WO2017017981A1 - 光デバイス - Google Patents

光デバイス Download PDF

Info

Publication number
WO2017017981A1
WO2017017981A1 PCT/JP2016/057211 JP2016057211W WO2017017981A1 WO 2017017981 A1 WO2017017981 A1 WO 2017017981A1 JP 2016057211 W JP2016057211 W JP 2016057211W WO 2017017981 A1 WO2017017981 A1 WO 2017017981A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light guide
guide plate
deflecting
light source
Prior art date
Application number
PCT/JP2016/057211
Other languages
English (en)
French (fr)
Inventor
篠原 正幸
靖宏 田上
智和 北村
和幸 岡田
直志 松岡
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Priority to CN201680022569.5A priority Critical patent/CN107533236B/zh
Priority to DE112016003384.2T priority patent/DE112016003384B4/de
Publication of WO2017017981A1 publication Critical patent/WO2017017981A1/ja
Priority to US15/808,677 priority patent/US10739614B2/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B35/00Stereoscopic photography
    • G03B35/18Stereoscopic photography by simultaneous viewing
    • G03B35/24Stereoscopic photography by simultaneous viewing using apertured or refractive resolving means on screens or between screen and eye
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/60Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images involving reflecting prisms and mirrors only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • G02B6/0031Reflecting element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/33Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving directional light or back-light sources

Definitions

  • the present invention relates to an optical device.
  • a stereoscopic display device comprising a light guide plate, a light source provided on an end surface of the light guide plate, and a parallax barrier type or lens array type mask or lens array disposed on the surface side of the light guide plate is known.
  • the light source When the light source is provided on the end face of the light guide plate, there is a problem that the alignment between the light source and the end face of the light guide plate is not easy.
  • the direction of the light emitted from the light guide plate may change.
  • substrate which mounted the light emitting element became parallel to an end surface, and the subject that it was necessary to ensure the space of the magnitude
  • the optical device has a light guide plate that guides light in a plane parallel to the emission surface, a surface parallel to at least one of the surface opposite to the emission surface and the surface on the emission surface side.
  • the light that enters the light guide plate from the light source provided in the opposite direction is deflected in the light guide direction of the light guide plate, and the light that is deflected by the deflection optical surface and guided by the light guide plate enters the space.
  • a plurality of lights each having an optical surface that emits outgoing light in a direction substantially converging at one upper convergence point or convergence line or substantially diverging from one convergence point or convergence line in space.
  • a plurality of light converging portions are formed along a predetermined line in a plane parallel to the exit surface, and a convergence point or a convergence line is different between the plurality of light converging portions,
  • An image is formed in space by a collection of multiple convergence points or convergence lines It is.
  • the light source is provided to face at least one of the surface opposite to the exit surface of the light guide plate and the surface on the exit surface side, and light is incident on the light guide plate from at least one surface where the light source is provided. Good.
  • the deflection optical surface is provided on a surface opposite to the surface on which the light source is provided, and has a deflection reflection surface that reflects light incident on the light guide plate from the light source and deflects it in the light guide direction of the light guide plate. It's okay.
  • the length of the deflection reflection surface may be shorter than the length of the exit port from which light from the light source exits toward the light guide plate.
  • the divergence angle of light deflected by the deflecting reflecting surface and guided by the light guide plate may be 5 ° or less in a plane parallel to the emitting surface.
  • the distance between the light incident end surface of the light guide plate and the center of the region where the light converging portion 30 is formed on the light exit plate is L, and the deflecting reflection surface in a direction parallel to the light exit surface and substantially perpendicular to the light guide plate of the light guide plate When W is W, W ⁇ L / 10 may be satisfied.
  • a reflection film provided on the deflecting reflection surface may be further provided.
  • It may further include a reflection assisting part that has a surface provided with a reflection film and is mounted on the light guide plate so that the reflection film is in contact with the deflecting reflection surface.
  • a plurality of deflection reflection surfaces are provided in a direction along the light guide direction of the light guide plate, and each of the plurality of deflection reflection surfaces is perpendicular to the emission surface in a plane orthogonal to the emission surface and along the light guide direction of the light guide plate. At least one of the length of the direction and the angle with respect to the plane parallel to the exit surface may be different from that of the other deflecting and reflecting surfaces.
  • the deflection reflection surface has a first deflection reflection surface and a second deflection reflection surface following the first deflection reflection surface along the light guide direction of the light guide plate, and is orthogonal to the emission surface and is perpendicular to the light guide plate.
  • the inclination of the first deflecting / reflecting surface with respect to the surface parallel to the emitting surface may be different from the inclination of the second deflecting / reflecting surface with respect to the surface parallel to the emitting surface.
  • the first deflection reflection surface and the second deflection reflection surface form a part of a concave portion formed on the surface of the light guide plate opposite to the surface where the light source is provided, and are orthogonal to the emission surface.
  • the inclination of the second deflecting / reflecting surface with respect to the surface parallel to the emitting surface may be smaller than the inclination of the first deflecting / reflecting surface with respect to the surface parallel to the emitting surface.
  • the deflection reflection surface may have a plurality of reflection surfaces in a direction in which light incident on the light guide plate from the light source is spread in a plane parallel to the light guide direction of the light guide plate.
  • the light source makes light incident on the light guide plate toward the second end surface opposite to the first end surface in the light guide direction of the light guide plate, and the deflection optical surface is provided on the second end surface.
  • the deflecting optical surface further includes a deflecting member provided on a second end surface opposite to the first end surface in the light guide direction of the light guide plate, and the deflecting optical surface transmits light from the light source to the first end surface.
  • the light source may have a deflecting / reflecting surface that converts light that is substantially parallel to the end surface of the light source, and the light source may be incident on the deflecting member.
  • a plurality of light sources are arranged side by side in a direction perpendicular to the light guide direction of the light guide plate and parallel to the exit surface, and the reflection surface is orthogonal to the light guide direction of the light guide plate and parallel to the exit surface.
  • a plurality of light sources may be provided side by side corresponding to a plurality of light sources.
  • a light source may be further provided.
  • the display apparatus 10 in one Embodiment is shown schematically with the three-dimensional image projected on space.
  • the cross section of yz plane of the display apparatus 10 is shown schematically.
  • the top view in xy plane of the display apparatus 10 is shown roughly.
  • the dependence of the amount of luminous flux coupled to the light guide plate on the forward angle ⁇ and the depth h is shown.
  • 10 schematically shows a display device 10 ⁇ / b> A as a modification of the display device 10.
  • the display apparatus 10B as a modification of the display apparatus 10 is shown schematically.
  • the display apparatus 100 as a modification of the display apparatus 10 is shown schematically.
  • the relationship between the divergence angle (DELTA) (theta) of the incident light to one reflective surface among the reflective surfaces which the light converging part 30 has, and the divergence angle (PHI) ⁇ of emitted light are shown roughly.
  • 10 schematically shows a display device 10 ⁇ / b> C as a modification of the display device 10.
  • a display device 10D as a modification of the display device 10 is schematically shown.
  • a part of a display device 10E as a modification of the display device 10 is schematically shown in an enlarged manner.
  • a part of a display device 10F as a modification of the display device 10 is schematically shown in an enlarged manner.
  • a part of a display device 10G as a modification of the display device 10 is schematically shown in an enlarged manner.
  • a part of a display device 10H as a modification of the display device 10 is schematically shown in an enlarged manner.
  • a part of a display device 10I as a modification of the display device 10H is schematically shown in an enlarged manner.
  • a part of a display device 10J as a modification of the display device 10 is schematically shown in an enlarged manner.
  • a part of a display device 10K as a modification of the display device 10 is schematically shown in an enlarged manner.
  • a part of a display device 10L as a modification of the display device 10 is schematically shown in an enlarged manner.
  • a part of a display device 10M as a modification of the display device 10 is schematically shown in an enlarged manner.
  • a part of a display device 10N as a modification of the display device 10M is schematically shown in an enlarged manner. It is a perspective view which shows roughly an example of the optical system 500 with a three-dimensional image. 1 schematically shows a yz cross section of an optical system 500. The other example of the three-dimensional image which the display apparatus 10P forms is shown.
  • FIG. 1 schematically shows a display device 10 according to an embodiment together with a stereoscopic image projected onto a space.
  • the figure used for description of embodiment shall be schematic or typical for the purpose of explaining in an easy-to-understand manner.
  • the figure used for description of the embodiment may not be drawn on an actual scale.
  • the display device 10 has an emission surface 71 that emits light.
  • the display device 10 forms an image 6 as a three-dimensional image with light emitted from the emission surface 71.
  • the image 6 is a stereoscopic image that is recognized in space by the user.
  • the three-dimensional image refers to an image that is recognized as being at a position different from the emission surface 71 of the display device 10.
  • the three-dimensional image includes, for example, a two-dimensional image recognized at a position away from the emission surface 71 of the display device 10. That is, the stereoscopic image is a concept including not only an image recognized as a stereoscopic shape but also an image having a two-dimensional shape recognized at a position different from the display surface of the display device 10.
  • the display device 10 includes a light guide plate 70 and a light source 20.
  • the light guide plate 70 is formed of a resin material that is transparent and has a relatively high refractive index.
  • the material forming the light guide plate 70 may be, for example, polycarbonate resin (PC), polymethyl methacrylate resin (PMMA), glass, or the like.
  • the light guide plate 70 has a back surface 72 opposite to the exit surface 71.
  • the light source 20 is provided on the back surface 72 side. Light from the light source 20 enters the light guide plate 70 from the back surface 72.
  • the light guide plate 70 includes an end surface 73, an end surface 74, an end surface 75, and an end surface 76 that are the four end surfaces of the light guide plate 70.
  • the end surface 74 is a surface opposite to the end surface 73.
  • the end surface 76 is a surface opposite to the end surface 75.
  • the light guide plate 70 spreads the light from the light source 20 in a plane shape in a plane parallel to the emission surface 71 and guides the light toward the end surface 74.
  • a right-handed orthogonal coordinate system of the x axis, the y axis, and the z axis may be used.
  • the z-axis direction is determined in a direction perpendicular to the emission surface 71.
  • the direction from the back surface 72 to the emission surface 71 is defined as the z-axis plus direction.
  • the y-axis direction is determined in a direction perpendicular to the end face 73.
  • the direction from the end surface 73 to the end surface 74 is defined as the y-axis plus direction.
  • the x-axis is a direction perpendicular to the end face 75 and the end face 76, and the direction from the end face 75 to the end face 76 is defined as the x-axis plus direction.
  • a plane parallel to the xy plane may be called an xy plane
  • a plane parallel to the yz plane may be called a yz plane
  • a plane parallel to the xz plane may be called an xz plane.
  • the light source 20 is provided to face the back surface 72. Light from the light source 20 enters the light guide plate 70 from the back surface 72.
  • a deflection reflection unit 40 is provided on the emission surface 71 of the light guide plate 70.
  • the deflecting / reflecting unit 40 reflects light from the light source 20 incident on the light guide plate 70 and deflects the light in the light guide direction of the light guide plate 70.
  • the deflecting / reflecting unit 40 reflects light from the light source 20 incident on the light guide plate 70 and deflects the light toward the end face 74.
  • the light guide plate 70 spreads the light deflected by the deflecting / reflecting portion 40 in a plane parallel to the emission surface 71 and guides the light toward the end surface 74.
  • a plurality of light converging portions 30 including a light converging portion 30a, a light converging portion 30b, and a light converging portion 30c are formed on the back surface 72 of the light guide plate 70.
  • the light converging part 30 is formed substantially continuously in the x-axis direction. Light guided by the light guide plate 70 is incident on each position of the light converging unit 30 in the x-axis direction.
  • the light converging unit 30 substantially converges the light incident on each position of the light converging unit 30 to fixed points respectively corresponding to the light converging unit 30.
  • FIG. 1 particularly shows a light converging unit 30a, a light converging unit 30b, and a light converging unit 30c as a part of the light converging unit 30, and in each of the light converging unit 30a, the light converging unit 30b, and the light converging unit 30c.
  • a state in which a plurality of light beams emitted from the light converging unit 30a, the light converging unit 30b, and the light converging unit 30c converge is shown.
  • the light converging unit 30 a corresponds to the fixed point PA on the image 6. Light rays from each position of the light converging unit 30a converge to a fixed point PA. Therefore, the wavefront of the light from the light converging unit 30a becomes a wavefront of light emitted from the fixed point PA.
  • the light converging unit 30 b corresponds to the fixed point PB on the image 6. Light rays from each position from the light converging unit 30b converge to the fixed point PB. As described above, the light beam from each position of the arbitrary light converging unit 30 substantially converges to a fixed point corresponding to the light converging unit 30.
  • a wavefront of light that emits light from a corresponding fixed point can be provided by an arbitrary light converging unit 30.
  • the fixed points corresponding to each light converging unit 30 are different from each other, and an image 6 recognized in space is formed by a collection of a plurality of fixed points respectively corresponding to the light converging units 30.
  • the display device 10 projects a stereoscopic image on the space.
  • each of the light converging portions 30 includes a large number of reflecting surfaces formed substantially continuously in the x-axis direction.
  • the reflected light of the reflecting surface of each arbitrary light converging unit 30 converges to a fixed point corresponding to the light converging unit 30.
  • the light beams of the plurality of reflected lights from the plurality of reflecting surfaces included in the light converging unit 30a converge on the fixed point PA.
  • the light beams of the plurality of reflected lights from the plurality of reflecting surfaces of the light converging unit 30b converge at the fixed point PB.
  • the light beams of the plurality of reflected lights from the plurality of reflecting surfaces of the light converging unit 30c converge on the fixed point PC.
  • the light flux guided by the light guide plate 70 and passing through each position in the light guide plate 70 has a divergence angle smaller than a predetermined value around the direction connecting each position in the light guide plate 70 and the light source 20. have.
  • a light beam that is guided by the light guide plate 70 and passes through each position in the light guide plate 70 in a plane that includes a line connecting each position in the light guide plate 70 and the light source 20 and that is orthogonal to the xy plane is transmitted through the light guide plate 70.
  • a divergence angle smaller than a predetermined value with a direction connecting each position and the light source 20 as a center is transmitted through the light guide plate 70.
  • the light converging unit 30 When the light converging unit 30 is provided at a position away from the light source 20, the light beam that is guided by the light guide plate 70 and is incident on the light converging unit 30 has a spread in the xy plane with the y-axis direction as the center. do not do. Therefore, for example, on a plane that includes the fixed point PA and is parallel to the xz plane, the light from the light converging unit 30a substantially converges to one fixed point.
  • the spread of the light beam that passes through the point inside and outside the light guide plate refers to the spread of light when the light beam is regarded as light that diverges from that point. Further, the spread of the light beam passing through the points inside and outside the light guide plate may be simply referred to as the spread of light.
  • the light converging part 30a is formed along the line 190a.
  • the light converging part 30b is formed along the line 190b.
  • the light converging part 30c is formed along the line 190c.
  • the line 190a, the line 190b, and the line 190c are straight lines substantially parallel to the x-axis.
  • the arbitrary light converging part 30 is formed substantially continuously along a straight line substantially parallel to the x-axis.
  • the light converging part 30 is formed along a predetermined line in a plane parallel to the emission surface 71. Then, each of the light converging units 30 causes the light guided by the light guide plate 70 to enter, and emit the emitted light in a direction substantially converging to one convergence point in space from the emission surface 71.
  • the emitted light is light in a direction diverging from the fixed point. Therefore, when the fixed point is on the rear surface 72 side of the light guide plate 70, the reflection surface of the light converging unit 30 causes the emission surface 71 to emit the emitted light in a direction substantially diverging from one convergence point in space.
  • light from the light converging unit 30 substantially converges to a fixed point as described above.
  • the light guided by the light guide plate 70 has a spread in the direction along the yz plane
  • the light reflected by the reflection surface of the light converging unit 30 is substantially on a convergence line parallel to the yz plane and parallel to the exit surface.
  • light from the light converging unit 30a includes PA, and substantially converges on a line parallel to the yz plane and parallel to the exit surface.
  • each of the light converging units 30 may be formed by a part of a Fresnel lens.
  • One light converging part 30 may be formed by one continuous Fresnel lens.
  • FIG. 2 schematically shows a cross section of the yz plane of the display device 10.
  • FIG. 3 schematically shows a plan view in the xy plane of the display device 10.
  • the light source 20 is, for example, an LED light source.
  • the light source 20 makes light incident from the back surface 72 in a direction along the z-axis.
  • the deflecting / reflecting unit 40 is a groove that is recessed in the emission surface 71.
  • the deflecting / reflecting portion 40 is a groove having a substantially V-shaped cross section in the yz plane.
  • the deflection reflection unit 40 has a deflection reflection surface 41.
  • the deflecting / reflecting surface 41 is a surface of the two surfaces of the substantially V-shaped groove in the yz plane on the side where the light guide plate 70 guides light.
  • the deflecting / reflecting surface 41 forms a forward angle ⁇ with respect to an axis parallel to the z axis in the yz plane.
  • the depth h of the deflecting / reflecting surface 41 is the length from the emitting surface 71 to the tip of the deflecting / reflecting surface 41.
  • the light source 20 is located on the negative side of the z-axis of the deflecting / reflecting surface 41. Light from the light source 20 is reflected by the deflection reflection surface 41 and deflected in the light guide direction of the light guide plate 70.
  • the display device 10 since the light source 20 is provided on the back surface 72, alignment of the light source 20 is easier than in the case where the light source 20 is provided on the end surface 73.
  • the substrate on which the light emitting element is mounted does not have to be parallel to the end surface, it is not necessary to secure a space large enough to accommodate the substrate near the end surface 73.
  • the light source 20 When the light source 20 is provided on the end face 73, if the position of the light source 20 is shifted in the x-axis direction, the base point of light incident on the light guide plate 70 is shifted in the x-axis direction. For this reason, the position of the convergence point of the light from the light converging unit 30 is also displaced in the x-axis direction, and the image formed by the light converging unit 30 may be displaced or deformed in the x-axis direction.
  • the display device 10 the light emitted from the light source 20 enters the light guide plate 70 from the back surface 72, and the light deflected by the deflection reflection surface 41 is guided by the light guide plate 70.
  • the base point of the light guided by the light guide plate 70 is determined at the position where the deflection reflection surface 41 is formed. Therefore, even if the position of the light source 20 is shifted in the x-axis direction, the light base point does not shift. Therefore, according to the display apparatus 10, it can suppress that the image formed by the light converging part 30 shifts
  • FIG. 4 shows the dependence of the amount of luminous flux coupled to the light guide plate on the forward angle ⁇ and the depth h.
  • the material of the light guide plate is PC, and the plate thickness of the light guide plate is 0.3 mm. This dependency is obtained by fixing the groove depth h, which is the length from the exit surface 71 to the tip of the deflecting / reflecting surface 41.
  • the reflectivity of the deflecting reflecting surface 41 was 80%.
  • the forward angle ⁇ of the deflecting / reflecting surface 41 is preferably about 65 °.
  • FIG. 5 schematically shows a display device 10 ⁇ / b> A as a modification of the display device 10.
  • a reflective film 120 is formed in addition to the components included in the display device 10.
  • the reflection film 120 is provided on the deflection reflection surface 41.
  • the reflective film 120 is provided on the upper surface of the emission surface 71.
  • the reflection film 120 is provided so as to cover at least the deflection reflection surface 41.
  • the reflective film 120 may be a silver vapor deposition film, for example. By providing the reflective film 120 on the deflecting / reflecting portion 40, the coupling efficiency can be increased.
  • a silver-plated copper alloy strip or a reflective sheet can be applied as the reflective film 120.
  • FIG. 6 schematically shows a display device 10B as a modification of the display device 10.
  • the display device 10 ⁇ / b> B includes a reflection auxiliary unit 110 in addition to the components included in the display device 10.
  • the reflection assisting part 110 has a main body part 130 and a reflective film 120B.
  • the main body 130 of the reflection assisting part 110 has a protrusion 114 having a shape that fits into the concave deflecting reflection part 40.
  • a reflective film 120B is formed on at least a part of the protrusion 114.
  • the protrusion 114 has a surface 111 corresponding to the deflection reflection surface 41 when the auxiliary reflection portion 110 and the deflection reflection portion 40 are fitted, and the reflection film 120B is formed on the surface 111. Is done.
  • the reflective film 120B is provided so as to cover at least the surface 111.
  • the reflecting film 120 ⁇ / b> B substantially contacts the deflecting / reflecting surface 41.
  • the reflective film 120B may be a silver vapor deposition film, for example.
  • the reflection assisting part 110 has the surface 111 on which the reflection film 120B is provided, and is attached to the light guide plate 70 so that the reflection film 120B is in contact with the deflecting reflection surface 41. Therefore, the light coupling efficiency between the light source 20 and the light guide plate 70 can be increased without directly forming a reflective film on the light guide plate 70.
  • a silver-plated copper alloy strip or a reflective sheet can be applied as the reflective film 120.
  • a silver plating film, a chromium plating film, an aluminum deposition film, a reflection sheet, or the like can be applied as the reflection film 120B.
  • the main body part 130 of the auxiliary reflection part 110 may be a translucent member or a non-translucent member.
  • the reflective film 120B is not provided, and the surface 111 of the main body part 130 of the reflection assisting part 110 may be mirror-finished.
  • the material of the main body 130 may be a metal.
  • FIG. 7 schematically shows a display device 100 as a modification of the display device 10.
  • the display device 100 includes a deflection reflection unit 400 instead of the deflection reflection unit 40.
  • the deflecting / reflecting unit 400 has the same structure as that of the deflecting / reflecting unit 40 except that the length W in the x-axis direction is shorter than that of the deflecting / reflecting unit 40.
  • the length of the emission port 21 from which the light from the light source 20 is emitted toward the light guide plate 70 is w.
  • the length W of the deflecting / reflecting part 400 is shorter than the length w of the exit port 200.
  • the x-axis direction is a direction substantially orthogonal to the light guide direction of the light guide plate 70.
  • the length W of the deflecting / reflecting portion 400 can be made shorter than the length w of the exit port 21, the light guided through the light guide plate 70 can be reduced without limiting the size of the opening of the exit port 21.
  • the spread in the xy plane can be reduced. Thereby, for example, light having a light spreading angle smaller than a predetermined value in the xy plane can be incident on one of the reflecting surfaces of the light converging unit 30. Therefore, the resolution of the stereoscopic image 6 is increased.
  • the length W of the deflecting / reflecting unit 400 in the x-axis direction may be applied as the spreading width of the light from the deflecting / reflecting unit 400.
  • the spread width of the intensity distribution of the light deflected by the deflection reflection unit 400 may be applied as D.
  • the full width at the position where the light intensity is half of the maximum value (full width at half maximum). ) May be applied as D.
  • FIG. 8 schematically shows the relationship between the spread angle ⁇ of incident light on one of the reflecting surfaces of the light converging unit 30 and the divergence angle ⁇ ⁇ of the emitted light.
  • is a light spreading angle guided by the light guide plate 70 at the position of the reflecting surface.
  • is a spread angle in the xy plane, that is, a spread angle in a plane parallel to the emission surface 71.
  • may be a width (full width at half maximum) at a position where the light intensity is half of the maximum value in the light intensity distribution in the angular direction.
  • ⁇ x represents the spread in the x-axis direction of the emitted light from the reflecting surface 140 at the fixed point P1.
  • d represents the distance from the emission surface 71 to the fixed point P.
  • the spread of light incident on the reflection surface and light emitted from the reflection surface is smaller than a predetermined value.
  • ⁇ x and ⁇ are very small.
  • the divergence angle ⁇ ⁇ x is larger than ⁇ .
  • the divergence angle ⁇ ⁇ x is C ⁇ times ⁇ .
  • C ⁇ is a value greater than 1.
  • 1.5 may be applied as C ⁇ .
  • d is preferably 8 mm or more. This is because if d is less than 8 mm, it may not be recognized as a stereoscopic image.
  • ⁇ x is preferably 1 mm or less. This is because if ⁇ x exceeds 1 mm, a stereoscopic image may not be formed with sufficient resolution.
  • ⁇ ⁇ x is not more than atan (1/8). That is, ⁇ preferably satisfies C ⁇ ⁇ ⁇ ⁇ atan (1/8). In consideration of C ⁇ , ⁇ is preferably 5 ° or less. That is, the divergence angle of the light deflected by the deflecting / reflecting unit 400 and guided by the light guide plate 70 is preferably 5 ° or less in a plane parallel to the emission surface 71. Therefore, it is preferable that the width W of the deflecting / reflecting unit 400 has a value at which the light divergence angle is 5 ° or less in a plane parallel to the emission surface 71.
  • FIG. 9 schematically shows a display device 10 ⁇ / b> C as a modification of the display device 10.
  • FIG. 9A shows a cross section in the yz plane
  • FIG. 9B shows a top view in the xy plane.
  • the display device 10 ⁇ / b> C has substantially the same configuration as the display device 10 except that the shape of the deflecting / reflecting unit 40 ⁇ / b> C is different from that of the deflecting / reflecting unit 40.
  • the deflecting / reflecting part 40 is a V-shaped groove having a slope on the end face 73 side and the end face 74 side, whereas the deflecting / reflecting part 40C is a V-shaped groove having a slope on the end face 74 side but no slope on the end face 73 side. It is.
  • FIG. 10 schematically shows a display device 10 ⁇ / b> D as a modification of the display device 10.
  • 10A shows a cross section in the yz plane
  • FIG. 10B shows a top view in the xy plane.
  • the display device 10 ⁇ / b> D has substantially the same configuration as the display device 10 except that the shape of the deflecting / reflecting unit 40 ⁇ / b> D is different from that of the deflecting / reflecting unit 40.
  • the deflection reflection unit 40 has one deflection reflection surface 41, whereas the deflection reflection unit 40D has a plurality of deflection reflection surfaces 41D.
  • a plurality of deflection reflection surfaces 41 are provided in a direction along the light guide direction of the light guide plate 70.
  • FIG. 11 schematically shows an enlarged part of a display device 10E as a modification of the display device 10.
  • the display device 10 ⁇ / b> E has substantially the same configuration as the display device 10 except that the shape of the deflecting / reflecting unit 40 ⁇ / b> E is different from that of the deflecting / reflecting unit 40.
  • the deflection reflection unit 40 has one deflection reflection surface 41, while the deflection reflection unit 40E has a plurality of deflection reflection surfaces 41E.
  • a plurality of the deflection reflection surfaces 41 ⁇ / b> E are provided in a direction along the light guide direction of the light guide plate 70.
  • the deflection reflection surface 41E has different groove depths from the emission surface 71.
  • each of the plurality of deflection reflection surfaces 41E has a length in a direction perpendicular to the emission surface 71 within the plane perpendicular to the emission surface 71 and along the light guide direction of the light guide plate 70, and the other deflection reflection surface 41E. Is different.
  • FIG. 12 schematically shows an enlarged part of a display device 10F as a modified example of the display device 10.
  • the display device 10F has substantially the same configuration as the display device 10 except that the shape of the deflecting / reflecting unit 40F is different from that of the deflecting / reflecting unit 40.
  • the deflection reflection unit 40 has one deflection reflection surface 41, whereas the deflection reflection unit 40F has a plurality of deflection reflection surfaces 41F.
  • the plurality of deflection reflection surfaces 41 ⁇ / b> F are provided in a direction along the light guide direction of the light guide plate 70.
  • the deflection reflection surface 41 ⁇ / b> F has a different groove depth from the emission surface 71 and an angle with respect to the emission surface 71.
  • each of the plurality of deflection reflection surfaces 41F is a surface that is perpendicular to the emission surface 71 and is parallel to the emission surface 71 in a direction perpendicular to the emission surface 71 in a plane perpendicular to the emission surface 71 and along the light guide direction of the light guide plate 70. Is different from the other deflecting / reflecting surfaces 41F.
  • FIG. 13 schematically shows an enlarged part of a display device 10G as a modification of the display device 10.
  • the display device 10G has substantially the same configuration as the display device 10 except that the shape of the deflecting / reflecting part 40G is different from that of the deflecting / reflecting part 40.
  • the deflection reflection unit 40 has one deflection reflection surface 41, whereas the deflection reflection unit 40G has a plurality of deflection reflection surfaces 41G.
  • a plurality of the deflection reflection surfaces 41G are provided in a direction along the light guide direction of the light guide plate 70.
  • the deflecting / reflecting surface 41G is different in the depth of the groove from the exit surface 71 and the angle with respect to the exit surface 71.
  • each of the plurality of deflecting and reflecting surfaces 41G is a surface having a length in a direction perpendicular to the emission surface 71 and parallel to the emission surface 71 in a plane orthogonal to the emission surface 71 and along the light guide direction of the light guide plate 70. Is different from the other deflecting reflecting surface 41G. Further, unlike the deflecting / reflecting part 40F, a gap surface parallel to the emitting surface 71 is provided between the deflecting / reflecting surfaces 41G.
  • FIG. 14 schematically shows an enlarged part of a display device 10H as a modification of the display device 10.
  • the display device 10H has substantially the same configuration as the display device 10 except that the shape of the deflecting / reflecting part 40H is different from that of the deflecting / reflecting part 40.
  • the deflecting / reflecting unit 40 has one deflecting / reflecting surface 41, while the deflecting / reflecting unit 40H has two deflecting / reflecting surfaces 41Ha and a deflecting / reflecting surface following the deflecting / reflecting surface 41Ha along the light guide direction of the light guide plate 70.
  • Surface 41Hb is one deflecting / reflecting surface 41
  • the deflection reflection surface 41Ha and the deflection reflection surface 41Hb form a partial surface on the plus side of the y-axis of the deflection reflection portion 40H formed in a concave shape on the exit surface 71 side in the light guide plate 70.
  • the deflection reflection surface 41Hb is a surface located on the y-axis plus side from the deflection reflection surface 41Ha.
  • the light source 20 is provided on the negative side of the z-axis of the deflecting / reflecting surface 41Ha.
  • the deflection reflection surface 41Ha is provided at a position closer to the light source 20 than the deflection reflection surface 41Hb.
  • the angle ⁇ b formed by the surface parallel to the emission surface 71 and the deflecting / reflecting surface 41 ⁇ / b> Hb is the surface parallel to the emitting surface 71 and the deflecting / reflecting surface 41 ⁇ / b> Ha. Is different from the angle ⁇ a formed by.
  • the angle ⁇ a is an acute angle between the plane parallel to the emission surface 71 and the deflection reflection surface 41Ha, and represents the inclination of the deflection reflection surface 41Ha with respect to the plane parallel to the emission surface 71.
  • angle ⁇ b is an acute angle sandwiched between the plane parallel to the exit surface 71 and the deflection reflection surface 41Hb, and represents the inclination of the deflection reflection surface 41Hb with respect to the plane parallel to the exit surface 71.
  • the inclination of the deflecting / reflecting surface 41 ⁇ / b> Hb with respect to the surface parallel to the emitting surface 71 in the plane orthogonal to the emitting surface 71 and along the light guide direction of the light guide plate 70 is the deflecting / reflecting surface with respect to the surface parallel to the emitting surface 71. It is different from the slope of 41Ha.
  • the inclination of the deflection reflection surface 41 ⁇ / b> Hb with respect to the surface parallel to the emission surface 71 is deflected and reflected with respect to the surface parallel to the emission surface 71. It is smaller than the inclination of the surface 41Ha. Therefore, the area of the deflection reflection surface can be increased. Therefore, more light from the light source 20 can be supplied to the light guide plate 70.
  • three or more continuous deflection reflection surfaces may be provided along the light guide direction of the light guide plate 70.
  • the deflection reflection surface 41 is selected in order along the direction in which the light guide plate 70 guides light in a plane perpendicular to the emission surface 71 and along the light guide direction of the light guide plate 70, the inclination of the deflection reflection surface is determined. Gradually decreases. That is, the inclination of each deflection reflection surface is smaller than the inclination of any other deflection reflection surface on the side close to the light source 20.
  • FIG. 15 schematically shows an enlarged part of a display device 10I as a modification of the display device 10H.
  • the display device 10I has substantially the same configuration as the display device 10H except that the shape of the deflecting / reflecting part 40Ib is different from that of the deflecting / reflecting part 40Hb.
  • the deflection reflection surface 41Hb is a flat surface
  • the deflection reflection surface 41Ib is a curved surface.
  • the angle between the plane parallel to the emission surface 71 and the deflecting reflection surface 41Ia is ⁇ a in a plane orthogonal to the emission surface 71 and along the light guide direction of the light guide plate 70.
  • the acute angle between the surface parallel to the emission surface 71 and the tangent line of the deflection reflection surface 41Ib is any position of the deflection reflection surface 41Ib. Is smaller than the angle ⁇ a.
  • an acute angle between the plane parallel to the emission surface 71 and the tangent line of the deflection reflection surface 41Ib in a plane perpendicular to the emission surface 71 and along the light guide direction of the light guide plate 70 is the direction in which the light guide plate 70 guides light. It decreases gradually along.
  • the inclination of the deflecting / reflecting surface 41Hb with respect to the plane parallel to the emitting surface 71 at any position of the deflecting / reflecting surface 41Hb is within the plane orthogonal to the emitting surface 71 and along the light guide direction of the light guide plate 70. It is smaller than the inclination of the deflecting / reflecting surface 41Ha with respect to a surface parallel to the surface 71.
  • the inclination of the deflecting / reflecting surface 41Ib with respect to a surface parallel to the emission surface 71 gradually decreases along the direction in which the light guide plate 70 guides light.
  • the deflection reflection surface 41I can also increase the area of the deflection reflection surface and supply more light from the light source 20 to the light guide plate 70.
  • FIG. 16 schematically shows a part of a display device 10J as a modification of the display device 10 in an enlarged manner.
  • FIG. 16A shows a cross section in the yz plane
  • FIG. 16B shows a top view in the xy plane.
  • the display device 10 ⁇ / b> J has substantially the same configuration as the display device 10 except that the shape of the deflecting / reflecting unit 40 ⁇ / b> J is different from that of the deflecting / reflecting unit 40.
  • the deflection reflection unit 40 has a deflection reflection surface 41, whereas the deflection reflection unit 40J is a microprism. The light from the light source 20 is reflected and deflected by the microprism of the deflection reflection unit 40J.
  • FIG. 17 schematically shows an enlarged part of a display device 10K as a modification of the display device 10.
  • FIG. 17A shows a cross section in the yz plane
  • FIG. 17B shows a top view in the xy plane.
  • the display device 10 ⁇ / b> K is different from the deflection reflection unit 40 in the shape of the deflection reflection unit 40 ⁇ / b> K.
  • the light from the light source 20 is incident on the back surface 72 at an angle from the z axis.
  • the light source 20 makes light incident on the light guide plate 70 from a direction different from the vertical direction of the back surface 72. Except for these points, the display device 100 ⁇ / b> K has substantially the same configuration as the display device 10.
  • the deflecting / reflecting unit 40K has a plurality of reflecting surfaces arranged along the x-axis.
  • the plurality of reflecting surfaces of the deflecting / reflecting unit 40 ⁇ / b> K reflects light from the light source 20 so as to spread in a plane parallel to the emission surface 71.
  • FIG. 18 schematically shows an enlarged part of a display device 10L as a modification of the display device 10.
  • FIG. 18A shows a cross section in the yz plane
  • FIG. 18B shows a top view in the xy plane.
  • the shape of the deflection reflection unit 40L is different from that of the deflection reflection unit 40.
  • the display device 100 ⁇ / b> L has substantially the same configuration as the display device 10.
  • the deflecting / reflecting unit 40 ⁇ / b> L is provided on the emission surface 71 and reflects the light from the light source 20 so as to spread in a plane parallel to the emission surface 71.
  • FIG. 19 schematically shows an enlarged part of a display device 10M as a modification of the display device 10.
  • FIG. 19A shows a cross section in the yz plane
  • FIG. 19B shows a top view in the xy plane.
  • the display device 10M includes a light source 20-1M, a light source 20-2M, and a light source 20-3M.
  • the light guide plate 70M has a recess on the back surface 72, and the light source 20-1M, the light source 20-1M, and the light source 20-1M are provided on the end surface 73 side of the recess.
  • the light guide plate 70 ⁇ / b> M has the deflecting / reflecting unit 40 on the end surface 73. Except for these points, the display device 100M has substantially the same configuration as the display device 10.
  • the light source 20-1M, the light source 20-2M, and the light source 20-3M are provided side by side in a direction along a plane orthogonal to the light guide direction of the light guide plate 70M and parallel to the emission surface 71.
  • the light source 20-1M, the light source 20-2M, and the light source 20-3M each enter light into the light guide plate 70M toward the end surface 73 of the light guide plate 70M.
  • the deflection reflection unit 40M is provided on the end face 73.
  • the deflection reflection unit 40M includes a deflection reflection surface 41-1M, a deflection reflection surface 41-2M, and a deflection reflection surface 41-3M.
  • the deflection reflection surface 41-1M, the deflection reflection surface 41-2M, and the deflection reflection surface 41-3M are orthogonal to the light guide direction of the light guide plate 70M corresponding to the light source 20-1M, the light source 20-2M, and the light source 20-3M. And arranged side by side in a direction along a plane parallel to the emission surface 71.
  • the deflection reflection surface 41-1M, the deflection reflection surface 41-2M, and the deflection reflection surface 41-3M substantially reflect the light from the light source 20-1M, the light source 20-2M, and the light source 20-3M toward the end surface 74. To light that is substantially parallel to the light.
  • Each of the deflection reflection surface 41-1M, the deflection reflection surface 41-2M, and the deflection reflection surface 41-3M is, for example, a mirror having a parabolic surface.
  • the light source 20-1M is preferably provided in the vicinity of the focal position of the paraboloid of the deflecting reflection surface 41-1M or the focal position of the paraboloid.
  • the light source 20-2M is provided at the focal point position of the parabolic surface of the deflecting reflection surface 41-2M or in the vicinity of the focal point position of the parabolic surface
  • the light source 20-3M is provided by the deflecting reflection surface 41-3M. It is preferable to be provided in the vicinity of the focal position of the paraboloid or the focal position of the paraboloid.
  • FIG. 20 schematically shows an enlarged part of a display device 10N as a modification of the display device 10.
  • FIG. 20A shows a cross section in the yz plane
  • FIG. 20B shows a top view in the xy plane.
  • the display device 10N includes a deflection member 50 having a deflection reflection unit 40N.
  • the display device 10N includes a light source 20-1N, a light source 20-2N, and a light source 20-3N. Except for these points, the display device 100N has substantially the same configuration as the display device 10.
  • the deflection member 50 is provided on the end surface 73.
  • the deflecting member 50 has an end surface 54 that faces the end surface 73 of the light guide plate 70N, and an end surface 53 opposite to the end surface 54.
  • the deflecting member 50 has an end surface 51 substantially parallel to the emission surface 71 of the light guide plate 70N, and a back surface 52 opposite to the surface 51.
  • the display device 10N has a configuration in which the deflecting / reflecting portion 40N corresponding to the deflecting / reflecting portion 40M is provided in the deflecting member 50 in the display device 10M.
  • the deflection member 50 has a deflection reflection portion 40N on the end surface 53. Further, the deflection member 50 has a recess on the back surface 52.
  • the light source 20 is provided on the end surface 53 side of the recess.
  • the light source 20-1N, the light source 20-2N, and the light source 20-3N are provided side by side in a direction along a plane orthogonal to the light guide direction of the light guide plate 70N and parallel to the emission surface 71.
  • the light source 20-1N, the light source 20-2N, and the light source 20-3N each enter light into the deflection member 50 toward the end surface 53 of the deflection member 50.
  • the deflection reflection unit 40N includes a deflection reflection surface 41-1N, a deflection reflection surface 41-2N, and a deflection reflection surface 41-3N.
  • the deflection reflection surface 41-1N, the deflection reflection surface 41-2N, and the deflection reflection surface 41-3N are orthogonal to the light guide direction of the light guide plate 70N corresponding to the light source 20-1N, the light source 20-2N, and the light source 20-3N. And arranged side by side in a direction along a plane parallel to the emission surface 71.
  • the deflecting / reflecting surface 41-1N, the deflecting / reflecting surface 41-2N, and the deflecting / reflecting surface 41-3N substantially reflect the light from the light source 20-1N, the light source 20-2N, and the light source 20-3N toward the end surface 74. To light that is substantially parallel to the light.
  • Each of the deflection reflection surface 41-1N, the deflection reflection surface 41-2N, and the deflection reflection surface 41-3N is, for example, a mirror having a parabolic surface.
  • the light source 20-1N is preferably provided in the vicinity of the focal point position of the parabolic surface of the deflecting reflecting surface 41-1N or in the vicinity of the focal point position of the parabolic surface.
  • the light source 20-2N is provided in the vicinity of the focal point position of the parabolic surface of the deflecting reflection surface 41-2N or in the vicinity of the focal point position of the parabolic surface
  • the light source 20-3N is provided in the deflecting reflection surface 41-3N. It is preferable to be provided in the vicinity of the focal position of the paraboloid or the focal position of the paraboloid.
  • the light source 20 is provided on the deflection member 50.
  • a configuration in which the light source 20 is provided on the light guide plate 70N may be employed as in the display device 10M.
  • the deflection reflection unit described above is an example of a deflection optical surface that deflects light from the light source in the light guide direction of the light guide plate.
  • a diffractive surface can be applied in addition to the reflecting surface.
  • an optical surface that deflects light from the light source by refraction may be used.
  • the deflection optical surface is provided on the emission surface 71 side.
  • the deflection optical surface may be provided on the back surface 72 side.
  • the light from the light source 20 that has entered the back surface 72 side light guide plate 70 may be deflected in the light guide direction of the light guide plate 70 by diffracting or refracting light by a deflecting optical surface provided on the back surface 72 side.
  • the deflecting optical surface may be provided on the same back surface 72 side as the side on which the light source 20 is provided.
  • the light source 20 is provided on the emission surface 71 side, contrary to the display device 10 and the modification examples of the display device 10 other than the display device 10M.
  • a deflecting optical surface may be provided on the back surface 72 side.
  • the light source 20 may be provided on the exit surface 71 side, and the deflection optical surface may be provided on the exit surface 71 side.
  • the light from the light source 20 that has entered the light guide plate 70 from the emission surface 71 side may be deflected or refracted in the light guide direction of the light guide plate 70.
  • the deflection optical surface may be provided on the same emission surface 71 side as the side on which the light source 20 is provided.
  • the light source 20 is provided on the light guide plate 70 except for the display device 10 ⁇ / b> N in the display device 10 and the modified examples of the display device 10 described above.
  • the light source 20 may be provided on a member provided separately from the light guide plate 70, similarly to the display device 10N.
  • the deflection optical surface may be provided on a member separate from the light guide plate 70 provided with the light source 20.
  • the structure which does not have the light source 20 may be employ
  • FIG. 21 is a perspective view schematically showing an example of the optical system 500 together with a stereoscopic image.
  • FIG. 22 schematically shows a yz section of the optical system 500.
  • the optical system 500 includes a display device 10P, a portable terminal 510, and a terminal cover 530.
  • the display device 10P is a modification of the display device 10.
  • the display device 10P includes a deflection reflection unit 40P corresponding to the deflection reflection unit 40.
  • the terminal cover 530 is formed of a translucent member.
  • the mobile terminal 510 is an electronic device such as a smartphone.
  • the portable terminal 510 has a shooting function.
  • the mobile terminal 510 includes a display 518, a light source 520, and a camera unit 528.
  • the display 518 has a touch panel function that accepts user operations.
  • the light source 520 emits light that illuminates the subject when the camera unit 528 captures an image.
  • the light source 520 emits light from the main surface 512 opposite to the main surface 511 provided with the display 518.
  • the display device 10P is provided between the terminal cover 530 and the main surface 512 of the mobile terminal 510.
  • the exit surface 71 of the light guide plate 70 substantially contacts the terminal cover 530, and the back surface 72 of the light guide plate 70 substantially contacts the main surface 512 of the mobile terminal 510.
  • the display device 10 ⁇ / b> P has an outer shape that substantially matches the outer shape of the mobile terminal 510.
  • the display device 10P has an outer shape that substantially matches the outer shape of the main surface 512 of the mobile terminal 510, and the display device 10P is aligned with the main surface 512 by aligning the outer shape of the display device 10P with the outer shape of the main surface 512. Is done.
  • the display device 10P In a state where the display device 10P is aligned with the main surface 512, the display device 10P is fixed to the terminal cover 530 by covering the bottom surface of the concave portion of the terminal cover 530 on the emission surface 71 of the light guide plate 70.
  • the deflecting / reflecting portion 40P is formed at a position facing the light source 520 when the display device 10P is aligned with the main surface 512.
  • the deflecting / reflecting part 40P occupies a part of the exit aperture of the light source 520 when projected onto the xy plane.
  • the light source 520 emits light
  • part of the light from the light source 520 is incident on the deflecting / reflecting part 40P, reflected by the deflecting / reflecting part 40P, and becomes light propagating through the light guide plate 70.
  • the light that has not entered the deflecting / reflecting portion 40 ⁇ / b> P passes through the light guide plate 70 and the terminal cover 530 and exits from the optical system 500.
  • a light converging part 30P for forming an image 506 as a stereoscopic image is formed on the back surface 72 of the light guide plate 70.
  • a part of the light propagating in the light guide plate 70 is deflected by the light converging unit 30P, passes through the emission surface 71 and the terminal cover 530, exits from the optical system 500, and enters the image 506 in a space outside the optical system 500.
  • the image 506 can be formed in a space outside the optical system 500 by causing the light source 520 to emit light when photographing with the mobile terminal 510, for example.
  • the portable terminal 510 incorporates software that causes the light source 520 to emit light when a predetermined light emission condition is satisfied.
  • the portable terminal 510 causes the light source 520 to emit light when a predetermined condition is satisfied according to the control of the software.
  • the portable terminal 510 displays a button for accepting an instruction to form the image 506 on the display 518 before shooting, and causes the light source 20 to emit light when the button is touched. Thereafter, when a button for receiving a shooting instruction is touched, the portable terminal 510 causes the light source 20 to emit light during the shooting operation of the camera unit 528 according to the brightness outside the optical system 500, a predetermined shooting condition, or the like. .
  • FIG. 23 shows another example of a stereoscopic image formed by the display device 10P.
  • FIG. 23A shows a case where an image 556 for notifying receipt of an e-mail is formed with light from the light converging unit 30.
  • the light emission condition of the light source 20 is set by software so that the light source 520 emits light when the mobile terminal 510 receives an e-mail.
  • FIG. 23B shows a case where an image 566 for notifying that the mobile terminal 510 is being charged is formed with light from the light converging unit 30.
  • the light emission condition of the light source 20 is set by software so that the light source 520 emits light when the battery in the portable terminal 510 is being charged.
  • FIG. 23A shows a case where an image 556 for notifying receipt of an e-mail is formed with light from the light converging unit 30.
  • the light emission condition of the light source 20 is set by software so that the light source 520 emits light when the mobile terminal 510 receives an e-mail.
  • 23C shows a case where an image 576 that notifies that the charging of the portable terminal 510 is completed is formed with light from the light converging unit 30.
  • the light emission conditions of the light source 20 are set by software so that the light source 520 emits light when the battery in the portable terminal 510 is fully charged.
  • the display device 10P may be provided with a plurality of light deflection unit groups that emit light that forms a plurality of images.
  • the display device 10P is provided with a first light deflection unit group that forms an image 556, a second light deflection unit that forms an image 566, and a third light deflection unit group that forms an image 576. It's okay.
  • the first light deflection unit group selectively deflects and emits light in the first wavelength region (for example, light in the blue wavelength region) out of the light guided by the light guide plate 70
  • the light deflection unit group selectively deflects and emits light in the second wavelength region (for example, light in the red wavelength region) out of the light guided by the light guide plate 70, and outputs the third light deflection unit.
  • the group may selectively deflect and emit light in the third wavelength range (for example, light in the green wavelength range) out of the light guided by the light guide plate 70.
  • a dichroic mirror that selectively reflects light in a corresponding wavelength range may be formed on the reflection surface of each light deflection unit group.
  • a predetermined first light emission condition such as receiving an e-mail
  • light in the first wavelength band is emitted to the light source 520 and the battery is being charged.
  • the light source 520 emits light in the second wavelength range
  • the predetermined third light emission condition such as the battery is fully charged is satisfied.
  • the software is set so that the light source 520 emits light in the wavelength range of 3.
  • the display device 10P may be provided integrally with the terminal cover 530. At least one of the deflecting / reflecting part 40P and the light converging part 30P may be formed on the terminal cover 530.
  • the display device 10P may be provided on the main surface 511 side of the mobile terminal 510. Further, the deflecting / reflecting unit 40P may be provided at a position facing a partial area of the display 518, and light emitted from the partial area of the display 518 may be used as incident light to the display device 10P.
  • Display device 20 Light source 21 Emission port 30 Light converging unit 70 Light guide plate 71 Emission surface 72 Rear surface 40 Deflection reflection unit 41 Deflection reflection surface 50 Deflection member 51 End surface 52 Rear surface 53, 54 End surface 73 End surface 74 End surface 75 End surface 76 End surface 100 Display device 110 Auxiliary reflection portion 111 Surface 114 Projection portion 120 Reflection film 130 Main body portion 140 Reflection surface 190 Line 200 Exit port 400 Deflection reflection portion 500 Optical system 506, 556, 566, 576 Image 510 Portable terminal 511, 512 Main surface 518 Display 520 Light source 528 Camera unit 530 Terminal cover

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Planar Illumination Modules (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Stereoscopic And Panoramic Photography (AREA)

Abstract

光デバイスは、出射面に平行な面内で光を導く導光板と、出射面とは反対側の面及び出射面側の面の少なくとも一方の面に平行な面に対向して設けられた光源から導光板内に入射した光を導光板の導光方向に偏向する偏向光学面と、偏向光学面によって偏向されて導光板によって導かれている光が入射し、空間上の1つの収束点又は収束線に実質的に収束する又は空間上の1つの収束点又は収束線から実質的に発散する方向の出射光を出射面から出射させる光学面をそれぞれ有する複数の光収束部とを備え、複数の光収束部は、出射面に平行な面内でそれぞれ予め定められた線に沿って形成され、収束点又は収束線は複数の光収束部の間で互いに異なり、複数の収束点又は収束線の集まりによって空間上に像が形成される。

Description

光デバイス
 本発明は、光デバイスに関する。
 導光板と、導光板の端面に設けられた光源と、導光板の表面側に配置した、パララックスバリア方式又はレンズアレイ方式におけるマスク又はレンズアレイとを備えた、立体視可能な表示装置が知られている(例えば、特許文献1参照。)。
 特許文献1 特開2012-008464号公報
 導光板の端面に光源を設ける場合、光源と導光板の端面との間の位置合わせが容易でないという課題があった。また、導光板の端面において、導光板の出射面に平行な方向において光源が所定の位置からずれると、導光板から出射する光の方向が変わってしまう場合がある。また、発光素子を搭載した基板が端面に平行になり、基板を収容する大きさのスペースを端面近くに確保する必要があるという課題があった。
 第1の態様においては、光デバイスは、出射面に平行な面内で光を導く導光板と、出射面とは反対側の面及び出射面側の面の少なくとも一方の面に平行な面に対向して設けられた光源から導光板内に入射した光を導光板の導光方向に偏向する偏向光学面と、偏向光学面によって偏向されて導光板によって導かれている光が入射し、空間上の1つの収束点又は収束線に実質的に収束する又は空間上の1つの収束点又は収束線から実質的に発散する方向の出射光を出射面から出射させる光学面をそれぞれ有する複数の光収束部とを備え、複数の光収束部は、出射面に平行な面内でそれぞれ予め定められた線に沿って形成され、収束点又は収束線は複数の光収束部の間で互いに異なり、複数の収束点又は収束線の集まりによって空間上に像が形成される。
 光源は、導光板の出射面とは反対側の面及び出射面側の面の少なくとも一方の面に対向して設けられ、光源が設けられた少なくとも一方の面から導光板に光を入射してよい。
 偏向光学面は、光源が設けられた面とは反対側の面に設けられ、光源から導光板内に入射した光を反射して、導光板の導光方向に偏向する偏向反射面を有してよい。
 導光板の導光方向に略直交する方向において、偏向反射面の長さは、光源からの光が導光板に向けて出射する出射口の長さより短くてよい。
 偏向反射面によって偏向されて導光板が導く光の発散角は、出射面に平行な面内で5°以下であってよい。
 導光板の入光端面と出射面の光収束部30が形成された領域の中央との間の距離をLとし、出射面に平行であり導光板の導光板に略直交する方向における偏向反射面の幅をWとした場合、W≦L/10を満たしてよい。
 偏向反射面に設けられた反射膜をさらに備えてよい。
 反射膜が設けられた面を有し、反射膜が偏向反射面に接するように導光板に装着された反射補助部をさらに備えてよい。
 偏向反射面は、導光板の導光方向に沿う方向に複数設けられ、複数の偏向反射面のそれぞれは、出射面に直交し導光板の導光方向に沿う面内において、出射面に垂直な方向の長さ及び出射面に平行な面に対する角度の少なくとも一方が、他の偏向反射面とは異なってよい。
 偏向反射面は、導光板の導光方向に沿って、第1の偏向反射面と、第1の偏向反射面に続く第2の偏向反射面とを有し、出射面に直交し導光板の導光方向に沿う面内において、出射面に平行な面に対する第1の偏向反射面の傾きは、出射面に平行な面に対する第2の偏向反射面の傾きと異なってよい。
 第1の偏向反射面及び第2の偏向反射面は、導光板において光源が設けられた面とは反対側の面に形成された凹部の一部の面を形成し、出射面に直交し導光板の導光方向に沿う面内において、出射面に平行な面に対する第2の偏向反射面の傾きは、出射面に平行な面に対する第1の偏向反射面の傾きより小さくてよい。
 偏向反射面は、光源から導光板内に入射した光を、導光板の導光方向に平行な面内で広げる向きに複数の反射面を有してよい。
 光源は、導光板の導光方向の第1端面とは反対側の第2の端面に向けて導光板内に光を入射し、偏向光学面は、第2の端面に設けられ、光源からの光を、第1の端面に向かう実質的に略平行な光に変換する偏向反射面を有してよい。
 偏向光学面を有し、導光板の導光方向の第1の端面とは反対側の第2の端面に設けられた偏向部材をさらに備え、偏向光学面は、光源からの光を、第1の端面に向かう実質的に略平行な光に変換する偏向反射面を有し、光源は、偏向反射面に向かう光を偏向部材に入射してよい。
 光源は、導光板の導光方向に直交し出射面に平行な面に沿う方向に複数並べて設けられ、反射面は、導光板の導光方向に直交し出射面に平行な面に沿う方向に、複数の光源に対応して複数並べて設けられてよい。
 光源をさらに備えてよい。
 なお、上記の発明の概要は、本発明の特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。
一実施形態における表示装置10を、空間上に投影される立体像と共に概略的に示す。 表示装置10のyz平面の断面を概略的に示す。 表示装置10のxy面内の平面図を概略的に示す。 導光板への結合光束量の前方角θ依存性及び深さh依存性を示す。 表示装置10の変形例としての表示装置10Aを概略的に示す。 表示装置10の変形例としての表示装置10Bを概略的に示す。 表示装置10の変形例としての表示装置100を概略的に示す。 光収束部30が有する反射面のうちの1つの反射面への入射光の発散角Δθと、出射光の発散角ΦΔとの関係を概略的に示す。 表示装置10の変形例としての表示装置10Cを概略的に示す。 表示装置10の変形例としての表示装置10Dを概略的に示す。 表示装置10の変形例としての表示装置10Eの一部を拡大して概略的に示す。 表示装置10の変形例としての表示装置10Fの一部を拡大して概略的に示す。 表示装置10の変形例としての表示装置10Gの一部を拡大して概略的に示す。 表示装置10の変形例としての表示装置10Hの一部を拡大して概略的に示す。 表示装置10Hの変形例としての表示装置10Iの一部を拡大して概略的に示す。 表示装置10の変形例としての表示装置10Jの一部を拡大して概略的に示す。 表示装置10の変形例としての表示装置10Kの一部を拡大して概略的に示す。 表示装置10の変形例としての表示装置10Lの一部を拡大して概略的に示す。 表示装置10の変形例としての表示装置10Mの一部を拡大して概略的に示す。 表示装置10Mの変形例としての表示装置10Nの一部を拡大して概略的に示す。 光システム500の一例を立体像と共に概略的に示す斜視図である。 光システム500のyz断面を概略的に示す。 表示装置10Pが形成する立体像の他の例を示す。
 以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
 図1は、一実施形態における表示装置10を、空間上に投影される立体像と共に概略的に示す。なお、分かり易く説明することを目的として、実施形態の説明に用いる図は概略的又は模式的なものとする。実施形態の説明に用いる図は、実際のスケールで描かれていない場合がある。
 表示装置10は、光を出射する出射面71を有する。表示装置10は、出射面71から出射する光によって、立体像としての像6を形成する。像6は、ユーザによって空間上に認識される立体像である。なお、立体像とは、表示装置10の出射面71とは異なる位置にあるように認識される像をいう。立体像とは、例えば、表示装置10の出射面71から離れた位置に認識される2次元像も含む。つまり、立体像とは、立体的な形状として認識される像だけでなく、表示装置10の表示面上とは異なる位置に認識される2次元的な形状の像も含む概念である。
 表示装置10は、導光板70と、光源20とを備える。導光板70は、透明で屈折率が比較的に高い樹脂材料で成形される。導光板70を形成する材料は、例えばポリカーボネート樹脂(PC)、ポリメチルメタクリレート樹脂(PMMA)、ガラス等であってよい。
 導光板70は、出射面71とは反対側の背面72とを有する。光源20は、背面72側に設けられる。光源20からの光は、背面72から導光板70に入射する。また、導光板70は、導光板70の四方の端面である端面73、端面74、端面75及び端面76を有する。端面74は、端面73とは反対側の面である。端面76は、端面75とは反対側の面である。導光板70は、光源20からの光を出射面71に平行な面内で面状に広げて、端面74に向かう方向に導く。
 実施形態の説明において、x軸、y軸及びz軸の右手系の直交座標系を用いる場合がある。z軸方向を、出射面71に垂直な方向で定める。背面72から出射面71への向きをz軸プラス方向と定める。また、y軸方向を、端面73に垂直な方向で定める。端面73から端面74への向きをy軸プラス方向と定める。x軸は、端面75及び端面76に垂直な方向であり、端面75から端面76への向きをx軸プラス方向と定める。なお、記載が冗長にならないよう、xy平面に平行な面のことをxy面、yz平面に平行な面のことをyz面、xz平面に平行な面のことをxz面と呼ぶ場合がある。
 光源20は、背面72に対向して設けられる。光源20からの光は、背面72から導光板70内に入射する。導光板70の出射面71には、偏向反射部40が設けられている。偏向反射部40は、導光板70に入射した光源20からの光を反射して、導光板70の導光方向に偏向する。例えば、偏向反射部40は、導光板70に入射した光源20からの光を反射して、端面74に向かう方向の光に偏向する。導光板70は、偏向反射部40で偏向した光を出射面71に平行な面内で面状に広げて、端面74に向かう方向に導く。
 導光板70の背面72には、光収束部30a、光収束部30b及び光収束部30cを含む複数の光収束部30が形成されている。光収束部30はx軸方向に実質的に連続して形成されている。光収束部30のx軸方向の各位置には、導光板70によって導かれている光が入射する。光収束部30は、光収束部30の各位置に入射した光を、光収束部30にそれぞれ対応する定点に実質的に収束させる。図1には、光収束部30の一部として、光収束部30a、光収束部30b及び光収束部30cが特に示され、光収束部30a、光収束部30b及び光収束部30cのそれぞれにおいて、光収束部30a、光収束部30b及び光収束部30cのそれぞれから出射された複数の光線が収束する様子が示されている。
 具体的には、光収束部30aは、像6上の定点PAに対応する。光収束部30aの各位置からの光線は、定点PAに収束する。したがって、光収束部30aからの光の波面は、定点PAから発するような光の波面となる。光収束部30bは、像6上の定点PBに対応する。光収束部30bからの各位置からの光線は、定点PBに収束する。このように、任意の光収束部30の各位置からの光線は、光収束部30に対応する定点に実質的に収束する。これにより、任意の光収束部30によって、対応する定点から光が発するような光の波面を提供できる。各光収束部30が対応する定点は互いに異なり、光収束部30にそれぞれ対応する複数の定点の集まりによって、空間上に認識される像6が形成される。このようにして、表示装置10は空間上に立体像を投影する。
 本実施形態において、光収束部30のそれぞれは、x軸方向に実質的に連続して形成された多数の反射面を含む。任意の光収束部30がそれぞれ有する反射面の反射光は、光収束部30に対応する定点に収束する。例えば、光収束部30aが有する複数の反射面のそれぞれによる複数の反射光の光線は、定点PAに収束する。また、光収束部30bが有する複数の反射面のそれぞれによる複数の反射光の光線は、定点PBに収束する。また、光収束部30cが有する複数の反射面のそれぞれによる複数の反射光の光線は、定点PCに収束する。
 なお、xy面内において、導光板70によって導かれて導光板70内の各位置を通過する光束は、導光板70内の各位置と光源20とを結ぶ方向を中心として所定値より小さい広がり角を持つ。また、導光板70内の各位置と光源20とを結ぶ線を含みxy面に直交する面内において、導光板70によって導かれて導光板70内の各位置を通過する光束は、導光板70内の各位置と光源20とを結ぶ方向を中心として所定値より小さい広がり角を有する。光収束部30が光源20から離れた位置に設けられている場合、導光板70によって導かれて光収束部30に入射する光束は、概ねy軸方向を中心として、xy面内において広がりを有しない。したがって、例えば定点PAを含みxz平面に平行な面では、光収束部30aからの光は実質的に1つの定点に収束する。なお、本明細書において、導光板内外の点を通過する光束の広がりとは、当該光束がその点から発散する光とみなした場合の光の広がりのことをいう。また、導光板内外の点を通過する光束の広がりのことを、単に光の広がりと呼ぶ場合がある。
 図1に示されるように、光収束部30aは、線190aに沿って形成されている。光収束部30bは、線190bに沿って形成されている。光収束部30cは、線190cに沿って形成されている。ここで、線190a、線190b及び線190cは、x軸に略平行な直線である。任意の光収束部30は、x軸に略平行な直線に沿って実質的に連続的に形成される。
 このように、光収束部30は、出射面71に平行な面内でそれぞれ予め定められた線に沿って形成されている。そして、光収束部30のそれぞれは、導光板70によって導かれている光が入射し、空間上の1つの収束点に実質的に収束する方向の出射光を出射面71から出射させる。なお、定点が導光板70の背面72側の場合は、出射光は、定点から発散する方向の光となる。したがって、定点が導光板70の背面72側の場合、光収束部30が有する反射面は、空間上の1つの収束点から実質的に発散する方向の出射光を出射面71から出射させる。
 なお、導光板70によって導かれる光がyz面に沿う方向に広がりを有しない場合、上述したように、光収束部30からの光は定点に実質的に収束する。一方、導光板70によって導かれる光がyz面に沿う方向に広がりを有する場合、光収束部30の反射面で反射した光は、yz面に平行かつ出射面に平行な収束線上に実質的に収束する。例えば、光収束部30aによる光は、PAを含み、yz面に平行かつ出射面に平行な線上に実質的に収束する。定点が導光板70の背面72側の場合も同様に、光収束部30が有する反射面は、空間上の1つの収束線から実質的に発散する方向の出射光を出射面71から出射させる。なお、本実施形態では、記載が冗長にならないよう、光収束部30からの光は実質的に収束点に収束するとして説明する場合がある。なお、光収束部30は、それぞれフレネルレンズの一部により形成されてよい。また、1つの光収束部30が、1つの連続するフレネルレンズにより形成されてもよい。
 図2は、表示装置10のyz平面の断面を概略的に示す。図3は、表示装置10のxy面内の平面図を概略的に示す。
 光源20は、例えばLED光源である。光源20は、z軸に沿う方向に、背面72から光を入射する。偏向反射部40は、出射面71に凹設された溝である。具体的には、偏向反射部40は、yz面内の断面形状が略V字の溝である。偏向反射部40は、偏向反射面41を有する。偏向反射面41は、yz面内における略V字の溝の2つの面のうち、導光板70が光を導く側の面である。偏向反射面41は、yz面内においてz軸に平行な軸に対して前方角θをなす。偏向反射面41の深さhは、出射面71からの偏向反射面41の先端までの長さである。光源20は、偏向反射面41のz軸マイナス側に位置する。光源20からの光は、偏向反射面41で反射して、導光板70の導光方向に偏向される。
 表示装置10によれば、光源20を背面72に設けるので、光源20を端面73に設ける場合と比べて、光源20の位置合わせが容易となる。また、発光素子を搭載した基板が端面に平行にならずに済むので、基板を収容する大きさのスペースを端面73近くに確保する必要がない。
 なお、光源20を端面73に設ける場合、光源20の位置がx軸方向にずれると、導光板70に入射する光の基点がx軸方向にずれることになる。そのため、光収束部30からの光の収束点の位置もx軸方向にずれてしまい、光収束部30によって形成される像がx軸方向にずれたり変形したりする場合がある。これに対し、表示装置10によれば、光源20が発した光は背面72から導光板70に入射され、偏向反射面41で偏向された光が導光板70によって導光される。そのため、導光板70によって導光する光の基点は、偏向反射面41が形成された位置で定まる。そのため、光源20の位置がx軸方向にずれたとしても、光の基点がずれることがない。そのため、表示装置10によれば、光収束部30によって形成される像がx軸方向にずれたり変形したりすることを抑制できる。
 図4は、導光板への結合光束量の前方角θ依存性及び深さh依存性を示す。導光板の材料はPCであり、導光板の板厚は0.3mmである。なお、この依存性は、出射面71から偏向反射面41の先端までの長さである溝深さhを固定して得られたものである。偏向反射面41面の反射率は80%とした。反射面深さを固定した場合、結合光束量は、θが約65°の場合に最大となる。また、結合光束量は、深さhに依存する。この結果から、偏向反射面41の前方角θは、65°程度にすることが望ましい。
 図5は、表示装置10の変形例としての表示装置10Aを概略的に示す。表示装置10Aは、表示装置10が備える構成要素に加えて、反射膜120が形成されている。反射膜120は、偏向反射面41に設けられる。反射膜120は、出射面71の上部に設けられる。反射膜120は、少なくとも偏向反射面41を覆うように設けられる。反射膜120は、例えば銀蒸着膜であってよい。反射膜120を偏向反射部40に設けることで、結合効率を高めることができる。なお、反射膜120として、銀蒸着膜以外に、銀めっき銅合金条又は反射シート等を適用できる。
 図6は、表示装置10の変形例としての表示装置10Bを概略的に示す。表示装置10Bは、表示装置10が備える構成要素に加えて、反射補助部110を備える。反射補助部110は、本体部130と反射膜120Bとを有する。
 反射補助部110の本体部130は、凹形状の偏向反射部40に嵌合する形状を持つ突部114を有する。突部114の少なくとも一部には、反射膜120Bが形成されている。具体的には、突部114は、反射補助部110と偏向反射部40とが嵌合した場合に偏向反射面41に対応する面111を有しており、反射膜120Bは、面111に形成される。反射膜120Bは、少なくとも面111を覆うように設けられる。反射補助部110と偏向反射部40とが嵌合した場合に、反射膜120Bが偏向反射面41に実質的に接する。反射膜120Bは、例えば銀蒸着膜であってよい。
 このように、反射補助部110は、反射膜120Bが設けられた面111を有し、反射膜120Bが偏向反射面41に接するように導光板70に装着される。そのため、導光板70に反射膜を直接に形成することなく、光源20と導光板70との間の光の結合効率を高めることができる。なお、反射膜120として、銀蒸着膜以外に、銀めっき銅合金条又は反射シート等を適用できる。また、反射膜120Bとして、その他に、銀めっき膜、クロムめっき膜、アルムニウム蒸着膜又は反射シート等を適用できる。反射補助部110の本体部130は透光性の部材であってよく、非透光性の部材であってもよい。
 なお、反射補助部110の変形例としては、反射膜120Bを有さず、反射補助部110の本体部130の面111に鏡面加工が施されてもよい。本体部130の材料は金属であってもよい。
 図7は、表示装置10の変形例としての表示装置100を概略的に示す。表示装置100は、偏向反射部40に代えて偏向反射部400を有する。偏向反射部400は、偏向反射部40と比べて、x軸方向の長さWが短いことを除いて、偏向反射部40と同様の構造を持つ。
 図示されるように、x軸方向において、光源20からの光が導光板70に向けて出射する出射口21の長さはwである。x軸方向において、偏向反射部400の長さWは出射口200の長さwより短い。なお、x軸方向は、導光板70の導光方向に略直交する方向である。
 このように、出射口21の長さwより偏向反射部400の長さWを短くすることで、出射口21の開口の大きさを制限しなくても、導光板70内を導かれる光のxy面内の広がりを小さくすることができる。これにより、例えば光収束部30が有する反射面のうちの1つの反射面には、xy面内における光の広がり角が所定値より小さい光を入射することができる。したがって、立体像6の解像度が高まる。
 一例として、導光板70の偏向反射部400の位置と出射面71の中央の位置Cとの間の距離をLとし、偏向反射部400の位置の光の広がり幅をDとした場合、立体像を高解像度で形成するためには、D≦L/10を満たすことが好ましい。ここで、偏向反射部400からの光の広がり幅として、偏向反射部400のx軸方向の長さWを適用してよい。他にも、偏向反射部400で偏向された光の強度分布の広がり幅を、Dとして適用してよい。例えば、x軸方向の位置を横軸とし、偏向反射部400で偏向された光の強度を縦軸で表した光の強度分布において、光強度が最大値の半分となる位置の全幅(半値全幅)を、Dとして適用してよい。
 図8は、光収束部30が有する反射面のうちの1つの反射面への入射光の広がり角Δθと、出射光の発散角ΦΔとの関係を概略的に示す。なお、Δθは、反射面の位置における導光板70が導く光の広がり角である。具体的には、Δθはxy面内の広がり角、すなわち、出射面71に平行な面内での広がり角である。Δθは、角度方向の光強度分布において、光強度が最大値の半分となる位置の幅(半値全幅)であってよい。
 図8において、Δxは、定点P1における反射面140による出射光のx軸方向の広がりを表す。dは、出射面71から定点Pまでの距離を表す。ここで、反射面への入射光及び反射面による出射光の光の広がりは所定値より小さいものとする。例えば、Δx及びΔθが微小であるとする。この場合、ΦΔx=Δx/dが近似的に成り立つ。このように、x軸方向の偏向反射部400の長さWを短くすることで、出射光の広がりΔxを小さくすることができる。すなわち、立体像の解像度を高めることができる。
 実際には、出射光が出射面71における屈折等の影響等を受けるので、発散角ΦΔxはΔθより大きくなる。ここで、発散角ΦΔxは、ΔθのCα倍になるとする。Cαは、1より大きい値である。一例として、Cαとして1.5を適用してよい。
 ここで、定点Pが出射面71側にある場合、すなわち、定点Pが観察者側にある場合、dは8mm以上であることが好ましい。dが8mm未満であると、立体像として認識できない場合があるからである。また、Δxは1mm以下であることが好ましい。Δxが1mmを超えると、立体像を十分な解像度で形成できない場合があるからである。
 したがって、ΦΔxは、atan(1/8)以下であることが好ましい。すなわち、Δθは、Cα×Δθ≦atan(1/8)を満たすことが好ましい。Cαを考慮して、Δθは5°以下であることが好ましい。すなわち、偏向反射部400によって偏向されて導光板70が導く光の発散角は、出射面71に平行な面内で5°以下であることが好ましい。そこで、偏向反射部400の幅Wは、光の発散角が出射面71に平行な面内で5°以下になる値を持つことが好ましい。
 図9は、表示装置10の変形例としての表示装置10Cを概略的に示す。図9(a)はyz面内の断面を示し、図9(b)は、xy面内の上面図を示す。表示装置10Cは、偏向反射部40Cの形状が、偏向反射部40と異なる点を除いて、表示装置10と略同様の構成を持つ。偏向反射部40が端面73側及び端面74側に斜面を持つV字溝であるのに対し、偏向反射部40Cは、端面74側に斜面を持つが端面73側に斜面を持たないV字溝である。
 図10は、表示装置10の変形例としての表示装置10Dを概略的に示す。図10(a)はyz面内の断面を示し、図10(b)は、xy面内の上面図を示す。表示装置10Dは、偏向反射部40Dの形状が、偏向反射部40と異なる点を除いて、表示装置10と略同様の構成を持つ。偏向反射部40が偏向反射面41を1つ持つのに対し、偏向反射部40Dは、複数の偏向反射面41Dを持つ。複数の偏向反射面41は、導光板70の導光方向に沿う方向に、複数設けられる。
 図11は、表示装置10の変形例としての表示装置10Eの一部を拡大して概略的に示す。表示装置10Eは、偏向反射部40Eの形状が、偏向反射部40と異なる点を除いて、表示装置10と略同様の構成を持つ。偏向反射部40が偏向反射面41を1つ持つのに対し、偏向反射部40Eは、複数の偏向反射面41Eを持つ。複数の偏向反射面41Eは、導光板70の導光方向に沿う方向に、複数設けられる。特に、偏向反射面41Eは、出射面71からの溝の深さが互いに異なる。すなわち、複数の偏向反射面41Eのそれぞれは、出射面71に直交し導光板70の導光方向に沿う面内において、出射面71に垂直な方向の長さが、他の偏向反射面41Eとは異なる。
 図12は、表示装置10の変形例としての表示装置10Fの一部を拡大して概略的に示す。表示装置10Fは、偏向反射部40Fの形状が、偏向反射部40と異なる点を除いて、表示装置10と略同様の構成を持つ。偏向反射部40が偏向反射面41を1つ持つのに対し、偏向反射部40Fは、複数の偏向反射面41Fを持つ。複数の偏向反射面41Fは、導光板70の導光方向に沿う方向に、複数設けられる。特に、偏向反射面41Fは、出射面71からの溝の深さ及び出射面71に対する角度が互いに異なる。すなわち、複数の偏向反射面41Fのそれぞれは、出射面71に直交し導光板70の導光方向に沿う面内において、出射面71に垂直な方向の長さが及び出射面71に平行な面に対する角度が、他の偏向反射面41Fとは異なる。
 図13は、表示装置10の変形例としての表示装置10Gの一部を拡大して概略的に示す。表示装置10Gは、偏向反射部40Gの形状が、偏向反射部40と異なる点を除いて、表示装置10と略同様の構成を持つ。偏向反射部40が偏向反射面41を1つ持つのに対し、偏向反射部40Gは、複数の偏向反射面41Gを持つ。複数の偏向反射面41Gは、導光板70の導光方向に沿う方向に、複数設けられる。特に、偏向反射面41Gは、出射面71からの溝の深さ及び出射面71に対する角度が互いに異なる。すなわち、複数の偏向反射面41Gのそれぞれは、出射面71に直交し導光板70の導光方向に沿う面内において、出射面71に垂直な方向の長さが及び出射面71に平行な面に対する角度が、他の偏向反射面41Gとは異なる。また、偏向反射部40Fとは異なり、各偏向反射面41Gの間に出射面71と平行なギャップ面を持つ。
 図14は、表示装置10の変形例としての表示装置10Hの一部を拡大して概略的に示す。表示装置10Hは、偏向反射部40Hの形状が、偏向反射部40と異なる点を除いて、表示装置10と略同様の構成を持つ。偏向反射部40が偏向反射面41を1つ持つのに対し、偏向反射部40Hは、導光板70の導光方向に沿って、2つの偏向反射面41Haと、偏向反射面41Haに続く偏向反射面41Hbとを有する。
 偏向反射面41Ha及び偏向反射面41Hbは、導光板70において出射面71側に凹状に形成された偏向反射部40Hの、y軸プラス側の一部の面を形成する。偏向反射面41Hbは、偏向反射面41Haよりy軸プラス側に位置する面である。光源20は、偏向反射面41Haのz軸マイナス側に設けられる。偏向反射面41Haは、偏向反射面41Hbより光源20に近い位置に設けられる。
 出射面71に直交し導光板70の導光方向に沿う面内において、出射面71に平行な面と偏向反射面41Hbとがなす角度θbは、出射面71に平行な面と偏向反射面41Haとがなす角度θaと異なる。なお、角度θaは、出射面71に平行な面と偏向反射面41Haとによってはさまれる鋭角であり、出射面71に平行な面に対する偏向反射面41Haの傾きを表す。また、角度θbは、出射面71に平行な面と偏向反射面41Hbとによってはさまれる鋭角であり、出射面71に平行な面に対する偏向反射面41Hbの傾きを表す。
 このように、出射面71に直交し導光板70の導光方向に沿う面内において、出射面71に平行な面に対する偏向反射面41Hbの傾きは、出射面71に平行な面に対する偏向反射面41Haの傾きと異なる。具体的には、出射面71に直交し導光板70の導光方向に沿う面内において、出射面71に平行な面に対する偏向反射面41Hbの傾きは、出射面71に平行な面に対する偏向反射面41Haの傾きより小さい。そのため、偏向反射面の面積を大きくすることができる。したがって、光源20からの光をより多く導光板70に供給できる。
 なお、表示装置10Hの変形例として、導光板70の導光方向に沿って3つ以上の連続する偏向反射面を設けてもよい。この変形例では、出射面71に直交し導光板70の導光方向に沿う面内において、導光板70が光を導く向きに沿って偏向反射面41を順に選択した場合、偏向反射面の傾きは漸減する。すなわち、各偏向反射面の傾きは、光源20に近い側にある他のいずれの偏向反射面の傾きよりも小さい。
 図15は、表示装置10Hの変形例としての表示装置10Iの一部を拡大して概略的に示す。表示装置10Iは、偏向反射部40Ibの形状が、偏向反射部40Hbと異なる点を除いて、表示装置10Hと略同様の構成を持つ。具体的には、偏向反射面41Hbが平面であるのに対し、偏向反射面41Ibは曲面である。
 表示装置10Hと同様、出射面71に直交し導光板70の導光方向に沿う面内において、出射面71に平行な面と偏向反射面41Iaとがなす角度はθaである。ここで、出射面71に直交し導光板70の導光方向に沿う面内において、出射面71に平行な面と偏向反射面41Ibの接線とによって挟まれる鋭角は、偏向反射面41Ibのどの位置においても、角度θaより小さい。また、出射面71に直交し導光板70の導光方向に沿う面内において、出射面71に平行な面と偏向反射面41Ibの接線とによって挟まれる鋭角は、導光板70が光を導く向きに沿って漸減する。
 このように、出射面71に直交し導光板70の導光方向に沿う面内において、偏向反射面41Hbのどの位置においても、出射面71に平行な面に対する偏向反射面41Hbの傾きは、出射面71に平行な面に対する偏向反射面41Haの傾きより小さい。また、出射面71に平行な面に対する偏向反射面41Ibの傾きは、導光板70が光を導く向きに沿って漸減する。係る偏向反射面41Iによっても、偏向反射面の面積を大きくすることができ、光源20からの光をより多く導光板70に供給できる。
 図16は、表示装置10の変形例としての表示装置10Jの一部を拡大して概略的に示す。図16(a)はyz面内の断面を示し、図16(b)は、xy面内の上面図を示す。表示装置10Jは、偏向反射部40Jの形状が、偏向反射部40と異なる点を除いて、表示装置10と略同様の構成を持つ。偏向反射部40が偏向反射面41を持つのに対し、偏向反射部40Jはマイクロプリズムである。光源20からの光は、偏向反射部40Jのマイクロプリズムによって反射して偏向される。
 図17は、表示装置10の変形例としての表示装置10Kの一部を拡大して概略的に示す。図17(a)はyz面内の断面を示し、図17(b)は、xy面内の上面図を示す。表示装置10Kは、偏向反射部40Kの形状が、偏向反射部40と異なる。また、光源20からの光は、z軸から角度をなして背面72に入射される。光源20は、背面72の垂直方向とは異なる方向から、導光板70内に光を入射する。これらの点を除いて、表示装置100Kは表示装置10と略同様の構成を持つ。偏向反射部40Kは、x軸に沿って並ぶ複数の反射面を有する。偏向反射部40Kが有する複数の反射面は、光源20からの光を出射面71に平行な面内に広がるように反射する。
 図18は、表示装置10の変形例としての表示装置10Lの一部を拡大して概略的に示す。図18(a)はyz面内の断面を示し、図18(b)は、xy面内の上面図を示す。表示装置10Lは、偏向反射部40Lの形状が、偏向反射部40と異なる。これらの点を除いて、表示装置100Lは表示装置10と略同様の構成を持つ。偏向反射部40Lは、出射面71に設けられ、光源20からの光を出射面71に平行な面内に広がるように反射する。
 図19は、表示装置10の変形例としての表示装置10Mの一部を拡大して概略的に示す。図19(a)はyz面内の断面を示し、図19(b)は、xy面内の上面図を示す。表示装置10Mは、光源20-1M、光源20-2M及び光源20-3Mを有する。また、導光板70Mが背面72に凹部を有し、光源20-1M、光源20-1M及び光源20-1Mが凹部の端面73側の面に設けられる。また、導光板70Mは、端面73に、偏向反射部40を有する。これらの点を除いて、表示装置100Mは表示装置10と略同様の構成を持つ。
 光源20-1M、光源20-2M及び光源20-3Mは、導光板70Mの導光方向に直交し出射面71に平行な面に沿う方向に複数並べて設けられる。光源20-1M、光源20-2M及び光源20-3Mは、それぞれ導光板70Mの端面73に向けて導光板70M内に光を入射する。
 偏向反射部40Mは、端面73に設けられる。偏向反射部40Mは、偏向反射面41-1M、偏向反射面41-2M及び偏向反射面41-3Mを有する。偏向反射面41-1M、偏向反射面41-2M及び偏向反射面41-3Mは、光源20-1M、光源20-2M及び光源20-3Mに対応して、導光板70Mの導光方向に直交し出射面71に平行な面に沿う方向に並べて設けられる。偏向反射面41-1M、偏向反射面41-2M及び偏向反射面41-3Mは、光源20-1M、光源20-2M及び光源20-3Mからの光を反射して、端面74に向かう実質的に略平行な光に偏向する。
 偏向反射面41-1M、偏向反射面41-2M及び偏向反射面41-3Mのそれぞれは、例えば放物面を持つミラーである。光源20-1Mは、偏向反射面41-1Mの放物面の焦点の位置又は当該放物面の焦点の位置の近傍に設けられることが好ましい。同様に、光源20-2Mは、偏向反射面41-2Mの放物面の焦点の位置又は当該放物面の焦点の位置の近傍に設けられ、光源20-3Mは、偏向反射面41-3Mの放物面の焦点の位置又は当該放物面の焦点の位置の近傍に設けられることが好ましい。
 図20は、表示装置10の変形例としての表示装置10Nの一部を拡大して概略的に示す。図20(a)はyz面内の断面を示し、図20(b)は、xy面内の上面図を示す。表示装置10Nは、偏向反射部40Nを持つ偏向部材50を有する。また、表示装置10Nは、光源20-1N、光源20-2N及び光源20-3Nを有する。これらの点を除いて、表示装置100Nは表示装置10と略同様の構成を持つ。
 偏向部材50は、端面73に設けられる。偏向部材50は、導光板70Nの端面73に対向する端面54と、端面54とは反対側の端面53とを有する。偏向部材50は、導光板70Nの出射面71に実質的に平行な端面51と、面51とは反対側の背面52とを有する。
 表示装置10Nは、表示装置10Mにおいて、偏向反射部40Mに対応する偏向反射部40Nを偏向部材50に設けた構成を持つ。偏向部材50は、端面53に、偏向反射部40Nを有する。また、偏向部材50は、背面52に凹部を有する。光源20は凹部の端面53側の面に設けられる。
 光源20-1N、光源20-2N及び光源20-3Nは、導光板70Nの導光方向に直交し出射面71に平行な面に沿う方向に複数並べて設けられる。光源20-1N、光源20-2N及び光源20-3Nは、それぞれ偏向部材50の端面53に向けて偏向部材50内に光を入射する。
 偏向反射部40Nは、偏向反射面41-1N、偏向反射面41-2N及び偏向反射面41-3Nを有する。偏向反射面41-1N、偏向反射面41-2N及び偏向反射面41-3Nは、光源20-1N、光源20-2N及び光源20-3Nに対応して、導光板70Nの導光方向に直交し出射面71に平行な面に沿う方向に並べて設けられる。偏向反射面41-1N、偏向反射面41-2N及び偏向反射面41-3Nは、光源20-1N、光源20-2N及び光源20-3Nからの光を反射して、端面74に向かう実質的に略平行な光に偏向する。
 偏向反射面41-1N、偏向反射面41-2N及び偏向反射面41-3Nのそれぞれは、例えば放物面を持つミラーである。光源20-1Nは、偏向反射面41-1Nの放物面の焦点の位置又は当該放物面の焦点の位置の近傍に設けられることが好ましい。同様に、光源20-2Nは、偏向反射面41-2Nの放物面の焦点の位置又は当該放物面の焦点の位置の近傍に設けられ、光源20-3Nは、偏向反射面41-3Nの放物面の焦点の位置又は当該放物面の焦点の位置の近傍に設けられることが好ましい。
 表示装置10Nにおいては、光源20は偏向部材50に設けられている。表示装置10Nの変形例として、表示装置10Mと同様に、光源20を導光板70Nに設けた構成を採用してよい。
 以上に説明した偏向反射部は、光源からの光を導光板の導光方向に偏向する偏向光学面の一例である。偏向光学面としては、反射面の他に、回折面を適用できる。反射、回折の他に、屈折によって光源からの光を偏向する光学面を用いてもよい。また、上述した表示装置10及び表示装置10の変形例のうち表示装置10M以外の変形例では、偏向光学面は出射面71側に設けられる。しかし、偏向光学面は、背面72側に設けられてもよい。例えば、背面72側導光板70に入射した光源20からの光を、背面72側に設けた偏向光学面によって回折又は屈折することによって、導光板70の導光方向に偏向してよい。このように、偏向光学面は、光源20が設けられた側と同じ背面72側に設けられてもよい。
 また、光源20と偏向光学面との位置関係について、上述した表示装置10及び表示装置10の変形例のうち表示装置10M以外の変形例とは逆に、光源20が出射面71側に設けられ、偏向光学面が背面72側に設けられてもよい。また、光源20が出射面71側に設けられ、偏向光学面も出射面71側に設けられてもよい。例えば、出射面71側から導光板70に入射した光源20からの光を、回折又は屈折することによって、導光板70の導光方向に偏向してよい。このように、偏向光学面は、光源20が設けられた側と同じ出射面71側に設けられてもよい。
 また、光源20と導光板70の位置関係について、上述した表示装置10及び表示装置10の変形例のうち、表示装置10Nを除いて、光源20は導光板70に設けられる。しかし、光源20は、表示装置10Nと同様に、導光板70とは別個に設けられた部材に設けられてよい。この場合、偏向光学面は、光源20が設けられた、導光板70とは別個の部材に設けられてよい。また、上述した表示装置10及び表示装置10の変形例において、光源20を有しない構成を採用してよい。
 図21は、光システム500の一例を立体像と共に概略的に示す斜視図である。図22は、光システム500のyz断面を概略的に示す。光システム500は、表示装置10Pと、携帯端末510と、端末カバー530とを備える。
 表示装置10Pは、表示装置10の変形例である。表示装置10Pは、偏向反射部40に対応する偏向反射部40Pを有する。端末カバー530は、透光性の部材で形成される。
 携帯端末510は、スマートフォン等の電子機器である。携帯端末510は、撮影機能を有する。携帯端末510は、ディスプレイ518と、光源520と、カメラ部528とを有する。ディスプレイ518は、ユーザ操作を受け付けるタッチパネル機能を有する。光源520は、カメラ部528で撮影する場合に被写体を照明する光を出射する。光源520は、ディスプレイ518が設けられた主面511とは反対側の主面512から、光を出射する。
 表示装置10Pは、端末カバー530と携帯端末510の主面512との間に挟まれて設けられる。導光板70の出射面71が端末カバー530に実質的に接し、導光板70の背面72が携帯端末510の主面512に実質的に接する。表示装置10Pは、携帯端末510の外形と略一致する外形を有する。表示装置10Pは、携帯端末510の主面512の外形に略一致する外形を有し、表示装置10Pの外形と主面512の外形とを揃えることによって、表示装置10Pが主面512に位置合わせされる。表示装置10Pが主面512に位置合わせされた状態で、端末カバー530の凹部の底面を導光板70の出射面71に被せることによって、表示装置10Pが端末カバー530に対して固定される。偏向反射部40Pは、表示装置10Pが主面512に位置合わせされた場合に光源520に対向する位置に形成されている。
 光システム500において、偏向反射部40Pは、xy面に投影した場合に光源520の出射開口の一部を占める。光源520が発光した場合、光源520からの光のうちの一部の光が偏向反射部40Pに入射して、偏向反射部40Pで反射し、導光板70内を伝搬する光となる。光源520からの光のうち、偏向反射部40Pに入射しなかった光は、導光板70及び端末カバー530を通過して、光システム500の外に出射する。
 導光板70の背面72には、立体像としての像506を形成する光収束部30Pが形成されている。導光板70内を伝搬する光は光収束部30Pで一部が偏向されて、出射面71及び端末カバー530を通過して光システム500外に出射して、光システム500外の空間に像506を形成する。光システム500によれば、例えば携帯端末510で撮影する際に光源520を発光させることで、光システム500外の空間に像506を形成することができる。
 携帯端末510には、予め定められた発光条件が満たされた場合に光源520を発光させるソフトウェアが組み込まれている。携帯端末510は、当該ソフトウェアの制御に従って、予め定められた条件が満たされた場合に光源520を発光させる。例えば、携帯端末510は、撮影前に像506を形成する指示を受け付けるボタンをディスプレイ518に表示して、当該ボタンがタッチされた場合に、光源20を発光させる。その後、携帯端末510は、撮影指示を受け付けるボタンがタッチされた場合に、光システム500外の明るさや予め定められた撮影条件等に応じて、カメラ部528の撮影動作中に光源20を発光させる。
 図23は、表示装置10Pが形成する立体像の他の例を示す。図23(a)は、電子メールの受信を通知する像556を光収束部30からの光で形成する場合を示す。この場合、光源20の発光条件は、携帯端末510で電子メールを受信した場合に光源520を発光させるように、ソフトウェアで設定される。図23(b)は、携帯端末510が充電中であることを通知する像566を光収束部30からの光で形成する場合を示す。この場合、光源20の発光条件は、携帯端末510内のバッテリを充電中の場合に光源520を発光させるように、ソフトウェアで設定される。図23(c)は、携帯端末510の充電が完了したことを通知する像576を光収束部30からの光で形成する場合を示す。この場合、光源20の発光条件は、携帯端末510内のバッテリが満充電の場合に光源520を発光させるように、ソフトウェアで設定される。
 なお、表示装置10Pには、複数の像を形成する光を出射する複数の光偏向部群が設けられてよい。例えば、表示装置10Pに、像556を形成する第1の光偏向部群と、像566を形成する第2の光偏向部と、像576を形成する第3の光偏向部群とが設けられてよい。第1の光偏向部群は、導光板70によって導光される光のうち第1の波長域の光(例えば、青の波長域の光)を選択的に偏向して出射させ、第2の光偏向部群は、導光板70によって導光される光のうち第2の波長域の光(例えば、赤の波長域の光)を選択的に偏向して出射させ、第3の光偏向部群は、導光板70によって導光される光のうち第3の波長域の光(例えば、緑の波長域の光)を選択的に偏向して出射させてよい。例えば各光偏向部群の反射面には、それぞれ対応する波長域の光を選択的に反射するダイクロイックミラーが形成されてよい。そして、メールを受信する等の予め定められた第1の発光条件が満たされた場合に第1の波長域の光を光源520に発光させ、バッテリを充電中である等の予め定められた第2の発光条件が満たされている場合に第2の波長域の光を光源520に発光させ、バッテリが満充電である等の予め定められた第3の発光条件が満たされている場合に第3の波長域の光を光源520に発光させるよう、ソフトウェアで設定される。
 なお、表示装置10Pは、端末カバー530と一体に設けられてよい。偏向反射部40P及び光収束部30Pの少なくとも一方は、端末カバー530に形成されてもよい。また、表示装置10Pは、携帯端末510の主面511側に設けられてよい。また、偏向反射部40Pをディスプレイ518の一部の領域に対向する位置に設けて、ディスプレイ518の一部の領域からの出射光を、表示装置10Pへの入射光として用いてもよい。
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更又は改良を加えることが可能であることが当業者に明らかである。その様な変更又は改良を加えた形態も本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。
 請求の範囲、明細書、及び図面中において示した装置、システム、プログラム、及び方法における動作、手順、ステップ、及び段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。請求の範囲、明細書、及び図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。
6 像
10 表示装置
20 光源
21 出射口
30 光収束部
70 導光板
71 出射面
72 背面
40 偏向反射部
41 偏向反射面
50 偏向部材
51 端面
52 背面
53、54 端面
73 端面
74 端面
75 端面
76 端面
100 表示装置
110 反射補助部
111 面
114 突部
120 反射膜
130 本体部
140 反射面
190 線
200 出射口
400 偏向反射部
500 光システム
506、556、566、576 像
510 携帯端末
511、512 主面
518 ディスプレイ
520 光源
528 カメラ部
530 端末カバー

Claims (16)

  1.  出射面に平行な面内で光を導く導光板と、
     前記出射面とは反対側の面及び前記出射面側の面の少なくとも一方の面に平行な面に対向して設けられた光源から前記導光板内に入射した光を前記導光板の導光方向に偏向する偏向光学面と、
     前記偏向光学面によって偏向されて前記導光板によって導かれている光が入射し、空間上の1つの収束点又は収束線に実質的に収束する又は空間上の1つの収束点又は収束線から実質的に発散する方向の出射光を前記出射面から出射させる光学面をそれぞれ有する複数の光収束部と
    を備え、
     前記複数の光収束部は、前記出射面に平行な面内でそれぞれ予め定められた線に沿って形成され、
     前記収束点又は収束線は前記複数の光収束部の間で互いに異なり、複数の前記収束点又は収束線の集まりによって空間上に像が形成される
    光デバイス。
  2.  前記光源は、前記導光板の前記出射面とは反対側の面及び前記出射面側の面の少なくとも一方の面に対向して設けられ、前記光源が設けられた前記少なくとも一方の面から前記導光板に光を入射する
    請求項1に記載の光デバイス。
  3.  前記偏向光学面は、
     前記光源が設けられた面とは反対側の面に設けられ、前記光源から前記導光板内に入射した光を反射して、前記導光板の導光方向に偏向する偏向反射面
    を有する請求項2に記載の光デバイス。
  4.  前記導光板の導光方向に略直交する方向において、前記偏向反射面の長さは、前記光源からの光が前記導光板に向けて出射する出射口の長さより短い
    請求項3に記載の光デバイス。
  5.  前記偏向反射面によって偏向されて前記導光板が導く光の発散角は、前記出射面に平行な面内で5°以下である
    請求項4に記載の光デバイス。
  6.  前記導光板の入光端面と前記出射面の光収束部30が形成された領域の中央との間の距離をLとし、前記出射面に平行であり前記導光板の導光板に略直交する方向における前記偏向反射面の幅をWとした場合、W≦L/10を満たす
    請求項4又は5に記載の光デバイス。
  7.  前記偏向反射面に設けられた反射膜
    をさらに備える請求項3から6のいずれか1項に記載の光デバイス。
  8.  反射膜が設けられた面を有し、前記反射膜が前記偏向反射面に接するように前記導光板に装着された反射補助部
    をさらに備える請求項3から6のいずれか1項に記載の光デバイス。
  9.  前記偏向反射面は、前記導光板の導光方向に沿う方向に複数設けられ、
     複数の前記偏向反射面のそれぞれは、前記出射面に直交し前記導光板の導光方向に沿う面内において、前記出射面に直交する方向の長さ及び前記出射面に平行な面に対する角度の少なくとも一方が、他の前記偏向反射面とは異なる
    請求項3から8のいずれか1項に記載の光デバイス。
  10.  前記偏向反射面は、前記導光板の導光方向に沿って、第1の偏向反射面と、前記第1の偏向反射面に続く第2の偏向反射面とを有し、
     前記出射面に直交し前記導光板の導光方向に沿う面内において、前記出射面に平行な面に対する前記第1の偏向反射面の傾きは、前記出射面に平行な面に対する前記第2の偏向反射面の傾きと異なる
    請求項3から9のいずれか1項に記載の光デバイス。
  11.  前記第1の偏向反射面及び前記第2の偏向反射面は、前記導光板において前記光源が設けられた面とは反対側の面に形成された凹部の一部の面を形成し、
     前記出射面に直交し前記導光板の導光方向に沿う面内において、前記出射面に平行な面に対する前記第2の偏向反射面の傾きは、前記出射面に平行な面に対する前記第1の偏向反射面の傾きより小さい
    請求項10に記載の光デバイス。
  12.  前記偏向光学面は、前記光源から前記導光板内に入射した光を、前記導光板の導光方向に平行な面内で広げる向きに複数の反射面を有する
    請求項1に記載の光デバイス。
  13.  前記光源は、前記導光板の導光方向の第1の端面とは反対側の第2の端面に向けて前記導光板内に光を入射し、
     前記偏向光学面は、
     前記第2の端面に設けられ、前記光源からの光を、前記第1の端面に向かう実質的に略平行な光に変換する偏向反射面
    を有する請求項2に記載の光デバイス。
  14.  前記偏向光学面を有し、前記導光板の導光方向の第1の端面とは反対側の第2の端面に設けられた偏向部材
    をさらに備え、
     前記偏向光学面は、前記光源からの光を、前記第1の端面に向かう実質的に略平行な光に変換する偏向反射面を有し、
     前記光源は、前記偏向反射面に向かう光を前記偏向部材に入射する
    請求項1に記載の光デバイス。
  15.  前記光源は、前記導光板の導光方向に直交し前記出射面に平行な面に沿う方向に複数並べて設けられ、
     前記偏向反射面は、前記導光板の導光方向に直交し前記出射面に平行な面に沿う方向に、複数の前記光源に対応して複数並べて設けられる
    請求項13又は14に記載の光デバイス。
  16.  前記光源をさらに備える
    請求項1から15のいずれか一項に記載の光デバイス。
PCT/JP2016/057211 2015-07-29 2016-03-08 光デバイス WO2017017981A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680022569.5A CN107533236B (zh) 2015-07-29 2016-03-08 光学设备
DE112016003384.2T DE112016003384B4 (de) 2015-07-29 2016-03-08 Optische vorrichtung
US15/808,677 US10739614B2 (en) 2015-07-29 2017-11-09 Optical device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015150034A JP6503963B2 (ja) 2015-07-29 2015-07-29 光デバイス
JP2015-150034 2015-07-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/808,677 Continuation US10739614B2 (en) 2015-07-29 2017-11-09 Optical device

Publications (1)

Publication Number Publication Date
WO2017017981A1 true WO2017017981A1 (ja) 2017-02-02

Family

ID=57884215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/057211 WO2017017981A1 (ja) 2015-07-29 2016-03-08 光デバイス

Country Status (6)

Country Link
US (1) US10739614B2 (ja)
JP (1) JP6503963B2 (ja)
CN (1) CN107533236B (ja)
DE (1) DE112016003384B4 (ja)
TW (1) TW201704816A (ja)
WO (1) WO2017017981A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112017007264B4 (de) 2017-03-14 2023-01-05 Omron Corporation Optische Vorrichtung und Anzeigevorrichtung
DE112017007244B4 (de) 2017-03-14 2023-01-26 Omron Corporation Darstellungsvorrichtung
US11747542B2 (en) 2017-03-14 2023-09-05 Omron Corporation Display method

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105093553A (zh) * 2015-09-21 2015-11-25 京东方科技集团股份有限公司 一种屏障式裸眼3d显示屏及显示装置
JP6743419B2 (ja) * 2015-11-10 2020-08-19 オムロン株式会社 表示システム及びゲート装置
CN112119334A (zh) 2018-04-02 2020-12-22 奇跃公司 具有集成光学元件的波导及其制造方法
US10775549B2 (en) 2019-01-17 2020-09-15 Aristocrat Technologies Australia Pty Ltd Lighting display assembly for a gaming machine
USD946661S1 (en) 2019-01-18 2022-03-22 Aristocrat Technologies Australia Pty Limited Gaming machine
JP7239042B2 (ja) * 2019-03-07 2023-03-14 オムロン株式会社 発光装置、および車両用灯具
JP7040482B2 (ja) * 2019-03-07 2022-03-23 オムロン株式会社 評価方法
JP7099371B2 (ja) * 2019-03-07 2022-07-12 オムロン株式会社 発光装置、および車両用灯具
US11575865B2 (en) 2019-07-26 2023-02-07 Samsung Electronics Co., Ltd. Processing images captured by a camera behind a display
DE102020205122B4 (de) 2020-04-22 2023-06-15 Volkswagen Aktiengesellschaft Vorrichtung und Verfahren zum Erzeugen visueller Informationen für einen Fahrzeugfahrer
US11721001B2 (en) * 2021-02-16 2023-08-08 Samsung Electronics Co., Ltd. Multiple point spread function based image reconstruction for a camera behind a display
US11722796B2 (en) 2021-02-26 2023-08-08 Samsung Electronics Co., Ltd. Self-regularizing inverse filter for image deblurring
JP2022140150A (ja) * 2021-03-12 2022-09-26 オムロン株式会社 導光部材、照明装置および立体表示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000510603A (ja) * 1996-02-28 2000-08-15 ミン リ 光波を処理するための光学構造
JP2008275922A (ja) * 2007-04-27 2008-11-13 Fujikura Ltd 表示装置
JP2009540440A (ja) * 2006-06-06 2009-11-19 スリーエム イノベイティブ プロパティズ カンパニー 仮想イメージを有するキーパッド
WO2013188464A1 (en) * 2012-06-11 2013-12-19 Magic Leap, Inc. Multiple depth plane three-dimensional display using a wave guide reflector array projector
JP5509391B1 (ja) * 2013-06-07 2014-06-04 株式会社アスカネット 再生画像の指示位置を非接触で検知する方法及び装置
US20140268327A1 (en) * 2013-03-15 2014-09-18 Opsec Security Group, Inc. Optically variable device exhibiting non-diffractive three-dimensional optical effect

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4863576B2 (ja) * 2001-06-06 2012-01-25 セイコーインスツル株式会社 液晶表示装置
FI115169B (fi) * 2003-05-13 2005-03-15 Nokia Corp Menetelmä ja optinen järjestelmä valon kytkemiseksi aaltojohteeseen
EP1666933A1 (fr) * 2004-12-02 2006-06-07 Asulab S.A. Dispositif optique a double fonction d'illumination et de formation d'une image figurative
CN1881023B (zh) * 2005-06-16 2011-11-23 清华大学 背光模组
JP5408532B2 (ja) 2009-05-11 2014-02-05 独立行政法人情報通信研究機構 表示装置
JP5045826B2 (ja) 2010-03-31 2012-10-10 ソニー株式会社 光源デバイスおよび立体表示装置
EP2558775B1 (en) 2010-04-16 2019-11-13 FLEx Lighting II, LLC Illumination device comprising a film-based lightguide
JP5439294B2 (ja) 2010-06-28 2014-03-12 株式会社フジクラ 表示装置
US8743464B1 (en) 2010-11-03 2014-06-03 Google Inc. Waveguide with embedded mirrors
WO2012068532A2 (en) * 2010-11-19 2012-05-24 Reald Inc. Directional flat illuminators
CN103727452B (zh) * 2012-10-15 2016-12-21 群康科技(深圳)有限公司 显示装置及其发光模块与导光板
WO2014196088A1 (ja) 2013-06-07 2014-12-11 株式会社アスカネット 再生画像の指示位置を非接触で検知する方法及び装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000510603A (ja) * 1996-02-28 2000-08-15 ミン リ 光波を処理するための光学構造
JP2009540440A (ja) * 2006-06-06 2009-11-19 スリーエム イノベイティブ プロパティズ カンパニー 仮想イメージを有するキーパッド
JP2008275922A (ja) * 2007-04-27 2008-11-13 Fujikura Ltd 表示装置
WO2013188464A1 (en) * 2012-06-11 2013-12-19 Magic Leap, Inc. Multiple depth plane three-dimensional display using a wave guide reflector array projector
US20140268327A1 (en) * 2013-03-15 2014-09-18 Opsec Security Group, Inc. Optically variable device exhibiting non-diffractive three-dimensional optical effect
JP5509391B1 (ja) * 2013-06-07 2014-06-04 株式会社アスカネット 再生画像の指示位置を非接触で検知する方法及び装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112017007264B4 (de) 2017-03-14 2023-01-05 Omron Corporation Optische Vorrichtung und Anzeigevorrichtung
DE112017007244B4 (de) 2017-03-14 2023-01-26 Omron Corporation Darstellungsvorrichtung
US11747542B2 (en) 2017-03-14 2023-09-05 Omron Corporation Display method

Also Published As

Publication number Publication date
US20180129061A1 (en) 2018-05-10
US10739614B2 (en) 2020-08-11
TW201704816A (zh) 2017-02-01
CN107533236A (zh) 2018-01-02
DE112016003384T5 (de) 2018-04-12
JP2017032664A (ja) 2017-02-09
DE112016003384B4 (de) 2023-11-16
JP6503963B2 (ja) 2019-04-24
CN107533236B (zh) 2020-02-07

Similar Documents

Publication Publication Date Title
WO2017017981A1 (ja) 光デバイス
JP7417234B2 (ja) 部分的に反射する内部表面を備えた導光光学素子を含む光学システム
TWI557477B (zh) 光源模組
EP2818792B1 (en) Vehicle lighting unit
CA2817044C (en) Directional flat illuminators
US10712586B2 (en) Optical device and optical system
KR20190072838A (ko) 광학 시스템 및 이를 구비한 웨어러블 표시장치
WO2014041828A1 (ja) 面光源装置およびそれを用いた表示装置
TW201527148A (zh) 車輛頭燈裝置
JP2018198127A (ja) 車両用灯具
TW201643507A (zh) 光學裝置
CN107533235B (zh) 光学设备
JP6544186B2 (ja) 光デバイス及び光システム
US8439548B2 (en) Symmetric serrated edge light guide having circular base segments
US20130003408A1 (en) Symmetric serrated edge light guide film having circular tip and base segments
TWI669563B (zh) 投影模組
CN114839713B (zh) 一种基于头盔显示的二维扩瞳全息波导结构
JP2022140150A (ja) 導光部材、照明装置および立体表示装置
JP7110917B2 (ja) 表示装置
JP2016178046A (ja) 導光体およびこれを使用したライン照明表示装置
KR102362729B1 (ko) 헤드업 디스플레이 장치
CN115016200A (zh) 一种反射式补光器件和摄像机
WO2013088854A1 (ja) 照明装置及びライトガイド

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16830086

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112016003384

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16830086

Country of ref document: EP

Kind code of ref document: A1