manufacturing a spectacle lens
EP3725501B1 (en) * 2019-04-19 2023-10-25 Essilor International A molding device comprising mold shells and a gasket for manufacturing an ophthalmic lens configured to be worn by a wearer, such a gasket, and a method for manufacturing such a lens
CN110039806A (zh) * 2019-04-23 2019-07-23 首都医科大学附属北京同仁医院 一种个性化眼镜片的高精密3d打印方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4228845B2 (ja) * 2003-09-03 2009-02-25 セイコーエプソン株式会社 マイクロレンズの製造方法、マイクロレンズ、光学膜、プロジェクション用スクリーンおよびプロジェクタシステム
JP2010155926A (ja) * 2008-12-26 2010-07-15 Jsr Corp 光硬化性液状樹脂組成物およびインクジェット光造形法による立体造形物の製造方法
JP2013050556A (ja) * 2011-08-30 2013-03-14 Hoya Corp 眼鏡レンズの設計方法、眼鏡レンズの製造方法、及び眼鏡レンズの設計システム
JP2013198988A (ja) * 2012-03-23 2013-10-03 Hoya Corp 眼鏡用プラスチックレンズの製造方法
JP2013213936A (ja) * 2012-04-02 2013-10-17 Hoya Corp 眼鏡用プラスチックレンズの製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4693446A (en) * 1985-09-20 1987-09-15 Techna Vision, Inc. Gasket for molding plastic lenses
IT1191569B (it) * 1986-02-28 1988-03-23 Nuova Sil Spa Stampo per la produzione mediante colata di lenti organiche
US4963446A (en) 1989-04-05 1990-10-16 Eveready Battery Co., Inc. Inwardly indented edge electrode assembly
JP3705504B2 (ja) * 1995-10-24 2005-10-12 株式会社アサヒオプティカル 眼鏡用樹脂レンズの注型成形用モールド
US20050074616A1 (en) * 2003-10-02 2005-04-07 John Harchanko Lithographic method for forming mold inserts and molds
KR101462471B1 (ko) * 2012-07-20 2014-11-19 주식회사 경기광학 안경 렌즈 제조방법
JP6207187B2 (ja) * 2013-03-19 2017-10-04 Hoya株式会社 眼鏡レンズの製造方法
DE102013222232B4 (de) * 2013-10-31 2021-01-28 Carl Zeiss Vision International Gmbh Herstellungsverfahren für ein Brillenglas
ES2837798T3 (es) * 2013-11-29 2021-07-01 Zeiss Carl Vision Int Gmbh Procedimiento para fabricar una lente para gafas y lente para gafas
WO2016208584A1 (ja) * 2015-06-22 2016-12-29 東海光学株式会社 眼鏡レンズ製造システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4228845B2 (ja) * 2003-09-03 2009-02-25 セイコーエプソン株式会社 マイクロレンズの製造方法、マイクロレンズ、光学膜、プロジェクション用スクリーンおよびプロジェクタシステム
JP2010155926A (ja) * 2008-12-26 2010-07-15 Jsr Corp 光硬化性液状樹脂組成物およびインクジェット光造形法による立体造形物の製造方法
JP2013050556A (ja) * 2011-08-30 2013-03-14 Hoya Corp 眼鏡レンズの設計方法、眼鏡レンズの製造方法、及び眼鏡レンズの設計システム
JP2013198988A (ja) * 2012-03-23 2013-10-03 Hoya Corp 眼鏡用プラスチックレンズの製造方法
JP2013213936A (ja) * 2012-04-02 2013-10-17 Hoya Corp 眼鏡用プラスチックレンズの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3312663A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018128509A (ja) * 2017-02-06 2018-08-16 伊藤光学工業株式会社 眼鏡用レンズの設計方法及び眼鏡用レンズ

Also Published As

Publication number Publication date
EP3312663A1 (en) 2018-04-25
KR102503006B1 (ko) 2023-02-23
JPWO2017018316A1 (ja) 2018-05-10
US10688739B2 (en) 2020-06-23
EP3312663A4 (en) 2019-03-06
CN107850795A (zh) 2018-03-27
KR20180033192A (ko) 2018-04-02
JP6703226B2 (ja) 2020-06-03
US20180133987A1 (en) 2018-05-17

Similar Documents

Publication Publication Date Title
WO2017018316A1 (ja) 眼鏡レンズ製造システム
US11633928B2 (en) Spectacle lens and method for producing a spectacle lens
JP6697657B2 (ja) 眼鏡レンズ製造システム
US20230333409A1 (en) Method for manufacturing at least one ophthalmic lens
US10281738B2 (en) Method for manufacturing an ophthalmic lens
CN104730727B (zh) 用于制造眼镜镜片的方法和眼镜镜片
JP6470269B2 (ja) 眼鏡レンズの製造プロセス及びシステム
JP6817624B2 (ja) 眼鏡レンズ製造システム
Bennett Looking at labs: An overview of spectacle lens manufacture
EP3756873A1 (en) A system and method for selecting an ophthalmic lens manufacturing process

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16830421

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017530819

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2016830421

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20187002110

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE